/** * eCryptfs: Linux filesystem encryption layer * * Copyright (C) 1997-2004 Erez Zadok * Copyright (C) 2001-2004 Stony Brook University * Copyright (C) 2004-2007 International Business Machines Corp. * Author(s): Michael A. Halcrow * Michael C. Thompsion * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA * 02111-1307, USA. */ #include #include #include #include #include #include #include #include #include #include "ecryptfs_kernel.h" static struct dentry *lock_parent(struct dentry *dentry) { struct dentry *dir; dir = dget_parent(dentry); mutex_lock_nested(&(dir->d_inode->i_mutex), I_MUTEX_PARENT); return dir; } static void unlock_dir(struct dentry *dir) { mutex_unlock(&dir->d_inode->i_mutex); dput(dir); } /** * ecryptfs_create_underlying_file * @lower_dir_inode: inode of the parent in the lower fs of the new file * @lower_dentry: New file's dentry in the lower fs * @ecryptfs_dentry: New file's dentry in ecryptfs * @mode: The mode of the new file * @nd: nameidata of ecryptfs' parent's dentry & vfsmount * * Creates the file in the lower file system. * * Returns zero on success; non-zero on error condition */ static int ecryptfs_create_underlying_file(struct inode *lower_dir_inode, struct dentry *dentry, int mode, struct nameidata *nd) { struct dentry *lower_dentry = ecryptfs_dentry_to_lower(dentry); struct vfsmount *lower_mnt = ecryptfs_dentry_to_lower_mnt(dentry); struct dentry *dentry_save; struct vfsmount *vfsmount_save; int rc; dentry_save = nd->path.dentry; vfsmount_save = nd->path.mnt; nd->path.dentry = lower_dentry; nd->path.mnt = lower_mnt; rc = vfs_create(lower_dir_inode, lower_dentry, mode, nd); nd->path.dentry = dentry_save; nd->path.mnt = vfsmount_save; return rc; } /** * ecryptfs_do_create * @directory_inode: inode of the new file's dentry's parent in ecryptfs * @ecryptfs_dentry: New file's dentry in ecryptfs * @mode: The mode of the new file * @nd: nameidata of ecryptfs' parent's dentry & vfsmount * * Creates the underlying file and the eCryptfs inode which will link to * it. It will also update the eCryptfs directory inode to mimic the * stat of the lower directory inode. * * Returns zero on success; non-zero on error condition */ static int ecryptfs_do_create(struct inode *directory_inode, struct dentry *ecryptfs_dentry, int mode, struct nameidata *nd) { int rc; struct dentry *lower_dentry; struct dentry *lower_dir_dentry; lower_dentry = ecryptfs_dentry_to_lower(ecryptfs_dentry); lower_dir_dentry = lock_parent(lower_dentry); if (IS_ERR(lower_dir_dentry)) { ecryptfs_printk(KERN_ERR, "Error locking directory of " "dentry\n"); rc = PTR_ERR(lower_dir_dentry); goto out; } rc = ecryptfs_create_underlying_file(lower_dir_dentry->d_inode, ecryptfs_dentry, mode, nd); if (rc) { printk(KERN_ERR "%s: Failure to create dentry in lower fs; " "rc = [%d]\n", __func__, rc); goto out_lock; } rc = ecryptfs_interpose(lower_dentry, ecryptfs_dentry, directory_inode->i_sb, 0); if (rc) { ecryptfs_printk(KERN_ERR, "Failure in ecryptfs_interpose\n"); goto out_lock; } fsstack_copy_attr_times(directory_inode, lower_dir_dentry->d_inode); fsstack_copy_inode_size(directory_inode, lower_dir_dentry->d_inode); out_lock: unlock_dir(lower_dir_dentry); out: return rc; } /** * grow_file * @ecryptfs_dentry: the eCryptfs dentry * * This is the code which will grow the file to its correct size. */ static int grow_file(struct dentry *ecryptfs_dentry) { struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode; struct file fake_file; struct ecryptfs_file_info tmp_file_info; char zero_virt[] = { 0x00 }; int rc = 0; memset(&fake_file, 0, sizeof(fake_file)); fake_file.f_path.dentry = ecryptfs_dentry; memset(&tmp_file_info, 0, sizeof(tmp_file_info)); ecryptfs_set_file_private(&fake_file, &tmp_file_info); ecryptfs_set_file_lower( &fake_file, ecryptfs_inode_to_private(ecryptfs_inode)->lower_file); rc = ecryptfs_write(&fake_file, zero_virt, 0, 1); i_size_write(ecryptfs_inode, 0); rc = ecryptfs_write_inode_size_to_metadata(ecryptfs_inode); ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat.flags |= ECRYPTFS_NEW_FILE; return rc; } /** * ecryptfs_initialize_file * * Cause the file to be changed from a basic empty file to an ecryptfs * file with a header and first data page. * * Returns zero on success */ static int ecryptfs_initialize_file(struct dentry *ecryptfs_dentry) { struct ecryptfs_crypt_stat *crypt_stat = &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat; int rc = 0; if (S_ISDIR(ecryptfs_dentry->d_inode->i_mode)) { ecryptfs_printk(KERN_DEBUG, "This is a directory\n"); crypt_stat->flags &= ~(ECRYPTFS_ENCRYPTED); goto out; } crypt_stat->flags |= ECRYPTFS_NEW_FILE; ecryptfs_printk(KERN_DEBUG, "Initializing crypto context\n"); rc = ecryptfs_new_file_context(ecryptfs_dentry); if (rc) { ecryptfs_printk(KERN_ERR, "Error creating new file " "context; rc = [%d]\n", rc); goto out; } if (!ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->lower_file) { rc = ecryptfs_init_persistent_file(ecryptfs_dentry); if (rc) { printk(KERN_ERR "%s: Error attempting to initialize " "the persistent file for the dentry with name " "[%s]; rc = [%d]\n", __func__, ecryptfs_dentry->d_name.name, rc); goto out; } } rc = ecryptfs_write_metadata(ecryptfs_dentry); if (rc) { printk(KERN_ERR "Error writing headers; rc = [%d]\n", rc); goto out; } rc = grow_file(ecryptfs_dentry); if (rc) printk(KERN_ERR "Error growing file; rc = [%d]\n", rc); out: return rc; } /** * ecryptfs_create * @dir: The inode of the directory in which to create the file. * @dentry: The eCryptfs dentry * @mode: The mode of the new file. * @nd: nameidata * * Creates a new file. * * Returns zero on success; non-zero on error condition */ static int ecryptfs_create(struct inode *directory_inode, struct dentry *ecryptfs_dentry, int mode, struct nameidata *nd) { int rc; /* ecryptfs_do_create() calls ecryptfs_interpose(), which opens * the crypt_stat->lower_file (persistent file) */ rc = ecryptfs_do_create(directory_inode, ecryptfs_dentry, mode, nd); if (unlikely(rc)) { ecryptfs_printk(KERN_WARNING, "Failed to create file in" "lower filesystem\n"); goto out; } /* At this point, a file exists on "disk"; we need to make sure * that this on disk file is prepared to be an ecryptfs file */ rc = ecryptfs_initialize_file(ecryptfs_dentry); out: return rc; } /** * ecryptfs_lookup * @dir: inode * @dentry: The dentry * @nd: nameidata, may be NULL * * Find a file on disk. If the file does not exist, then we'll add it to the * dentry cache and continue on to read it from the disk. */ static struct dentry *ecryptfs_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd) { int rc = 0; struct dentry *lower_dir_dentry; struct dentry *lower_dentry; struct vfsmount *lower_mnt; char *encoded_name; int encoded_namelen; struct ecryptfs_crypt_stat *crypt_stat = NULL; struct ecryptfs_mount_crypt_stat *mount_crypt_stat; char *page_virt = NULL; struct inode *lower_inode; u64 file_size; lower_dir_dentry = ecryptfs_dentry_to_lower(dentry->d_parent); dentry->d_op = &ecryptfs_dops; if ((dentry->d_name.len == 1 && !strcmp(dentry->d_name.name, ".")) || (dentry->d_name.len == 2 && !strcmp(dentry->d_name.name, ".."))) { d_drop(dentry); goto out; } encoded_namelen = ecryptfs_encode_filename(crypt_stat, dentry->d_name.name, dentry->d_name.len, &encoded_name); if (encoded_namelen < 0) { rc = encoded_namelen; d_drop(dentry); goto out; } ecryptfs_printk(KERN_DEBUG, "encoded_name = [%s]; encoded_namelen " "= [%d]\n", encoded_name, encoded_namelen); lower_dentry = lookup_one_len(encoded_name, lower_dir_dentry, encoded_namelen - 1); kfree(encoded_name); if (IS_ERR(lower_dentry)) { ecryptfs_printk(KERN_ERR, "ERR from lower_dentry\n"); rc = PTR_ERR(lower_dentry); d_drop(dentry); goto out; } lower_mnt = mntget(ecryptfs_dentry_to_lower_mnt(dentry->d_parent)); ecryptfs_printk(KERN_DEBUG, "lower_dentry = [%p]; lower_dentry->" "d_name.name = [%s]\n", lower_dentry, lower_dentry->d_name.name); lower_inode = lower_dentry->d_inode; fsstack_copy_attr_atime(dir, lower_dir_dentry->d_inode); BUG_ON(!atomic_read(&lower_dentry->d_count)); ecryptfs_set_dentry_private(dentry, kmem_cache_alloc(ecryptfs_dentry_info_cache, GFP_KERNEL)); if (!ecryptfs_dentry_to_private(dentry)) { rc = -ENOMEM; ecryptfs_printk(KERN_ERR, "Out of memory whilst attempting " "to allocate ecryptfs_dentry_info struct\n"); goto out_dput; } ecryptfs_set_dentry_lower(dentry, lower_dentry); ecryptfs_set_dentry_lower_mnt(dentry, lower_mnt); if (!lower_dentry->d_inode) { /* We want to add because we couldn't find in lower */ d_add(dentry, NULL); goto out; } rc = ecryptfs_interpose(lower_dentry, dentry, dir->i_sb, ECRYPTFS_INTERPOSE_FLAG_D_ADD); if (rc) { ecryptfs_printk(KERN_ERR, "Error interposing\n"); goto out; } if (S_ISDIR(lower_inode->i_mode)) { ecryptfs_printk(KERN_DEBUG, "Is a directory; returning\n"); goto out; } if (S_ISLNK(lower_inode->i_mode)) { ecryptfs_printk(KERN_DEBUG, "Is a symlink; returning\n"); goto out; } if (special_file(lower_inode->i_mode)) { ecryptfs_printk(KERN_DEBUG, "Is a special file; returning\n"); goto out; } if (!nd) { ecryptfs_printk(KERN_DEBUG, "We have a NULL nd, just leave" "as we *think* we are about to unlink\n"); goto out; } /* Released in this function */ page_virt = kmem_cache_zalloc(ecryptfs_header_cache_2, GFP_USER); if (!page_virt) { rc = -ENOMEM; ecryptfs_printk(KERN_ERR, "Cannot ecryptfs_kmalloc a page\n"); goto out; } crypt_stat = &ecryptfs_inode_to_private(dentry->d_inode)->crypt_stat; if (!(crypt_stat->flags & ECRYPTFS_POLICY_APPLIED)) ecryptfs_set_default_sizes(crypt_stat); if (!ecryptfs_inode_to_private(dentry->d_inode)->lower_file) { rc = ecryptfs_init_persistent_file(dentry); if (rc) { printk(KERN_ERR "%s: Error attempting to initialize " "the persistent file for the dentry with name " "[%s]; rc = [%d]\n", __func__, dentry->d_name.name, rc); goto out; } } rc = ecryptfs_read_and_validate_header_region(page_virt, dentry->d_inode); if (rc) { rc = ecryptfs_read_and_validate_xattr_region(page_virt, dentry); if (rc) { printk(KERN_DEBUG "Valid metadata not found in header " "region or xattr region; treating file as " "unencrypted\n"); rc = 0; kmem_cache_free(ecryptfs_header_cache_2, page_virt); goto out; } crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR; } mount_crypt_stat = &ecryptfs_superblock_to_private( dentry->d_sb)->mount_crypt_stat; if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) { if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) file_size = (crypt_stat->num_header_bytes_at_front + i_size_read(lower_dentry->d_inode)); else file_size = i_size_read(lower_dentry->d_inode); } else { file_size = get_unaligned_be64(page_virt); } i_size_write(dentry->d_inode, (loff_t)file_size); kmem_cache_free(ecryptfs_header_cache_2, page_virt); goto out; out_dput: dput(lower_dentry); d_drop(dentry); out: return ERR_PTR(rc); } static int ecryptfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) { struct dentry *lower_old_dentry; struct dentry *lower_new_dentry; struct dentry *lower_dir_dentry; u64 file_size_save; int rc; file_size_save = i_size_read(old_dentry->d_inode); lower_old_dentry = ecryptfs_dentry_to_lower(old_dentry); lower_new_dentry = ecryptfs_dentry_to_lower(new_dentry); dget(lower_old_dentry); dget(lower_new_dentry); lower_dir_dentry = lock_parent(lower_new_dentry); rc = vfs_link(lower_old_dentry, lower_dir_dentry->d_inode, lower_new_dentry); if (rc || !lower_new_dentry->d_inode) goto out_lock; rc = ecryptfs_interpose(lower_new_dentry, new_dentry, dir->i_sb, 0); if (rc) goto out_lock; fsstack_copy_attr_times(dir, lower_new_dentry->d_inode); fsstack_copy_inode_size(dir, lower_new_dentry->d_inode); old_dentry->d_inode->i_nlink = ecryptfs_inode_to_lower(old_dentry->d_inode)->i_nlink; i_size_write(new_dentry->d_inode, file_size_save); out_lock: unlock_dir(lower_dir_dentry); dput(lower_new_dentry); dput(lower_old_dentry); d_drop(lower_old_dentry); d_drop(new_dentry); d_drop(old_dentry); return rc; } static int ecryptfs_unlink(struct inode *dir, struct dentry *dentry) { int rc = 0; struct dentry *lower_dentry = ecryptfs_dentry_to_lower(dentry); struct inode *lower_dir_inode = ecryptfs_inode_to_lower(dir); struct dentry *lower_dir_dentry; lower_dir_dentry = lock_parent(lower_dentry); rc = vfs_unlink(lower_dir_inode, lower_dentry); if (rc) { printk(KERN_ERR "Error in vfs_unlink; rc = [%d]\n", rc); goto out_unlock; } fsstack_copy_attr_times(dir, lower_dir_inode); dentry->d_inode->i_nlink = ecryptfs_inode_to_lower(dentry->d_inode)->i_nlink; dentry->d_inode->i_ctime = dir->i_ctime; d_drop(dentry); out_unlock: unlock_dir(lower_dir_dentry); return rc; } static int ecryptfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname) { int rc; struct dentry *lower_dentry; struct dentry *lower_dir_dentry; umode_t mode; char *encoded_symname; int encoded_symlen; struct ecryptfs_crypt_stat *crypt_stat = NULL; lower_dentry = ecryptfs_dentry_to_lower(dentry); dget(lower_dentry); lower_dir_dentry = lock_parent(lower_dentry); mode = S_IALLUGO; encoded_symlen = ecryptfs_encode_filename(crypt_stat, symname, strlen(symname), &encoded_symname); if (encoded_symlen < 0) { rc = encoded_symlen; goto out_lock; } rc = vfs_symlink(lower_dir_dentry->d_inode, lower_dentry, encoded_symname, mode); kfree(encoded_symname); if (rc || !lower_dentry->d_inode) goto out_lock; rc = ecryptfs_interpose(lower_dentry, dentry, dir->i_sb, 0); if (rc) goto out_lock; fsstack_copy_attr_times(dir, lower_dir_dentry->d_inode); fsstack_copy_inode_size(dir, lower_dir_dentry->d_inode); out_lock: unlock_dir(lower_dir_dentry); dput(lower_dentry); if (!dentry->d_inode) d_drop(dentry); return rc; } static int ecryptfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) { int rc; struct dentry *lower_dentry; struct dentry *lower_dir_dentry; lower_dentry = ecryptfs_dentry_to_lower(dentry); lower_dir_dentry = lock_parent(lower_dentry); rc = vfs_mkdir(lower_dir_dentry->d_inode, lower_dentry, mode); if (rc || !lower_dentry->d_inode) goto out; rc = ecryptfs_interpose(lower_dentry, dentry, dir->i_sb, 0); if (rc) goto out; fsstack_copy_attr_times(dir, lower_dir_dentry->d_inode); fsstack_copy_inode_size(dir, lower_dir_dentry->d_inode); dir->i_nlink = lower_dir_dentry->d_inode->i_nlink; out: unlock_dir(lower_dir_dentry); if (!dentry->d_inode) d_drop(dentry); return rc; } static int ecryptfs_rmdir(struct inode *dir, struct dentry *dentry) { struct dentry *lower_dentry; struct dentry *lower_dir_dentry; int rc; lower_dentry = ecryptfs_dentry_to_lower(dentry); dget(dentry); lower_dir_dentry = lock_parent(lower_dentry); dget(lower_dentry); rc = vfs_rmdir(lower_dir_dentry->d_inode, lower_dentry); dput(lower_dentry); if (!rc) d_delete(lower_dentry); fsstack_copy_attr_times(dir, lower_dir_dentry->d_inode); dir->i_nlink = lower_dir_dentry->d_inode->i_nlink; unlock_dir(lower_dir_dentry); if (!rc) d_drop(dentry); dput(dentry); return rc; } static int ecryptfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) { int rc; struct dentry *lower_dentry; struct dentry *lower_dir_dentry; lower_dentry = ecryptfs_dentry_to_lower(dentry); lower_dir_dentry = lock_parent(lower_dentry); rc = vfs_mknod(lower_dir_dentry->d_inode, lower_dentry, mode, dev); if (rc || !lower_dentry->d_inode) goto out; rc = ecryptfs_interpose(lower_dentry, dentry, dir->i_sb, 0); if (rc) goto out; fsstack_copy_attr_times(dir, lower_dir_dentry->d_inode); fsstack_copy_inode_size(dir, lower_dir_dentry->d_inode); out: unlock_dir(lower_dir_dentry); if (!dentry->d_inode) d_drop(dentry); return rc; } static int ecryptfs_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) { int rc; struct dentry *lower_old_dentry; struct dentry *lower_new_dentry; struct dentry *lower_old_dir_dentry; struct dentry *lower_new_dir_dentry; lower_old_dentry = ecryptfs_dentry_to_lower(old_dentry); lower_new_dentry = ecryptfs_dentry_to_lower(new_dentry); dget(lower_old_dentry); dget(lower_new_dentry); lower_old_dir_dentry = dget_parent(lower_old_dentry); lower_new_dir_dentry = dget_parent(lower_new_dentry); lock_rename(lower_old_dir_dentry, lower_new_dir_dentry); rc = vfs_rename(lower_old_dir_dentry->d_inode, lower_old_dentry, lower_new_dir_dentry->d_inode, lower_new_dentry); if (rc) goto out_lock; fsstack_copy_attr_all(new_dir, lower_new_dir_dentry->d_inode, NULL); if (new_dir != old_dir) fsstack_copy_attr_all(old_dir, lower_old_dir_dentry->d_inode, NULL); out_lock: unlock_rename(lower_old_dir_dentry, lower_new_dir_dentry); dput(lower_new_dentry->d_parent); dput(lower_old_dentry->d_parent); dput(lower_new_dentry); dput(lower_old_dentry); return rc; } static int ecryptfs_readlink(struct dentry *dentry, char __user * buf, int bufsiz) { int rc; struct dentry *lower_dentry; char *decoded_name; char *lower_buf; mm_segment_t old_fs; struct ecryptfs_crypt_stat *crypt_stat; lower_dentry = ecryptfs_dentry_to_lower(dentry); if (!lower_dentry->d_inode->i_op || !lower_dentry->d_inode->i_op->readlink) { rc = -EINVAL; goto out; } /* Released in this function */ lower_buf = kmalloc(bufsiz, GFP_KERNEL); if (lower_buf == NULL) { ecryptfs_printk(KERN_ERR, "Out of memory\n"); rc = -ENOMEM; goto out; } old_fs = get_fs(); set_fs(get_ds()); ecryptfs_printk(KERN_DEBUG, "Calling readlink w/ " "lower_dentry->d_name.name = [%s]\n", lower_dentry->d_name.name); rc = lower_dentry->d_inode->i_op->readlink(lower_dentry, (char __user *)lower_buf, bufsiz); set_fs(old_fs); if (rc >= 0) { crypt_stat = NULL; rc = ecryptfs_decode_filename(crypt_stat, lower_buf, rc, &decoded_name); if (rc == -ENOMEM) goto out_free_lower_buf; if (rc > 0) { ecryptfs_printk(KERN_DEBUG, "Copying [%d] bytes " "to userspace: [%*s]\n", rc, decoded_name); if (copy_to_user(buf, decoded_name, rc)) rc = -EFAULT; } kfree(decoded_name); fsstack_copy_attr_atime(dentry->d_inode, lower_dentry->d_inode); } out_free_lower_buf: kfree(lower_buf); out: return rc; } static void *ecryptfs_follow_link(struct dentry *dentry, struct nameidata *nd) { char *buf; int len = PAGE_SIZE, rc; mm_segment_t old_fs; /* Released in ecryptfs_put_link(); only release here on error */ buf = kmalloc(len, GFP_KERNEL); if (!buf) { rc = -ENOMEM; goto out; } old_fs = get_fs(); set_fs(get_ds()); ecryptfs_printk(KERN_DEBUG, "Calling readlink w/ " "dentry->d_name.name = [%s]\n", dentry->d_name.name); rc = dentry->d_inode->i_op->readlink(dentry, (char __user *)buf, len); buf[rc] = '\0'; set_fs(old_fs); if (rc < 0) goto out_free; rc = 0; nd_set_link(nd, buf); goto out; out_free: kfree(buf); out: return ERR_PTR(rc); } static void ecryptfs_put_link(struct dentry *dentry, struct nameidata *nd, void *ptr) { /* Free the char* */ kfree(nd_get_link(nd)); } /** * upper_size_to_lower_size * @crypt_stat: Crypt_stat associated with file * @upper_size: Size of the upper file * * Calculate the required size of the lower file based on the * specified size of the upper file. This calculation is based on the * number of headers in the underlying file and the extent size. * * Returns Calculated size of the lower file. */ static loff_t upper_size_to_lower_size(struct ecryptfs_crypt_stat *crypt_stat, loff_t upper_size) { loff_t lower_size; lower_size = crypt_stat->num_header_bytes_at_front; if (upper_size != 0) { loff_t num_extents; num_extents = upper_size >> crypt_stat->extent_shift; if (upper_size & ~crypt_stat->extent_mask) num_extents++; lower_size += (num_extents * crypt_stat->extent_size); } return lower_size; } /** * ecryptfs_truncate * @dentry: The ecryptfs layer dentry * @new_length: The length to expand the file to * * Function to handle truncations modifying the size of the file. Note * that the file sizes are interpolated. When expanding, we are simply * writing strings of 0's out. When truncating, we need to modify the * underlying file size according to the page index interpolations. * * Returns zero on success; non-zero otherwise */ int ecryptfs_truncate(struct dentry *dentry, loff_t new_length) { int rc = 0; struct inode *inode = dentry->d_inode; struct dentry *lower_dentry; struct file fake_ecryptfs_file; struct ecryptfs_crypt_stat *crypt_stat; loff_t i_size = i_size_read(inode); loff_t lower_size_before_truncate; loff_t lower_size_after_truncate; if (unlikely((new_length == i_size))) goto out; crypt_stat = &ecryptfs_inode_to_private(dentry->d_inode)->crypt_stat; /* Set up a fake ecryptfs file, this is used to interface with * the file in the underlying filesystem so that the * truncation has an effect there as well. */ memset(&fake_ecryptfs_file, 0, sizeof(fake_ecryptfs_file)); fake_ecryptfs_file.f_path.dentry = dentry; /* Released at out_free: label */ ecryptfs_set_file_private(&fake_ecryptfs_file, kmem_cache_alloc(ecryptfs_file_info_cache, GFP_KERNEL)); if (unlikely(!ecryptfs_file_to_private(&fake_ecryptfs_file))) { rc = -ENOMEM; goto out; } lower_dentry = ecryptfs_dentry_to_lower(dentry); ecryptfs_set_file_lower( &fake_ecryptfs_file, ecryptfs_inode_to_private(dentry->d_inode)->lower_file); /* Switch on growing or shrinking file */ if (new_length > i_size) { char zero[] = { 0x00 }; /* Write a single 0 at the last position of the file; * this triggers code that will fill in 0's throughout * the intermediate portion of the previous end of the * file and the new and of the file */ rc = ecryptfs_write(&fake_ecryptfs_file, zero, (new_length - 1), 1); } else { /* new_length < i_size_read(inode) */ /* We're chopping off all the pages down do the page * in which new_length is located. Fill in the end of * that page from (new_length & ~PAGE_CACHE_MASK) to * PAGE_CACHE_SIZE with zeros. */ size_t num_zeros = (PAGE_CACHE_SIZE - (new_length & ~PAGE_CACHE_MASK)); if (num_zeros) { char *zeros_virt; zeros_virt = kzalloc(num_zeros, GFP_KERNEL); if (!zeros_virt) { rc = -ENOMEM; goto out_free; } rc = ecryptfs_write(&fake_ecryptfs_file, zeros_virt, new_length, num_zeros); kfree(zeros_virt); if (rc) { printk(KERN_ERR "Error attempting to zero out " "the remainder of the end page on " "reducing truncate; rc = [%d]\n", rc); goto out_free; } } vmtruncate(inode, new_length); rc = ecryptfs_write_inode_size_to_metadata(inode); if (rc) { printk(KERN_ERR "Problem with " "ecryptfs_write_inode_size_to_metadata; " "rc = [%d]\n", rc); goto out_free; } /* We are reducing the size of the ecryptfs file, and need to * know if we need to reduce the size of the lower file. */ lower_size_before_truncate = upper_size_to_lower_size(crypt_stat, i_size); lower_size_after_truncate = upper_size_to_lower_size(crypt_stat, new_length); if (lower_size_after_truncate < lower_size_before_truncate) vmtruncate(lower_dentry->d_inode, lower_size_after_truncate); } out_free: if (ecryptfs_file_to_private(&fake_ecryptfs_file)) kmem_cache_free(ecryptfs_file_info_cache, ecryptfs_file_to_private(&fake_ecryptfs_file)); out: return rc; } static int ecryptfs_permission(struct inode *inode, int mask, struct nameidata *nd) { int rc; if (nd) { struct vfsmount *vfsmnt_save = nd->path.mnt; struct dentry *dentry_save = nd->path.dentry; nd->path.mnt = ecryptfs_dentry_to_lower_mnt(nd->path.dentry); nd->path.dentry = ecryptfs_dentry_to_lower(nd->path.dentry); rc = permission(ecryptfs_inode_to_lower(inode), mask, nd); nd->path.mnt = vfsmnt_save; nd->path.dentry = dentry_save; } else rc = permission(ecryptfs_inode_to_lower(inode), mask, NULL); return rc; } /** * ecryptfs_setattr * @dentry: dentry handle to the inode to modify * @ia: Structure with flags of what to change and values * * Updates the metadata of an inode. If the update is to the size * i.e. truncation, then ecryptfs_truncate will handle the size modification * of both the ecryptfs inode and the lower inode. * * All other metadata changes will be passed right to the lower filesystem, * and we will just update our inode to look like the lower. */ static int ecryptfs_setattr(struct dentry *dentry, struct iattr *ia) { int rc = 0; struct dentry *lower_dentry; struct inode *inode; struct inode *lower_inode; struct ecryptfs_crypt_stat *crypt_stat; crypt_stat = &ecryptfs_inode_to_private(dentry->d_inode)->crypt_stat; if (!(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED)) ecryptfs_init_crypt_stat(crypt_stat); inode = dentry->d_inode; lower_inode = ecryptfs_inode_to_lower(inode); lower_dentry = ecryptfs_dentry_to_lower(dentry); mutex_lock(&crypt_stat->cs_mutex); if (S_ISDIR(dentry->d_inode->i_mode)) crypt_stat->flags &= ~(ECRYPTFS_ENCRYPTED); else if (S_ISREG(dentry->d_inode->i_mode) && (!(crypt_stat->flags & ECRYPTFS_POLICY_APPLIED) || !(crypt_stat->flags & ECRYPTFS_KEY_VALID))) { struct ecryptfs_mount_crypt_stat *mount_crypt_stat; mount_crypt_stat = &ecryptfs_superblock_to_private( dentry->d_sb)->mount_crypt_stat; rc = ecryptfs_read_metadata(dentry); if (rc) { if (!(mount_crypt_stat->flags & ECRYPTFS_PLAINTEXT_PASSTHROUGH_ENABLED)) { rc = -EIO; printk(KERN_WARNING "Either the lower file " "is not in a valid eCryptfs format, " "or the key could not be retrieved. " "Plaintext passthrough mode is not " "enabled; returning -EIO\n"); mutex_unlock(&crypt_stat->cs_mutex); goto out; } rc = 0; crypt_stat->flags &= ~(ECRYPTFS_ENCRYPTED); mutex_unlock(&crypt_stat->cs_mutex); goto out; } } mutex_unlock(&crypt_stat->cs_mutex); if (ia->ia_valid & ATTR_SIZE) { ecryptfs_printk(KERN_DEBUG, "ia->ia_valid = [0x%x] ATTR_SIZE" " = [0x%x]\n", ia->ia_valid, ATTR_SIZE); rc = ecryptfs_truncate(dentry, ia->ia_size); /* ecryptfs_truncate handles resizing of the lower file */ ia->ia_valid &= ~ATTR_SIZE; ecryptfs_printk(KERN_DEBUG, "ia->ia_valid = [%x]\n", ia->ia_valid); if (rc < 0) goto out; } /* * mode change is for clearing setuid/setgid bits. Allow lower fs * to interpret this in its own way. */ if (ia->ia_valid & (ATTR_KILL_SUID | ATTR_KILL_SGID)) ia->ia_valid &= ~ATTR_MODE; mutex_lock(&lower_dentry->d_inode->i_mutex); rc = notify_change(lower_dentry, ia); mutex_unlock(&lower_dentry->d_inode->i_mutex); out: fsstack_copy_attr_all(inode, lower_inode, NULL); return rc; } int ecryptfs_setxattr(struct dentry *dentry, const char *name, const void *value, size_t size, int flags) { int rc = 0; struct dentry *lower_dentry; lower_dentry = ecryptfs_dentry_to_lower(dentry); if (!lower_dentry->d_inode->i_op->setxattr) { rc = -ENOSYS; goto out; } mutex_lock(&lower_dentry->d_inode->i_mutex); rc = lower_dentry->d_inode->i_op->setxattr(lower_dentry, name, value, size, flags); mutex_unlock(&lower_dentry->d_inode->i_mutex); out: return rc; } ssize_t ecryptfs_getxattr_lower(struct dentry *lower_dentry, const char *name, void *value, size_t size) { int rc = 0; if (!lower_dentry->d_inode->i_op->getxattr) { rc = -ENOSYS; goto out; } mutex_lock(&lower_dentry->d_inode->i_mutex); rc = lower_dentry->d_inode->i_op->getxattr(lower_dentry, name, value, size); mutex_unlock(&lower_dentry->d_inode->i_mutex); out: return rc; } static ssize_t ecryptfs_getxattr(struct dentry *dentry, const char *name, void *value, size_t size) { return ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry), name, value, size); } static ssize_t ecryptfs_listxattr(struct dentry *dentry, char *list, size_t size) { int rc = 0; struct dentry *lower_dentry; lower_dentry = ecryptfs_dentry_to_lower(dentry); if (!lower_dentry->d_inode->i_op->listxattr) { rc = -ENOSYS; goto out; } mutex_lock(&lower_dentry->d_inode->i_mutex); rc = lower_dentry->d_inode->i_op->listxattr(lower_dentry, list, size); mutex_unlock(&lower_dentry->d_inode->i_mutex); out: return rc; } static int ecryptfs_removexattr(struct dentry *dentry, const char *name) { int rc = 0; struct dentry *lower_dentry; lower_dentry = ecryptfs_dentry_to_lower(dentry); if (!lower_dentry->d_inode->i_op->removexattr) { rc = -ENOSYS; goto out; } mutex_lock(&lower_dentry->d_inode->i_mutex); rc = lower_dentry->d_inode->i_op->removexattr(lower_dentry, name); mutex_unlock(&lower_dentry->d_inode->i_mutex); out: return rc; } int ecryptfs_inode_test(struct inode *inode, void *candidate_lower_inode) { if ((ecryptfs_inode_to_lower(inode) == (struct inode *)candidate_lower_inode)) return 1; else return 0; } int ecryptfs_inode_set(struct inode *inode, void *lower_inode) { ecryptfs_init_inode(inode, (struct inode *)lower_inode); return 0; } const struct inode_operations ecryptfs_symlink_iops = { .readlink = ecryptfs_readlink, .follow_link = ecryptfs_follow_link, .put_link = ecryptfs_put_link, .permission = ecryptfs_permission, .setattr = ecryptfs_setattr, .setxattr = ecryptfs_setxattr, .getxattr = ecryptfs_getxattr, .listxattr = ecryptfs_listxattr, .removexattr = ecryptfs_removexattr }; const struct inode_operations ecryptfs_dir_iops = { .create = ecryptfs_create, .lookup = ecryptfs_lookup, .link = ecryptfs_link, .unlink = ecryptfs_unlink, .symlink = ecryptfs_symlink, .mkdir = ecryptfs_mkdir, .rmdir = ecryptfs_rmdir, .mknod = ecryptfs_mknod, .rename = ecryptfs_rename, .permission = ecryptfs_permission, .setattr = ecryptfs_setattr, .setxattr = ecryptfs_setxattr, .getxattr = ecryptfs_getxattr, .listxattr = ecryptfs_listxattr, .removexattr = ecryptfs_removexattr }; const struct inode_operations ecryptfs_main_iops = { .permission = ecryptfs_permission, .setattr = ecryptfs_setattr, .setxattr = ecryptfs_setxattr, .getxattr = ecryptfs_getxattr, .listxattr = ecryptfs_listxattr, .removexattr = ecryptfs_removexattr };