]> nv-tegra.nvidia Code Review - linux-2.6.git/blob - kernel/trace/ring_buffer.c
ring-buffer: Use sync sched protection on ring buffer resizing
[linux-2.6.git] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/ftrace_irq.h>
9 #include <linux/spinlock.h>
10 #include <linux/debugfs.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 #include <linux/kmemcheck.h>
14 #include <linux/module.h>
15 #include <linux/percpu.h>
16 #include <linux/mutex.h>
17 #include <linux/init.h>
18 #include <linux/hash.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/fs.h>
22
23 #include "trace.h"
24
25 /*
26  * The ring buffer header is special. We must manually up keep it.
27  */
28 int ring_buffer_print_entry_header(struct trace_seq *s)
29 {
30         int ret;
31
32         ret = trace_seq_printf(s, "# compressed entry header\n");
33         ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
34         ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
35         ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
36         ret = trace_seq_printf(s, "\n");
37         ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
38                                RINGBUF_TYPE_PADDING);
39         ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
40                                RINGBUF_TYPE_TIME_EXTEND);
41         ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
42                                RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
43
44         return ret;
45 }
46
47 /*
48  * The ring buffer is made up of a list of pages. A separate list of pages is
49  * allocated for each CPU. A writer may only write to a buffer that is
50  * associated with the CPU it is currently executing on.  A reader may read
51  * from any per cpu buffer.
52  *
53  * The reader is special. For each per cpu buffer, the reader has its own
54  * reader page. When a reader has read the entire reader page, this reader
55  * page is swapped with another page in the ring buffer.
56  *
57  * Now, as long as the writer is off the reader page, the reader can do what
58  * ever it wants with that page. The writer will never write to that page
59  * again (as long as it is out of the ring buffer).
60  *
61  * Here's some silly ASCII art.
62  *
63  *   +------+
64  *   |reader|          RING BUFFER
65  *   |page  |
66  *   +------+        +---+   +---+   +---+
67  *                   |   |-->|   |-->|   |
68  *                   +---+   +---+   +---+
69  *                     ^               |
70  *                     |               |
71  *                     +---------------+
72  *
73  *
74  *   +------+
75  *   |reader|          RING BUFFER
76  *   |page  |------------------v
77  *   +------+        +---+   +---+   +---+
78  *                   |   |-->|   |-->|   |
79  *                   +---+   +---+   +---+
80  *                     ^               |
81  *                     |               |
82  *                     +---------------+
83  *
84  *
85  *   +------+
86  *   |reader|          RING BUFFER
87  *   |page  |------------------v
88  *   +------+        +---+   +---+   +---+
89  *      ^            |   |-->|   |-->|   |
90  *      |            +---+   +---+   +---+
91  *      |                              |
92  *      |                              |
93  *      +------------------------------+
94  *
95  *
96  *   +------+
97  *   |buffer|          RING BUFFER
98  *   |page  |------------------v
99  *   +------+        +---+   +---+   +---+
100  *      ^            |   |   |   |-->|   |
101  *      |   New      +---+   +---+   +---+
102  *      |  Reader------^               |
103  *      |   page                       |
104  *      +------------------------------+
105  *
106  *
107  * After we make this swap, the reader can hand this page off to the splice
108  * code and be done with it. It can even allocate a new page if it needs to
109  * and swap that into the ring buffer.
110  *
111  * We will be using cmpxchg soon to make all this lockless.
112  *
113  */
114
115 /*
116  * A fast way to enable or disable all ring buffers is to
117  * call tracing_on or tracing_off. Turning off the ring buffers
118  * prevents all ring buffers from being recorded to.
119  * Turning this switch on, makes it OK to write to the
120  * ring buffer, if the ring buffer is enabled itself.
121  *
122  * There's three layers that must be on in order to write
123  * to the ring buffer.
124  *
125  * 1) This global flag must be set.
126  * 2) The ring buffer must be enabled for recording.
127  * 3) The per cpu buffer must be enabled for recording.
128  *
129  * In case of an anomaly, this global flag has a bit set that
130  * will permantly disable all ring buffers.
131  */
132
133 /*
134  * Global flag to disable all recording to ring buffers
135  *  This has two bits: ON, DISABLED
136  *
137  *  ON   DISABLED
138  * ---- ----------
139  *   0      0        : ring buffers are off
140  *   1      0        : ring buffers are on
141  *   X      1        : ring buffers are permanently disabled
142  */
143
144 enum {
145         RB_BUFFERS_ON_BIT       = 0,
146         RB_BUFFERS_DISABLED_BIT = 1,
147 };
148
149 enum {
150         RB_BUFFERS_ON           = 1 << RB_BUFFERS_ON_BIT,
151         RB_BUFFERS_DISABLED     = 1 << RB_BUFFERS_DISABLED_BIT,
152 };
153
154 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
155
156 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
157
158 /**
159  * tracing_on - enable all tracing buffers
160  *
161  * This function enables all tracing buffers that may have been
162  * disabled with tracing_off.
163  */
164 void tracing_on(void)
165 {
166         set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
167 }
168 EXPORT_SYMBOL_GPL(tracing_on);
169
170 /**
171  * tracing_off - turn off all tracing buffers
172  *
173  * This function stops all tracing buffers from recording data.
174  * It does not disable any overhead the tracers themselves may
175  * be causing. This function simply causes all recording to
176  * the ring buffers to fail.
177  */
178 void tracing_off(void)
179 {
180         clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
181 }
182 EXPORT_SYMBOL_GPL(tracing_off);
183
184 /**
185  * tracing_off_permanent - permanently disable ring buffers
186  *
187  * This function, once called, will disable all ring buffers
188  * permanently.
189  */
190 void tracing_off_permanent(void)
191 {
192         set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
193 }
194
195 /**
196  * tracing_is_on - show state of ring buffers enabled
197  */
198 int tracing_is_on(void)
199 {
200         return ring_buffer_flags == RB_BUFFERS_ON;
201 }
202 EXPORT_SYMBOL_GPL(tracing_is_on);
203
204 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
205 #define RB_ALIGNMENT            4U
206 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
207 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
208
209 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
210 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
211
212 enum {
213         RB_LEN_TIME_EXTEND = 8,
214         RB_LEN_TIME_STAMP = 16,
215 };
216
217 static inline int rb_null_event(struct ring_buffer_event *event)
218 {
219         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
220 }
221
222 static void rb_event_set_padding(struct ring_buffer_event *event)
223 {
224         /* padding has a NULL time_delta */
225         event->type_len = RINGBUF_TYPE_PADDING;
226         event->time_delta = 0;
227 }
228
229 static unsigned
230 rb_event_data_length(struct ring_buffer_event *event)
231 {
232         unsigned length;
233
234         if (event->type_len)
235                 length = event->type_len * RB_ALIGNMENT;
236         else
237                 length = event->array[0];
238         return length + RB_EVNT_HDR_SIZE;
239 }
240
241 /* inline for ring buffer fast paths */
242 static unsigned
243 rb_event_length(struct ring_buffer_event *event)
244 {
245         switch (event->type_len) {
246         case RINGBUF_TYPE_PADDING:
247                 if (rb_null_event(event))
248                         /* undefined */
249                         return -1;
250                 return  event->array[0] + RB_EVNT_HDR_SIZE;
251
252         case RINGBUF_TYPE_TIME_EXTEND:
253                 return RB_LEN_TIME_EXTEND;
254
255         case RINGBUF_TYPE_TIME_STAMP:
256                 return RB_LEN_TIME_STAMP;
257
258         case RINGBUF_TYPE_DATA:
259                 return rb_event_data_length(event);
260         default:
261                 BUG();
262         }
263         /* not hit */
264         return 0;
265 }
266
267 /**
268  * ring_buffer_event_length - return the length of the event
269  * @event: the event to get the length of
270  */
271 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
272 {
273         unsigned length = rb_event_length(event);
274         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
275                 return length;
276         length -= RB_EVNT_HDR_SIZE;
277         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
278                 length -= sizeof(event->array[0]);
279         return length;
280 }
281 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
282
283 /* inline for ring buffer fast paths */
284 static void *
285 rb_event_data(struct ring_buffer_event *event)
286 {
287         BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
288         /* If length is in len field, then array[0] has the data */
289         if (event->type_len)
290                 return (void *)&event->array[0];
291         /* Otherwise length is in array[0] and array[1] has the data */
292         return (void *)&event->array[1];
293 }
294
295 /**
296  * ring_buffer_event_data - return the data of the event
297  * @event: the event to get the data from
298  */
299 void *ring_buffer_event_data(struct ring_buffer_event *event)
300 {
301         return rb_event_data(event);
302 }
303 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
304
305 #define for_each_buffer_cpu(buffer, cpu)                \
306         for_each_cpu(cpu, buffer->cpumask)
307
308 #define TS_SHIFT        27
309 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
310 #define TS_DELTA_TEST   (~TS_MASK)
311
312 struct buffer_data_page {
313         u64              time_stamp;    /* page time stamp */
314         local_t          commit;        /* write committed index */
315         unsigned char    data[];        /* data of buffer page */
316 };
317
318 /*
319  * Note, the buffer_page list must be first. The buffer pages
320  * are allocated in cache lines, which means that each buffer
321  * page will be at the beginning of a cache line, and thus
322  * the least significant bits will be zero. We use this to
323  * add flags in the list struct pointers, to make the ring buffer
324  * lockless.
325  */
326 struct buffer_page {
327         struct list_head list;          /* list of buffer pages */
328         local_t          write;         /* index for next write */
329         unsigned         read;          /* index for next read */
330         local_t          entries;       /* entries on this page */
331         struct buffer_data_page *page;  /* Actual data page */
332 };
333
334 /*
335  * The buffer page counters, write and entries, must be reset
336  * atomically when crossing page boundaries. To synchronize this
337  * update, two counters are inserted into the number. One is
338  * the actual counter for the write position or count on the page.
339  *
340  * The other is a counter of updaters. Before an update happens
341  * the update partition of the counter is incremented. This will
342  * allow the updater to update the counter atomically.
343  *
344  * The counter is 20 bits, and the state data is 12.
345  */
346 #define RB_WRITE_MASK           0xfffff
347 #define RB_WRITE_INTCNT         (1 << 20)
348
349 static void rb_init_page(struct buffer_data_page *bpage)
350 {
351         local_set(&bpage->commit, 0);
352 }
353
354 /**
355  * ring_buffer_page_len - the size of data on the page.
356  * @page: The page to read
357  *
358  * Returns the amount of data on the page, including buffer page header.
359  */
360 size_t ring_buffer_page_len(void *page)
361 {
362         return local_read(&((struct buffer_data_page *)page)->commit)
363                 + BUF_PAGE_HDR_SIZE;
364 }
365
366 /*
367  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
368  * this issue out.
369  */
370 static void free_buffer_page(struct buffer_page *bpage)
371 {
372         free_page((unsigned long)bpage->page);
373         kfree(bpage);
374 }
375
376 /*
377  * We need to fit the time_stamp delta into 27 bits.
378  */
379 static inline int test_time_stamp(u64 delta)
380 {
381         if (delta & TS_DELTA_TEST)
382                 return 1;
383         return 0;
384 }
385
386 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
387
388 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
389 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
390
391 /* Max number of timestamps that can fit on a page */
392 #define RB_TIMESTAMPS_PER_PAGE  (BUF_PAGE_SIZE / RB_LEN_TIME_STAMP)
393
394 int ring_buffer_print_page_header(struct trace_seq *s)
395 {
396         struct buffer_data_page field;
397         int ret;
398
399         ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
400                                "offset:0;\tsize:%u;\tsigned:%u;\n",
401                                (unsigned int)sizeof(field.time_stamp),
402                                (unsigned int)is_signed_type(u64));
403
404         ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
405                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
406                                (unsigned int)offsetof(typeof(field), commit),
407                                (unsigned int)sizeof(field.commit),
408                                (unsigned int)is_signed_type(long));
409
410         ret = trace_seq_printf(s, "\tfield: char data;\t"
411                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
412                                (unsigned int)offsetof(typeof(field), data),
413                                (unsigned int)BUF_PAGE_SIZE,
414                                (unsigned int)is_signed_type(char));
415
416         return ret;
417 }
418
419 /*
420  * head_page == tail_page && head == tail then buffer is empty.
421  */
422 struct ring_buffer_per_cpu {
423         int                             cpu;
424         struct ring_buffer              *buffer;
425         spinlock_t                      reader_lock;    /* serialize readers */
426         raw_spinlock_t                  lock;
427         struct lock_class_key           lock_key;
428         struct list_head                *pages;
429         struct buffer_page              *head_page;     /* read from head */
430         struct buffer_page              *tail_page;     /* write to tail */
431         struct buffer_page              *commit_page;   /* committed pages */
432         struct buffer_page              *reader_page;
433         local_t                         commit_overrun;
434         local_t                         overrun;
435         local_t                         entries;
436         local_t                         committing;
437         local_t                         commits;
438         unsigned long                   read;
439         u64                             write_stamp;
440         u64                             read_stamp;
441         atomic_t                        record_disabled;
442 };
443
444 struct ring_buffer {
445         unsigned                        pages;
446         unsigned                        flags;
447         int                             cpus;
448         atomic_t                        record_disabled;
449         cpumask_var_t                   cpumask;
450
451         struct lock_class_key           *reader_lock_key;
452
453         struct mutex                    mutex;
454
455         struct ring_buffer_per_cpu      **buffers;
456
457 #ifdef CONFIG_HOTPLUG_CPU
458         struct notifier_block           cpu_notify;
459 #endif
460         u64                             (*clock)(void);
461 };
462
463 struct ring_buffer_iter {
464         struct ring_buffer_per_cpu      *cpu_buffer;
465         unsigned long                   head;
466         struct buffer_page              *head_page;
467         u64                             read_stamp;
468 };
469
470 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
471 #define RB_WARN_ON(b, cond)                                             \
472         ({                                                              \
473                 int _____ret = unlikely(cond);                          \
474                 if (_____ret) {                                         \
475                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
476                                 struct ring_buffer_per_cpu *__b =       \
477                                         (void *)b;                      \
478                                 atomic_inc(&__b->buffer->record_disabled); \
479                         } else                                          \
480                                 atomic_inc(&b->record_disabled);        \
481                         WARN_ON(1);                                     \
482                 }                                                       \
483                 _____ret;                                               \
484         })
485
486 /* Up this if you want to test the TIME_EXTENTS and normalization */
487 #define DEBUG_SHIFT 0
488
489 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
490 {
491         /* shift to debug/test normalization and TIME_EXTENTS */
492         return buffer->clock() << DEBUG_SHIFT;
493 }
494
495 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
496 {
497         u64 time;
498
499         preempt_disable_notrace();
500         time = rb_time_stamp(buffer);
501         preempt_enable_no_resched_notrace();
502
503         return time;
504 }
505 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
506
507 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
508                                       int cpu, u64 *ts)
509 {
510         /* Just stupid testing the normalize function and deltas */
511         *ts >>= DEBUG_SHIFT;
512 }
513 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
514
515 /*
516  * Making the ring buffer lockless makes things tricky.
517  * Although writes only happen on the CPU that they are on,
518  * and they only need to worry about interrupts. Reads can
519  * happen on any CPU.
520  *
521  * The reader page is always off the ring buffer, but when the
522  * reader finishes with a page, it needs to swap its page with
523  * a new one from the buffer. The reader needs to take from
524  * the head (writes go to the tail). But if a writer is in overwrite
525  * mode and wraps, it must push the head page forward.
526  *
527  * Here lies the problem.
528  *
529  * The reader must be careful to replace only the head page, and
530  * not another one. As described at the top of the file in the
531  * ASCII art, the reader sets its old page to point to the next
532  * page after head. It then sets the page after head to point to
533  * the old reader page. But if the writer moves the head page
534  * during this operation, the reader could end up with the tail.
535  *
536  * We use cmpxchg to help prevent this race. We also do something
537  * special with the page before head. We set the LSB to 1.
538  *
539  * When the writer must push the page forward, it will clear the
540  * bit that points to the head page, move the head, and then set
541  * the bit that points to the new head page.
542  *
543  * We also don't want an interrupt coming in and moving the head
544  * page on another writer. Thus we use the second LSB to catch
545  * that too. Thus:
546  *
547  * head->list->prev->next        bit 1          bit 0
548  *                              -------        -------
549  * Normal page                     0              0
550  * Points to head page             0              1
551  * New head page                   1              0
552  *
553  * Note we can not trust the prev pointer of the head page, because:
554  *
555  * +----+       +-----+        +-----+
556  * |    |------>|  T  |---X--->|  N  |
557  * |    |<------|     |        |     |
558  * +----+       +-----+        +-----+
559  *   ^                           ^ |
560  *   |          +-----+          | |
561  *   +----------|  R  |----------+ |
562  *              |     |<-----------+
563  *              +-----+
564  *
565  * Key:  ---X-->  HEAD flag set in pointer
566  *         T      Tail page
567  *         R      Reader page
568  *         N      Next page
569  *
570  * (see __rb_reserve_next() to see where this happens)
571  *
572  *  What the above shows is that the reader just swapped out
573  *  the reader page with a page in the buffer, but before it
574  *  could make the new header point back to the new page added
575  *  it was preempted by a writer. The writer moved forward onto
576  *  the new page added by the reader and is about to move forward
577  *  again.
578  *
579  *  You can see, it is legitimate for the previous pointer of
580  *  the head (or any page) not to point back to itself. But only
581  *  temporarially.
582  */
583
584 #define RB_PAGE_NORMAL          0UL
585 #define RB_PAGE_HEAD            1UL
586 #define RB_PAGE_UPDATE          2UL
587
588
589 #define RB_FLAG_MASK            3UL
590
591 /* PAGE_MOVED is not part of the mask */
592 #define RB_PAGE_MOVED           4UL
593
594 /*
595  * rb_list_head - remove any bit
596  */
597 static struct list_head *rb_list_head(struct list_head *list)
598 {
599         unsigned long val = (unsigned long)list;
600
601         return (struct list_head *)(val & ~RB_FLAG_MASK);
602 }
603
604 /*
605  * rb_is_head_page - test if the given page is the head page
606  *
607  * Because the reader may move the head_page pointer, we can
608  * not trust what the head page is (it may be pointing to
609  * the reader page). But if the next page is a header page,
610  * its flags will be non zero.
611  */
612 static int inline
613 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
614                 struct buffer_page *page, struct list_head *list)
615 {
616         unsigned long val;
617
618         val = (unsigned long)list->next;
619
620         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
621                 return RB_PAGE_MOVED;
622
623         return val & RB_FLAG_MASK;
624 }
625
626 /*
627  * rb_is_reader_page
628  *
629  * The unique thing about the reader page, is that, if the
630  * writer is ever on it, the previous pointer never points
631  * back to the reader page.
632  */
633 static int rb_is_reader_page(struct buffer_page *page)
634 {
635         struct list_head *list = page->list.prev;
636
637         return rb_list_head(list->next) != &page->list;
638 }
639
640 /*
641  * rb_set_list_to_head - set a list_head to be pointing to head.
642  */
643 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
644                                 struct list_head *list)
645 {
646         unsigned long *ptr;
647
648         ptr = (unsigned long *)&list->next;
649         *ptr |= RB_PAGE_HEAD;
650         *ptr &= ~RB_PAGE_UPDATE;
651 }
652
653 /*
654  * rb_head_page_activate - sets up head page
655  */
656 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
657 {
658         struct buffer_page *head;
659
660         head = cpu_buffer->head_page;
661         if (!head)
662                 return;
663
664         /*
665          * Set the previous list pointer to have the HEAD flag.
666          */
667         rb_set_list_to_head(cpu_buffer, head->list.prev);
668 }
669
670 static void rb_list_head_clear(struct list_head *list)
671 {
672         unsigned long *ptr = (unsigned long *)&list->next;
673
674         *ptr &= ~RB_FLAG_MASK;
675 }
676
677 /*
678  * rb_head_page_dactivate - clears head page ptr (for free list)
679  */
680 static void
681 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
682 {
683         struct list_head *hd;
684
685         /* Go through the whole list and clear any pointers found. */
686         rb_list_head_clear(cpu_buffer->pages);
687
688         list_for_each(hd, cpu_buffer->pages)
689                 rb_list_head_clear(hd);
690 }
691
692 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
693                             struct buffer_page *head,
694                             struct buffer_page *prev,
695                             int old_flag, int new_flag)
696 {
697         struct list_head *list;
698         unsigned long val = (unsigned long)&head->list;
699         unsigned long ret;
700
701         list = &prev->list;
702
703         val &= ~RB_FLAG_MASK;
704
705         ret = cmpxchg((unsigned long *)&list->next,
706                       val | old_flag, val | new_flag);
707
708         /* check if the reader took the page */
709         if ((ret & ~RB_FLAG_MASK) != val)
710                 return RB_PAGE_MOVED;
711
712         return ret & RB_FLAG_MASK;
713 }
714
715 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
716                                    struct buffer_page *head,
717                                    struct buffer_page *prev,
718                                    int old_flag)
719 {
720         return rb_head_page_set(cpu_buffer, head, prev,
721                                 old_flag, RB_PAGE_UPDATE);
722 }
723
724 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
725                                  struct buffer_page *head,
726                                  struct buffer_page *prev,
727                                  int old_flag)
728 {
729         return rb_head_page_set(cpu_buffer, head, prev,
730                                 old_flag, RB_PAGE_HEAD);
731 }
732
733 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
734                                    struct buffer_page *head,
735                                    struct buffer_page *prev,
736                                    int old_flag)
737 {
738         return rb_head_page_set(cpu_buffer, head, prev,
739                                 old_flag, RB_PAGE_NORMAL);
740 }
741
742 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
743                                struct buffer_page **bpage)
744 {
745         struct list_head *p = rb_list_head((*bpage)->list.next);
746
747         *bpage = list_entry(p, struct buffer_page, list);
748 }
749
750 static struct buffer_page *
751 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
752 {
753         struct buffer_page *head;
754         struct buffer_page *page;
755         struct list_head *list;
756         int i;
757
758         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
759                 return NULL;
760
761         /* sanity check */
762         list = cpu_buffer->pages;
763         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
764                 return NULL;
765
766         page = head = cpu_buffer->head_page;
767         /*
768          * It is possible that the writer moves the header behind
769          * where we started, and we miss in one loop.
770          * A second loop should grab the header, but we'll do
771          * three loops just because I'm paranoid.
772          */
773         for (i = 0; i < 3; i++) {
774                 do {
775                         if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
776                                 cpu_buffer->head_page = page;
777                                 return page;
778                         }
779                         rb_inc_page(cpu_buffer, &page);
780                 } while (page != head);
781         }
782
783         RB_WARN_ON(cpu_buffer, 1);
784
785         return NULL;
786 }
787
788 static int rb_head_page_replace(struct buffer_page *old,
789                                 struct buffer_page *new)
790 {
791         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
792         unsigned long val;
793         unsigned long ret;
794
795         val = *ptr & ~RB_FLAG_MASK;
796         val |= RB_PAGE_HEAD;
797
798         ret = cmpxchg(ptr, val, (unsigned long)&new->list);
799
800         return ret == val;
801 }
802
803 /*
804  * rb_tail_page_update - move the tail page forward
805  *
806  * Returns 1 if moved tail page, 0 if someone else did.
807  */
808 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
809                                struct buffer_page *tail_page,
810                                struct buffer_page *next_page)
811 {
812         struct buffer_page *old_tail;
813         unsigned long old_entries;
814         unsigned long old_write;
815         int ret = 0;
816
817         /*
818          * The tail page now needs to be moved forward.
819          *
820          * We need to reset the tail page, but without messing
821          * with possible erasing of data brought in by interrupts
822          * that have moved the tail page and are currently on it.
823          *
824          * We add a counter to the write field to denote this.
825          */
826         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
827         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
828
829         /*
830          * Just make sure we have seen our old_write and synchronize
831          * with any interrupts that come in.
832          */
833         barrier();
834
835         /*
836          * If the tail page is still the same as what we think
837          * it is, then it is up to us to update the tail
838          * pointer.
839          */
840         if (tail_page == cpu_buffer->tail_page) {
841                 /* Zero the write counter */
842                 unsigned long val = old_write & ~RB_WRITE_MASK;
843                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
844
845                 /*
846                  * This will only succeed if an interrupt did
847                  * not come in and change it. In which case, we
848                  * do not want to modify it.
849                  *
850                  * We add (void) to let the compiler know that we do not care
851                  * about the return value of these functions. We use the
852                  * cmpxchg to only update if an interrupt did not already
853                  * do it for us. If the cmpxchg fails, we don't care.
854                  */
855                 (void)local_cmpxchg(&next_page->write, old_write, val);
856                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
857
858                 /*
859                  * No need to worry about races with clearing out the commit.
860                  * it only can increment when a commit takes place. But that
861                  * only happens in the outer most nested commit.
862                  */
863                 local_set(&next_page->page->commit, 0);
864
865                 old_tail = cmpxchg(&cpu_buffer->tail_page,
866                                    tail_page, next_page);
867
868                 if (old_tail == tail_page)
869                         ret = 1;
870         }
871
872         return ret;
873 }
874
875 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
876                           struct buffer_page *bpage)
877 {
878         unsigned long val = (unsigned long)bpage;
879
880         if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
881                 return 1;
882
883         return 0;
884 }
885
886 /**
887  * rb_check_list - make sure a pointer to a list has the last bits zero
888  */
889 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
890                          struct list_head *list)
891 {
892         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
893                 return 1;
894         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
895                 return 1;
896         return 0;
897 }
898
899 /**
900  * check_pages - integrity check of buffer pages
901  * @cpu_buffer: CPU buffer with pages to test
902  *
903  * As a safety measure we check to make sure the data pages have not
904  * been corrupted.
905  */
906 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
907 {
908         struct list_head *head = cpu_buffer->pages;
909         struct buffer_page *bpage, *tmp;
910
911         rb_head_page_deactivate(cpu_buffer);
912
913         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
914                 return -1;
915         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
916                 return -1;
917
918         if (rb_check_list(cpu_buffer, head))
919                 return -1;
920
921         list_for_each_entry_safe(bpage, tmp, head, list) {
922                 if (RB_WARN_ON(cpu_buffer,
923                                bpage->list.next->prev != &bpage->list))
924                         return -1;
925                 if (RB_WARN_ON(cpu_buffer,
926                                bpage->list.prev->next != &bpage->list))
927                         return -1;
928                 if (rb_check_list(cpu_buffer, &bpage->list))
929                         return -1;
930         }
931
932         rb_head_page_activate(cpu_buffer);
933
934         return 0;
935 }
936
937 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
938                              unsigned nr_pages)
939 {
940         struct buffer_page *bpage, *tmp;
941         unsigned long addr;
942         LIST_HEAD(pages);
943         unsigned i;
944
945         WARN_ON(!nr_pages);
946
947         for (i = 0; i < nr_pages; i++) {
948                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
949                                     GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
950                 if (!bpage)
951                         goto free_pages;
952
953                 rb_check_bpage(cpu_buffer, bpage);
954
955                 list_add(&bpage->list, &pages);
956
957                 addr = __get_free_page(GFP_KERNEL);
958                 if (!addr)
959                         goto free_pages;
960                 bpage->page = (void *)addr;
961                 rb_init_page(bpage->page);
962         }
963
964         /*
965          * The ring buffer page list is a circular list that does not
966          * start and end with a list head. All page list items point to
967          * other pages.
968          */
969         cpu_buffer->pages = pages.next;
970         list_del(&pages);
971
972         rb_check_pages(cpu_buffer);
973
974         return 0;
975
976  free_pages:
977         list_for_each_entry_safe(bpage, tmp, &pages, list) {
978                 list_del_init(&bpage->list);
979                 free_buffer_page(bpage);
980         }
981         return -ENOMEM;
982 }
983
984 static struct ring_buffer_per_cpu *
985 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
986 {
987         struct ring_buffer_per_cpu *cpu_buffer;
988         struct buffer_page *bpage;
989         unsigned long addr;
990         int ret;
991
992         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
993                                   GFP_KERNEL, cpu_to_node(cpu));
994         if (!cpu_buffer)
995                 return NULL;
996
997         cpu_buffer->cpu = cpu;
998         cpu_buffer->buffer = buffer;
999         spin_lock_init(&cpu_buffer->reader_lock);
1000         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1001         cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
1002
1003         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1004                             GFP_KERNEL, cpu_to_node(cpu));
1005         if (!bpage)
1006                 goto fail_free_buffer;
1007
1008         rb_check_bpage(cpu_buffer, bpage);
1009
1010         cpu_buffer->reader_page = bpage;
1011         addr = __get_free_page(GFP_KERNEL);
1012         if (!addr)
1013                 goto fail_free_reader;
1014         bpage->page = (void *)addr;
1015         rb_init_page(bpage->page);
1016
1017         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1018
1019         ret = rb_allocate_pages(cpu_buffer, buffer->pages);
1020         if (ret < 0)
1021                 goto fail_free_reader;
1022
1023         cpu_buffer->head_page
1024                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1025         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1026
1027         rb_head_page_activate(cpu_buffer);
1028
1029         return cpu_buffer;
1030
1031  fail_free_reader:
1032         free_buffer_page(cpu_buffer->reader_page);
1033
1034  fail_free_buffer:
1035         kfree(cpu_buffer);
1036         return NULL;
1037 }
1038
1039 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1040 {
1041         struct list_head *head = cpu_buffer->pages;
1042         struct buffer_page *bpage, *tmp;
1043
1044         free_buffer_page(cpu_buffer->reader_page);
1045
1046         rb_head_page_deactivate(cpu_buffer);
1047
1048         if (head) {
1049                 list_for_each_entry_safe(bpage, tmp, head, list) {
1050                         list_del_init(&bpage->list);
1051                         free_buffer_page(bpage);
1052                 }
1053                 bpage = list_entry(head, struct buffer_page, list);
1054                 free_buffer_page(bpage);
1055         }
1056
1057         kfree(cpu_buffer);
1058 }
1059
1060 #ifdef CONFIG_HOTPLUG_CPU
1061 static int rb_cpu_notify(struct notifier_block *self,
1062                          unsigned long action, void *hcpu);
1063 #endif
1064
1065 /**
1066  * ring_buffer_alloc - allocate a new ring_buffer
1067  * @size: the size in bytes per cpu that is needed.
1068  * @flags: attributes to set for the ring buffer.
1069  *
1070  * Currently the only flag that is available is the RB_FL_OVERWRITE
1071  * flag. This flag means that the buffer will overwrite old data
1072  * when the buffer wraps. If this flag is not set, the buffer will
1073  * drop data when the tail hits the head.
1074  */
1075 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1076                                         struct lock_class_key *key)
1077 {
1078         struct ring_buffer *buffer;
1079         int bsize;
1080         int cpu;
1081
1082         /* keep it in its own cache line */
1083         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1084                          GFP_KERNEL);
1085         if (!buffer)
1086                 return NULL;
1087
1088         if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1089                 goto fail_free_buffer;
1090
1091         buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1092         buffer->flags = flags;
1093         buffer->clock = trace_clock_local;
1094         buffer->reader_lock_key = key;
1095
1096         /* need at least two pages */
1097         if (buffer->pages < 2)
1098                 buffer->pages = 2;
1099
1100         /*
1101          * In case of non-hotplug cpu, if the ring-buffer is allocated
1102          * in early initcall, it will not be notified of secondary cpus.
1103          * In that off case, we need to allocate for all possible cpus.
1104          */
1105 #ifdef CONFIG_HOTPLUG_CPU
1106         get_online_cpus();
1107         cpumask_copy(buffer->cpumask, cpu_online_mask);
1108 #else
1109         cpumask_copy(buffer->cpumask, cpu_possible_mask);
1110 #endif
1111         buffer->cpus = nr_cpu_ids;
1112
1113         bsize = sizeof(void *) * nr_cpu_ids;
1114         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1115                                   GFP_KERNEL);
1116         if (!buffer->buffers)
1117                 goto fail_free_cpumask;
1118
1119         for_each_buffer_cpu(buffer, cpu) {
1120                 buffer->buffers[cpu] =
1121                         rb_allocate_cpu_buffer(buffer, cpu);
1122                 if (!buffer->buffers[cpu])
1123                         goto fail_free_buffers;
1124         }
1125
1126 #ifdef CONFIG_HOTPLUG_CPU
1127         buffer->cpu_notify.notifier_call = rb_cpu_notify;
1128         buffer->cpu_notify.priority = 0;
1129         register_cpu_notifier(&buffer->cpu_notify);
1130 #endif
1131
1132         put_online_cpus();
1133         mutex_init(&buffer->mutex);
1134
1135         return buffer;
1136
1137  fail_free_buffers:
1138         for_each_buffer_cpu(buffer, cpu) {
1139                 if (buffer->buffers[cpu])
1140                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1141         }
1142         kfree(buffer->buffers);
1143
1144  fail_free_cpumask:
1145         free_cpumask_var(buffer->cpumask);
1146         put_online_cpus();
1147
1148  fail_free_buffer:
1149         kfree(buffer);
1150         return NULL;
1151 }
1152 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1153
1154 /**
1155  * ring_buffer_free - free a ring buffer.
1156  * @buffer: the buffer to free.
1157  */
1158 void
1159 ring_buffer_free(struct ring_buffer *buffer)
1160 {
1161         int cpu;
1162
1163         get_online_cpus();
1164
1165 #ifdef CONFIG_HOTPLUG_CPU
1166         unregister_cpu_notifier(&buffer->cpu_notify);
1167 #endif
1168
1169         for_each_buffer_cpu(buffer, cpu)
1170                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1171
1172         put_online_cpus();
1173
1174         kfree(buffer->buffers);
1175         free_cpumask_var(buffer->cpumask);
1176
1177         kfree(buffer);
1178 }
1179 EXPORT_SYMBOL_GPL(ring_buffer_free);
1180
1181 void ring_buffer_set_clock(struct ring_buffer *buffer,
1182                            u64 (*clock)(void))
1183 {
1184         buffer->clock = clock;
1185 }
1186
1187 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1188
1189 static void
1190 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
1191 {
1192         struct buffer_page *bpage;
1193         struct list_head *p;
1194         unsigned i;
1195
1196         spin_lock_irq(&cpu_buffer->reader_lock);
1197         rb_head_page_deactivate(cpu_buffer);
1198
1199         for (i = 0; i < nr_pages; i++) {
1200                 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1201                         return;
1202                 p = cpu_buffer->pages->next;
1203                 bpage = list_entry(p, struct buffer_page, list);
1204                 list_del_init(&bpage->list);
1205                 free_buffer_page(bpage);
1206         }
1207         if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1208                 return;
1209
1210         rb_reset_cpu(cpu_buffer);
1211         spin_unlock_irq(&cpu_buffer->reader_lock);
1212
1213         rb_check_pages(cpu_buffer);
1214 }
1215
1216 static void
1217 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
1218                 struct list_head *pages, unsigned nr_pages)
1219 {
1220         struct buffer_page *bpage;
1221         struct list_head *p;
1222         unsigned i;
1223
1224         spin_lock_irq(&cpu_buffer->reader_lock);
1225         rb_head_page_deactivate(cpu_buffer);
1226
1227         for (i = 0; i < nr_pages; i++) {
1228                 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
1229                         return;
1230                 p = pages->next;
1231                 bpage = list_entry(p, struct buffer_page, list);
1232                 list_del_init(&bpage->list);
1233                 list_add_tail(&bpage->list, cpu_buffer->pages);
1234         }
1235         rb_reset_cpu(cpu_buffer);
1236         spin_unlock_irq(&cpu_buffer->reader_lock);
1237
1238         rb_check_pages(cpu_buffer);
1239 }
1240
1241 /**
1242  * ring_buffer_resize - resize the ring buffer
1243  * @buffer: the buffer to resize.
1244  * @size: the new size.
1245  *
1246  * Minimum size is 2 * BUF_PAGE_SIZE.
1247  *
1248  * Returns -1 on failure.
1249  */
1250 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
1251 {
1252         struct ring_buffer_per_cpu *cpu_buffer;
1253         unsigned nr_pages, rm_pages, new_pages;
1254         struct buffer_page *bpage, *tmp;
1255         unsigned long buffer_size;
1256         unsigned long addr;
1257         LIST_HEAD(pages);
1258         int i, cpu;
1259
1260         /*
1261          * Always succeed at resizing a non-existent buffer:
1262          */
1263         if (!buffer)
1264                 return size;
1265
1266         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1267         size *= BUF_PAGE_SIZE;
1268         buffer_size = buffer->pages * BUF_PAGE_SIZE;
1269
1270         /* we need a minimum of two pages */
1271         if (size < BUF_PAGE_SIZE * 2)
1272                 size = BUF_PAGE_SIZE * 2;
1273
1274         if (size == buffer_size)
1275                 return size;
1276
1277         atomic_inc(&buffer->record_disabled);
1278
1279         /* Make sure all writers are done with this buffer. */
1280         synchronize_sched();
1281
1282         mutex_lock(&buffer->mutex);
1283         get_online_cpus();
1284
1285         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1286
1287         if (size < buffer_size) {
1288
1289                 /* easy case, just free pages */
1290                 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
1291                         goto out_fail;
1292
1293                 rm_pages = buffer->pages - nr_pages;
1294
1295                 for_each_buffer_cpu(buffer, cpu) {
1296                         cpu_buffer = buffer->buffers[cpu];
1297                         rb_remove_pages(cpu_buffer, rm_pages);
1298                 }
1299                 goto out;
1300         }
1301
1302         /*
1303          * This is a bit more difficult. We only want to add pages
1304          * when we can allocate enough for all CPUs. We do this
1305          * by allocating all the pages and storing them on a local
1306          * link list. If we succeed in our allocation, then we
1307          * add these pages to the cpu_buffers. Otherwise we just free
1308          * them all and return -ENOMEM;
1309          */
1310         if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
1311                 goto out_fail;
1312
1313         new_pages = nr_pages - buffer->pages;
1314
1315         for_each_buffer_cpu(buffer, cpu) {
1316                 for (i = 0; i < new_pages; i++) {
1317                         bpage = kzalloc_node(ALIGN(sizeof(*bpage),
1318                                                   cache_line_size()),
1319                                             GFP_KERNEL, cpu_to_node(cpu));
1320                         if (!bpage)
1321                                 goto free_pages;
1322                         list_add(&bpage->list, &pages);
1323                         addr = __get_free_page(GFP_KERNEL);
1324                         if (!addr)
1325                                 goto free_pages;
1326                         bpage->page = (void *)addr;
1327                         rb_init_page(bpage->page);
1328                 }
1329         }
1330
1331         for_each_buffer_cpu(buffer, cpu) {
1332                 cpu_buffer = buffer->buffers[cpu];
1333                 rb_insert_pages(cpu_buffer, &pages, new_pages);
1334         }
1335
1336         if (RB_WARN_ON(buffer, !list_empty(&pages)))
1337                 goto out_fail;
1338
1339  out:
1340         buffer->pages = nr_pages;
1341         put_online_cpus();
1342         mutex_unlock(&buffer->mutex);
1343
1344         atomic_dec(&buffer->record_disabled);
1345
1346         return size;
1347
1348  free_pages:
1349         list_for_each_entry_safe(bpage, tmp, &pages, list) {
1350                 list_del_init(&bpage->list);
1351                 free_buffer_page(bpage);
1352         }
1353         put_online_cpus();
1354         mutex_unlock(&buffer->mutex);
1355         atomic_dec(&buffer->record_disabled);
1356         return -ENOMEM;
1357
1358         /*
1359          * Something went totally wrong, and we are too paranoid
1360          * to even clean up the mess.
1361          */
1362  out_fail:
1363         put_online_cpus();
1364         mutex_unlock(&buffer->mutex);
1365         atomic_dec(&buffer->record_disabled);
1366         return -1;
1367 }
1368 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1369
1370 static inline void *
1371 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1372 {
1373         return bpage->data + index;
1374 }
1375
1376 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1377 {
1378         return bpage->page->data + index;
1379 }
1380
1381 static inline struct ring_buffer_event *
1382 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1383 {
1384         return __rb_page_index(cpu_buffer->reader_page,
1385                                cpu_buffer->reader_page->read);
1386 }
1387
1388 static inline struct ring_buffer_event *
1389 rb_iter_head_event(struct ring_buffer_iter *iter)
1390 {
1391         return __rb_page_index(iter->head_page, iter->head);
1392 }
1393
1394 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1395 {
1396         return local_read(&bpage->write) & RB_WRITE_MASK;
1397 }
1398
1399 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1400 {
1401         return local_read(&bpage->page->commit);
1402 }
1403
1404 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1405 {
1406         return local_read(&bpage->entries) & RB_WRITE_MASK;
1407 }
1408
1409 /* Size is determined by what has been commited */
1410 static inline unsigned rb_page_size(struct buffer_page *bpage)
1411 {
1412         return rb_page_commit(bpage);
1413 }
1414
1415 static inline unsigned
1416 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1417 {
1418         return rb_page_commit(cpu_buffer->commit_page);
1419 }
1420
1421 static inline unsigned
1422 rb_event_index(struct ring_buffer_event *event)
1423 {
1424         unsigned long addr = (unsigned long)event;
1425
1426         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1427 }
1428
1429 static inline int
1430 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1431                    struct ring_buffer_event *event)
1432 {
1433         unsigned long addr = (unsigned long)event;
1434         unsigned long index;
1435
1436         index = rb_event_index(event);
1437         addr &= PAGE_MASK;
1438
1439         return cpu_buffer->commit_page->page == (void *)addr &&
1440                 rb_commit_index(cpu_buffer) == index;
1441 }
1442
1443 static void
1444 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1445 {
1446         unsigned long max_count;
1447
1448         /*
1449          * We only race with interrupts and NMIs on this CPU.
1450          * If we own the commit event, then we can commit
1451          * all others that interrupted us, since the interruptions
1452          * are in stack format (they finish before they come
1453          * back to us). This allows us to do a simple loop to
1454          * assign the commit to the tail.
1455          */
1456  again:
1457         max_count = cpu_buffer->buffer->pages * 100;
1458
1459         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1460                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1461                         return;
1462                 if (RB_WARN_ON(cpu_buffer,
1463                                rb_is_reader_page(cpu_buffer->tail_page)))
1464                         return;
1465                 local_set(&cpu_buffer->commit_page->page->commit,
1466                           rb_page_write(cpu_buffer->commit_page));
1467                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1468                 cpu_buffer->write_stamp =
1469                         cpu_buffer->commit_page->page->time_stamp;
1470                 /* add barrier to keep gcc from optimizing too much */
1471                 barrier();
1472         }
1473         while (rb_commit_index(cpu_buffer) !=
1474                rb_page_write(cpu_buffer->commit_page)) {
1475
1476                 local_set(&cpu_buffer->commit_page->page->commit,
1477                           rb_page_write(cpu_buffer->commit_page));
1478                 RB_WARN_ON(cpu_buffer,
1479                            local_read(&cpu_buffer->commit_page->page->commit) &
1480                            ~RB_WRITE_MASK);
1481                 barrier();
1482         }
1483
1484         /* again, keep gcc from optimizing */
1485         barrier();
1486
1487         /*
1488          * If an interrupt came in just after the first while loop
1489          * and pushed the tail page forward, we will be left with
1490          * a dangling commit that will never go forward.
1491          */
1492         if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1493                 goto again;
1494 }
1495
1496 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1497 {
1498         cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1499         cpu_buffer->reader_page->read = 0;
1500 }
1501
1502 static void rb_inc_iter(struct ring_buffer_iter *iter)
1503 {
1504         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1505
1506         /*
1507          * The iterator could be on the reader page (it starts there).
1508          * But the head could have moved, since the reader was
1509          * found. Check for this case and assign the iterator
1510          * to the head page instead of next.
1511          */
1512         if (iter->head_page == cpu_buffer->reader_page)
1513                 iter->head_page = rb_set_head_page(cpu_buffer);
1514         else
1515                 rb_inc_page(cpu_buffer, &iter->head_page);
1516
1517         iter->read_stamp = iter->head_page->page->time_stamp;
1518         iter->head = 0;
1519 }
1520
1521 /**
1522  * ring_buffer_update_event - update event type and data
1523  * @event: the even to update
1524  * @type: the type of event
1525  * @length: the size of the event field in the ring buffer
1526  *
1527  * Update the type and data fields of the event. The length
1528  * is the actual size that is written to the ring buffer,
1529  * and with this, we can determine what to place into the
1530  * data field.
1531  */
1532 static void
1533 rb_update_event(struct ring_buffer_event *event,
1534                          unsigned type, unsigned length)
1535 {
1536         event->type_len = type;
1537
1538         switch (type) {
1539
1540         case RINGBUF_TYPE_PADDING:
1541         case RINGBUF_TYPE_TIME_EXTEND:
1542         case RINGBUF_TYPE_TIME_STAMP:
1543                 break;
1544
1545         case 0:
1546                 length -= RB_EVNT_HDR_SIZE;
1547                 if (length > RB_MAX_SMALL_DATA)
1548                         event->array[0] = length;
1549                 else
1550                         event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1551                 break;
1552         default:
1553                 BUG();
1554         }
1555 }
1556
1557 /*
1558  * rb_handle_head_page - writer hit the head page
1559  *
1560  * Returns: +1 to retry page
1561  *           0 to continue
1562  *          -1 on error
1563  */
1564 static int
1565 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1566                     struct buffer_page *tail_page,
1567                     struct buffer_page *next_page)
1568 {
1569         struct buffer_page *new_head;
1570         int entries;
1571         int type;
1572         int ret;
1573
1574         entries = rb_page_entries(next_page);
1575
1576         /*
1577          * The hard part is here. We need to move the head
1578          * forward, and protect against both readers on
1579          * other CPUs and writers coming in via interrupts.
1580          */
1581         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1582                                        RB_PAGE_HEAD);
1583
1584         /*
1585          * type can be one of four:
1586          *  NORMAL - an interrupt already moved it for us
1587          *  HEAD   - we are the first to get here.
1588          *  UPDATE - we are the interrupt interrupting
1589          *           a current move.
1590          *  MOVED  - a reader on another CPU moved the next
1591          *           pointer to its reader page. Give up
1592          *           and try again.
1593          */
1594
1595         switch (type) {
1596         case RB_PAGE_HEAD:
1597                 /*
1598                  * We changed the head to UPDATE, thus
1599                  * it is our responsibility to update
1600                  * the counters.
1601                  */
1602                 local_add(entries, &cpu_buffer->overrun);
1603
1604                 /*
1605                  * The entries will be zeroed out when we move the
1606                  * tail page.
1607                  */
1608
1609                 /* still more to do */
1610                 break;
1611
1612         case RB_PAGE_UPDATE:
1613                 /*
1614                  * This is an interrupt that interrupt the
1615                  * previous update. Still more to do.
1616                  */
1617                 break;
1618         case RB_PAGE_NORMAL:
1619                 /*
1620                  * An interrupt came in before the update
1621                  * and processed this for us.
1622                  * Nothing left to do.
1623                  */
1624                 return 1;
1625         case RB_PAGE_MOVED:
1626                 /*
1627                  * The reader is on another CPU and just did
1628                  * a swap with our next_page.
1629                  * Try again.
1630                  */
1631                 return 1;
1632         default:
1633                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1634                 return -1;
1635         }
1636
1637         /*
1638          * Now that we are here, the old head pointer is
1639          * set to UPDATE. This will keep the reader from
1640          * swapping the head page with the reader page.
1641          * The reader (on another CPU) will spin till
1642          * we are finished.
1643          *
1644          * We just need to protect against interrupts
1645          * doing the job. We will set the next pointer
1646          * to HEAD. After that, we set the old pointer
1647          * to NORMAL, but only if it was HEAD before.
1648          * otherwise we are an interrupt, and only
1649          * want the outer most commit to reset it.
1650          */
1651         new_head = next_page;
1652         rb_inc_page(cpu_buffer, &new_head);
1653
1654         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1655                                     RB_PAGE_NORMAL);
1656
1657         /*
1658          * Valid returns are:
1659          *  HEAD   - an interrupt came in and already set it.
1660          *  NORMAL - One of two things:
1661          *            1) We really set it.
1662          *            2) A bunch of interrupts came in and moved
1663          *               the page forward again.
1664          */
1665         switch (ret) {
1666         case RB_PAGE_HEAD:
1667         case RB_PAGE_NORMAL:
1668                 /* OK */
1669                 break;
1670         default:
1671                 RB_WARN_ON(cpu_buffer, 1);
1672                 return -1;
1673         }
1674
1675         /*
1676          * It is possible that an interrupt came in,
1677          * set the head up, then more interrupts came in
1678          * and moved it again. When we get back here,
1679          * the page would have been set to NORMAL but we
1680          * just set it back to HEAD.
1681          *
1682          * How do you detect this? Well, if that happened
1683          * the tail page would have moved.
1684          */
1685         if (ret == RB_PAGE_NORMAL) {
1686                 /*
1687                  * If the tail had moved passed next, then we need
1688                  * to reset the pointer.
1689                  */
1690                 if (cpu_buffer->tail_page != tail_page &&
1691                     cpu_buffer->tail_page != next_page)
1692                         rb_head_page_set_normal(cpu_buffer, new_head,
1693                                                 next_page,
1694                                                 RB_PAGE_HEAD);
1695         }
1696
1697         /*
1698          * If this was the outer most commit (the one that
1699          * changed the original pointer from HEAD to UPDATE),
1700          * then it is up to us to reset it to NORMAL.
1701          */
1702         if (type == RB_PAGE_HEAD) {
1703                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
1704                                               tail_page,
1705                                               RB_PAGE_UPDATE);
1706                 if (RB_WARN_ON(cpu_buffer,
1707                                ret != RB_PAGE_UPDATE))
1708                         return -1;
1709         }
1710
1711         return 0;
1712 }
1713
1714 static unsigned rb_calculate_event_length(unsigned length)
1715 {
1716         struct ring_buffer_event event; /* Used only for sizeof array */
1717
1718         /* zero length can cause confusions */
1719         if (!length)
1720                 length = 1;
1721
1722         if (length > RB_MAX_SMALL_DATA)
1723                 length += sizeof(event.array[0]);
1724
1725         length += RB_EVNT_HDR_SIZE;
1726         length = ALIGN(length, RB_ALIGNMENT);
1727
1728         return length;
1729 }
1730
1731 static inline void
1732 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
1733               struct buffer_page *tail_page,
1734               unsigned long tail, unsigned long length)
1735 {
1736         struct ring_buffer_event *event;
1737
1738         /*
1739          * Only the event that crossed the page boundary
1740          * must fill the old tail_page with padding.
1741          */
1742         if (tail >= BUF_PAGE_SIZE) {
1743                 local_sub(length, &tail_page->write);
1744                 return;
1745         }
1746
1747         event = __rb_page_index(tail_page, tail);
1748         kmemcheck_annotate_bitfield(event, bitfield);
1749
1750         /*
1751          * If this event is bigger than the minimum size, then
1752          * we need to be careful that we don't subtract the
1753          * write counter enough to allow another writer to slip
1754          * in on this page.
1755          * We put in a discarded commit instead, to make sure
1756          * that this space is not used again.
1757          *
1758          * If we are less than the minimum size, we don't need to
1759          * worry about it.
1760          */
1761         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
1762                 /* No room for any events */
1763
1764                 /* Mark the rest of the page with padding */
1765                 rb_event_set_padding(event);
1766
1767                 /* Set the write back to the previous setting */
1768                 local_sub(length, &tail_page->write);
1769                 return;
1770         }
1771
1772         /* Put in a discarded event */
1773         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
1774         event->type_len = RINGBUF_TYPE_PADDING;
1775         /* time delta must be non zero */
1776         event->time_delta = 1;
1777
1778         /* Set write to end of buffer */
1779         length = (tail + length) - BUF_PAGE_SIZE;
1780         local_sub(length, &tail_page->write);
1781 }
1782
1783 static struct ring_buffer_event *
1784 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1785              unsigned long length, unsigned long tail,
1786              struct buffer_page *tail_page, u64 *ts)
1787 {
1788         struct buffer_page *commit_page = cpu_buffer->commit_page;
1789         struct ring_buffer *buffer = cpu_buffer->buffer;
1790         struct buffer_page *next_page;
1791         int ret;
1792
1793         next_page = tail_page;
1794
1795         rb_inc_page(cpu_buffer, &next_page);
1796
1797         /*
1798          * If for some reason, we had an interrupt storm that made
1799          * it all the way around the buffer, bail, and warn
1800          * about it.
1801          */
1802         if (unlikely(next_page == commit_page)) {
1803                 local_inc(&cpu_buffer->commit_overrun);
1804                 goto out_reset;
1805         }
1806
1807         /*
1808          * This is where the fun begins!
1809          *
1810          * We are fighting against races between a reader that
1811          * could be on another CPU trying to swap its reader
1812          * page with the buffer head.
1813          *
1814          * We are also fighting against interrupts coming in and
1815          * moving the head or tail on us as well.
1816          *
1817          * If the next page is the head page then we have filled
1818          * the buffer, unless the commit page is still on the
1819          * reader page.
1820          */
1821         if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
1822
1823                 /*
1824                  * If the commit is not on the reader page, then
1825                  * move the header page.
1826                  */
1827                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
1828                         /*
1829                          * If we are not in overwrite mode,
1830                          * this is easy, just stop here.
1831                          */
1832                         if (!(buffer->flags & RB_FL_OVERWRITE))
1833                                 goto out_reset;
1834
1835                         ret = rb_handle_head_page(cpu_buffer,
1836                                                   tail_page,
1837                                                   next_page);
1838                         if (ret < 0)
1839                                 goto out_reset;
1840                         if (ret)
1841                                 goto out_again;
1842                 } else {
1843                         /*
1844                          * We need to be careful here too. The
1845                          * commit page could still be on the reader
1846                          * page. We could have a small buffer, and
1847                          * have filled up the buffer with events
1848                          * from interrupts and such, and wrapped.
1849                          *
1850                          * Note, if the tail page is also the on the
1851                          * reader_page, we let it move out.
1852                          */
1853                         if (unlikely((cpu_buffer->commit_page !=
1854                                       cpu_buffer->tail_page) &&
1855                                      (cpu_buffer->commit_page ==
1856                                       cpu_buffer->reader_page))) {
1857                                 local_inc(&cpu_buffer->commit_overrun);
1858                                 goto out_reset;
1859                         }
1860                 }
1861         }
1862
1863         ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
1864         if (ret) {
1865                 /*
1866                  * Nested commits always have zero deltas, so
1867                  * just reread the time stamp
1868                  */
1869                 *ts = rb_time_stamp(buffer);
1870                 next_page->page->time_stamp = *ts;
1871         }
1872
1873  out_again:
1874
1875         rb_reset_tail(cpu_buffer, tail_page, tail, length);
1876
1877         /* fail and let the caller try again */
1878         return ERR_PTR(-EAGAIN);
1879
1880  out_reset:
1881         /* reset write */
1882         rb_reset_tail(cpu_buffer, tail_page, tail, length);
1883
1884         return NULL;
1885 }
1886
1887 static struct ring_buffer_event *
1888 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1889                   unsigned type, unsigned long length, u64 *ts)
1890 {
1891         struct buffer_page *tail_page;
1892         struct ring_buffer_event *event;
1893         unsigned long tail, write;
1894
1895         tail_page = cpu_buffer->tail_page;
1896         write = local_add_return(length, &tail_page->write);
1897
1898         /* set write to only the index of the write */
1899         write &= RB_WRITE_MASK;
1900         tail = write - length;
1901
1902         /* See if we shot pass the end of this buffer page */
1903         if (write > BUF_PAGE_SIZE)
1904                 return rb_move_tail(cpu_buffer, length, tail,
1905                                     tail_page, ts);
1906
1907         /* We reserved something on the buffer */
1908
1909         event = __rb_page_index(tail_page, tail);
1910         kmemcheck_annotate_bitfield(event, bitfield);
1911         rb_update_event(event, type, length);
1912
1913         /* The passed in type is zero for DATA */
1914         if (likely(!type))
1915                 local_inc(&tail_page->entries);
1916
1917         /*
1918          * If this is the first commit on the page, then update
1919          * its timestamp.
1920          */
1921         if (!tail)
1922                 tail_page->page->time_stamp = *ts;
1923
1924         return event;
1925 }
1926
1927 static inline int
1928 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
1929                   struct ring_buffer_event *event)
1930 {
1931         unsigned long new_index, old_index;
1932         struct buffer_page *bpage;
1933         unsigned long index;
1934         unsigned long addr;
1935
1936         new_index = rb_event_index(event);
1937         old_index = new_index + rb_event_length(event);
1938         addr = (unsigned long)event;
1939         addr &= PAGE_MASK;
1940
1941         bpage = cpu_buffer->tail_page;
1942
1943         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
1944                 unsigned long write_mask =
1945                         local_read(&bpage->write) & ~RB_WRITE_MASK;
1946                 /*
1947                  * This is on the tail page. It is possible that
1948                  * a write could come in and move the tail page
1949                  * and write to the next page. That is fine
1950                  * because we just shorten what is on this page.
1951                  */
1952                 old_index += write_mask;
1953                 new_index += write_mask;
1954                 index = local_cmpxchg(&bpage->write, old_index, new_index);
1955                 if (index == old_index)
1956                         return 1;
1957         }
1958
1959         /* could not discard */
1960         return 0;
1961 }
1962
1963 static int
1964 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1965                   u64 *ts, u64 *delta)
1966 {
1967         struct ring_buffer_event *event;
1968         static int once;
1969         int ret;
1970
1971         if (unlikely(*delta > (1ULL << 59) && !once++)) {
1972                 printk(KERN_WARNING "Delta way too big! %llu"
1973                        " ts=%llu write stamp = %llu\n",
1974                        (unsigned long long)*delta,
1975                        (unsigned long long)*ts,
1976                        (unsigned long long)cpu_buffer->write_stamp);
1977                 WARN_ON(1);
1978         }
1979
1980         /*
1981          * The delta is too big, we to add a
1982          * new timestamp.
1983          */
1984         event = __rb_reserve_next(cpu_buffer,
1985                                   RINGBUF_TYPE_TIME_EXTEND,
1986                                   RB_LEN_TIME_EXTEND,
1987                                   ts);
1988         if (!event)
1989                 return -EBUSY;
1990
1991         if (PTR_ERR(event) == -EAGAIN)
1992                 return -EAGAIN;
1993
1994         /* Only a commited time event can update the write stamp */
1995         if (rb_event_is_commit(cpu_buffer, event)) {
1996                 /*
1997                  * If this is the first on the page, then it was
1998                  * updated with the page itself. Try to discard it
1999                  * and if we can't just make it zero.
2000                  */
2001                 if (rb_event_index(event)) {
2002                         event->time_delta = *delta & TS_MASK;
2003                         event->array[0] = *delta >> TS_SHIFT;
2004                 } else {
2005                         /* try to discard, since we do not need this */
2006                         if (!rb_try_to_discard(cpu_buffer, event)) {
2007                                 /* nope, just zero it */
2008                                 event->time_delta = 0;
2009                                 event->array[0] = 0;
2010                         }
2011                 }
2012                 cpu_buffer->write_stamp = *ts;
2013                 /* let the caller know this was the commit */
2014                 ret = 1;
2015         } else {
2016                 /* Try to discard the event */
2017                 if (!rb_try_to_discard(cpu_buffer, event)) {
2018                         /* Darn, this is just wasted space */
2019                         event->time_delta = 0;
2020                         event->array[0] = 0;
2021                 }
2022                 ret = 0;
2023         }
2024
2025         *delta = 0;
2026
2027         return ret;
2028 }
2029
2030 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2031 {
2032         local_inc(&cpu_buffer->committing);
2033         local_inc(&cpu_buffer->commits);
2034 }
2035
2036 static void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2037 {
2038         unsigned long commits;
2039
2040         if (RB_WARN_ON(cpu_buffer,
2041                        !local_read(&cpu_buffer->committing)))
2042                 return;
2043
2044  again:
2045         commits = local_read(&cpu_buffer->commits);
2046         /* synchronize with interrupts */
2047         barrier();
2048         if (local_read(&cpu_buffer->committing) == 1)
2049                 rb_set_commit_to_write(cpu_buffer);
2050
2051         local_dec(&cpu_buffer->committing);
2052
2053         /* synchronize with interrupts */
2054         barrier();
2055
2056         /*
2057          * Need to account for interrupts coming in between the
2058          * updating of the commit page and the clearing of the
2059          * committing counter.
2060          */
2061         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2062             !local_read(&cpu_buffer->committing)) {
2063                 local_inc(&cpu_buffer->committing);
2064                 goto again;
2065         }
2066 }
2067
2068 static struct ring_buffer_event *
2069 rb_reserve_next_event(struct ring_buffer *buffer,
2070                       struct ring_buffer_per_cpu *cpu_buffer,
2071                       unsigned long length)
2072 {
2073         struct ring_buffer_event *event;
2074         u64 ts, delta = 0;
2075         int commit = 0;
2076         int nr_loops = 0;
2077
2078         rb_start_commit(cpu_buffer);
2079
2080 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2081         /*
2082          * Due to the ability to swap a cpu buffer from a buffer
2083          * it is possible it was swapped before we committed.
2084          * (committing stops a swap). We check for it here and
2085          * if it happened, we have to fail the write.
2086          */
2087         barrier();
2088         if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2089                 local_dec(&cpu_buffer->committing);
2090                 local_dec(&cpu_buffer->commits);
2091                 return NULL;
2092         }
2093 #endif
2094
2095         length = rb_calculate_event_length(length);
2096  again:
2097         /*
2098          * We allow for interrupts to reenter here and do a trace.
2099          * If one does, it will cause this original code to loop
2100          * back here. Even with heavy interrupts happening, this
2101          * should only happen a few times in a row. If this happens
2102          * 1000 times in a row, there must be either an interrupt
2103          * storm or we have something buggy.
2104          * Bail!
2105          */
2106         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2107                 goto out_fail;
2108
2109         ts = rb_time_stamp(cpu_buffer->buffer);
2110
2111         /*
2112          * Only the first commit can update the timestamp.
2113          * Yes there is a race here. If an interrupt comes in
2114          * just after the conditional and it traces too, then it
2115          * will also check the deltas. More than one timestamp may
2116          * also be made. But only the entry that did the actual
2117          * commit will be something other than zero.
2118          */
2119         if (likely(cpu_buffer->tail_page == cpu_buffer->commit_page &&
2120                    rb_page_write(cpu_buffer->tail_page) ==
2121                    rb_commit_index(cpu_buffer))) {
2122                 u64 diff;
2123
2124                 diff = ts - cpu_buffer->write_stamp;
2125
2126                 /* make sure this diff is calculated here */
2127                 barrier();
2128
2129                 /* Did the write stamp get updated already? */
2130                 if (unlikely(ts < cpu_buffer->write_stamp))
2131                         goto get_event;
2132
2133                 delta = diff;
2134                 if (unlikely(test_time_stamp(delta))) {
2135
2136                         commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
2137                         if (commit == -EBUSY)
2138                                 goto out_fail;
2139
2140                         if (commit == -EAGAIN)
2141                                 goto again;
2142
2143                         RB_WARN_ON(cpu_buffer, commit < 0);
2144                 }
2145         }
2146
2147  get_event:
2148         event = __rb_reserve_next(cpu_buffer, 0, length, &ts);
2149         if (unlikely(PTR_ERR(event) == -EAGAIN))
2150                 goto again;
2151
2152         if (!event)
2153                 goto out_fail;
2154
2155         if (!rb_event_is_commit(cpu_buffer, event))
2156                 delta = 0;
2157
2158         event->time_delta = delta;
2159
2160         return event;
2161
2162  out_fail:
2163         rb_end_commit(cpu_buffer);
2164         return NULL;
2165 }
2166
2167 #ifdef CONFIG_TRACING
2168
2169 #define TRACE_RECURSIVE_DEPTH 16
2170
2171 static int trace_recursive_lock(void)
2172 {
2173         current->trace_recursion++;
2174
2175         if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH))
2176                 return 0;
2177
2178         /* Disable all tracing before we do anything else */
2179         tracing_off_permanent();
2180
2181         printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
2182                     "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2183                     current->trace_recursion,
2184                     hardirq_count() >> HARDIRQ_SHIFT,
2185                     softirq_count() >> SOFTIRQ_SHIFT,
2186                     in_nmi());
2187
2188         WARN_ON_ONCE(1);
2189         return -1;
2190 }
2191
2192 static void trace_recursive_unlock(void)
2193 {
2194         WARN_ON_ONCE(!current->trace_recursion);
2195
2196         current->trace_recursion--;
2197 }
2198
2199 #else
2200
2201 #define trace_recursive_lock()          (0)
2202 #define trace_recursive_unlock()        do { } while (0)
2203
2204 #endif
2205
2206 static DEFINE_PER_CPU(int, rb_need_resched);
2207
2208 /**
2209  * ring_buffer_lock_reserve - reserve a part of the buffer
2210  * @buffer: the ring buffer to reserve from
2211  * @length: the length of the data to reserve (excluding event header)
2212  *
2213  * Returns a reseverd event on the ring buffer to copy directly to.
2214  * The user of this interface will need to get the body to write into
2215  * and can use the ring_buffer_event_data() interface.
2216  *
2217  * The length is the length of the data needed, not the event length
2218  * which also includes the event header.
2219  *
2220  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2221  * If NULL is returned, then nothing has been allocated or locked.
2222  */
2223 struct ring_buffer_event *
2224 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2225 {
2226         struct ring_buffer_per_cpu *cpu_buffer;
2227         struct ring_buffer_event *event;
2228         int cpu, resched;
2229
2230         if (ring_buffer_flags != RB_BUFFERS_ON)
2231                 return NULL;
2232
2233         if (atomic_read(&buffer->record_disabled))
2234                 return NULL;
2235
2236         /* If we are tracing schedule, we don't want to recurse */
2237         resched = ftrace_preempt_disable();
2238
2239         if (trace_recursive_lock())
2240                 goto out_nocheck;
2241
2242         cpu = raw_smp_processor_id();
2243
2244         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2245                 goto out;
2246
2247         cpu_buffer = buffer->buffers[cpu];
2248
2249         if (atomic_read(&cpu_buffer->record_disabled))
2250                 goto out;
2251
2252         if (length > BUF_MAX_DATA_SIZE)
2253                 goto out;
2254
2255         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2256         if (!event)
2257                 goto out;
2258
2259         /*
2260          * Need to store resched state on this cpu.
2261          * Only the first needs to.
2262          */
2263
2264         if (preempt_count() == 1)
2265                 per_cpu(rb_need_resched, cpu) = resched;
2266
2267         return event;
2268
2269  out:
2270         trace_recursive_unlock();
2271
2272  out_nocheck:
2273         ftrace_preempt_enable(resched);
2274         return NULL;
2275 }
2276 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2277
2278 static void
2279 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2280                       struct ring_buffer_event *event)
2281 {
2282         /*
2283          * The event first in the commit queue updates the
2284          * time stamp.
2285          */
2286         if (rb_event_is_commit(cpu_buffer, event))
2287                 cpu_buffer->write_stamp += event->time_delta;
2288 }
2289
2290 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2291                       struct ring_buffer_event *event)
2292 {
2293         local_inc(&cpu_buffer->entries);
2294         rb_update_write_stamp(cpu_buffer, event);
2295         rb_end_commit(cpu_buffer);
2296 }
2297
2298 /**
2299  * ring_buffer_unlock_commit - commit a reserved
2300  * @buffer: The buffer to commit to
2301  * @event: The event pointer to commit.
2302  *
2303  * This commits the data to the ring buffer, and releases any locks held.
2304  *
2305  * Must be paired with ring_buffer_lock_reserve.
2306  */
2307 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2308                               struct ring_buffer_event *event)
2309 {
2310         struct ring_buffer_per_cpu *cpu_buffer;
2311         int cpu = raw_smp_processor_id();
2312
2313         cpu_buffer = buffer->buffers[cpu];
2314
2315         rb_commit(cpu_buffer, event);
2316
2317         trace_recursive_unlock();
2318
2319         /*
2320          * Only the last preempt count needs to restore preemption.
2321          */
2322         if (preempt_count() == 1)
2323                 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
2324         else
2325                 preempt_enable_no_resched_notrace();
2326
2327         return 0;
2328 }
2329 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2330
2331 static inline void rb_event_discard(struct ring_buffer_event *event)
2332 {
2333         /* array[0] holds the actual length for the discarded event */
2334         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2335         event->type_len = RINGBUF_TYPE_PADDING;
2336         /* time delta must be non zero */
2337         if (!event->time_delta)
2338                 event->time_delta = 1;
2339 }
2340
2341 /*
2342  * Decrement the entries to the page that an event is on.
2343  * The event does not even need to exist, only the pointer
2344  * to the page it is on. This may only be called before the commit
2345  * takes place.
2346  */
2347 static inline void
2348 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2349                    struct ring_buffer_event *event)
2350 {
2351         unsigned long addr = (unsigned long)event;
2352         struct buffer_page *bpage = cpu_buffer->commit_page;
2353         struct buffer_page *start;
2354
2355         addr &= PAGE_MASK;
2356
2357         /* Do the likely case first */
2358         if (likely(bpage->page == (void *)addr)) {
2359                 local_dec(&bpage->entries);
2360                 return;
2361         }
2362
2363         /*
2364          * Because the commit page may be on the reader page we
2365          * start with the next page and check the end loop there.
2366          */
2367         rb_inc_page(cpu_buffer, &bpage);
2368         start = bpage;
2369         do {
2370                 if (bpage->page == (void *)addr) {
2371                         local_dec(&bpage->entries);
2372                         return;
2373                 }
2374                 rb_inc_page(cpu_buffer, &bpage);
2375         } while (bpage != start);
2376
2377         /* commit not part of this buffer?? */
2378         RB_WARN_ON(cpu_buffer, 1);
2379 }
2380
2381 /**
2382  * ring_buffer_commit_discard - discard an event that has not been committed
2383  * @buffer: the ring buffer
2384  * @event: non committed event to discard
2385  *
2386  * Sometimes an event that is in the ring buffer needs to be ignored.
2387  * This function lets the user discard an event in the ring buffer
2388  * and then that event will not be read later.
2389  *
2390  * This function only works if it is called before the the item has been
2391  * committed. It will try to free the event from the ring buffer
2392  * if another event has not been added behind it.
2393  *
2394  * If another event has been added behind it, it will set the event
2395  * up as discarded, and perform the commit.
2396  *
2397  * If this function is called, do not call ring_buffer_unlock_commit on
2398  * the event.
2399  */
2400 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2401                                 struct ring_buffer_event *event)
2402 {
2403         struct ring_buffer_per_cpu *cpu_buffer;
2404         int cpu;
2405
2406         /* The event is discarded regardless */
2407         rb_event_discard(event);
2408
2409         cpu = smp_processor_id();
2410         cpu_buffer = buffer->buffers[cpu];
2411
2412         /*
2413          * This must only be called if the event has not been
2414          * committed yet. Thus we can assume that preemption
2415          * is still disabled.
2416          */
2417         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2418
2419         rb_decrement_entry(cpu_buffer, event);
2420         if (rb_try_to_discard(cpu_buffer, event))
2421                 goto out;
2422
2423         /*
2424          * The commit is still visible by the reader, so we
2425          * must still update the timestamp.
2426          */
2427         rb_update_write_stamp(cpu_buffer, event);
2428  out:
2429         rb_end_commit(cpu_buffer);
2430
2431         trace_recursive_unlock();
2432
2433         /*
2434          * Only the last preempt count needs to restore preemption.
2435          */
2436         if (preempt_count() == 1)
2437                 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
2438         else
2439                 preempt_enable_no_resched_notrace();
2440
2441 }
2442 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2443
2444 /**
2445  * ring_buffer_write - write data to the buffer without reserving
2446  * @buffer: The ring buffer to write to.
2447  * @length: The length of the data being written (excluding the event header)
2448  * @data: The data to write to the buffer.
2449  *
2450  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2451  * one function. If you already have the data to write to the buffer, it
2452  * may be easier to simply call this function.
2453  *
2454  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2455  * and not the length of the event which would hold the header.
2456  */
2457 int ring_buffer_write(struct ring_buffer *buffer,
2458                         unsigned long length,
2459                         void *data)
2460 {
2461         struct ring_buffer_per_cpu *cpu_buffer;
2462         struct ring_buffer_event *event;
2463         void *body;
2464         int ret = -EBUSY;
2465         int cpu, resched;
2466
2467         if (ring_buffer_flags != RB_BUFFERS_ON)
2468                 return -EBUSY;
2469
2470         if (atomic_read(&buffer->record_disabled))
2471                 return -EBUSY;
2472
2473         resched = ftrace_preempt_disable();
2474
2475         cpu = raw_smp_processor_id();
2476
2477         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2478                 goto out;
2479
2480         cpu_buffer = buffer->buffers[cpu];
2481
2482         if (atomic_read(&cpu_buffer->record_disabled))
2483                 goto out;
2484
2485         if (length > BUF_MAX_DATA_SIZE)
2486                 goto out;
2487
2488         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2489         if (!event)
2490                 goto out;
2491
2492         body = rb_event_data(event);
2493
2494         memcpy(body, data, length);
2495
2496         rb_commit(cpu_buffer, event);
2497
2498         ret = 0;
2499  out:
2500         ftrace_preempt_enable(resched);
2501
2502         return ret;
2503 }
2504 EXPORT_SYMBOL_GPL(ring_buffer_write);
2505
2506 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2507 {
2508         struct buffer_page *reader = cpu_buffer->reader_page;
2509         struct buffer_page *head = rb_set_head_page(cpu_buffer);
2510         struct buffer_page *commit = cpu_buffer->commit_page;
2511
2512         /* In case of error, head will be NULL */
2513         if (unlikely(!head))
2514                 return 1;
2515
2516         return reader->read == rb_page_commit(reader) &&
2517                 (commit == reader ||
2518                  (commit == head &&
2519                   head->read == rb_page_commit(commit)));
2520 }
2521
2522 /**
2523  * ring_buffer_record_disable - stop all writes into the buffer
2524  * @buffer: The ring buffer to stop writes to.
2525  *
2526  * This prevents all writes to the buffer. Any attempt to write
2527  * to the buffer after this will fail and return NULL.
2528  *
2529  * The caller should call synchronize_sched() after this.
2530  */
2531 void ring_buffer_record_disable(struct ring_buffer *buffer)
2532 {
2533         atomic_inc(&buffer->record_disabled);
2534 }
2535 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
2536
2537 /**
2538  * ring_buffer_record_enable - enable writes to the buffer
2539  * @buffer: The ring buffer to enable writes
2540  *
2541  * Note, multiple disables will need the same number of enables
2542  * to truely enable the writing (much like preempt_disable).
2543  */
2544 void ring_buffer_record_enable(struct ring_buffer *buffer)
2545 {
2546         atomic_dec(&buffer->record_disabled);
2547 }
2548 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
2549
2550 /**
2551  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2552  * @buffer: The ring buffer to stop writes to.
2553  * @cpu: The CPU buffer to stop
2554  *
2555  * This prevents all writes to the buffer. Any attempt to write
2556  * to the buffer after this will fail and return NULL.
2557  *
2558  * The caller should call synchronize_sched() after this.
2559  */
2560 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2561 {
2562         struct ring_buffer_per_cpu *cpu_buffer;
2563
2564         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2565                 return;
2566
2567         cpu_buffer = buffer->buffers[cpu];
2568         atomic_inc(&cpu_buffer->record_disabled);
2569 }
2570 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
2571
2572 /**
2573  * ring_buffer_record_enable_cpu - enable writes to the buffer
2574  * @buffer: The ring buffer to enable writes
2575  * @cpu: The CPU to enable.
2576  *
2577  * Note, multiple disables will need the same number of enables
2578  * to truely enable the writing (much like preempt_disable).
2579  */
2580 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2581 {
2582         struct ring_buffer_per_cpu *cpu_buffer;
2583
2584         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2585                 return;
2586
2587         cpu_buffer = buffer->buffers[cpu];
2588         atomic_dec(&cpu_buffer->record_disabled);
2589 }
2590 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
2591
2592 /**
2593  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2594  * @buffer: The ring buffer
2595  * @cpu: The per CPU buffer to get the entries from.
2596  */
2597 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2598 {
2599         struct ring_buffer_per_cpu *cpu_buffer;
2600         unsigned long ret;
2601
2602         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2603                 return 0;
2604
2605         cpu_buffer = buffer->buffers[cpu];
2606         ret = (local_read(&cpu_buffer->entries) - local_read(&cpu_buffer->overrun))
2607                 - cpu_buffer->read;
2608
2609         return ret;
2610 }
2611 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
2612
2613 /**
2614  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2615  * @buffer: The ring buffer
2616  * @cpu: The per CPU buffer to get the number of overruns from
2617  */
2618 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
2619 {
2620         struct ring_buffer_per_cpu *cpu_buffer;
2621         unsigned long ret;
2622
2623         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2624                 return 0;
2625
2626         cpu_buffer = buffer->buffers[cpu];
2627         ret = local_read(&cpu_buffer->overrun);
2628
2629         return ret;
2630 }
2631 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
2632
2633 /**
2634  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2635  * @buffer: The ring buffer
2636  * @cpu: The per CPU buffer to get the number of overruns from
2637  */
2638 unsigned long
2639 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
2640 {
2641         struct ring_buffer_per_cpu *cpu_buffer;
2642         unsigned long ret;
2643
2644         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2645                 return 0;
2646
2647         cpu_buffer = buffer->buffers[cpu];
2648         ret = local_read(&cpu_buffer->commit_overrun);
2649
2650         return ret;
2651 }
2652 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
2653
2654 /**
2655  * ring_buffer_entries - get the number of entries in a buffer
2656  * @buffer: The ring buffer
2657  *
2658  * Returns the total number of entries in the ring buffer
2659  * (all CPU entries)
2660  */
2661 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2662 {
2663         struct ring_buffer_per_cpu *cpu_buffer;
2664         unsigned long entries = 0;
2665         int cpu;
2666
2667         /* if you care about this being correct, lock the buffer */
2668         for_each_buffer_cpu(buffer, cpu) {
2669                 cpu_buffer = buffer->buffers[cpu];
2670                 entries += (local_read(&cpu_buffer->entries) -
2671                             local_read(&cpu_buffer->overrun)) - cpu_buffer->read;
2672         }
2673
2674         return entries;
2675 }
2676 EXPORT_SYMBOL_GPL(ring_buffer_entries);
2677
2678 /**
2679  * ring_buffer_overruns - get the number of overruns in buffer
2680  * @buffer: The ring buffer
2681  *
2682  * Returns the total number of overruns in the ring buffer
2683  * (all CPU entries)
2684  */
2685 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2686 {
2687         struct ring_buffer_per_cpu *cpu_buffer;
2688         unsigned long overruns = 0;
2689         int cpu;
2690
2691         /* if you care about this being correct, lock the buffer */
2692         for_each_buffer_cpu(buffer, cpu) {
2693                 cpu_buffer = buffer->buffers[cpu];
2694                 overruns += local_read(&cpu_buffer->overrun);
2695         }
2696
2697         return overruns;
2698 }
2699 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
2700
2701 static void rb_iter_reset(struct ring_buffer_iter *iter)
2702 {
2703         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2704
2705         /* Iterator usage is expected to have record disabled */
2706         if (list_empty(&cpu_buffer->reader_page->list)) {
2707                 iter->head_page = rb_set_head_page(cpu_buffer);
2708                 if (unlikely(!iter->head_page))
2709                         return;
2710                 iter->head = iter->head_page->read;
2711         } else {
2712                 iter->head_page = cpu_buffer->reader_page;
2713                 iter->head = cpu_buffer->reader_page->read;
2714         }
2715         if (iter->head)
2716                 iter->read_stamp = cpu_buffer->read_stamp;
2717         else
2718                 iter->read_stamp = iter->head_page->page->time_stamp;
2719 }
2720
2721 /**
2722  * ring_buffer_iter_reset - reset an iterator
2723  * @iter: The iterator to reset
2724  *
2725  * Resets the iterator, so that it will start from the beginning
2726  * again.
2727  */
2728 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2729 {
2730         struct ring_buffer_per_cpu *cpu_buffer;
2731         unsigned long flags;
2732
2733         if (!iter)
2734                 return;
2735
2736         cpu_buffer = iter->cpu_buffer;
2737
2738         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2739         rb_iter_reset(iter);
2740         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2741 }
2742 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
2743
2744 /**
2745  * ring_buffer_iter_empty - check if an iterator has no more to read
2746  * @iter: The iterator to check
2747  */
2748 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2749 {
2750         struct ring_buffer_per_cpu *cpu_buffer;
2751
2752         cpu_buffer = iter->cpu_buffer;
2753
2754         return iter->head_page == cpu_buffer->commit_page &&
2755                 iter->head == rb_commit_index(cpu_buffer);
2756 }
2757 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
2758
2759 static void
2760 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2761                      struct ring_buffer_event *event)
2762 {
2763         u64 delta;
2764
2765         switch (event->type_len) {
2766         case RINGBUF_TYPE_PADDING:
2767                 return;
2768
2769         case RINGBUF_TYPE_TIME_EXTEND:
2770                 delta = event->array[0];
2771                 delta <<= TS_SHIFT;
2772                 delta += event->time_delta;
2773                 cpu_buffer->read_stamp += delta;
2774                 return;
2775
2776         case RINGBUF_TYPE_TIME_STAMP:
2777                 /* FIXME: not implemented */
2778                 return;
2779
2780         case RINGBUF_TYPE_DATA:
2781                 cpu_buffer->read_stamp += event->time_delta;
2782                 return;
2783
2784         default:
2785                 BUG();
2786         }
2787         return;
2788 }
2789
2790 static void
2791 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2792                           struct ring_buffer_event *event)
2793 {
2794         u64 delta;
2795
2796         switch (event->type_len) {
2797         case RINGBUF_TYPE_PADDING:
2798                 return;
2799
2800         case RINGBUF_TYPE_TIME_EXTEND:
2801                 delta = event->array[0];
2802                 delta <<= TS_SHIFT;
2803                 delta += event->time_delta;
2804                 iter->read_stamp += delta;
2805                 return;
2806
2807         case RINGBUF_TYPE_TIME_STAMP:
2808                 /* FIXME: not implemented */
2809                 return;
2810
2811         case RINGBUF_TYPE_DATA:
2812                 iter->read_stamp += event->time_delta;
2813                 return;
2814
2815         default:
2816                 BUG();
2817         }
2818         return;
2819 }
2820
2821 static struct buffer_page *
2822 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2823 {
2824         struct buffer_page *reader = NULL;
2825         unsigned long flags;
2826         int nr_loops = 0;
2827         int ret;
2828
2829         local_irq_save(flags);
2830         __raw_spin_lock(&cpu_buffer->lock);
2831
2832  again:
2833         /*
2834          * This should normally only loop twice. But because the
2835          * start of the reader inserts an empty page, it causes
2836          * a case where we will loop three times. There should be no
2837          * reason to loop four times (that I know of).
2838          */
2839         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
2840                 reader = NULL;
2841                 goto out;
2842         }
2843
2844         reader = cpu_buffer->reader_page;
2845
2846         /* If there's more to read, return this page */
2847         if (cpu_buffer->reader_page->read < rb_page_size(reader))
2848                 goto out;
2849
2850         /* Never should we have an index greater than the size */
2851         if (RB_WARN_ON(cpu_buffer,
2852                        cpu_buffer->reader_page->read > rb_page_size(reader)))
2853                 goto out;
2854
2855         /* check if we caught up to the tail */
2856         reader = NULL;
2857         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
2858                 goto out;
2859
2860         /*
2861          * Reset the reader page to size zero.
2862          */
2863         local_set(&cpu_buffer->reader_page->write, 0);
2864         local_set(&cpu_buffer->reader_page->entries, 0);
2865         local_set(&cpu_buffer->reader_page->page->commit, 0);
2866
2867  spin:
2868         /*
2869          * Splice the empty reader page into the list around the head.
2870          */
2871         reader = rb_set_head_page(cpu_buffer);
2872         cpu_buffer->reader_page->list.next = reader->list.next;
2873         cpu_buffer->reader_page->list.prev = reader->list.prev;
2874
2875         /*
2876          * cpu_buffer->pages just needs to point to the buffer, it
2877          *  has no specific buffer page to point to. Lets move it out
2878          *  of our way so we don't accidently swap it.
2879          */
2880         cpu_buffer->pages = reader->list.prev;
2881
2882         /* The reader page will be pointing to the new head */
2883         rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
2884
2885         /*
2886          * Here's the tricky part.
2887          *
2888          * We need to move the pointer past the header page.
2889          * But we can only do that if a writer is not currently
2890          * moving it. The page before the header page has the
2891          * flag bit '1' set if it is pointing to the page we want.
2892          * but if the writer is in the process of moving it
2893          * than it will be '2' or already moved '0'.
2894          */
2895
2896         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
2897
2898         /*
2899          * If we did not convert it, then we must try again.
2900          */
2901         if (!ret)
2902                 goto spin;
2903
2904         /*
2905          * Yeah! We succeeded in replacing the page.
2906          *
2907          * Now make the new head point back to the reader page.
2908          */
2909         reader->list.next->prev = &cpu_buffer->reader_page->list;
2910         rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
2911
2912         /* Finally update the reader page to the new head */
2913         cpu_buffer->reader_page = reader;
2914         rb_reset_reader_page(cpu_buffer);
2915
2916         goto again;
2917
2918  out:
2919         __raw_spin_unlock(&cpu_buffer->lock);
2920         local_irq_restore(flags);
2921
2922         return reader;
2923 }
2924
2925 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
2926 {
2927         struct ring_buffer_event *event;
2928         struct buffer_page *reader;
2929         unsigned length;
2930
2931         reader = rb_get_reader_page(cpu_buffer);
2932
2933         /* This function should not be called when buffer is empty */
2934         if (RB_WARN_ON(cpu_buffer, !reader))
2935                 return;
2936
2937         event = rb_reader_event(cpu_buffer);
2938
2939         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
2940                 cpu_buffer->read++;
2941
2942         rb_update_read_stamp(cpu_buffer, event);
2943
2944         length = rb_event_length(event);
2945         cpu_buffer->reader_page->read += length;
2946 }
2947
2948 static void rb_advance_iter(struct ring_buffer_iter *iter)
2949 {
2950         struct ring_buffer *buffer;
2951         struct ring_buffer_per_cpu *cpu_buffer;
2952         struct ring_buffer_event *event;
2953         unsigned length;
2954
2955         cpu_buffer = iter->cpu_buffer;
2956         buffer = cpu_buffer->buffer;
2957
2958         /*
2959          * Check if we are at the end of the buffer.
2960          */
2961         if (iter->head >= rb_page_size(iter->head_page)) {
2962                 /* discarded commits can make the page empty */
2963                 if (iter->head_page == cpu_buffer->commit_page)
2964                         return;
2965                 rb_inc_iter(iter);
2966                 return;
2967         }
2968
2969         event = rb_iter_head_event(iter);
2970
2971         length = rb_event_length(event);
2972
2973         /*
2974          * This should not be called to advance the header if we are
2975          * at the tail of the buffer.
2976          */
2977         if (RB_WARN_ON(cpu_buffer,
2978                        (iter->head_page == cpu_buffer->commit_page) &&
2979                        (iter->head + length > rb_commit_index(cpu_buffer))))
2980                 return;
2981
2982         rb_update_iter_read_stamp(iter, event);
2983
2984         iter->head += length;
2985
2986         /* check for end of page padding */
2987         if ((iter->head >= rb_page_size(iter->head_page)) &&
2988             (iter->head_page != cpu_buffer->commit_page))
2989                 rb_advance_iter(iter);
2990 }
2991
2992 static struct ring_buffer_event *
2993 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts)
2994 {
2995         struct ring_buffer_event *event;
2996         struct buffer_page *reader;
2997         int nr_loops = 0;
2998
2999  again:
3000         /*
3001          * We repeat when a timestamp is encountered. It is possible
3002          * to get multiple timestamps from an interrupt entering just
3003          * as one timestamp is about to be written, or from discarded
3004          * commits. The most that we can have is the number on a single page.
3005          */
3006         if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
3007                 return NULL;
3008
3009         reader = rb_get_reader_page(cpu_buffer);
3010         if (!reader)
3011                 return NULL;
3012
3013         event = rb_reader_event(cpu_buffer);
3014
3015         switch (event->type_len) {
3016         case RINGBUF_TYPE_PADDING:
3017                 if (rb_null_event(event))
3018                         RB_WARN_ON(cpu_buffer, 1);
3019                 /*
3020                  * Because the writer could be discarding every
3021                  * event it creates (which would probably be bad)
3022                  * if we were to go back to "again" then we may never
3023                  * catch up, and will trigger the warn on, or lock
3024                  * the box. Return the padding, and we will release
3025                  * the current locks, and try again.
3026                  */
3027                 return event;
3028
3029         case RINGBUF_TYPE_TIME_EXTEND:
3030                 /* Internal data, OK to advance */
3031                 rb_advance_reader(cpu_buffer);
3032                 goto again;
3033
3034         case RINGBUF_TYPE_TIME_STAMP:
3035                 /* FIXME: not implemented */
3036                 rb_advance_reader(cpu_buffer);
3037                 goto again;
3038
3039         case RINGBUF_TYPE_DATA:
3040                 if (ts) {
3041                         *ts = cpu_buffer->read_stamp + event->time_delta;
3042                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3043                                                          cpu_buffer->cpu, ts);
3044                 }
3045                 return event;
3046
3047         default:
3048                 BUG();
3049         }
3050
3051         return NULL;
3052 }
3053 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3054
3055 static struct ring_buffer_event *
3056 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3057 {
3058         struct ring_buffer *buffer;
3059         struct ring_buffer_per_cpu *cpu_buffer;
3060         struct ring_buffer_event *event;
3061         int nr_loops = 0;
3062
3063         if (ring_buffer_iter_empty(iter))
3064                 return NULL;
3065
3066         cpu_buffer = iter->cpu_buffer;
3067         buffer = cpu_buffer->buffer;
3068
3069  again:
3070         /*
3071          * We repeat when a timestamp is encountered.
3072          * We can get multiple timestamps by nested interrupts or also
3073          * if filtering is on (discarding commits). Since discarding
3074          * commits can be frequent we can get a lot of timestamps.
3075          * But we limit them by not adding timestamps if they begin
3076          * at the start of a page.
3077          */
3078         if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
3079                 return NULL;
3080
3081         if (rb_per_cpu_empty(cpu_buffer))
3082                 return NULL;
3083
3084         event = rb_iter_head_event(iter);
3085
3086         switch (event->type_len) {
3087         case RINGBUF_TYPE_PADDING:
3088                 if (rb_null_event(event)) {
3089                         rb_inc_iter(iter);
3090                         goto again;
3091                 }
3092                 rb_advance_iter(iter);
3093                 return event;
3094
3095         case RINGBUF_TYPE_TIME_EXTEND:
3096                 /* Internal data, OK to advance */
3097                 rb_advance_iter(iter);
3098                 goto again;
3099
3100         case RINGBUF_TYPE_TIME_STAMP:
3101                 /* FIXME: not implemented */
3102                 rb_advance_iter(iter);
3103                 goto again;
3104
3105         case RINGBUF_TYPE_DATA:
3106                 if (ts) {
3107                         *ts = iter->read_stamp + event->time_delta;
3108                         ring_buffer_normalize_time_stamp(buffer,
3109                                                          cpu_buffer->cpu, ts);
3110                 }
3111                 return event;
3112
3113         default:
3114                 BUG();
3115         }
3116
3117         return NULL;
3118 }
3119 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3120
3121 static inline int rb_ok_to_lock(void)
3122 {
3123         /*
3124          * If an NMI die dumps out the content of the ring buffer
3125          * do not grab locks. We also permanently disable the ring
3126          * buffer too. A one time deal is all you get from reading
3127          * the ring buffer from an NMI.
3128          */
3129         if (likely(!in_nmi()))
3130                 return 1;
3131
3132         tracing_off_permanent();
3133         return 0;
3134 }
3135
3136 /**
3137  * ring_buffer_peek - peek at the next event to be read
3138  * @buffer: The ring buffer to read
3139  * @cpu: The cpu to peak at
3140  * @ts: The timestamp counter of this event.
3141  *
3142  * This will return the event that will be read next, but does
3143  * not consume the data.
3144  */
3145 struct ring_buffer_event *
3146 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
3147 {
3148         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3149         struct ring_buffer_event *event;
3150         unsigned long flags;
3151         int dolock;
3152
3153         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3154                 return NULL;
3155
3156         dolock = rb_ok_to_lock();
3157  again:
3158         local_irq_save(flags);
3159         if (dolock)
3160                 spin_lock(&cpu_buffer->reader_lock);
3161         event = rb_buffer_peek(cpu_buffer, ts);
3162         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3163                 rb_advance_reader(cpu_buffer);
3164         if (dolock)
3165                 spin_unlock(&cpu_buffer->reader_lock);
3166         local_irq_restore(flags);
3167
3168         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3169                 goto again;
3170
3171         return event;
3172 }
3173
3174 /**
3175  * ring_buffer_iter_peek - peek at the next event to be read
3176  * @iter: The ring buffer iterator
3177  * @ts: The timestamp counter of this event.
3178  *
3179  * This will return the event that will be read next, but does
3180  * not increment the iterator.
3181  */
3182 struct ring_buffer_event *
3183 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3184 {
3185         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3186         struct ring_buffer_event *event;
3187         unsigned long flags;
3188
3189  again:
3190         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3191         event = rb_iter_peek(iter, ts);
3192         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3193
3194         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3195                 goto again;
3196
3197         return event;
3198 }
3199
3200 /**
3201  * ring_buffer_consume - return an event and consume it
3202  * @buffer: The ring buffer to get the next event from
3203  *
3204  * Returns the next event in the ring buffer, and that event is consumed.
3205  * Meaning, that sequential reads will keep returning a different event,
3206  * and eventually empty the ring buffer if the producer is slower.
3207  */
3208 struct ring_buffer_event *
3209 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
3210 {
3211         struct ring_buffer_per_cpu *cpu_buffer;
3212         struct ring_buffer_event *event = NULL;
3213         unsigned long flags;
3214         int dolock;
3215
3216         dolock = rb_ok_to_lock();
3217
3218  again:
3219         /* might be called in atomic */
3220         preempt_disable();
3221
3222         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3223                 goto out;
3224
3225         cpu_buffer = buffer->buffers[cpu];
3226         local_irq_save(flags);
3227         if (dolock)
3228                 spin_lock(&cpu_buffer->reader_lock);
3229
3230         event = rb_buffer_peek(cpu_buffer, ts);
3231         if (event)
3232                 rb_advance_reader(cpu_buffer);
3233
3234         if (dolock)
3235                 spin_unlock(&cpu_buffer->reader_lock);
3236         local_irq_restore(flags);
3237
3238  out:
3239         preempt_enable();
3240
3241         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3242                 goto again;
3243
3244         return event;
3245 }
3246 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3247
3248 /**
3249  * ring_buffer_read_start - start a non consuming read of the buffer
3250  * @buffer: The ring buffer to read from
3251  * @cpu: The cpu buffer to iterate over
3252  *
3253  * This starts up an iteration through the buffer. It also disables
3254  * the recording to the buffer until the reading is finished.
3255  * This prevents the reading from being corrupted. This is not
3256  * a consuming read, so a producer is not expected.
3257  *
3258  * Must be paired with ring_buffer_finish.
3259  */
3260 struct ring_buffer_iter *
3261 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
3262 {
3263         struct ring_buffer_per_cpu *cpu_buffer;
3264         struct ring_buffer_iter *iter;
3265         unsigned long flags;
3266
3267         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3268                 return NULL;
3269
3270         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3271         if (!iter)
3272                 return NULL;
3273
3274         cpu_buffer = buffer->buffers[cpu];
3275
3276         iter->cpu_buffer = cpu_buffer;
3277
3278         atomic_inc(&cpu_buffer->record_disabled);
3279         synchronize_sched();
3280
3281         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3282         __raw_spin_lock(&cpu_buffer->lock);
3283         rb_iter_reset(iter);
3284         __raw_spin_unlock(&cpu_buffer->lock);
3285         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3286
3287         return iter;
3288 }
3289 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
3290
3291 /**
3292  * ring_buffer_finish - finish reading the iterator of the buffer
3293  * @iter: The iterator retrieved by ring_buffer_start
3294  *
3295  * This re-enables the recording to the buffer, and frees the
3296  * iterator.
3297  */
3298 void
3299 ring_buffer_read_finish(struct ring_buffer_iter *iter)
3300 {
3301         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3302
3303         atomic_dec(&cpu_buffer->record_disabled);
3304         kfree(iter);
3305 }
3306 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
3307
3308 /**
3309  * ring_buffer_read - read the next item in the ring buffer by the iterator
3310  * @iter: The ring buffer iterator
3311  * @ts: The time stamp of the event read.
3312  *
3313  * This reads the next event in the ring buffer and increments the iterator.
3314  */
3315 struct ring_buffer_event *
3316 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3317 {
3318         struct ring_buffer_event *event;
3319         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3320         unsigned long flags;
3321
3322         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3323  again:
3324         event = rb_iter_peek(iter, ts);
3325         if (!event)
3326                 goto out;
3327
3328         if (event->type_len == RINGBUF_TYPE_PADDING)
3329                 goto again;
3330
3331         rb_advance_iter(iter);
3332  out:
3333         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3334
3335         return event;
3336 }
3337 EXPORT_SYMBOL_GPL(ring_buffer_read);
3338
3339 /**
3340  * ring_buffer_size - return the size of the ring buffer (in bytes)
3341  * @buffer: The ring buffer.
3342  */
3343 unsigned long ring_buffer_size(struct ring_buffer *buffer)
3344 {
3345         return BUF_PAGE_SIZE * buffer->pages;
3346 }
3347 EXPORT_SYMBOL_GPL(ring_buffer_size);
3348
3349 static void
3350 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3351 {
3352         rb_head_page_deactivate(cpu_buffer);
3353
3354         cpu_buffer->head_page
3355                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
3356         local_set(&cpu_buffer->head_page->write, 0);
3357         local_set(&cpu_buffer->head_page->entries, 0);
3358         local_set(&cpu_buffer->head_page->page->commit, 0);
3359
3360         cpu_buffer->head_page->read = 0;
3361
3362         cpu_buffer->tail_page = cpu_buffer->head_page;
3363         cpu_buffer->commit_page = cpu_buffer->head_page;
3364
3365         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3366         local_set(&cpu_buffer->reader_page->write, 0);
3367         local_set(&cpu_buffer->reader_page->entries, 0);
3368         local_set(&cpu_buffer->reader_page->page->commit, 0);
3369         cpu_buffer->reader_page->read = 0;
3370
3371         local_set(&cpu_buffer->commit_overrun, 0);
3372         local_set(&cpu_buffer->overrun, 0);
3373         local_set(&cpu_buffer->entries, 0);
3374         local_set(&cpu_buffer->committing, 0);
3375         local_set(&cpu_buffer->commits, 0);
3376         cpu_buffer->read = 0;
3377
3378         cpu_buffer->write_stamp = 0;
3379         cpu_buffer->read_stamp = 0;
3380
3381         rb_head_page_activate(cpu_buffer);
3382 }
3383
3384 /**
3385  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3386  * @buffer: The ring buffer to reset a per cpu buffer of
3387  * @cpu: The CPU buffer to be reset
3388  */
3389 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3390 {
3391         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3392         unsigned long flags;
3393
3394         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3395                 return;
3396
3397         atomic_inc(&cpu_buffer->record_disabled);
3398
3399         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3400
3401         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3402                 goto out;
3403
3404         __raw_spin_lock(&cpu_buffer->lock);
3405
3406         rb_reset_cpu(cpu_buffer);
3407
3408         __raw_spin_unlock(&cpu_buffer->lock);
3409
3410  out:
3411         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3412
3413         atomic_dec(&cpu_buffer->record_disabled);
3414 }
3415 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
3416
3417 /**
3418  * ring_buffer_reset - reset a ring buffer
3419  * @buffer: The ring buffer to reset all cpu buffers
3420  */
3421 void ring_buffer_reset(struct ring_buffer *buffer)
3422 {
3423         int cpu;
3424
3425         for_each_buffer_cpu(buffer, cpu)
3426                 ring_buffer_reset_cpu(buffer, cpu);
3427 }
3428 EXPORT_SYMBOL_GPL(ring_buffer_reset);
3429
3430 /**
3431  * rind_buffer_empty - is the ring buffer empty?
3432  * @buffer: The ring buffer to test
3433  */
3434 int ring_buffer_empty(struct ring_buffer *buffer)
3435 {
3436         struct ring_buffer_per_cpu *cpu_buffer;
3437         unsigned long flags;
3438         int dolock;
3439         int cpu;
3440         int ret;
3441
3442         dolock = rb_ok_to_lock();
3443
3444         /* yes this is racy, but if you don't like the race, lock the buffer */
3445         for_each_buffer_cpu(buffer, cpu) {
3446                 cpu_buffer = buffer->buffers[cpu];
3447                 local_irq_save(flags);
3448                 if (dolock)
3449                         spin_lock(&cpu_buffer->reader_lock);
3450                 ret = rb_per_cpu_empty(cpu_buffer);
3451                 if (dolock)
3452                         spin_unlock(&cpu_buffer->reader_lock);
3453                 local_irq_restore(flags);
3454
3455                 if (!ret)
3456                         return 0;
3457         }
3458
3459         return 1;
3460 }
3461 EXPORT_SYMBOL_GPL(ring_buffer_empty);
3462
3463 /**
3464  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3465  * @buffer: The ring buffer
3466  * @cpu: The CPU buffer to test
3467  */
3468 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3469 {
3470         struct ring_buffer_per_cpu *cpu_buffer;
3471         unsigned long flags;
3472         int dolock;
3473         int ret;
3474
3475         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3476                 return 1;
3477
3478         dolock = rb_ok_to_lock();
3479
3480         cpu_buffer = buffer->buffers[cpu];
3481         local_irq_save(flags);
3482         if (dolock)
3483                 spin_lock(&cpu_buffer->reader_lock);
3484         ret = rb_per_cpu_empty(cpu_buffer);
3485         if (dolock)
3486                 spin_unlock(&cpu_buffer->reader_lock);
3487         local_irq_restore(flags);
3488
3489         return ret;
3490 }
3491 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
3492
3493 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3494 /**
3495  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3496  * @buffer_a: One buffer to swap with
3497  * @buffer_b: The other buffer to swap with
3498  *
3499  * This function is useful for tracers that want to take a "snapshot"
3500  * of a CPU buffer and has another back up buffer lying around.
3501  * it is expected that the tracer handles the cpu buffer not being
3502  * used at the moment.
3503  */
3504 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
3505                          struct ring_buffer *buffer_b, int cpu)
3506 {
3507         struct ring_buffer_per_cpu *cpu_buffer_a;
3508         struct ring_buffer_per_cpu *cpu_buffer_b;
3509         int ret = -EINVAL;
3510
3511         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
3512             !cpumask_test_cpu(cpu, buffer_b->cpumask))
3513                 goto out;
3514
3515         /* At least make sure the two buffers are somewhat the same */
3516         if (buffer_a->pages != buffer_b->pages)
3517                 goto out;
3518
3519         ret = -EAGAIN;
3520
3521         if (ring_buffer_flags != RB_BUFFERS_ON)
3522                 goto out;
3523
3524         if (atomic_read(&buffer_a->record_disabled))
3525                 goto out;
3526
3527         if (atomic_read(&buffer_b->record_disabled))
3528                 goto out;
3529
3530         cpu_buffer_a = buffer_a->buffers[cpu];
3531         cpu_buffer_b = buffer_b->buffers[cpu];
3532
3533         if (atomic_read(&cpu_buffer_a->record_disabled))
3534                 goto out;
3535
3536         if (atomic_read(&cpu_buffer_b->record_disabled))
3537                 goto out;
3538
3539         /*
3540          * We can't do a synchronize_sched here because this
3541          * function can be called in atomic context.
3542          * Normally this will be called from the same CPU as cpu.
3543          * If not it's up to the caller to protect this.
3544          */
3545         atomic_inc(&cpu_buffer_a->record_disabled);
3546         atomic_inc(&cpu_buffer_b->record_disabled);
3547
3548         ret = -EBUSY;
3549         if (local_read(&cpu_buffer_a->committing))
3550                 goto out_dec;
3551         if (local_read(&cpu_buffer_b->committing))
3552                 goto out_dec;
3553
3554         buffer_a->buffers[cpu] = cpu_buffer_b;
3555         buffer_b->buffers[cpu] = cpu_buffer_a;
3556
3557         cpu_buffer_b->buffer = buffer_a;
3558         cpu_buffer_a->buffer = buffer_b;
3559
3560         ret = 0;
3561
3562 out_dec:
3563         atomic_dec(&cpu_buffer_a->record_disabled);
3564         atomic_dec(&cpu_buffer_b->record_disabled);
3565 out:
3566         return ret;
3567 }
3568 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
3569 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
3570
3571 /**
3572  * ring_buffer_alloc_read_page - allocate a page to read from buffer
3573  * @buffer: the buffer to allocate for.
3574  *
3575  * This function is used in conjunction with ring_buffer_read_page.
3576  * When reading a full page from the ring buffer, these functions
3577  * can be used to speed up the process. The calling function should
3578  * allocate a few pages first with this function. Then when it
3579  * needs to get pages from the ring buffer, it passes the result
3580  * of this function into ring_buffer_read_page, which will swap
3581  * the page that was allocated, with the read page of the buffer.
3582  *
3583  * Returns:
3584  *  The page allocated, or NULL on error.
3585  */
3586 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
3587 {
3588         struct buffer_data_page *bpage;
3589         unsigned long addr;
3590
3591         addr = __get_free_page(GFP_KERNEL);
3592         if (!addr)
3593                 return NULL;
3594
3595         bpage = (void *)addr;
3596
3597         rb_init_page(bpage);
3598
3599         return bpage;
3600 }
3601 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
3602
3603 /**
3604  * ring_buffer_free_read_page - free an allocated read page
3605  * @buffer: the buffer the page was allocate for
3606  * @data: the page to free
3607  *
3608  * Free a page allocated from ring_buffer_alloc_read_page.
3609  */
3610 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
3611 {
3612         free_page((unsigned long)data);
3613 }
3614 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
3615
3616 /**
3617  * ring_buffer_read_page - extract a page from the ring buffer
3618  * @buffer: buffer to extract from
3619  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
3620  * @len: amount to extract
3621  * @cpu: the cpu of the buffer to extract
3622  * @full: should the extraction only happen when the page is full.
3623  *
3624  * This function will pull out a page from the ring buffer and consume it.
3625  * @data_page must be the address of the variable that was returned
3626  * from ring_buffer_alloc_read_page. This is because the page might be used
3627  * to swap with a page in the ring buffer.
3628  *
3629  * for example:
3630  *      rpage = ring_buffer_alloc_read_page(buffer);
3631  *      if (!rpage)
3632  *              return error;
3633  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
3634  *      if (ret >= 0)
3635  *              process_page(rpage, ret);
3636  *
3637  * When @full is set, the function will not return true unless
3638  * the writer is off the reader page.
3639  *
3640  * Note: it is up to the calling functions to handle sleeps and wakeups.
3641  *  The ring buffer can be used anywhere in the kernel and can not
3642  *  blindly call wake_up. The layer that uses the ring buffer must be
3643  *  responsible for that.
3644  *
3645  * Returns:
3646  *  >=0 if data has been transferred, returns the offset of consumed data.
3647  *  <0 if no data has been transferred.
3648  */
3649 int ring_buffer_read_page(struct ring_buffer *buffer,
3650                           void **data_page, size_t len, int cpu, int full)
3651 {
3652         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3653         struct ring_buffer_event *event;
3654         struct buffer_data_page *bpage;
3655         struct buffer_page *reader;
3656         unsigned long flags;
3657         unsigned int commit;
3658         unsigned int read;
3659         u64 save_timestamp;
3660         int ret = -1;
3661
3662         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3663                 goto out;
3664
3665         /*
3666          * If len is not big enough to hold the page header, then
3667          * we can not copy anything.
3668          */
3669         if (len <= BUF_PAGE_HDR_SIZE)
3670                 goto out;
3671
3672         len -= BUF_PAGE_HDR_SIZE;
3673
3674         if (!data_page)
3675                 goto out;
3676
3677         bpage = *data_page;
3678         if (!bpage)
3679                 goto out;
3680
3681         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3682
3683         reader = rb_get_reader_page(cpu_buffer);
3684         if (!reader)
3685                 goto out_unlock;
3686
3687         event = rb_reader_event(cpu_buffer);
3688
3689         read = reader->read;
3690         commit = rb_page_commit(reader);
3691
3692         /*
3693          * If this page has been partially read or
3694          * if len is not big enough to read the rest of the page or
3695          * a writer is still on the page, then
3696          * we must copy the data from the page to the buffer.
3697          * Otherwise, we can simply swap the page with the one passed in.
3698          */
3699         if (read || (len < (commit - read)) ||
3700             cpu_buffer->reader_page == cpu_buffer->commit_page) {
3701                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
3702                 unsigned int rpos = read;
3703                 unsigned int pos = 0;
3704                 unsigned int size;
3705
3706                 if (full)
3707                         goto out_unlock;
3708
3709                 if (len > (commit - read))
3710                         len = (commit - read);
3711
3712                 size = rb_event_length(event);
3713
3714                 if (len < size)
3715                         goto out_unlock;
3716
3717                 /* save the current timestamp, since the user will need it */
3718                 save_timestamp = cpu_buffer->read_stamp;
3719
3720                 /* Need to copy one event at a time */
3721                 do {
3722                         memcpy(bpage->data + pos, rpage->data + rpos, size);
3723
3724                         len -= size;
3725
3726                         rb_advance_reader(cpu_buffer);
3727                         rpos = reader->read;
3728                         pos += size;
3729
3730                         event = rb_reader_event(cpu_buffer);
3731                         size = rb_event_length(event);
3732                 } while (len > size);
3733
3734                 /* update bpage */
3735                 local_set(&bpage->commit, pos);
3736                 bpage->time_stamp = save_timestamp;
3737
3738                 /* we copied everything to the beginning */
3739                 read = 0;
3740         } else {
3741                 /* update the entry counter */
3742                 cpu_buffer->read += rb_page_entries(reader);
3743
3744                 /* swap the pages */
3745                 rb_init_page(bpage);
3746                 bpage = reader->page;
3747                 reader->page = *data_page;
3748                 local_set(&reader->write, 0);
3749                 local_set(&reader->entries, 0);
3750                 reader->read = 0;
3751                 *data_page = bpage;
3752         }
3753         ret = read;
3754
3755  out_unlock:
3756         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3757
3758  out:
3759         return ret;
3760 }
3761 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
3762
3763 #ifdef CONFIG_TRACING
3764 static ssize_t
3765 rb_simple_read(struct file *filp, char __user *ubuf,
3766                size_t cnt, loff_t *ppos)
3767 {
3768         unsigned long *p = filp->private_data;
3769         char buf[64];
3770         int r;
3771
3772         if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
3773                 r = sprintf(buf, "permanently disabled\n");
3774         else
3775                 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
3776
3777         return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
3778 }
3779
3780 static ssize_t
3781 rb_simple_write(struct file *filp, const char __user *ubuf,
3782                 size_t cnt, loff_t *ppos)
3783 {
3784         unsigned long *p = filp->private_data;
3785         char buf[64];
3786         unsigned long val;
3787         int ret;
3788
3789         if (cnt >= sizeof(buf))
3790                 return -EINVAL;
3791
3792         if (copy_from_user(&buf, ubuf, cnt))
3793                 return -EFAULT;
3794
3795         buf[cnt] = 0;
3796
3797         ret = strict_strtoul(buf, 10, &val);
3798         if (ret < 0)
3799                 return ret;
3800
3801         if (val)
3802                 set_bit(RB_BUFFERS_ON_BIT, p);
3803         else
3804                 clear_bit(RB_BUFFERS_ON_BIT, p);
3805
3806         (*ppos)++;
3807
3808         return cnt;
3809 }
3810
3811 static const struct file_operations rb_simple_fops = {
3812         .open           = tracing_open_generic,
3813         .read           = rb_simple_read,
3814         .write          = rb_simple_write,
3815 };
3816
3817
3818 static __init int rb_init_debugfs(void)
3819 {
3820         struct dentry *d_tracer;
3821
3822         d_tracer = tracing_init_dentry();
3823
3824         trace_create_file("tracing_on", 0644, d_tracer,
3825                             &ring_buffer_flags, &rb_simple_fops);
3826
3827         return 0;
3828 }
3829
3830 fs_initcall(rb_init_debugfs);
3831 #endif
3832
3833 #ifdef CONFIG_HOTPLUG_CPU
3834 static int rb_cpu_notify(struct notifier_block *self,
3835                          unsigned long action, void *hcpu)
3836 {
3837         struct ring_buffer *buffer =
3838                 container_of(self, struct ring_buffer, cpu_notify);
3839         long cpu = (long)hcpu;
3840
3841         switch (action) {
3842         case CPU_UP_PREPARE:
3843         case CPU_UP_PREPARE_FROZEN:
3844                 if (cpumask_test_cpu(cpu, buffer->cpumask))
3845                         return NOTIFY_OK;
3846
3847                 buffer->buffers[cpu] =
3848                         rb_allocate_cpu_buffer(buffer, cpu);
3849                 if (!buffer->buffers[cpu]) {
3850                         WARN(1, "failed to allocate ring buffer on CPU %ld\n",
3851                              cpu);
3852                         return NOTIFY_OK;
3853                 }
3854                 smp_wmb();
3855                 cpumask_set_cpu(cpu, buffer->cpumask);
3856                 break;
3857         case CPU_DOWN_PREPARE:
3858         case CPU_DOWN_PREPARE_FROZEN:
3859                 /*
3860                  * Do nothing.
3861                  *  If we were to free the buffer, then the user would
3862                  *  lose any trace that was in the buffer.
3863                  */
3864                 break;
3865         default:
3866                 break;
3867         }
3868         return NOTIFY_OK;
3869 }
3870 #endif