/* * Digital Audio (PCM) abstract layer * Copyright (c) by Jaroslav Kysela * Abramo Bagnara * * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include #include #include #include #include #include #include #include #include /* * fill ring buffer with silence * runtime->silence_start: starting pointer to silence area * runtime->silence_filled: size filled with silence * runtime->silence_threshold: threshold from application * runtime->silence_size: maximal size from application * * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately */ void snd_pcm_playback_silence(snd_pcm_substream_t *substream, snd_pcm_uframes_t new_hw_ptr) { snd_pcm_runtime_t *runtime = substream->runtime; snd_pcm_uframes_t frames, ofs, transfer; if (runtime->silence_size < runtime->boundary) { snd_pcm_sframes_t noise_dist, n; if (runtime->silence_start != runtime->control->appl_ptr) { n = runtime->control->appl_ptr - runtime->silence_start; if (n < 0) n += runtime->boundary; if ((snd_pcm_uframes_t)n < runtime->silence_filled) runtime->silence_filled -= n; else runtime->silence_filled = 0; runtime->silence_start = runtime->control->appl_ptr; } if (runtime->silence_filled == runtime->buffer_size) return; snd_assert(runtime->silence_filled <= runtime->buffer_size, return); noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled; if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold) return; frames = runtime->silence_threshold - noise_dist; if (frames > runtime->silence_size) frames = runtime->silence_size; } else { if (new_hw_ptr == ULONG_MAX) { /* initialization */ snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime); runtime->silence_filled = avail > 0 ? avail : 0; runtime->silence_start = (runtime->status->hw_ptr + runtime->silence_filled) % runtime->boundary; } else { ofs = runtime->status->hw_ptr; frames = new_hw_ptr - ofs; if ((snd_pcm_sframes_t)frames < 0) frames += runtime->boundary; runtime->silence_filled -= frames; if ((snd_pcm_sframes_t)runtime->silence_filled < 0) { runtime->silence_filled = 0; runtime->silence_start = (ofs + frames) - runtime->buffer_size; } else { runtime->silence_start = ofs - runtime->silence_filled; } if ((snd_pcm_sframes_t)runtime->silence_start < 0) runtime->silence_start += runtime->boundary; } frames = runtime->buffer_size - runtime->silence_filled; } snd_assert(frames <= runtime->buffer_size, return); if (frames == 0) return; ofs = (runtime->silence_start + runtime->silence_filled) % runtime->buffer_size; while (frames > 0) { transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames; if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED || runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) { if (substream->ops->silence) { int err; err = substream->ops->silence(substream, -1, ofs, transfer); snd_assert(err >= 0, ); } else { char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs); snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels); } } else { unsigned int c; unsigned int channels = runtime->channels; if (substream->ops->silence) { for (c = 0; c < channels; ++c) { int err; err = substream->ops->silence(substream, c, ofs, transfer); snd_assert(err >= 0, ); } } else { size_t dma_csize = runtime->dma_bytes / channels; for (c = 0; c < channels; ++c) { char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs); snd_pcm_format_set_silence(runtime->format, hwbuf, transfer); } } } runtime->silence_filled += transfer; frames -= transfer; ofs = 0; } } static void xrun(snd_pcm_substream_t *substream) { snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN); #ifdef CONFIG_SND_DEBUG if (substream->pstr->xrun_debug) { snd_printd(KERN_DEBUG "XRUN: pcmC%dD%d%c\n", substream->pcm->card->number, substream->pcm->device, substream->stream ? 'c' : 'p'); if (substream->pstr->xrun_debug > 1) dump_stack(); } #endif } static inline snd_pcm_uframes_t snd_pcm_update_hw_ptr_pos(snd_pcm_substream_t *substream, snd_pcm_runtime_t *runtime) { snd_pcm_uframes_t pos; pos = substream->ops->pointer(substream); if (pos == SNDRV_PCM_POS_XRUN) return pos; /* XRUN */ if (runtime->tstamp_mode & SNDRV_PCM_TSTAMP_MMAP) getnstimeofday((struct timespec *)&runtime->status->tstamp); #ifdef CONFIG_SND_DEBUG if (pos >= runtime->buffer_size) { snd_printk(KERN_ERR "BUG: stream = %i, pos = 0x%lx, buffer size = 0x%lx, period size = 0x%lx\n", substream->stream, pos, runtime->buffer_size, runtime->period_size); } #endif pos -= pos % runtime->min_align; return pos; } static inline int snd_pcm_update_hw_ptr_post(snd_pcm_substream_t *substream, snd_pcm_runtime_t *runtime) { snd_pcm_uframes_t avail; if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) avail = snd_pcm_playback_avail(runtime); else avail = snd_pcm_capture_avail(runtime); if (avail > runtime->avail_max) runtime->avail_max = avail; if (avail >= runtime->stop_threshold) { if (substream->runtime->status->state == SNDRV_PCM_STATE_DRAINING) snd_pcm_drain_done(substream); else xrun(substream); return -EPIPE; } if (avail >= runtime->control->avail_min) wake_up(&runtime->sleep); return 0; } static inline int snd_pcm_update_hw_ptr_interrupt(snd_pcm_substream_t *substream) { snd_pcm_runtime_t *runtime = substream->runtime; snd_pcm_uframes_t pos; snd_pcm_uframes_t new_hw_ptr, hw_ptr_interrupt; snd_pcm_sframes_t delta; pos = snd_pcm_update_hw_ptr_pos(substream, runtime); if (pos == SNDRV_PCM_POS_XRUN) { xrun(substream); return -EPIPE; } if (runtime->period_size == runtime->buffer_size) goto __next_buf; new_hw_ptr = runtime->hw_ptr_base + pos; hw_ptr_interrupt = runtime->hw_ptr_interrupt + runtime->period_size; delta = hw_ptr_interrupt - new_hw_ptr; if (delta > 0) { if ((snd_pcm_uframes_t)delta < runtime->buffer_size / 2) { #ifdef CONFIG_SND_DEBUG if (runtime->periods > 1 && substream->pstr->xrun_debug) { snd_printd(KERN_ERR "Unexpected hw_pointer value [1] (stream = %i, delta: -%ld, max jitter = %ld): wrong interrupt acknowledge?\n", substream->stream, (long) delta, runtime->buffer_size / 2); if (substream->pstr->xrun_debug > 1) dump_stack(); } #endif return 0; } __next_buf: runtime->hw_ptr_base += runtime->buffer_size; if (runtime->hw_ptr_base == runtime->boundary) runtime->hw_ptr_base = 0; new_hw_ptr = runtime->hw_ptr_base + pos; } if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK && runtime->silence_size > 0) snd_pcm_playback_silence(substream, new_hw_ptr); runtime->status->hw_ptr = new_hw_ptr; runtime->hw_ptr_interrupt = new_hw_ptr - new_hw_ptr % runtime->period_size; return snd_pcm_update_hw_ptr_post(substream, runtime); } /* CAUTION: call it with irq disabled */ int snd_pcm_update_hw_ptr(snd_pcm_substream_t *substream) { snd_pcm_runtime_t *runtime = substream->runtime; snd_pcm_uframes_t pos; snd_pcm_uframes_t old_hw_ptr, new_hw_ptr; snd_pcm_sframes_t delta; old_hw_ptr = runtime->status->hw_ptr; pos = snd_pcm_update_hw_ptr_pos(substream, runtime); if (pos == SNDRV_PCM_POS_XRUN) { xrun(substream); return -EPIPE; } new_hw_ptr = runtime->hw_ptr_base + pos; delta = old_hw_ptr - new_hw_ptr; if (delta > 0) { if ((snd_pcm_uframes_t)delta < runtime->buffer_size / 2) { #ifdef CONFIG_SND_DEBUG if (runtime->periods > 2 && substream->pstr->xrun_debug) { snd_printd(KERN_ERR "Unexpected hw_pointer value [2] (stream = %i, delta: -%ld, max jitter = %ld): wrong interrupt acknowledge?\n", substream->stream, (long) delta, runtime->buffer_size / 2); if (substream->pstr->xrun_debug > 1) dump_stack(); } #endif return 0; } runtime->hw_ptr_base += runtime->buffer_size; if (runtime->hw_ptr_base == runtime->boundary) runtime->hw_ptr_base = 0; new_hw_ptr = runtime->hw_ptr_base + pos; } if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK && runtime->silence_size > 0) snd_pcm_playback_silence(substream, new_hw_ptr); runtime->status->hw_ptr = new_hw_ptr; return snd_pcm_update_hw_ptr_post(substream, runtime); } /** * snd_pcm_set_ops - set the PCM operators * @pcm: the pcm instance * @direction: stream direction, SNDRV_PCM_STREAM_XXX * @ops: the operator table * * Sets the given PCM operators to the pcm instance. */ void snd_pcm_set_ops(snd_pcm_t *pcm, int direction, snd_pcm_ops_t *ops) { snd_pcm_str_t *stream = &pcm->streams[direction]; snd_pcm_substream_t *substream; for (substream = stream->substream; substream != NULL; substream = substream->next) substream->ops = ops; } /** * snd_pcm_sync - set the PCM sync id * @substream: the pcm substream * * Sets the PCM sync identifier for the card. */ void snd_pcm_set_sync(snd_pcm_substream_t * substream) { snd_pcm_runtime_t *runtime = substream->runtime; runtime->sync.id32[0] = substream->pcm->card->number; runtime->sync.id32[1] = -1; runtime->sync.id32[2] = -1; runtime->sync.id32[3] = -1; } /* * Standard ioctl routine */ /* Code taken from alsa-lib */ #define assert(a) snd_assert((a), return -EINVAL) static inline unsigned int div32(unsigned int a, unsigned int b, unsigned int *r) { if (b == 0) { *r = 0; return UINT_MAX; } *r = a % b; return a / b; } static inline unsigned int div_down(unsigned int a, unsigned int b) { if (b == 0) return UINT_MAX; return a / b; } static inline unsigned int div_up(unsigned int a, unsigned int b) { unsigned int r; unsigned int q; if (b == 0) return UINT_MAX; q = div32(a, b, &r); if (r) ++q; return q; } static inline unsigned int mul(unsigned int a, unsigned int b) { if (a == 0) return 0; if (div_down(UINT_MAX, a) < b) return UINT_MAX; return a * b; } static inline unsigned int muldiv32(unsigned int a, unsigned int b, unsigned int c, unsigned int *r) { u_int64_t n = (u_int64_t) a * b; if (c == 0) { snd_assert(n > 0, ); *r = 0; return UINT_MAX; } div64_32(&n, c, r); if (n >= UINT_MAX) { *r = 0; return UINT_MAX; } return n; } static int snd_interval_refine_min(snd_interval_t *i, unsigned int min, int openmin) { int changed = 0; assert(!snd_interval_empty(i)); if (i->min < min) { i->min = min; i->openmin = openmin; changed = 1; } else if (i->min == min && !i->openmin && openmin) { i->openmin = 1; changed = 1; } if (i->integer) { if (i->openmin) { i->min++; i->openmin = 0; } } if (snd_interval_checkempty(i)) { snd_interval_none(i); return -EINVAL; } return changed; } static int snd_interval_refine_max(snd_interval_t *i, unsigned int max, int openmax) { int changed = 0; assert(!snd_interval_empty(i)); if (i->max > max) { i->max = max; i->openmax = openmax; changed = 1; } else if (i->max == max && !i->openmax && openmax) { i->openmax = 1; changed = 1; } if (i->integer) { if (i->openmax) { i->max--; i->openmax = 0; } } if (snd_interval_checkempty(i)) { snd_interval_none(i); return -EINVAL; } return changed; } /** * snd_interval_refine - refine the interval value of configurator * @i: the interval value to refine * @v: the interval value to refer to * * Refines the interval value with the reference value. * The interval is changed to the range satisfying both intervals. * The interval status (min, max, integer, etc.) are evaluated. * * Returns non-zero if the value is changed, zero if not changed. */ int snd_interval_refine(snd_interval_t *i, const snd_interval_t *v) { int changed = 0; assert(!snd_interval_empty(i)); if (i->min < v->min) { i->min = v->min; i->openmin = v->openmin; changed = 1; } else if (i->min == v->min && !i->openmin && v->openmin) { i->openmin = 1; changed = 1; } if (i->max > v->max) { i->max = v->max; i->openmax = v->openmax; changed = 1; } else if (i->max == v->max && !i->openmax && v->openmax) { i->openmax = 1; changed = 1; } if (!i->integer && v->integer) { i->integer = 1; changed = 1; } if (i->integer) { if (i->openmin) { i->min++; i->openmin = 0; } if (i->openmax) { i->max--; i->openmax = 0; } } else if (!i->openmin && !i->openmax && i->min == i->max) i->integer = 1; if (snd_interval_checkempty(i)) { snd_interval_none(i); return -EINVAL; } return changed; } static int snd_interval_refine_first(snd_interval_t *i) { assert(!snd_interval_empty(i)); if (snd_interval_single(i)) return 0; i->max = i->min; i->openmax = i->openmin; if (i->openmax) i->max++; return 1; } static int snd_interval_refine_last(snd_interval_t *i) { assert(!snd_interval_empty(i)); if (snd_interval_single(i)) return 0; i->min = i->max; i->openmin = i->openmax; if (i->openmin) i->min--; return 1; } static int snd_interval_refine_set(snd_interval_t *i, unsigned int val) { snd_interval_t t; t.empty = 0; t.min = t.max = val; t.openmin = t.openmax = 0; t.integer = 1; return snd_interval_refine(i, &t); } void snd_interval_mul(const snd_interval_t *a, const snd_interval_t *b, snd_interval_t *c) { if (a->empty || b->empty) { snd_interval_none(c); return; } c->empty = 0; c->min = mul(a->min, b->min); c->openmin = (a->openmin || b->openmin); c->max = mul(a->max, b->max); c->openmax = (a->openmax || b->openmax); c->integer = (a->integer && b->integer); } /** * snd_interval_div - refine the interval value with division * @a: dividend * @b: divisor * @c: quotient * * c = a / b * * Returns non-zero if the value is changed, zero if not changed. */ void snd_interval_div(const snd_interval_t *a, const snd_interval_t *b, snd_interval_t *c) { unsigned int r; if (a->empty || b->empty) { snd_interval_none(c); return; } c->empty = 0; c->min = div32(a->min, b->max, &r); c->openmin = (r || a->openmin || b->openmax); if (b->min > 0) { c->max = div32(a->max, b->min, &r); if (r) { c->max++; c->openmax = 1; } else c->openmax = (a->openmax || b->openmin); } else { c->max = UINT_MAX; c->openmax = 0; } c->integer = 0; } /** * snd_interval_muldivk - refine the interval value * @a: dividend 1 * @b: dividend 2 * @k: divisor (as integer) * @c: result * * c = a * b / k * * Returns non-zero if the value is changed, zero if not changed. */ void snd_interval_muldivk(const snd_interval_t *a, const snd_interval_t *b, unsigned int k, snd_interval_t *c) { unsigned int r; if (a->empty || b->empty) { snd_interval_none(c); return; } c->empty = 0; c->min = muldiv32(a->min, b->min, k, &r); c->openmin = (r || a->openmin || b->openmin); c->max = muldiv32(a->max, b->max, k, &r); if (r) { c->max++; c->openmax = 1; } else c->openmax = (a->openmax || b->openmax); c->integer = 0; } /** * snd_interval_mulkdiv - refine the interval value * @a: dividend 1 * @k: dividend 2 (as integer) * @b: divisor * @c: result * * c = a * k / b * * Returns non-zero if the value is changed, zero if not changed. */ void snd_interval_mulkdiv(const snd_interval_t *a, unsigned int k, const snd_interval_t *b, snd_interval_t *c) { unsigned int r; if (a->empty || b->empty) { snd_interval_none(c); return; } c->empty = 0; c->min = muldiv32(a->min, k, b->max, &r); c->openmin = (r || a->openmin || b->openmax); if (b->min > 0) { c->max = muldiv32(a->max, k, b->min, &r); if (r) { c->max++; c->openmax = 1; } else c->openmax = (a->openmax || b->openmin); } else { c->max = UINT_MAX; c->openmax = 0; } c->integer = 0; } #undef assert /* ---- */ /** * snd_interval_ratnum - refine the interval value * @i: interval to refine * @rats_count: number of ratnum_t * @rats: ratnum_t array * @nump: pointer to store the resultant numerator * @denp: pointer to store the resultant denominator * * Returns non-zero if the value is changed, zero if not changed. */ int snd_interval_ratnum(snd_interval_t *i, unsigned int rats_count, ratnum_t *rats, unsigned int *nump, unsigned int *denp) { unsigned int best_num, best_diff, best_den; unsigned int k; snd_interval_t t; int err; best_num = best_den = best_diff = 0; for (k = 0; k < rats_count; ++k) { unsigned int num = rats[k].num; unsigned int den; unsigned int q = i->min; int diff; if (q == 0) q = 1; den = div_down(num, q); if (den < rats[k].den_min) continue; if (den > rats[k].den_max) den = rats[k].den_max; else { unsigned int r; r = (den - rats[k].den_min) % rats[k].den_step; if (r != 0) den -= r; } diff = num - q * den; if (best_num == 0 || diff * best_den < best_diff * den) { best_diff = diff; best_den = den; best_num = num; } } if (best_den == 0) { i->empty = 1; return -EINVAL; } t.min = div_down(best_num, best_den); t.openmin = !!(best_num % best_den); best_num = best_den = best_diff = 0; for (k = 0; k < rats_count; ++k) { unsigned int num = rats[k].num; unsigned int den; unsigned int q = i->max; int diff; if (q == 0) { i->empty = 1; return -EINVAL; } den = div_up(num, q); if (den > rats[k].den_max) continue; if (den < rats[k].den_min) den = rats[k].den_min; else { unsigned int r; r = (den - rats[k].den_min) % rats[k].den_step; if (r != 0) den += rats[k].den_step - r; } diff = q * den - num; if (best_num == 0 || diff * best_den < best_diff * den) { best_diff = diff; best_den = den; best_num = num; } } if (best_den == 0) { i->empty = 1; return -EINVAL; } t.max = div_up(best_num, best_den); t.openmax = !!(best_num % best_den); t.integer = 0; err = snd_interval_refine(i, &t); if (err < 0) return err; if (snd_interval_single(i)) { if (nump) *nump = best_num; if (denp) *denp = best_den; } return err; } /** * snd_interval_ratden - refine the interval value * @i: interval to refine * @rats_count: number of ratden_t * @rats: ratden_t array * @nump: pointer to store the resultant numerator * @denp: pointer to store the resultant denominator * * Returns non-zero if the value is changed, zero if not changed. */ static int snd_interval_ratden(snd_interval_t *i, unsigned int rats_count, ratden_t *rats, unsigned int *nump, unsigned int *denp) { unsigned int best_num, best_diff, best_den; unsigned int k; snd_interval_t t; int err; best_num = best_den = best_diff = 0; for (k = 0; k < rats_count; ++k) { unsigned int num; unsigned int den = rats[k].den; unsigned int q = i->min; int diff; num = mul(q, den); if (num > rats[k].num_max) continue; if (num < rats[k].num_min) num = rats[k].num_max; else { unsigned int r; r = (num - rats[k].num_min) % rats[k].num_step; if (r != 0) num += rats[k].num_step - r; } diff = num - q * den; if (best_num == 0 || diff * best_den < best_diff * den) { best_diff = diff; best_den = den; best_num = num; } } if (best_den == 0) { i->empty = 1; return -EINVAL; } t.min = div_down(best_num, best_den); t.openmin = !!(best_num % best_den); best_num = best_den = best_diff = 0; for (k = 0; k < rats_count; ++k) { unsigned int num; unsigned int den = rats[k].den; unsigned int q = i->max; int diff; num = mul(q, den); if (num < rats[k].num_min) continue; if (num > rats[k].num_max) num = rats[k].num_max; else { unsigned int r; r = (num - rats[k].num_min) % rats[k].num_step; if (r != 0) num -= r; } diff = q * den - num; if (best_num == 0 || diff * best_den < best_diff * den) { best_diff = diff; best_den = den; best_num = num; } } if (best_den == 0) { i->empty = 1; return -EINVAL; } t.max = div_up(best_num, best_den); t.openmax = !!(best_num % best_den); t.integer = 0; err = snd_interval_refine(i, &t); if (err < 0) return err; if (snd_interval_single(i)) { if (nump) *nump = best_num; if (denp) *denp = best_den; } return err; } /** * snd_interval_list - refine the interval value from the list * @i: the interval value to refine * @count: the number of elements in the list * @list: the value list * @mask: the bit-mask to evaluate * * Refines the interval value from the list. * When mask is non-zero, only the elements corresponding to bit 1 are * evaluated. * * Returns non-zero if the value is changed, zero if not changed. */ int snd_interval_list(snd_interval_t *i, unsigned int count, unsigned int *list, unsigned int mask) { unsigned int k; int changed = 0; for (k = 0; k < count; k++) { if (mask && !(mask & (1 << k))) continue; if (i->min == list[k] && !i->openmin) goto _l1; if (i->min < list[k]) { i->min = list[k]; i->openmin = 0; changed = 1; goto _l1; } } i->empty = 1; return -EINVAL; _l1: for (k = count; k-- > 0;) { if (mask && !(mask & (1 << k))) continue; if (i->max == list[k] && !i->openmax) goto _l2; if (i->max > list[k]) { i->max = list[k]; i->openmax = 0; changed = 1; goto _l2; } } i->empty = 1; return -EINVAL; _l2: if (snd_interval_checkempty(i)) { i->empty = 1; return -EINVAL; } return changed; } static int snd_interval_step(snd_interval_t *i, unsigned int min, unsigned int step) { unsigned int n; int changed = 0; n = (i->min - min) % step; if (n != 0 || i->openmin) { i->min += step - n; changed = 1; } n = (i->max - min) % step; if (n != 0 || i->openmax) { i->max -= n; changed = 1; } if (snd_interval_checkempty(i)) { i->empty = 1; return -EINVAL; } return changed; } /* Info constraints helpers */ /** * snd_pcm_hw_rule_add - add the hw-constraint rule * @runtime: the pcm runtime instance * @cond: condition bits * @var: the variable to evaluate * @func: the evaluation function * @private: the private data pointer passed to function * @dep: the dependent variables * * Returns zero if successful, or a negative error code on failure. */ int snd_pcm_hw_rule_add(snd_pcm_runtime_t *runtime, unsigned int cond, int var, snd_pcm_hw_rule_func_t func, void *private, int dep, ...) { snd_pcm_hw_constraints_t *constrs = &runtime->hw_constraints; snd_pcm_hw_rule_t *c; unsigned int k; va_list args; va_start(args, dep); if (constrs->rules_num >= constrs->rules_all) { snd_pcm_hw_rule_t *new; unsigned int new_rules = constrs->rules_all + 16; new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL); if (!new) return -ENOMEM; if (constrs->rules) { memcpy(new, constrs->rules, constrs->rules_num * sizeof(*c)); kfree(constrs->rules); } constrs->rules = new; constrs->rules_all = new_rules; } c = &constrs->rules[constrs->rules_num]; c->cond = cond; c->func = func; c->var = var; c->private = private; k = 0; while (1) { snd_assert(k < ARRAY_SIZE(c->deps), return -EINVAL); c->deps[k++] = dep; if (dep < 0) break; dep = va_arg(args, int); } constrs->rules_num++; va_end(args); return 0; } /** * snd_pcm_hw_constraint_mask * @runtime: PCM runtime instance * @var: hw_params variable to apply the mask * @mask: the bitmap mask * * Apply the constraint of the given bitmap mask to a mask parameter. */ int snd_pcm_hw_constraint_mask(snd_pcm_runtime_t *runtime, snd_pcm_hw_param_t var, u_int32_t mask) { snd_pcm_hw_constraints_t *constrs = &runtime->hw_constraints; snd_mask_t *maskp = constrs_mask(constrs, var); *maskp->bits &= mask; memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */ if (*maskp->bits == 0) return -EINVAL; return 0; } /** * snd_pcm_hw_constraint_mask64 * @runtime: PCM runtime instance * @var: hw_params variable to apply the mask * @mask: the 64bit bitmap mask * * Apply the constraint of the given bitmap mask to a mask parameter. */ int snd_pcm_hw_constraint_mask64(snd_pcm_runtime_t *runtime, snd_pcm_hw_param_t var, u_int64_t mask) { snd_pcm_hw_constraints_t *constrs = &runtime->hw_constraints; snd_mask_t *maskp = constrs_mask(constrs, var); maskp->bits[0] &= (u_int32_t)mask; maskp->bits[1] &= (u_int32_t)(mask >> 32); memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */ if (! maskp->bits[0] && ! maskp->bits[1]) return -EINVAL; return 0; } /** * snd_pcm_hw_constraint_integer * @runtime: PCM runtime instance * @var: hw_params variable to apply the integer constraint * * Apply the constraint of integer to an interval parameter. */ int snd_pcm_hw_constraint_integer(snd_pcm_runtime_t *runtime, snd_pcm_hw_param_t var) { snd_pcm_hw_constraints_t *constrs = &runtime->hw_constraints; return snd_interval_setinteger(constrs_interval(constrs, var)); } /** * snd_pcm_hw_constraint_minmax * @runtime: PCM runtime instance * @var: hw_params variable to apply the range * @min: the minimal value * @max: the maximal value * * Apply the min/max range constraint to an interval parameter. */ int snd_pcm_hw_constraint_minmax(snd_pcm_runtime_t *runtime, snd_pcm_hw_param_t var, unsigned int min, unsigned int max) { snd_pcm_hw_constraints_t *constrs = &runtime->hw_constraints; snd_interval_t t; t.min = min; t.max = max; t.openmin = t.openmax = 0; t.integer = 0; return snd_interval_refine(constrs_interval(constrs, var), &t); } static int snd_pcm_hw_rule_list(snd_pcm_hw_params_t *params, snd_pcm_hw_rule_t *rule) { snd_pcm_hw_constraint_list_t *list = rule->private; return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask); } /** * snd_pcm_hw_constraint_list * @runtime: PCM runtime instance * @cond: condition bits * @var: hw_params variable to apply the list constraint * @l: list * * Apply the list of constraints to an interval parameter. */ int snd_pcm_hw_constraint_list(snd_pcm_runtime_t *runtime, unsigned int cond, snd_pcm_hw_param_t var, snd_pcm_hw_constraint_list_t *l) { return snd_pcm_hw_rule_add(runtime, cond, var, snd_pcm_hw_rule_list, l, var, -1); } static int snd_pcm_hw_rule_ratnums(snd_pcm_hw_params_t *params, snd_pcm_hw_rule_t *rule) { snd_pcm_hw_constraint_ratnums_t *r = rule->private; unsigned int num = 0, den = 0; int err; err = snd_interval_ratnum(hw_param_interval(params, rule->var), r->nrats, r->rats, &num, &den); if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) { params->rate_num = num; params->rate_den = den; } return err; } /** * snd_pcm_hw_constraint_ratnums * @runtime: PCM runtime instance * @cond: condition bits * @var: hw_params variable to apply the ratnums constraint * @r: ratnums_t constriants */ int snd_pcm_hw_constraint_ratnums(snd_pcm_runtime_t *runtime, unsigned int cond, snd_pcm_hw_param_t var, snd_pcm_hw_constraint_ratnums_t *r) { return snd_pcm_hw_rule_add(runtime, cond, var, snd_pcm_hw_rule_ratnums, r, var, -1); } static int snd_pcm_hw_rule_ratdens(snd_pcm_hw_params_t *params, snd_pcm_hw_rule_t *rule) { snd_pcm_hw_constraint_ratdens_t *r = rule->private; unsigned int num = 0, den = 0; int err = snd_interval_ratden(hw_param_interval(params, rule->var), r->nrats, r->rats, &num, &den); if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) { params->rate_num = num; params->rate_den = den; } return err; } /** * snd_pcm_hw_constraint_ratdens * @runtime: PCM runtime instance * @cond: condition bits * @var: hw_params variable to apply the ratdens constraint * @r: ratdens_t constriants */ int snd_pcm_hw_constraint_ratdens(snd_pcm_runtime_t *runtime, unsigned int cond, snd_pcm_hw_param_t var, snd_pcm_hw_constraint_ratdens_t *r) { return snd_pcm_hw_rule_add(runtime, cond, var, snd_pcm_hw_rule_ratdens, r, var, -1); } static int snd_pcm_hw_rule_msbits(snd_pcm_hw_params_t *params, snd_pcm_hw_rule_t *rule) { unsigned int l = (unsigned long) rule->private; int width = l & 0xffff; unsigned int msbits = l >> 16; snd_interval_t *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS); if (snd_interval_single(i) && snd_interval_value(i) == width) params->msbits = msbits; return 0; } /** * snd_pcm_hw_constraint_msbits * @runtime: PCM runtime instance * @cond: condition bits * @width: sample bits width * @msbits: msbits width */ int snd_pcm_hw_constraint_msbits(snd_pcm_runtime_t *runtime, unsigned int cond, unsigned int width, unsigned int msbits) { unsigned long l = (msbits << 16) | width; return snd_pcm_hw_rule_add(runtime, cond, -1, snd_pcm_hw_rule_msbits, (void*) l, SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1); } static int snd_pcm_hw_rule_step(snd_pcm_hw_params_t *params, snd_pcm_hw_rule_t *rule) { unsigned long step = (unsigned long) rule->private; return snd_interval_step(hw_param_interval(params, rule->var), 0, step); } /** * snd_pcm_hw_constraint_step * @runtime: PCM runtime instance * @cond: condition bits * @var: hw_params variable to apply the step constraint * @step: step size */ int snd_pcm_hw_constraint_step(snd_pcm_runtime_t *runtime, unsigned int cond, snd_pcm_hw_param_t var, unsigned long step) { return snd_pcm_hw_rule_add(runtime, cond, var, snd_pcm_hw_rule_step, (void *) step, var, -1); } static int snd_pcm_hw_rule_pow2(snd_pcm_hw_params_t *params, snd_pcm_hw_rule_t *rule) { static int pow2_sizes[] = { 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7, 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15, 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23, 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30 }; return snd_interval_list(hw_param_interval(params, rule->var), ARRAY_SIZE(pow2_sizes), pow2_sizes, 0); } /** * snd_pcm_hw_constraint_pow2 * @runtime: PCM runtime instance * @cond: condition bits * @var: hw_params variable to apply the power-of-2 constraint */ int snd_pcm_hw_constraint_pow2(snd_pcm_runtime_t *runtime, unsigned int cond, snd_pcm_hw_param_t var) { return snd_pcm_hw_rule_add(runtime, cond, var, snd_pcm_hw_rule_pow2, NULL, var, -1); } /* To use the same code we have in alsa-lib */ #define snd_pcm_t snd_pcm_substream_t #define assert(i) snd_assert((i), return -EINVAL) #ifndef INT_MIN #define INT_MIN ((int)((unsigned int)INT_MAX+1)) #endif static void _snd_pcm_hw_param_any(snd_pcm_hw_params_t *params, snd_pcm_hw_param_t var) { if (hw_is_mask(var)) { snd_mask_any(hw_param_mask(params, var)); params->cmask |= 1 << var; params->rmask |= 1 << var; return; } if (hw_is_interval(var)) { snd_interval_any(hw_param_interval(params, var)); params->cmask |= 1 << var; params->rmask |= 1 << var; return; } snd_BUG(); } #if 0 /* * snd_pcm_hw_param_any */ int snd_pcm_hw_param_any(snd_pcm_t *pcm, snd_pcm_hw_params_t *params, snd_pcm_hw_param_t var) { _snd_pcm_hw_param_any(params, var); return snd_pcm_hw_refine(pcm, params); } #endif /* 0 */ void _snd_pcm_hw_params_any(snd_pcm_hw_params_t *params) { unsigned int k; memset(params, 0, sizeof(*params)); for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++) _snd_pcm_hw_param_any(params, k); for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++) _snd_pcm_hw_param_any(params, k); params->info = ~0U; } #if 0 /* * snd_pcm_hw_params_any * * Fill PARAMS with full configuration space boundaries */ int snd_pcm_hw_params_any(snd_pcm_t *pcm, snd_pcm_hw_params_t *params) { _snd_pcm_hw_params_any(params); return snd_pcm_hw_refine(pcm, params); } #endif /* 0 */ /** * snd_pcm_hw_param_value * @params: the hw_params instance * @var: parameter to retrieve * @dir: pointer to the direction (-1,0,1) or NULL * * Return the value for field PAR if it's fixed in configuration space * defined by PARAMS. Return -EINVAL otherwise */ static int snd_pcm_hw_param_value(const snd_pcm_hw_params_t *params, snd_pcm_hw_param_t var, int *dir) { if (hw_is_mask(var)) { const snd_mask_t *mask = hw_param_mask_c(params, var); if (!snd_mask_single(mask)) return -EINVAL; if (dir) *dir = 0; return snd_mask_value(mask); } if (hw_is_interval(var)) { const snd_interval_t *i = hw_param_interval_c(params, var); if (!snd_interval_single(i)) return -EINVAL; if (dir) *dir = i->openmin; return snd_interval_value(i); } assert(0); return -EINVAL; } /** * snd_pcm_hw_param_value_min * @params: the hw_params instance * @var: parameter to retrieve * @dir: pointer to the direction (-1,0,1) or NULL * * Return the minimum value for field PAR. */ unsigned int snd_pcm_hw_param_value_min(const snd_pcm_hw_params_t *params, snd_pcm_hw_param_t var, int *dir) { if (hw_is_mask(var)) { if (dir) *dir = 0; return snd_mask_min(hw_param_mask_c(params, var)); } if (hw_is_interval(var)) { const snd_interval_t *i = hw_param_interval_c(params, var); if (dir) *dir = i->openmin; return snd_interval_min(i); } assert(0); return -EINVAL; } /** * snd_pcm_hw_param_value_max * @params: the hw_params instance * @var: parameter to retrieve * @dir: pointer to the direction (-1,0,1) or NULL * * Return the maximum value for field PAR. */ unsigned int snd_pcm_hw_param_value_max(const snd_pcm_hw_params_t *params, snd_pcm_hw_param_t var, int *dir) { if (hw_is_mask(var)) { if (dir) *dir = 0; return snd_mask_max(hw_param_mask_c(params, var)); } if (hw_is_interval(var)) { const snd_interval_t *i = hw_param_interval_c(params, var); if (dir) *dir = - (int) i->openmax; return snd_interval_max(i); } assert(0); return -EINVAL; } void _snd_pcm_hw_param_setempty(snd_pcm_hw_params_t *params, snd_pcm_hw_param_t var) { if (hw_is_mask(var)) { snd_mask_none(hw_param_mask(params, var)); params->cmask |= 1 << var; params->rmask |= 1 << var; } else if (hw_is_interval(var)) { snd_interval_none(hw_param_interval(params, var)); params->cmask |= 1 << var; params->rmask |= 1 << var; } else { snd_BUG(); } } int _snd_pcm_hw_param_setinteger(snd_pcm_hw_params_t *params, snd_pcm_hw_param_t var) { int changed; assert(hw_is_interval(var)); changed = snd_interval_setinteger(hw_param_interval(params, var)); if (changed) { params->cmask |= 1 << var; params->rmask |= 1 << var; } return changed; } #if 0 /* * snd_pcm_hw_param_setinteger * * Inside configuration space defined by PARAMS remove from PAR all * non integer values. Reduce configuration space accordingly. * Return -EINVAL if the configuration space is empty */ int snd_pcm_hw_param_setinteger(snd_pcm_t *pcm, snd_pcm_hw_params_t *params, snd_pcm_hw_param_t var) { int changed = _snd_pcm_hw_param_setinteger(params, var); if (changed < 0) return changed; if (params->rmask) { int err = snd_pcm_hw_refine(pcm, params); if (err < 0) return err; } return 0; } #endif /* 0 */ static int _snd_pcm_hw_param_first(snd_pcm_hw_params_t *params, snd_pcm_hw_param_t var) { int changed; if (hw_is_mask(var)) changed = snd_mask_refine_first(hw_param_mask(params, var)); else if (hw_is_interval(var)) changed = snd_interval_refine_first(hw_param_interval(params, var)); else { assert(0); return -EINVAL; } if (changed) { params->cmask |= 1 << var; params->rmask |= 1 << var; } return changed; } /** * snd_pcm_hw_param_first * @pcm: PCM instance * @params: the hw_params instance * @var: parameter to retrieve * @dir: pointer to the direction (-1,0,1) or NULL * * Inside configuration space defined by PARAMS remove from PAR all * values > minimum. Reduce configuration space accordingly. * Return the minimum. */ static int snd_pcm_hw_param_first(snd_pcm_t *pcm, snd_pcm_hw_params_t *params, snd_pcm_hw_param_t var, int *dir) { int changed = _snd_pcm_hw_param_first(params, var); if (changed < 0) return changed; if (params->rmask) { int err = snd_pcm_hw_refine(pcm, params); assert(err >= 0); } return snd_pcm_hw_param_value(params, var, dir); } static int _snd_pcm_hw_param_last(snd_pcm_hw_params_t *params, snd_pcm_hw_param_t var) { int changed; if (hw_is_mask(var)) changed = snd_mask_refine_last(hw_param_mask(params, var)); else if (hw_is_interval(var)) changed = snd_interval_refine_last(hw_param_interval(params, var)); else { assert(0); return -EINVAL; } if (changed) { params->cmask |= 1 << var; params->rmask |= 1 << var; } return changed; } /** * snd_pcm_hw_param_last * @pcm: PCM instance * @params: the hw_params instance * @var: parameter to retrieve * @dir: pointer to the direction (-1,0,1) or NULL * * Inside configuration space defined by PARAMS remove from PAR all * values < maximum. Reduce configuration space accordingly. * Return the maximum. */ static int snd_pcm_hw_param_last(snd_pcm_t *pcm, snd_pcm_hw_params_t *params, snd_pcm_hw_param_t var, int *dir) { int changed = _snd_pcm_hw_param_last(params, var); if (changed < 0) return changed; if (params->rmask) { int err = snd_pcm_hw_refine(pcm, params); assert(err >= 0); } return snd_pcm_hw_param_value(params, var, dir); } int _snd_pcm_hw_param_min(snd_pcm_hw_params_t *params, snd_pcm_hw_param_t var, unsigned int val, int dir) { int changed; int open = 0; if (dir) { if (dir > 0) { open = 1; } else if (dir < 0) { if (val > 0) { open = 1; val--; } } } if (hw_is_mask(var)) changed = snd_mask_refine_min(hw_param_mask(params, var), val + !!open); else if (hw_is_interval(var)) changed = snd_interval_refine_min(hw_param_interval(params, var), val, open); else { assert(0); return -EINVAL; } if (changed) { params->cmask |= 1 << var; params->rmask |= 1 << var; } return changed; } /** * snd_pcm_hw_param_min * @pcm: PCM instance * @params: the hw_params instance * @var: parameter to retrieve * @val: minimal value * @dir: pointer to the direction (-1,0,1) or NULL * * Inside configuration space defined by PARAMS remove from PAR all * values < VAL. Reduce configuration space accordingly. * Return new minimum or -EINVAL if the configuration space is empty */ static int snd_pcm_hw_param_min(snd_pcm_t *pcm, snd_pcm_hw_params_t *params, snd_pcm_hw_param_t var, unsigned int val, int *dir) { int changed = _snd_pcm_hw_param_min(params, var, val, dir ? *dir : 0); if (changed < 0) return changed; if (params->rmask) { int err = snd_pcm_hw_refine(pcm, params); if (err < 0) return err; } return snd_pcm_hw_param_value_min(params, var, dir); } static int _snd_pcm_hw_param_max(snd_pcm_hw_params_t *params, snd_pcm_hw_param_t var, unsigned int val, int dir) { int changed; int open = 0; if (dir) { if (dir < 0) { open = 1; } else if (dir > 0) { open = 1; val++; } } if (hw_is_mask(var)) { if (val == 0 && open) { snd_mask_none(hw_param_mask(params, var)); changed = -EINVAL; } else changed = snd_mask_refine_max(hw_param_mask(params, var), val - !!open); } else if (hw_is_interval(var)) changed = snd_interval_refine_max(hw_param_interval(params, var), val, open); else { assert(0); return -EINVAL; } if (changed) { params->cmask |= 1 << var; params->rmask |= 1 << var; } return changed; } /** * snd_pcm_hw_param_max * @pcm: PCM instance * @params: the hw_params instance * @var: parameter to retrieve * @val: maximal value * @dir: pointer to the direction (-1,0,1) or NULL * * Inside configuration space defined by PARAMS remove from PAR all * values >= VAL + 1. Reduce configuration space accordingly. * Return new maximum or -EINVAL if the configuration space is empty */ static int snd_pcm_hw_param_max(snd_pcm_t *pcm, snd_pcm_hw_params_t *params, snd_pcm_hw_param_t var, unsigned int val, int *dir) { int changed = _snd_pcm_hw_param_max(params, var, val, dir ? *dir : 0); if (changed < 0) return changed; if (params->rmask) { int err = snd_pcm_hw_refine(pcm, params); if (err < 0) return err; } return snd_pcm_hw_param_value_max(params, var, dir); } int _snd_pcm_hw_param_set(snd_pcm_hw_params_t *params, snd_pcm_hw_param_t var, unsigned int val, int dir) { int changed; if (hw_is_mask(var)) { snd_mask_t *m = hw_param_mask(params, var); if (val == 0 && dir < 0) { changed = -EINVAL; snd_mask_none(m); } else { if (dir > 0) val++; else if (dir < 0) val--; changed = snd_mask_refine_set(hw_param_mask(params, var), val); } } else if (hw_is_interval(var)) { snd_interval_t *i = hw_param_interval(params, var); if (val == 0 && dir < 0) { changed = -EINVAL; snd_interval_none(i); } else if (dir == 0) changed = snd_interval_refine_set(i, val); else { snd_interval_t t; t.openmin = 1; t.openmax = 1; t.empty = 0; t.integer = 0; if (dir < 0) { t.min = val - 1; t.max = val; } else { t.min = val; t.max = val+1; } changed = snd_interval_refine(i, &t); } } else { assert(0); return -EINVAL; } if (changed) { params->cmask |= 1 << var; params->rmask |= 1 << var; } return changed; } /** * snd_pcm_hw_param_set * @pcm: PCM instance * @params: the hw_params instance * @var: parameter to retrieve * @val: value to set * @dir: pointer to the direction (-1,0,1) or NULL * * Inside configuration space defined by PARAMS remove from PAR all * values != VAL. Reduce configuration space accordingly. * Return VAL or -EINVAL if the configuration space is empty */ int snd_pcm_hw_param_set(snd_pcm_t *pcm, snd_pcm_hw_params_t *params, snd_pcm_hw_param_t var, unsigned int val, int dir) { int changed = _snd_pcm_hw_param_set(params, var, val, dir); if (changed < 0) return changed; if (params->rmask) { int err = snd_pcm_hw_refine(pcm, params); if (err < 0) return err; } return snd_pcm_hw_param_value(params, var, NULL); } static int _snd_pcm_hw_param_mask(snd_pcm_hw_params_t *params, snd_pcm_hw_param_t var, const snd_mask_t *val) { int changed; assert(hw_is_mask(var)); changed = snd_mask_refine(hw_param_mask(params, var), val); if (changed) { params->cmask |= 1 << var; params->rmask |= 1 << var; } return changed; } /** * snd_pcm_hw_param_mask * @pcm: PCM instance * @params: the hw_params instance * @var: parameter to retrieve * @val: mask to apply * * Inside configuration space defined by PARAMS remove from PAR all values * not contained in MASK. Reduce configuration space accordingly. * This function can be called only for SNDRV_PCM_HW_PARAM_ACCESS, * SNDRV_PCM_HW_PARAM_FORMAT, SNDRV_PCM_HW_PARAM_SUBFORMAT. * Return 0 on success or -EINVAL * if the configuration space is empty */ int snd_pcm_hw_param_mask(snd_pcm_t *pcm, snd_pcm_hw_params_t *params, snd_pcm_hw_param_t var, const snd_mask_t *val) { int changed = _snd_pcm_hw_param_mask(params, var, val); if (changed < 0) return changed; if (params->rmask) { int err = snd_pcm_hw_refine(pcm, params); if (err < 0) return err; } return 0; } static int boundary_sub(int a, int adir, int b, int bdir, int *c, int *cdir) { adir = adir < 0 ? -1 : (adir > 0 ? 1 : 0); bdir = bdir < 0 ? -1 : (bdir > 0 ? 1 : 0); *c = a - b; *cdir = adir - bdir; if (*cdir == -2) { assert(*c > INT_MIN); (*c)--; } else if (*cdir == 2) { assert(*c < INT_MAX); (*c)++; } return 0; } static int boundary_lt(unsigned int a, int adir, unsigned int b, int bdir) { assert(a > 0 || adir >= 0); assert(b > 0 || bdir >= 0); if (adir < 0) { a--; adir = 1; } else if (adir > 0) adir = 1; if (bdir < 0) { b--; bdir = 1; } else if (bdir > 0) bdir = 1; return a < b || (a == b && adir < bdir); } /* Return 1 if min is nearer to best than max */ static int boundary_nearer(int min, int mindir, int best, int bestdir, int max, int maxdir) { int dmin, dmindir; int dmax, dmaxdir; boundary_sub(best, bestdir, min, mindir, &dmin, &dmindir); boundary_sub(max, maxdir, best, bestdir, &dmax, &dmaxdir); return boundary_lt(dmin, dmindir, dmax, dmaxdir); } /** * snd_pcm_hw_param_near * @pcm: PCM instance * @params: the hw_params instance * @var: parameter to retrieve * @best: value to set * @dir: pointer to the direction (-1,0,1) or NULL * * Inside configuration space defined by PARAMS set PAR to the available value * nearest to VAL. Reduce configuration space accordingly. * This function cannot be called for SNDRV_PCM_HW_PARAM_ACCESS, * SNDRV_PCM_HW_PARAM_FORMAT, SNDRV_PCM_HW_PARAM_SUBFORMAT. * Return the value found. */ int snd_pcm_hw_param_near(snd_pcm_t *pcm, snd_pcm_hw_params_t *params, snd_pcm_hw_param_t var, unsigned int best, int *dir) { snd_pcm_hw_params_t *save = NULL; int v; unsigned int saved_min; int last = 0; int min, max; int mindir, maxdir; int valdir = dir ? *dir : 0; /* FIXME */ if (best > INT_MAX) best = INT_MAX; min = max = best; mindir = maxdir = valdir; if (maxdir > 0) maxdir = 0; else if (maxdir == 0) maxdir = -1; else { maxdir = 1; max--; } save = kmalloc(sizeof(*save), GFP_KERNEL); if (save == NULL) return -ENOMEM; *save = *params; saved_min = min; min = snd_pcm_hw_param_min(pcm, params, var, min, &mindir); if (min >= 0) { snd_pcm_hw_params_t *params1; if (max < 0) goto _end; if ((unsigned int)min == saved_min && mindir == valdir) goto _end; params1 = kmalloc(sizeof(*params1), GFP_KERNEL); if (params1 == NULL) { kfree(save); return -ENOMEM; } *params1 = *save; max = snd_pcm_hw_param_max(pcm, params1, var, max, &maxdir); if (max < 0) { kfree(params1); goto _end; } if (boundary_nearer(max, maxdir, best, valdir, min, mindir)) { *params = *params1; last = 1; } kfree(params1); } else { *params = *save; max = snd_pcm_hw_param_max(pcm, params, var, max, &maxdir); assert(max >= 0); last = 1; } _end: kfree(save); if (last) v = snd_pcm_hw_param_last(pcm, params, var, dir); else v = snd_pcm_hw_param_first(pcm, params, var, dir); assert(v >= 0); return v; } /** * snd_pcm_hw_param_choose * @pcm: PCM instance * @params: the hw_params instance * * Choose one configuration from configuration space defined by PARAMS * The configuration chosen is that obtained fixing in this order: * first access, first format, first subformat, min channels, * min rate, min period time, max buffer size, min tick time */ int snd_pcm_hw_params_choose(snd_pcm_t *pcm, snd_pcm_hw_params_t *params) { int err; err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_ACCESS, NULL); assert(err >= 0); err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_FORMAT, NULL); assert(err >= 0); err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_SUBFORMAT, NULL); assert(err >= 0); err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_CHANNELS, NULL); assert(err >= 0); err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_RATE, NULL); assert(err >= 0); err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_PERIOD_TIME, NULL); assert(err >= 0); err = snd_pcm_hw_param_last(pcm, params, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, NULL); assert(err >= 0); err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_TICK_TIME, NULL); assert(err >= 0); return 0; } #undef snd_pcm_t #undef assert static int snd_pcm_lib_ioctl_reset(snd_pcm_substream_t *substream, void *arg) { snd_pcm_runtime_t *runtime = substream->runtime; unsigned long flags; snd_pcm_stream_lock_irqsave(substream, flags); if (snd_pcm_running(substream) && snd_pcm_update_hw_ptr(substream) >= 0) runtime->status->hw_ptr %= runtime->buffer_size; else runtime->status->hw_ptr = 0; snd_pcm_stream_unlock_irqrestore(substream, flags); return 0; } static int snd_pcm_lib_ioctl_channel_info(snd_pcm_substream_t *substream, void *arg) { snd_pcm_channel_info_t *info = arg; snd_pcm_runtime_t *runtime = substream->runtime; int width; if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) { info->offset = -1; return 0; } width = snd_pcm_format_physical_width(runtime->format); if (width < 0) return width; info->offset = 0; switch (runtime->access) { case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED: case SNDRV_PCM_ACCESS_RW_INTERLEAVED: info->first = info->channel * width; info->step = runtime->channels * width; break; case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED: case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED: { size_t size = runtime->dma_bytes / runtime->channels; info->first = info->channel * size * 8; info->step = width; break; } default: snd_BUG(); break; } return 0; } /** * snd_pcm_lib_ioctl - a generic PCM ioctl callback * @substream: the pcm substream instance * @cmd: ioctl command * @arg: ioctl argument * * Processes the generic ioctl commands for PCM. * Can be passed as the ioctl callback for PCM ops. * * Returns zero if successful, or a negative error code on failure. */ int snd_pcm_lib_ioctl(snd_pcm_substream_t *substream, unsigned int cmd, void *arg) { switch (cmd) { case SNDRV_PCM_IOCTL1_INFO: return 0; case SNDRV_PCM_IOCTL1_RESET: return snd_pcm_lib_ioctl_reset(substream, arg); case SNDRV_PCM_IOCTL1_CHANNEL_INFO: return snd_pcm_lib_ioctl_channel_info(substream, arg); } return -ENXIO; } /* * Conditions */ static void snd_pcm_system_tick_set(snd_pcm_substream_t *substream, unsigned long ticks) { snd_pcm_runtime_t *runtime = substream->runtime; if (ticks == 0) del_timer(&runtime->tick_timer); else { ticks += (1000000 / HZ) - 1; ticks /= (1000000 / HZ); mod_timer(&runtime->tick_timer, jiffies + ticks); } } /* Temporary alias */ void snd_pcm_tick_set(snd_pcm_substream_t *substream, unsigned long ticks) { snd_pcm_system_tick_set(substream, ticks); } void snd_pcm_tick_prepare(snd_pcm_substream_t *substream) { snd_pcm_runtime_t *runtime = substream->runtime; snd_pcm_uframes_t frames = ULONG_MAX; snd_pcm_uframes_t avail, dist; unsigned int ticks; u_int64_t n; u_int32_t r; if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { if (runtime->silence_size >= runtime->boundary) { frames = 1; } else if (runtime->silence_size > 0 && runtime->silence_filled < runtime->buffer_size) { snd_pcm_sframes_t noise_dist; noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled; snd_assert(noise_dist <= (snd_pcm_sframes_t)runtime->silence_threshold, ); frames = noise_dist - runtime->silence_threshold; } avail = snd_pcm_playback_avail(runtime); } else { avail = snd_pcm_capture_avail(runtime); } if (avail < runtime->control->avail_min) { snd_pcm_sframes_t n = runtime->control->avail_min - avail; if (n > 0 && frames > (snd_pcm_uframes_t)n) frames = n; } if (avail < runtime->buffer_size) { snd_pcm_sframes_t n = runtime->buffer_size - avail; if (n > 0 && frames > (snd_pcm_uframes_t)n) frames = n; } if (frames == ULONG_MAX) { snd_pcm_tick_set(substream, 0); return; } dist = runtime->status->hw_ptr - runtime->hw_ptr_base; /* Distance to next interrupt */ dist = runtime->period_size - dist % runtime->period_size; if (dist <= frames) { snd_pcm_tick_set(substream, 0); return; } /* the base time is us */ n = frames; n *= 1000000; div64_32(&n, runtime->tick_time * runtime->rate, &r); ticks = n + (r > 0 ? 1 : 0); if (ticks < runtime->sleep_min) ticks = runtime->sleep_min; snd_pcm_tick_set(substream, (unsigned long) ticks); } void snd_pcm_tick_elapsed(snd_pcm_substream_t *substream) { snd_pcm_runtime_t *runtime; unsigned long flags; snd_assert(substream != NULL, return); runtime = substream->runtime; snd_assert(runtime != NULL, return); snd_pcm_stream_lock_irqsave(substream, flags); if (!snd_pcm_running(substream) || snd_pcm_update_hw_ptr(substream) < 0) goto _end; if (runtime->sleep_min) snd_pcm_tick_prepare(substream); _end: snd_pcm_stream_unlock_irqrestore(substream, flags); } /** * snd_pcm_period_elapsed - update the pcm status for the next period * @substream: the pcm substream instance * * This function is called from the interrupt handler when the * PCM has processed the period size. It will update the current * pointer, set up the tick, wake up sleepers, etc. * * Even if more than one periods have elapsed since the last call, you * have to call this only once. */ void snd_pcm_period_elapsed(snd_pcm_substream_t *substream) { snd_pcm_runtime_t *runtime; unsigned long flags; snd_assert(substream != NULL, return); runtime = substream->runtime; snd_assert(runtime != NULL, return); if (runtime->transfer_ack_begin) runtime->transfer_ack_begin(substream); snd_pcm_stream_lock_irqsave(substream, flags); if (!snd_pcm_running(substream) || snd_pcm_update_hw_ptr_interrupt(substream) < 0) goto _end; if (substream->timer_running) snd_timer_interrupt(substream->timer, 1); if (runtime->sleep_min) snd_pcm_tick_prepare(substream); _end: snd_pcm_stream_unlock_irqrestore(substream, flags); if (runtime->transfer_ack_end) runtime->transfer_ack_end(substream); kill_fasync(&runtime->fasync, SIGIO, POLL_IN); } static int snd_pcm_lib_write_transfer(snd_pcm_substream_t *substream, unsigned int hwoff, unsigned long data, unsigned int off, snd_pcm_uframes_t frames) { snd_pcm_runtime_t *runtime = substream->runtime; int err; char __user *buf = (char __user *) data + frames_to_bytes(runtime, off); if (substream->ops->copy) { if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0) return err; } else { char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff); snd_assert(runtime->dma_area, return -EFAULT); if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames))) return -EFAULT; } return 0; } typedef int (*transfer_f)(snd_pcm_substream_t *substream, unsigned int hwoff, unsigned long data, unsigned int off, snd_pcm_uframes_t size); static snd_pcm_sframes_t snd_pcm_lib_write1(snd_pcm_substream_t *substream, unsigned long data, snd_pcm_uframes_t size, int nonblock, transfer_f transfer) { snd_pcm_runtime_t *runtime = substream->runtime; snd_pcm_uframes_t xfer = 0; snd_pcm_uframes_t offset = 0; int err = 0; if (size == 0) return 0; if (size > runtime->xfer_align) size -= size % runtime->xfer_align; snd_pcm_stream_lock_irq(substream); switch (runtime->status->state) { case SNDRV_PCM_STATE_PREPARED: case SNDRV_PCM_STATE_RUNNING: case SNDRV_PCM_STATE_PAUSED: break; case SNDRV_PCM_STATE_XRUN: err = -EPIPE; goto _end_unlock; case SNDRV_PCM_STATE_SUSPENDED: err = -ESTRPIPE; goto _end_unlock; default: err = -EBADFD; goto _end_unlock; } while (size > 0) { snd_pcm_uframes_t frames, appl_ptr, appl_ofs; snd_pcm_uframes_t avail; snd_pcm_uframes_t cont; if (runtime->sleep_min == 0 && runtime->status->state == SNDRV_PCM_STATE_RUNNING) snd_pcm_update_hw_ptr(substream); avail = snd_pcm_playback_avail(runtime); if (((avail < runtime->control->avail_min && size > avail) || (size >= runtime->xfer_align && avail < runtime->xfer_align))) { wait_queue_t wait; enum { READY, SIGNALED, ERROR, SUSPENDED, EXPIRED, DROPPED } state; long tout; if (nonblock) { err = -EAGAIN; goto _end_unlock; } init_waitqueue_entry(&wait, current); add_wait_queue(&runtime->sleep, &wait); while (1) { if (signal_pending(current)) { state = SIGNALED; break; } set_current_state(TASK_INTERRUPTIBLE); snd_pcm_stream_unlock_irq(substream); tout = schedule_timeout(10 * HZ); snd_pcm_stream_lock_irq(substream); if (tout == 0) { if (runtime->status->state != SNDRV_PCM_STATE_PREPARED && runtime->status->state != SNDRV_PCM_STATE_PAUSED) { state = runtime->status->state == SNDRV_PCM_STATE_SUSPENDED ? SUSPENDED : EXPIRED; break; } } switch (runtime->status->state) { case SNDRV_PCM_STATE_XRUN: case SNDRV_PCM_STATE_DRAINING: state = ERROR; goto _end_loop; case SNDRV_PCM_STATE_SUSPENDED: state = SUSPENDED; goto _end_loop; case SNDRV_PCM_STATE_SETUP: state = DROPPED; goto _end_loop; default: break; } avail = snd_pcm_playback_avail(runtime); if (avail >= runtime->control->avail_min) { state = READY; break; } } _end_loop: remove_wait_queue(&runtime->sleep, &wait); switch (state) { case ERROR: err = -EPIPE; goto _end_unlock; case SUSPENDED: err = -ESTRPIPE; goto _end_unlock; case SIGNALED: err = -ERESTARTSYS; goto _end_unlock; case EXPIRED: snd_printd("playback write error (DMA or IRQ trouble?)\n"); err = -EIO; goto _end_unlock; case DROPPED: err = -EBADFD; goto _end_unlock; default: break; } } if (avail > runtime->xfer_align) avail -= avail % runtime->xfer_align; frames = size > avail ? avail : size; cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size; if (frames > cont) frames = cont; snd_assert(frames != 0, snd_pcm_stream_unlock_irq(substream); return -EINVAL); appl_ptr = runtime->control->appl_ptr; appl_ofs = appl_ptr % runtime->buffer_size; snd_pcm_stream_unlock_irq(substream); if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0) goto _end; snd_pcm_stream_lock_irq(substream); switch (runtime->status->state) { case SNDRV_PCM_STATE_XRUN: err = -EPIPE; goto _end_unlock; case SNDRV_PCM_STATE_SUSPENDED: err = -ESTRPIPE; goto _end_unlock; default: break; } appl_ptr += frames; if (appl_ptr >= runtime->boundary) appl_ptr -= runtime->boundary; runtime->control->appl_ptr = appl_ptr; if (substream->ops->ack) substream->ops->ack(substream); offset += frames; size -= frames; xfer += frames; if (runtime->status->state == SNDRV_PCM_STATE_PREPARED && snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) { err = snd_pcm_start(substream); if (err < 0) goto _end_unlock; } if (runtime->sleep_min && runtime->status->state == SNDRV_PCM_STATE_RUNNING) snd_pcm_tick_prepare(substream); } _end_unlock: snd_pcm_stream_unlock_irq(substream); _end: return xfer > 0 ? (snd_pcm_sframes_t)xfer : err; } snd_pcm_sframes_t snd_pcm_lib_write(snd_pcm_substream_t *substream, const void __user *buf, snd_pcm_uframes_t size) { snd_pcm_runtime_t *runtime; int nonblock; snd_assert(substream != NULL, return -ENXIO); runtime = substream->runtime; snd_assert(runtime != NULL, return -ENXIO); snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL); if (runtime->status->state == SNDRV_PCM_STATE_OPEN) return -EBADFD; snd_assert(substream->ffile != NULL, return -ENXIO); nonblock = !!(substream->ffile->f_flags & O_NONBLOCK); #if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE) if (substream->oss.oss) { snd_pcm_oss_setup_t *setup = substream->oss.setup; if (setup != NULL) { if (setup->nonblock) nonblock = 1; else if (setup->block) nonblock = 0; } } #endif if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED && runtime->channels > 1) return -EINVAL; return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_write_transfer); } static int snd_pcm_lib_writev_transfer(snd_pcm_substream_t *substream, unsigned int hwoff, unsigned long data, unsigned int off, snd_pcm_uframes_t frames) { snd_pcm_runtime_t *runtime = substream->runtime; int err; void __user **bufs = (void __user **)data; int channels = runtime->channels; int c; if (substream->ops->copy) { snd_assert(substream->ops->silence != NULL, return -EINVAL); for (c = 0; c < channels; ++c, ++bufs) { if (*bufs == NULL) { if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0) return err; } else { char __user *buf = *bufs + samples_to_bytes(runtime, off); if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0) return err; } } } else { /* default transfer behaviour */ size_t dma_csize = runtime->dma_bytes / channels; snd_assert(runtime->dma_area, return -EFAULT); for (c = 0; c < channels; ++c, ++bufs) { char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff); if (*bufs == NULL) { snd_pcm_format_set_silence(runtime->format, hwbuf, frames); } else { char __user *buf = *bufs + samples_to_bytes(runtime, off); if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames))) return -EFAULT; } } } return 0; } snd_pcm_sframes_t snd_pcm_lib_writev(snd_pcm_substream_t *substream, void __user **bufs, snd_pcm_uframes_t frames) { snd_pcm_runtime_t *runtime; int nonblock; snd_assert(substream != NULL, return -ENXIO); runtime = substream->runtime; snd_assert(runtime != NULL, return -ENXIO); snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL); if (runtime->status->state == SNDRV_PCM_STATE_OPEN) return -EBADFD; snd_assert(substream->ffile != NULL, return -ENXIO); nonblock = !!(substream->ffile->f_flags & O_NONBLOCK); #if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE) if (substream->oss.oss) { snd_pcm_oss_setup_t *setup = substream->oss.setup; if (setup != NULL) { if (setup->nonblock) nonblock = 1; else if (setup->block) nonblock = 0; } } #endif if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED) return -EINVAL; return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_writev_transfer); } static int snd_pcm_lib_read_transfer(snd_pcm_substream_t *substream, unsigned int hwoff, unsigned long data, unsigned int off, snd_pcm_uframes_t frames) { snd_pcm_runtime_t *runtime = substream->runtime; int err; char __user *buf = (char __user *) data + frames_to_bytes(runtime, off); if (substream->ops->copy) { if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0) return err; } else { char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff); snd_assert(runtime->dma_area, return -EFAULT); if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames))) return -EFAULT; } return 0; } static snd_pcm_sframes_t snd_pcm_lib_read1(snd_pcm_substream_t *substream, unsigned long data, snd_pcm_uframes_t size, int nonblock, transfer_f transfer) { snd_pcm_runtime_t *runtime = substream->runtime; snd_pcm_uframes_t xfer = 0; snd_pcm_uframes_t offset = 0; int err = 0; if (size == 0) return 0; if (size > runtime->xfer_align) size -= size % runtime->xfer_align; snd_pcm_stream_lock_irq(substream); switch (runtime->status->state) { case SNDRV_PCM_STATE_PREPARED: if (size >= runtime->start_threshold) { err = snd_pcm_start(substream); if (err < 0) goto _end_unlock; } break; case SNDRV_PCM_STATE_DRAINING: case SNDRV_PCM_STATE_RUNNING: case SNDRV_PCM_STATE_PAUSED: break; case SNDRV_PCM_STATE_XRUN: err = -EPIPE; goto _end_unlock; case SNDRV_PCM_STATE_SUSPENDED: err = -ESTRPIPE; goto _end_unlock; default: err = -EBADFD; goto _end_unlock; } while (size > 0) { snd_pcm_uframes_t frames, appl_ptr, appl_ofs; snd_pcm_uframes_t avail; snd_pcm_uframes_t cont; if (runtime->sleep_min == 0 && runtime->status->state == SNDRV_PCM_STATE_RUNNING) snd_pcm_update_hw_ptr(substream); __draining: avail = snd_pcm_capture_avail(runtime); if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) { if (avail < runtime->xfer_align) { err = -EPIPE; goto _end_unlock; } } else if ((avail < runtime->control->avail_min && size > avail) || (size >= runtime->xfer_align && avail < runtime->xfer_align)) { wait_queue_t wait; enum { READY, SIGNALED, ERROR, SUSPENDED, EXPIRED, DROPPED } state; long tout; if (nonblock) { err = -EAGAIN; goto _end_unlock; } init_waitqueue_entry(&wait, current); add_wait_queue(&runtime->sleep, &wait); while (1) { if (signal_pending(current)) { state = SIGNALED; break; } set_current_state(TASK_INTERRUPTIBLE); snd_pcm_stream_unlock_irq(substream); tout = schedule_timeout(10 * HZ); snd_pcm_stream_lock_irq(substream); if (tout == 0) { if (runtime->status->state != SNDRV_PCM_STATE_PREPARED && runtime->status->state != SNDRV_PCM_STATE_PAUSED) { state = runtime->status->state == SNDRV_PCM_STATE_SUSPENDED ? SUSPENDED : EXPIRED; break; } } switch (runtime->status->state) { case SNDRV_PCM_STATE_XRUN: state = ERROR; goto _end_loop; case SNDRV_PCM_STATE_SUSPENDED: state = SUSPENDED; goto _end_loop; case SNDRV_PCM_STATE_DRAINING: goto __draining; case SNDRV_PCM_STATE_SETUP: state = DROPPED; goto _end_loop; default: break; } avail = snd_pcm_capture_avail(runtime); if (avail >= runtime->control->avail_min) { state = READY; break; } } _end_loop: remove_wait_queue(&runtime->sleep, &wait); switch (state) { case ERROR: err = -EPIPE; goto _end_unlock; case SUSPENDED: err = -ESTRPIPE; goto _end_unlock; case SIGNALED: err = -ERESTARTSYS; goto _end_unlock; case EXPIRED: snd_printd("capture read error (DMA or IRQ trouble?)\n"); err = -EIO; goto _end_unlock; case DROPPED: err = -EBADFD; goto _end_unlock; default: break; } } if (avail > runtime->xfer_align) avail -= avail % runtime->xfer_align; frames = size > avail ? avail : size; cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size; if (frames > cont) frames = cont; snd_assert(frames != 0, snd_pcm_stream_unlock_irq(substream); return -EINVAL); appl_ptr = runtime->control->appl_ptr; appl_ofs = appl_ptr % runtime->buffer_size; snd_pcm_stream_unlock_irq(substream); if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0) goto _end; snd_pcm_stream_lock_irq(substream); switch (runtime->status->state) { case SNDRV_PCM_STATE_XRUN: err = -EPIPE; goto _end_unlock; case SNDRV_PCM_STATE_SUSPENDED: err = -ESTRPIPE; goto _end_unlock; default: break; } appl_ptr += frames; if (appl_ptr >= runtime->boundary) appl_ptr -= runtime->boundary; runtime->control->appl_ptr = appl_ptr; if (substream->ops->ack) substream->ops->ack(substream); offset += frames; size -= frames; xfer += frames; if (runtime->sleep_min && runtime->status->state == SNDRV_PCM_STATE_RUNNING) snd_pcm_tick_prepare(substream); } _end_unlock: snd_pcm_stream_unlock_irq(substream); _end: return xfer > 0 ? (snd_pcm_sframes_t)xfer : err; } snd_pcm_sframes_t snd_pcm_lib_read(snd_pcm_substream_t *substream, void __user *buf, snd_pcm_uframes_t size) { snd_pcm_runtime_t *runtime; int nonblock; snd_assert(substream != NULL, return -ENXIO); runtime = substream->runtime; snd_assert(runtime != NULL, return -ENXIO); snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL); if (runtime->status->state == SNDRV_PCM_STATE_OPEN) return -EBADFD; snd_assert(substream->ffile != NULL, return -ENXIO); nonblock = !!(substream->ffile->f_flags & O_NONBLOCK); #if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE) if (substream->oss.oss) { snd_pcm_oss_setup_t *setup = substream->oss.setup; if (setup != NULL) { if (setup->nonblock) nonblock = 1; else if (setup->block) nonblock = 0; } } #endif if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED) return -EINVAL; return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer); } static int snd_pcm_lib_readv_transfer(snd_pcm_substream_t *substream, unsigned int hwoff, unsigned long data, unsigned int off, snd_pcm_uframes_t frames) { snd_pcm_runtime_t *runtime = substream->runtime; int err; void __user **bufs = (void __user **)data; int channels = runtime->channels; int c; if (substream->ops->copy) { for (c = 0; c < channels; ++c, ++bufs) { char __user *buf; if (*bufs == NULL) continue; buf = *bufs + samples_to_bytes(runtime, off); if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0) return err; } } else { snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels; snd_assert(runtime->dma_area, return -EFAULT); for (c = 0; c < channels; ++c, ++bufs) { char *hwbuf; char __user *buf; if (*bufs == NULL) continue; hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff); buf = *bufs + samples_to_bytes(runtime, off); if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames))) return -EFAULT; } } return 0; } snd_pcm_sframes_t snd_pcm_lib_readv(snd_pcm_substream_t *substream, void __user **bufs, snd_pcm_uframes_t frames) { snd_pcm_runtime_t *runtime; int nonblock; snd_assert(substream != NULL, return -ENXIO); runtime = substream->runtime; snd_assert(runtime != NULL, return -ENXIO); snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL); if (runtime->status->state == SNDRV_PCM_STATE_OPEN) return -EBADFD; snd_assert(substream->ffile != NULL, return -ENXIO); nonblock = !!(substream->ffile->f_flags & O_NONBLOCK); #if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE) if (substream->oss.oss) { snd_pcm_oss_setup_t *setup = substream->oss.setup; if (setup != NULL) { if (setup->nonblock) nonblock = 1; else if (setup->block) nonblock = 0; } } #endif if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED) return -EINVAL; return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer); } /* * Exported symbols */ EXPORT_SYMBOL(snd_interval_refine); EXPORT_SYMBOL(snd_interval_list); EXPORT_SYMBOL(snd_interval_ratnum); EXPORT_SYMBOL(_snd_pcm_hw_params_any); EXPORT_SYMBOL(_snd_pcm_hw_param_min); EXPORT_SYMBOL(_snd_pcm_hw_param_set); EXPORT_SYMBOL(_snd_pcm_hw_param_setempty); EXPORT_SYMBOL(_snd_pcm_hw_param_setinteger); EXPORT_SYMBOL(snd_pcm_hw_param_value_min); EXPORT_SYMBOL(snd_pcm_hw_param_value_max); EXPORT_SYMBOL(snd_pcm_hw_param_mask); EXPORT_SYMBOL(snd_pcm_hw_param_first); EXPORT_SYMBOL(snd_pcm_hw_param_last); EXPORT_SYMBOL(snd_pcm_hw_param_near); EXPORT_SYMBOL(snd_pcm_hw_param_set); EXPORT_SYMBOL(snd_pcm_hw_refine); EXPORT_SYMBOL(snd_pcm_hw_constraints_init); EXPORT_SYMBOL(snd_pcm_hw_constraints_complete); EXPORT_SYMBOL(snd_pcm_hw_constraint_list); EXPORT_SYMBOL(snd_pcm_hw_constraint_step); EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums); EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens); EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits); EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax); EXPORT_SYMBOL(snd_pcm_hw_constraint_integer); EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2); EXPORT_SYMBOL(snd_pcm_hw_rule_add); EXPORT_SYMBOL(snd_pcm_set_ops); EXPORT_SYMBOL(snd_pcm_set_sync); EXPORT_SYMBOL(snd_pcm_lib_ioctl); EXPORT_SYMBOL(snd_pcm_stop); EXPORT_SYMBOL(snd_pcm_period_elapsed); EXPORT_SYMBOL(snd_pcm_lib_write); EXPORT_SYMBOL(snd_pcm_lib_read); EXPORT_SYMBOL(snd_pcm_lib_writev); EXPORT_SYMBOL(snd_pcm_lib_readv); EXPORT_SYMBOL(snd_pcm_lib_buffer_bytes); EXPORT_SYMBOL(snd_pcm_lib_period_bytes); /* pcm_memory.c */ EXPORT_SYMBOL(snd_pcm_lib_preallocate_free_for_all); EXPORT_SYMBOL(snd_pcm_lib_preallocate_pages); EXPORT_SYMBOL(snd_pcm_lib_preallocate_pages_for_all); EXPORT_SYMBOL(snd_pcm_sgbuf_ops_page); EXPORT_SYMBOL(snd_pcm_lib_malloc_pages); EXPORT_SYMBOL(snd_pcm_lib_free_pages);