/* * linux/arch/x86_64/mm/init.c * * Copyright (C) 1995 Linus Torvalds * Copyright (C) 2000 Pavel Machek * Copyright (C) 2002,2003 Andi Kleen */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static unsigned long dma_reserve __initdata; DEFINE_PER_CPU(struct mmu_gather, mmu_gathers); int direct_gbpages __meminitdata #ifdef CONFIG_DIRECT_GBPAGES = 1 #endif ; static int __init parse_direct_gbpages_off(char *arg) { direct_gbpages = 0; return 0; } early_param("nogbpages", parse_direct_gbpages_off); static int __init parse_direct_gbpages_on(char *arg) { direct_gbpages = 1; return 0; } early_param("gbpages", parse_direct_gbpages_on); /* * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the * physical space so we can cache the place of the first one and move * around without checking the pgd every time. */ void show_mem(void) { long i, total = 0, reserved = 0; long shared = 0, cached = 0; struct page *page; pg_data_t *pgdat; printk(KERN_INFO "Mem-info:\n"); show_free_areas(); for_each_online_pgdat(pgdat) { for (i = 0; i < pgdat->node_spanned_pages; ++i) { /* * This loop can take a while with 256 GB and * 4k pages so defer the NMI watchdog: */ if (unlikely(i % MAX_ORDER_NR_PAGES == 0)) touch_nmi_watchdog(); if (!pfn_valid(pgdat->node_start_pfn + i)) continue; page = pfn_to_page(pgdat->node_start_pfn + i); total++; if (PageReserved(page)) reserved++; else if (PageSwapCache(page)) cached++; else if (page_count(page)) shared += page_count(page) - 1; } } printk(KERN_INFO "%lu pages of RAM\n", total); printk(KERN_INFO "%lu reserved pages\n", reserved); printk(KERN_INFO "%lu pages shared\n", shared); printk(KERN_INFO "%lu pages swap cached\n", cached); } int after_bootmem; static __init void *spp_getpage(void) { void *ptr; if (after_bootmem) ptr = (void *) get_zeroed_page(GFP_ATOMIC); else ptr = alloc_bootmem_pages(PAGE_SIZE); if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) { panic("set_pte_phys: cannot allocate page data %s\n", after_bootmem ? "after bootmem" : ""); } pr_debug("spp_getpage %p\n", ptr); return ptr; } static __init void set_pte_phys(unsigned long vaddr, unsigned long phys, pgprot_t prot) { pgd_t *pgd; pud_t *pud; pmd_t *pmd; pte_t *pte, new_pte; pr_debug("set_pte_phys %lx to %lx\n", vaddr, phys); pgd = pgd_offset_k(vaddr); if (pgd_none(*pgd)) { printk(KERN_ERR "PGD FIXMAP MISSING, it should be setup in head.S!\n"); return; } pud = pud_offset(pgd, vaddr); if (pud_none(*pud)) { pmd = (pmd_t *) spp_getpage(); set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE | _PAGE_USER)); if (pmd != pmd_offset(pud, 0)) { printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n", pmd, pmd_offset(pud, 0)); return; } } pmd = pmd_offset(pud, vaddr); if (pmd_none(*pmd)) { pte = (pte_t *) spp_getpage(); set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE | _PAGE_USER)); if (pte != pte_offset_kernel(pmd, 0)) { printk(KERN_ERR "PAGETABLE BUG #02!\n"); return; } } new_pte = pfn_pte(phys >> PAGE_SHIFT, prot); pte = pte_offset_kernel(pmd, vaddr); if (!pte_none(*pte) && pte_val(new_pte) && pte_val(*pte) != (pte_val(new_pte) & __supported_pte_mask)) pte_ERROR(*pte); set_pte(pte, new_pte); /* * It's enough to flush this one mapping. * (PGE mappings get flushed as well) */ __flush_tlb_one(vaddr); } /* * The head.S code sets up the kernel high mapping: * * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text) * * phys_addr holds the negative offset to the kernel, which is added * to the compile time generated pmds. This results in invalid pmds up * to the point where we hit the physaddr 0 mapping. * * We limit the mappings to the region from _text to _end. _end is * rounded up to the 2MB boundary. This catches the invalid pmds as * well, as they are located before _text: */ void __init cleanup_highmap(void) { unsigned long vaddr = __START_KERNEL_map; unsigned long end = round_up((unsigned long)_end, PMD_SIZE) - 1; pmd_t *pmd = level2_kernel_pgt; pmd_t *last_pmd = pmd + PTRS_PER_PMD; for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) { if (pmd_none(*pmd)) continue; if (vaddr < (unsigned long) _text || vaddr > end) set_pmd(pmd, __pmd(0)); } } /* NOTE: this is meant to be run only at boot */ void __init __set_fixmap(enum fixed_addresses idx, unsigned long phys, pgprot_t prot) { unsigned long address = __fix_to_virt(idx); if (idx >= __end_of_fixed_addresses) { printk(KERN_ERR "Invalid __set_fixmap\n"); return; } set_pte_phys(address, phys, prot); } static unsigned long __initdata table_start; static unsigned long __meminitdata table_end; static __meminit void *alloc_low_page(unsigned long *phys) { unsigned long pfn = table_end++; void *adr; if (after_bootmem) { adr = (void *)get_zeroed_page(GFP_ATOMIC); *phys = __pa(adr); return adr; } if (pfn >= end_pfn) panic("alloc_low_page: ran out of memory"); adr = early_ioremap(pfn * PAGE_SIZE, PAGE_SIZE); memset(adr, 0, PAGE_SIZE); *phys = pfn * PAGE_SIZE; return adr; } static __meminit void unmap_low_page(void *adr) { if (after_bootmem) return; early_iounmap(adr, PAGE_SIZE); } /* Must run before zap_low_mappings */ __meminit void *early_ioremap(unsigned long addr, unsigned long size) { pmd_t *pmd, *last_pmd; unsigned long vaddr; int i, pmds; pmds = ((addr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE; vaddr = __START_KERNEL_map; pmd = level2_kernel_pgt; last_pmd = level2_kernel_pgt + PTRS_PER_PMD - 1; for (; pmd <= last_pmd; pmd++, vaddr += PMD_SIZE) { for (i = 0; i < pmds; i++) { if (pmd_present(pmd[i])) goto continue_outer_loop; } vaddr += addr & ~PMD_MASK; addr &= PMD_MASK; for (i = 0; i < pmds; i++, addr += PMD_SIZE) set_pmd(pmd+i, __pmd(addr | __PAGE_KERNEL_LARGE_EXEC)); __flush_tlb_all(); return (void *)vaddr; continue_outer_loop: ; } printk(KERN_ERR "early_ioremap(0x%lx, %lu) failed\n", addr, size); return NULL; } /* * To avoid virtual aliases later: */ __meminit void early_iounmap(void *addr, unsigned long size) { unsigned long vaddr; pmd_t *pmd; int i, pmds; vaddr = (unsigned long)addr; pmds = ((vaddr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE; pmd = level2_kernel_pgt + pmd_index(vaddr); for (i = 0; i < pmds; i++) pmd_clear(pmd + i); __flush_tlb_all(); } static unsigned long __meminit phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end) { int i = pmd_index(address); for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) { pmd_t *pmd = pmd_page + pmd_index(address); if (address >= end) { if (!after_bootmem) { for (; i < PTRS_PER_PMD; i++, pmd++) set_pmd(pmd, __pmd(0)); } break; } if (pmd_val(*pmd)) continue; set_pte((pte_t *)pmd, pfn_pte(address >> PAGE_SHIFT, PAGE_KERNEL_LARGE)); } return address; } static unsigned long __meminit phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end) { pmd_t *pmd = pmd_offset(pud, 0); unsigned long last_map_addr; spin_lock(&init_mm.page_table_lock); last_map_addr = phys_pmd_init(pmd, address, end); spin_unlock(&init_mm.page_table_lock); __flush_tlb_all(); return last_map_addr; } static unsigned long __meminit phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end) { unsigned long last_map_addr = end; int i = pud_index(addr); for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) { unsigned long pmd_phys; pud_t *pud = pud_page + pud_index(addr); pmd_t *pmd; if (addr >= end) break; if (!after_bootmem && !e820_any_mapped(addr, addr+PUD_SIZE, 0)) { set_pud(pud, __pud(0)); continue; } if (pud_val(*pud)) { if (!pud_large(*pud)) last_map_addr = phys_pmd_update(pud, addr, end); continue; } if (direct_gbpages) { set_pte((pte_t *)pud, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE)); last_map_addr = (addr & PUD_MASK) + PUD_SIZE; continue; } pmd = alloc_low_page(&pmd_phys); spin_lock(&init_mm.page_table_lock); set_pud(pud, __pud(pmd_phys | _KERNPG_TABLE)); last_map_addr = phys_pmd_init(pmd, addr, end); spin_unlock(&init_mm.page_table_lock); unmap_low_page(pmd); } __flush_tlb_all(); return last_map_addr >> PAGE_SHIFT; } static void __init find_early_table_space(unsigned long end) { unsigned long puds, pmds, tables, start; puds = (end + PUD_SIZE - 1) >> PUD_SHIFT; tables = round_up(puds * sizeof(pud_t), PAGE_SIZE); if (!direct_gbpages) { pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT; tables += round_up(pmds * sizeof(pmd_t), PAGE_SIZE); } /* * RED-PEN putting page tables only on node 0 could * cause a hotspot and fill up ZONE_DMA. The page tables * need roughly 0.5KB per GB. */ start = 0x8000; table_start = find_e820_area(start, end, tables, PAGE_SIZE); if (table_start == -1UL) panic("Cannot find space for the kernel page tables"); table_start >>= PAGE_SHIFT; table_end = table_start; early_printk("kernel direct mapping tables up to %lx @ %lx-%lx\n", end, table_start << PAGE_SHIFT, (table_start << PAGE_SHIFT) + tables); } static void __init init_gbpages(void) { if (direct_gbpages && cpu_has_gbpages) printk(KERN_INFO "Using GB pages for direct mapping\n"); else direct_gbpages = 0; } #ifdef CONFIG_MEMTEST_BOOTPARAM static void __init memtest(unsigned long start_phys, unsigned long size, unsigned pattern) { unsigned long i; unsigned long *start; unsigned long start_bad; unsigned long last_bad; unsigned long val; unsigned long start_phys_aligned; unsigned long count; unsigned long incr; switch (pattern) { case 0: val = 0UL; break; case 1: val = -1UL; break; case 2: val = 0x5555555555555555UL; break; case 3: val = 0xaaaaaaaaaaaaaaaaUL; break; default: return; } incr = sizeof(unsigned long); start_phys_aligned = ALIGN(start_phys, incr); count = (size - (start_phys_aligned - start_phys))/incr; start = __va(start_phys_aligned); start_bad = 0; last_bad = 0; for (i = 0; i < count; i++) start[i] = val; for (i = 0; i < count; i++, start++, start_phys_aligned += incr) { if (*start != val) { if (start_phys_aligned == last_bad + incr) { last_bad += incr; } else { if (start_bad) { printk(KERN_CONT "\n %016lx bad mem addr %016lx - %016lx reserved", val, start_bad, last_bad + incr); reserve_early(start_bad, last_bad - start_bad, "BAD RAM"); } start_bad = last_bad = start_phys_aligned; } } } if (start_bad) { printk(KERN_CONT "\n %016lx bad mem addr %016lx - %016lx reserved", val, start_bad, last_bad + incr); reserve_early(start_bad, last_bad - start_bad, "BAD RAM"); } } static int memtest_pattern __initdata = CONFIG_MEMTEST_BOOTPARAM_VALUE; static int __init parse_memtest(char *arg) { if (arg) memtest_pattern = simple_strtoul(arg, NULL, 0); return 0; } early_param("memtest", parse_memtest); static void __init early_memtest(unsigned long start, unsigned long end) { u64 t_start, t_size; unsigned pattern; if (!memtest_pattern) return; printk(KERN_INFO "early_memtest: pattern num %d", memtest_pattern); for (pattern = 0; pattern < memtest_pattern; pattern++) { t_start = start; t_size = 0; while (t_start < end) { t_start = find_e820_area_size(t_start, &t_size, 1); /* done ? */ if (t_start >= end) break; if (t_start + t_size > end) t_size = end - t_start; printk(KERN_CONT "\n %016llx - %016llx pattern %d", (unsigned long long)t_start, (unsigned long long)t_start + t_size, pattern); memtest(t_start, t_size, pattern); t_start += t_size; } } printk(KERN_CONT "\n"); } #else static void __init early_memtest(unsigned long start, unsigned long end) { } #endif /* * Setup the direct mapping of the physical memory at PAGE_OFFSET. * This runs before bootmem is initialized and gets pages directly from * the physical memory. To access them they are temporarily mapped. */ unsigned long __init_refok init_memory_mapping(unsigned long start, unsigned long end) { unsigned long next, last_map_addr = end; unsigned long start_phys = start, end_phys = end; printk(KERN_INFO "init_memory_mapping\n"); /* * Find space for the kernel direct mapping tables. * * Later we should allocate these tables in the local node of the * memory mapped. Unfortunately this is done currently before the * nodes are discovered. */ if (!after_bootmem) { init_gbpages(); find_early_table_space(end); } start = (unsigned long)__va(start); end = (unsigned long)__va(end); for (; start < end; start = next) { pgd_t *pgd = pgd_offset_k(start); unsigned long pud_phys; pud_t *pud; if (after_bootmem) pud = pud_offset(pgd, start & PGDIR_MASK); else pud = alloc_low_page(&pud_phys); next = start + PGDIR_SIZE; if (next > end) next = end; last_map_addr = phys_pud_init(pud, __pa(start), __pa(next)); if (!after_bootmem) set_pgd(pgd_offset_k(start), mk_kernel_pgd(pud_phys)); unmap_low_page(pud); } if (!after_bootmem) mmu_cr4_features = read_cr4(); __flush_tlb_all(); if (!after_bootmem) reserve_early(table_start << PAGE_SHIFT, table_end << PAGE_SHIFT, "PGTABLE"); if (!after_bootmem) early_memtest(start_phys, end_phys); return last_map_addr; } #ifndef CONFIG_NUMA void __init paging_init(void) { unsigned long max_zone_pfns[MAX_NR_ZONES]; memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN; max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN; max_zone_pfns[ZONE_NORMAL] = end_pfn; memory_present(0, 0, end_pfn); sparse_init(); free_area_init_nodes(max_zone_pfns); } #endif /* * Memory hotplug specific functions */ #ifdef CONFIG_MEMORY_HOTPLUG /* * Memory is added always to NORMAL zone. This means you will never get * additional DMA/DMA32 memory. */ int arch_add_memory(int nid, u64 start, u64 size) { struct pglist_data *pgdat = NODE_DATA(nid); struct zone *zone = pgdat->node_zones + ZONE_NORMAL; unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT; unsigned long nr_pages = size >> PAGE_SHIFT; int ret; last_mapped_pfn = init_memory_mapping(start, start + size-1); if (last_mapped_pfn > max_pfn_mapped) max_pfn_mapped = last_mapped_pfn; ret = __add_pages(zone, start_pfn, nr_pages); WARN_ON(1); return ret; } EXPORT_SYMBOL_GPL(arch_add_memory); #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA) int memory_add_physaddr_to_nid(u64 start) { return 0; } EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid); #endif #endif /* CONFIG_MEMORY_HOTPLUG */ /* * devmem_is_allowed() checks to see if /dev/mem access to a certain address * is valid. The argument is a physical page number. * * * On x86, access has to be given to the first megabyte of ram because that area * contains bios code and data regions used by X and dosemu and similar apps. * Access has to be given to non-kernel-ram areas as well, these contain the PCI * mmio resources as well as potential bios/acpi data regions. */ int devmem_is_allowed(unsigned long pagenr) { if (pagenr <= 256) return 1; if (!page_is_ram(pagenr)) return 1; return 0; } static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel, kcore_modules, kcore_vsyscall; void __init mem_init(void) { long codesize, reservedpages, datasize, initsize; pci_iommu_alloc(); /* clear_bss() already clear the empty_zero_page */ reservedpages = 0; /* this will put all low memory onto the freelists */ #ifdef CONFIG_NUMA totalram_pages = numa_free_all_bootmem(); #else totalram_pages = free_all_bootmem(); #endif reservedpages = end_pfn - totalram_pages - absent_pages_in_range(0, end_pfn); after_bootmem = 1; codesize = (unsigned long) &_etext - (unsigned long) &_text; datasize = (unsigned long) &_edata - (unsigned long) &_etext; initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin; /* Register memory areas for /proc/kcore */ kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT); kclist_add(&kcore_vmalloc, (void *)VMALLOC_START, VMALLOC_END-VMALLOC_START); kclist_add(&kcore_kernel, &_stext, _end - _stext); kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN); kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START, VSYSCALL_END - VSYSCALL_START); printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, " "%ldk reserved, %ldk data, %ldk init)\n", (unsigned long) nr_free_pages() << (PAGE_SHIFT-10), end_pfn << (PAGE_SHIFT-10), codesize >> 10, reservedpages << (PAGE_SHIFT-10), datasize >> 10, initsize >> 10); cpa_init(); } void free_init_pages(char *what, unsigned long begin, unsigned long end) { unsigned long addr = begin; if (addr >= end) return; /* * If debugging page accesses then do not free this memory but * mark them not present - any buggy init-section access will * create a kernel page fault: */ #ifdef CONFIG_DEBUG_PAGEALLOC printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n", begin, PAGE_ALIGN(end)); set_memory_np(begin, (end - begin) >> PAGE_SHIFT); #else printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10); for (; addr < end; addr += PAGE_SIZE) { ClearPageReserved(virt_to_page(addr)); init_page_count(virt_to_page(addr)); memset((void *)(addr & ~(PAGE_SIZE-1)), POISON_FREE_INITMEM, PAGE_SIZE); free_page(addr); totalram_pages++; } #endif } void free_initmem(void) { free_init_pages("unused kernel memory", (unsigned long)(&__init_begin), (unsigned long)(&__init_end)); } #ifdef CONFIG_DEBUG_RODATA const int rodata_test_data = 0xC3; EXPORT_SYMBOL_GPL(rodata_test_data); void mark_rodata_ro(void) { unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata); unsigned long rodata_start = ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK; #ifdef CONFIG_DYNAMIC_FTRACE /* Dynamic tracing modifies the kernel text section */ start = rodata_start; #endif printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n", (end - start) >> 10); set_memory_ro(start, (end - start) >> PAGE_SHIFT); /* * The rodata section (but not the kernel text!) should also be * not-executable. */ set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT); rodata_test(); #ifdef CONFIG_CPA_DEBUG printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end); set_memory_rw(start, (end-start) >> PAGE_SHIFT); printk(KERN_INFO "Testing CPA: again\n"); set_memory_ro(start, (end-start) >> PAGE_SHIFT); #endif } #endif #ifdef CONFIG_BLK_DEV_INITRD void free_initrd_mem(unsigned long start, unsigned long end) { free_init_pages("initrd memory", start, end); } #endif void __init reserve_bootmem_generic(unsigned long phys, unsigned len) { #ifdef CONFIG_NUMA int nid, next_nid; #endif unsigned long pfn = phys >> PAGE_SHIFT; if (pfn >= end_pfn) { /* * This can happen with kdump kernels when accessing * firmware tables: */ if (pfn < max_pfn_mapped) return; printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %u\n", phys, len); return; } /* Should check here against the e820 map to avoid double free */ #ifdef CONFIG_NUMA nid = phys_to_nid(phys); next_nid = phys_to_nid(phys + len - 1); if (nid == next_nid) reserve_bootmem_node(NODE_DATA(nid), phys, len, BOOTMEM_DEFAULT); else reserve_bootmem(phys, len, BOOTMEM_DEFAULT); #else reserve_bootmem(phys, len, BOOTMEM_DEFAULT); #endif if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) { dma_reserve += len / PAGE_SIZE; set_dma_reserve(dma_reserve); } } int kern_addr_valid(unsigned long addr) { unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT; pgd_t *pgd; pud_t *pud; pmd_t *pmd; pte_t *pte; if (above != 0 && above != -1UL) return 0; pgd = pgd_offset_k(addr); if (pgd_none(*pgd)) return 0; pud = pud_offset(pgd, addr); if (pud_none(*pud)) return 0; pmd = pmd_offset(pud, addr); if (pmd_none(*pmd)) return 0; if (pmd_large(*pmd)) return pfn_valid(pmd_pfn(*pmd)); pte = pte_offset_kernel(pmd, addr); if (pte_none(*pte)) return 0; return pfn_valid(pte_pfn(*pte)); } /* * A pseudo VMA to allow ptrace access for the vsyscall page. This only * covers the 64bit vsyscall page now. 32bit has a real VMA now and does * not need special handling anymore: */ static struct vm_area_struct gate_vma = { .vm_start = VSYSCALL_START, .vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE), .vm_page_prot = PAGE_READONLY_EXEC, .vm_flags = VM_READ | VM_EXEC }; struct vm_area_struct *get_gate_vma(struct task_struct *tsk) { #ifdef CONFIG_IA32_EMULATION if (test_tsk_thread_flag(tsk, TIF_IA32)) return NULL; #endif return &gate_vma; } int in_gate_area(struct task_struct *task, unsigned long addr) { struct vm_area_struct *vma = get_gate_vma(task); if (!vma) return 0; return (addr >= vma->vm_start) && (addr < vma->vm_end); } /* * Use this when you have no reliable task/vma, typically from interrupt * context. It is less reliable than using the task's vma and may give * false positives: */ int in_gate_area_no_task(unsigned long addr) { return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END); } const char *arch_vma_name(struct vm_area_struct *vma) { if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso) return "[vdso]"; if (vma == &gate_vma) return "[vsyscall]"; return NULL; } #ifdef CONFIG_SPARSEMEM_VMEMMAP /* * Initialise the sparsemem vmemmap using huge-pages at the PMD level. */ static long __meminitdata addr_start, addr_end; static void __meminitdata *p_start, *p_end; static int __meminitdata node_start; int __meminit vmemmap_populate(struct page *start_page, unsigned long size, int node) { unsigned long addr = (unsigned long)start_page; unsigned long end = (unsigned long)(start_page + size); unsigned long next; pgd_t *pgd; pud_t *pud; pmd_t *pmd; for (; addr < end; addr = next) { next = pmd_addr_end(addr, end); pgd = vmemmap_pgd_populate(addr, node); if (!pgd) return -ENOMEM; pud = vmemmap_pud_populate(pgd, addr, node); if (!pud) return -ENOMEM; pmd = pmd_offset(pud, addr); if (pmd_none(*pmd)) { pte_t entry; void *p; p = vmemmap_alloc_block(PMD_SIZE, node); if (!p) return -ENOMEM; entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL_LARGE); set_pmd(pmd, __pmd(pte_val(entry))); /* check to see if we have contiguous blocks */ if (p_end != p || node_start != node) { if (p_start) printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n", addr_start, addr_end-1, p_start, p_end-1, node_start); addr_start = addr; node_start = node; p_start = p; } addr_end = addr + PMD_SIZE; p_end = p + PMD_SIZE; } else { vmemmap_verify((pte_t *)pmd, node, addr, next); } } return 0; } void __meminit vmemmap_populate_print_last(void) { if (p_start) { printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n", addr_start, addr_end-1, p_start, p_end-1, node_start); p_start = NULL; p_end = NULL; node_start = 0; } } #endif