2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/seq_file.h>
18 #include <linux/cpu.h>
19 #include <linux/cpuset.h>
20 #include <linux/mempolicy.h>
21 #include <linux/ctype.h>
22 #include <linux/kallsyms.h>
23 #include <linux/memory.h>
30 * The slab_lock protects operations on the object of a particular
31 * slab and its metadata in the page struct. If the slab lock
32 * has been taken then no allocations nor frees can be performed
33 * on the objects in the slab nor can the slab be added or removed
34 * from the partial or full lists since this would mean modifying
35 * the page_struct of the slab.
37 * The list_lock protects the partial and full list on each node and
38 * the partial slab counter. If taken then no new slabs may be added or
39 * removed from the lists nor make the number of partial slabs be modified.
40 * (Note that the total number of slabs is an atomic value that may be
41 * modified without taking the list lock).
43 * The list_lock is a centralized lock and thus we avoid taking it as
44 * much as possible. As long as SLUB does not have to handle partial
45 * slabs, operations can continue without any centralized lock. F.e.
46 * allocating a long series of objects that fill up slabs does not require
49 * The lock order is sometimes inverted when we are trying to get a slab
50 * off a list. We take the list_lock and then look for a page on the list
51 * to use. While we do that objects in the slabs may be freed. We can
52 * only operate on the slab if we have also taken the slab_lock. So we use
53 * a slab_trylock() on the slab. If trylock was successful then no frees
54 * can occur anymore and we can use the slab for allocations etc. If the
55 * slab_trylock() does not succeed then frees are in progress in the slab and
56 * we must stay away from it for a while since we may cause a bouncing
57 * cacheline if we try to acquire the lock. So go onto the next slab.
58 * If all pages are busy then we may allocate a new slab instead of reusing
59 * a partial slab. A new slab has noone operating on it and thus there is
60 * no danger of cacheline contention.
62 * Interrupts are disabled during allocation and deallocation in order to
63 * make the slab allocator safe to use in the context of an irq. In addition
64 * interrupts are disabled to ensure that the processor does not change
65 * while handling per_cpu slabs, due to kernel preemption.
67 * SLUB assigns one slab for allocation to each processor.
68 * Allocations only occur from these slabs called cpu slabs.
70 * Slabs with free elements are kept on a partial list and during regular
71 * operations no list for full slabs is used. If an object in a full slab is
72 * freed then the slab will show up again on the partial lists.
73 * We track full slabs for debugging purposes though because otherwise we
74 * cannot scan all objects.
76 * Slabs are freed when they become empty. Teardown and setup is
77 * minimal so we rely on the page allocators per cpu caches for
78 * fast frees and allocs.
80 * Overloading of page flags that are otherwise used for LRU management.
82 * PageActive The slab is frozen and exempt from list processing.
83 * This means that the slab is dedicated to a purpose
84 * such as satisfying allocations for a specific
85 * processor. Objects may be freed in the slab while
86 * it is frozen but slab_free will then skip the usual
87 * list operations. It is up to the processor holding
88 * the slab to integrate the slab into the slab lists
89 * when the slab is no longer needed.
91 * One use of this flag is to mark slabs that are
92 * used for allocations. Then such a slab becomes a cpu
93 * slab. The cpu slab may be equipped with an additional
94 * freelist that allows lockless access to
95 * free objects in addition to the regular freelist
96 * that requires the slab lock.
98 * PageError Slab requires special handling due to debug
99 * options set. This moves slab handling out of
100 * the fast path and disables lockless freelists.
103 #define FROZEN (1 << PG_active)
105 #ifdef CONFIG_SLUB_DEBUG
106 #define SLABDEBUG (1 << PG_error)
111 static inline int SlabFrozen(struct page *page)
113 return page->flags & FROZEN;
116 static inline void SetSlabFrozen(struct page *page)
118 page->flags |= FROZEN;
121 static inline void ClearSlabFrozen(struct page *page)
123 page->flags &= ~FROZEN;
126 static inline int SlabDebug(struct page *page)
128 return page->flags & SLABDEBUG;
131 static inline void SetSlabDebug(struct page *page)
133 page->flags |= SLABDEBUG;
136 static inline void ClearSlabDebug(struct page *page)
138 page->flags &= ~SLABDEBUG;
142 * Issues still to be resolved:
144 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
146 * - Variable sizing of the per node arrays
149 /* Enable to test recovery from slab corruption on boot */
150 #undef SLUB_RESILIENCY_TEST
153 * Mininum number of partial slabs. These will be left on the partial
154 * lists even if they are empty. kmem_cache_shrink may reclaim them.
156 #define MIN_PARTIAL 5
159 * Maximum number of desirable partial slabs.
160 * The existence of more partial slabs makes kmem_cache_shrink
161 * sort the partial list by the number of objects in the.
163 #define MAX_PARTIAL 10
165 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
166 SLAB_POISON | SLAB_STORE_USER)
169 * Set of flags that will prevent slab merging
171 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
172 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
174 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
177 #ifndef ARCH_KMALLOC_MINALIGN
178 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
181 #ifndef ARCH_SLAB_MINALIGN
182 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
185 /* Internal SLUB flags */
186 #define __OBJECT_POISON 0x80000000 /* Poison object */
187 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
189 /* Not all arches define cache_line_size */
190 #ifndef cache_line_size
191 #define cache_line_size() L1_CACHE_BYTES
194 static int kmem_size = sizeof(struct kmem_cache);
197 static struct notifier_block slab_notifier;
201 DOWN, /* No slab functionality available */
202 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
203 UP, /* Everything works but does not show up in sysfs */
207 /* A list of all slab caches on the system */
208 static DECLARE_RWSEM(slub_lock);
209 static LIST_HEAD(slab_caches);
212 * Tracking user of a slab.
215 void *addr; /* Called from address */
216 int cpu; /* Was running on cpu */
217 int pid; /* Pid context */
218 unsigned long when; /* When did the operation occur */
221 enum track_item { TRACK_ALLOC, TRACK_FREE };
223 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
224 static int sysfs_slab_add(struct kmem_cache *);
225 static int sysfs_slab_alias(struct kmem_cache *, const char *);
226 static void sysfs_slab_remove(struct kmem_cache *);
229 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
230 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
232 static inline void sysfs_slab_remove(struct kmem_cache *s)
239 static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
241 #ifdef CONFIG_SLUB_STATS
246 /********************************************************************
247 * Core slab cache functions
248 *******************************************************************/
250 int slab_is_available(void)
252 return slab_state >= UP;
255 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
258 return s->node[node];
260 return &s->local_node;
264 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
267 return s->cpu_slab[cpu];
273 /* Verify that a pointer has an address that is valid within a slab page */
274 static inline int check_valid_pointer(struct kmem_cache *s,
275 struct page *page, const void *object)
282 base = page_address(page);
283 if (object < base || object >= base + page->objects * s->size ||
284 (object - base) % s->size) {
292 * Slow version of get and set free pointer.
294 * This version requires touching the cache lines of kmem_cache which
295 * we avoid to do in the fast alloc free paths. There we obtain the offset
296 * from the page struct.
298 static inline void *get_freepointer(struct kmem_cache *s, void *object)
300 return *(void **)(object + s->offset);
303 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
305 *(void **)(object + s->offset) = fp;
308 /* Loop over all objects in a slab */
309 #define for_each_object(__p, __s, __addr, __objects) \
310 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
314 #define for_each_free_object(__p, __s, __free) \
315 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
317 /* Determine object index from a given position */
318 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
320 return (p - addr) / s->size;
323 static inline struct kmem_cache_order_objects oo_make(int order,
326 struct kmem_cache_order_objects x = {
327 (order << 16) + (PAGE_SIZE << order) / size
333 static inline int oo_order(struct kmem_cache_order_objects x)
338 static inline int oo_objects(struct kmem_cache_order_objects x)
340 return x.x & ((1 << 16) - 1);
343 #ifdef CONFIG_SLUB_DEBUG
347 #ifdef CONFIG_SLUB_DEBUG_ON
348 static int slub_debug = DEBUG_DEFAULT_FLAGS;
350 static int slub_debug;
353 static char *slub_debug_slabs;
358 static void print_section(char *text, u8 *addr, unsigned int length)
366 for (i = 0; i < length; i++) {
368 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
371 printk(KERN_CONT " %02x", addr[i]);
373 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
375 printk(KERN_CONT " %s\n", ascii);
382 printk(KERN_CONT " ");
386 printk(KERN_CONT " %s\n", ascii);
390 static struct track *get_track(struct kmem_cache *s, void *object,
391 enum track_item alloc)
396 p = object + s->offset + sizeof(void *);
398 p = object + s->inuse;
403 static void set_track(struct kmem_cache *s, void *object,
404 enum track_item alloc, void *addr)
409 p = object + s->offset + sizeof(void *);
411 p = object + s->inuse;
416 p->cpu = smp_processor_id();
417 p->pid = current ? current->pid : -1;
420 memset(p, 0, sizeof(struct track));
423 static void init_tracking(struct kmem_cache *s, void *object)
425 if (!(s->flags & SLAB_STORE_USER))
428 set_track(s, object, TRACK_FREE, NULL);
429 set_track(s, object, TRACK_ALLOC, NULL);
432 static void print_track(const char *s, struct track *t)
437 printk(KERN_ERR "INFO: %s in ", s);
438 __print_symbol("%s", (unsigned long)t->addr);
439 printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
442 static void print_tracking(struct kmem_cache *s, void *object)
444 if (!(s->flags & SLAB_STORE_USER))
447 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
448 print_track("Freed", get_track(s, object, TRACK_FREE));
451 static void print_page_info(struct page *page)
453 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
454 page, page->objects, page->inuse, page->freelist, page->flags);
458 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
464 vsnprintf(buf, sizeof(buf), fmt, args);
466 printk(KERN_ERR "========================================"
467 "=====================================\n");
468 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
469 printk(KERN_ERR "----------------------------------------"
470 "-------------------------------------\n\n");
473 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
479 vsnprintf(buf, sizeof(buf), fmt, args);
481 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
484 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
486 unsigned int off; /* Offset of last byte */
487 u8 *addr = page_address(page);
489 print_tracking(s, p);
491 print_page_info(page);
493 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
494 p, p - addr, get_freepointer(s, p));
497 print_section("Bytes b4", p - 16, 16);
499 print_section("Object", p, min(s->objsize, 128));
501 if (s->flags & SLAB_RED_ZONE)
502 print_section("Redzone", p + s->objsize,
503 s->inuse - s->objsize);
506 off = s->offset + sizeof(void *);
510 if (s->flags & SLAB_STORE_USER)
511 off += 2 * sizeof(struct track);
514 /* Beginning of the filler is the free pointer */
515 print_section("Padding", p + off, s->size - off);
520 static void object_err(struct kmem_cache *s, struct page *page,
521 u8 *object, char *reason)
523 slab_bug(s, "%s", reason);
524 print_trailer(s, page, object);
527 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
533 vsnprintf(buf, sizeof(buf), fmt, args);
535 slab_bug(s, "%s", buf);
536 print_page_info(page);
540 static void init_object(struct kmem_cache *s, void *object, int active)
544 if (s->flags & __OBJECT_POISON) {
545 memset(p, POISON_FREE, s->objsize - 1);
546 p[s->objsize - 1] = POISON_END;
549 if (s->flags & SLAB_RED_ZONE)
550 memset(p + s->objsize,
551 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
552 s->inuse - s->objsize);
555 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
558 if (*start != (u8)value)
566 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
567 void *from, void *to)
569 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
570 memset(from, data, to - from);
573 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
574 u8 *object, char *what,
575 u8 *start, unsigned int value, unsigned int bytes)
580 fault = check_bytes(start, value, bytes);
585 while (end > fault && end[-1] == value)
588 slab_bug(s, "%s overwritten", what);
589 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
590 fault, end - 1, fault[0], value);
591 print_trailer(s, page, object);
593 restore_bytes(s, what, value, fault, end);
601 * Bytes of the object to be managed.
602 * If the freepointer may overlay the object then the free
603 * pointer is the first word of the object.
605 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
608 * object + s->objsize
609 * Padding to reach word boundary. This is also used for Redzoning.
610 * Padding is extended by another word if Redzoning is enabled and
613 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
614 * 0xcc (RED_ACTIVE) for objects in use.
617 * Meta data starts here.
619 * A. Free pointer (if we cannot overwrite object on free)
620 * B. Tracking data for SLAB_STORE_USER
621 * C. Padding to reach required alignment boundary or at mininum
622 * one word if debugging is on to be able to detect writes
623 * before the word boundary.
625 * Padding is done using 0x5a (POISON_INUSE)
628 * Nothing is used beyond s->size.
630 * If slabcaches are merged then the objsize and inuse boundaries are mostly
631 * ignored. And therefore no slab options that rely on these boundaries
632 * may be used with merged slabcaches.
635 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
637 unsigned long off = s->inuse; /* The end of info */
640 /* Freepointer is placed after the object. */
641 off += sizeof(void *);
643 if (s->flags & SLAB_STORE_USER)
644 /* We also have user information there */
645 off += 2 * sizeof(struct track);
650 return check_bytes_and_report(s, page, p, "Object padding",
651 p + off, POISON_INUSE, s->size - off);
654 /* Check the pad bytes at the end of a slab page */
655 static int slab_pad_check(struct kmem_cache *s, struct page *page)
663 if (!(s->flags & SLAB_POISON))
666 start = page_address(page);
667 length = (PAGE_SIZE << compound_order(page));
668 end = start + length;
669 remainder = length % s->size;
673 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
676 while (end > fault && end[-1] == POISON_INUSE)
679 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
680 print_section("Padding", end - remainder, remainder);
682 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
686 static int check_object(struct kmem_cache *s, struct page *page,
687 void *object, int active)
690 u8 *endobject = object + s->objsize;
692 if (s->flags & SLAB_RED_ZONE) {
694 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
696 if (!check_bytes_and_report(s, page, object, "Redzone",
697 endobject, red, s->inuse - s->objsize))
700 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
701 check_bytes_and_report(s, page, p, "Alignment padding",
702 endobject, POISON_INUSE, s->inuse - s->objsize);
706 if (s->flags & SLAB_POISON) {
707 if (!active && (s->flags & __OBJECT_POISON) &&
708 (!check_bytes_and_report(s, page, p, "Poison", p,
709 POISON_FREE, s->objsize - 1) ||
710 !check_bytes_and_report(s, page, p, "Poison",
711 p + s->objsize - 1, POISON_END, 1)))
714 * check_pad_bytes cleans up on its own.
716 check_pad_bytes(s, page, p);
719 if (!s->offset && active)
721 * Object and freepointer overlap. Cannot check
722 * freepointer while object is allocated.
726 /* Check free pointer validity */
727 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
728 object_err(s, page, p, "Freepointer corrupt");
730 * No choice but to zap it and thus loose the remainder
731 * of the free objects in this slab. May cause
732 * another error because the object count is now wrong.
734 set_freepointer(s, p, NULL);
740 static int check_slab(struct kmem_cache *s, struct page *page)
744 VM_BUG_ON(!irqs_disabled());
746 if (!PageSlab(page)) {
747 slab_err(s, page, "Not a valid slab page");
751 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
752 if (page->objects > maxobj) {
753 slab_err(s, page, "objects %u > max %u",
754 s->name, page->objects, maxobj);
757 if (page->inuse > page->objects) {
758 slab_err(s, page, "inuse %u > max %u",
759 s->name, page->inuse, page->objects);
762 /* Slab_pad_check fixes things up after itself */
763 slab_pad_check(s, page);
768 * Determine if a certain object on a page is on the freelist. Must hold the
769 * slab lock to guarantee that the chains are in a consistent state.
771 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
774 void *fp = page->freelist;
776 unsigned long max_objects;
778 while (fp && nr <= page->objects) {
781 if (!check_valid_pointer(s, page, fp)) {
783 object_err(s, page, object,
784 "Freechain corrupt");
785 set_freepointer(s, object, NULL);
788 slab_err(s, page, "Freepointer corrupt");
789 page->freelist = NULL;
790 page->inuse = page->objects;
791 slab_fix(s, "Freelist cleared");
797 fp = get_freepointer(s, object);
801 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
802 if (max_objects > 65535)
805 if (page->objects != max_objects) {
806 slab_err(s, page, "Wrong number of objects. Found %d but "
807 "should be %d", page->objects, max_objects);
808 page->objects = max_objects;
809 slab_fix(s, "Number of objects adjusted.");
811 if (page->inuse != page->objects - nr) {
812 slab_err(s, page, "Wrong object count. Counter is %d but "
813 "counted were %d", page->inuse, page->objects - nr);
814 page->inuse = page->objects - nr;
815 slab_fix(s, "Object count adjusted.");
817 return search == NULL;
820 static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
822 if (s->flags & SLAB_TRACE) {
823 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
825 alloc ? "alloc" : "free",
830 print_section("Object", (void *)object, s->objsize);
837 * Tracking of fully allocated slabs for debugging purposes.
839 static void add_full(struct kmem_cache_node *n, struct page *page)
841 spin_lock(&n->list_lock);
842 list_add(&page->lru, &n->full);
843 spin_unlock(&n->list_lock);
846 static void remove_full(struct kmem_cache *s, struct page *page)
848 struct kmem_cache_node *n;
850 if (!(s->flags & SLAB_STORE_USER))
853 n = get_node(s, page_to_nid(page));
855 spin_lock(&n->list_lock);
856 list_del(&page->lru);
857 spin_unlock(&n->list_lock);
860 /* Tracking of the number of slabs for debugging purposes */
861 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
863 struct kmem_cache_node *n = get_node(s, node);
865 return atomic_long_read(&n->nr_slabs);
868 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
870 struct kmem_cache_node *n = get_node(s, node);
873 * May be called early in order to allocate a slab for the
874 * kmem_cache_node structure. Solve the chicken-egg
875 * dilemma by deferring the increment of the count during
876 * bootstrap (see early_kmem_cache_node_alloc).
878 if (!NUMA_BUILD || n) {
879 atomic_long_inc(&n->nr_slabs);
880 atomic_long_add(objects, &n->total_objects);
883 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
885 struct kmem_cache_node *n = get_node(s, node);
887 atomic_long_dec(&n->nr_slabs);
888 atomic_long_sub(objects, &n->total_objects);
891 /* Object debug checks for alloc/free paths */
892 static void setup_object_debug(struct kmem_cache *s, struct page *page,
895 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
898 init_object(s, object, 0);
899 init_tracking(s, object);
902 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
903 void *object, void *addr)
905 if (!check_slab(s, page))
908 if (!on_freelist(s, page, object)) {
909 object_err(s, page, object, "Object already allocated");
913 if (!check_valid_pointer(s, page, object)) {
914 object_err(s, page, object, "Freelist Pointer check fails");
918 if (!check_object(s, page, object, 0))
921 /* Success perform special debug activities for allocs */
922 if (s->flags & SLAB_STORE_USER)
923 set_track(s, object, TRACK_ALLOC, addr);
924 trace(s, page, object, 1);
925 init_object(s, object, 1);
929 if (PageSlab(page)) {
931 * If this is a slab page then lets do the best we can
932 * to avoid issues in the future. Marking all objects
933 * as used avoids touching the remaining objects.
935 slab_fix(s, "Marking all objects used");
936 page->inuse = page->objects;
937 page->freelist = NULL;
942 static int free_debug_processing(struct kmem_cache *s, struct page *page,
943 void *object, void *addr)
945 if (!check_slab(s, page))
948 if (!check_valid_pointer(s, page, object)) {
949 slab_err(s, page, "Invalid object pointer 0x%p", object);
953 if (on_freelist(s, page, object)) {
954 object_err(s, page, object, "Object already free");
958 if (!check_object(s, page, object, 1))
961 if (unlikely(s != page->slab)) {
962 if (!PageSlab(page)) {
963 slab_err(s, page, "Attempt to free object(0x%p) "
964 "outside of slab", object);
965 } else if (!page->slab) {
967 "SLUB <none>: no slab for object 0x%p.\n",
971 object_err(s, page, object,
972 "page slab pointer corrupt.");
976 /* Special debug activities for freeing objects */
977 if (!SlabFrozen(page) && !page->freelist)
978 remove_full(s, page);
979 if (s->flags & SLAB_STORE_USER)
980 set_track(s, object, TRACK_FREE, addr);
981 trace(s, page, object, 0);
982 init_object(s, object, 0);
986 slab_fix(s, "Object at 0x%p not freed", object);
990 static int __init setup_slub_debug(char *str)
992 slub_debug = DEBUG_DEFAULT_FLAGS;
993 if (*str++ != '=' || !*str)
995 * No options specified. Switch on full debugging.
1001 * No options but restriction on slabs. This means full
1002 * debugging for slabs matching a pattern.
1009 * Switch off all debugging measures.
1014 * Determine which debug features should be switched on
1016 for (; *str && *str != ','; str++) {
1017 switch (tolower(*str)) {
1019 slub_debug |= SLAB_DEBUG_FREE;
1022 slub_debug |= SLAB_RED_ZONE;
1025 slub_debug |= SLAB_POISON;
1028 slub_debug |= SLAB_STORE_USER;
1031 slub_debug |= SLAB_TRACE;
1034 printk(KERN_ERR "slub_debug option '%c' "
1035 "unknown. skipped\n", *str);
1041 slub_debug_slabs = str + 1;
1046 __setup("slub_debug", setup_slub_debug);
1048 static unsigned long kmem_cache_flags(unsigned long objsize,
1049 unsigned long flags, const char *name,
1050 void (*ctor)(struct kmem_cache *, void *))
1053 * Enable debugging if selected on the kernel commandline.
1055 if (slub_debug && (!slub_debug_slabs ||
1056 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1057 flags |= slub_debug;
1062 static inline void setup_object_debug(struct kmem_cache *s,
1063 struct page *page, void *object) {}
1065 static inline int alloc_debug_processing(struct kmem_cache *s,
1066 struct page *page, void *object, void *addr) { return 0; }
1068 static inline int free_debug_processing(struct kmem_cache *s,
1069 struct page *page, void *object, void *addr) { return 0; }
1071 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1073 static inline int check_object(struct kmem_cache *s, struct page *page,
1074 void *object, int active) { return 1; }
1075 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1076 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1077 unsigned long flags, const char *name,
1078 void (*ctor)(struct kmem_cache *, void *))
1082 #define slub_debug 0
1084 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1086 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1088 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1093 * Slab allocation and freeing
1095 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1096 struct kmem_cache_order_objects oo)
1098 int order = oo_order(oo);
1101 return alloc_pages(flags, order);
1103 return alloc_pages_node(node, flags, order);
1106 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1109 struct kmem_cache_order_objects oo = s->oo;
1111 flags |= s->allocflags;
1113 page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
1115 if (unlikely(!page)) {
1118 * Allocation may have failed due to fragmentation.
1119 * Try a lower order alloc if possible
1121 page = alloc_slab_page(flags, node, oo);
1125 stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1127 page->objects = oo_objects(oo);
1128 mod_zone_page_state(page_zone(page),
1129 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1130 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1136 static void setup_object(struct kmem_cache *s, struct page *page,
1139 setup_object_debug(s, page, object);
1140 if (unlikely(s->ctor))
1144 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1151 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1153 page = allocate_slab(s,
1154 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1158 inc_slabs_node(s, page_to_nid(page), page->objects);
1160 page->flags |= 1 << PG_slab;
1161 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1162 SLAB_STORE_USER | SLAB_TRACE))
1165 start = page_address(page);
1167 if (unlikely(s->flags & SLAB_POISON))
1168 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1171 for_each_object(p, s, start, page->objects) {
1172 setup_object(s, page, last);
1173 set_freepointer(s, last, p);
1176 setup_object(s, page, last);
1177 set_freepointer(s, last, NULL);
1179 page->freelist = start;
1185 static void __free_slab(struct kmem_cache *s, struct page *page)
1187 int order = compound_order(page);
1188 int pages = 1 << order;
1190 if (unlikely(SlabDebug(page))) {
1193 slab_pad_check(s, page);
1194 for_each_object(p, s, page_address(page),
1196 check_object(s, page, p, 0);
1197 ClearSlabDebug(page);
1200 mod_zone_page_state(page_zone(page),
1201 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1202 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1205 __ClearPageSlab(page);
1206 reset_page_mapcount(page);
1207 __free_pages(page, order);
1210 static void rcu_free_slab(struct rcu_head *h)
1214 page = container_of((struct list_head *)h, struct page, lru);
1215 __free_slab(page->slab, page);
1218 static void free_slab(struct kmem_cache *s, struct page *page)
1220 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1222 * RCU free overloads the RCU head over the LRU
1224 struct rcu_head *head = (void *)&page->lru;
1226 call_rcu(head, rcu_free_slab);
1228 __free_slab(s, page);
1231 static void discard_slab(struct kmem_cache *s, struct page *page)
1233 dec_slabs_node(s, page_to_nid(page), page->objects);
1238 * Per slab locking using the pagelock
1240 static __always_inline void slab_lock(struct page *page)
1242 bit_spin_lock(PG_locked, &page->flags);
1245 static __always_inline void slab_unlock(struct page *page)
1247 __bit_spin_unlock(PG_locked, &page->flags);
1250 static __always_inline int slab_trylock(struct page *page)
1254 rc = bit_spin_trylock(PG_locked, &page->flags);
1259 * Management of partially allocated slabs
1261 static void add_partial(struct kmem_cache_node *n,
1262 struct page *page, int tail)
1264 spin_lock(&n->list_lock);
1267 list_add_tail(&page->lru, &n->partial);
1269 list_add(&page->lru, &n->partial);
1270 spin_unlock(&n->list_lock);
1273 static void remove_partial(struct kmem_cache *s,
1276 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1278 spin_lock(&n->list_lock);
1279 list_del(&page->lru);
1281 spin_unlock(&n->list_lock);
1285 * Lock slab and remove from the partial list.
1287 * Must hold list_lock.
1289 static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
1291 if (slab_trylock(page)) {
1292 list_del(&page->lru);
1294 SetSlabFrozen(page);
1301 * Try to allocate a partial slab from a specific node.
1303 static struct page *get_partial_node(struct kmem_cache_node *n)
1308 * Racy check. If we mistakenly see no partial slabs then we
1309 * just allocate an empty slab. If we mistakenly try to get a
1310 * partial slab and there is none available then get_partials()
1313 if (!n || !n->nr_partial)
1316 spin_lock(&n->list_lock);
1317 list_for_each_entry(page, &n->partial, lru)
1318 if (lock_and_freeze_slab(n, page))
1322 spin_unlock(&n->list_lock);
1327 * Get a page from somewhere. Search in increasing NUMA distances.
1329 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1332 struct zonelist *zonelist;
1337 * The defrag ratio allows a configuration of the tradeoffs between
1338 * inter node defragmentation and node local allocations. A lower
1339 * defrag_ratio increases the tendency to do local allocations
1340 * instead of attempting to obtain partial slabs from other nodes.
1342 * If the defrag_ratio is set to 0 then kmalloc() always
1343 * returns node local objects. If the ratio is higher then kmalloc()
1344 * may return off node objects because partial slabs are obtained
1345 * from other nodes and filled up.
1347 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1348 * defrag_ratio = 1000) then every (well almost) allocation will
1349 * first attempt to defrag slab caches on other nodes. This means
1350 * scanning over all nodes to look for partial slabs which may be
1351 * expensive if we do it every time we are trying to find a slab
1352 * with available objects.
1354 if (!s->remote_node_defrag_ratio ||
1355 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1358 zonelist = &NODE_DATA(
1359 slab_node(current->mempolicy))->node_zonelists[gfp_zone(flags)];
1360 for (z = zonelist->zones; *z; z++) {
1361 struct kmem_cache_node *n;
1363 n = get_node(s, zone_to_nid(*z));
1365 if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
1366 n->nr_partial > MIN_PARTIAL) {
1367 page = get_partial_node(n);
1377 * Get a partial page, lock it and return it.
1379 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1382 int searchnode = (node == -1) ? numa_node_id() : node;
1384 page = get_partial_node(get_node(s, searchnode));
1385 if (page || (flags & __GFP_THISNODE))
1388 return get_any_partial(s, flags);
1392 * Move a page back to the lists.
1394 * Must be called with the slab lock held.
1396 * On exit the slab lock will have been dropped.
1398 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1400 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1401 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1403 ClearSlabFrozen(page);
1406 if (page->freelist) {
1407 add_partial(n, page, tail);
1408 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1410 stat(c, DEACTIVATE_FULL);
1411 if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
1416 stat(c, DEACTIVATE_EMPTY);
1417 if (n->nr_partial < MIN_PARTIAL) {
1419 * Adding an empty slab to the partial slabs in order
1420 * to avoid page allocator overhead. This slab needs
1421 * to come after the other slabs with objects in
1422 * so that the others get filled first. That way the
1423 * size of the partial list stays small.
1425 * kmem_cache_shrink can reclaim any empty slabs from the
1428 add_partial(n, page, 1);
1432 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1433 discard_slab(s, page);
1439 * Remove the cpu slab
1441 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1443 struct page *page = c->page;
1447 stat(c, DEACTIVATE_REMOTE_FREES);
1449 * Merge cpu freelist into slab freelist. Typically we get here
1450 * because both freelists are empty. So this is unlikely
1453 while (unlikely(c->freelist)) {
1456 tail = 0; /* Hot objects. Put the slab first */
1458 /* Retrieve object from cpu_freelist */
1459 object = c->freelist;
1460 c->freelist = c->freelist[c->offset];
1462 /* And put onto the regular freelist */
1463 object[c->offset] = page->freelist;
1464 page->freelist = object;
1468 unfreeze_slab(s, page, tail);
1471 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1473 stat(c, CPUSLAB_FLUSH);
1475 deactivate_slab(s, c);
1481 * Called from IPI handler with interrupts disabled.
1483 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1485 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1487 if (likely(c && c->page))
1491 static void flush_cpu_slab(void *d)
1493 struct kmem_cache *s = d;
1495 __flush_cpu_slab(s, smp_processor_id());
1498 static void flush_all(struct kmem_cache *s)
1501 on_each_cpu(flush_cpu_slab, s, 1, 1);
1503 unsigned long flags;
1505 local_irq_save(flags);
1507 local_irq_restore(flags);
1512 * Check if the objects in a per cpu structure fit numa
1513 * locality expectations.
1515 static inline int node_match(struct kmem_cache_cpu *c, int node)
1518 if (node != -1 && c->node != node)
1525 * Slow path. The lockless freelist is empty or we need to perform
1528 * Interrupts are disabled.
1530 * Processing is still very fast if new objects have been freed to the
1531 * regular freelist. In that case we simply take over the regular freelist
1532 * as the lockless freelist and zap the regular freelist.
1534 * If that is not working then we fall back to the partial lists. We take the
1535 * first element of the freelist as the object to allocate now and move the
1536 * rest of the freelist to the lockless freelist.
1538 * And if we were unable to get a new slab from the partial slab lists then
1539 * we need to allocate a new slab. This is the slowest path since it involves
1540 * a call to the page allocator and the setup of a new slab.
1542 static void *__slab_alloc(struct kmem_cache *s,
1543 gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
1548 /* We handle __GFP_ZERO in the caller */
1549 gfpflags &= ~__GFP_ZERO;
1555 if (unlikely(!node_match(c, node)))
1558 stat(c, ALLOC_REFILL);
1561 object = c->page->freelist;
1562 if (unlikely(!object))
1564 if (unlikely(SlabDebug(c->page)))
1567 c->freelist = object[c->offset];
1568 c->page->inuse = c->page->objects;
1569 c->page->freelist = NULL;
1570 c->node = page_to_nid(c->page);
1572 slab_unlock(c->page);
1573 stat(c, ALLOC_SLOWPATH);
1577 deactivate_slab(s, c);
1580 new = get_partial(s, gfpflags, node);
1583 stat(c, ALLOC_FROM_PARTIAL);
1587 if (gfpflags & __GFP_WAIT)
1590 new = new_slab(s, gfpflags, node);
1592 if (gfpflags & __GFP_WAIT)
1593 local_irq_disable();
1596 c = get_cpu_slab(s, smp_processor_id());
1597 stat(c, ALLOC_SLAB);
1607 if (!alloc_debug_processing(s, c->page, object, addr))
1611 c->page->freelist = object[c->offset];
1617 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1618 * have the fastpath folded into their functions. So no function call
1619 * overhead for requests that can be satisfied on the fastpath.
1621 * The fastpath works by first checking if the lockless freelist can be used.
1622 * If not then __slab_alloc is called for slow processing.
1624 * Otherwise we can simply pick the next object from the lockless free list.
1626 static __always_inline void *slab_alloc(struct kmem_cache *s,
1627 gfp_t gfpflags, int node, void *addr)
1630 struct kmem_cache_cpu *c;
1631 unsigned long flags;
1633 local_irq_save(flags);
1634 c = get_cpu_slab(s, smp_processor_id());
1635 if (unlikely(!c->freelist || !node_match(c, node)))
1637 object = __slab_alloc(s, gfpflags, node, addr, c);
1640 object = c->freelist;
1641 c->freelist = object[c->offset];
1642 stat(c, ALLOC_FASTPATH);
1644 local_irq_restore(flags);
1646 if (unlikely((gfpflags & __GFP_ZERO) && object))
1647 memset(object, 0, c->objsize);
1652 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1654 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1656 EXPORT_SYMBOL(kmem_cache_alloc);
1659 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1661 return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1663 EXPORT_SYMBOL(kmem_cache_alloc_node);
1667 * Slow patch handling. This may still be called frequently since objects
1668 * have a longer lifetime than the cpu slabs in most processing loads.
1670 * So we still attempt to reduce cache line usage. Just take the slab
1671 * lock and free the item. If there is no additional partial page
1672 * handling required then we can return immediately.
1674 static void __slab_free(struct kmem_cache *s, struct page *page,
1675 void *x, void *addr, unsigned int offset)
1678 void **object = (void *)x;
1679 struct kmem_cache_cpu *c;
1681 c = get_cpu_slab(s, raw_smp_processor_id());
1682 stat(c, FREE_SLOWPATH);
1685 if (unlikely(SlabDebug(page)))
1689 prior = object[offset] = page->freelist;
1690 page->freelist = object;
1693 if (unlikely(SlabFrozen(page))) {
1694 stat(c, FREE_FROZEN);
1698 if (unlikely(!page->inuse))
1702 * Objects left in the slab. If it was not on the partial list before
1705 if (unlikely(!prior)) {
1706 add_partial(get_node(s, page_to_nid(page)), page, 1);
1707 stat(c, FREE_ADD_PARTIAL);
1717 * Slab still on the partial list.
1719 remove_partial(s, page);
1720 stat(c, FREE_REMOVE_PARTIAL);
1724 discard_slab(s, page);
1728 if (!free_debug_processing(s, page, x, addr))
1734 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1735 * can perform fastpath freeing without additional function calls.
1737 * The fastpath is only possible if we are freeing to the current cpu slab
1738 * of this processor. This typically the case if we have just allocated
1741 * If fastpath is not possible then fall back to __slab_free where we deal
1742 * with all sorts of special processing.
1744 static __always_inline void slab_free(struct kmem_cache *s,
1745 struct page *page, void *x, void *addr)
1747 void **object = (void *)x;
1748 struct kmem_cache_cpu *c;
1749 unsigned long flags;
1751 local_irq_save(flags);
1752 c = get_cpu_slab(s, smp_processor_id());
1753 debug_check_no_locks_freed(object, c->objsize);
1754 if (likely(page == c->page && c->node >= 0)) {
1755 object[c->offset] = c->freelist;
1756 c->freelist = object;
1757 stat(c, FREE_FASTPATH);
1759 __slab_free(s, page, x, addr, c->offset);
1761 local_irq_restore(flags);
1764 void kmem_cache_free(struct kmem_cache *s, void *x)
1768 page = virt_to_head_page(x);
1770 slab_free(s, page, x, __builtin_return_address(0));
1772 EXPORT_SYMBOL(kmem_cache_free);
1774 /* Figure out on which slab object the object resides */
1775 static struct page *get_object_page(const void *x)
1777 struct page *page = virt_to_head_page(x);
1779 if (!PageSlab(page))
1786 * Object placement in a slab is made very easy because we always start at
1787 * offset 0. If we tune the size of the object to the alignment then we can
1788 * get the required alignment by putting one properly sized object after
1791 * Notice that the allocation order determines the sizes of the per cpu
1792 * caches. Each processor has always one slab available for allocations.
1793 * Increasing the allocation order reduces the number of times that slabs
1794 * must be moved on and off the partial lists and is therefore a factor in
1799 * Mininum / Maximum order of slab pages. This influences locking overhead
1800 * and slab fragmentation. A higher order reduces the number of partial slabs
1801 * and increases the number of allocations possible without having to
1802 * take the list_lock.
1804 static int slub_min_order;
1805 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1806 static int slub_min_objects;
1809 * Merge control. If this is set then no merging of slab caches will occur.
1810 * (Could be removed. This was introduced to pacify the merge skeptics.)
1812 static int slub_nomerge;
1815 * Calculate the order of allocation given an slab object size.
1817 * The order of allocation has significant impact on performance and other
1818 * system components. Generally order 0 allocations should be preferred since
1819 * order 0 does not cause fragmentation in the page allocator. Larger objects
1820 * be problematic to put into order 0 slabs because there may be too much
1821 * unused space left. We go to a higher order if more than 1/8th of the slab
1824 * In order to reach satisfactory performance we must ensure that a minimum
1825 * number of objects is in one slab. Otherwise we may generate too much
1826 * activity on the partial lists which requires taking the list_lock. This is
1827 * less a concern for large slabs though which are rarely used.
1829 * slub_max_order specifies the order where we begin to stop considering the
1830 * number of objects in a slab as critical. If we reach slub_max_order then
1831 * we try to keep the page order as low as possible. So we accept more waste
1832 * of space in favor of a small page order.
1834 * Higher order allocations also allow the placement of more objects in a
1835 * slab and thereby reduce object handling overhead. If the user has
1836 * requested a higher mininum order then we start with that one instead of
1837 * the smallest order which will fit the object.
1839 static inline int slab_order(int size, int min_objects,
1840 int max_order, int fract_leftover)
1844 int min_order = slub_min_order;
1846 if ((PAGE_SIZE << min_order) / size > 65535)
1847 return get_order(size * 65535) - 1;
1849 for (order = max(min_order,
1850 fls(min_objects * size - 1) - PAGE_SHIFT);
1851 order <= max_order; order++) {
1853 unsigned long slab_size = PAGE_SIZE << order;
1855 if (slab_size < min_objects * size)
1858 rem = slab_size % size;
1860 if (rem <= slab_size / fract_leftover)
1868 static inline int calculate_order(int size)
1875 * Attempt to find best configuration for a slab. This
1876 * works by first attempting to generate a layout with
1877 * the best configuration and backing off gradually.
1879 * First we reduce the acceptable waste in a slab. Then
1880 * we reduce the minimum objects required in a slab.
1882 min_objects = slub_min_objects;
1884 min_objects = 4 * (fls(nr_cpu_ids) + 1);
1885 while (min_objects > 1) {
1887 while (fraction >= 4) {
1888 order = slab_order(size, min_objects,
1889 slub_max_order, fraction);
1890 if (order <= slub_max_order)
1898 * We were unable to place multiple objects in a slab. Now
1899 * lets see if we can place a single object there.
1901 order = slab_order(size, 1, slub_max_order, 1);
1902 if (order <= slub_max_order)
1906 * Doh this slab cannot be placed using slub_max_order.
1908 order = slab_order(size, 1, MAX_ORDER, 1);
1909 if (order <= MAX_ORDER)
1915 * Figure out what the alignment of the objects will be.
1917 static unsigned long calculate_alignment(unsigned long flags,
1918 unsigned long align, unsigned long size)
1921 * If the user wants hardware cache aligned objects then follow that
1922 * suggestion if the object is sufficiently large.
1924 * The hardware cache alignment cannot override the specified
1925 * alignment though. If that is greater then use it.
1927 if (flags & SLAB_HWCACHE_ALIGN) {
1928 unsigned long ralign = cache_line_size();
1929 while (size <= ralign / 2)
1931 align = max(align, ralign);
1934 if (align < ARCH_SLAB_MINALIGN)
1935 align = ARCH_SLAB_MINALIGN;
1937 return ALIGN(align, sizeof(void *));
1940 static void init_kmem_cache_cpu(struct kmem_cache *s,
1941 struct kmem_cache_cpu *c)
1946 c->offset = s->offset / sizeof(void *);
1947 c->objsize = s->objsize;
1948 #ifdef CONFIG_SLUB_STATS
1949 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
1953 static void init_kmem_cache_node(struct kmem_cache_node *n)
1956 spin_lock_init(&n->list_lock);
1957 INIT_LIST_HEAD(&n->partial);
1958 #ifdef CONFIG_SLUB_DEBUG
1959 atomic_long_set(&n->nr_slabs, 0);
1960 INIT_LIST_HEAD(&n->full);
1966 * Per cpu array for per cpu structures.
1968 * The per cpu array places all kmem_cache_cpu structures from one processor
1969 * close together meaning that it becomes possible that multiple per cpu
1970 * structures are contained in one cacheline. This may be particularly
1971 * beneficial for the kmalloc caches.
1973 * A desktop system typically has around 60-80 slabs. With 100 here we are
1974 * likely able to get per cpu structures for all caches from the array defined
1975 * here. We must be able to cover all kmalloc caches during bootstrap.
1977 * If the per cpu array is exhausted then fall back to kmalloc
1978 * of individual cachelines. No sharing is possible then.
1980 #define NR_KMEM_CACHE_CPU 100
1982 static DEFINE_PER_CPU(struct kmem_cache_cpu,
1983 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1985 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1986 static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
1988 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1989 int cpu, gfp_t flags)
1991 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1994 per_cpu(kmem_cache_cpu_free, cpu) =
1995 (void *)c->freelist;
1997 /* Table overflow: So allocate ourselves */
1999 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
2000 flags, cpu_to_node(cpu));
2005 init_kmem_cache_cpu(s, c);
2009 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
2011 if (c < per_cpu(kmem_cache_cpu, cpu) ||
2012 c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
2016 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
2017 per_cpu(kmem_cache_cpu_free, cpu) = c;
2020 static void free_kmem_cache_cpus(struct kmem_cache *s)
2024 for_each_online_cpu(cpu) {
2025 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2028 s->cpu_slab[cpu] = NULL;
2029 free_kmem_cache_cpu(c, cpu);
2034 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2038 for_each_online_cpu(cpu) {
2039 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2044 c = alloc_kmem_cache_cpu(s, cpu, flags);
2046 free_kmem_cache_cpus(s);
2049 s->cpu_slab[cpu] = c;
2055 * Initialize the per cpu array.
2057 static void init_alloc_cpu_cpu(int cpu)
2061 if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
2064 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2065 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2067 cpu_set(cpu, kmem_cach_cpu_free_init_once);
2070 static void __init init_alloc_cpu(void)
2074 for_each_online_cpu(cpu)
2075 init_alloc_cpu_cpu(cpu);
2079 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2080 static inline void init_alloc_cpu(void) {}
2082 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2084 init_kmem_cache_cpu(s, &s->cpu_slab);
2091 * No kmalloc_node yet so do it by hand. We know that this is the first
2092 * slab on the node for this slabcache. There are no concurrent accesses
2095 * Note that this function only works on the kmalloc_node_cache
2096 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2097 * memory on a fresh node that has no slab structures yet.
2099 static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
2103 struct kmem_cache_node *n;
2104 unsigned long flags;
2106 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2108 page = new_slab(kmalloc_caches, gfpflags, node);
2111 if (page_to_nid(page) != node) {
2112 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2114 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2115 "in order to be able to continue\n");
2120 page->freelist = get_freepointer(kmalloc_caches, n);
2122 kmalloc_caches->node[node] = n;
2123 #ifdef CONFIG_SLUB_DEBUG
2124 init_object(kmalloc_caches, n, 1);
2125 init_tracking(kmalloc_caches, n);
2127 init_kmem_cache_node(n);
2128 inc_slabs_node(kmalloc_caches, node, page->objects);
2131 * lockdep requires consistent irq usage for each lock
2132 * so even though there cannot be a race this early in
2133 * the boot sequence, we still disable irqs.
2135 local_irq_save(flags);
2136 add_partial(n, page, 0);
2137 local_irq_restore(flags);
2141 static void free_kmem_cache_nodes(struct kmem_cache *s)
2145 for_each_node_state(node, N_NORMAL_MEMORY) {
2146 struct kmem_cache_node *n = s->node[node];
2147 if (n && n != &s->local_node)
2148 kmem_cache_free(kmalloc_caches, n);
2149 s->node[node] = NULL;
2153 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2158 if (slab_state >= UP)
2159 local_node = page_to_nid(virt_to_page(s));
2163 for_each_node_state(node, N_NORMAL_MEMORY) {
2164 struct kmem_cache_node *n;
2166 if (local_node == node)
2169 if (slab_state == DOWN) {
2170 n = early_kmem_cache_node_alloc(gfpflags,
2174 n = kmem_cache_alloc_node(kmalloc_caches,
2178 free_kmem_cache_nodes(s);
2184 init_kmem_cache_node(n);
2189 static void free_kmem_cache_nodes(struct kmem_cache *s)
2193 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2195 init_kmem_cache_node(&s->local_node);
2201 * calculate_sizes() determines the order and the distribution of data within
2204 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2206 unsigned long flags = s->flags;
2207 unsigned long size = s->objsize;
2208 unsigned long align = s->align;
2212 * Round up object size to the next word boundary. We can only
2213 * place the free pointer at word boundaries and this determines
2214 * the possible location of the free pointer.
2216 size = ALIGN(size, sizeof(void *));
2218 #ifdef CONFIG_SLUB_DEBUG
2220 * Determine if we can poison the object itself. If the user of
2221 * the slab may touch the object after free or before allocation
2222 * then we should never poison the object itself.
2224 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2226 s->flags |= __OBJECT_POISON;
2228 s->flags &= ~__OBJECT_POISON;
2232 * If we are Redzoning then check if there is some space between the
2233 * end of the object and the free pointer. If not then add an
2234 * additional word to have some bytes to store Redzone information.
2236 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2237 size += sizeof(void *);
2241 * With that we have determined the number of bytes in actual use
2242 * by the object. This is the potential offset to the free pointer.
2246 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2249 * Relocate free pointer after the object if it is not
2250 * permitted to overwrite the first word of the object on
2253 * This is the case if we do RCU, have a constructor or
2254 * destructor or are poisoning the objects.
2257 size += sizeof(void *);
2260 #ifdef CONFIG_SLUB_DEBUG
2261 if (flags & SLAB_STORE_USER)
2263 * Need to store information about allocs and frees after
2266 size += 2 * sizeof(struct track);
2268 if (flags & SLAB_RED_ZONE)
2270 * Add some empty padding so that we can catch
2271 * overwrites from earlier objects rather than let
2272 * tracking information or the free pointer be
2273 * corrupted if an user writes before the start
2276 size += sizeof(void *);
2280 * Determine the alignment based on various parameters that the
2281 * user specified and the dynamic determination of cache line size
2284 align = calculate_alignment(flags, align, s->objsize);
2287 * SLUB stores one object immediately after another beginning from
2288 * offset 0. In order to align the objects we have to simply size
2289 * each object to conform to the alignment.
2291 size = ALIGN(size, align);
2293 if (forced_order >= 0)
2294 order = forced_order;
2296 order = calculate_order(size);
2303 s->allocflags |= __GFP_COMP;
2305 if (s->flags & SLAB_CACHE_DMA)
2306 s->allocflags |= SLUB_DMA;
2308 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2309 s->allocflags |= __GFP_RECLAIMABLE;
2312 * Determine the number of objects per slab
2314 s->oo = oo_make(order, size);
2315 s->min = oo_make(get_order(size), size);
2316 if (oo_objects(s->oo) > oo_objects(s->max))
2319 return !!oo_objects(s->oo);
2323 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2324 const char *name, size_t size,
2325 size_t align, unsigned long flags,
2326 void (*ctor)(struct kmem_cache *, void *))
2328 memset(s, 0, kmem_size);
2333 s->flags = kmem_cache_flags(size, flags, name, ctor);
2335 if (!calculate_sizes(s, -1))
2340 s->remote_node_defrag_ratio = 100;
2342 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2345 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2347 free_kmem_cache_nodes(s);
2349 if (flags & SLAB_PANIC)
2350 panic("Cannot create slab %s size=%lu realsize=%u "
2351 "order=%u offset=%u flags=%lx\n",
2352 s->name, (unsigned long)size, s->size, oo_order(s->oo),
2358 * Check if a given pointer is valid
2360 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2364 page = get_object_page(object);
2366 if (!page || s != page->slab)
2367 /* No slab or wrong slab */
2370 if (!check_valid_pointer(s, page, object))
2374 * We could also check if the object is on the slabs freelist.
2375 * But this would be too expensive and it seems that the main
2376 * purpose of kmem_ptr_valid() is to check if the object belongs
2377 * to a certain slab.
2381 EXPORT_SYMBOL(kmem_ptr_validate);
2384 * Determine the size of a slab object
2386 unsigned int kmem_cache_size(struct kmem_cache *s)
2390 EXPORT_SYMBOL(kmem_cache_size);
2392 const char *kmem_cache_name(struct kmem_cache *s)
2396 EXPORT_SYMBOL(kmem_cache_name);
2398 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2401 #ifdef CONFIG_SLUB_DEBUG
2402 void *addr = page_address(page);
2404 DECLARE_BITMAP(map, page->objects);
2406 bitmap_zero(map, page->objects);
2407 slab_err(s, page, "%s", text);
2409 for_each_free_object(p, s, page->freelist)
2410 set_bit(slab_index(p, s, addr), map);
2412 for_each_object(p, s, addr, page->objects) {
2414 if (!test_bit(slab_index(p, s, addr), map)) {
2415 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2417 print_tracking(s, p);
2425 * Attempt to free all partial slabs on a node.
2427 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2429 unsigned long flags;
2430 struct page *page, *h;
2432 spin_lock_irqsave(&n->list_lock, flags);
2433 list_for_each_entry_safe(page, h, &n->partial, lru) {
2435 list_del(&page->lru);
2436 discard_slab(s, page);
2439 list_slab_objects(s, page,
2440 "Objects remaining on kmem_cache_close()");
2443 spin_unlock_irqrestore(&n->list_lock, flags);
2447 * Release all resources used by a slab cache.
2449 static inline int kmem_cache_close(struct kmem_cache *s)
2455 /* Attempt to free all objects */
2456 free_kmem_cache_cpus(s);
2457 for_each_node_state(node, N_NORMAL_MEMORY) {
2458 struct kmem_cache_node *n = get_node(s, node);
2461 if (n->nr_partial || slabs_node(s, node))
2464 free_kmem_cache_nodes(s);
2469 * Close a cache and release the kmem_cache structure
2470 * (must be used for caches created using kmem_cache_create)
2472 void kmem_cache_destroy(struct kmem_cache *s)
2474 down_write(&slub_lock);
2478 up_write(&slub_lock);
2479 if (kmem_cache_close(s)) {
2480 printk(KERN_ERR "SLUB %s: %s called for cache that "
2481 "still has objects.\n", s->name, __func__);
2484 sysfs_slab_remove(s);
2486 up_write(&slub_lock);
2488 EXPORT_SYMBOL(kmem_cache_destroy);
2490 /********************************************************************
2492 *******************************************************************/
2494 struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
2495 EXPORT_SYMBOL(kmalloc_caches);
2497 static int __init setup_slub_min_order(char *str)
2499 get_option(&str, &slub_min_order);
2504 __setup("slub_min_order=", setup_slub_min_order);
2506 static int __init setup_slub_max_order(char *str)
2508 get_option(&str, &slub_max_order);
2513 __setup("slub_max_order=", setup_slub_max_order);
2515 static int __init setup_slub_min_objects(char *str)
2517 get_option(&str, &slub_min_objects);
2522 __setup("slub_min_objects=", setup_slub_min_objects);
2524 static int __init setup_slub_nomerge(char *str)
2530 __setup("slub_nomerge", setup_slub_nomerge);
2532 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2533 const char *name, int size, gfp_t gfp_flags)
2535 unsigned int flags = 0;
2537 if (gfp_flags & SLUB_DMA)
2538 flags = SLAB_CACHE_DMA;
2540 down_write(&slub_lock);
2541 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2545 list_add(&s->list, &slab_caches);
2546 up_write(&slub_lock);
2547 if (sysfs_slab_add(s))
2552 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2555 #ifdef CONFIG_ZONE_DMA
2556 static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
2558 static void sysfs_add_func(struct work_struct *w)
2560 struct kmem_cache *s;
2562 down_write(&slub_lock);
2563 list_for_each_entry(s, &slab_caches, list) {
2564 if (s->flags & __SYSFS_ADD_DEFERRED) {
2565 s->flags &= ~__SYSFS_ADD_DEFERRED;
2569 up_write(&slub_lock);
2572 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2574 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2576 struct kmem_cache *s;
2580 s = kmalloc_caches_dma[index];
2584 /* Dynamically create dma cache */
2585 if (flags & __GFP_WAIT)
2586 down_write(&slub_lock);
2588 if (!down_write_trylock(&slub_lock))
2592 if (kmalloc_caches_dma[index])
2595 realsize = kmalloc_caches[index].objsize;
2596 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2597 (unsigned int)realsize);
2598 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2600 if (!s || !text || !kmem_cache_open(s, flags, text,
2601 realsize, ARCH_KMALLOC_MINALIGN,
2602 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2608 list_add(&s->list, &slab_caches);
2609 kmalloc_caches_dma[index] = s;
2611 schedule_work(&sysfs_add_work);
2614 up_write(&slub_lock);
2616 return kmalloc_caches_dma[index];
2621 * Conversion table for small slabs sizes / 8 to the index in the
2622 * kmalloc array. This is necessary for slabs < 192 since we have non power
2623 * of two cache sizes there. The size of larger slabs can be determined using
2626 static s8 size_index[24] = {
2653 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2659 return ZERO_SIZE_PTR;
2661 index = size_index[(size - 1) / 8];
2663 index = fls(size - 1);
2665 #ifdef CONFIG_ZONE_DMA
2666 if (unlikely((flags & SLUB_DMA)))
2667 return dma_kmalloc_cache(index, flags);
2670 return &kmalloc_caches[index];
2673 void *__kmalloc(size_t size, gfp_t flags)
2675 struct kmem_cache *s;
2677 if (unlikely(size > PAGE_SIZE))
2678 return kmalloc_large(size, flags);
2680 s = get_slab(size, flags);
2682 if (unlikely(ZERO_OR_NULL_PTR(s)))
2685 return slab_alloc(s, flags, -1, __builtin_return_address(0));
2687 EXPORT_SYMBOL(__kmalloc);
2689 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2691 struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2695 return page_address(page);
2701 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2703 struct kmem_cache *s;
2705 if (unlikely(size > PAGE_SIZE))
2706 return kmalloc_large_node(size, flags, node);
2708 s = get_slab(size, flags);
2710 if (unlikely(ZERO_OR_NULL_PTR(s)))
2713 return slab_alloc(s, flags, node, __builtin_return_address(0));
2715 EXPORT_SYMBOL(__kmalloc_node);
2718 size_t ksize(const void *object)
2721 struct kmem_cache *s;
2723 if (unlikely(object == ZERO_SIZE_PTR))
2726 page = virt_to_head_page(object);
2728 if (unlikely(!PageSlab(page)))
2729 return PAGE_SIZE << compound_order(page);
2733 #ifdef CONFIG_SLUB_DEBUG
2735 * Debugging requires use of the padding between object
2736 * and whatever may come after it.
2738 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2743 * If we have the need to store the freelist pointer
2744 * back there or track user information then we can
2745 * only use the space before that information.
2747 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2750 * Else we can use all the padding etc for the allocation
2754 EXPORT_SYMBOL(ksize);
2756 void kfree(const void *x)
2759 void *object = (void *)x;
2761 if (unlikely(ZERO_OR_NULL_PTR(x)))
2764 page = virt_to_head_page(x);
2765 if (unlikely(!PageSlab(page))) {
2769 slab_free(page->slab, page, object, __builtin_return_address(0));
2771 EXPORT_SYMBOL(kfree);
2774 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2775 * the remaining slabs by the number of items in use. The slabs with the
2776 * most items in use come first. New allocations will then fill those up
2777 * and thus they can be removed from the partial lists.
2779 * The slabs with the least items are placed last. This results in them
2780 * being allocated from last increasing the chance that the last objects
2781 * are freed in them.
2783 int kmem_cache_shrink(struct kmem_cache *s)
2787 struct kmem_cache_node *n;
2790 int objects = oo_objects(s->max);
2791 struct list_head *slabs_by_inuse =
2792 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2793 unsigned long flags;
2795 if (!slabs_by_inuse)
2799 for_each_node_state(node, N_NORMAL_MEMORY) {
2800 n = get_node(s, node);
2805 for (i = 0; i < objects; i++)
2806 INIT_LIST_HEAD(slabs_by_inuse + i);
2808 spin_lock_irqsave(&n->list_lock, flags);
2811 * Build lists indexed by the items in use in each slab.
2813 * Note that concurrent frees may occur while we hold the
2814 * list_lock. page->inuse here is the upper limit.
2816 list_for_each_entry_safe(page, t, &n->partial, lru) {
2817 if (!page->inuse && slab_trylock(page)) {
2819 * Must hold slab lock here because slab_free
2820 * may have freed the last object and be
2821 * waiting to release the slab.
2823 list_del(&page->lru);
2826 discard_slab(s, page);
2828 list_move(&page->lru,
2829 slabs_by_inuse + page->inuse);
2834 * Rebuild the partial list with the slabs filled up most
2835 * first and the least used slabs at the end.
2837 for (i = objects - 1; i >= 0; i--)
2838 list_splice(slabs_by_inuse + i, n->partial.prev);
2840 spin_unlock_irqrestore(&n->list_lock, flags);
2843 kfree(slabs_by_inuse);
2846 EXPORT_SYMBOL(kmem_cache_shrink);
2848 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2849 static int slab_mem_going_offline_callback(void *arg)
2851 struct kmem_cache *s;
2853 down_read(&slub_lock);
2854 list_for_each_entry(s, &slab_caches, list)
2855 kmem_cache_shrink(s);
2856 up_read(&slub_lock);
2861 static void slab_mem_offline_callback(void *arg)
2863 struct kmem_cache_node *n;
2864 struct kmem_cache *s;
2865 struct memory_notify *marg = arg;
2868 offline_node = marg->status_change_nid;
2871 * If the node still has available memory. we need kmem_cache_node
2874 if (offline_node < 0)
2877 down_read(&slub_lock);
2878 list_for_each_entry(s, &slab_caches, list) {
2879 n = get_node(s, offline_node);
2882 * if n->nr_slabs > 0, slabs still exist on the node
2883 * that is going down. We were unable to free them,
2884 * and offline_pages() function shoudn't call this
2885 * callback. So, we must fail.
2887 BUG_ON(slabs_node(s, offline_node));
2889 s->node[offline_node] = NULL;
2890 kmem_cache_free(kmalloc_caches, n);
2893 up_read(&slub_lock);
2896 static int slab_mem_going_online_callback(void *arg)
2898 struct kmem_cache_node *n;
2899 struct kmem_cache *s;
2900 struct memory_notify *marg = arg;
2901 int nid = marg->status_change_nid;
2905 * If the node's memory is already available, then kmem_cache_node is
2906 * already created. Nothing to do.
2912 * We are bringing a node online. No memory is availabe yet. We must
2913 * allocate a kmem_cache_node structure in order to bring the node
2916 down_read(&slub_lock);
2917 list_for_each_entry(s, &slab_caches, list) {
2919 * XXX: kmem_cache_alloc_node will fallback to other nodes
2920 * since memory is not yet available from the node that
2923 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2928 init_kmem_cache_node(n);
2932 up_read(&slub_lock);
2936 static int slab_memory_callback(struct notifier_block *self,
2937 unsigned long action, void *arg)
2942 case MEM_GOING_ONLINE:
2943 ret = slab_mem_going_online_callback(arg);
2945 case MEM_GOING_OFFLINE:
2946 ret = slab_mem_going_offline_callback(arg);
2949 case MEM_CANCEL_ONLINE:
2950 slab_mem_offline_callback(arg);
2953 case MEM_CANCEL_OFFLINE:
2957 ret = notifier_from_errno(ret);
2961 #endif /* CONFIG_MEMORY_HOTPLUG */
2963 /********************************************************************
2964 * Basic setup of slabs
2965 *******************************************************************/
2967 void __init kmem_cache_init(void)
2976 * Must first have the slab cache available for the allocations of the
2977 * struct kmem_cache_node's. There is special bootstrap code in
2978 * kmem_cache_open for slab_state == DOWN.
2980 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2981 sizeof(struct kmem_cache_node), GFP_KERNEL);
2982 kmalloc_caches[0].refcount = -1;
2985 hotplug_memory_notifier(slab_memory_callback, 1);
2988 /* Able to allocate the per node structures */
2989 slab_state = PARTIAL;
2991 /* Caches that are not of the two-to-the-power-of size */
2992 if (KMALLOC_MIN_SIZE <= 64) {
2993 create_kmalloc_cache(&kmalloc_caches[1],
2994 "kmalloc-96", 96, GFP_KERNEL);
2997 if (KMALLOC_MIN_SIZE <= 128) {
2998 create_kmalloc_cache(&kmalloc_caches[2],
2999 "kmalloc-192", 192, GFP_KERNEL);
3003 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
3004 create_kmalloc_cache(&kmalloc_caches[i],
3005 "kmalloc", 1 << i, GFP_KERNEL);
3011 * Patch up the size_index table if we have strange large alignment
3012 * requirements for the kmalloc array. This is only the case for
3013 * MIPS it seems. The standard arches will not generate any code here.
3015 * Largest permitted alignment is 256 bytes due to the way we
3016 * handle the index determination for the smaller caches.
3018 * Make sure that nothing crazy happens if someone starts tinkering
3019 * around with ARCH_KMALLOC_MINALIGN
3021 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3022 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3024 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
3025 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3029 /* Provide the correct kmalloc names now that the caches are up */
3030 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
3031 kmalloc_caches[i]. name =
3032 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
3035 register_cpu_notifier(&slab_notifier);
3036 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3037 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3039 kmem_size = sizeof(struct kmem_cache);
3043 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3044 " CPUs=%d, Nodes=%d\n",
3045 caches, cache_line_size(),
3046 slub_min_order, slub_max_order, slub_min_objects,
3047 nr_cpu_ids, nr_node_ids);
3051 * Find a mergeable slab cache
3053 static int slab_unmergeable(struct kmem_cache *s)
3055 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3062 * We may have set a slab to be unmergeable during bootstrap.
3064 if (s->refcount < 0)
3070 static struct kmem_cache *find_mergeable(size_t size,
3071 size_t align, unsigned long flags, const char *name,
3072 void (*ctor)(struct kmem_cache *, void *))
3074 struct kmem_cache *s;
3076 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3082 size = ALIGN(size, sizeof(void *));
3083 align = calculate_alignment(flags, align, size);
3084 size = ALIGN(size, align);
3085 flags = kmem_cache_flags(size, flags, name, NULL);
3087 list_for_each_entry(s, &slab_caches, list) {
3088 if (slab_unmergeable(s))
3094 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3097 * Check if alignment is compatible.
3098 * Courtesy of Adrian Drzewiecki
3100 if ((s->size & ~(align - 1)) != s->size)
3103 if (s->size - size >= sizeof(void *))
3111 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3112 size_t align, unsigned long flags,
3113 void (*ctor)(struct kmem_cache *, void *))
3115 struct kmem_cache *s;
3117 down_write(&slub_lock);
3118 s = find_mergeable(size, align, flags, name, ctor);
3124 * Adjust the object sizes so that we clear
3125 * the complete object on kzalloc.
3127 s->objsize = max(s->objsize, (int)size);
3130 * And then we need to update the object size in the
3131 * per cpu structures
3133 for_each_online_cpu(cpu)
3134 get_cpu_slab(s, cpu)->objsize = s->objsize;
3136 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3137 up_write(&slub_lock);
3139 if (sysfs_slab_alias(s, name))
3144 s = kmalloc(kmem_size, GFP_KERNEL);
3146 if (kmem_cache_open(s, GFP_KERNEL, name,
3147 size, align, flags, ctor)) {
3148 list_add(&s->list, &slab_caches);
3149 up_write(&slub_lock);
3150 if (sysfs_slab_add(s))
3156 up_write(&slub_lock);
3159 if (flags & SLAB_PANIC)
3160 panic("Cannot create slabcache %s\n", name);
3165 EXPORT_SYMBOL(kmem_cache_create);
3169 * Use the cpu notifier to insure that the cpu slabs are flushed when
3172 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3173 unsigned long action, void *hcpu)
3175 long cpu = (long)hcpu;
3176 struct kmem_cache *s;
3177 unsigned long flags;
3180 case CPU_UP_PREPARE:
3181 case CPU_UP_PREPARE_FROZEN:
3182 init_alloc_cpu_cpu(cpu);
3183 down_read(&slub_lock);
3184 list_for_each_entry(s, &slab_caches, list)
3185 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3187 up_read(&slub_lock);
3190 case CPU_UP_CANCELED:
3191 case CPU_UP_CANCELED_FROZEN:
3193 case CPU_DEAD_FROZEN:
3194 down_read(&slub_lock);
3195 list_for_each_entry(s, &slab_caches, list) {
3196 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3198 local_irq_save(flags);
3199 __flush_cpu_slab(s, cpu);
3200 local_irq_restore(flags);
3201 free_kmem_cache_cpu(c, cpu);
3202 s->cpu_slab[cpu] = NULL;
3204 up_read(&slub_lock);
3212 static struct notifier_block __cpuinitdata slab_notifier = {
3213 .notifier_call = slab_cpuup_callback
3218 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
3220 struct kmem_cache *s;
3222 if (unlikely(size > PAGE_SIZE))
3223 return kmalloc_large(size, gfpflags);
3225 s = get_slab(size, gfpflags);
3227 if (unlikely(ZERO_OR_NULL_PTR(s)))
3230 return slab_alloc(s, gfpflags, -1, caller);
3233 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3234 int node, void *caller)
3236 struct kmem_cache *s;
3238 if (unlikely(size > PAGE_SIZE))
3239 return kmalloc_large_node(size, gfpflags, node);
3241 s = get_slab(size, gfpflags);
3243 if (unlikely(ZERO_OR_NULL_PTR(s)))
3246 return slab_alloc(s, gfpflags, node, caller);
3249 #if (defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)) || defined(CONFIG_SLABINFO)
3250 static unsigned long count_partial(struct kmem_cache_node *n,
3251 int (*get_count)(struct page *))
3253 unsigned long flags;
3254 unsigned long x = 0;
3257 spin_lock_irqsave(&n->list_lock, flags);
3258 list_for_each_entry(page, &n->partial, lru)
3259 x += get_count(page);
3260 spin_unlock_irqrestore(&n->list_lock, flags);
3264 static int count_inuse(struct page *page)
3269 static int count_total(struct page *page)
3271 return page->objects;
3274 static int count_free(struct page *page)
3276 return page->objects - page->inuse;
3280 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
3281 static int validate_slab(struct kmem_cache *s, struct page *page,
3285 void *addr = page_address(page);
3287 if (!check_slab(s, page) ||
3288 !on_freelist(s, page, NULL))
3291 /* Now we know that a valid freelist exists */
3292 bitmap_zero(map, page->objects);
3294 for_each_free_object(p, s, page->freelist) {
3295 set_bit(slab_index(p, s, addr), map);
3296 if (!check_object(s, page, p, 0))
3300 for_each_object(p, s, addr, page->objects)
3301 if (!test_bit(slab_index(p, s, addr), map))
3302 if (!check_object(s, page, p, 1))
3307 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3310 if (slab_trylock(page)) {
3311 validate_slab(s, page, map);
3314 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3317 if (s->flags & DEBUG_DEFAULT_FLAGS) {
3318 if (!SlabDebug(page))
3319 printk(KERN_ERR "SLUB %s: SlabDebug not set "
3320 "on slab 0x%p\n", s->name, page);
3322 if (SlabDebug(page))
3323 printk(KERN_ERR "SLUB %s: SlabDebug set on "
3324 "slab 0x%p\n", s->name, page);
3328 static int validate_slab_node(struct kmem_cache *s,
3329 struct kmem_cache_node *n, unsigned long *map)
3331 unsigned long count = 0;
3333 unsigned long flags;
3335 spin_lock_irqsave(&n->list_lock, flags);
3337 list_for_each_entry(page, &n->partial, lru) {
3338 validate_slab_slab(s, page, map);
3341 if (count != n->nr_partial)
3342 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3343 "counter=%ld\n", s->name, count, n->nr_partial);
3345 if (!(s->flags & SLAB_STORE_USER))
3348 list_for_each_entry(page, &n->full, lru) {
3349 validate_slab_slab(s, page, map);
3352 if (count != atomic_long_read(&n->nr_slabs))
3353 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3354 "counter=%ld\n", s->name, count,
3355 atomic_long_read(&n->nr_slabs));
3358 spin_unlock_irqrestore(&n->list_lock, flags);
3362 static long validate_slab_cache(struct kmem_cache *s)
3365 unsigned long count = 0;
3366 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3367 sizeof(unsigned long), GFP_KERNEL);
3373 for_each_node_state(node, N_NORMAL_MEMORY) {
3374 struct kmem_cache_node *n = get_node(s, node);
3376 count += validate_slab_node(s, n, map);
3382 #ifdef SLUB_RESILIENCY_TEST
3383 static void resiliency_test(void)
3387 printk(KERN_ERR "SLUB resiliency testing\n");
3388 printk(KERN_ERR "-----------------------\n");
3389 printk(KERN_ERR "A. Corruption after allocation\n");
3391 p = kzalloc(16, GFP_KERNEL);
3393 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3394 " 0x12->0x%p\n\n", p + 16);
3396 validate_slab_cache(kmalloc_caches + 4);
3398 /* Hmmm... The next two are dangerous */
3399 p = kzalloc(32, GFP_KERNEL);
3400 p[32 + sizeof(void *)] = 0x34;
3401 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3402 " 0x34 -> -0x%p\n", p);
3404 "If allocated object is overwritten then not detectable\n\n");
3406 validate_slab_cache(kmalloc_caches + 5);
3407 p = kzalloc(64, GFP_KERNEL);
3408 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3410 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3413 "If allocated object is overwritten then not detectable\n\n");
3414 validate_slab_cache(kmalloc_caches + 6);
3416 printk(KERN_ERR "\nB. Corruption after free\n");
3417 p = kzalloc(128, GFP_KERNEL);
3420 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3421 validate_slab_cache(kmalloc_caches + 7);
3423 p = kzalloc(256, GFP_KERNEL);
3426 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3428 validate_slab_cache(kmalloc_caches + 8);
3430 p = kzalloc(512, GFP_KERNEL);
3433 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3434 validate_slab_cache(kmalloc_caches + 9);
3437 static void resiliency_test(void) {};
3441 * Generate lists of code addresses where slabcache objects are allocated
3446 unsigned long count;
3459 unsigned long count;
3460 struct location *loc;
3463 static void free_loc_track(struct loc_track *t)
3466 free_pages((unsigned long)t->loc,
3467 get_order(sizeof(struct location) * t->max));
3470 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3475 order = get_order(sizeof(struct location) * max);
3477 l = (void *)__get_free_pages(flags, order);
3482 memcpy(l, t->loc, sizeof(struct location) * t->count);
3490 static int add_location(struct loc_track *t, struct kmem_cache *s,
3491 const struct track *track)
3493 long start, end, pos;
3496 unsigned long age = jiffies - track->when;
3502 pos = start + (end - start + 1) / 2;
3505 * There is nothing at "end". If we end up there
3506 * we need to add something to before end.
3511 caddr = t->loc[pos].addr;
3512 if (track->addr == caddr) {
3518 if (age < l->min_time)
3520 if (age > l->max_time)
3523 if (track->pid < l->min_pid)
3524 l->min_pid = track->pid;
3525 if (track->pid > l->max_pid)
3526 l->max_pid = track->pid;
3528 cpu_set(track->cpu, l->cpus);
3530 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3534 if (track->addr < caddr)
3541 * Not found. Insert new tracking element.
3543 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3549 (t->count - pos) * sizeof(struct location));
3552 l->addr = track->addr;
3556 l->min_pid = track->pid;
3557 l->max_pid = track->pid;
3558 cpus_clear(l->cpus);
3559 cpu_set(track->cpu, l->cpus);
3560 nodes_clear(l->nodes);
3561 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3565 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3566 struct page *page, enum track_item alloc)
3568 void *addr = page_address(page);
3569 DECLARE_BITMAP(map, page->objects);
3572 bitmap_zero(map, page->objects);
3573 for_each_free_object(p, s, page->freelist)
3574 set_bit(slab_index(p, s, addr), map);
3576 for_each_object(p, s, addr, page->objects)
3577 if (!test_bit(slab_index(p, s, addr), map))
3578 add_location(t, s, get_track(s, p, alloc));
3581 static int list_locations(struct kmem_cache *s, char *buf,
3582 enum track_item alloc)
3586 struct loc_track t = { 0, 0, NULL };
3589 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3591 return sprintf(buf, "Out of memory\n");
3593 /* Push back cpu slabs */
3596 for_each_node_state(node, N_NORMAL_MEMORY) {
3597 struct kmem_cache_node *n = get_node(s, node);
3598 unsigned long flags;
3601 if (!atomic_long_read(&n->nr_slabs))
3604 spin_lock_irqsave(&n->list_lock, flags);
3605 list_for_each_entry(page, &n->partial, lru)
3606 process_slab(&t, s, page, alloc);
3607 list_for_each_entry(page, &n->full, lru)
3608 process_slab(&t, s, page, alloc);
3609 spin_unlock_irqrestore(&n->list_lock, flags);
3612 for (i = 0; i < t.count; i++) {
3613 struct location *l = &t.loc[i];
3615 if (len > PAGE_SIZE - 100)
3617 len += sprintf(buf + len, "%7ld ", l->count);
3620 len += sprint_symbol(buf + len, (unsigned long)l->addr);
3622 len += sprintf(buf + len, "<not-available>");
3624 if (l->sum_time != l->min_time) {
3625 unsigned long remainder;
3627 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3629 div_long_long_rem(l->sum_time, l->count, &remainder),
3632 len += sprintf(buf + len, " age=%ld",
3635 if (l->min_pid != l->max_pid)
3636 len += sprintf(buf + len, " pid=%ld-%ld",
3637 l->min_pid, l->max_pid);
3639 len += sprintf(buf + len, " pid=%ld",
3642 if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3643 len < PAGE_SIZE - 60) {
3644 len += sprintf(buf + len, " cpus=");
3645 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3649 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3650 len < PAGE_SIZE - 60) {
3651 len += sprintf(buf + len, " nodes=");
3652 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3656 len += sprintf(buf + len, "\n");
3661 len += sprintf(buf, "No data\n");
3665 enum slab_stat_type {
3666 SL_ALL, /* All slabs */
3667 SL_PARTIAL, /* Only partially allocated slabs */
3668 SL_CPU, /* Only slabs used for cpu caches */
3669 SL_OBJECTS, /* Determine allocated objects not slabs */
3670 SL_TOTAL /* Determine object capacity not slabs */
3673 #define SO_ALL (1 << SL_ALL)
3674 #define SO_PARTIAL (1 << SL_PARTIAL)
3675 #define SO_CPU (1 << SL_CPU)
3676 #define SO_OBJECTS (1 << SL_OBJECTS)
3677 #define SO_TOTAL (1 << SL_TOTAL)
3679 static ssize_t show_slab_objects(struct kmem_cache *s,
3680 char *buf, unsigned long flags)
3682 unsigned long total = 0;
3685 unsigned long *nodes;
3686 unsigned long *per_cpu;
3688 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3691 per_cpu = nodes + nr_node_ids;
3693 if (flags & SO_CPU) {
3696 for_each_possible_cpu(cpu) {
3697 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3699 if (!c || c->node < 0)
3703 if (flags & SO_TOTAL)
3704 x = c->page->objects;
3705 else if (flags & SO_OBJECTS)
3711 nodes[c->node] += x;
3717 if (flags & SO_ALL) {
3718 for_each_node_state(node, N_NORMAL_MEMORY) {
3719 struct kmem_cache_node *n = get_node(s, node);
3721 if (flags & SO_TOTAL)
3722 x = atomic_long_read(&n->total_objects);
3723 else if (flags & SO_OBJECTS)
3724 x = atomic_long_read(&n->total_objects) -
3725 count_partial(n, count_free);
3728 x = atomic_long_read(&n->nr_slabs);
3733 } else if (flags & SO_PARTIAL) {
3734 for_each_node_state(node, N_NORMAL_MEMORY) {
3735 struct kmem_cache_node *n = get_node(s, node);
3737 if (flags & SO_TOTAL)
3738 x = count_partial(n, count_total);
3739 else if (flags & SO_OBJECTS)
3740 x = count_partial(n, count_inuse);
3747 x = sprintf(buf, "%lu", total);
3749 for_each_node_state(node, N_NORMAL_MEMORY)
3751 x += sprintf(buf + x, " N%d=%lu",
3755 return x + sprintf(buf + x, "\n");
3758 static int any_slab_objects(struct kmem_cache *s)
3762 for_each_online_node(node) {
3763 struct kmem_cache_node *n = get_node(s, node);
3768 if (atomic_read(&n->total_objects))
3774 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3775 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3777 struct slab_attribute {
3778 struct attribute attr;
3779 ssize_t (*show)(struct kmem_cache *s, char *buf);
3780 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3783 #define SLAB_ATTR_RO(_name) \
3784 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3786 #define SLAB_ATTR(_name) \
3787 static struct slab_attribute _name##_attr = \
3788 __ATTR(_name, 0644, _name##_show, _name##_store)
3790 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3792 return sprintf(buf, "%d\n", s->size);
3794 SLAB_ATTR_RO(slab_size);
3796 static ssize_t align_show(struct kmem_cache *s, char *buf)
3798 return sprintf(buf, "%d\n", s->align);
3800 SLAB_ATTR_RO(align);
3802 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3804 return sprintf(buf, "%d\n", s->objsize);
3806 SLAB_ATTR_RO(object_size);
3808 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3810 return sprintf(buf, "%d\n", oo_objects(s->oo));
3812 SLAB_ATTR_RO(objs_per_slab);
3814 static ssize_t order_store(struct kmem_cache *s,
3815 const char *buf, size_t length)
3817 int order = simple_strtoul(buf, NULL, 10);
3819 if (order > slub_max_order || order < slub_min_order)
3822 calculate_sizes(s, order);
3826 static ssize_t order_show(struct kmem_cache *s, char *buf)
3828 return sprintf(buf, "%d\n", oo_order(s->oo));
3832 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3835 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3837 return n + sprintf(buf + n, "\n");
3843 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3845 return sprintf(buf, "%d\n", s->refcount - 1);
3847 SLAB_ATTR_RO(aliases);
3849 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3851 return show_slab_objects(s, buf, SO_ALL);
3853 SLAB_ATTR_RO(slabs);
3855 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3857 return show_slab_objects(s, buf, SO_PARTIAL);
3859 SLAB_ATTR_RO(partial);
3861 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3863 return show_slab_objects(s, buf, SO_CPU);
3865 SLAB_ATTR_RO(cpu_slabs);
3867 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3869 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3871 SLAB_ATTR_RO(objects);
3873 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3875 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3877 SLAB_ATTR_RO(objects_partial);
3879 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3881 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3883 SLAB_ATTR_RO(total_objects);
3885 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3887 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3890 static ssize_t sanity_checks_store(struct kmem_cache *s,
3891 const char *buf, size_t length)
3893 s->flags &= ~SLAB_DEBUG_FREE;
3895 s->flags |= SLAB_DEBUG_FREE;
3898 SLAB_ATTR(sanity_checks);
3900 static ssize_t trace_show(struct kmem_cache *s, char *buf)
3902 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3905 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3908 s->flags &= ~SLAB_TRACE;
3910 s->flags |= SLAB_TRACE;
3915 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3917 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3920 static ssize_t reclaim_account_store(struct kmem_cache *s,
3921 const char *buf, size_t length)
3923 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3925 s->flags |= SLAB_RECLAIM_ACCOUNT;
3928 SLAB_ATTR(reclaim_account);
3930 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3932 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3934 SLAB_ATTR_RO(hwcache_align);
3936 #ifdef CONFIG_ZONE_DMA
3937 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3939 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3941 SLAB_ATTR_RO(cache_dma);
3944 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3946 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3948 SLAB_ATTR_RO(destroy_by_rcu);
3950 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3952 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3955 static ssize_t red_zone_store(struct kmem_cache *s,
3956 const char *buf, size_t length)
3958 if (any_slab_objects(s))
3961 s->flags &= ~SLAB_RED_ZONE;
3963 s->flags |= SLAB_RED_ZONE;
3964 calculate_sizes(s, -1);
3967 SLAB_ATTR(red_zone);
3969 static ssize_t poison_show(struct kmem_cache *s, char *buf)
3971 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3974 static ssize_t poison_store(struct kmem_cache *s,
3975 const char *buf, size_t length)
3977 if (any_slab_objects(s))
3980 s->flags &= ~SLAB_POISON;
3982 s->flags |= SLAB_POISON;
3983 calculate_sizes(s, -1);
3988 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3990 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3993 static ssize_t store_user_store(struct kmem_cache *s,
3994 const char *buf, size_t length)
3996 if (any_slab_objects(s))
3999 s->flags &= ~SLAB_STORE_USER;
4001 s->flags |= SLAB_STORE_USER;
4002 calculate_sizes(s, -1);
4005 SLAB_ATTR(store_user);
4007 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4012 static ssize_t validate_store(struct kmem_cache *s,
4013 const char *buf, size_t length)
4017 if (buf[0] == '1') {
4018 ret = validate_slab_cache(s);
4024 SLAB_ATTR(validate);
4026 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4031 static ssize_t shrink_store(struct kmem_cache *s,
4032 const char *buf, size_t length)
4034 if (buf[0] == '1') {
4035 int rc = kmem_cache_shrink(s);
4045 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4047 if (!(s->flags & SLAB_STORE_USER))
4049 return list_locations(s, buf, TRACK_ALLOC);
4051 SLAB_ATTR_RO(alloc_calls);
4053 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4055 if (!(s->flags & SLAB_STORE_USER))
4057 return list_locations(s, buf, TRACK_FREE);
4059 SLAB_ATTR_RO(free_calls);
4062 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4064 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4067 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4068 const char *buf, size_t length)
4070 int n = simple_strtoul(buf, NULL, 10);
4073 s->remote_node_defrag_ratio = n * 10;
4076 SLAB_ATTR(remote_node_defrag_ratio);
4079 #ifdef CONFIG_SLUB_STATS
4080 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4082 unsigned long sum = 0;
4085 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4090 for_each_online_cpu(cpu) {
4091 unsigned x = get_cpu_slab(s, cpu)->stat[si];
4097 len = sprintf(buf, "%lu", sum);
4100 for_each_online_cpu(cpu) {
4101 if (data[cpu] && len < PAGE_SIZE - 20)
4102 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4106 return len + sprintf(buf + len, "\n");
4109 #define STAT_ATTR(si, text) \
4110 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4112 return show_stat(s, buf, si); \
4114 SLAB_ATTR_RO(text); \
4116 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4117 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4118 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4119 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4120 STAT_ATTR(FREE_FROZEN, free_frozen);
4121 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4122 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4123 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4124 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4125 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4126 STAT_ATTR(FREE_SLAB, free_slab);
4127 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4128 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4129 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4130 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4131 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4132 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4133 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4136 static struct attribute *slab_attrs[] = {
4137 &slab_size_attr.attr,
4138 &object_size_attr.attr,
4139 &objs_per_slab_attr.attr,
4142 &objects_partial_attr.attr,
4143 &total_objects_attr.attr,
4146 &cpu_slabs_attr.attr,
4150 &sanity_checks_attr.attr,
4152 &hwcache_align_attr.attr,
4153 &reclaim_account_attr.attr,
4154 &destroy_by_rcu_attr.attr,
4155 &red_zone_attr.attr,
4157 &store_user_attr.attr,
4158 &validate_attr.attr,
4160 &alloc_calls_attr.attr,
4161 &free_calls_attr.attr,
4162 #ifdef CONFIG_ZONE_DMA
4163 &cache_dma_attr.attr,
4166 &remote_node_defrag_ratio_attr.attr,
4168 #ifdef CONFIG_SLUB_STATS
4169 &alloc_fastpath_attr.attr,
4170 &alloc_slowpath_attr.attr,
4171 &free_fastpath_attr.attr,
4172 &free_slowpath_attr.attr,
4173 &free_frozen_attr.attr,
4174 &free_add_partial_attr.attr,
4175 &free_remove_partial_attr.attr,
4176 &alloc_from_partial_attr.attr,
4177 &alloc_slab_attr.attr,
4178 &alloc_refill_attr.attr,
4179 &free_slab_attr.attr,
4180 &cpuslab_flush_attr.attr,
4181 &deactivate_full_attr.attr,
4182 &deactivate_empty_attr.attr,
4183 &deactivate_to_head_attr.attr,
4184 &deactivate_to_tail_attr.attr,
4185 &deactivate_remote_frees_attr.attr,
4186 &order_fallback_attr.attr,
4191 static struct attribute_group slab_attr_group = {
4192 .attrs = slab_attrs,
4195 static ssize_t slab_attr_show(struct kobject *kobj,
4196 struct attribute *attr,
4199 struct slab_attribute *attribute;
4200 struct kmem_cache *s;
4203 attribute = to_slab_attr(attr);
4206 if (!attribute->show)
4209 err = attribute->show(s, buf);
4214 static ssize_t slab_attr_store(struct kobject *kobj,
4215 struct attribute *attr,
4216 const char *buf, size_t len)
4218 struct slab_attribute *attribute;
4219 struct kmem_cache *s;
4222 attribute = to_slab_attr(attr);
4225 if (!attribute->store)
4228 err = attribute->store(s, buf, len);
4233 static void kmem_cache_release(struct kobject *kobj)
4235 struct kmem_cache *s = to_slab(kobj);
4240 static struct sysfs_ops slab_sysfs_ops = {
4241 .show = slab_attr_show,
4242 .store = slab_attr_store,
4245 static struct kobj_type slab_ktype = {
4246 .sysfs_ops = &slab_sysfs_ops,
4247 .release = kmem_cache_release
4250 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4252 struct kobj_type *ktype = get_ktype(kobj);
4254 if (ktype == &slab_ktype)
4259 static struct kset_uevent_ops slab_uevent_ops = {
4260 .filter = uevent_filter,
4263 static struct kset *slab_kset;
4265 #define ID_STR_LENGTH 64
4267 /* Create a unique string id for a slab cache:
4269 * Format :[flags-]size
4271 static char *create_unique_id(struct kmem_cache *s)
4273 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4280 * First flags affecting slabcache operations. We will only
4281 * get here for aliasable slabs so we do not need to support
4282 * too many flags. The flags here must cover all flags that
4283 * are matched during merging to guarantee that the id is
4286 if (s->flags & SLAB_CACHE_DMA)
4288 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4290 if (s->flags & SLAB_DEBUG_FREE)