2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/bootmem.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/suspend.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/slab.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmalloc.h>
38 #include <linux/mempolicy.h>
39 #include <linux/stop_machine.h>
40 #include <linux/sort.h>
41 #include <linux/pfn.h>
42 #include <linux/backing-dev.h>
43 #include <linux/fault-inject.h>
45 #include <asm/tlbflush.h>
46 #include <asm/div64.h>
50 * Array of node states.
52 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
53 [N_POSSIBLE] = NODE_MASK_ALL,
54 [N_ONLINE] = { { [0] = 1UL } },
56 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
58 [N_HIGH_MEMORY] = { { [0] = 1UL } },
60 [N_CPU] = { { [0] = 1UL } },
63 EXPORT_SYMBOL(node_states);
65 unsigned long totalram_pages __read_mostly;
66 unsigned long totalreserve_pages __read_mostly;
68 int percpu_pagelist_fraction;
70 static void __free_pages_ok(struct page *page, unsigned int order);
73 * results with 256, 32 in the lowmem_reserve sysctl:
74 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
75 * 1G machine -> (16M dma, 784M normal, 224M high)
76 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
77 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
78 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
80 * TBD: should special case ZONE_DMA32 machines here - in those we normally
81 * don't need any ZONE_NORMAL reservation
83 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
84 #ifdef CONFIG_ZONE_DMA
87 #ifdef CONFIG_ZONE_DMA32
96 EXPORT_SYMBOL(totalram_pages);
98 static char * const zone_names[MAX_NR_ZONES] = {
99 #ifdef CONFIG_ZONE_DMA
102 #ifdef CONFIG_ZONE_DMA32
106 #ifdef CONFIG_HIGHMEM
112 int min_free_kbytes = 1024;
114 unsigned long __meminitdata nr_kernel_pages;
115 unsigned long __meminitdata nr_all_pages;
116 static unsigned long __meminitdata dma_reserve;
118 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
120 * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
121 * ranges of memory (RAM) that may be registered with add_active_range().
122 * Ranges passed to add_active_range() will be merged if possible
123 * so the number of times add_active_range() can be called is
124 * related to the number of nodes and the number of holes
126 #ifdef CONFIG_MAX_ACTIVE_REGIONS
127 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
128 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
130 #if MAX_NUMNODES >= 32
131 /* If there can be many nodes, allow up to 50 holes per node */
132 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
134 /* By default, allow up to 256 distinct regions */
135 #define MAX_ACTIVE_REGIONS 256
139 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
140 static int __meminitdata nr_nodemap_entries;
141 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
142 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
143 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
144 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
145 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
146 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
147 unsigned long __initdata required_kernelcore;
148 unsigned long __initdata required_movablecore;
149 unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
151 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
153 EXPORT_SYMBOL(movable_zone);
154 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
157 int nr_node_ids __read_mostly = MAX_NUMNODES;
158 EXPORT_SYMBOL(nr_node_ids);
161 #ifdef CONFIG_DEBUG_VM
162 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
166 unsigned long pfn = page_to_pfn(page);
169 seq = zone_span_seqbegin(zone);
170 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
172 else if (pfn < zone->zone_start_pfn)
174 } while (zone_span_seqretry(zone, seq));
179 static int page_is_consistent(struct zone *zone, struct page *page)
181 if (!pfn_valid_within(page_to_pfn(page)))
183 if (zone != page_zone(page))
189 * Temporary debugging check for pages not lying within a given zone.
191 static int bad_range(struct zone *zone, struct page *page)
193 if (page_outside_zone_boundaries(zone, page))
195 if (!page_is_consistent(zone, page))
201 static inline int bad_range(struct zone *zone, struct page *page)
207 static void bad_page(struct page *page)
209 printk(KERN_EMERG "Bad page state in process '%s'\n"
210 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
211 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
212 KERN_EMERG "Backtrace:\n",
213 current->comm, page, (int)(2*sizeof(unsigned long)),
214 (unsigned long)page->flags, page->mapping,
215 page_mapcount(page), page_count(page));
217 page->flags &= ~(1 << PG_lru |
227 set_page_count(page, 0);
228 reset_page_mapcount(page);
229 page->mapping = NULL;
230 add_taint(TAINT_BAD_PAGE);
234 * Higher-order pages are called "compound pages". They are structured thusly:
236 * The first PAGE_SIZE page is called the "head page".
238 * The remaining PAGE_SIZE pages are called "tail pages".
240 * All pages have PG_compound set. All pages have their ->private pointing at
241 * the head page (even the head page has this).
243 * The first tail page's ->lru.next holds the address of the compound page's
244 * put_page() function. Its ->lru.prev holds the order of allocation.
245 * This usage means that zero-order pages may not be compound.
248 static void free_compound_page(struct page *page)
250 __free_pages_ok(page, compound_order(page));
253 static void prep_compound_page(struct page *page, unsigned long order)
256 int nr_pages = 1 << order;
258 set_compound_page_dtor(page, free_compound_page);
259 set_compound_order(page, order);
261 for (i = 1; i < nr_pages; i++) {
262 struct page *p = page + i;
265 p->first_page = page;
269 static void destroy_compound_page(struct page *page, unsigned long order)
272 int nr_pages = 1 << order;
274 if (unlikely(compound_order(page) != order))
277 if (unlikely(!PageHead(page)))
279 __ClearPageHead(page);
280 for (i = 1; i < nr_pages; i++) {
281 struct page *p = page + i;
283 if (unlikely(!PageTail(p) |
284 (p->first_page != page)))
290 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
294 VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
296 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
297 * and __GFP_HIGHMEM from hard or soft interrupt context.
299 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
300 for (i = 0; i < (1 << order); i++)
301 clear_highpage(page + i);
305 * function for dealing with page's order in buddy system.
306 * zone->lock is already acquired when we use these.
307 * So, we don't need atomic page->flags operations here.
309 static inline unsigned long page_order(struct page *page)
311 return page_private(page);
314 static inline void set_page_order(struct page *page, int order)
316 set_page_private(page, order);
317 __SetPageBuddy(page);
320 static inline void rmv_page_order(struct page *page)
322 __ClearPageBuddy(page);
323 set_page_private(page, 0);
327 * Locate the struct page for both the matching buddy in our
328 * pair (buddy1) and the combined O(n+1) page they form (page).
330 * 1) Any buddy B1 will have an order O twin B2 which satisfies
331 * the following equation:
333 * For example, if the starting buddy (buddy2) is #8 its order
335 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
337 * 2) Any buddy B will have an order O+1 parent P which
338 * satisfies the following equation:
341 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
343 static inline struct page *
344 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
346 unsigned long buddy_idx = page_idx ^ (1 << order);
348 return page + (buddy_idx - page_idx);
351 static inline unsigned long
352 __find_combined_index(unsigned long page_idx, unsigned int order)
354 return (page_idx & ~(1 << order));
358 * This function checks whether a page is free && is the buddy
359 * we can do coalesce a page and its buddy if
360 * (a) the buddy is not in a hole &&
361 * (b) the buddy is in the buddy system &&
362 * (c) a page and its buddy have the same order &&
363 * (d) a page and its buddy are in the same zone.
365 * For recording whether a page is in the buddy system, we use PG_buddy.
366 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
368 * For recording page's order, we use page_private(page).
370 static inline int page_is_buddy(struct page *page, struct page *buddy,
373 if (!pfn_valid_within(page_to_pfn(buddy)))
376 if (page_zone_id(page) != page_zone_id(buddy))
379 if (PageBuddy(buddy) && page_order(buddy) == order) {
380 BUG_ON(page_count(buddy) != 0);
387 * Freeing function for a buddy system allocator.
389 * The concept of a buddy system is to maintain direct-mapped table
390 * (containing bit values) for memory blocks of various "orders".
391 * The bottom level table contains the map for the smallest allocatable
392 * units of memory (here, pages), and each level above it describes
393 * pairs of units from the levels below, hence, "buddies".
394 * At a high level, all that happens here is marking the table entry
395 * at the bottom level available, and propagating the changes upward
396 * as necessary, plus some accounting needed to play nicely with other
397 * parts of the VM system.
398 * At each level, we keep a list of pages, which are heads of continuous
399 * free pages of length of (1 << order) and marked with PG_buddy. Page's
400 * order is recorded in page_private(page) field.
401 * So when we are allocating or freeing one, we can derive the state of the
402 * other. That is, if we allocate a small block, and both were
403 * free, the remainder of the region must be split into blocks.
404 * If a block is freed, and its buddy is also free, then this
405 * triggers coalescing into a block of larger size.
410 static inline void __free_one_page(struct page *page,
411 struct zone *zone, unsigned int order)
413 unsigned long page_idx;
414 int order_size = 1 << order;
416 if (unlikely(PageCompound(page)))
417 destroy_compound_page(page, order);
419 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
421 VM_BUG_ON(page_idx & (order_size - 1));
422 VM_BUG_ON(bad_range(zone, page));
424 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
425 while (order < MAX_ORDER-1) {
426 unsigned long combined_idx;
427 struct free_area *area;
430 buddy = __page_find_buddy(page, page_idx, order);
431 if (!page_is_buddy(page, buddy, order))
432 break; /* Move the buddy up one level. */
434 list_del(&buddy->lru);
435 area = zone->free_area + order;
437 rmv_page_order(buddy);
438 combined_idx = __find_combined_index(page_idx, order);
439 page = page + (combined_idx - page_idx);
440 page_idx = combined_idx;
443 set_page_order(page, order);
444 list_add(&page->lru, &zone->free_area[order].free_list);
445 zone->free_area[order].nr_free++;
448 static inline int free_pages_check(struct page *page)
450 if (unlikely(page_mapcount(page) |
451 (page->mapping != NULL) |
452 (page_count(page) != 0) |
465 __ClearPageDirty(page);
467 * For now, we report if PG_reserved was found set, but do not
468 * clear it, and do not free the page. But we shall soon need
469 * to do more, for when the ZERO_PAGE count wraps negative.
471 return PageReserved(page);
475 * Frees a list of pages.
476 * Assumes all pages on list are in same zone, and of same order.
477 * count is the number of pages to free.
479 * If the zone was previously in an "all pages pinned" state then look to
480 * see if this freeing clears that state.
482 * And clear the zone's pages_scanned counter, to hold off the "all pages are
483 * pinned" detection logic.
485 static void free_pages_bulk(struct zone *zone, int count,
486 struct list_head *list, int order)
488 spin_lock(&zone->lock);
489 zone->all_unreclaimable = 0;
490 zone->pages_scanned = 0;
494 VM_BUG_ON(list_empty(list));
495 page = list_entry(list->prev, struct page, lru);
496 /* have to delete it as __free_one_page list manipulates */
497 list_del(&page->lru);
498 __free_one_page(page, zone, order);
500 spin_unlock(&zone->lock);
503 static void free_one_page(struct zone *zone, struct page *page, int order)
505 spin_lock(&zone->lock);
506 zone->all_unreclaimable = 0;
507 zone->pages_scanned = 0;
508 __free_one_page(page, zone, order);
509 spin_unlock(&zone->lock);
512 static void __free_pages_ok(struct page *page, unsigned int order)
518 for (i = 0 ; i < (1 << order) ; ++i)
519 reserved += free_pages_check(page + i);
523 if (!PageHighMem(page))
524 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
525 arch_free_page(page, order);
526 kernel_map_pages(page, 1 << order, 0);
528 local_irq_save(flags);
529 __count_vm_events(PGFREE, 1 << order);
530 free_one_page(page_zone(page), page, order);
531 local_irq_restore(flags);
535 * permit the bootmem allocator to evade page validation on high-order frees
537 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
540 __ClearPageReserved(page);
541 set_page_count(page, 0);
542 set_page_refcounted(page);
548 for (loop = 0; loop < BITS_PER_LONG; loop++) {
549 struct page *p = &page[loop];
551 if (loop + 1 < BITS_PER_LONG)
553 __ClearPageReserved(p);
554 set_page_count(p, 0);
557 set_page_refcounted(page);
558 __free_pages(page, order);
564 * The order of subdivision here is critical for the IO subsystem.
565 * Please do not alter this order without good reasons and regression
566 * testing. Specifically, as large blocks of memory are subdivided,
567 * the order in which smaller blocks are delivered depends on the order
568 * they're subdivided in this function. This is the primary factor
569 * influencing the order in which pages are delivered to the IO
570 * subsystem according to empirical testing, and this is also justified
571 * by considering the behavior of a buddy system containing a single
572 * large block of memory acted on by a series of small allocations.
573 * This behavior is a critical factor in sglist merging's success.
577 static inline void expand(struct zone *zone, struct page *page,
578 int low, int high, struct free_area *area)
580 unsigned long size = 1 << high;
586 VM_BUG_ON(bad_range(zone, &page[size]));
587 list_add(&page[size].lru, &area->free_list);
589 set_page_order(&page[size], high);
594 * This page is about to be returned from the page allocator
596 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
598 if (unlikely(page_mapcount(page) |
599 (page->mapping != NULL) |
600 (page_count(page) != 0) |
615 * For now, we report if PG_reserved was found set, but do not
616 * clear it, and do not allocate the page: as a safety net.
618 if (PageReserved(page))
621 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_readahead |
622 1 << PG_referenced | 1 << PG_arch_1 |
623 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
624 set_page_private(page, 0);
625 set_page_refcounted(page);
627 arch_alloc_page(page, order);
628 kernel_map_pages(page, 1 << order, 1);
630 if (gfp_flags & __GFP_ZERO)
631 prep_zero_page(page, order, gfp_flags);
633 if (order && (gfp_flags & __GFP_COMP))
634 prep_compound_page(page, order);
640 * Do the hard work of removing an element from the buddy allocator.
641 * Call me with the zone->lock already held.
643 static struct page *__rmqueue(struct zone *zone, unsigned int order)
645 struct free_area * area;
646 unsigned int current_order;
649 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
650 area = zone->free_area + current_order;
651 if (list_empty(&area->free_list))
654 page = list_entry(area->free_list.next, struct page, lru);
655 list_del(&page->lru);
656 rmv_page_order(page);
658 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
659 expand(zone, page, order, current_order, area);
667 * Obtain a specified number of elements from the buddy allocator, all under
668 * a single hold of the lock, for efficiency. Add them to the supplied list.
669 * Returns the number of new pages which were placed at *list.
671 static int rmqueue_bulk(struct zone *zone, unsigned int order,
672 unsigned long count, struct list_head *list)
676 spin_lock(&zone->lock);
677 for (i = 0; i < count; ++i) {
678 struct page *page = __rmqueue(zone, order);
679 if (unlikely(page == NULL))
681 list_add_tail(&page->lru, list);
683 spin_unlock(&zone->lock);
689 * Called from the vmstat counter updater to drain pagesets of this
690 * currently executing processor on remote nodes after they have
693 * Note that this function must be called with the thread pinned to
694 * a single processor.
696 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
701 local_irq_save(flags);
702 if (pcp->count >= pcp->batch)
703 to_drain = pcp->batch;
705 to_drain = pcp->count;
706 free_pages_bulk(zone, to_drain, &pcp->list, 0);
707 pcp->count -= to_drain;
708 local_irq_restore(flags);
712 static void __drain_pages(unsigned int cpu)
718 for_each_zone(zone) {
719 struct per_cpu_pageset *pset;
721 if (!populated_zone(zone))
724 pset = zone_pcp(zone, cpu);
725 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
726 struct per_cpu_pages *pcp;
729 local_irq_save(flags);
730 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
732 local_irq_restore(flags);
737 #ifdef CONFIG_HIBERNATION
739 void mark_free_pages(struct zone *zone)
741 unsigned long pfn, max_zone_pfn;
744 struct list_head *curr;
746 if (!zone->spanned_pages)
749 spin_lock_irqsave(&zone->lock, flags);
751 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
752 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
753 if (pfn_valid(pfn)) {
754 struct page *page = pfn_to_page(pfn);
756 if (!swsusp_page_is_forbidden(page))
757 swsusp_unset_page_free(page);
760 for (order = MAX_ORDER - 1; order >= 0; --order)
761 list_for_each(curr, &zone->free_area[order].free_list) {
764 pfn = page_to_pfn(list_entry(curr, struct page, lru));
765 for (i = 0; i < (1UL << order); i++)
766 swsusp_set_page_free(pfn_to_page(pfn + i));
769 spin_unlock_irqrestore(&zone->lock, flags);
773 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
775 void drain_local_pages(void)
779 local_irq_save(flags);
780 __drain_pages(smp_processor_id());
781 local_irq_restore(flags);
783 #endif /* CONFIG_HIBERNATION */
786 * Free a 0-order page
788 static void fastcall free_hot_cold_page(struct page *page, int cold)
790 struct zone *zone = page_zone(page);
791 struct per_cpu_pages *pcp;
795 page->mapping = NULL;
796 if (free_pages_check(page))
799 if (!PageHighMem(page))
800 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
801 arch_free_page(page, 0);
802 kernel_map_pages(page, 1, 0);
804 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
805 local_irq_save(flags);
806 __count_vm_event(PGFREE);
807 list_add(&page->lru, &pcp->list);
809 if (pcp->count >= pcp->high) {
810 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
811 pcp->count -= pcp->batch;
813 local_irq_restore(flags);
817 void fastcall free_hot_page(struct page *page)
819 free_hot_cold_page(page, 0);
822 void fastcall free_cold_page(struct page *page)
824 free_hot_cold_page(page, 1);
828 * split_page takes a non-compound higher-order page, and splits it into
829 * n (1<<order) sub-pages: page[0..n]
830 * Each sub-page must be freed individually.
832 * Note: this is probably too low level an operation for use in drivers.
833 * Please consult with lkml before using this in your driver.
835 void split_page(struct page *page, unsigned int order)
839 VM_BUG_ON(PageCompound(page));
840 VM_BUG_ON(!page_count(page));
841 for (i = 1; i < (1 << order); i++)
842 set_page_refcounted(page + i);
846 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
847 * we cheat by calling it from here, in the order > 0 path. Saves a branch
850 static struct page *buffered_rmqueue(struct zonelist *zonelist,
851 struct zone *zone, int order, gfp_t gfp_flags)
855 int cold = !!(gfp_flags & __GFP_COLD);
860 if (likely(order == 0)) {
861 struct per_cpu_pages *pcp;
863 pcp = &zone_pcp(zone, cpu)->pcp[cold];
864 local_irq_save(flags);
866 pcp->count = rmqueue_bulk(zone, 0,
867 pcp->batch, &pcp->list);
868 if (unlikely(!pcp->count))
871 page = list_entry(pcp->list.next, struct page, lru);
872 list_del(&page->lru);
875 spin_lock_irqsave(&zone->lock, flags);
876 page = __rmqueue(zone, order);
877 spin_unlock(&zone->lock);
882 __count_zone_vm_events(PGALLOC, zone, 1 << order);
883 zone_statistics(zonelist, zone);
884 local_irq_restore(flags);
887 VM_BUG_ON(bad_range(zone, page));
888 if (prep_new_page(page, order, gfp_flags))
893 local_irq_restore(flags);
898 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
899 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
900 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
901 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
902 #define ALLOC_HARDER 0x10 /* try to alloc harder */
903 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
904 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
906 #ifdef CONFIG_FAIL_PAGE_ALLOC
908 static struct fail_page_alloc_attr {
909 struct fault_attr attr;
911 u32 ignore_gfp_highmem;
915 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
917 struct dentry *ignore_gfp_highmem_file;
918 struct dentry *ignore_gfp_wait_file;
919 struct dentry *min_order_file;
921 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
923 } fail_page_alloc = {
924 .attr = FAULT_ATTR_INITIALIZER,
925 .ignore_gfp_wait = 1,
926 .ignore_gfp_highmem = 1,
930 static int __init setup_fail_page_alloc(char *str)
932 return setup_fault_attr(&fail_page_alloc.attr, str);
934 __setup("fail_page_alloc=", setup_fail_page_alloc);
936 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
938 if (order < fail_page_alloc.min_order)
940 if (gfp_mask & __GFP_NOFAIL)
942 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
944 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
947 return should_fail(&fail_page_alloc.attr, 1 << order);
950 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
952 static int __init fail_page_alloc_debugfs(void)
954 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
958 err = init_fault_attr_dentries(&fail_page_alloc.attr,
962 dir = fail_page_alloc.attr.dentries.dir;
964 fail_page_alloc.ignore_gfp_wait_file =
965 debugfs_create_bool("ignore-gfp-wait", mode, dir,
966 &fail_page_alloc.ignore_gfp_wait);
968 fail_page_alloc.ignore_gfp_highmem_file =
969 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
970 &fail_page_alloc.ignore_gfp_highmem);
971 fail_page_alloc.min_order_file =
972 debugfs_create_u32("min-order", mode, dir,
973 &fail_page_alloc.min_order);
975 if (!fail_page_alloc.ignore_gfp_wait_file ||
976 !fail_page_alloc.ignore_gfp_highmem_file ||
977 !fail_page_alloc.min_order_file) {
979 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
980 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
981 debugfs_remove(fail_page_alloc.min_order_file);
982 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
988 late_initcall(fail_page_alloc_debugfs);
990 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
992 #else /* CONFIG_FAIL_PAGE_ALLOC */
994 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
999 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1002 * Return 1 if free pages are above 'mark'. This takes into account the order
1003 * of the allocation.
1005 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1006 int classzone_idx, int alloc_flags)
1008 /* free_pages my go negative - that's OK */
1010 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1013 if (alloc_flags & ALLOC_HIGH)
1015 if (alloc_flags & ALLOC_HARDER)
1018 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1020 for (o = 0; o < order; o++) {
1021 /* At the next order, this order's pages become unavailable */
1022 free_pages -= z->free_area[o].nr_free << o;
1024 /* Require fewer higher order pages to be free */
1027 if (free_pages <= min)
1035 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1036 * skip over zones that are not allowed by the cpuset, or that have
1037 * been recently (in last second) found to be nearly full. See further
1038 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1039 * that have to skip over alot of full or unallowed zones.
1041 * If the zonelist cache is present in the passed in zonelist, then
1042 * returns a pointer to the allowed node mask (either the current
1043 * tasks mems_allowed, or node_online_map.)
1045 * If the zonelist cache is not available for this zonelist, does
1046 * nothing and returns NULL.
1048 * If the fullzones BITMAP in the zonelist cache is stale (more than
1049 * a second since last zap'd) then we zap it out (clear its bits.)
1051 * We hold off even calling zlc_setup, until after we've checked the
1052 * first zone in the zonelist, on the theory that most allocations will
1053 * be satisfied from that first zone, so best to examine that zone as
1054 * quickly as we can.
1056 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1058 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1059 nodemask_t *allowednodes; /* zonelist_cache approximation */
1061 zlc = zonelist->zlcache_ptr;
1065 if (jiffies - zlc->last_full_zap > 1 * HZ) {
1066 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1067 zlc->last_full_zap = jiffies;
1070 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1071 &cpuset_current_mems_allowed :
1073 return allowednodes;
1077 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1078 * if it is worth looking at further for free memory:
1079 * 1) Check that the zone isn't thought to be full (doesn't have its
1080 * bit set in the zonelist_cache fullzones BITMAP).
1081 * 2) Check that the zones node (obtained from the zonelist_cache
1082 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1083 * Return true (non-zero) if zone is worth looking at further, or
1084 * else return false (zero) if it is not.
1086 * This check -ignores- the distinction between various watermarks,
1087 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1088 * found to be full for any variation of these watermarks, it will
1089 * be considered full for up to one second by all requests, unless
1090 * we are so low on memory on all allowed nodes that we are forced
1091 * into the second scan of the zonelist.
1093 * In the second scan we ignore this zonelist cache and exactly
1094 * apply the watermarks to all zones, even it is slower to do so.
1095 * We are low on memory in the second scan, and should leave no stone
1096 * unturned looking for a free page.
1098 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1099 nodemask_t *allowednodes)
1101 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1102 int i; /* index of *z in zonelist zones */
1103 int n; /* node that zone *z is on */
1105 zlc = zonelist->zlcache_ptr;
1109 i = z - zonelist->zones;
1112 /* This zone is worth trying if it is allowed but not full */
1113 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1117 * Given 'z' scanning a zonelist, set the corresponding bit in
1118 * zlc->fullzones, so that subsequent attempts to allocate a page
1119 * from that zone don't waste time re-examining it.
1121 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1123 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1124 int i; /* index of *z in zonelist zones */
1126 zlc = zonelist->zlcache_ptr;
1130 i = z - zonelist->zones;
1132 set_bit(i, zlc->fullzones);
1135 #else /* CONFIG_NUMA */
1137 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1142 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1143 nodemask_t *allowednodes)
1148 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1151 #endif /* CONFIG_NUMA */
1154 * get_page_from_freelist goes through the zonelist trying to allocate
1157 static struct page *
1158 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
1159 struct zonelist *zonelist, int alloc_flags)
1162 struct page *page = NULL;
1163 int classzone_idx = zone_idx(zonelist->zones[0]);
1165 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1166 int zlc_active = 0; /* set if using zonelist_cache */
1167 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1168 enum zone_type highest_zoneidx = -1; /* Gets set for policy zonelists */
1172 * Scan zonelist, looking for a zone with enough free.
1173 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1175 z = zonelist->zones;
1179 * In NUMA, this could be a policy zonelist which contains
1180 * zones that may not be allowed by the current gfp_mask.
1181 * Check the zone is allowed by the current flags
1183 if (unlikely(alloc_should_filter_zonelist(zonelist))) {
1184 if (highest_zoneidx == -1)
1185 highest_zoneidx = gfp_zone(gfp_mask);
1186 if (zone_idx(*z) > highest_zoneidx)
1190 if (NUMA_BUILD && zlc_active &&
1191 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1194 if (unlikely(NUMA_BUILD && (gfp_mask & __GFP_THISNODE) &&
1195 zone->zone_pgdat != zonelist->zones[0]->zone_pgdat))
1197 if ((alloc_flags & ALLOC_CPUSET) &&
1198 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1201 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1203 if (alloc_flags & ALLOC_WMARK_MIN)
1204 mark = zone->pages_min;
1205 else if (alloc_flags & ALLOC_WMARK_LOW)
1206 mark = zone->pages_low;
1208 mark = zone->pages_high;
1209 if (!zone_watermark_ok(zone, order, mark,
1210 classzone_idx, alloc_flags)) {
1211 if (!zone_reclaim_mode ||
1212 !zone_reclaim(zone, gfp_mask, order))
1213 goto this_zone_full;
1217 page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
1222 zlc_mark_zone_full(zonelist, z);
1224 if (NUMA_BUILD && !did_zlc_setup) {
1225 /* we do zlc_setup after the first zone is tried */
1226 allowednodes = zlc_setup(zonelist, alloc_flags);
1230 } while (*(++z) != NULL);
1232 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1233 /* Disable zlc cache for second zonelist scan */
1241 * This is the 'heart' of the zoned buddy allocator.
1243 struct page * fastcall
1244 __alloc_pages(gfp_t gfp_mask, unsigned int order,
1245 struct zonelist *zonelist)
1247 const gfp_t wait = gfp_mask & __GFP_WAIT;
1250 struct reclaim_state reclaim_state;
1251 struct task_struct *p = current;
1254 int did_some_progress;
1256 might_sleep_if(wait);
1258 if (should_fail_alloc_page(gfp_mask, order))
1262 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
1264 if (unlikely(*z == NULL)) {
1265 /* Should this ever happen?? */
1269 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1270 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1275 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1276 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1277 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1278 * using a larger set of nodes after it has established that the
1279 * allowed per node queues are empty and that nodes are
1282 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1285 for (z = zonelist->zones; *z; z++)
1286 wakeup_kswapd(*z, order);
1289 * OK, we're below the kswapd watermark and have kicked background
1290 * reclaim. Now things get more complex, so set up alloc_flags according
1291 * to how we want to proceed.
1293 * The caller may dip into page reserves a bit more if the caller
1294 * cannot run direct reclaim, or if the caller has realtime scheduling
1295 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1296 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1298 alloc_flags = ALLOC_WMARK_MIN;
1299 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1300 alloc_flags |= ALLOC_HARDER;
1301 if (gfp_mask & __GFP_HIGH)
1302 alloc_flags |= ALLOC_HIGH;
1304 alloc_flags |= ALLOC_CPUSET;
1307 * Go through the zonelist again. Let __GFP_HIGH and allocations
1308 * coming from realtime tasks go deeper into reserves.
1310 * This is the last chance, in general, before the goto nopage.
1311 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1312 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1314 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1318 /* This allocation should allow future memory freeing. */
1321 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1322 && !in_interrupt()) {
1323 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1325 /* go through the zonelist yet again, ignoring mins */
1326 page = get_page_from_freelist(gfp_mask, order,
1327 zonelist, ALLOC_NO_WATERMARKS);
1330 if (gfp_mask & __GFP_NOFAIL) {
1331 congestion_wait(WRITE, HZ/50);
1338 /* Atomic allocations - we can't balance anything */
1344 /* We now go into synchronous reclaim */
1345 cpuset_memory_pressure_bump();
1346 p->flags |= PF_MEMALLOC;
1347 reclaim_state.reclaimed_slab = 0;
1348 p->reclaim_state = &reclaim_state;
1350 did_some_progress = try_to_free_pages(zonelist->zones, order, gfp_mask);
1352 p->reclaim_state = NULL;
1353 p->flags &= ~PF_MEMALLOC;
1357 if (likely(did_some_progress)) {
1358 page = get_page_from_freelist(gfp_mask, order,
1359 zonelist, alloc_flags);
1362 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1364 * Go through the zonelist yet one more time, keep
1365 * very high watermark here, this is only to catch
1366 * a parallel oom killing, we must fail if we're still
1367 * under heavy pressure.
1369 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1370 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1374 /* The OOM killer will not help higher order allocs so fail */
1375 if (order > PAGE_ALLOC_COSTLY_ORDER)
1378 out_of_memory(zonelist, gfp_mask, order);
1383 * Don't let big-order allocations loop unless the caller explicitly
1384 * requests that. Wait for some write requests to complete then retry.
1386 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1387 * <= 3, but that may not be true in other implementations.
1390 if (!(gfp_mask & __GFP_NORETRY)) {
1391 if ((order <= PAGE_ALLOC_COSTLY_ORDER) ||
1392 (gfp_mask & __GFP_REPEAT))
1394 if (gfp_mask & __GFP_NOFAIL)
1398 congestion_wait(WRITE, HZ/50);
1403 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1404 printk(KERN_WARNING "%s: page allocation failure."
1405 " order:%d, mode:0x%x\n",
1406 p->comm, order, gfp_mask);
1414 EXPORT_SYMBOL(__alloc_pages);
1417 * Common helper functions.
1419 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1422 page = alloc_pages(gfp_mask, order);
1425 return (unsigned long) page_address(page);
1428 EXPORT_SYMBOL(__get_free_pages);
1430 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1435 * get_zeroed_page() returns a 32-bit address, which cannot represent
1438 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1440 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1442 return (unsigned long) page_address(page);
1446 EXPORT_SYMBOL(get_zeroed_page);
1448 void __pagevec_free(struct pagevec *pvec)
1450 int i = pagevec_count(pvec);
1453 free_hot_cold_page(pvec->pages[i], pvec->cold);
1456 fastcall void __free_pages(struct page *page, unsigned int order)
1458 if (put_page_testzero(page)) {
1460 free_hot_page(page);
1462 __free_pages_ok(page, order);
1466 EXPORT_SYMBOL(__free_pages);
1468 fastcall void free_pages(unsigned long addr, unsigned int order)
1471 VM_BUG_ON(!virt_addr_valid((void *)addr));
1472 __free_pages(virt_to_page((void *)addr), order);
1476 EXPORT_SYMBOL(free_pages);
1478 static unsigned int nr_free_zone_pages(int offset)
1480 /* Just pick one node, since fallback list is circular */
1481 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1482 unsigned int sum = 0;
1484 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1485 struct zone **zonep = zonelist->zones;
1488 for (zone = *zonep++; zone; zone = *zonep++) {
1489 unsigned long size = zone->present_pages;
1490 unsigned long high = zone->pages_high;
1499 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1501 unsigned int nr_free_buffer_pages(void)
1503 return nr_free_zone_pages(gfp_zone(GFP_USER));
1505 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1508 * Amount of free RAM allocatable within all zones
1510 unsigned int nr_free_pagecache_pages(void)
1512 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1515 static inline void show_node(struct zone *zone)
1518 printk("Node %d ", zone_to_nid(zone));
1521 void si_meminfo(struct sysinfo *val)
1523 val->totalram = totalram_pages;
1525 val->freeram = global_page_state(NR_FREE_PAGES);
1526 val->bufferram = nr_blockdev_pages();
1527 val->totalhigh = totalhigh_pages;
1528 val->freehigh = nr_free_highpages();
1529 val->mem_unit = PAGE_SIZE;
1532 EXPORT_SYMBOL(si_meminfo);
1535 void si_meminfo_node(struct sysinfo *val, int nid)
1537 pg_data_t *pgdat = NODE_DATA(nid);
1539 val->totalram = pgdat->node_present_pages;
1540 val->freeram = node_page_state(nid, NR_FREE_PAGES);
1541 #ifdef CONFIG_HIGHMEM
1542 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1543 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1549 val->mem_unit = PAGE_SIZE;
1553 #define K(x) ((x) << (PAGE_SHIFT-10))
1556 * Show free area list (used inside shift_scroll-lock stuff)
1557 * We also calculate the percentage fragmentation. We do this by counting the
1558 * memory on each free list with the exception of the first item on the list.
1560 void show_free_areas(void)
1565 for_each_zone(zone) {
1566 if (!populated_zone(zone))
1570 printk("%s per-cpu:\n", zone->name);
1572 for_each_online_cpu(cpu) {
1573 struct per_cpu_pageset *pageset;
1575 pageset = zone_pcp(zone, cpu);
1577 printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d "
1578 "Cold: hi:%5d, btch:%4d usd:%4d\n",
1579 cpu, pageset->pcp[0].high,
1580 pageset->pcp[0].batch, pageset->pcp[0].count,
1581 pageset->pcp[1].high, pageset->pcp[1].batch,
1582 pageset->pcp[1].count);
1586 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1587 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1588 global_page_state(NR_ACTIVE),
1589 global_page_state(NR_INACTIVE),
1590 global_page_state(NR_FILE_DIRTY),
1591 global_page_state(NR_WRITEBACK),
1592 global_page_state(NR_UNSTABLE_NFS),
1593 global_page_state(NR_FREE_PAGES),
1594 global_page_state(NR_SLAB_RECLAIMABLE) +
1595 global_page_state(NR_SLAB_UNRECLAIMABLE),
1596 global_page_state(NR_FILE_MAPPED),
1597 global_page_state(NR_PAGETABLE),
1598 global_page_state(NR_BOUNCE));
1600 for_each_zone(zone) {
1603 if (!populated_zone(zone))
1615 " pages_scanned:%lu"
1616 " all_unreclaimable? %s"
1619 K(zone_page_state(zone, NR_FREE_PAGES)),
1622 K(zone->pages_high),
1623 K(zone_page_state(zone, NR_ACTIVE)),
1624 K(zone_page_state(zone, NR_INACTIVE)),
1625 K(zone->present_pages),
1626 zone->pages_scanned,
1627 (zone->all_unreclaimable ? "yes" : "no")
1629 printk("lowmem_reserve[]:");
1630 for (i = 0; i < MAX_NR_ZONES; i++)
1631 printk(" %lu", zone->lowmem_reserve[i]);
1635 for_each_zone(zone) {
1636 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1638 if (!populated_zone(zone))
1642 printk("%s: ", zone->name);
1644 spin_lock_irqsave(&zone->lock, flags);
1645 for (order = 0; order < MAX_ORDER; order++) {
1646 nr[order] = zone->free_area[order].nr_free;
1647 total += nr[order] << order;
1649 spin_unlock_irqrestore(&zone->lock, flags);
1650 for (order = 0; order < MAX_ORDER; order++)
1651 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1652 printk("= %lukB\n", K(total));
1655 show_swap_cache_info();
1659 * Builds allocation fallback zone lists.
1661 * Add all populated zones of a node to the zonelist.
1663 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1664 int nr_zones, enum zone_type zone_type)
1668 BUG_ON(zone_type >= MAX_NR_ZONES);
1673 zone = pgdat->node_zones + zone_type;
1674 if (populated_zone(zone)) {
1675 zonelist->zones[nr_zones++] = zone;
1676 check_highest_zone(zone_type);
1679 } while (zone_type);
1686 * 0 = automatic detection of better ordering.
1687 * 1 = order by ([node] distance, -zonetype)
1688 * 2 = order by (-zonetype, [node] distance)
1690 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1691 * the same zonelist. So only NUMA can configure this param.
1693 #define ZONELIST_ORDER_DEFAULT 0
1694 #define ZONELIST_ORDER_NODE 1
1695 #define ZONELIST_ORDER_ZONE 2
1697 /* zonelist order in the kernel.
1698 * set_zonelist_order() will set this to NODE or ZONE.
1700 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
1701 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
1705 /* The value user specified ....changed by config */
1706 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1707 /* string for sysctl */
1708 #define NUMA_ZONELIST_ORDER_LEN 16
1709 char numa_zonelist_order[16] = "default";
1712 * interface for configure zonelist ordering.
1713 * command line option "numa_zonelist_order"
1714 * = "[dD]efault - default, automatic configuration.
1715 * = "[nN]ode - order by node locality, then by zone within node
1716 * = "[zZ]one - order by zone, then by locality within zone
1719 static int __parse_numa_zonelist_order(char *s)
1721 if (*s == 'd' || *s == 'D') {
1722 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1723 } else if (*s == 'n' || *s == 'N') {
1724 user_zonelist_order = ZONELIST_ORDER_NODE;
1725 } else if (*s == 'z' || *s == 'Z') {
1726 user_zonelist_order = ZONELIST_ORDER_ZONE;
1729 "Ignoring invalid numa_zonelist_order value: "
1736 static __init int setup_numa_zonelist_order(char *s)
1739 return __parse_numa_zonelist_order(s);
1742 early_param("numa_zonelist_order", setup_numa_zonelist_order);
1745 * sysctl handler for numa_zonelist_order
1747 int numa_zonelist_order_handler(ctl_table *table, int write,
1748 struct file *file, void __user *buffer, size_t *length,
1751 char saved_string[NUMA_ZONELIST_ORDER_LEN];
1755 strncpy(saved_string, (char*)table->data,
1756 NUMA_ZONELIST_ORDER_LEN);
1757 ret = proc_dostring(table, write, file, buffer, length, ppos);
1761 int oldval = user_zonelist_order;
1762 if (__parse_numa_zonelist_order((char*)table->data)) {
1764 * bogus value. restore saved string
1766 strncpy((char*)table->data, saved_string,
1767 NUMA_ZONELIST_ORDER_LEN);
1768 user_zonelist_order = oldval;
1769 } else if (oldval != user_zonelist_order)
1770 build_all_zonelists();
1776 #define MAX_NODE_LOAD (num_online_nodes())
1777 static int node_load[MAX_NUMNODES];
1780 * find_next_best_node - find the next node that should appear in a given node's fallback list
1781 * @node: node whose fallback list we're appending
1782 * @used_node_mask: nodemask_t of already used nodes
1784 * We use a number of factors to determine which is the next node that should
1785 * appear on a given node's fallback list. The node should not have appeared
1786 * already in @node's fallback list, and it should be the next closest node
1787 * according to the distance array (which contains arbitrary distance values
1788 * from each node to each node in the system), and should also prefer nodes
1789 * with no CPUs, since presumably they'll have very little allocation pressure
1790 * on them otherwise.
1791 * It returns -1 if no node is found.
1793 static int find_next_best_node(int node, nodemask_t *used_node_mask)
1796 int min_val = INT_MAX;
1799 /* Use the local node if we haven't already */
1800 if (!node_isset(node, *used_node_mask)) {
1801 node_set(node, *used_node_mask);
1805 for_each_online_node(n) {
1808 /* Don't want a node to appear more than once */
1809 if (node_isset(n, *used_node_mask))
1812 /* Use the distance array to find the distance */
1813 val = node_distance(node, n);
1815 /* Penalize nodes under us ("prefer the next node") */
1818 /* Give preference to headless and unused nodes */
1819 tmp = node_to_cpumask(n);
1820 if (!cpus_empty(tmp))
1821 val += PENALTY_FOR_NODE_WITH_CPUS;
1823 /* Slight preference for less loaded node */
1824 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1825 val += node_load[n];
1827 if (val < min_val) {
1834 node_set(best_node, *used_node_mask);
1841 * Build zonelists ordered by node and zones within node.
1842 * This results in maximum locality--normal zone overflows into local
1843 * DMA zone, if any--but risks exhausting DMA zone.
1845 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1849 struct zonelist *zonelist;
1851 for (i = 0; i < MAX_NR_ZONES; i++) {
1852 zonelist = pgdat->node_zonelists + i;
1853 for (j = 0; zonelist->zones[j] != NULL; j++)
1855 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1856 zonelist->zones[j] = NULL;
1861 * Build zonelists ordered by zone and nodes within zones.
1862 * This results in conserving DMA zone[s] until all Normal memory is
1863 * exhausted, but results in overflowing to remote node while memory
1864 * may still exist in local DMA zone.
1866 static int node_order[MAX_NUMNODES];
1868 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
1872 int zone_type; /* needs to be signed */
1874 struct zonelist *zonelist;
1876 for (i = 0; i < MAX_NR_ZONES; i++) {
1877 zonelist = pgdat->node_zonelists + i;
1879 for (zone_type = i; zone_type >= 0; zone_type--) {
1880 for (j = 0; j < nr_nodes; j++) {
1881 node = node_order[j];
1882 z = &NODE_DATA(node)->node_zones[zone_type];
1883 if (populated_zone(z)) {
1884 zonelist->zones[pos++] = z;
1885 check_highest_zone(zone_type);
1889 zonelist->zones[pos] = NULL;
1893 static int default_zonelist_order(void)
1896 unsigned long low_kmem_size,total_size;
1900 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
1901 * If they are really small and used heavily, the system can fall
1902 * into OOM very easily.
1903 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
1905 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
1908 for_each_online_node(nid) {
1909 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
1910 z = &NODE_DATA(nid)->node_zones[zone_type];
1911 if (populated_zone(z)) {
1912 if (zone_type < ZONE_NORMAL)
1913 low_kmem_size += z->present_pages;
1914 total_size += z->present_pages;
1918 if (!low_kmem_size || /* there are no DMA area. */
1919 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
1920 return ZONELIST_ORDER_NODE;
1922 * look into each node's config.
1923 * If there is a node whose DMA/DMA32 memory is very big area on
1924 * local memory, NODE_ORDER may be suitable.
1926 average_size = total_size / (num_online_nodes() + 1);
1927 for_each_online_node(nid) {
1930 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
1931 z = &NODE_DATA(nid)->node_zones[zone_type];
1932 if (populated_zone(z)) {
1933 if (zone_type < ZONE_NORMAL)
1934 low_kmem_size += z->present_pages;
1935 total_size += z->present_pages;
1938 if (low_kmem_size &&
1939 total_size > average_size && /* ignore small node */
1940 low_kmem_size > total_size * 70/100)
1941 return ZONELIST_ORDER_NODE;
1943 return ZONELIST_ORDER_ZONE;
1946 static void set_zonelist_order(void)
1948 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
1949 current_zonelist_order = default_zonelist_order();
1951 current_zonelist_order = user_zonelist_order;
1954 static void build_zonelists(pg_data_t *pgdat)
1958 nodemask_t used_mask;
1959 int local_node, prev_node;
1960 struct zonelist *zonelist;
1961 int order = current_zonelist_order;
1963 /* initialize zonelists */
1964 for (i = 0; i < MAX_NR_ZONES; i++) {
1965 zonelist = pgdat->node_zonelists + i;
1966 zonelist->zones[0] = NULL;
1969 /* NUMA-aware ordering of nodes */
1970 local_node = pgdat->node_id;
1971 load = num_online_nodes();
1972 prev_node = local_node;
1973 nodes_clear(used_mask);
1975 memset(node_load, 0, sizeof(node_load));
1976 memset(node_order, 0, sizeof(node_order));
1979 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1980 int distance = node_distance(local_node, node);
1983 * If another node is sufficiently far away then it is better
1984 * to reclaim pages in a zone before going off node.
1986 if (distance > RECLAIM_DISTANCE)
1987 zone_reclaim_mode = 1;
1990 * We don't want to pressure a particular node.
1991 * So adding penalty to the first node in same
1992 * distance group to make it round-robin.
1994 if (distance != node_distance(local_node, prev_node))
1995 node_load[node] = load;
1999 if (order == ZONELIST_ORDER_NODE)
2000 build_zonelists_in_node_order(pgdat, node);
2002 node_order[j++] = node; /* remember order */
2005 if (order == ZONELIST_ORDER_ZONE) {
2006 /* calculate node order -- i.e., DMA last! */
2007 build_zonelists_in_zone_order(pgdat, j);
2011 /* Construct the zonelist performance cache - see further mmzone.h */
2012 static void build_zonelist_cache(pg_data_t *pgdat)
2016 for (i = 0; i < MAX_NR_ZONES; i++) {
2017 struct zonelist *zonelist;
2018 struct zonelist_cache *zlc;
2021 zonelist = pgdat->node_zonelists + i;
2022 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2023 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2024 for (z = zonelist->zones; *z; z++)
2025 zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
2030 #else /* CONFIG_NUMA */
2032 static void set_zonelist_order(void)
2034 current_zonelist_order = ZONELIST_ORDER_ZONE;
2037 static void build_zonelists(pg_data_t *pgdat)
2039 int node, local_node;
2042 local_node = pgdat->node_id;
2043 for (i = 0; i < MAX_NR_ZONES; i++) {
2044 struct zonelist *zonelist;
2046 zonelist = pgdat->node_zonelists + i;
2048 j = build_zonelists_node(pgdat, zonelist, 0, i);
2050 * Now we build the zonelist so that it contains the zones
2051 * of all the other nodes.
2052 * We don't want to pressure a particular node, so when
2053 * building the zones for node N, we make sure that the
2054 * zones coming right after the local ones are those from
2055 * node N+1 (modulo N)
2057 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2058 if (!node_online(node))
2060 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2062 for (node = 0; node < local_node; node++) {
2063 if (!node_online(node))
2065 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2068 zonelist->zones[j] = NULL;
2072 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2073 static void build_zonelist_cache(pg_data_t *pgdat)
2077 for (i = 0; i < MAX_NR_ZONES; i++)
2078 pgdat->node_zonelists[i].zlcache_ptr = NULL;
2081 #endif /* CONFIG_NUMA */
2083 /* Any regular memory on that node ? */
2084 static void check_for_regular_memory(pg_data_t *pgdat)
2086 #ifdef CONFIG_HIGHMEM
2087 enum zone_type zone_type;
2089 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
2090 struct zone *zone = &pgdat->node_zones[zone_type];
2091 if (zone->present_pages)
2092 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
2097 /* return values int ....just for stop_machine_run() */
2098 static int __build_all_zonelists(void *dummy)
2102 for_each_online_node(nid) {
2103 pg_data_t *pgdat = NODE_DATA(nid);
2105 build_zonelists(pgdat);
2106 build_zonelist_cache(pgdat);
2108 /* Any memory on that node */
2109 if (pgdat->node_present_pages)
2110 node_set_state(nid, N_HIGH_MEMORY);
2111 check_for_regular_memory(pgdat);
2116 void build_all_zonelists(void)
2118 set_zonelist_order();
2120 if (system_state == SYSTEM_BOOTING) {
2121 __build_all_zonelists(NULL);
2122 cpuset_init_current_mems_allowed();
2124 /* we have to stop all cpus to guaranntee there is no user
2126 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
2127 /* cpuset refresh routine should be here */
2129 vm_total_pages = nr_free_pagecache_pages();
2130 printk("Built %i zonelists in %s order. Total pages: %ld\n",
2132 zonelist_order_name[current_zonelist_order],
2135 printk("Policy zone: %s\n", zone_names[policy_zone]);
2140 * Helper functions to size the waitqueue hash table.
2141 * Essentially these want to choose hash table sizes sufficiently
2142 * large so that collisions trying to wait on pages are rare.
2143 * But in fact, the number of active page waitqueues on typical
2144 * systems is ridiculously low, less than 200. So this is even
2145 * conservative, even though it seems large.
2147 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2148 * waitqueues, i.e. the size of the waitq table given the number of pages.
2150 #define PAGES_PER_WAITQUEUE 256
2152 #ifndef CONFIG_MEMORY_HOTPLUG
2153 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2155 unsigned long size = 1;
2157 pages /= PAGES_PER_WAITQUEUE;
2159 while (size < pages)
2163 * Once we have dozens or even hundreds of threads sleeping
2164 * on IO we've got bigger problems than wait queue collision.
2165 * Limit the size of the wait table to a reasonable size.
2167 size = min(size, 4096UL);
2169 return max(size, 4UL);
2173 * A zone's size might be changed by hot-add, so it is not possible to determine
2174 * a suitable size for its wait_table. So we use the maximum size now.
2176 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2178 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2179 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2180 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2182 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2183 * or more by the traditional way. (See above). It equals:
2185 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2186 * ia64(16K page size) : = ( 8G + 4M)byte.
2187 * powerpc (64K page size) : = (32G +16M)byte.
2189 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2196 * This is an integer logarithm so that shifts can be used later
2197 * to extract the more random high bits from the multiplicative
2198 * hash function before the remainder is taken.
2200 static inline unsigned long wait_table_bits(unsigned long size)
2205 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2208 * Initially all pages are reserved - free ones are freed
2209 * up by free_all_bootmem() once the early boot process is
2210 * done. Non-atomic initialization, single-pass.
2212 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2213 unsigned long start_pfn, enum memmap_context context)
2216 unsigned long end_pfn = start_pfn + size;
2219 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2221 * There can be holes in boot-time mem_map[]s
2222 * handed to this function. They do not
2223 * exist on hotplugged memory.
2225 if (context == MEMMAP_EARLY) {
2226 if (!early_pfn_valid(pfn))
2228 if (!early_pfn_in_nid(pfn, nid))
2231 page = pfn_to_page(pfn);
2232 set_page_links(page, zone, nid, pfn);
2233 init_page_count(page);
2234 reset_page_mapcount(page);
2235 SetPageReserved(page);
2236 INIT_LIST_HEAD(&page->lru);
2237 #ifdef WANT_PAGE_VIRTUAL
2238 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2239 if (!is_highmem_idx(zone))
2240 set_page_address(page, __va(pfn << PAGE_SHIFT));
2245 static void __meminit zone_init_free_lists(struct pglist_data *pgdat,
2246 struct zone *zone, unsigned long size)
2249 for (order = 0; order < MAX_ORDER ; order++) {
2250 INIT_LIST_HEAD(&zone->free_area[order].free_list);
2251 zone->free_area[order].nr_free = 0;
2255 #ifndef __HAVE_ARCH_MEMMAP_INIT
2256 #define memmap_init(size, nid, zone, start_pfn) \
2257 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2260 static int __devinit zone_batchsize(struct zone *zone)
2265 * The per-cpu-pages pools are set to around 1000th of the
2266 * size of the zone. But no more than 1/2 of a meg.
2268 * OK, so we don't know how big the cache is. So guess.
2270 batch = zone->present_pages / 1024;
2271 if (batch * PAGE_SIZE > 512 * 1024)
2272 batch = (512 * 1024) / PAGE_SIZE;
2273 batch /= 4; /* We effectively *= 4 below */
2278 * Clamp the batch to a 2^n - 1 value. Having a power
2279 * of 2 value was found to be more likely to have
2280 * suboptimal cache aliasing properties in some cases.
2282 * For example if 2 tasks are alternately allocating
2283 * batches of pages, one task can end up with a lot
2284 * of pages of one half of the possible page colors
2285 * and the other with pages of the other colors.
2287 batch = (1 << (fls(batch + batch/2)-1)) - 1;
2292 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2294 struct per_cpu_pages *pcp;
2296 memset(p, 0, sizeof(*p));
2298 pcp = &p->pcp[0]; /* hot */
2300 pcp->high = 6 * batch;
2301 pcp->batch = max(1UL, 1 * batch);
2302 INIT_LIST_HEAD(&pcp->list);
2304 pcp = &p->pcp[1]; /* cold*/
2306 pcp->high = 2 * batch;
2307 pcp->batch = max(1UL, batch/2);
2308 INIT_LIST_HEAD(&pcp->list);
2312 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2313 * to the value high for the pageset p.
2316 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2319 struct per_cpu_pages *pcp;
2321 pcp = &p->pcp[0]; /* hot list */
2323 pcp->batch = max(1UL, high/4);
2324 if ((high/4) > (PAGE_SHIFT * 8))
2325 pcp->batch = PAGE_SHIFT * 8;
2331 * Boot pageset table. One per cpu which is going to be used for all
2332 * zones and all nodes. The parameters will be set in such a way
2333 * that an item put on a list will immediately be handed over to
2334 * the buddy list. This is safe since pageset manipulation is done
2335 * with interrupts disabled.
2337 * Some NUMA counter updates may also be caught by the boot pagesets.
2339 * The boot_pagesets must be kept even after bootup is complete for
2340 * unused processors and/or zones. They do play a role for bootstrapping
2341 * hotplugged processors.
2343 * zoneinfo_show() and maybe other functions do
2344 * not check if the processor is online before following the pageset pointer.
2345 * Other parts of the kernel may not check if the zone is available.
2347 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2350 * Dynamically allocate memory for the
2351 * per cpu pageset array in struct zone.
2353 static int __cpuinit process_zones(int cpu)
2355 struct zone *zone, *dzone;
2357 for_each_zone(zone) {
2359 if (!populated_zone(zone))
2362 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2363 GFP_KERNEL, cpu_to_node(cpu));
2364 if (!zone_pcp(zone, cpu))
2367 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2369 if (percpu_pagelist_fraction)
2370 setup_pagelist_highmark(zone_pcp(zone, cpu),
2371 (zone->present_pages / percpu_pagelist_fraction));
2376 for_each_zone(dzone) {
2377 if (!populated_zone(dzone))
2381 kfree(zone_pcp(dzone, cpu));
2382 zone_pcp(dzone, cpu) = NULL;
2387 static inline void free_zone_pagesets(int cpu)
2391 for_each_zone(zone) {
2392 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2394 /* Free per_cpu_pageset if it is slab allocated */
2395 if (pset != &boot_pageset[cpu])
2397 zone_pcp(zone, cpu) = NULL;
2401 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2402 unsigned long action,
2405 int cpu = (long)hcpu;
2406 int ret = NOTIFY_OK;
2409 case CPU_UP_PREPARE:
2410 case CPU_UP_PREPARE_FROZEN:
2411 if (process_zones(cpu))
2414 case CPU_UP_CANCELED:
2415 case CPU_UP_CANCELED_FROZEN:
2417 case CPU_DEAD_FROZEN:
2418 free_zone_pagesets(cpu);
2426 static struct notifier_block __cpuinitdata pageset_notifier =
2427 { &pageset_cpuup_callback, NULL, 0 };
2429 void __init setup_per_cpu_pageset(void)
2433 /* Initialize per_cpu_pageset for cpu 0.
2434 * A cpuup callback will do this for every cpu
2435 * as it comes online
2437 err = process_zones(smp_processor_id());
2439 register_cpu_notifier(&pageset_notifier);
2444 static noinline __init_refok
2445 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2448 struct pglist_data *pgdat = zone->zone_pgdat;
2452 * The per-page waitqueue mechanism uses hashed waitqueues
2455 zone->wait_table_hash_nr_entries =
2456 wait_table_hash_nr_entries(zone_size_pages);
2457 zone->wait_table_bits =
2458 wait_table_bits(zone->wait_table_hash_nr_entries);
2459 alloc_size = zone->wait_table_hash_nr_entries
2460 * sizeof(wait_queue_head_t);
2462 if (system_state == SYSTEM_BOOTING) {
2463 zone->wait_table = (wait_queue_head_t *)
2464 alloc_bootmem_node(pgdat, alloc_size);
2467 * This case means that a zone whose size was 0 gets new memory
2468 * via memory hot-add.
2469 * But it may be the case that a new node was hot-added. In
2470 * this case vmalloc() will not be able to use this new node's
2471 * memory - this wait_table must be initialized to use this new
2472 * node itself as well.
2473 * To use this new node's memory, further consideration will be
2476 zone->wait_table = vmalloc(alloc_size);
2478 if (!zone->wait_table)
2481 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2482 init_waitqueue_head(zone->wait_table + i);
2487 static __meminit void zone_pcp_init(struct zone *zone)
2490 unsigned long batch = zone_batchsize(zone);
2492 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2494 /* Early boot. Slab allocator not functional yet */
2495 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2496 setup_pageset(&boot_pageset[cpu],0);
2498 setup_pageset(zone_pcp(zone,cpu), batch);
2501 if (zone->present_pages)
2502 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2503 zone->name, zone->present_pages, batch);
2506 __meminit int init_currently_empty_zone(struct zone *zone,
2507 unsigned long zone_start_pfn,
2509 enum memmap_context context)
2511 struct pglist_data *pgdat = zone->zone_pgdat;
2513 ret = zone_wait_table_init(zone, size);
2516 pgdat->nr_zones = zone_idx(zone) + 1;
2518 zone->zone_start_pfn = zone_start_pfn;
2520 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2522 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2527 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2529 * Basic iterator support. Return the first range of PFNs for a node
2530 * Note: nid == MAX_NUMNODES returns first region regardless of node
2532 static int __meminit first_active_region_index_in_nid(int nid)
2536 for (i = 0; i < nr_nodemap_entries; i++)
2537 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2544 * Basic iterator support. Return the next active range of PFNs for a node
2545 * Note: nid == MAX_NUMNODES returns next region regardles of node
2547 static int __meminit next_active_region_index_in_nid(int index, int nid)
2549 for (index = index + 1; index < nr_nodemap_entries; index++)
2550 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2556 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2558 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2559 * Architectures may implement their own version but if add_active_range()
2560 * was used and there are no special requirements, this is a convenient
2563 int __meminit early_pfn_to_nid(unsigned long pfn)
2567 for (i = 0; i < nr_nodemap_entries; i++) {
2568 unsigned long start_pfn = early_node_map[i].start_pfn;
2569 unsigned long end_pfn = early_node_map[i].end_pfn;
2571 if (start_pfn <= pfn && pfn < end_pfn)
2572 return early_node_map[i].nid;
2577 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2579 /* Basic iterator support to walk early_node_map[] */
2580 #define for_each_active_range_index_in_nid(i, nid) \
2581 for (i = first_active_region_index_in_nid(nid); i != -1; \
2582 i = next_active_region_index_in_nid(i, nid))
2585 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2586 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2587 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2589 * If an architecture guarantees that all ranges registered with
2590 * add_active_ranges() contain no holes and may be freed, this
2591 * this function may be used instead of calling free_bootmem() manually.
2593 void __init free_bootmem_with_active_regions(int nid,
2594 unsigned long max_low_pfn)
2598 for_each_active_range_index_in_nid(i, nid) {
2599 unsigned long size_pages = 0;
2600 unsigned long end_pfn = early_node_map[i].end_pfn;
2602 if (early_node_map[i].start_pfn >= max_low_pfn)
2605 if (end_pfn > max_low_pfn)
2606 end_pfn = max_low_pfn;
2608 size_pages = end_pfn - early_node_map[i].start_pfn;
2609 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2610 PFN_PHYS(early_node_map[i].start_pfn),
2611 size_pages << PAGE_SHIFT);
2616 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2617 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2619 * If an architecture guarantees that all ranges registered with
2620 * add_active_ranges() contain no holes and may be freed, this
2621 * function may be used instead of calling memory_present() manually.
2623 void __init sparse_memory_present_with_active_regions(int nid)
2627 for_each_active_range_index_in_nid(i, nid)
2628 memory_present(early_node_map[i].nid,
2629 early_node_map[i].start_pfn,
2630 early_node_map[i].end_pfn);
2634 * push_node_boundaries - Push node boundaries to at least the requested boundary
2635 * @nid: The nid of the node to push the boundary for
2636 * @start_pfn: The start pfn of the node
2637 * @end_pfn: The end pfn of the node
2639 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2640 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2641 * be hotplugged even though no physical memory exists. This function allows
2642 * an arch to push out the node boundaries so mem_map is allocated that can
2645 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2646 void __init push_node_boundaries(unsigned int nid,
2647 unsigned long start_pfn, unsigned long end_pfn)
2649 printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2650 nid, start_pfn, end_pfn);
2652 /* Initialise the boundary for this node if necessary */
2653 if (node_boundary_end_pfn[nid] == 0)
2654 node_boundary_start_pfn[nid] = -1UL;
2656 /* Update the boundaries */
2657 if (node_boundary_start_pfn[nid] > start_pfn)
2658 node_boundary_start_pfn[nid] = start_pfn;
2659 if (node_boundary_end_pfn[nid] < end_pfn)
2660 node_boundary_end_pfn[nid] = end_pfn;
2663 /* If necessary, push the node boundary out for reserve hotadd */
2664 static void __meminit account_node_boundary(unsigned int nid,
2665 unsigned long *start_pfn, unsigned long *end_pfn)
2667 printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2668 nid, *start_pfn, *end_pfn);
2670 /* Return if boundary information has not been provided */
2671 if (node_boundary_end_pfn[nid] == 0)
2674 /* Check the boundaries and update if necessary */
2675 if (node_boundary_start_pfn[nid] < *start_pfn)
2676 *start_pfn = node_boundary_start_pfn[nid];
2677 if (node_boundary_end_pfn[nid] > *end_pfn)
2678 *end_pfn = node_boundary_end_pfn[nid];
2681 void __init push_node_boundaries(unsigned int nid,
2682 unsigned long start_pfn, unsigned long end_pfn) {}
2684 static void __meminit account_node_boundary(unsigned int nid,
2685 unsigned long *start_pfn, unsigned long *end_pfn) {}
2690 * get_pfn_range_for_nid - Return the start and end page frames for a node
2691 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
2692 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
2693 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
2695 * It returns the start and end page frame of a node based on information
2696 * provided by an arch calling add_active_range(). If called for a node
2697 * with no available memory, a warning is printed and the start and end
2700 void __meminit get_pfn_range_for_nid(unsigned int nid,
2701 unsigned long *start_pfn, unsigned long *end_pfn)
2707 for_each_active_range_index_in_nid(i, nid) {
2708 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
2709 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
2712 if (*start_pfn == -1UL) {
2713 printk(KERN_WARNING "Node %u active with no memory\n", nid);
2717 /* Push the node boundaries out if requested */
2718 account_node_boundary(nid, start_pfn, end_pfn);
2722 * This finds a zone that can be used for ZONE_MOVABLE pages. The
2723 * assumption is made that zones within a node are ordered in monotonic
2724 * increasing memory addresses so that the "highest" populated zone is used
2726 void __init find_usable_zone_for_movable(void)
2729 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
2730 if (zone_index == ZONE_MOVABLE)
2733 if (arch_zone_highest_possible_pfn[zone_index] >
2734 arch_zone_lowest_possible_pfn[zone_index])
2738 VM_BUG_ON(zone_index == -1);
2739 movable_zone = zone_index;
2743 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
2744 * because it is sized independant of architecture. Unlike the other zones,
2745 * the starting point for ZONE_MOVABLE is not fixed. It may be different
2746 * in each node depending on the size of each node and how evenly kernelcore
2747 * is distributed. This helper function adjusts the zone ranges
2748 * provided by the architecture for a given node by using the end of the
2749 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
2750 * zones within a node are in order of monotonic increases memory addresses
2752 void __meminit adjust_zone_range_for_zone_movable(int nid,
2753 unsigned long zone_type,
2754 unsigned long node_start_pfn,
2755 unsigned long node_end_pfn,
2756 unsigned long *zone_start_pfn,
2757 unsigned long *zone_end_pfn)
2759 /* Only adjust if ZONE_MOVABLE is on this node */
2760 if (zone_movable_pfn[nid]) {
2761 /* Size ZONE_MOVABLE */
2762 if (zone_type == ZONE_MOVABLE) {
2763 *zone_start_pfn = zone_movable_pfn[nid];
2764 *zone_end_pfn = min(node_end_pfn,
2765 arch_zone_highest_possible_pfn[movable_zone]);
2767 /* Adjust for ZONE_MOVABLE starting within this range */
2768 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
2769 *zone_end_pfn > zone_movable_pfn[nid]) {
2770 *zone_end_pfn = zone_movable_pfn[nid];
2772 /* Check if this whole range is within ZONE_MOVABLE */
2773 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
2774 *zone_start_pfn = *zone_end_pfn;
2779 * Return the number of pages a zone spans in a node, including holes
2780 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
2782 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
2783 unsigned long zone_type,
2784 unsigned long *ignored)
2786 unsigned long node_start_pfn, node_end_pfn;
2787 unsigned long zone_start_pfn, zone_end_pfn;
2789 /* Get the start and end of the node and zone */
2790 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2791 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
2792 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2793 adjust_zone_range_for_zone_movable(nid, zone_type,
2794 node_start_pfn, node_end_pfn,
2795 &zone_start_pfn, &zone_end_pfn);
2797 /* Check that this node has pages within the zone's required range */
2798 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
2801 /* Move the zone boundaries inside the node if necessary */
2802 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
2803 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
2805 /* Return the spanned pages */
2806 return zone_end_pfn - zone_start_pfn;
2810 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
2811 * then all holes in the requested range will be accounted for.
2813 unsigned long __meminit __absent_pages_in_range(int nid,
2814 unsigned long range_start_pfn,
2815 unsigned long range_end_pfn)
2818 unsigned long prev_end_pfn = 0, hole_pages = 0;
2819 unsigned long start_pfn;
2821 /* Find the end_pfn of the first active range of pfns in the node */
2822 i = first_active_region_index_in_nid(nid);
2826 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
2828 /* Account for ranges before physical memory on this node */
2829 if (early_node_map[i].start_pfn > range_start_pfn)
2830 hole_pages = prev_end_pfn - range_start_pfn;
2832 /* Find all holes for the zone within the node */
2833 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
2835 /* No need to continue if prev_end_pfn is outside the zone */
2836 if (prev_end_pfn >= range_end_pfn)
2839 /* Make sure the end of the zone is not within the hole */
2840 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
2841 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
2843 /* Update the hole size cound and move on */
2844 if (start_pfn > range_start_pfn) {
2845 BUG_ON(prev_end_pfn > start_pfn);
2846 hole_pages += start_pfn - prev_end_pfn;
2848 prev_end_pfn = early_node_map[i].end_pfn;
2851 /* Account for ranges past physical memory on this node */
2852 if (range_end_pfn > prev_end_pfn)
2853 hole_pages += range_end_pfn -
2854 max(range_start_pfn, prev_end_pfn);
2860 * absent_pages_in_range - Return number of page frames in holes within a range
2861 * @start_pfn: The start PFN to start searching for holes
2862 * @end_pfn: The end PFN to stop searching for holes
2864 * It returns the number of pages frames in memory holes within a range.
2866 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
2867 unsigned long end_pfn)
2869 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
2872 /* Return the number of page frames in holes in a zone on a node */
2873 static unsigned long __meminit zone_absent_pages_in_node(int nid,
2874 unsigned long zone_type,
2875 unsigned long *ignored)
2877 unsigned long node_start_pfn, node_end_pfn;
2878 unsigned long zone_start_pfn, zone_end_pfn;
2880 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2881 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
2883 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
2886 adjust_zone_range_for_zone_movable(nid, zone_type,
2887 node_start_pfn, node_end_pfn,
2888 &zone_start_pfn, &zone_end_pfn);
2889 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
2893 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
2894 unsigned long zone_type,
2895 unsigned long *zones_size)
2897 return zones_size[zone_type];
2900 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
2901 unsigned long zone_type,
2902 unsigned long *zholes_size)
2907 return zholes_size[zone_type];
2912 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
2913 unsigned long *zones_size, unsigned long *zholes_size)
2915 unsigned long realtotalpages, totalpages = 0;
2918 for (i = 0; i < MAX_NR_ZONES; i++)
2919 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
2921 pgdat->node_spanned_pages = totalpages;
2923 realtotalpages = totalpages;
2924 for (i = 0; i < MAX_NR_ZONES; i++)
2926 zone_absent_pages_in_node(pgdat->node_id, i,
2928 pgdat->node_present_pages = realtotalpages;
2929 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
2934 * Set up the zone data structures:
2935 * - mark all pages reserved
2936 * - mark all memory queues empty
2937 * - clear the memory bitmaps
2939 static void __meminit free_area_init_core(struct pglist_data *pgdat,
2940 unsigned long *zones_size, unsigned long *zholes_size)
2943 int nid = pgdat->node_id;
2944 unsigned long zone_start_pfn = pgdat->node_start_pfn;
2947 pgdat_resize_init(pgdat);
2948 pgdat->nr_zones = 0;
2949 init_waitqueue_head(&pgdat->kswapd_wait);
2950 pgdat->kswapd_max_order = 0;
2952 for (j = 0; j < MAX_NR_ZONES; j++) {
2953 struct zone *zone = pgdat->node_zones + j;
2954 unsigned long size, realsize, memmap_pages;
2956 size = zone_spanned_pages_in_node(nid, j, zones_size);
2957 realsize = size - zone_absent_pages_in_node(nid, j,
2961 * Adjust realsize so that it accounts for how much memory
2962 * is used by this zone for memmap. This affects the watermark
2963 * and per-cpu initialisations
2965 memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
2966 if (realsize >= memmap_pages) {
2967 realsize -= memmap_pages;
2969 " %s zone: %lu pages used for memmap\n",
2970 zone_names[j], memmap_pages);
2973 " %s zone: %lu pages exceeds realsize %lu\n",
2974 zone_names[j], memmap_pages, realsize);
2976 /* Account for reserved pages */
2977 if (j == 0 && realsize > dma_reserve) {
2978 realsize -= dma_reserve;
2979 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
2980 zone_names[0], dma_reserve);
2983 if (!is_highmem_idx(j))
2984 nr_kernel_pages += realsize;
2985 nr_all_pages += realsize;
2987 zone->spanned_pages = size;
2988 zone->present_pages = realsize;
2991 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
2993 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
2995 zone->name = zone_names[j];
2996 spin_lock_init(&zone->lock);
2997 spin_lock_init(&zone->lru_lock);
2998 zone_seqlock_init(zone);
2999 zone->zone_pgdat = pgdat;
3001 zone->prev_priority = DEF_PRIORITY;
3003 zone_pcp_init(zone);
3004 INIT_LIST_HEAD(&zone->active_list);
3005 INIT_LIST_HEAD(&zone->inactive_list);
3006 zone->nr_scan_active = 0;
3007 zone->nr_scan_inactive = 0;
3008 zap_zone_vm_stats(zone);
3009 atomic_set(&zone->reclaim_in_progress, 0);
3013 ret = init_currently_empty_zone(zone, zone_start_pfn,
3014 size, MEMMAP_EARLY);
3016 zone_start_pfn += size;
3020 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3022 /* Skip empty nodes */
3023 if (!pgdat->node_spanned_pages)
3026 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3027 /* ia64 gets its own node_mem_map, before this, without bootmem */
3028 if (!pgdat->node_mem_map) {
3029 unsigned long size, start, end;
3033 * The zone's endpoints aren't required to be MAX_ORDER
3034 * aligned but the node_mem_map endpoints must be in order
3035 * for the buddy allocator to function correctly.
3037 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3038 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3039 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3040 size = (end - start) * sizeof(struct page);
3041 map = alloc_remap(pgdat->node_id, size);
3043 map = alloc_bootmem_node(pgdat, size);
3044 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3046 #ifndef CONFIG_NEED_MULTIPLE_NODES
3048 * With no DISCONTIG, the global mem_map is just set as node 0's
3050 if (pgdat == NODE_DATA(0)) {
3051 mem_map = NODE_DATA(0)->node_mem_map;
3052 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3053 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3054 mem_map -= pgdat->node_start_pfn;
3055 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3058 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3061 void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
3062 unsigned long *zones_size, unsigned long node_start_pfn,
3063 unsigned long *zholes_size)
3065 pgdat->node_id = nid;
3066 pgdat->node_start_pfn = node_start_pfn;
3067 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3069 alloc_node_mem_map(pgdat);
3071 free_area_init_core(pgdat, zones_size, zholes_size);
3074 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3076 #if MAX_NUMNODES > 1
3078 * Figure out the number of possible node ids.
3080 static void __init setup_nr_node_ids(void)
3083 unsigned int highest = 0;
3085 for_each_node_mask(node, node_possible_map)
3087 nr_node_ids = highest + 1;
3090 static inline void setup_nr_node_ids(void)
3096 * add_active_range - Register a range of PFNs backed by physical memory
3097 * @nid: The node ID the range resides on
3098 * @start_pfn: The start PFN of the available physical memory
3099 * @end_pfn: The end PFN of the available physical memory
3101 * These ranges are stored in an early_node_map[] and later used by
3102 * free_area_init_nodes() to calculate zone sizes and holes. If the
3103 * range spans a memory hole, it is up to the architecture to ensure
3104 * the memory is not freed by the bootmem allocator. If possible
3105 * the range being registered will be merged with existing ranges.
3107 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3108 unsigned long end_pfn)
3112 printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
3113 "%d entries of %d used\n",
3114 nid, start_pfn, end_pfn,
3115 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3117 /* Merge with existing active regions if possible */
3118 for (i = 0; i < nr_nodemap_entries; i++) {
3119 if (early_node_map[i].nid != nid)
3122 /* Skip if an existing region covers this new one */
3123 if (start_pfn >= early_node_map[i].start_pfn &&
3124 end_pfn <= early_node_map[i].end_pfn)
3127 /* Merge forward if suitable */
3128 if (start_pfn <= early_node_map[i].end_pfn &&
3129 end_pfn > early_node_map[i].end_pfn) {
3130 early_node_map[i].end_pfn = end_pfn;
3134 /* Merge backward if suitable */
3135 if (start_pfn < early_node_map[i].end_pfn &&
3136 end_pfn >= early_node_map[i].start_pfn) {
3137 early_node_map[i].start_pfn = start_pfn;
3142 /* Check that early_node_map is large enough */
3143 if (i >= MAX_ACTIVE_REGIONS) {
3144 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3145 MAX_ACTIVE_REGIONS);
3149 early_node_map[i].nid = nid;
3150 early_node_map[i].start_pfn = start_pfn;
3151 early_node_map[i].end_pfn = end_pfn;
3152 nr_nodemap_entries = i + 1;
3156 * shrink_active_range - Shrink an existing registered range of PFNs
3157 * @nid: The node id the range is on that should be shrunk
3158 * @old_end_pfn: The old end PFN of the range
3159 * @new_end_pfn: The new PFN of the range
3161 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3162 * The map is kept at the end physical page range that has already been
3163 * registered with add_active_range(). This function allows an arch to shrink
3164 * an existing registered range.
3166 void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
3167 unsigned long new_end_pfn)
3171 /* Find the old active region end and shrink */
3172 for_each_active_range_index_in_nid(i, nid)
3173 if (early_node_map[i].end_pfn == old_end_pfn) {
3174 early_node_map[i].end_pfn = new_end_pfn;
3180 * remove_all_active_ranges - Remove all currently registered regions
3182 * During discovery, it may be found that a table like SRAT is invalid
3183 * and an alternative discovery method must be used. This function removes
3184 * all currently registered regions.
3186 void __init remove_all_active_ranges(void)
3188 memset(early_node_map, 0, sizeof(early_node_map));
3189 nr_nodemap_entries = 0;
3190 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3191 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3192 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3193 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3196 /* Compare two active node_active_regions */
3197 static int __init cmp_node_active_region(const void *a, const void *b)
3199 struct node_active_region *arange = (struct node_active_region *)a;
3200 struct node_active_region *brange = (struct node_active_region *)b;
3202 /* Done this way to avoid overflows */
3203 if (arange->start_pfn > brange->start_pfn)
3205 if (arange->start_pfn < brange->start_pfn)
3211 /* sort the node_map by start_pfn */
3212 static void __init sort_node_map(void)
3214 sort(early_node_map, (size_t)nr_nodemap_entries,
3215 sizeof(struct node_active_region),
3216 cmp_node_active_region, NULL);
3219 /* Find the lowest pfn for a node */
3220 unsigned long __init find_min_pfn_for_node(unsigned long nid)
3223 unsigned long min_pfn = ULONG_MAX;
3225 /* Assuming a sorted map, the first range found has the starting pfn */
3226 for_each_active_range_index_in_nid(i, nid)
3227 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3229 if (min_pfn == ULONG_MAX) {
3231 "Could not find start_pfn for node %lu\n", nid);
3239 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3241 * It returns the minimum PFN based on information provided via
3242 * add_active_range().
3244 unsigned long __init find_min_pfn_with_active_regions(void)
3246 return find_min_pfn_for_node(MAX_NUMNODES);
3250 * find_max_pfn_with_active_regions - Find the maximum PFN registered
3252 * It returns the maximum PFN based on information provided via
3253 * add_active_range().
3255 unsigned long __init find_max_pfn_with_active_regions(void)
3258 unsigned long max_pfn = 0;
3260 for (i = 0; i < nr_nodemap_entries; i++)
3261 max_pfn = max(max_pfn, early_node_map[i].end_pfn);
3266 unsigned long __init early_calculate_totalpages(void)
3269 unsigned long totalpages = 0;
3271 for (i = 0; i < nr_nodemap_entries; i++)
3272 totalpages += early_node_map[i].end_pfn -
3273 early_node_map[i].start_pfn;
3279 * Find the PFN the Movable zone begins in each node. Kernel memory
3280 * is spread evenly between nodes as long as the nodes have enough
3281 * memory. When they don't, some nodes will have more kernelcore than
3284 void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3287 unsigned long usable_startpfn;
3288 unsigned long kernelcore_node, kernelcore_remaining;
3289 int usable_nodes = num_online_nodes();
3292 * If movablecore was specified, calculate what size of
3293 * kernelcore that corresponds so that memory usable for
3294 * any allocation type is evenly spread. If both kernelcore
3295 * and movablecore are specified, then the value of kernelcore
3296 * will be used for required_kernelcore if it's greater than
3297 * what movablecore would have allowed.
3299 if (required_movablecore) {
3300 unsigned long totalpages = early_calculate_totalpages();
3301 unsigned long corepages;
3304 * Round-up so that ZONE_MOVABLE is at least as large as what
3305 * was requested by the user
3307 required_movablecore =
3308 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3309 corepages = totalpages - required_movablecore;
3311 required_kernelcore = max(required_kernelcore, corepages);
3314 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3315 if (!required_kernelcore)
3318 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3319 find_usable_zone_for_movable();
3320 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3323 /* Spread kernelcore memory as evenly as possible throughout nodes */
3324 kernelcore_node = required_kernelcore / usable_nodes;
3325 for_each_online_node(nid) {
3327 * Recalculate kernelcore_node if the division per node
3328 * now exceeds what is necessary to satisfy the requested
3329 * amount of memory for the kernel
3331 if (required_kernelcore < kernelcore_node)
3332 kernelcore_node = required_kernelcore / usable_nodes;
3335 * As the map is walked, we track how much memory is usable
3336 * by the kernel using kernelcore_remaining. When it is
3337 * 0, the rest of the node is usable by ZONE_MOVABLE
3339 kernelcore_remaining = kernelcore_node;
3341 /* Go through each range of PFNs within this node */
3342 for_each_active_range_index_in_nid(i, nid) {
3343 unsigned long start_pfn, end_pfn;
3344 unsigned long size_pages;
3346 start_pfn = max(early_node_map[i].start_pfn,
3347 zone_movable_pfn[nid]);
3348 end_pfn = early_node_map[i].end_pfn;
3349 if (start_pfn >= end_pfn)
3352 /* Account for what is only usable for kernelcore */
3353 if (start_pfn < usable_startpfn) {
3354 unsigned long kernel_pages;
3355 kernel_pages = min(end_pfn, usable_startpfn)
3358 kernelcore_remaining -= min(kernel_pages,
3359 kernelcore_remaining);
3360 required_kernelcore -= min(kernel_pages,
3361 required_kernelcore);
3363 /* Continue if range is now fully accounted */
3364 if (end_pfn <= usable_startpfn) {
3367 * Push zone_movable_pfn to the end so
3368 * that if we have to rebalance
3369 * kernelcore across nodes, we will
3370 * not double account here
3372 zone_movable_pfn[nid] = end_pfn;
3375 start_pfn = usable_startpfn;
3379 * The usable PFN range for ZONE_MOVABLE is from
3380 * start_pfn->end_pfn. Calculate size_pages as the
3381 * number of pages used as kernelcore
3383 size_pages = end_pfn - start_pfn;
3384 if (size_pages > kernelcore_remaining)
3385 size_pages = kernelcore_remaining;
3386 zone_movable_pfn[nid] = start_pfn + size_pages;
3389 * Some kernelcore has been met, update counts and
3390 * break if the kernelcore for this node has been
3393 required_kernelcore -= min(required_kernelcore,
3395 kernelcore_remaining -= size_pages;
3396 if (!kernelcore_remaining)
3402 * If there is still required_kernelcore, we do another pass with one
3403 * less node in the count. This will push zone_movable_pfn[nid] further
3404 * along on the nodes that still have memory until kernelcore is
3408 if (usable_nodes && required_kernelcore > usable_nodes)
3411 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3412 for (nid = 0; nid < MAX_NUMNODES; nid++)
3413 zone_movable_pfn[nid] =
3414 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3418 * free_area_init_nodes - Initialise all pg_data_t and zone data
3419 * @max_zone_pfn: an array of max PFNs for each zone
3421 * This will call free_area_init_node() for each active node in the system.
3422 * Using the page ranges provided by add_active_range(), the size of each
3423 * zone in each node and their holes is calculated. If the maximum PFN
3424 * between two adjacent zones match, it is assumed that the zone is empty.
3425 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3426 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3427 * starts where the previous one ended. For example, ZONE_DMA32 starts
3428 * at arch_max_dma_pfn.
3430 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3435 /* Sort early_node_map as initialisation assumes it is sorted */
3438 /* Record where the zone boundaries are */
3439 memset(arch_zone_lowest_possible_pfn, 0,
3440 sizeof(arch_zone_lowest_possible_pfn));
3441 memset(arch_zone_highest_possible_pfn, 0,
3442 sizeof(arch_zone_highest_possible_pfn));
3443 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3444 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3445 for (i = 1; i < MAX_NR_ZONES; i++) {