/* sun4m_irq.c * arch/sparc/kernel/sun4m_irq.c: * * djhr: Hacked out of irq.c into a CPU dependent version. * * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) * Copyright (C) 1995 Miguel de Icaza (miguel@nuclecu.unam.mx) * Copyright (C) 1995 Pete A. Zaitcev (zaitcev@yahoo.com) * Copyright (C) 1996 Dave Redman (djhr@tadpole.co.uk) */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static unsigned long dummy; struct sun4m_intregs *sun4m_interrupts; unsigned long *irq_rcvreg = &dummy; /* These tables only apply for interrupts greater than 15.. * * any intr value below 0x10 is considered to be a soft-int * this may be useful or it may not.. but that's how I've done it. * and it won't clash with what OBP is telling us about devices. * * take an encoded intr value and lookup if it's valid * then get the mask bits that match from irq_mask * * P3: Translation from irq 0x0d to mask 0x2000 is for MrCoffee. */ static unsigned char irq_xlate[32] = { /* 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f */ 0, 0, 0, 0, 1, 0, 2, 0, 3, 0, 4, 5, 6, 14, 0, 7, 0, 0, 8, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 0 }; static unsigned long irq_mask[] = { 0, /* illegal index */ SUN4M_INT_SCSI, /* 1 irq 4 */ SUN4M_INT_ETHERNET, /* 2 irq 6 */ SUN4M_INT_VIDEO, /* 3 irq 8 */ SUN4M_INT_REALTIME, /* 4 irq 10 */ SUN4M_INT_FLOPPY, /* 5 irq 11 */ (SUN4M_INT_SERIAL | SUN4M_INT_KBDMS), /* 6 irq 12 */ SUN4M_INT_MODULE_ERR, /* 7 irq 15 */ SUN4M_INT_SBUS(0), /* 8 irq 2 */ SUN4M_INT_SBUS(1), /* 9 irq 3 */ SUN4M_INT_SBUS(2), /* 10 irq 5 */ SUN4M_INT_SBUS(3), /* 11 irq 7 */ SUN4M_INT_SBUS(4), /* 12 irq 9 */ SUN4M_INT_SBUS(5), /* 13 irq 11 */ SUN4M_INT_SBUS(6) /* 14 irq 13 */ }; static int sun4m_pil_map[] = { 0, 2, 3, 5, 7, 9, 11, 13 }; unsigned int sun4m_sbint_to_irq(struct sbus_dev *sdev, unsigned int sbint) { if (sbint >= sizeof(sun4m_pil_map)) { printk(KERN_ERR "%s: bogus SBINT %d\n", sdev->prom_name, sbint); BUG(); } return sun4m_pil_map[sbint] | 0x30; } inline unsigned long sun4m_get_irqmask(unsigned int irq) { unsigned long mask; if (irq > 0x20) { /* OBIO/SBUS interrupts */ irq &= 0x1f; mask = irq_mask[irq_xlate[irq]]; if (!mask) printk("sun4m_get_irqmask: IRQ%d has no valid mask!\n",irq); } else { /* Soft Interrupts will come here. * Currently there is no way to trigger them but I'm sure * something could be cooked up. */ irq &= 0xf; mask = SUN4M_SOFT_INT(irq); } return mask; } static void sun4m_disable_irq(unsigned int irq_nr) { unsigned long mask, flags; int cpu = smp_processor_id(); mask = sun4m_get_irqmask(irq_nr); local_irq_save(flags); if (irq_nr > 15) sun4m_interrupts->set = mask; else sun4m_interrupts->cpu_intregs[cpu].set = mask; local_irq_restore(flags); } static void sun4m_enable_irq(unsigned int irq_nr) { unsigned long mask, flags; int cpu = smp_processor_id(); /* Dreadful floppy hack. When we use 0x2b instead of * 0x0b the system blows (it starts to whistle!). * So we continue to use 0x0b. Fixme ASAP. --P3 */ if (irq_nr != 0x0b) { mask = sun4m_get_irqmask(irq_nr); local_irq_save(flags); if (irq_nr > 15) sun4m_interrupts->clear = mask; else sun4m_interrupts->cpu_intregs[cpu].clear = mask; local_irq_restore(flags); } else { local_irq_save(flags); sun4m_interrupts->clear = SUN4M_INT_FLOPPY; local_irq_restore(flags); } } static unsigned long cpu_pil_to_imask[16] = { /*0*/ 0x00000000, /*1*/ 0x00000000, /*2*/ SUN4M_INT_SBUS(0) | SUN4M_INT_VME(0), /*3*/ SUN4M_INT_SBUS(1) | SUN4M_INT_VME(1), /*4*/ SUN4M_INT_SCSI, /*5*/ SUN4M_INT_SBUS(2) | SUN4M_INT_VME(2), /*6*/ SUN4M_INT_ETHERNET, /*7*/ SUN4M_INT_SBUS(3) | SUN4M_INT_VME(3), /*8*/ SUN4M_INT_VIDEO, /*9*/ SUN4M_INT_SBUS(4) | SUN4M_INT_VME(4) | SUN4M_INT_MODULE_ERR, /*10*/ SUN4M_INT_REALTIME, /*11*/ SUN4M_INT_SBUS(5) | SUN4M_INT_VME(5) | SUN4M_INT_FLOPPY, /*12*/ SUN4M_INT_SERIAL | SUN4M_INT_KBDMS, /*13*/ SUN4M_INT_AUDIO, /*14*/ SUN4M_INT_E14, /*15*/ 0x00000000 }; /* We assume the caller has disabled local interrupts when these are called, * or else very bizarre behavior will result. */ static void sun4m_disable_pil_irq(unsigned int pil) { sun4m_interrupts->set = cpu_pil_to_imask[pil]; } static void sun4m_enable_pil_irq(unsigned int pil) { sun4m_interrupts->clear = cpu_pil_to_imask[pil]; } #ifdef CONFIG_SMP static void sun4m_send_ipi(int cpu, int level) { unsigned long mask; mask = sun4m_get_irqmask(level); sun4m_interrupts->cpu_intregs[cpu].set = mask; } static void sun4m_clear_ipi(int cpu, int level) { unsigned long mask; mask = sun4m_get_irqmask(level); sun4m_interrupts->cpu_intregs[cpu].clear = mask; } static void sun4m_set_udt(int cpu) { sun4m_interrupts->undirected_target = cpu; } #endif #define OBIO_INTR 0x20 #define TIMER_IRQ (OBIO_INTR | 10) #define PROFILE_IRQ (OBIO_INTR | 14) struct sun4m_timer_regs *sun4m_timers; unsigned int lvl14_resolution = (((1000000/HZ) + 1) << 10); static void sun4m_clear_clock_irq(void) { volatile unsigned int clear_intr; clear_intr = sun4m_timers->l10_timer_limit; } static void sun4m_clear_profile_irq(int cpu) { volatile unsigned int clear; clear = sun4m_timers->cpu_timers[cpu].l14_timer_limit; } static void sun4m_load_profile_irq(int cpu, unsigned int limit) { sun4m_timers->cpu_timers[cpu].l14_timer_limit = limit; } char *sun4m_irq_itoa(unsigned int irq) { static char buff[16]; sprintf(buff, "%d", irq); return buff; } static void __init sun4m_init_timers(irqreturn_t (*counter_fn)(int, void *, struct pt_regs *)) { int reg_count, irq, cpu; struct linux_prom_registers cnt_regs[PROMREG_MAX]; int obio_node, cnt_node; struct resource r; cnt_node = 0; if((obio_node = prom_searchsiblings (prom_getchild(prom_root_node), "obio")) == 0 || (obio_node = prom_getchild (obio_node)) == 0 || (cnt_node = prom_searchsiblings (obio_node, "counter")) == 0) { prom_printf("Cannot find /obio/counter node\n"); prom_halt(); } reg_count = prom_getproperty(cnt_node, "reg", (void *) cnt_regs, sizeof(cnt_regs)); reg_count = (reg_count/sizeof(struct linux_prom_registers)); /* Apply the obio ranges to the timer registers. */ prom_apply_obio_ranges(cnt_regs, reg_count); cnt_regs[4].phys_addr = cnt_regs[reg_count-1].phys_addr; cnt_regs[4].reg_size = cnt_regs[reg_count-1].reg_size; cnt_regs[4].which_io = cnt_regs[reg_count-1].which_io; for(obio_node = 1; obio_node < 4; obio_node++) { cnt_regs[obio_node].phys_addr = cnt_regs[obio_node-1].phys_addr + PAGE_SIZE; cnt_regs[obio_node].reg_size = cnt_regs[obio_node-1].reg_size; cnt_regs[obio_node].which_io = cnt_regs[obio_node-1].which_io; } memset((char*)&r, 0, sizeof(struct resource)); /* Map the per-cpu Counter registers. */ r.flags = cnt_regs[0].which_io; r.start = cnt_regs[0].phys_addr; sun4m_timers = (struct sun4m_timer_regs *) sbus_ioremap(&r, 0, PAGE_SIZE*SUN4M_NCPUS, "sun4m_cpu_cnt"); /* Map the system Counter register. */ /* XXX Here we expect consequent calls to yeld adjusent maps. */ r.flags = cnt_regs[4].which_io; r.start = cnt_regs[4].phys_addr; sbus_ioremap(&r, 0, cnt_regs[4].reg_size, "sun4m_sys_cnt"); sun4m_timers->l10_timer_limit = (((1000000/HZ) + 1) << 10); master_l10_counter = &sun4m_timers->l10_cur_count; master_l10_limit = &sun4m_timers->l10_timer_limit; irq = request_irq(TIMER_IRQ, counter_fn, (SA_INTERRUPT | SA_STATIC_ALLOC), "timer", NULL); if (irq) { prom_printf("time_init: unable to attach IRQ%d\n",TIMER_IRQ); prom_halt(); } if (!cpu_find_by_instance(1, NULL, NULL)) { for(cpu = 0; cpu < 4; cpu++) sun4m_timers->cpu_timers[cpu].l14_timer_limit = 0; sun4m_interrupts->set = SUN4M_INT_E14; } else { sun4m_timers->cpu_timers[0].l14_timer_limit = 0; } #ifdef CONFIG_SMP { unsigned long flags; extern unsigned long lvl14_save[4]; struct tt_entry *trap_table = &sparc_ttable[SP_TRAP_IRQ1 + (14 - 1)]; /* For SMP we use the level 14 ticker, however the bootup code * has copied the firmwares level 14 vector into boot cpu's * trap table, we must fix this now or we get squashed. */ local_irq_save(flags); trap_table->inst_one = lvl14_save[0]; trap_table->inst_two = lvl14_save[1]; trap_table->inst_three = lvl14_save[2]; trap_table->inst_four = lvl14_save[3]; local_flush_cache_all(); local_irq_restore(flags); } #endif } void __init sun4m_init_IRQ(void) { int ie_node,i; struct linux_prom_registers int_regs[PROMREG_MAX]; int num_regs; struct resource r; int mid; local_irq_disable(); if((ie_node = prom_searchsiblings(prom_getchild(prom_root_node), "obio")) == 0 || (ie_node = prom_getchild (ie_node)) == 0 || (ie_node = prom_searchsiblings (ie_node, "interrupt")) == 0) { prom_printf("Cannot find /obio/interrupt node\n"); prom_halt(); } num_regs = prom_getproperty(ie_node, "reg", (char *) int_regs, sizeof(int_regs)); num_regs = (num_regs/sizeof(struct linux_prom_registers)); /* Apply the obio ranges to these registers. */ prom_apply_obio_ranges(int_regs, num_regs); int_regs[4].phys_addr = int_regs[num_regs-1].phys_addr; int_regs[4].reg_size = int_regs[num_regs-1].reg_size; int_regs[4].which_io = int_regs[num_regs-1].which_io; for(ie_node = 1; ie_node < 4; ie_node++) { int_regs[ie_node].phys_addr = int_regs[ie_node-1].phys_addr + PAGE_SIZE; int_regs[ie_node].reg_size = int_regs[ie_node-1].reg_size; int_regs[ie_node].which_io = int_regs[ie_node-1].which_io; } memset((char *)&r, 0, sizeof(struct resource)); /* Map the interrupt registers for all possible cpus. */ r.flags = int_regs[0].which_io; r.start = int_regs[0].phys_addr; sun4m_interrupts = (struct sun4m_intregs *) sbus_ioremap(&r, 0, PAGE_SIZE*SUN4M_NCPUS, "interrupts_percpu"); /* Map the system interrupt control registers. */ r.flags = int_regs[4].which_io; r.start = int_regs[4].phys_addr; sbus_ioremap(&r, 0, int_regs[4].reg_size, "interrupts_system"); sun4m_interrupts->set = ~SUN4M_INT_MASKALL; for (i = 0; !cpu_find_by_instance(i, NULL, &mid); i++) sun4m_interrupts->cpu_intregs[mid].clear = ~0x17fff; if (!cpu_find_by_instance(1, NULL, NULL)) { /* system wide interrupts go to cpu 0, this should always * be safe because it is guaranteed to be fitted or OBP doesn't * come up * * Not sure, but writing here on SLAVIO systems may puke * so I don't do it unless there is more than 1 cpu. */ irq_rcvreg = (unsigned long *) &sun4m_interrupts->undirected_target; sun4m_interrupts->undirected_target = 0; } BTFIXUPSET_CALL(sbint_to_irq, sun4m_sbint_to_irq, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(enable_irq, sun4m_enable_irq, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(disable_irq, sun4m_disable_irq, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(enable_pil_irq, sun4m_enable_pil_irq, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(disable_pil_irq, sun4m_disable_pil_irq, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(clear_clock_irq, sun4m_clear_clock_irq, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(clear_profile_irq, sun4m_clear_profile_irq, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(load_profile_irq, sun4m_load_profile_irq, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(__irq_itoa, sun4m_irq_itoa, BTFIXUPCALL_NORM); sparc_init_timers = sun4m_init_timers; #ifdef CONFIG_SMP BTFIXUPSET_CALL(set_cpu_int, sun4m_send_ipi, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(clear_cpu_int, sun4m_clear_ipi, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(set_irq_udt, sun4m_set_udt, BTFIXUPCALL_NORM); #endif /* Cannot enable interrupts until OBP ticker is disabled. */ }