/* * Copyright (c) 2000, 2003 Silicon Graphics, Inc. All rights reserved. * Copyright (c) 2001 Intel Corp. * Copyright (c) 2001 Tony Luck * Copyright (c) 2002 NEC Corp. * Copyright (c) 2002 Kimio Suganuma * Copyright (c) 2004 Silicon Graphics, Inc * Russ Anderson * Jesse Barnes * Jack Steiner */ /* * Platform initialization for Discontig Memory */ #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Track per-node information needed to setup the boot memory allocator, the * per-node areas, and the real VM. */ struct early_node_data { struct ia64_node_data *node_data; unsigned long pernode_addr; unsigned long pernode_size; unsigned long num_physpages; #ifdef CONFIG_ZONE_DMA unsigned long num_dma_physpages; #endif unsigned long min_pfn; unsigned long max_pfn; }; static struct early_node_data mem_data[MAX_NUMNODES] __initdata; static nodemask_t memory_less_mask __initdata; pg_data_t *pgdat_list[MAX_NUMNODES]; /* * To prevent cache aliasing effects, align per-node structures so that they * start at addresses that are strided by node number. */ #define MAX_NODE_ALIGN_OFFSET (32 * 1024 * 1024) #define NODEDATA_ALIGN(addr, node) \ ((((addr) + 1024*1024-1) & ~(1024*1024-1)) + \ (((node)*PERCPU_PAGE_SIZE) & (MAX_NODE_ALIGN_OFFSET - 1))) /** * build_node_maps - callback to setup bootmem structs for each node * @start: physical start of range * @len: length of range * @node: node where this range resides * * We allocate a struct bootmem_data for each piece of memory that we wish to * treat as a virtually contiguous block (i.e. each node). Each such block * must start on an %IA64_GRANULE_SIZE boundary, so we round the address down * if necessary. Any non-existent pages will simply be part of the virtual * memmap. We also update min_low_pfn and max_low_pfn here as we receive * memory ranges from the caller. */ static int __init build_node_maps(unsigned long start, unsigned long len, int node) { unsigned long spfn, epfn, end = start + len; struct bootmem_data *bdp = &bootmem_node_data[node]; epfn = GRANULEROUNDUP(end) >> PAGE_SHIFT; spfn = GRANULEROUNDDOWN(start) >> PAGE_SHIFT; if (!bdp->node_low_pfn) { bdp->node_min_pfn = spfn; bdp->node_low_pfn = epfn; } else { bdp->node_min_pfn = min(spfn, bdp->node_min_pfn); bdp->node_low_pfn = max(epfn, bdp->node_low_pfn); } return 0; } /** * early_nr_cpus_node - return number of cpus on a given node * @node: node to check * * Count the number of cpus on @node. We can't use nr_cpus_node() yet because * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been * called yet. Note that node 0 will also count all non-existent cpus. */ static int __meminit early_nr_cpus_node(int node) { int cpu, n = 0; for_each_possible_early_cpu(cpu) if (node == node_cpuid[cpu].nid) n++; return n; } /** * compute_pernodesize - compute size of pernode data * @node: the node id. */ static unsigned long __meminit compute_pernodesize(int node) { unsigned long pernodesize = 0, cpus; cpus = early_nr_cpus_node(node); pernodesize += PERCPU_PAGE_SIZE * cpus; pernodesize += node * L1_CACHE_BYTES; pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t)); pernodesize += L1_CACHE_ALIGN(sizeof(struct ia64_node_data)); pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t)); pernodesize = PAGE_ALIGN(pernodesize); return pernodesize; } /** * per_cpu_node_setup - setup per-cpu areas on each node * @cpu_data: per-cpu area on this node * @node: node to setup * * Copy the static per-cpu data into the region we just set aside and then * setup __per_cpu_offset for each CPU on this node. Return a pointer to * the end of the area. */ static void *per_cpu_node_setup(void *cpu_data, int node) { #ifdef CONFIG_SMP int cpu; for_each_possible_early_cpu(cpu) { void *src = cpu == 0 ? __cpu0_per_cpu : __phys_per_cpu_start; if (node != node_cpuid[cpu].nid) continue; memcpy(__va(cpu_data), src, __per_cpu_end - __per_cpu_start); __per_cpu_offset[cpu] = (char *)__va(cpu_data) - __per_cpu_start; /* * percpu area for cpu0 is moved from the __init area * which is setup by head.S and used till this point. * Update ar.k3. This move is ensures that percpu * area for cpu0 is on the correct node and its * virtual address isn't insanely far from other * percpu areas which is important for congruent * percpu allocator. */ if (cpu == 0) ia64_set_kr(IA64_KR_PER_CPU_DATA, (unsigned long)cpu_data - (unsigned long)__per_cpu_start); cpu_data += PERCPU_PAGE_SIZE; } #endif return cpu_data; } #ifdef CONFIG_SMP /** * setup_per_cpu_areas - setup percpu areas * * Arch code has already allocated and initialized percpu areas. All * this function has to do is to teach the determined layout to the * dynamic percpu allocator, which happens to be more complex than * creating whole new ones using helpers. */ void __init setup_per_cpu_areas(void) { struct pcpu_alloc_info *ai; struct pcpu_group_info *uninitialized_var(gi); unsigned int *cpu_map; void *base; unsigned long base_offset; unsigned int cpu; ssize_t static_size, reserved_size, dyn_size; int node, prev_node, unit, nr_units, rc; ai = pcpu_alloc_alloc_info(MAX_NUMNODES, nr_cpu_ids); if (!ai) panic("failed to allocate pcpu_alloc_info"); cpu_map = ai->groups[0].cpu_map; /* determine base */ base = (void *)ULONG_MAX; for_each_possible_cpu(cpu) base = min(base, (void *)(__per_cpu_offset[cpu] + __per_cpu_start)); base_offset = (void *)__per_cpu_start - base; /* build cpu_map, units are grouped by node */ unit = 0; for_each_node(node) for_each_possible_cpu(cpu) if (node == node_cpuid[cpu].nid) cpu_map[unit++] = cpu; nr_units = unit; /* set basic parameters */ static_size = __per_cpu_end - __per_cpu_start; reserved_size = PERCPU_MODULE_RESERVE; dyn_size = PERCPU_PAGE_SIZE - static_size - reserved_size; if (dyn_size < 0) panic("percpu area overflow static=%zd reserved=%zd\n", static_size, reserved_size); ai->static_size = static_size; ai->reserved_size = reserved_size; ai->dyn_size = dyn_size; ai->unit_size = PERCPU_PAGE_SIZE; ai->atom_size = PAGE_SIZE; ai->alloc_size = PERCPU_PAGE_SIZE; /* * CPUs are put into groups according to node. Walk cpu_map * and create new groups at node boundaries. */ prev_node = -1; ai->nr_groups = 0; for (unit = 0; unit < nr_units; unit++) { cpu = cpu_map[unit]; node = node_cpuid[cpu].nid; if (node == prev_node) { gi->nr_units++; continue; } prev_node = node; gi = &ai->groups[ai->nr_groups++]; gi->nr_units = 1; gi->base_offset = __per_cpu_offset[cpu] + base_offset; gi->cpu_map = &cpu_map[unit]; } rc = pcpu_setup_first_chunk(ai, base); if (rc) panic("failed to setup percpu area (err=%d)", rc); pcpu_free_alloc_info(ai); } #endif /** * fill_pernode - initialize pernode data. * @node: the node id. * @pernode: physical address of pernode data * @pernodesize: size of the pernode data */ static void __init fill_pernode(int node, unsigned long pernode, unsigned long pernodesize) { void *cpu_data; int cpus = early_nr_cpus_node(node); struct bootmem_data *bdp = &bootmem_node_data[node]; mem_data[node].pernode_addr = pernode; mem_data[node].pernode_size = pernodesize; memset(__va(pernode), 0, pernodesize); cpu_data = (void *)pernode; pernode += PERCPU_PAGE_SIZE * cpus; pernode += node * L1_CACHE_BYTES; pgdat_list[node] = __va(pernode); pernode += L1_CACHE_ALIGN(sizeof(pg_data_t)); mem_data[node].node_data = __va(pernode); pernode += L1_CACHE_ALIGN(sizeof(struct ia64_node_data)); pgdat_list[node]->bdata = bdp; pernode += L1_CACHE_ALIGN(sizeof(pg_data_t)); cpu_data = per_cpu_node_setup(cpu_data, node); return; } /** * find_pernode_space - allocate memory for memory map and per-node structures * @start: physical start of range * @len: length of range * @node: node where this range resides * * This routine reserves space for the per-cpu data struct, the list of * pg_data_ts and the per-node data struct. Each node will have something like * the following in the first chunk of addr. space large enough to hold it. * * ________________________ * | | * |~~~~~~~~~~~~~~~~~~~~~~~~| <-- NODEDATA_ALIGN(start, node) for the first * | PERCPU_PAGE_SIZE * | start and length big enough * | cpus_on_this_node | Node 0 will also have entries for all non-existent cpus. * |------------------------| * | local pg_data_t * | * |------------------------| * | local ia64_node_data | * |------------------------| * | ??? | * |________________________| * * Once this space has been set aside, the bootmem maps are initialized. We * could probably move the allocation of the per-cpu and ia64_node_data space * outside of this function and use alloc_bootmem_node(), but doing it here * is straightforward and we get the alignments we want so... */ static int __init find_pernode_space(unsigned long start, unsigned long len, int node) { unsigned long spfn, epfn; unsigned long pernodesize = 0, pernode, pages, mapsize; struct bootmem_data *bdp = &bootmem_node_data[node]; spfn = start >> PAGE_SHIFT; epfn = (start + len) >> PAGE_SHIFT; pages = bdp->node_low_pfn - bdp->node_min_pfn; mapsize = bootmem_bootmap_pages(pages) << PAGE_SHIFT; /* * Make sure this memory falls within this node's usable memory * since we may have thrown some away in build_maps(). */ if (spfn < bdp->node_min_pfn || epfn > bdp->node_low_pfn) return 0; /* Don't setup this node's local space twice... */ if (mem_data[node].pernode_addr) return 0; /* * Calculate total size needed, incl. what's necessary * for good alignment and alias prevention. */ pernodesize = compute_pernodesize(node); pernode = NODEDATA_ALIGN(start, node); /* Is this range big enough for what we want to store here? */ if (start + len > (pernode + pernodesize + mapsize)) fill_pernode(node, pernode, pernodesize); return 0; } /** * free_node_bootmem - free bootmem allocator memory for use * @start: physical start of range * @len: length of range * @node: node where this range resides * * Simply calls the bootmem allocator to free the specified ranged from * the given pg_data_t's bdata struct. After this function has been called * for all the entries in the EFI memory map, the bootmem allocator will * be ready to service allocation requests. */ static int __init free_node_bootmem(unsigned long start, unsigned long len, int node) { free_bootmem_node(pgdat_list[node], start, len); return 0; } /** * reserve_pernode_space - reserve memory for per-node space * * Reserve the space used by the bootmem maps & per-node space in the boot * allocator so that when we actually create the real mem maps we don't * use their memory. */ static void __init reserve_pernode_space(void) { unsigned long base, size, pages; struct bootmem_data *bdp; int node; for_each_online_node(node) { pg_data_t *pdp = pgdat_list[node]; if (node_isset(node, memory_less_mask)) continue; bdp = pdp->bdata; /* First the bootmem_map itself */ pages = bdp->node_low_pfn - bdp->node_min_pfn; size = bootmem_bootmap_pages(pages) << PAGE_SHIFT; base = __pa(bdp->node_bootmem_map); reserve_bootmem_node(pdp, base, size, BOOTMEM_DEFAULT); /* Now the per-node space */ size = mem_data[node].pernode_size; base = __pa(mem_data[node].pernode_addr); reserve_bootmem_node(pdp, base, size, BOOTMEM_DEFAULT); } } static void __meminit scatter_node_data(void) { pg_data_t **dst; int node; /* * for_each_online_node() can't be used at here. * node_online_map is not set for hot-added nodes at this time, * because we are halfway through initialization of the new node's * structures. If for_each_online_node() is used, a new node's * pg_data_ptrs will be not initialized. Instead of using it, * pgdat_list[] is checked. */ for_each_node(node) { if (pgdat_list[node]) { dst = LOCAL_DATA_ADDR(pgdat_list[node])->pg_data_ptrs; memcpy(dst, pgdat_list, sizeof(pgdat_list)); } } } /** * initialize_pernode_data - fixup per-cpu & per-node pointers * * Each node's per-node area has a copy of the global pg_data_t list, so * we copy that to each node here, as well as setting the per-cpu pointer * to the local node data structure. The active_cpus field of the per-node * structure gets setup by the platform_cpu_init() function later. */ static void __init initialize_pernode_data(void) { int cpu, node; scatter_node_data(); #ifdef CONFIG_SMP /* Set the node_data pointer for each per-cpu struct */ for_each_possible_early_cpu(cpu) { node = node_cpuid[cpu].nid; per_cpu(ia64_cpu_info, cpu).node_data = mem_data[node].node_data; } #else { struct cpuinfo_ia64 *cpu0_cpu_info; cpu = 0; node = node_cpuid[cpu].nid; cpu0_cpu_info = (struct cpuinfo_ia64 *)(__phys_per_cpu_start + ((char *)&ia64_cpu_info - __per_cpu_start)); cpu0_cpu_info->node_data = mem_data[node].node_data; } #endif /* CONFIG_SMP */ } /** * memory_less_node_alloc - * attempt to allocate memory on the best NUMA slit * node but fall back to any other node when __alloc_bootmem_node fails * for best. * @nid: node id * @pernodesize: size of this node's pernode data */ static void __init *memory_less_node_alloc(int nid, unsigned long pernodesize) { void *ptr = NULL; u8 best = 0xff; int bestnode = -1, node, anynode = 0; for_each_online_node(node) { if (node_isset(node, memory_less_mask)) continue; else if (node_distance(nid, node) < best) { best = node_distance(nid, node); bestnode = node; } anynode = node; } if (bestnode == -1) bestnode = anynode; ptr = __alloc_bootmem_node(pgdat_list[bestnode], pernodesize, PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); return ptr; } /** * memory_less_nodes - allocate and initialize CPU only nodes pernode * information. */ static void __init memory_less_nodes(void) { unsigned long pernodesize; void *pernode; int node; for_each_node_mask(node, memory_less_mask) { pernodesize = compute_pernodesize(node); pernode = memory_less_node_alloc(node, pernodesize); fill_pernode(node, __pa(pernode), pernodesize); } return; } /** * find_memory - walk the EFI memory map and setup the bootmem allocator * * Called early in boot to setup the bootmem allocator, and to * allocate the per-cpu and per-node structures. */ void __init find_memory(void) { int node; reserve_memory(); if (num_online_nodes() == 0) { printk(KERN_ERR "node info missing!\n"); node_set_online(0); } nodes_or(memory_less_mask, memory_less_mask, node_online_map); min_low_pfn = -1; max_low_pfn = 0; /* These actually end up getting called by call_pernode_memory() */ efi_memmap_walk(filter_rsvd_memory, build_node_maps); efi_memmap_walk(filter_rsvd_memory, find_pernode_space); efi_memmap_walk(find_max_min_low_pfn, NULL); for_each_online_node(node) if (bootmem_node_data[node].node_low_pfn) { node_clear(node, memory_less_mask); mem_data[node].min_pfn = ~0UL; } efi_memmap_walk(filter_memory, register_active_ranges); /* * Initialize the boot memory maps in reverse order since that's * what the bootmem allocator expects */ for (node = MAX_NUMNODES - 1; node >= 0; node--) { unsigned long pernode, pernodesize, map; struct bootmem_data *bdp; if (!node_online(node)) continue; else if (node_isset(node, memory_less_mask)) continue; bdp = &bootmem_node_data[node]; pernode = mem_data[node].pernode_addr; pernodesize = mem_data[node].pernode_size; map = pernode + pernodesize; init_bootmem_node(pgdat_list[node], map>>PAGE_SHIFT, bdp->node_min_pfn, bdp->node_low_pfn); } efi_memmap_walk(filter_rsvd_memory, free_node_bootmem); reserve_pernode_space(); memory_less_nodes(); initialize_pernode_data(); max_pfn = max_low_pfn; find_initrd(); } #ifdef CONFIG_SMP /** * per_cpu_init - setup per-cpu variables * * find_pernode_space() does most of this already, we just need to set * local_per_cpu_offset */ void __cpuinit *per_cpu_init(void) { int cpu; static int first_time = 1; if (first_time) { first_time = 0; for_each_possible_early_cpu(cpu) per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu]; } return __per_cpu_start + __per_cpu_offset[smp_processor_id()]; } #endif /* CONFIG_SMP */ /** * show_mem - give short summary of memory stats * * Shows a simple page count of reserved and used pages in the system. * For discontig machines, it does this on a per-pgdat basis. */ void show_mem(void) { int i, total_reserved = 0; int total_shared = 0, total_cached = 0; unsigned long total_present = 0; pg_data_t *pgdat; printk(KERN_INFO "Mem-info:\n"); show_free_areas(); printk(KERN_INFO "Node memory in pages:\n"); for_each_online_pgdat(pgdat) { unsigned long present; unsigned long flags; int shared = 0, cached = 0, reserved = 0; pgdat_resize_lock(pgdat, &flags); present = pgdat->node_present_pages; for(i = 0; i < pgdat->node_spanned_pages; i++) { struct page *page; if (unlikely(i % MAX_ORDER_NR_PAGES == 0)) touch_nmi_watchdog(); if (pfn_valid(pgdat->node_start_pfn + i)) page = pfn_to_page(pgdat->node_start_pfn + i); else { i = vmemmap_find_next_valid_pfn(pgdat->node_id, i) - 1; continue; } if (PageReserved(page)) reserved++; else if (PageSwapCache(page)) cached++; else if (page_count(page)) shared += page_count(page)-1; } pgdat_resize_unlock(pgdat, &flags); total_present += present; total_reserved += reserved; total_cached += cached; total_shared += shared; printk(KERN_INFO "Node %4d: RAM: %11ld, rsvd: %8d, " "shrd: %10d, swpd: %10d\n", pgdat->node_id, present, reserved, shared, cached); } printk(KERN_INFO "%ld pages of RAM\n", total_present); printk(KERN_INFO "%d reserved pages\n", total_reserved); printk(KERN_INFO "%d pages shared\n", total_shared); printk(KERN_INFO "%d pages swap cached\n", total_cached); printk(KERN_INFO "Total of %ld pages in page table cache\n", quicklist_total_size()); printk(KERN_INFO "%d free buffer pages\n", nr_free_buffer_pages()); } /** * call_pernode_memory - use SRAT to call callback functions with node info * @start: physical start of range * @len: length of range * @arg: function to call for each range * * efi_memmap_walk() knows nothing about layout of memory across nodes. Find * out to which node a block of memory belongs. Ignore memory that we cannot * identify, and split blocks that run across multiple nodes. * * Take this opportunity to round the start address up and the end address * down to page boundaries. */ void call_pernode_memory(unsigned long start, unsigned long len, void *arg) { unsigned long rs, re, end = start + len; void (*func)(unsigned long, unsigned long, int); int i; start = PAGE_ALIGN(start); end &= PAGE_MASK; if (start >= end) return; func = arg; if (!num_node_memblks) { /* No SRAT table, so assume one node (node 0) */ if (start < end) (*func)(start, end - start, 0); return; } for (i = 0; i < num_node_memblks; i++) { rs = max(start, node_memblk[i].start_paddr); re = min(end, node_memblk[i].start_paddr + node_memblk[i].size); if (rs < re) (*func)(rs, re - rs, node_memblk[i].nid); if (re == end) break; } } /** * count_node_pages - callback to build per-node memory info structures * @start: physical start of range * @len: length of range * @node: node where this range resides * * Each node has it's own number of physical pages, DMAable pages, start, and * end page frame number. This routine will be called by call_pernode_memory() * for each piece of usable memory and will setup these values for each node. * Very similar to build_maps(). */ static __init int count_node_pages(unsigned long start, unsigned long len, int node) { unsigned long end = start + len; mem_data[node].num_physpages += len >> PAGE_SHIFT; #ifdef CONFIG_ZONE_DMA if (start <= __pa(MAX_DMA_ADDRESS)) mem_data[node].num_dma_physpages += (min(end, __pa(MAX_DMA_ADDRESS)) - start) >>PAGE_SHIFT; #endif start = GRANULEROUNDDOWN(start); end = GRANULEROUNDUP(end); mem_data[node].max_pfn = max(mem_data[node].max_pfn, end >> PAGE_SHIFT); mem_data[node].min_pfn = min(mem_data[node].min_pfn, start >> PAGE_SHIFT); return 0; } /** * paging_init - setup page tables * * paging_init() sets up the page tables for each node of the system and frees * the bootmem allocator memory for general use. */ void __init paging_init(void) { unsigned long max_dma; unsigned long pfn_offset = 0; unsigned long max_pfn = 0; int node; unsigned long max_zone_pfns[MAX_NR_ZONES]; max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT; efi_memmap_walk(filter_rsvd_memory, count_node_pages); sparse_memory_present_with_active_regions(MAX_NUMNODES); sparse_init(); #ifdef CONFIG_VIRTUAL_MEM_MAP VMALLOC_END -= PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) * sizeof(struct page)); vmem_map = (struct page *) VMALLOC_END; efi_memmap_walk(create_mem_map_page_table, NULL); printk("Virtual mem_map starts at 0x%p\n", vmem_map); #endif for_each_online_node(node) { num_physpages += mem_data[node].num_physpages; pfn_offset = mem_data[node].min_pfn; #ifdef CONFIG_VIRTUAL_MEM_MAP NODE_DATA(node)->node_mem_map = vmem_map + pfn_offset; #endif if (mem_data[node].max_pfn > max_pfn) max_pfn = mem_data[node].max_pfn; } memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); #ifdef CONFIG_ZONE_DMA max_zone_pfns[ZONE_DMA] = max_dma; #endif max_zone_pfns[ZONE_NORMAL] = max_pfn; free_area_init_nodes(max_zone_pfns); zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page)); } #ifdef CONFIG_MEMORY_HOTPLUG pg_data_t *arch_alloc_nodedata(int nid) { unsigned long size = compute_pernodesize(nid); return kzalloc(size, GFP_KERNEL); } void arch_free_nodedata(pg_data_t *pgdat) { kfree(pgdat); } void arch_refresh_nodedata(int update_node, pg_data_t *update_pgdat) { pgdat_list[update_node] = update_pgdat; scatter_node_data(); } #endif #ifdef CONFIG_SPARSEMEM_VMEMMAP int __meminit vmemmap_populate(struct page *start_page, unsigned long size, int node) { return vmemmap_populate_basepages(start_page, size, node); } #endif