2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
51 * Rudi Cilibrasi : Pass the right thing to
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/ethtool.h>
94 #include <linux/notifier.h>
95 #include <linux/skbuff.h>
96 #include <net/net_namespace.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/stat.h>
102 #include <linux/if_bridge.h>
103 #include <linux/if_macvlan.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/kallsyms.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
126 #include <linux/ipv6.h>
127 #include <linux/in.h>
128 #include <linux/jhash.h>
129 #include <linux/random.h>
131 #include "net-sysfs.h"
134 * The list of packet types we will receive (as opposed to discard)
135 * and the routines to invoke.
137 * Why 16. Because with 16 the only overlap we get on a hash of the
138 * low nibble of the protocol value is RARP/SNAP/X.25.
140 * NOTE: That is no longer true with the addition of VLAN tags. Not
141 * sure which should go first, but I bet it won't make much
142 * difference if we are running VLANs. The good news is that
143 * this protocol won't be in the list unless compiled in, so
144 * the average user (w/out VLANs) will not be adversely affected.
161 #define PTYPE_HASH_SIZE (16)
162 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
164 static DEFINE_SPINLOCK(ptype_lock);
165 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
166 static struct list_head ptype_all __read_mostly; /* Taps */
168 #ifdef CONFIG_NET_DMA
170 struct dma_client client;
172 cpumask_t channel_mask;
173 struct dma_chan **channels;
176 static enum dma_state_client
177 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
178 enum dma_state state);
180 static struct net_dma net_dma = {
182 .event_callback = netdev_dma_event,
188 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
191 * Pure readers hold dev_base_lock for reading.
193 * Writers must hold the rtnl semaphore while they loop through the
194 * dev_base_head list, and hold dev_base_lock for writing when they do the
195 * actual updates. This allows pure readers to access the list even
196 * while a writer is preparing to update it.
198 * To put it another way, dev_base_lock is held for writing only to
199 * protect against pure readers; the rtnl semaphore provides the
200 * protection against other writers.
202 * See, for example usages, register_netdevice() and
203 * unregister_netdevice(), which must be called with the rtnl
206 DEFINE_RWLOCK(dev_base_lock);
208 EXPORT_SYMBOL(dev_base_lock);
210 #define NETDEV_HASHBITS 8
211 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
213 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
215 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
216 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
219 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
221 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
224 /* Device list insertion */
225 static int list_netdevice(struct net_device *dev)
227 struct net *net = dev_net(dev);
231 write_lock_bh(&dev_base_lock);
232 list_add_tail(&dev->dev_list, &net->dev_base_head);
233 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
234 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
235 write_unlock_bh(&dev_base_lock);
239 /* Device list removal */
240 static void unlist_netdevice(struct net_device *dev)
244 /* Unlink dev from the device chain */
245 write_lock_bh(&dev_base_lock);
246 list_del(&dev->dev_list);
247 hlist_del(&dev->name_hlist);
248 hlist_del(&dev->index_hlist);
249 write_unlock_bh(&dev_base_lock);
256 static RAW_NOTIFIER_HEAD(netdev_chain);
259 * Device drivers call our routines to queue packets here. We empty the
260 * queue in the local softnet handler.
263 DEFINE_PER_CPU(struct softnet_data, softnet_data);
265 #ifdef CONFIG_LOCKDEP
267 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
268 * according to dev->type
270 static const unsigned short netdev_lock_type[] =
271 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
272 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
273 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
274 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
275 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
276 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
277 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
278 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
279 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
280 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
281 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
282 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
283 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
284 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID,
287 static const char *netdev_lock_name[] =
288 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
289 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
290 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
291 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
292 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
293 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
294 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
295 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
296 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
297 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
298 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
299 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
300 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
301 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID",
304 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
305 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
307 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
311 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
312 if (netdev_lock_type[i] == dev_type)
314 /* the last key is used by default */
315 return ARRAY_SIZE(netdev_lock_type) - 1;
318 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
319 unsigned short dev_type)
323 i = netdev_lock_pos(dev_type);
324 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
325 netdev_lock_name[i]);
328 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
332 i = netdev_lock_pos(dev->type);
333 lockdep_set_class_and_name(&dev->addr_list_lock,
334 &netdev_addr_lock_key[i],
335 netdev_lock_name[i]);
338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
339 unsigned short dev_type)
342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
347 /*******************************************************************************
349 Protocol management and registration routines
351 *******************************************************************************/
354 * Add a protocol ID to the list. Now that the input handler is
355 * smarter we can dispense with all the messy stuff that used to be
358 * BEWARE!!! Protocol handlers, mangling input packets,
359 * MUST BE last in hash buckets and checking protocol handlers
360 * MUST start from promiscuous ptype_all chain in net_bh.
361 * It is true now, do not change it.
362 * Explanation follows: if protocol handler, mangling packet, will
363 * be the first on list, it is not able to sense, that packet
364 * is cloned and should be copied-on-write, so that it will
365 * change it and subsequent readers will get broken packet.
370 * dev_add_pack - add packet handler
371 * @pt: packet type declaration
373 * Add a protocol handler to the networking stack. The passed &packet_type
374 * is linked into kernel lists and may not be freed until it has been
375 * removed from the kernel lists.
377 * This call does not sleep therefore it can not
378 * guarantee all CPU's that are in middle of receiving packets
379 * will see the new packet type (until the next received packet).
382 void dev_add_pack(struct packet_type *pt)
386 spin_lock_bh(&ptype_lock);
387 if (pt->type == htons(ETH_P_ALL))
388 list_add_rcu(&pt->list, &ptype_all);
390 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
391 list_add_rcu(&pt->list, &ptype_base[hash]);
393 spin_unlock_bh(&ptype_lock);
397 * __dev_remove_pack - remove packet handler
398 * @pt: packet type declaration
400 * Remove a protocol handler that was previously added to the kernel
401 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
402 * from the kernel lists and can be freed or reused once this function
405 * The packet type might still be in use by receivers
406 * and must not be freed until after all the CPU's have gone
407 * through a quiescent state.
409 void __dev_remove_pack(struct packet_type *pt)
411 struct list_head *head;
412 struct packet_type *pt1;
414 spin_lock_bh(&ptype_lock);
416 if (pt->type == htons(ETH_P_ALL))
419 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
421 list_for_each_entry(pt1, head, list) {
423 list_del_rcu(&pt->list);
428 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
430 spin_unlock_bh(&ptype_lock);
433 * dev_remove_pack - remove packet handler
434 * @pt: packet type declaration
436 * Remove a protocol handler that was previously added to the kernel
437 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
438 * from the kernel lists and can be freed or reused once this function
441 * This call sleeps to guarantee that no CPU is looking at the packet
444 void dev_remove_pack(struct packet_type *pt)
446 __dev_remove_pack(pt);
451 /******************************************************************************
453 Device Boot-time Settings Routines
455 *******************************************************************************/
457 /* Boot time configuration table */
458 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
461 * netdev_boot_setup_add - add new setup entry
462 * @name: name of the device
463 * @map: configured settings for the device
465 * Adds new setup entry to the dev_boot_setup list. The function
466 * returns 0 on error and 1 on success. This is a generic routine to
469 static int netdev_boot_setup_add(char *name, struct ifmap *map)
471 struct netdev_boot_setup *s;
475 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
476 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
477 memset(s[i].name, 0, sizeof(s[i].name));
478 strlcpy(s[i].name, name, IFNAMSIZ);
479 memcpy(&s[i].map, map, sizeof(s[i].map));
484 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
488 * netdev_boot_setup_check - check boot time settings
489 * @dev: the netdevice
491 * Check boot time settings for the device.
492 * The found settings are set for the device to be used
493 * later in the device probing.
494 * Returns 0 if no settings found, 1 if they are.
496 int netdev_boot_setup_check(struct net_device *dev)
498 struct netdev_boot_setup *s = dev_boot_setup;
501 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
502 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
503 !strcmp(dev->name, s[i].name)) {
504 dev->irq = s[i].map.irq;
505 dev->base_addr = s[i].map.base_addr;
506 dev->mem_start = s[i].map.mem_start;
507 dev->mem_end = s[i].map.mem_end;
516 * netdev_boot_base - get address from boot time settings
517 * @prefix: prefix for network device
518 * @unit: id for network device
520 * Check boot time settings for the base address of device.
521 * The found settings are set for the device to be used
522 * later in the device probing.
523 * Returns 0 if no settings found.
525 unsigned long netdev_boot_base(const char *prefix, int unit)
527 const struct netdev_boot_setup *s = dev_boot_setup;
531 sprintf(name, "%s%d", prefix, unit);
534 * If device already registered then return base of 1
535 * to indicate not to probe for this interface
537 if (__dev_get_by_name(&init_net, name))
540 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
541 if (!strcmp(name, s[i].name))
542 return s[i].map.base_addr;
547 * Saves at boot time configured settings for any netdevice.
549 int __init netdev_boot_setup(char *str)
554 str = get_options(str, ARRAY_SIZE(ints), ints);
559 memset(&map, 0, sizeof(map));
563 map.base_addr = ints[2];
565 map.mem_start = ints[3];
567 map.mem_end = ints[4];
569 /* Add new entry to the list */
570 return netdev_boot_setup_add(str, &map);
573 __setup("netdev=", netdev_boot_setup);
575 /*******************************************************************************
577 Device Interface Subroutines
579 *******************************************************************************/
582 * __dev_get_by_name - find a device by its name
583 * @net: the applicable net namespace
584 * @name: name to find
586 * Find an interface by name. Must be called under RTNL semaphore
587 * or @dev_base_lock. If the name is found a pointer to the device
588 * is returned. If the name is not found then %NULL is returned. The
589 * reference counters are not incremented so the caller must be
590 * careful with locks.
593 struct net_device *__dev_get_by_name(struct net *net, const char *name)
595 struct hlist_node *p;
597 hlist_for_each(p, dev_name_hash(net, name)) {
598 struct net_device *dev
599 = hlist_entry(p, struct net_device, name_hlist);
600 if (!strncmp(dev->name, name, IFNAMSIZ))
607 * dev_get_by_name - find a device by its name
608 * @net: the applicable net namespace
609 * @name: name to find
611 * Find an interface by name. This can be called from any
612 * context and does its own locking. The returned handle has
613 * the usage count incremented and the caller must use dev_put() to
614 * release it when it is no longer needed. %NULL is returned if no
615 * matching device is found.
618 struct net_device *dev_get_by_name(struct net *net, const char *name)
620 struct net_device *dev;
622 read_lock(&dev_base_lock);
623 dev = __dev_get_by_name(net, name);
626 read_unlock(&dev_base_lock);
631 * __dev_get_by_index - find a device by its ifindex
632 * @net: the applicable net namespace
633 * @ifindex: index of device
635 * Search for an interface by index. Returns %NULL if the device
636 * is not found or a pointer to the device. The device has not
637 * had its reference counter increased so the caller must be careful
638 * about locking. The caller must hold either the RTNL semaphore
642 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
644 struct hlist_node *p;
646 hlist_for_each(p, dev_index_hash(net, ifindex)) {
647 struct net_device *dev
648 = hlist_entry(p, struct net_device, index_hlist);
649 if (dev->ifindex == ifindex)
657 * dev_get_by_index - find a device by its ifindex
658 * @net: the applicable net namespace
659 * @ifindex: index of device
661 * Search for an interface by index. Returns NULL if the device
662 * is not found or a pointer to the device. The device returned has
663 * had a reference added and the pointer is safe until the user calls
664 * dev_put to indicate they have finished with it.
667 struct net_device *dev_get_by_index(struct net *net, int ifindex)
669 struct net_device *dev;
671 read_lock(&dev_base_lock);
672 dev = __dev_get_by_index(net, ifindex);
675 read_unlock(&dev_base_lock);
680 * dev_getbyhwaddr - find a device by its hardware address
681 * @net: the applicable net namespace
682 * @type: media type of device
683 * @ha: hardware address
685 * Search for an interface by MAC address. Returns NULL if the device
686 * is not found or a pointer to the device. The caller must hold the
687 * rtnl semaphore. The returned device has not had its ref count increased
688 * and the caller must therefore be careful about locking
691 * If the API was consistent this would be __dev_get_by_hwaddr
694 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
696 struct net_device *dev;
700 for_each_netdev(net, dev)
701 if (dev->type == type &&
702 !memcmp(dev->dev_addr, ha, dev->addr_len))
708 EXPORT_SYMBOL(dev_getbyhwaddr);
710 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
712 struct net_device *dev;
715 for_each_netdev(net, dev)
716 if (dev->type == type)
722 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
724 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
726 struct net_device *dev;
729 dev = __dev_getfirstbyhwtype(net, type);
736 EXPORT_SYMBOL(dev_getfirstbyhwtype);
739 * dev_get_by_flags - find any device with given flags
740 * @net: the applicable net namespace
741 * @if_flags: IFF_* values
742 * @mask: bitmask of bits in if_flags to check
744 * Search for any interface with the given flags. Returns NULL if a device
745 * is not found or a pointer to the device. The device returned has
746 * had a reference added and the pointer is safe until the user calls
747 * dev_put to indicate they have finished with it.
750 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
752 struct net_device *dev, *ret;
755 read_lock(&dev_base_lock);
756 for_each_netdev(net, dev) {
757 if (((dev->flags ^ if_flags) & mask) == 0) {
763 read_unlock(&dev_base_lock);
768 * dev_valid_name - check if name is okay for network device
771 * Network device names need to be valid file names to
772 * to allow sysfs to work. We also disallow any kind of
775 int dev_valid_name(const char *name)
779 if (strlen(name) >= IFNAMSIZ)
781 if (!strcmp(name, ".") || !strcmp(name, ".."))
785 if (*name == '/' || isspace(*name))
793 * __dev_alloc_name - allocate a name for a device
794 * @net: network namespace to allocate the device name in
795 * @name: name format string
796 * @buf: scratch buffer and result name string
798 * Passed a format string - eg "lt%d" it will try and find a suitable
799 * id. It scans list of devices to build up a free map, then chooses
800 * the first empty slot. The caller must hold the dev_base or rtnl lock
801 * while allocating the name and adding the device in order to avoid
803 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
804 * Returns the number of the unit assigned or a negative errno code.
807 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
811 const int max_netdevices = 8*PAGE_SIZE;
812 unsigned long *inuse;
813 struct net_device *d;
815 p = strnchr(name, IFNAMSIZ-1, '%');
818 * Verify the string as this thing may have come from
819 * the user. There must be either one "%d" and no other "%"
822 if (p[1] != 'd' || strchr(p + 2, '%'))
825 /* Use one page as a bit array of possible slots */
826 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
830 for_each_netdev(net, d) {
831 if (!sscanf(d->name, name, &i))
833 if (i < 0 || i >= max_netdevices)
836 /* avoid cases where sscanf is not exact inverse of printf */
837 snprintf(buf, IFNAMSIZ, name, i);
838 if (!strncmp(buf, d->name, IFNAMSIZ))
842 i = find_first_zero_bit(inuse, max_netdevices);
843 free_page((unsigned long) inuse);
846 snprintf(buf, IFNAMSIZ, name, i);
847 if (!__dev_get_by_name(net, buf))
850 /* It is possible to run out of possible slots
851 * when the name is long and there isn't enough space left
852 * for the digits, or if all bits are used.
858 * dev_alloc_name - allocate a name for a device
860 * @name: name format string
862 * Passed a format string - eg "lt%d" it will try and find a suitable
863 * id. It scans list of devices to build up a free map, then chooses
864 * the first empty slot. The caller must hold the dev_base or rtnl lock
865 * while allocating the name and adding the device in order to avoid
867 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
868 * Returns the number of the unit assigned or a negative errno code.
871 int dev_alloc_name(struct net_device *dev, const char *name)
877 BUG_ON(!dev_net(dev));
879 ret = __dev_alloc_name(net, name, buf);
881 strlcpy(dev->name, buf, IFNAMSIZ);
887 * dev_change_name - change name of a device
889 * @newname: name (or format string) must be at least IFNAMSIZ
891 * Change name of a device, can pass format strings "eth%d".
894 int dev_change_name(struct net_device *dev, char *newname)
896 char oldname[IFNAMSIZ];
902 BUG_ON(!dev_net(dev));
905 if (dev->flags & IFF_UP)
908 if (!dev_valid_name(newname))
911 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
914 memcpy(oldname, dev->name, IFNAMSIZ);
916 if (strchr(newname, '%')) {
917 err = dev_alloc_name(dev, newname);
920 strcpy(newname, dev->name);
922 else if (__dev_get_by_name(net, newname))
925 strlcpy(dev->name, newname, IFNAMSIZ);
928 err = device_rename(&dev->dev, dev->name);
930 memcpy(dev->name, oldname, IFNAMSIZ);
934 write_lock_bh(&dev_base_lock);
935 hlist_del(&dev->name_hlist);
936 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
937 write_unlock_bh(&dev_base_lock);
939 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
940 ret = notifier_to_errno(ret);
945 "%s: name change rollback failed: %d.\n",
949 memcpy(dev->name, oldname, IFNAMSIZ);
958 * netdev_features_change - device changes features
959 * @dev: device to cause notification
961 * Called to indicate a device has changed features.
963 void netdev_features_change(struct net_device *dev)
965 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
967 EXPORT_SYMBOL(netdev_features_change);
970 * netdev_state_change - device changes state
971 * @dev: device to cause notification
973 * Called to indicate a device has changed state. This function calls
974 * the notifier chains for netdev_chain and sends a NEWLINK message
975 * to the routing socket.
977 void netdev_state_change(struct net_device *dev)
979 if (dev->flags & IFF_UP) {
980 call_netdevice_notifiers(NETDEV_CHANGE, dev);
981 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
985 void netdev_bonding_change(struct net_device *dev)
987 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev);
989 EXPORT_SYMBOL(netdev_bonding_change);
992 * dev_load - load a network module
993 * @net: the applicable net namespace
994 * @name: name of interface
996 * If a network interface is not present and the process has suitable
997 * privileges this function loads the module. If module loading is not
998 * available in this kernel then it becomes a nop.
1001 void dev_load(struct net *net, const char *name)
1003 struct net_device *dev;
1005 read_lock(&dev_base_lock);
1006 dev = __dev_get_by_name(net, name);
1007 read_unlock(&dev_base_lock);
1009 if (!dev && capable(CAP_SYS_MODULE))
1010 request_module("%s", name);
1014 * dev_open - prepare an interface for use.
1015 * @dev: device to open
1017 * Takes a device from down to up state. The device's private open
1018 * function is invoked and then the multicast lists are loaded. Finally
1019 * the device is moved into the up state and a %NETDEV_UP message is
1020 * sent to the netdev notifier chain.
1022 * Calling this function on an active interface is a nop. On a failure
1023 * a negative errno code is returned.
1025 int dev_open(struct net_device *dev)
1035 if (dev->flags & IFF_UP)
1039 * Is it even present?
1041 if (!netif_device_present(dev))
1045 * Call device private open method
1047 set_bit(__LINK_STATE_START, &dev->state);
1049 if (dev->validate_addr)
1050 ret = dev->validate_addr(dev);
1052 if (!ret && dev->open)
1053 ret = dev->open(dev);
1056 * If it went open OK then:
1060 clear_bit(__LINK_STATE_START, &dev->state);
1065 dev->flags |= IFF_UP;
1068 * Initialize multicasting status
1070 dev_set_rx_mode(dev);
1073 * Wakeup transmit queue engine
1078 * ... and announce new interface.
1080 call_netdevice_notifiers(NETDEV_UP, dev);
1087 * dev_close - shutdown an interface.
1088 * @dev: device to shutdown
1090 * This function moves an active device into down state. A
1091 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1092 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1095 int dev_close(struct net_device *dev)
1101 if (!(dev->flags & IFF_UP))
1105 * Tell people we are going down, so that they can
1106 * prepare to death, when device is still operating.
1108 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1110 clear_bit(__LINK_STATE_START, &dev->state);
1112 /* Synchronize to scheduled poll. We cannot touch poll list,
1113 * it can be even on different cpu. So just clear netif_running().
1115 * dev->stop() will invoke napi_disable() on all of it's
1116 * napi_struct instances on this device.
1118 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1120 dev_deactivate(dev);
1123 * Call the device specific close. This cannot fail.
1124 * Only if device is UP
1126 * We allow it to be called even after a DETACH hot-plug
1133 * Device is now down.
1136 dev->flags &= ~IFF_UP;
1139 * Tell people we are down
1141 call_netdevice_notifiers(NETDEV_DOWN, dev);
1148 * dev_disable_lro - disable Large Receive Offload on a device
1151 * Disable Large Receive Offload (LRO) on a net device. Must be
1152 * called under RTNL. This is needed if received packets may be
1153 * forwarded to another interface.
1155 void dev_disable_lro(struct net_device *dev)
1157 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1158 dev->ethtool_ops->set_flags) {
1159 u32 flags = dev->ethtool_ops->get_flags(dev);
1160 if (flags & ETH_FLAG_LRO) {
1161 flags &= ~ETH_FLAG_LRO;
1162 dev->ethtool_ops->set_flags(dev, flags);
1165 WARN_ON(dev->features & NETIF_F_LRO);
1167 EXPORT_SYMBOL(dev_disable_lro);
1170 static int dev_boot_phase = 1;
1173 * Device change register/unregister. These are not inline or static
1174 * as we export them to the world.
1178 * register_netdevice_notifier - register a network notifier block
1181 * Register a notifier to be called when network device events occur.
1182 * The notifier passed is linked into the kernel structures and must
1183 * not be reused until it has been unregistered. A negative errno code
1184 * is returned on a failure.
1186 * When registered all registration and up events are replayed
1187 * to the new notifier to allow device to have a race free
1188 * view of the network device list.
1191 int register_netdevice_notifier(struct notifier_block *nb)
1193 struct net_device *dev;
1194 struct net_device *last;
1199 err = raw_notifier_chain_register(&netdev_chain, nb);
1205 for_each_netdev(net, dev) {
1206 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1207 err = notifier_to_errno(err);
1211 if (!(dev->flags & IFF_UP))
1214 nb->notifier_call(nb, NETDEV_UP, dev);
1225 for_each_netdev(net, dev) {
1229 if (dev->flags & IFF_UP) {
1230 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1231 nb->notifier_call(nb, NETDEV_DOWN, dev);
1233 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1237 raw_notifier_chain_unregister(&netdev_chain, nb);
1242 * unregister_netdevice_notifier - unregister a network notifier block
1245 * Unregister a notifier previously registered by
1246 * register_netdevice_notifier(). The notifier is unlinked into the
1247 * kernel structures and may then be reused. A negative errno code
1248 * is returned on a failure.
1251 int unregister_netdevice_notifier(struct notifier_block *nb)
1256 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1262 * call_netdevice_notifiers - call all network notifier blocks
1263 * @val: value passed unmodified to notifier function
1264 * @dev: net_device pointer passed unmodified to notifier function
1266 * Call all network notifier blocks. Parameters and return value
1267 * are as for raw_notifier_call_chain().
1270 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1272 return raw_notifier_call_chain(&netdev_chain, val, dev);
1275 /* When > 0 there are consumers of rx skb time stamps */
1276 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1278 void net_enable_timestamp(void)
1280 atomic_inc(&netstamp_needed);
1283 void net_disable_timestamp(void)
1285 atomic_dec(&netstamp_needed);
1288 static inline void net_timestamp(struct sk_buff *skb)
1290 if (atomic_read(&netstamp_needed))
1291 __net_timestamp(skb);
1293 skb->tstamp.tv64 = 0;
1297 * Support routine. Sends outgoing frames to any network
1298 * taps currently in use.
1301 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1303 struct packet_type *ptype;
1308 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1309 /* Never send packets back to the socket
1310 * they originated from - MvS (miquels@drinkel.ow.org)
1312 if ((ptype->dev == dev || !ptype->dev) &&
1313 (ptype->af_packet_priv == NULL ||
1314 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1315 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1319 /* skb->nh should be correctly
1320 set by sender, so that the second statement is
1321 just protection against buggy protocols.
1323 skb_reset_mac_header(skb2);
1325 if (skb_network_header(skb2) < skb2->data ||
1326 skb2->network_header > skb2->tail) {
1327 if (net_ratelimit())
1328 printk(KERN_CRIT "protocol %04x is "
1330 skb2->protocol, dev->name);
1331 skb_reset_network_header(skb2);
1334 skb2->transport_header = skb2->network_header;
1335 skb2->pkt_type = PACKET_OUTGOING;
1336 ptype->func(skb2, skb->dev, ptype, skb->dev);
1343 static inline void __netif_reschedule(struct Qdisc *q)
1345 struct softnet_data *sd;
1346 unsigned long flags;
1348 local_irq_save(flags);
1349 sd = &__get_cpu_var(softnet_data);
1350 q->next_sched = sd->output_queue;
1351 sd->output_queue = q;
1352 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1353 local_irq_restore(flags);
1356 void __netif_schedule(struct Qdisc *q)
1358 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1359 __netif_reschedule(q);
1361 EXPORT_SYMBOL(__netif_schedule);
1363 void dev_kfree_skb_irq(struct sk_buff *skb)
1365 if (atomic_dec_and_test(&skb->users)) {
1366 struct softnet_data *sd;
1367 unsigned long flags;
1369 local_irq_save(flags);
1370 sd = &__get_cpu_var(softnet_data);
1371 skb->next = sd->completion_queue;
1372 sd->completion_queue = skb;
1373 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1374 local_irq_restore(flags);
1377 EXPORT_SYMBOL(dev_kfree_skb_irq);
1379 void dev_kfree_skb_any(struct sk_buff *skb)
1381 if (in_irq() || irqs_disabled())
1382 dev_kfree_skb_irq(skb);
1386 EXPORT_SYMBOL(dev_kfree_skb_any);
1390 * netif_device_detach - mark device as removed
1391 * @dev: network device
1393 * Mark device as removed from system and therefore no longer available.
1395 void netif_device_detach(struct net_device *dev)
1397 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1398 netif_running(dev)) {
1399 netif_stop_queue(dev);
1402 EXPORT_SYMBOL(netif_device_detach);
1405 * netif_device_attach - mark device as attached
1406 * @dev: network device
1408 * Mark device as attached from system and restart if needed.
1410 void netif_device_attach(struct net_device *dev)
1412 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1413 netif_running(dev)) {
1414 netif_wake_queue(dev);
1415 __netdev_watchdog_up(dev);
1418 EXPORT_SYMBOL(netif_device_attach);
1420 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1422 return ((features & NETIF_F_GEN_CSUM) ||
1423 ((features & NETIF_F_IP_CSUM) &&
1424 protocol == htons(ETH_P_IP)) ||
1425 ((features & NETIF_F_IPV6_CSUM) &&
1426 protocol == htons(ETH_P_IPV6)));
1429 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1431 if (can_checksum_protocol(dev->features, skb->protocol))
1434 if (skb->protocol == htons(ETH_P_8021Q)) {
1435 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1436 if (can_checksum_protocol(dev->features & dev->vlan_features,
1437 veh->h_vlan_encapsulated_proto))
1445 * Invalidate hardware checksum when packet is to be mangled, and
1446 * complete checksum manually on outgoing path.
1448 int skb_checksum_help(struct sk_buff *skb)
1451 int ret = 0, offset;
1453 if (skb->ip_summed == CHECKSUM_COMPLETE)
1454 goto out_set_summed;
1456 if (unlikely(skb_shinfo(skb)->gso_size)) {
1457 /* Let GSO fix up the checksum. */
1458 goto out_set_summed;
1461 offset = skb->csum_start - skb_headroom(skb);
1462 BUG_ON(offset >= skb_headlen(skb));
1463 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1465 offset += skb->csum_offset;
1466 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1468 if (skb_cloned(skb) &&
1469 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1470 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1475 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1477 skb->ip_summed = CHECKSUM_NONE;
1483 * skb_gso_segment - Perform segmentation on skb.
1484 * @skb: buffer to segment
1485 * @features: features for the output path (see dev->features)
1487 * This function segments the given skb and returns a list of segments.
1489 * It may return NULL if the skb requires no segmentation. This is
1490 * only possible when GSO is used for verifying header integrity.
1492 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1494 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1495 struct packet_type *ptype;
1496 __be16 type = skb->protocol;
1499 BUG_ON(skb_shinfo(skb)->frag_list);
1501 skb_reset_mac_header(skb);
1502 skb->mac_len = skb->network_header - skb->mac_header;
1503 __skb_pull(skb, skb->mac_len);
1505 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) {
1506 if (skb_header_cloned(skb) &&
1507 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1508 return ERR_PTR(err);
1512 list_for_each_entry_rcu(ptype,
1513 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1514 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1515 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1516 err = ptype->gso_send_check(skb);
1517 segs = ERR_PTR(err);
1518 if (err || skb_gso_ok(skb, features))
1520 __skb_push(skb, (skb->data -
1521 skb_network_header(skb)));
1523 segs = ptype->gso_segment(skb, features);
1529 __skb_push(skb, skb->data - skb_mac_header(skb));
1534 EXPORT_SYMBOL(skb_gso_segment);
1536 /* Take action when hardware reception checksum errors are detected. */
1538 void netdev_rx_csum_fault(struct net_device *dev)
1540 if (net_ratelimit()) {
1541 printk(KERN_ERR "%s: hw csum failure.\n",
1542 dev ? dev->name : "<unknown>");
1546 EXPORT_SYMBOL(netdev_rx_csum_fault);
1549 /* Actually, we should eliminate this check as soon as we know, that:
1550 * 1. IOMMU is present and allows to map all the memory.
1551 * 2. No high memory really exists on this machine.
1554 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1556 #ifdef CONFIG_HIGHMEM
1559 if (dev->features & NETIF_F_HIGHDMA)
1562 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1563 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1571 void (*destructor)(struct sk_buff *skb);
1574 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1576 static void dev_gso_skb_destructor(struct sk_buff *skb)
1578 struct dev_gso_cb *cb;
1581 struct sk_buff *nskb = skb->next;
1583 skb->next = nskb->next;
1586 } while (skb->next);
1588 cb = DEV_GSO_CB(skb);
1590 cb->destructor(skb);
1594 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1595 * @skb: buffer to segment
1597 * This function segments the given skb and stores the list of segments
1600 static int dev_gso_segment(struct sk_buff *skb)
1602 struct net_device *dev = skb->dev;
1603 struct sk_buff *segs;
1604 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1607 segs = skb_gso_segment(skb, features);
1609 /* Verifying header integrity only. */
1614 return PTR_ERR(segs);
1617 DEV_GSO_CB(skb)->destructor = skb->destructor;
1618 skb->destructor = dev_gso_skb_destructor;
1623 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1624 struct netdev_queue *txq)
1626 if (likely(!skb->next)) {
1627 if (!list_empty(&ptype_all))
1628 dev_queue_xmit_nit(skb, dev);
1630 if (netif_needs_gso(dev, skb)) {
1631 if (unlikely(dev_gso_segment(skb)))
1637 return dev->hard_start_xmit(skb, dev);
1642 struct sk_buff *nskb = skb->next;
1645 skb->next = nskb->next;
1647 rc = dev->hard_start_xmit(nskb, dev);
1649 nskb->next = skb->next;
1653 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1654 return NETDEV_TX_BUSY;
1655 } while (skb->next);
1657 skb->destructor = DEV_GSO_CB(skb)->destructor;
1664 static u32 simple_tx_hashrnd;
1665 static int simple_tx_hashrnd_initialized = 0;
1667 static u16 simple_tx_hash(struct net_device *dev, struct sk_buff *skb)
1669 u32 addr1, addr2, ports;
1673 if (unlikely(!simple_tx_hashrnd_initialized)) {
1674 get_random_bytes(&simple_tx_hashrnd, 4);
1675 simple_tx_hashrnd_initialized = 1;
1678 switch (skb->protocol) {
1679 case __constant_htons(ETH_P_IP):
1680 if (!(ip_hdr(skb)->frag_off & htons(IP_MF | IP_OFFSET)))
1681 ip_proto = ip_hdr(skb)->protocol;
1682 addr1 = ip_hdr(skb)->saddr;
1683 addr2 = ip_hdr(skb)->daddr;
1684 ihl = ip_hdr(skb)->ihl;
1686 case __constant_htons(ETH_P_IPV6):
1687 ip_proto = ipv6_hdr(skb)->nexthdr;
1688 addr1 = ipv6_hdr(skb)->saddr.s6_addr32[3];
1689 addr2 = ipv6_hdr(skb)->daddr.s6_addr32[3];
1704 case IPPROTO_UDPLITE:
1705 ports = *((u32 *) (skb_network_header(skb) + (ihl * 4)));
1713 hash = jhash_3words(addr1, addr2, ports, simple_tx_hashrnd);
1715 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1718 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1719 struct sk_buff *skb)
1721 u16 queue_index = 0;
1723 if (dev->select_queue)
1724 queue_index = dev->select_queue(dev, skb);
1725 else if (dev->real_num_tx_queues > 1)
1726 queue_index = simple_tx_hash(dev, skb);
1728 skb_set_queue_mapping(skb, queue_index);
1729 return netdev_get_tx_queue(dev, queue_index);
1733 * dev_queue_xmit - transmit a buffer
1734 * @skb: buffer to transmit
1736 * Queue a buffer for transmission to a network device. The caller must
1737 * have set the device and priority and built the buffer before calling
1738 * this function. The function can be called from an interrupt.
1740 * A negative errno code is returned on a failure. A success does not
1741 * guarantee the frame will be transmitted as it may be dropped due
1742 * to congestion or traffic shaping.
1744 * -----------------------------------------------------------------------------------
1745 * I notice this method can also return errors from the queue disciplines,
1746 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1749 * Regardless of the return value, the skb is consumed, so it is currently
1750 * difficult to retry a send to this method. (You can bump the ref count
1751 * before sending to hold a reference for retry if you are careful.)
1753 * When calling this method, interrupts MUST be enabled. This is because
1754 * the BH enable code must have IRQs enabled so that it will not deadlock.
1757 int dev_queue_xmit(struct sk_buff *skb)
1759 struct net_device *dev = skb->dev;
1760 struct netdev_queue *txq;
1764 /* GSO will handle the following emulations directly. */
1765 if (netif_needs_gso(dev, skb))
1768 if (skb_shinfo(skb)->frag_list &&
1769 !(dev->features & NETIF_F_FRAGLIST) &&
1770 __skb_linearize(skb))
1773 /* Fragmented skb is linearized if device does not support SG,
1774 * or if at least one of fragments is in highmem and device
1775 * does not support DMA from it.
1777 if (skb_shinfo(skb)->nr_frags &&
1778 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1779 __skb_linearize(skb))
1782 /* If packet is not checksummed and device does not support
1783 * checksumming for this protocol, complete checksumming here.
1785 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1786 skb_set_transport_header(skb, skb->csum_start -
1788 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1793 /* Disable soft irqs for various locks below. Also
1794 * stops preemption for RCU.
1798 txq = dev_pick_tx(dev, skb);
1799 q = rcu_dereference(txq->qdisc);
1801 #ifdef CONFIG_NET_CLS_ACT
1802 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1805 spinlock_t *root_lock = qdisc_lock(q);
1807 spin_lock(root_lock);
1809 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
1813 rc = qdisc_enqueue_root(skb, q);
1816 spin_unlock(root_lock);
1821 /* The device has no queue. Common case for software devices:
1822 loopback, all the sorts of tunnels...
1824 Really, it is unlikely that netif_tx_lock protection is necessary
1825 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1827 However, it is possible, that they rely on protection
1830 Check this and shot the lock. It is not prone from deadlocks.
1831 Either shot noqueue qdisc, it is even simpler 8)
1833 if (dev->flags & IFF_UP) {
1834 int cpu = smp_processor_id(); /* ok because BHs are off */
1836 if (txq->xmit_lock_owner != cpu) {
1838 HARD_TX_LOCK(dev, txq, cpu);
1840 if (!netif_tx_queue_stopped(txq)) {
1842 if (!dev_hard_start_xmit(skb, dev, txq)) {
1843 HARD_TX_UNLOCK(dev, txq);
1847 HARD_TX_UNLOCK(dev, txq);
1848 if (net_ratelimit())
1849 printk(KERN_CRIT "Virtual device %s asks to "
1850 "queue packet!\n", dev->name);
1852 /* Recursion is detected! It is possible,
1854 if (net_ratelimit())
1855 printk(KERN_CRIT "Dead loop on virtual device "
1856 "%s, fix it urgently!\n", dev->name);
1861 rcu_read_unlock_bh();
1867 rcu_read_unlock_bh();
1872 /*=======================================================================
1874 =======================================================================*/
1876 int netdev_max_backlog __read_mostly = 1000;
1877 int netdev_budget __read_mostly = 300;
1878 int weight_p __read_mostly = 64; /* old backlog weight */
1880 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1884 * netif_rx - post buffer to the network code
1885 * @skb: buffer to post
1887 * This function receives a packet from a device driver and queues it for
1888 * the upper (protocol) levels to process. It always succeeds. The buffer
1889 * may be dropped during processing for congestion control or by the
1893 * NET_RX_SUCCESS (no congestion)
1894 * NET_RX_DROP (packet was dropped)
1898 int netif_rx(struct sk_buff *skb)
1900 struct softnet_data *queue;
1901 unsigned long flags;
1903 /* if netpoll wants it, pretend we never saw it */
1904 if (netpoll_rx(skb))
1907 if (!skb->tstamp.tv64)
1911 * The code is rearranged so that the path is the most
1912 * short when CPU is congested, but is still operating.
1914 local_irq_save(flags);
1915 queue = &__get_cpu_var(softnet_data);
1917 __get_cpu_var(netdev_rx_stat).total++;
1918 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1919 if (queue->input_pkt_queue.qlen) {
1921 __skb_queue_tail(&queue->input_pkt_queue, skb);
1922 local_irq_restore(flags);
1923 return NET_RX_SUCCESS;
1926 napi_schedule(&queue->backlog);
1930 __get_cpu_var(netdev_rx_stat).dropped++;
1931 local_irq_restore(flags);
1937 int netif_rx_ni(struct sk_buff *skb)
1942 err = netif_rx(skb);
1943 if (local_softirq_pending())
1950 EXPORT_SYMBOL(netif_rx_ni);
1952 static void net_tx_action(struct softirq_action *h)
1954 struct softnet_data *sd = &__get_cpu_var(softnet_data);
1956 if (sd->completion_queue) {
1957 struct sk_buff *clist;
1959 local_irq_disable();
1960 clist = sd->completion_queue;
1961 sd->completion_queue = NULL;
1965 struct sk_buff *skb = clist;
1966 clist = clist->next;
1968 WARN_ON(atomic_read(&skb->users));
1973 if (sd->output_queue) {
1976 local_irq_disable();
1977 head = sd->output_queue;
1978 sd->output_queue = NULL;
1982 struct Qdisc *q = head;
1983 spinlock_t *root_lock;
1985 head = head->next_sched;
1987 root_lock = qdisc_lock(q);
1988 if (spin_trylock(root_lock)) {
1989 smp_mb__before_clear_bit();
1990 clear_bit(__QDISC_STATE_SCHED,
1993 spin_unlock(root_lock);
1995 if (!test_bit(__QDISC_STATE_DEACTIVATED,
1997 __netif_reschedule(q);
1999 smp_mb__before_clear_bit();
2000 clear_bit(__QDISC_STATE_SCHED,
2008 static inline int deliver_skb(struct sk_buff *skb,
2009 struct packet_type *pt_prev,
2010 struct net_device *orig_dev)
2012 atomic_inc(&skb->users);
2013 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2016 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2017 /* These hooks defined here for ATM */
2019 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
2020 unsigned char *addr);
2021 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
2024 * If bridge module is loaded call bridging hook.
2025 * returns NULL if packet was consumed.
2027 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2028 struct sk_buff *skb) __read_mostly;
2029 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2030 struct packet_type **pt_prev, int *ret,
2031 struct net_device *orig_dev)
2033 struct net_bridge_port *port;
2035 if (skb->pkt_type == PACKET_LOOPBACK ||
2036 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2040 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2044 return br_handle_frame_hook(port, skb);
2047 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2050 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2051 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2052 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2054 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2055 struct packet_type **pt_prev,
2057 struct net_device *orig_dev)
2059 if (skb->dev->macvlan_port == NULL)
2063 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2066 return macvlan_handle_frame_hook(skb);
2069 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2072 #ifdef CONFIG_NET_CLS_ACT
2073 /* TODO: Maybe we should just force sch_ingress to be compiled in
2074 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2075 * a compare and 2 stores extra right now if we dont have it on
2076 * but have CONFIG_NET_CLS_ACT
2077 * NOTE: This doesnt stop any functionality; if you dont have
2078 * the ingress scheduler, you just cant add policies on ingress.
2081 static int ing_filter(struct sk_buff *skb)
2083 struct net_device *dev = skb->dev;
2084 u32 ttl = G_TC_RTTL(skb->tc_verd);
2085 struct netdev_queue *rxq;
2086 int result = TC_ACT_OK;
2089 if (MAX_RED_LOOP < ttl++) {
2091 "Redir loop detected Dropping packet (%d->%d)\n",
2092 skb->iif, dev->ifindex);
2096 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2097 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2099 rxq = &dev->rx_queue;
2102 if (q != &noop_qdisc) {
2103 spin_lock(qdisc_lock(q));
2104 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2105 result = qdisc_enqueue_root(skb, q);
2106 spin_unlock(qdisc_lock(q));
2112 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2113 struct packet_type **pt_prev,
2114 int *ret, struct net_device *orig_dev)
2116 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2120 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2123 /* Huh? Why does turning on AF_PACKET affect this? */
2124 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2127 switch (ing_filter(skb)) {
2141 * netif_nit_deliver - deliver received packets to network taps
2144 * This function is used to deliver incoming packets to network
2145 * taps. It should be used when the normal netif_receive_skb path
2146 * is bypassed, for example because of VLAN acceleration.
2148 void netif_nit_deliver(struct sk_buff *skb)
2150 struct packet_type *ptype;
2152 if (list_empty(&ptype_all))
2155 skb_reset_network_header(skb);
2156 skb_reset_transport_header(skb);
2157 skb->mac_len = skb->network_header - skb->mac_header;
2160 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2161 if (!ptype->dev || ptype->dev == skb->dev)
2162 deliver_skb(skb, ptype, skb->dev);
2168 * netif_receive_skb - process receive buffer from network
2169 * @skb: buffer to process
2171 * netif_receive_skb() is the main receive data processing function.
2172 * It always succeeds. The buffer may be dropped during processing
2173 * for congestion control or by the protocol layers.
2175 * This function may only be called from softirq context and interrupts
2176 * should be enabled.
2178 * Return values (usually ignored):
2179 * NET_RX_SUCCESS: no congestion
2180 * NET_RX_DROP: packet was dropped
2182 int netif_receive_skb(struct sk_buff *skb)
2184 struct packet_type *ptype, *pt_prev;
2185 struct net_device *orig_dev;
2186 struct net_device *null_or_orig;
2187 int ret = NET_RX_DROP;
2190 /* if we've gotten here through NAPI, check netpoll */
2191 if (netpoll_receive_skb(skb))
2194 if (!skb->tstamp.tv64)
2198 skb->iif = skb->dev->ifindex;
2200 null_or_orig = NULL;
2201 orig_dev = skb->dev;
2202 if (orig_dev->master) {
2203 if (skb_bond_should_drop(skb))
2204 null_or_orig = orig_dev; /* deliver only exact match */
2206 skb->dev = orig_dev->master;
2209 __get_cpu_var(netdev_rx_stat).total++;
2211 skb_reset_network_header(skb);
2212 skb_reset_transport_header(skb);
2213 skb->mac_len = skb->network_header - skb->mac_header;
2219 /* Don't receive packets in an exiting network namespace */
2220 if (!net_alive(dev_net(skb->dev)))
2223 #ifdef CONFIG_NET_CLS_ACT
2224 if (skb->tc_verd & TC_NCLS) {
2225 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2230 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2231 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2232 ptype->dev == orig_dev) {
2234 ret = deliver_skb(skb, pt_prev, orig_dev);
2239 #ifdef CONFIG_NET_CLS_ACT
2240 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2246 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2249 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2253 type = skb->protocol;
2254 list_for_each_entry_rcu(ptype,
2255 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2256 if (ptype->type == type &&
2257 (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2258 ptype->dev == orig_dev)) {
2260 ret = deliver_skb(skb, pt_prev, orig_dev);
2266 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2269 /* Jamal, now you will not able to escape explaining
2270 * me how you were going to use this. :-)
2280 /* Network device is going away, flush any packets still pending */
2281 static void flush_backlog(void *arg)
2283 struct net_device *dev = arg;
2284 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2285 struct sk_buff *skb, *tmp;
2287 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2288 if (skb->dev == dev) {
2289 __skb_unlink(skb, &queue->input_pkt_queue);
2294 static int process_backlog(struct napi_struct *napi, int quota)
2297 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2298 unsigned long start_time = jiffies;
2300 napi->weight = weight_p;
2302 struct sk_buff *skb;
2304 local_irq_disable();
2305 skb = __skb_dequeue(&queue->input_pkt_queue);
2307 __napi_complete(napi);
2313 netif_receive_skb(skb);
2314 } while (++work < quota && jiffies == start_time);
2320 * __napi_schedule - schedule for receive
2321 * @n: entry to schedule
2323 * The entry's receive function will be scheduled to run
2325 void __napi_schedule(struct napi_struct *n)
2327 unsigned long flags;
2329 local_irq_save(flags);
2330 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2331 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2332 local_irq_restore(flags);
2334 EXPORT_SYMBOL(__napi_schedule);
2337 static void net_rx_action(struct softirq_action *h)
2339 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2340 unsigned long start_time = jiffies;
2341 int budget = netdev_budget;
2344 local_irq_disable();
2346 while (!list_empty(list)) {
2347 struct napi_struct *n;
2350 /* If softirq window is exhuasted then punt.
2352 * Note that this is a slight policy change from the
2353 * previous NAPI code, which would allow up to 2
2354 * jiffies to pass before breaking out. The test
2355 * used to be "jiffies - start_time > 1".
2357 if (unlikely(budget <= 0 || jiffies != start_time))
2362 /* Even though interrupts have been re-enabled, this
2363 * access is safe because interrupts can only add new
2364 * entries to the tail of this list, and only ->poll()
2365 * calls can remove this head entry from the list.
2367 n = list_entry(list->next, struct napi_struct, poll_list);
2369 have = netpoll_poll_lock(n);
2373 /* This NAPI_STATE_SCHED test is for avoiding a race
2374 * with netpoll's poll_napi(). Only the entity which
2375 * obtains the lock and sees NAPI_STATE_SCHED set will
2376 * actually make the ->poll() call. Therefore we avoid
2377 * accidently calling ->poll() when NAPI is not scheduled.
2380 if (test_bit(NAPI_STATE_SCHED, &n->state))
2381 work = n->poll(n, weight);
2383 WARN_ON_ONCE(work > weight);
2387 local_irq_disable();
2389 /* Drivers must not modify the NAPI state if they
2390 * consume the entire weight. In such cases this code
2391 * still "owns" the NAPI instance and therefore can
2392 * move the instance around on the list at-will.
2394 if (unlikely(work == weight)) {
2395 if (unlikely(napi_disable_pending(n)))
2398 list_move_tail(&n->poll_list, list);
2401 netpoll_poll_unlock(have);
2406 #ifdef CONFIG_NET_DMA
2408 * There may not be any more sk_buffs coming right now, so push
2409 * any pending DMA copies to hardware
2411 if (!cpus_empty(net_dma.channel_mask)) {
2413 for_each_cpu_mask_nr(chan_idx, net_dma.channel_mask) {
2414 struct dma_chan *chan = net_dma.channels[chan_idx];
2416 dma_async_memcpy_issue_pending(chan);
2424 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2425 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2429 static gifconf_func_t * gifconf_list [NPROTO];
2432 * register_gifconf - register a SIOCGIF handler
2433 * @family: Address family
2434 * @gifconf: Function handler
2436 * Register protocol dependent address dumping routines. The handler
2437 * that is passed must not be freed or reused until it has been replaced
2438 * by another handler.
2440 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2442 if (family >= NPROTO)
2444 gifconf_list[family] = gifconf;
2450 * Map an interface index to its name (SIOCGIFNAME)
2454 * We need this ioctl for efficient implementation of the
2455 * if_indextoname() function required by the IPv6 API. Without
2456 * it, we would have to search all the interfaces to find a
2460 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2462 struct net_device *dev;
2466 * Fetch the caller's info block.
2469 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2472 read_lock(&dev_base_lock);
2473 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2475 read_unlock(&dev_base_lock);
2479 strcpy(ifr.ifr_name, dev->name);
2480 read_unlock(&dev_base_lock);
2482 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2488 * Perform a SIOCGIFCONF call. This structure will change
2489 * size eventually, and there is nothing I can do about it.
2490 * Thus we will need a 'compatibility mode'.
2493 static int dev_ifconf(struct net *net, char __user *arg)
2496 struct net_device *dev;
2503 * Fetch the caller's info block.
2506 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2513 * Loop over the interfaces, and write an info block for each.
2517 for_each_netdev(net, dev) {
2518 for (i = 0; i < NPROTO; i++) {
2519 if (gifconf_list[i]) {
2522 done = gifconf_list[i](dev, NULL, 0);
2524 done = gifconf_list[i](dev, pos + total,
2534 * All done. Write the updated control block back to the caller.
2536 ifc.ifc_len = total;
2539 * Both BSD and Solaris return 0 here, so we do too.
2541 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2544 #ifdef CONFIG_PROC_FS
2546 * This is invoked by the /proc filesystem handler to display a device
2549 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2550 __acquires(dev_base_lock)
2552 struct net *net = seq_file_net(seq);
2554 struct net_device *dev;
2556 read_lock(&dev_base_lock);
2558 return SEQ_START_TOKEN;
2561 for_each_netdev(net, dev)
2568 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2570 struct net *net = seq_file_net(seq);
2572 return v == SEQ_START_TOKEN ?
2573 first_net_device(net) : next_net_device((struct net_device *)v);
2576 void dev_seq_stop(struct seq_file *seq, void *v)
2577 __releases(dev_base_lock)
2579 read_unlock(&dev_base_lock);
2582 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2584 struct net_device_stats *stats = dev->get_stats(dev);
2586 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2587 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2588 dev->name, stats->rx_bytes, stats->rx_packets,
2590 stats->rx_dropped + stats->rx_missed_errors,
2591 stats->rx_fifo_errors,
2592 stats->rx_length_errors + stats->rx_over_errors +
2593 stats->rx_crc_errors + stats->rx_frame_errors,
2594 stats->rx_compressed, stats->multicast,
2595 stats->tx_bytes, stats->tx_packets,
2596 stats->tx_errors, stats->tx_dropped,
2597 stats->tx_fifo_errors, stats->collisions,
2598 stats->tx_carrier_errors +
2599 stats->tx_aborted_errors +
2600 stats->tx_window_errors +
2601 stats->tx_heartbeat_errors,
2602 stats->tx_compressed);
2606 * Called from the PROCfs module. This now uses the new arbitrary sized
2607 * /proc/net interface to create /proc/net/dev
2609 static int dev_seq_show(struct seq_file *seq, void *v)
2611 if (v == SEQ_START_TOKEN)
2612 seq_puts(seq, "Inter-| Receive "
2614 " face |bytes packets errs drop fifo frame "
2615 "compressed multicast|bytes packets errs "
2616 "drop fifo colls carrier compressed\n");
2618 dev_seq_printf_stats(seq, v);
2622 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2624 struct netif_rx_stats *rc = NULL;
2626 while (*pos < nr_cpu_ids)
2627 if (cpu_online(*pos)) {
2628 rc = &per_cpu(netdev_rx_stat, *pos);
2635 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2637 return softnet_get_online(pos);
2640 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2643 return softnet_get_online(pos);
2646 static void softnet_seq_stop(struct seq_file *seq, void *v)
2650 static int softnet_seq_show(struct seq_file *seq, void *v)
2652 struct netif_rx_stats *s = v;
2654 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
2655 s->total, s->dropped, s->time_squeeze, 0,
2656 0, 0, 0, 0, /* was fastroute */
2661 static const struct seq_operations dev_seq_ops = {
2662 .start = dev_seq_start,
2663 .next = dev_seq_next,
2664 .stop = dev_seq_stop,
2665 .show = dev_seq_show,
2668 static int dev_seq_open(struct inode *inode, struct file *file)
2670 return seq_open_net(inode, file, &dev_seq_ops,
2671 sizeof(struct seq_net_private));
2674 static const struct file_operations dev_seq_fops = {
2675 .owner = THIS_MODULE,
2676 .open = dev_seq_open,
2678 .llseek = seq_lseek,
2679 .release = seq_release_net,
2682 static const struct seq_operations softnet_seq_ops = {
2683 .start = softnet_seq_start,
2684 .next = softnet_seq_next,
2685 .stop = softnet_seq_stop,
2686 .show = softnet_seq_show,
2689 static int softnet_seq_open(struct inode *inode, struct file *file)
2691 return seq_open(file, &softnet_seq_ops);
2694 static const struct file_operations softnet_seq_fops = {
2695 .owner = THIS_MODULE,
2696 .open = softnet_seq_open,
2698 .llseek = seq_lseek,
2699 .release = seq_release,
2702 static void *ptype_get_idx(loff_t pos)
2704 struct packet_type *pt = NULL;
2708 list_for_each_entry_rcu(pt, &ptype_all, list) {
2714 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
2715 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
2724 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
2728 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
2731 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2733 struct packet_type *pt;
2734 struct list_head *nxt;
2738 if (v == SEQ_START_TOKEN)
2739 return ptype_get_idx(0);
2742 nxt = pt->list.next;
2743 if (pt->type == htons(ETH_P_ALL)) {
2744 if (nxt != &ptype_all)
2747 nxt = ptype_base[0].next;
2749 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
2751 while (nxt == &ptype_base[hash]) {
2752 if (++hash >= PTYPE_HASH_SIZE)
2754 nxt = ptype_base[hash].next;
2757 return list_entry(nxt, struct packet_type, list);
2760 static void ptype_seq_stop(struct seq_file *seq, void *v)
2766 static void ptype_seq_decode(struct seq_file *seq, void *sym)
2768 #ifdef CONFIG_KALLSYMS
2769 unsigned long offset = 0, symsize;
2770 const char *symname;
2774 symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset,
2781 modname = delim = "";
2782 seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim,
2788 seq_printf(seq, "[%p]", sym);
2791 static int ptype_seq_show(struct seq_file *seq, void *v)
2793 struct packet_type *pt = v;
2795 if (v == SEQ_START_TOKEN)
2796 seq_puts(seq, "Type Device Function\n");
2797 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
2798 if (pt->type == htons(ETH_P_ALL))
2799 seq_puts(seq, "ALL ");
2801 seq_printf(seq, "%04x", ntohs(pt->type));
2803 seq_printf(seq, " %-8s ",
2804 pt->dev ? pt->dev->name : "");
2805 ptype_seq_decode(seq, pt->func);
2806 seq_putc(seq, '\n');
2812 static const struct seq_operations ptype_seq_ops = {
2813 .start = ptype_seq_start,
2814 .next = ptype_seq_next,
2815 .stop = ptype_seq_stop,
2816 .show = ptype_seq_show,
2819 static int ptype_seq_open(struct inode *inode, struct file *file)
2821 return seq_open_net(inode, file, &ptype_seq_ops,
2822 sizeof(struct seq_net_private));
2825 static const struct file_operations ptype_seq_fops = {
2826 .owner = THIS_MODULE,
2827 .open = ptype_seq_open,
2829 .llseek = seq_lseek,
2830 .release = seq_release_net,
2834 static int __net_init dev_proc_net_init(struct net *net)
2838 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
2840 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
2842 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
2845 if (wext_proc_init(net))
2851 proc_net_remove(net, "ptype");
2853 proc_net_remove(net, "softnet_stat");
2855 proc_net_remove(net, "dev");
2859 static void __net_exit dev_proc_net_exit(struct net *net)
2861 wext_proc_exit(net);
2863 proc_net_remove(net, "ptype");
2864 proc_net_remove(net, "softnet_stat");
2865 proc_net_remove(net, "dev");
2868 static struct pernet_operations __net_initdata dev_proc_ops = {
2869 .init = dev_proc_net_init,
2870 .exit = dev_proc_net_exit,
2873 static int __init dev_proc_init(void)
2875 return register_pernet_subsys(&dev_proc_ops);
2878 #define dev_proc_init() 0
2879 #endif /* CONFIG_PROC_FS */
2883 * netdev_set_master - set up master/slave pair
2884 * @slave: slave device
2885 * @master: new master device
2887 * Changes the master device of the slave. Pass %NULL to break the
2888 * bonding. The caller must hold the RTNL semaphore. On a failure
2889 * a negative errno code is returned. On success the reference counts
2890 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
2891 * function returns zero.
2893 int netdev_set_master(struct net_device *slave, struct net_device *master)
2895 struct net_device *old = slave->master;
2905 slave->master = master;
2913 slave->flags |= IFF_SLAVE;
2915 slave->flags &= ~IFF_SLAVE;
2917 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
2921 static int __dev_set_promiscuity(struct net_device *dev, int inc)
2923 unsigned short old_flags = dev->flags;
2927 dev->flags |= IFF_PROMISC;
2928 dev->promiscuity += inc;
2929 if (dev->promiscuity == 0) {
2932 * If inc causes overflow, untouch promisc and return error.
2935 dev->flags &= ~IFF_PROMISC;
2937 dev->promiscuity -= inc;
2938 printk(KERN_WARNING "%s: promiscuity touches roof, "
2939 "set promiscuity failed, promiscuity feature "
2940 "of device might be broken.\n", dev->name);
2944 if (dev->flags != old_flags) {
2945 printk(KERN_INFO "device %s %s promiscuous mode\n",
2946 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
2949 audit_log(current->audit_context, GFP_ATOMIC,
2950 AUDIT_ANOM_PROMISCUOUS,
2951 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
2952 dev->name, (dev->flags & IFF_PROMISC),
2953 (old_flags & IFF_PROMISC),
2954 audit_get_loginuid(current),
2955 current->uid, current->gid,
2956 audit_get_sessionid(current));
2958 if (dev->change_rx_flags)
2959 dev->change_rx_flags(dev, IFF_PROMISC);
2965 * dev_set_promiscuity - update promiscuity count on a device
2969 * Add or remove promiscuity from a device. While the count in the device
2970 * remains above zero the interface remains promiscuous. Once it hits zero
2971 * the device reverts back to normal filtering operation. A negative inc
2972 * value is used to drop promiscuity on the device.
2973 * Return 0 if successful or a negative errno code on error.
2975 int dev_set_promiscuity(struct net_device *dev, int inc)
2977 unsigned short old_flags = dev->flags;
2980 err = __dev_set_promiscuity(dev, inc);
2983 if (dev->flags != old_flags)
2984 dev_set_rx_mode(dev);
2989 * dev_set_allmulti - update allmulti count on a device
2993 * Add or remove reception of all multicast frames to a device. While the
2994 * count in the device remains above zero the interface remains listening
2995 * to all interfaces. Once it hits zero the device reverts back to normal
2996 * filtering operation. A negative @inc value is used to drop the counter
2997 * when releasing a resource needing all multicasts.
2998 * Return 0 if successful or a negative errno code on error.
3001 int dev_set_allmulti(struct net_device *dev, int inc)
3003 unsigned short old_flags = dev->flags;
3007 dev->flags |= IFF_ALLMULTI;
3008 dev->allmulti += inc;
3009 if (dev->allmulti == 0) {
3012 * If inc causes overflow, untouch allmulti and return error.
3015 dev->flags &= ~IFF_ALLMULTI;
3017 dev->allmulti -= inc;
3018 printk(KERN_WARNING "%s: allmulti touches roof, "
3019 "set allmulti failed, allmulti feature of "
3020 "device might be broken.\n", dev->name);
3024 if (dev->flags ^ old_flags) {
3025 if (dev->change_rx_flags)
3026 dev->change_rx_flags(dev, IFF_ALLMULTI);
3027 dev_set_rx_mode(dev);
3033 * Upload unicast and multicast address lists to device and
3034 * configure RX filtering. When the device doesn't support unicast
3035 * filtering it is put in promiscuous mode while unicast addresses
3038 void __dev_set_rx_mode(struct net_device *dev)
3040 /* dev_open will call this function so the list will stay sane. */
3041 if (!(dev->flags&IFF_UP))
3044 if (!netif_device_present(dev))
3047 if (dev->set_rx_mode)
3048 dev->set_rx_mode(dev);
3050 /* Unicast addresses changes may only happen under the rtnl,
3051 * therefore calling __dev_set_promiscuity here is safe.
3053 if (dev->uc_count > 0 && !dev->uc_promisc) {
3054 __dev_set_promiscuity(dev, 1);
3055 dev->uc_promisc = 1;
3056 } else if (dev->uc_count == 0 && dev->uc_promisc) {
3057 __dev_set_promiscuity(dev, -1);
3058 dev->uc_promisc = 0;
3061 if (dev->set_multicast_list)
3062 dev->set_multicast_list(dev);
3066 void dev_set_rx_mode(struct net_device *dev)
3068 netif_addr_lock_bh(dev);
3069 __dev_set_rx_mode(dev);
3070 netif_addr_unlock_bh(dev);
3073 int __dev_addr_delete(struct dev_addr_list **list, int *count,
3074 void *addr, int alen, int glbl)
3076 struct dev_addr_list *da;
3078 for (; (da = *list) != NULL; list = &da->next) {
3079 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3080 alen == da->da_addrlen) {
3082 int old_glbl = da->da_gusers;
3099 int __dev_addr_add(struct dev_addr_list **list, int *count,
3100 void *addr, int alen, int glbl)
3102 struct dev_addr_list *da;
3104 for (da = *list; da != NULL; da = da->next) {
3105 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3106 da->da_addrlen == alen) {
3108 int old_glbl = da->da_gusers;
3118 da = kzalloc(sizeof(*da), GFP_ATOMIC);
3121 memcpy(da->da_addr, addr, alen);
3122 da->da_addrlen = alen;
3124 da->da_gusers = glbl ? 1 : 0;
3132 * dev_unicast_delete - Release secondary unicast address.
3134 * @addr: address to delete
3135 * @alen: length of @addr
3137 * Release reference to a secondary unicast address and remove it
3138 * from the device if the reference count drops to zero.
3140 * The caller must hold the rtnl_mutex.
3142 int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
3148 netif_addr_lock_bh(dev);
3149 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3151 __dev_set_rx_mode(dev);
3152 netif_addr_unlock_bh(dev);
3155 EXPORT_SYMBOL(dev_unicast_delete);
3158 * dev_unicast_add - add a secondary unicast address
3160 * @addr: address to add
3161 * @alen: length of @addr
3163 * Add a secondary unicast address to the device or increase
3164 * the reference count if it already exists.
3166 * The caller must hold the rtnl_mutex.
3168 int dev_unicast_add(struct net_device *dev, void *addr, int alen)
3174 netif_addr_lock_bh(dev);
3175 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3177 __dev_set_rx_mode(dev);
3178 netif_addr_unlock_bh(dev);
3181 EXPORT_SYMBOL(dev_unicast_add);
3183 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3184 struct dev_addr_list **from, int *from_count)
3186 struct dev_addr_list *da, *next;
3190 while (da != NULL) {
3192 if (!da->da_synced) {
3193 err = __dev_addr_add(to, to_count,
3194 da->da_addr, da->da_addrlen, 0);
3199 } else if (da->da_users == 1) {
3200 __dev_addr_delete(to, to_count,
3201 da->da_addr, da->da_addrlen, 0);
3202 __dev_addr_delete(from, from_count,
3203 da->da_addr, da->da_addrlen, 0);
3210 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3211 struct dev_addr_list **from, int *from_count)
3213 struct dev_addr_list *da, *next;
3216 while (da != NULL) {
3218 if (da->da_synced) {
3219 __dev_addr_delete(to, to_count,
3220 da->da_addr, da->da_addrlen, 0);
3222 __dev_addr_delete(from, from_count,
3223 da->da_addr, da->da_addrlen, 0);
3230 * dev_unicast_sync - Synchronize device's unicast list to another device
3231 * @to: destination device
3232 * @from: source device
3234 * Add newly added addresses to the destination device and release
3235 * addresses that have no users left. The source device must be
3236 * locked by netif_tx_lock_bh.
3238 * This function is intended to be called from the dev->set_rx_mode
3239 * function of layered software devices.
3241 int dev_unicast_sync(struct net_device *to, struct net_device *from)
3245 netif_addr_lock_bh(to);
3246 err = __dev_addr_sync(&to->uc_list, &to->uc_count,
3247 &from->uc_list, &from->uc_count);
3249 __dev_set_rx_mode(to);
3250 netif_addr_unlock_bh(to);
3253 EXPORT_SYMBOL(dev_unicast_sync);
3256 * dev_unicast_unsync - Remove synchronized addresses from the destination device
3257 * @to: destination device
3258 * @from: source device
3260 * Remove all addresses that were added to the destination device by
3261 * dev_unicast_sync(). This function is intended to be called from the
3262 * dev->stop function of layered software devices.
3264 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
3266 netif_addr_lock_bh(from);
3267 netif_addr_lock(to);
3269 __dev_addr_unsync(&to->uc_list, &to->uc_count,
3270 &from->uc_list, &from->uc_count);
3271 __dev_set_rx_mode(to);
3273 netif_addr_unlock(to);
3274 netif_addr_unlock_bh(from);
3276 EXPORT_SYMBOL(dev_unicast_unsync);
3278 static void __dev_addr_discard(struct dev_addr_list **list)
3280 struct dev_addr_list *tmp;
3282 while (*list != NULL) {
3285 if (tmp->da_users > tmp->da_gusers)
3286 printk("__dev_addr_discard: address leakage! "
3287 "da_users=%d\n", tmp->da_users);
3292 static void dev_addr_discard(struct net_device *dev)
3294 netif_addr_lock_bh(dev);
3296 __dev_addr_discard(&dev->uc_list);
3299 __dev_addr_discard(&dev->mc_list);
3302 netif_addr_unlock_bh(dev);
3305 unsigned dev_get_flags(const struct net_device *dev)
3309 flags = (dev->flags & ~(IFF_PROMISC |
3314 (dev->gflags & (IFF_PROMISC |
3317 if (netif_running(dev)) {
3318 if (netif_oper_up(dev))
3319 flags |= IFF_RUNNING;
3320 if (netif_carrier_ok(dev))
3321 flags |= IFF_LOWER_UP;
3322 if (netif_dormant(dev))
3323 flags |= IFF_DORMANT;
3329 int dev_change_flags(struct net_device *dev, unsigned flags)
3332 int old_flags = dev->flags;
3337 * Set the flags on our device.
3340 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3341 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3343 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3347 * Load in the correct multicast list now the flags have changed.
3350 if (dev->change_rx_flags && (old_flags ^ flags) & IFF_MULTICAST)
3351 dev->change_rx_flags(dev, IFF_MULTICAST);
3353 dev_set_rx_mode(dev);
3356 * Have we downed the interface. We handle IFF_UP ourselves
3357 * according to user attempts to set it, rather than blindly
3362 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
3363 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3366 dev_set_rx_mode(dev);
3369 if (dev->flags & IFF_UP &&
3370 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3372 call_netdevice_notifiers(NETDEV_CHANGE, dev);
3374 if ((flags ^ dev->gflags) & IFF_PROMISC) {
3375 int inc = (flags & IFF_PROMISC) ? +1 : -1;
3376 dev->gflags ^= IFF_PROMISC;
3377 dev_set_promiscuity(dev, inc);
3380 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3381 is important. Some (broken) drivers set IFF_PROMISC, when
3382 IFF_ALLMULTI is requested not asking us and not reporting.
3384 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3385 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3386 dev->gflags ^= IFF_ALLMULTI;
3387 dev_set_allmulti(dev, inc);
3390 /* Exclude state transition flags, already notified */
3391 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3393 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3398 int dev_set_mtu(struct net_device *dev, int new_mtu)
3402 if (new_mtu == dev->mtu)
3405 /* MTU must be positive. */
3409 if (!netif_device_present(dev))
3413 if (dev->change_mtu)
3414 err = dev->change_mtu(dev, new_mtu);
3417 if (!err && dev->flags & IFF_UP)
3418 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
3422 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3426 if (!dev->set_mac_address)
3428 if (sa->sa_family != dev->type)
3430 if (!netif_device_present(dev))
3432 err = dev->set_mac_address(dev, sa);
3434 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3439 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
3441 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
3444 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3450 case SIOCGIFFLAGS: /* Get interface flags */
3451 ifr->ifr_flags = dev_get_flags(dev);
3454 case SIOCGIFMETRIC: /* Get the metric on the interface
3455 (currently unused) */
3456 ifr->ifr_metric = 0;
3459 case SIOCGIFMTU: /* Get the MTU of a device */
3460 ifr->ifr_mtu = dev->mtu;
3465 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3467 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3468 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3469 ifr->ifr_hwaddr.sa_family = dev->type;
3477 ifr->ifr_map.mem_start = dev->mem_start;
3478 ifr->ifr_map.mem_end = dev->mem_end;
3479 ifr->ifr_map.base_addr = dev->base_addr;
3480 ifr->ifr_map.irq = dev->irq;
3481 ifr->ifr_map.dma = dev->dma;
3482 ifr->ifr_map.port = dev->if_port;
3486 ifr->ifr_ifindex = dev->ifindex;
3490 ifr->ifr_qlen = dev->tx_queue_len;
3494 /* dev_ioctl() should ensure this case
3506 * Perform the SIOCxIFxxx calls, inside rtnl_lock()