/* * linux/arch/x86-64/mm/fault.c * * Copyright (C) 1995 Linus Torvalds * Copyright (C) 2001,2002 Andi Kleen, SuSE Labs. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* For unblank_screen() */ #include #include #include #include #include #include #include #include #include #include #include #include void bust_spinlocks(int yes) { int loglevel_save = console_loglevel; if (yes) { oops_in_progress = 1; } else { #ifdef CONFIG_VT unblank_screen(); #endif oops_in_progress = 0; /* * OK, the message is on the console. Now we call printk() * without oops_in_progress set so that printk will give klogd * a poke. Hold onto your hats... */ console_loglevel = 15; /* NMI oopser may have shut the console up */ printk(" "); console_loglevel = loglevel_save; } } /* Sometimes the CPU reports invalid exceptions on prefetch. Check that here and ignore. Opcode checker based on code by Richard Brunner */ static noinline int is_prefetch(struct pt_regs *regs, unsigned long addr, unsigned long error_code) { unsigned char *instr; int scan_more = 1; int prefetch = 0; unsigned char *max_instr; /* If it was a exec fault ignore */ if (error_code & (1<<4)) return 0; instr = (unsigned char *)convert_rip_to_linear(current, regs); max_instr = instr + 15; if ((regs->cs & 3) != 0 && instr >= (unsigned char *)TASK_SIZE) return 0; while (scan_more && instr < max_instr) { unsigned char opcode; unsigned char instr_hi; unsigned char instr_lo; if (__get_user(opcode, instr)) break; instr_hi = opcode & 0xf0; instr_lo = opcode & 0x0f; instr++; switch (instr_hi) { case 0x20: case 0x30: /* Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. In long mode, the CPU will signal invalid opcode if some of these prefixes are present so we will never get here anyway */ scan_more = ((instr_lo & 7) == 0x6); break; case 0x40: /* In AMD64 long mode, 0x40 to 0x4F are valid REX prefixes Need to figure out under what instruction mode the instruction was issued ... */ /* Could check the LDT for lm, but for now it's good enough to assume that long mode only uses well known segments or kernel. */ scan_more = ((regs->cs & 3) == 0) || (regs->cs == __USER_CS); break; case 0x60: /* 0x64 thru 0x67 are valid prefixes in all modes. */ scan_more = (instr_lo & 0xC) == 0x4; break; case 0xF0: /* 0xF0, 0xF2, and 0xF3 are valid prefixes in all modes. */ scan_more = !instr_lo || (instr_lo>>1) == 1; break; case 0x00: /* Prefetch instruction is 0x0F0D or 0x0F18 */ scan_more = 0; if (__get_user(opcode, instr)) break; prefetch = (instr_lo == 0xF) && (opcode == 0x0D || opcode == 0x18); break; default: scan_more = 0; break; } } return prefetch; } static int bad_address(void *p) { unsigned long dummy; return __get_user(dummy, (unsigned long *)p); } void dump_pagetable(unsigned long address) { pgd_t *pgd; pud_t *pud; pmd_t *pmd; pte_t *pte; asm("movq %%cr3,%0" : "=r" (pgd)); pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK); pgd += pgd_index(address); printk("PGD %lx ", pgd_val(*pgd)); if (bad_address(pgd)) goto bad; if (!pgd_present(*pgd)) goto ret; pud = __pud_offset_k((pud_t *)pgd_page(*pgd), address); if (bad_address(pud)) goto bad; printk("PUD %lx ", pud_val(*pud)); if (!pud_present(*pud)) goto ret; pmd = pmd_offset(pud, address); if (bad_address(pmd)) goto bad; printk("PMD %lx ", pmd_val(*pmd)); if (!pmd_present(*pmd)) goto ret; pte = pte_offset_kernel(pmd, address); if (bad_address(pte)) goto bad; printk("PTE %lx", pte_val(*pte)); ret: printk("\n"); return; bad: printk("BAD\n"); } static const char errata93_warning[] = KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n" KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n" KERN_ERR "******* Please consider a BIOS update.\n" KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n"; /* Workaround for K8 erratum #93 & buggy BIOS. BIOS SMM functions are required to use a specific workaround to avoid corruption of the 64bit RIP register on C stepping K8. A lot of BIOS that didn't get tested properly miss this. The OS sees this as a page fault with the upper 32bits of RIP cleared. Try to work around it here. Note we only handle faults in kernel here. */ static int is_errata93(struct pt_regs *regs, unsigned long address) { static int warned; if (address != regs->rip) return 0; if ((address >> 32) != 0) return 0; address |= 0xffffffffUL << 32; if ((address >= (u64)_stext && address <= (u64)_etext) || (address >= MODULES_VADDR && address <= MODULES_END)) { if (!warned) { printk(errata93_warning); warned = 1; } regs->rip = address; return 1; } return 0; } int unhandled_signal(struct task_struct *tsk, int sig) { if (tsk->pid == 1) return 1; /* Warn for strace, but not for gdb */ if (!test_ti_thread_flag(tsk->thread_info, TIF_SYSCALL_TRACE) && (tsk->ptrace & PT_PTRACED)) return 0; return (tsk->sighand->action[sig-1].sa.sa_handler == SIG_IGN) || (tsk->sighand->action[sig-1].sa.sa_handler == SIG_DFL); } static noinline void pgtable_bad(unsigned long address, struct pt_regs *regs, unsigned long error_code) { oops_begin(); printk(KERN_ALERT "%s: Corrupted page table at address %lx\n", current->comm, address); dump_pagetable(address); __die("Bad pagetable", regs, error_code); oops_end(); do_exit(SIGKILL); } /* * Handle a fault on the vmalloc or module mapping area * * This assumes no large pages in there. */ static int vmalloc_fault(unsigned long address) { pgd_t *pgd, *pgd_ref; pud_t *pud, *pud_ref; pmd_t *pmd, *pmd_ref; pte_t *pte, *pte_ref; /* Copy kernel mappings over when needed. This can also happen within a race in page table update. In the later case just flush. */ pgd = pgd_offset(current->mm ?: &init_mm, address); pgd_ref = pgd_offset_k(address); if (pgd_none(*pgd_ref)) return -1; if (pgd_none(*pgd)) set_pgd(pgd, *pgd_ref); /* Below here mismatches are bugs because these lower tables are shared */ pud = pud_offset(pgd, address); pud_ref = pud_offset(pgd_ref, address); if (pud_none(*pud_ref)) return -1; if (pud_none(*pud) || pud_page(*pud) != pud_page(*pud_ref)) BUG(); pmd = pmd_offset(pud, address); pmd_ref = pmd_offset(pud_ref, address); if (pmd_none(*pmd_ref)) return -1; if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref)) BUG(); pte_ref = pte_offset_kernel(pmd_ref, address); if (!pte_present(*pte_ref)) return -1; pte = pte_offset_kernel(pmd, address); /* Don't use pte_page here, because the mappings can point outside mem_map, and the NUMA hash lookup cannot handle that. */ if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref)) BUG(); __flush_tlb_all(); return 0; } int page_fault_trace = 0; int exception_trace = 1; /* * This routine handles page faults. It determines the address, * and the problem, and then passes it off to one of the appropriate * routines. * * error_code: * bit 0 == 0 means no page found, 1 means protection fault * bit 1 == 0 means read, 1 means write * bit 2 == 0 means kernel, 1 means user-mode * bit 3 == 1 means fault was an instruction fetch */ asmlinkage void do_page_fault(struct pt_regs *regs, unsigned long error_code) { struct task_struct *tsk; struct mm_struct *mm; struct vm_area_struct * vma; unsigned long address; const struct exception_table_entry *fixup; int write; siginfo_t info; #ifdef CONFIG_CHECKING { unsigned long gs; struct x8664_pda *pda = cpu_pda + stack_smp_processor_id(); rdmsrl(MSR_GS_BASE, gs); if (gs != (unsigned long)pda) { wrmsrl(MSR_GS_BASE, pda); printk("page_fault: wrong gs %lx expected %p\n", gs, pda); } } #endif /* get the address */ __asm__("movq %%cr2,%0":"=r" (address)); if (notify_die(DIE_PAGE_FAULT, "page fault", regs, error_code, 14, SIGSEGV) == NOTIFY_STOP) return; if (likely(regs->eflags & X86_EFLAGS_IF)) local_irq_enable(); if (unlikely(page_fault_trace)) printk("pagefault rip:%lx rsp:%lx cs:%lu ss:%lu address %lx error %lx\n", regs->rip,regs->rsp,regs->cs,regs->ss,address,error_code); tsk = current; mm = tsk->mm; info.si_code = SEGV_MAPERR; /* * We fault-in kernel-space virtual memory on-demand. The * 'reference' page table is init_mm.pgd. * * NOTE! We MUST NOT take any locks for this case. We may * be in an interrupt or a critical region, and should * only copy the information from the master page table, * nothing more. * * This verifies that the fault happens in kernel space * (error_code & 4) == 0, and that the fault was not a * protection error (error_code & 1) == 0. */ if (unlikely(address >= TASK_SIZE)) { if (!(error_code & 5) && ((address >= VMALLOC_START && address < VMALLOC_END) || (address >= MODULES_VADDR && address < MODULES_END))) { if (vmalloc_fault(address) < 0) goto bad_area_nosemaphore; return; } /* * Don't take the mm semaphore here. If we fixup a prefetch * fault we could otherwise deadlock. */ goto bad_area_nosemaphore; } if (unlikely(error_code & (1 << 3))) pgtable_bad(address, regs, error_code); /* * If we're in an interrupt or have no user * context, we must not take the fault.. */ if (unlikely(in_atomic() || !mm)) goto bad_area_nosemaphore; again: /* When running in the kernel we expect faults to occur only to * addresses in user space. All other faults represent errors in the * kernel and should generate an OOPS. Unfortunatly, in the case of an * erroneous fault occuring in a code path which already holds mmap_sem * we will deadlock attempting to validate the fault against the * address space. Luckily the kernel only validly references user * space from well defined areas of code, which are listed in the * exceptions table. * * As the vast majority of faults will be valid we will only perform * the source reference check when there is a possibilty of a deadlock. * Attempt to lock the address space, if we cannot we then validate the * source. If this is invalid we can skip the address space check, * thus avoiding the deadlock. */ if (!down_read_trylock(&mm->mmap_sem)) { if ((error_code & 4) == 0 && !search_exception_tables(regs->rip)) goto bad_area_nosemaphore; down_read(&mm->mmap_sem); } vma = find_vma(mm, address); if (!vma) goto bad_area; if (likely(vma->vm_start <= address)) goto good_area; if (!(vma->vm_flags & VM_GROWSDOWN)) goto bad_area; if (error_code & 4) { // XXX: align red zone size with ABI if (address + 128 < regs->rsp) goto bad_area; } if (expand_stack(vma, address)) goto bad_area; /* * Ok, we have a good vm_area for this memory access, so * we can handle it.. */ good_area: info.si_code = SEGV_ACCERR; write = 0; switch (error_code & 3) { default: /* 3: write, present */ /* fall through */ case 2: /* write, not present */ if (!(vma->vm_flags & VM_WRITE)) goto bad_area; write++; break; case 1: /* read, present */ goto bad_area; case 0: /* read, not present */ if (!(vma->vm_flags & (VM_READ | VM_EXEC))) goto bad_area; } /* * If for any reason at all we couldn't handle the fault, * make sure we exit gracefully rather than endlessly redo * the fault. */ switch (handle_mm_fault(mm, vma, address, write)) { case 1: tsk->min_flt++; break; case 2: tsk->maj_flt++; break; case 0: goto do_sigbus; default: goto out_of_memory; } up_read(&mm->mmap_sem); return; /* * Something tried to access memory that isn't in our memory map.. * Fix it, but check if it's kernel or user first.. */ bad_area: up_read(&mm->mmap_sem); bad_area_nosemaphore: /* User mode accesses just cause a SIGSEGV */ if (error_code & 4) { if (is_prefetch(regs, address, error_code)) return; /* Work around K8 erratum #100 K8 in compat mode occasionally jumps to illegal addresses >4GB. We catch this here in the page fault handler because these addresses are not reachable. Just detect this case and return. Any code segment in LDT is compatibility mode. */ if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32)) return; if (exception_trace && unhandled_signal(tsk, SIGSEGV)) { printk( "%s%s[%d]: segfault at %016lx rip %016lx rsp %016lx error %lx\n", tsk->pid > 1 ? KERN_INFO : KERN_EMERG, tsk->comm, tsk->pid, address, regs->rip, regs->rsp, error_code); } tsk->thread.cr2 = address; /* Kernel addresses are always protection faults */ tsk->thread.error_code = error_code | (address >= TASK_SIZE); tsk->thread.trap_no = 14; info.si_signo = SIGSEGV; info.si_errno = 0; /* info.si_code has been set above */ info.si_addr = (void __user *)address; force_sig_info(SIGSEGV, &info, tsk); return; } no_context: /* Are we prepared to handle this kernel fault? */ fixup = search_exception_tables(regs->rip); if (fixup) { regs->rip = fixup->fixup; return; } /* * Hall of shame of CPU/BIOS bugs. */ if (is_prefetch(regs, address, error_code)) return; if (is_errata93(regs, address)) return; /* * Oops. The kernel tried to access some bad page. We'll have to * terminate things with extreme prejudice. */ oops_begin(); if (address < PAGE_SIZE) printk(KERN_ALERT "Unable to handle kernel NULL pointer dereference"); else printk(KERN_ALERT "Unable to handle kernel paging request"); printk(" at %016lx RIP: \n" KERN_ALERT,address); printk_address(regs->rip); printk("\n"); dump_pagetable(address); __die("Oops", regs, error_code); /* Executive summary in case the body of the oops scrolled away */ printk(KERN_EMERG "CR2: %016lx\n", address); oops_end(); do_exit(SIGKILL); /* * We ran out of memory, or some other thing happened to us that made * us unable to handle the page fault gracefully. */ out_of_memory: up_read(&mm->mmap_sem); if (current->pid == 1) { yield(); goto again; } printk("VM: killing process %s\n", tsk->comm); if (error_code & 4) do_exit(SIGKILL); goto no_context; do_sigbus: up_read(&mm->mmap_sem); /* Kernel mode? Handle exceptions or die */ if (!(error_code & 4)) goto no_context; tsk->thread.cr2 = address; tsk->thread.error_code = error_code; tsk->thread.trap_no = 14; info.si_signo = SIGBUS; info.si_errno = 0; info.si_code = BUS_ADRERR; info.si_addr = (void __user *)address; force_sig_info(SIGBUS, &info, tsk); return; }