2 * linux/kernel/signal.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
13 #include <linux/config.h>
14 #include <linux/slab.h>
15 #include <linux/module.h>
16 #include <linux/smp_lock.h>
17 #include <linux/init.h>
18 #include <linux/sched.h>
20 #include <linux/tty.h>
21 #include <linux/binfmts.h>
22 #include <linux/security.h>
23 #include <linux/syscalls.h>
24 #include <linux/ptrace.h>
25 #include <linux/posix-timers.h>
26 #include <linux/signal.h>
27 #include <linux/audit.h>
28 #include <asm/param.h>
29 #include <asm/uaccess.h>
30 #include <asm/unistd.h>
31 #include <asm/siginfo.h>
34 * SLAB caches for signal bits.
37 static kmem_cache_t *sigqueue_cachep;
40 * In POSIX a signal is sent either to a specific thread (Linux task)
41 * or to the process as a whole (Linux thread group). How the signal
42 * is sent determines whether it's to one thread or the whole group,
43 * which determines which signal mask(s) are involved in blocking it
44 * from being delivered until later. When the signal is delivered,
45 * either it's caught or ignored by a user handler or it has a default
46 * effect that applies to the whole thread group (POSIX process).
48 * The possible effects an unblocked signal set to SIG_DFL can have are:
49 * ignore - Nothing Happens
50 * terminate - kill the process, i.e. all threads in the group,
51 * similar to exit_group. The group leader (only) reports
52 * WIFSIGNALED status to its parent.
53 * coredump - write a core dump file describing all threads using
54 * the same mm and then kill all those threads
55 * stop - stop all the threads in the group, i.e. TASK_STOPPED state
57 * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.
58 * Other signals when not blocked and set to SIG_DFL behaves as follows.
59 * The job control signals also have other special effects.
61 * +--------------------+------------------+
62 * | POSIX signal | default action |
63 * +--------------------+------------------+
64 * | SIGHUP | terminate |
65 * | SIGINT | terminate |
66 * | SIGQUIT | coredump |
67 * | SIGILL | coredump |
68 * | SIGTRAP | coredump |
69 * | SIGABRT/SIGIOT | coredump |
70 * | SIGBUS | coredump |
71 * | SIGFPE | coredump |
72 * | SIGKILL | terminate(+) |
73 * | SIGUSR1 | terminate |
74 * | SIGSEGV | coredump |
75 * | SIGUSR2 | terminate |
76 * | SIGPIPE | terminate |
77 * | SIGALRM | terminate |
78 * | SIGTERM | terminate |
79 * | SIGCHLD | ignore |
80 * | SIGCONT | ignore(*) |
81 * | SIGSTOP | stop(*)(+) |
82 * | SIGTSTP | stop(*) |
83 * | SIGTTIN | stop(*) |
84 * | SIGTTOU | stop(*) |
86 * | SIGXCPU | coredump |
87 * | SIGXFSZ | coredump |
88 * | SIGVTALRM | terminate |
89 * | SIGPROF | terminate |
90 * | SIGPOLL/SIGIO | terminate |
91 * | SIGSYS/SIGUNUSED | coredump |
92 * | SIGSTKFLT | terminate |
93 * | SIGWINCH | ignore |
94 * | SIGPWR | terminate |
95 * | SIGRTMIN-SIGRTMAX | terminate |
96 * +--------------------+------------------+
97 * | non-POSIX signal | default action |
98 * +--------------------+------------------+
99 * | SIGEMT | coredump |
100 * +--------------------+------------------+
102 * (+) For SIGKILL and SIGSTOP the action is "always", not just "default".
103 * (*) Special job control effects:
104 * When SIGCONT is sent, it resumes the process (all threads in the group)
105 * from TASK_STOPPED state and also clears any pending/queued stop signals
106 * (any of those marked with "stop(*)"). This happens regardless of blocking,
107 * catching, or ignoring SIGCONT. When any stop signal is sent, it clears
108 * any pending/queued SIGCONT signals; this happens regardless of blocking,
109 * catching, or ignored the stop signal, though (except for SIGSTOP) the
110 * default action of stopping the process may happen later or never.
114 #define M_SIGEMT M(SIGEMT)
119 #if SIGRTMIN > BITS_PER_LONG
120 #define M(sig) (1ULL << ((sig)-1))
122 #define M(sig) (1UL << ((sig)-1))
124 #define T(sig, mask) (M(sig) & (mask))
126 #define SIG_KERNEL_ONLY_MASK (\
127 M(SIGKILL) | M(SIGSTOP) )
129 #define SIG_KERNEL_STOP_MASK (\
130 M(SIGSTOP) | M(SIGTSTP) | M(SIGTTIN) | M(SIGTTOU) )
132 #define SIG_KERNEL_COREDUMP_MASK (\
133 M(SIGQUIT) | M(SIGILL) | M(SIGTRAP) | M(SIGABRT) | \
134 M(SIGFPE) | M(SIGSEGV) | M(SIGBUS) | M(SIGSYS) | \
135 M(SIGXCPU) | M(SIGXFSZ) | M_SIGEMT )
137 #define SIG_KERNEL_IGNORE_MASK (\
138 M(SIGCONT) | M(SIGCHLD) | M(SIGWINCH) | M(SIGURG) )
140 #define sig_kernel_only(sig) \
141 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_ONLY_MASK))
142 #define sig_kernel_coredump(sig) \
143 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_COREDUMP_MASK))
144 #define sig_kernel_ignore(sig) \
145 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_IGNORE_MASK))
146 #define sig_kernel_stop(sig) \
147 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_STOP_MASK))
149 #define sig_user_defined(t, signr) \
150 (((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) && \
151 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN))
153 #define sig_fatal(t, signr) \
154 (!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \
155 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL)
157 static int sig_ignored(struct task_struct *t, int sig)
159 void __user * handler;
162 * Tracers always want to know about signals..
164 if (t->ptrace & PT_PTRACED)
168 * Blocked signals are never ignored, since the
169 * signal handler may change by the time it is
172 if (sigismember(&t->blocked, sig))
175 /* Is it explicitly or implicitly ignored? */
176 handler = t->sighand->action[sig-1].sa.sa_handler;
177 return handler == SIG_IGN ||
178 (handler == SIG_DFL && sig_kernel_ignore(sig));
182 * Re-calculate pending state from the set of locally pending
183 * signals, globally pending signals, and blocked signals.
185 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
190 switch (_NSIG_WORDS) {
192 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
193 ready |= signal->sig[i] &~ blocked->sig[i];
196 case 4: ready = signal->sig[3] &~ blocked->sig[3];
197 ready |= signal->sig[2] &~ blocked->sig[2];
198 ready |= signal->sig[1] &~ blocked->sig[1];
199 ready |= signal->sig[0] &~ blocked->sig[0];
202 case 2: ready = signal->sig[1] &~ blocked->sig[1];
203 ready |= signal->sig[0] &~ blocked->sig[0];
206 case 1: ready = signal->sig[0] &~ blocked->sig[0];
211 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
213 fastcall void recalc_sigpending_tsk(struct task_struct *t)
215 if (t->signal->group_stop_count > 0 ||
217 PENDING(&t->pending, &t->blocked) ||
218 PENDING(&t->signal->shared_pending, &t->blocked))
219 set_tsk_thread_flag(t, TIF_SIGPENDING);
221 clear_tsk_thread_flag(t, TIF_SIGPENDING);
224 void recalc_sigpending(void)
226 recalc_sigpending_tsk(current);
229 /* Given the mask, find the first available signal that should be serviced. */
232 next_signal(struct sigpending *pending, sigset_t *mask)
234 unsigned long i, *s, *m, x;
237 s = pending->signal.sig;
239 switch (_NSIG_WORDS) {
241 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
242 if ((x = *s &~ *m) != 0) {
243 sig = ffz(~x) + i*_NSIG_BPW + 1;
248 case 2: if ((x = s[0] &~ m[0]) != 0)
250 else if ((x = s[1] &~ m[1]) != 0)
257 case 1: if ((x = *s &~ *m) != 0)
265 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
268 struct sigqueue *q = NULL;
270 atomic_inc(&t->user->sigpending);
271 if (override_rlimit ||
272 atomic_read(&t->user->sigpending) <=
273 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
274 q = kmem_cache_alloc(sigqueue_cachep, flags);
275 if (unlikely(q == NULL)) {
276 atomic_dec(&t->user->sigpending);
278 INIT_LIST_HEAD(&q->list);
280 q->user = get_uid(t->user);
285 static inline void __sigqueue_free(struct sigqueue *q)
287 if (q->flags & SIGQUEUE_PREALLOC)
289 atomic_dec(&q->user->sigpending);
291 kmem_cache_free(sigqueue_cachep, q);
294 static void flush_sigqueue(struct sigpending *queue)
298 sigemptyset(&queue->signal);
299 while (!list_empty(&queue->list)) {
300 q = list_entry(queue->list.next, struct sigqueue , list);
301 list_del_init(&q->list);
307 * Flush all pending signals for a task.
311 flush_signals(struct task_struct *t)
315 spin_lock_irqsave(&t->sighand->siglock, flags);
316 clear_tsk_thread_flag(t,TIF_SIGPENDING);
317 flush_sigqueue(&t->pending);
318 flush_sigqueue(&t->signal->shared_pending);
319 spin_unlock_irqrestore(&t->sighand->siglock, flags);
323 * This function expects the tasklist_lock write-locked.
325 void __exit_sighand(struct task_struct *tsk)
327 struct sighand_struct * sighand = tsk->sighand;
329 /* Ok, we're done with the signal handlers */
331 if (atomic_dec_and_test(&sighand->count))
332 kmem_cache_free(sighand_cachep, sighand);
335 void exit_sighand(struct task_struct *tsk)
337 write_lock_irq(&tasklist_lock);
339 write_unlock_irq(&tasklist_lock);
343 * This function expects the tasklist_lock write-locked.
345 void __exit_signal(struct task_struct *tsk)
347 struct signal_struct * sig = tsk->signal;
348 struct sighand_struct * sighand = tsk->sighand;
352 if (!atomic_read(&sig->count))
354 spin_lock(&sighand->siglock);
355 posix_cpu_timers_exit(tsk);
356 if (atomic_dec_and_test(&sig->count)) {
357 posix_cpu_timers_exit_group(tsk);
358 if (tsk == sig->curr_target)
359 sig->curr_target = next_thread(tsk);
361 spin_unlock(&sighand->siglock);
362 flush_sigqueue(&sig->shared_pending);
365 * If there is any task waiting for the group exit
368 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) {
369 wake_up_process(sig->group_exit_task);
370 sig->group_exit_task = NULL;
372 if (tsk == sig->curr_target)
373 sig->curr_target = next_thread(tsk);
376 * Accumulate here the counters for all threads but the
377 * group leader as they die, so they can be added into
378 * the process-wide totals when those are taken.
379 * The group leader stays around as a zombie as long
380 * as there are other threads. When it gets reaped,
381 * the exit.c code will add its counts into these totals.
382 * We won't ever get here for the group leader, since it
383 * will have been the last reference on the signal_struct.
385 sig->utime = cputime_add(sig->utime, tsk->utime);
386 sig->stime = cputime_add(sig->stime, tsk->stime);
387 sig->min_flt += tsk->min_flt;
388 sig->maj_flt += tsk->maj_flt;
389 sig->nvcsw += tsk->nvcsw;
390 sig->nivcsw += tsk->nivcsw;
391 sig->sched_time += tsk->sched_time;
392 spin_unlock(&sighand->siglock);
393 sig = NULL; /* Marker for below. */
395 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
396 flush_sigqueue(&tsk->pending);
399 * We are cleaning up the signal_struct here.
401 exit_thread_group_keys(sig);
402 kmem_cache_free(signal_cachep, sig);
406 void exit_signal(struct task_struct *tsk)
408 atomic_dec(&tsk->signal->live);
410 write_lock_irq(&tasklist_lock);
412 write_unlock_irq(&tasklist_lock);
416 * Flush all handlers for a task.
420 flush_signal_handlers(struct task_struct *t, int force_default)
423 struct k_sigaction *ka = &t->sighand->action[0];
424 for (i = _NSIG ; i != 0 ; i--) {
425 if (force_default || ka->sa.sa_handler != SIG_IGN)
426 ka->sa.sa_handler = SIG_DFL;
428 sigemptyset(&ka->sa.sa_mask);
434 /* Notify the system that a driver wants to block all signals for this
435 * process, and wants to be notified if any signals at all were to be
436 * sent/acted upon. If the notifier routine returns non-zero, then the
437 * signal will be acted upon after all. If the notifier routine returns 0,
438 * then then signal will be blocked. Only one block per process is
439 * allowed. priv is a pointer to private data that the notifier routine
440 * can use to determine if the signal should be blocked or not. */
443 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
447 spin_lock_irqsave(¤t->sighand->siglock, flags);
448 current->notifier_mask = mask;
449 current->notifier_data = priv;
450 current->notifier = notifier;
451 spin_unlock_irqrestore(¤t->sighand->siglock, flags);
454 /* Notify the system that blocking has ended. */
457 unblock_all_signals(void)
461 spin_lock_irqsave(¤t->sighand->siglock, flags);
462 current->notifier = NULL;
463 current->notifier_data = NULL;
465 spin_unlock_irqrestore(¤t->sighand->siglock, flags);
468 static inline int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
470 struct sigqueue *q, *first = NULL;
471 int still_pending = 0;
473 if (unlikely(!sigismember(&list->signal, sig)))
477 * Collect the siginfo appropriate to this signal. Check if
478 * there is another siginfo for the same signal.
480 list_for_each_entry(q, &list->list, list) {
481 if (q->info.si_signo == sig) {
490 list_del_init(&first->list);
491 copy_siginfo(info, &first->info);
492 __sigqueue_free(first);
494 sigdelset(&list->signal, sig);
497 /* Ok, it wasn't in the queue. This must be
498 a fast-pathed signal or we must have been
499 out of queue space. So zero out the info.
501 sigdelset(&list->signal, sig);
502 info->si_signo = sig;
511 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
516 /* SIGKILL must have priority, otherwise it is quite easy
517 * to create an unkillable process, sending sig < SIGKILL
519 if (unlikely(sigismember(&pending->signal, SIGKILL))) {
520 if (!sigismember(mask, SIGKILL))
525 sig = next_signal(pending, mask);
527 if (current->notifier) {
528 if (sigismember(current->notifier_mask, sig)) {
529 if (!(current->notifier)(current->notifier_data)) {
530 clear_thread_flag(TIF_SIGPENDING);
536 if (!collect_signal(sig, pending, info))
546 * Dequeue a signal and return the element to the caller, which is
547 * expected to free it.
549 * All callers have to hold the siglock.
551 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
553 int signr = __dequeue_signal(&tsk->pending, mask, info);
555 signr = __dequeue_signal(&tsk->signal->shared_pending,
557 if (signr && unlikely(sig_kernel_stop(signr))) {
559 * Set a marker that we have dequeued a stop signal. Our
560 * caller might release the siglock and then the pending
561 * stop signal it is about to process is no longer in the
562 * pending bitmasks, but must still be cleared by a SIGCONT
563 * (and overruled by a SIGKILL). So those cases clear this
564 * shared flag after we've set it. Note that this flag may
565 * remain set after the signal we return is ignored or
566 * handled. That doesn't matter because its only purpose
567 * is to alert stop-signal processing code when another
568 * processor has come along and cleared the flag.
570 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
571 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
574 ((info->si_code & __SI_MASK) == __SI_TIMER) &&
575 info->si_sys_private){
577 * Release the siglock to ensure proper locking order
578 * of timer locks outside of siglocks. Note, we leave
579 * irqs disabled here, since the posix-timers code is
580 * about to disable them again anyway.
582 spin_unlock(&tsk->sighand->siglock);
583 do_schedule_next_timer(info);
584 spin_lock(&tsk->sighand->siglock);
590 * Tell a process that it has a new active signal..
592 * NOTE! we rely on the previous spin_lock to
593 * lock interrupts for us! We can only be called with
594 * "siglock" held, and the local interrupt must
595 * have been disabled when that got acquired!
597 * No need to set need_resched since signal event passing
598 * goes through ->blocked
600 void signal_wake_up(struct task_struct *t, int resume)
604 set_tsk_thread_flag(t, TIF_SIGPENDING);
607 * For SIGKILL, we want to wake it up in the stopped/traced case.
608 * We don't check t->state here because there is a race with it
609 * executing another processor and just now entering stopped state.
610 * By using wake_up_state, we ensure the process will wake up and
611 * handle its death signal.
613 mask = TASK_INTERRUPTIBLE;
615 mask |= TASK_STOPPED | TASK_TRACED;
616 if (!wake_up_state(t, mask))
621 * Remove signals in mask from the pending set and queue.
622 * Returns 1 if any signals were found.
624 * All callers must be holding the siglock.
626 static int rm_from_queue(unsigned long mask, struct sigpending *s)
628 struct sigqueue *q, *n;
630 if (!sigtestsetmask(&s->signal, mask))
633 sigdelsetmask(&s->signal, mask);
634 list_for_each_entry_safe(q, n, &s->list, list) {
635 if (q->info.si_signo < SIGRTMIN &&
636 (mask & sigmask(q->info.si_signo))) {
637 list_del_init(&q->list);
645 * Bad permissions for sending the signal
647 static int check_kill_permission(int sig, struct siginfo *info,
648 struct task_struct *t)
651 if (!valid_signal(sig))
654 if ((info == SEND_SIG_NOINFO ||
655 (info != SEND_SIG_PRIV && info != SEND_SIG_FORCED
656 && SI_FROMUSER(info)))
657 && ((sig != SIGCONT) ||
658 (current->signal->session != t->signal->session))
659 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
660 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
661 && !capable(CAP_KILL))
664 error = security_task_kill(t, info, sig);
666 audit_signal_info(sig, t); /* Let audit system see the signal */
671 static void do_notify_parent_cldstop(struct task_struct *tsk,
676 * Handle magic process-wide effects of stop/continue signals.
677 * Unlike the signal actions, these happen immediately at signal-generation
678 * time regardless of blocking, ignoring, or handling. This does the
679 * actual continuing for SIGCONT, but not the actual stopping for stop
680 * signals. The process stop is done as a signal action for SIG_DFL.
682 static void handle_stop_signal(int sig, struct task_struct *p)
684 struct task_struct *t;
686 if (p->signal->flags & SIGNAL_GROUP_EXIT)
688 * The process is in the middle of dying already.
692 if (sig_kernel_stop(sig)) {
694 * This is a stop signal. Remove SIGCONT from all queues.
696 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
699 rm_from_queue(sigmask(SIGCONT), &t->pending);
702 } else if (sig == SIGCONT) {
704 * Remove all stop signals from all queues,
705 * and wake all threads.
707 if (unlikely(p->signal->group_stop_count > 0)) {
709 * There was a group stop in progress. We'll
710 * pretend it finished before we got here. We are
711 * obliged to report it to the parent: if the
712 * SIGSTOP happened "after" this SIGCONT, then it
713 * would have cleared this pending SIGCONT. If it
714 * happened "before" this SIGCONT, then the parent
715 * got the SIGCHLD about the stop finishing before
716 * the continue happened. We do the notification
717 * now, and it's as if the stop had finished and
718 * the SIGCHLD was pending on entry to this kill.
720 p->signal->group_stop_count = 0;
721 p->signal->flags = SIGNAL_STOP_CONTINUED;
722 spin_unlock(&p->sighand->siglock);
723 do_notify_parent_cldstop(p, (p->ptrace & PT_PTRACED), CLD_STOPPED);
724 spin_lock(&p->sighand->siglock);
726 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
730 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
733 * If there is a handler for SIGCONT, we must make
734 * sure that no thread returns to user mode before
735 * we post the signal, in case it was the only
736 * thread eligible to run the signal handler--then
737 * it must not do anything between resuming and
738 * running the handler. With the TIF_SIGPENDING
739 * flag set, the thread will pause and acquire the
740 * siglock that we hold now and until we've queued
741 * the pending signal.
743 * Wake up the stopped thread _after_ setting
746 state = TASK_STOPPED;
747 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
748 set_tsk_thread_flag(t, TIF_SIGPENDING);
749 state |= TASK_INTERRUPTIBLE;
751 wake_up_state(t, state);
756 if (p->signal->flags & SIGNAL_STOP_STOPPED) {
758 * We were in fact stopped, and are now continued.
759 * Notify the parent with CLD_CONTINUED.
761 p->signal->flags = SIGNAL_STOP_CONTINUED;
762 p->signal->group_exit_code = 0;
763 spin_unlock(&p->sighand->siglock);
764 do_notify_parent_cldstop(p, (p->ptrace & PT_PTRACED), CLD_CONTINUED);
765 spin_lock(&p->sighand->siglock);
768 * We are not stopped, but there could be a stop
769 * signal in the middle of being processed after
770 * being removed from the queue. Clear that too.
772 p->signal->flags = 0;
774 } else if (sig == SIGKILL) {
776 * Make sure that any pending stop signal already dequeued
777 * is undone by the wakeup for SIGKILL.
779 p->signal->flags = 0;
783 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
784 struct sigpending *signals)
786 struct sigqueue * q = NULL;
790 * fast-pathed signals for kernel-internal things like SIGSTOP
793 if (info == SEND_SIG_FORCED)
796 /* Real-time signals must be queued if sent by sigqueue, or
797 some other real-time mechanism. It is implementation
798 defined whether kill() does so. We attempt to do so, on
799 the principle of least surprise, but since kill is not
800 allowed to fail with EAGAIN when low on memory we just
801 make sure at least one signal gets delivered and don't
802 pass on the info struct. */
804 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
805 (info < SEND_SIG_FORCED ||
806 info->si_code >= 0)));
808 list_add_tail(&q->list, &signals->list);
809 switch ((unsigned long) info) {
810 case (unsigned long) SEND_SIG_NOINFO:
811 q->info.si_signo = sig;
812 q->info.si_errno = 0;
813 q->info.si_code = SI_USER;
814 q->info.si_pid = current->pid;
815 q->info.si_uid = current->uid;
817 case (unsigned long) SEND_SIG_PRIV:
818 q->info.si_signo = sig;
819 q->info.si_errno = 0;
820 q->info.si_code = SI_KERNEL;
825 copy_siginfo(&q->info, info);
830 && info != SEND_SIG_NOINFO && info != SEND_SIG_PRIV
831 && info->si_code != SI_USER)
833 * Queue overflow, abort. We may abort if the signal was rt
834 * and sent by user using something other than kill().
837 if ((info > SEND_SIG_PRIV) && (info->si_code == SI_TIMER))
839 * Set up a return to indicate that we dropped
842 ret = info->si_sys_private;
846 sigaddset(&signals->signal, sig);
850 #define LEGACY_QUEUE(sigptr, sig) \
851 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
855 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
859 if (!irqs_disabled())
861 assert_spin_locked(&t->sighand->siglock);
863 if ((info > SEND_SIG_FORCED) && (info->si_code == SI_TIMER))
865 * Set up a return to indicate that we dropped the signal.
867 ret = info->si_sys_private;
869 /* Short-circuit ignored signals. */
870 if (sig_ignored(t, sig))
873 /* Support queueing exactly one non-rt signal, so that we
874 can get more detailed information about the cause of
876 if (LEGACY_QUEUE(&t->pending, sig))
879 ret = send_signal(sig, info, t, &t->pending);
880 if (!ret && !sigismember(&t->blocked, sig))
881 signal_wake_up(t, sig == SIGKILL);
887 * Force a signal that the process can't ignore: if necessary
888 * we unblock the signal and change any SIG_IGN to SIG_DFL.
892 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
894 unsigned long int flags;
897 spin_lock_irqsave(&t->sighand->siglock, flags);
898 if (sigismember(&t->blocked, sig) || t->sighand->action[sig-1].sa.sa_handler == SIG_IGN) {
899 t->sighand->action[sig-1].sa.sa_handler = SIG_DFL;
900 sigdelset(&t->blocked, sig);
901 recalc_sigpending_tsk(t);
903 ret = specific_send_sig_info(sig, info, t);
904 spin_unlock_irqrestore(&t->sighand->siglock, flags);
910 force_sig_specific(int sig, struct task_struct *t)
912 unsigned long int flags;
914 spin_lock_irqsave(&t->sighand->siglock, flags);
915 if (t->sighand->action[sig-1].sa.sa_handler == SIG_IGN)
916 t->sighand->action[sig-1].sa.sa_handler = SIG_DFL;
917 sigdelset(&t->blocked, sig);
918 recalc_sigpending_tsk(t);
919 specific_send_sig_info(sig, SEND_SIG_FORCED, t);
920 spin_unlock_irqrestore(&t->sighand->siglock, flags);
924 * Test if P wants to take SIG. After we've checked all threads with this,
925 * it's equivalent to finding no threads not blocking SIG. Any threads not
926 * blocking SIG were ruled out because they are not running and already
927 * have pending signals. Such threads will dequeue from the shared queue
928 * as soon as they're available, so putting the signal on the shared queue
929 * will be equivalent to sending it to one such thread.
931 static inline int wants_signal(int sig, struct task_struct *p)
933 if (sigismember(&p->blocked, sig))
935 if (p->flags & PF_EXITING)
939 if (p->state & (TASK_STOPPED | TASK_TRACED))
941 return task_curr(p) || !signal_pending(p);
945 __group_complete_signal(int sig, struct task_struct *p)
947 struct task_struct *t;
950 * Now find a thread we can wake up to take the signal off the queue.
952 * If the main thread wants the signal, it gets first crack.
953 * Probably the least surprising to the average bear.
955 if (wants_signal(sig, p))
957 else if (thread_group_empty(p))
959 * There is just one thread and it does not need to be woken.
960 * It will dequeue unblocked signals before it runs again.
965 * Otherwise try to find a suitable thread.
967 t = p->signal->curr_target;
969 /* restart balancing at this thread */
970 t = p->signal->curr_target = p;
971 BUG_ON(t->tgid != p->tgid);
973 while (!wants_signal(sig, t)) {
975 if (t == p->signal->curr_target)
977 * No thread needs to be woken.
978 * Any eligible threads will see
979 * the signal in the queue soon.
983 p->signal->curr_target = t;
987 * Found a killable thread. If the signal will be fatal,
988 * then start taking the whole group down immediately.
990 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
991 !sigismember(&t->real_blocked, sig) &&
992 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
994 * This signal will be fatal to the whole group.
996 if (!sig_kernel_coredump(sig)) {
998 * Start a group exit and wake everybody up.
999 * This way we don't have other threads
1000 * running and doing things after a slower
1001 * thread has the fatal signal pending.
1003 p->signal->flags = SIGNAL_GROUP_EXIT;
1004 p->signal->group_exit_code = sig;
1005 p->signal->group_stop_count = 0;
1008 sigaddset(&t->pending.signal, SIGKILL);
1009 signal_wake_up(t, 1);
1016 * There will be a core dump. We make all threads other
1017 * than the chosen one go into a group stop so that nothing
1018 * happens until it gets scheduled, takes the signal off
1019 * the shared queue, and does the core dump. This is a
1020 * little more complicated than strictly necessary, but it
1021 * keeps the signal state that winds up in the core dump
1022 * unchanged from the death state, e.g. which thread had
1023 * the core-dump signal unblocked.
1025 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
1026 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
1027 p->signal->group_stop_count = 0;
1028 p->signal->group_exit_task = t;
1031 p->signal->group_stop_count++;
1032 signal_wake_up(t, 0);
1035 wake_up_process(p->signal->group_exit_task);
1040 * The signal is already in the shared-pending queue.
1041 * Tell the chosen thread to wake up and dequeue it.
1043 signal_wake_up(t, sig == SIGKILL);
1048 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1052 assert_spin_locked(&p->sighand->siglock);
1053 handle_stop_signal(sig, p);
1055 if ((info > SEND_SIG_FORCED) && (info->si_code == SI_TIMER))
1057 * Set up a return to indicate that we dropped the signal.
1059 ret = info->si_sys_private;
1061 /* Short-circuit ignored signals. */
1062 if (sig_ignored(p, sig))
1065 if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
1066 /* This is a non-RT signal and we already have one queued. */
1070 * Put this signal on the shared-pending queue, or fail with EAGAIN.
1071 * We always use the shared queue for process-wide signals,
1072 * to avoid several races.
1074 ret = send_signal(sig, info, p, &p->signal->shared_pending);
1078 __group_complete_signal(sig, p);
1083 * Nuke all other threads in the group.
1085 void zap_other_threads(struct task_struct *p)
1087 struct task_struct *t;
1089 p->signal->flags = SIGNAL_GROUP_EXIT;
1090 p->signal->group_stop_count = 0;
1092 if (thread_group_empty(p))
1095 for (t = next_thread(p); t != p; t = next_thread(t)) {
1097 * Don't bother with already dead threads
1103 * We don't want to notify the parent, since we are
1104 * killed as part of a thread group due to another
1105 * thread doing an execve() or similar. So set the
1106 * exit signal to -1 to allow immediate reaping of
1107 * the process. But don't detach the thread group
1110 if (t != p->group_leader)
1111 t->exit_signal = -1;
1113 /* SIGKILL will be handled before any pending SIGSTOP */
1114 sigaddset(&t->pending.signal, SIGKILL);
1115 signal_wake_up(t, 1);
1120 * Must be called with the tasklist_lock held for reading!
1122 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1124 unsigned long flags;
1127 ret = check_kill_permission(sig, info, p);
1128 if (!ret && sig && p->sighand) {
1129 spin_lock_irqsave(&p->sighand->siglock, flags);
1130 ret = __group_send_sig_info(sig, info, p);
1131 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1138 * kill_pg_info() sends a signal to a process group: this is what the tty
1139 * control characters do (^C, ^Z etc)
1142 int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1144 struct task_struct *p = NULL;
1145 int retval, success;
1152 do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
1153 int err = group_send_sig_info(sig, info, p);
1156 } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
1157 return success ? 0 : retval;
1161 kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1165 read_lock(&tasklist_lock);
1166 retval = __kill_pg_info(sig, info, pgrp);
1167 read_unlock(&tasklist_lock);
1173 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1176 struct task_struct *p;
1178 read_lock(&tasklist_lock);
1179 p = find_task_by_pid(pid);
1182 error = group_send_sig_info(sig, info, p);
1183 read_unlock(&tasklist_lock);
1187 /* like kill_proc_info(), but doesn't use uid/euid of "current" */
1188 int kill_proc_info_as_uid(int sig, struct siginfo *info, pid_t pid,
1189 uid_t uid, uid_t euid)
1192 struct task_struct *p;
1194 if (!valid_signal(sig))
1197 read_lock(&tasklist_lock);
1198 p = find_task_by_pid(pid);
1203 if ((!info || ((unsigned long)info != 1 &&
1204 (unsigned long)info != 2 && SI_FROMUSER(info)))
1205 && (euid != p->suid) && (euid != p->uid)
1206 && (uid != p->suid) && (uid != p->uid)) {
1210 if (sig && p->sighand) {
1211 unsigned long flags;
1212 spin_lock_irqsave(&p->sighand->siglock, flags);
1213 ret = __group_send_sig_info(sig, info, p);
1214 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1217 read_unlock(&tasklist_lock);
1220 EXPORT_SYMBOL_GPL(kill_proc_info_as_uid);
1223 * kill_something_info() interprets pid in interesting ways just like kill(2).
1225 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1226 * is probably wrong. Should make it like BSD or SYSV.
1229 static int kill_something_info(int sig, struct siginfo *info, int pid)
1232 return kill_pg_info(sig, info, process_group(current));
1233 } else if (pid == -1) {
1234 int retval = 0, count = 0;
1235 struct task_struct * p;
1237 read_lock(&tasklist_lock);
1238 for_each_process(p) {
1239 if (p->pid > 1 && p->tgid != current->tgid) {
1240 int err = group_send_sig_info(sig, info, p);
1246 read_unlock(&tasklist_lock);
1247 return count ? retval : -ESRCH;
1248 } else if (pid < 0) {
1249 return kill_pg_info(sig, info, -pid);
1251 return kill_proc_info(sig, info, pid);
1256 * These are for backward compatibility with the rest of the kernel source.
1260 * These two are the most common entry points. They send a signal
1261 * just to the specific thread.
1264 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1267 unsigned long flags;
1270 * Make sure legacy kernel users don't send in bad values
1271 * (normal paths check this in check_kill_permission).
1273 if (!valid_signal(sig))
1277 * We need the tasklist lock even for the specific
1278 * thread case (when we don't need to follow the group
1279 * lists) in order to avoid races with "p->sighand"
1280 * going away or changing from under us.
1282 read_lock(&tasklist_lock);
1283 spin_lock_irqsave(&p->sighand->siglock, flags);
1284 ret = specific_send_sig_info(sig, info, p);
1285 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1286 read_unlock(&tasklist_lock);
1290 #define __si_special(priv) \
1291 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1294 send_sig(int sig, struct task_struct *p, int priv)
1296 return send_sig_info(sig, __si_special(priv), p);
1300 * This is the entry point for "process-wide" signals.
1301 * They will go to an appropriate thread in the thread group.
1304 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1307 read_lock(&tasklist_lock);
1308 ret = group_send_sig_info(sig, info, p);
1309 read_unlock(&tasklist_lock);
1314 force_sig(int sig, struct task_struct *p)
1316 force_sig_info(sig, SEND_SIG_PRIV, p);
1320 * When things go south during signal handling, we
1321 * will force a SIGSEGV. And if the signal that caused
1322 * the problem was already a SIGSEGV, we'll want to
1323 * make sure we don't even try to deliver the signal..
1326 force_sigsegv(int sig, struct task_struct *p)
1328 if (sig == SIGSEGV) {
1329 unsigned long flags;
1330 spin_lock_irqsave(&p->sighand->siglock, flags);
1331 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1332 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1334 force_sig(SIGSEGV, p);
1339 kill_pg(pid_t pgrp, int sig, int priv)
1341 return kill_pg_info(sig, __si_special(priv), pgrp);
1345 kill_proc(pid_t pid, int sig, int priv)
1347 return kill_proc_info(sig, __si_special(priv), pid);
1351 * These functions support sending signals using preallocated sigqueue
1352 * structures. This is needed "because realtime applications cannot
1353 * afford to lose notifications of asynchronous events, like timer
1354 * expirations or I/O completions". In the case of Posix Timers
1355 * we allocate the sigqueue structure from the timer_create. If this
1356 * allocation fails we are able to report the failure to the application
1357 * with an EAGAIN error.
1360 struct sigqueue *sigqueue_alloc(void)
1364 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1365 q->flags |= SIGQUEUE_PREALLOC;
1369 void sigqueue_free(struct sigqueue *q)
1371 unsigned long flags;
1372 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1374 * If the signal is still pending remove it from the
1377 if (unlikely(!list_empty(&q->list))) {
1378 spinlock_t *lock = ¤t->sighand->siglock;
1379 read_lock(&tasklist_lock);
1380 spin_lock_irqsave(lock, flags);
1381 if (!list_empty(&q->list))
1382 list_del_init(&q->list);
1383 spin_unlock_irqrestore(lock, flags);
1384 read_unlock(&tasklist_lock);
1386 q->flags &= ~SIGQUEUE_PREALLOC;
1391 send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1393 unsigned long flags;
1396 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1397 read_lock(&tasklist_lock);
1399 if (unlikely(p->flags & PF_EXITING)) {
1404 spin_lock_irqsave(&p->sighand->siglock, flags);
1406 if (unlikely(!list_empty(&q->list))) {
1408 * If an SI_TIMER entry is already queue just increment
1409 * the overrun count.
1411 if (q->info.si_code != SI_TIMER)
1413 q->info.si_overrun++;
1416 /* Short-circuit ignored signals. */
1417 if (sig_ignored(p, sig)) {
1422 list_add_tail(&q->list, &p->pending.list);
1423 sigaddset(&p->pending.signal, sig);
1424 if (!sigismember(&p->blocked, sig))
1425 signal_wake_up(p, sig == SIGKILL);
1428 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1430 read_unlock(&tasklist_lock);
1436 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1438 unsigned long flags;
1441 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1442 read_lock(&tasklist_lock);
1443 spin_lock_irqsave(&p->sighand->siglock, flags);
1444 handle_stop_signal(sig, p);
1446 /* Short-circuit ignored signals. */
1447 if (sig_ignored(p, sig)) {
1452 if (unlikely(!list_empty(&q->list))) {
1454 * If an SI_TIMER entry is already queue just increment
1455 * the overrun count. Other uses should not try to
1456 * send the signal multiple times.
1458 if (q->info.si_code != SI_TIMER)
1460 q->info.si_overrun++;
1465 * Put this signal on the shared-pending queue.
1466 * We always use the shared queue for process-wide signals,
1467 * to avoid several races.
1469 list_add_tail(&q->list, &p->signal->shared_pending.list);
1470 sigaddset(&p->signal->shared_pending.signal, sig);
1472 __group_complete_signal(sig, p);
1474 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1475 read_unlock(&tasklist_lock);
1480 * Wake up any threads in the parent blocked in wait* syscalls.
1482 static inline void __wake_up_parent(struct task_struct *p,
1483 struct task_struct *parent)
1485 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1489 * Let a parent know about the death of a child.
1490 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1493 void do_notify_parent(struct task_struct *tsk, int sig)
1495 struct siginfo info;
1496 unsigned long flags;
1497 struct sighand_struct *psig;
1501 /* do_notify_parent_cldstop should have been called instead. */
1502 BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
1504 BUG_ON(!tsk->ptrace &&
1505 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1507 info.si_signo = sig;
1509 info.si_pid = tsk->pid;
1510 info.si_uid = tsk->uid;
1512 /* FIXME: find out whether or not this is supposed to be c*time. */
1513 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1514 tsk->signal->utime));
1515 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1516 tsk->signal->stime));
1518 info.si_status = tsk->exit_code & 0x7f;
1519 if (tsk->exit_code & 0x80)
1520 info.si_code = CLD_DUMPED;
1521 else if (tsk->exit_code & 0x7f)
1522 info.si_code = CLD_KILLED;
1524 info.si_code = CLD_EXITED;
1525 info.si_status = tsk->exit_code >> 8;
1528 psig = tsk->parent->sighand;
1529 spin_lock_irqsave(&psig->siglock, flags);
1530 if (sig == SIGCHLD &&
1531 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1532 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1534 * We are exiting and our parent doesn't care. POSIX.1
1535 * defines special semantics for setting SIGCHLD to SIG_IGN
1536 * or setting the SA_NOCLDWAIT flag: we should be reaped
1537 * automatically and not left for our parent's wait4 call.
1538 * Rather than having the parent do it as a magic kind of
1539 * signal handler, we just set this to tell do_exit that we
1540 * can be cleaned up without becoming a zombie. Note that
1541 * we still call __wake_up_parent in this case, because a
1542 * blocked sys_wait4 might now return -ECHILD.
1544 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1545 * is implementation-defined: we do (if you don't want
1546 * it, just use SIG_IGN instead).
1548 tsk->exit_signal = -1;
1549 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1552 if (valid_signal(sig) && sig > 0)
1553 __group_send_sig_info(sig, &info, tsk->parent);
1554 __wake_up_parent(tsk, tsk->parent);
1555 spin_unlock_irqrestore(&psig->siglock, flags);
1558 static void do_notify_parent_cldstop(struct task_struct *tsk, int to_self, int why)
1560 struct siginfo info;
1561 unsigned long flags;
1562 struct task_struct *parent;
1563 struct sighand_struct *sighand;
1566 parent = tsk->parent;
1568 tsk = tsk->group_leader;
1569 parent = tsk->real_parent;
1572 info.si_signo = SIGCHLD;
1574 info.si_pid = tsk->pid;
1575 info.si_uid = tsk->uid;
1577 /* FIXME: find out whether or not this is supposed to be c*time. */
1578 info.si_utime = cputime_to_jiffies(tsk->utime);
1579 info.si_stime = cputime_to_jiffies(tsk->stime);
1584 info.si_status = SIGCONT;
1587 info.si_status = tsk->signal->group_exit_code & 0x7f;
1590 info.si_status = tsk->exit_code & 0x7f;
1596 sighand = parent->sighand;
1597 spin_lock_irqsave(&sighand->siglock, flags);
1598 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1599 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1600 __group_send_sig_info(SIGCHLD, &info, parent);
1602 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1604 __wake_up_parent(tsk, parent);
1605 spin_unlock_irqrestore(&sighand->siglock, flags);
1609 * This must be called with current->sighand->siglock held.
1611 * This should be the path for all ptrace stops.
1612 * We always set current->last_siginfo while stopped here.
1613 * That makes it a way to test a stopped process for
1614 * being ptrace-stopped vs being job-control-stopped.
1616 * If we actually decide not to stop at all because the tracer is gone,
1617 * we leave nostop_code in current->exit_code.
1619 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1622 * If there is a group stop in progress,
1623 * we must participate in the bookkeeping.
1625 if (current->signal->group_stop_count > 0)
1626 --current->signal->group_stop_count;
1628 current->last_siginfo = info;
1629 current->exit_code = exit_code;
1631 /* Let the debugger run. */
1632 set_current_state(TASK_TRACED);
1633 spin_unlock_irq(¤t->sighand->siglock);
1634 read_lock(&tasklist_lock);
1635 if (likely(current->ptrace & PT_PTRACED) &&
1636 likely(current->parent != current->real_parent ||
1637 !(current->ptrace & PT_ATTACHED)) &&
1638 (likely(current->parent->signal != current->signal) ||
1639 !unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))) {
1640 do_notify_parent_cldstop(current, 1, CLD_TRAPPED);
1641 read_unlock(&tasklist_lock);
1645 * By the time we got the lock, our tracer went away.
1648 read_unlock(&tasklist_lock);
1649 set_current_state(TASK_RUNNING);
1650 current->exit_code = nostop_code;
1654 * We are back. Now reacquire the siglock before touching
1655 * last_siginfo, so that we are sure to have synchronized with
1656 * any signal-sending on another CPU that wants to examine it.
1658 spin_lock_irq(¤t->sighand->siglock);
1659 current->last_siginfo = NULL;
1662 * Queued signals ignored us while we were stopped for tracing.
1663 * So check for any that we should take before resuming user mode.
1665 recalc_sigpending();
1668 void ptrace_notify(int exit_code)
1672 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1674 memset(&info, 0, sizeof info);
1675 info.si_signo = SIGTRAP;
1676 info.si_code = exit_code;
1677 info.si_pid = current->pid;
1678 info.si_uid = current->uid;
1680 /* Let the debugger run. */
1681 spin_lock_irq(¤t->sighand->siglock);
1682 ptrace_stop(exit_code, 0, &info);
1683 spin_unlock_irq(¤t->sighand->siglock);
1687 finish_stop(int stop_count)
1692 * If there are no other threads in the group, or if there is
1693 * a group stop in progress and we are the last to stop,
1694 * report to the parent. When ptraced, every thread reports itself.
1696 if (stop_count < 0 || (current->ptrace & PT_PTRACED))
1698 else if (stop_count == 0)
1703 read_lock(&tasklist_lock);
1704 do_notify_parent_cldstop(current, to_self, CLD_STOPPED);
1705 read_unlock(&tasklist_lock);
1710 * Now we don't run again until continued.
1712 current->exit_code = 0;
1716 * This performs the stopping for SIGSTOP and other stop signals.
1717 * We have to stop all threads in the thread group.
1718 * Returns nonzero if we've actually stopped and released the siglock.
1719 * Returns zero if we didn't stop and still hold the siglock.
1722 do_signal_stop(int signr)
1724 struct signal_struct *sig = current->signal;
1725 struct sighand_struct *sighand = current->sighand;
1726 int stop_count = -1;
1728 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1731 if (sig->group_stop_count > 0) {
1733 * There is a group stop in progress. We don't need to
1734 * start another one.
1736 signr = sig->group_exit_code;
1737 stop_count = --sig->group_stop_count;
1738 current->exit_code = signr;
1739 set_current_state(TASK_STOPPED);
1740 if (stop_count == 0)
1741 sig->flags = SIGNAL_STOP_STOPPED;
1742 spin_unlock_irq(&sighand->siglock);
1744 else if (thread_group_empty(current)) {
1746 * Lock must be held through transition to stopped state.
1748 current->exit_code = current->signal->group_exit_code = signr;
1749 set_current_state(TASK_STOPPED);
1750 sig->flags = SIGNAL_STOP_STOPPED;
1751 spin_unlock_irq(&sighand->siglock);
1755 * There is no group stop already in progress.
1756 * We must initiate one now, but that requires
1757 * dropping siglock to get both the tasklist lock
1758 * and siglock again in the proper order. Note that
1759 * this allows an intervening SIGCONT to be posted.
1760 * We need to check for that and bail out if necessary.
1762 struct task_struct *t;
1764 spin_unlock_irq(&sighand->siglock);
1766 /* signals can be posted during this window */
1768 read_lock(&tasklist_lock);
1769 spin_lock_irq(&sighand->siglock);
1771 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED)) {
1773 * Another stop or continue happened while we
1774 * didn't have the lock. We can just swallow this
1775 * signal now. If we raced with a SIGCONT, that
1776 * should have just cleared it now. If we raced
1777 * with another processor delivering a stop signal,
1778 * then the SIGCONT that wakes us up should clear it.
1780 read_unlock(&tasklist_lock);
1784 if (sig->group_stop_count == 0) {
1785 sig->group_exit_code = signr;
1787 for (t = next_thread(current); t != current;
1790 * Setting state to TASK_STOPPED for a group
1791 * stop is always done with the siglock held,
1792 * so this check has no races.
1794 if (!t->exit_state &&
1795 !(t->state & (TASK_STOPPED|TASK_TRACED))) {
1797 signal_wake_up(t, 0);
1799 sig->group_stop_count = stop_count;
1802 /* A race with another thread while unlocked. */
1803 signr = sig->group_exit_code;
1804 stop_count = --sig->group_stop_count;
1807 current->exit_code = signr;
1808 set_current_state(TASK_STOPPED);
1809 if (stop_count == 0)
1810 sig->flags = SIGNAL_STOP_STOPPED;
1812 spin_unlock_irq(&sighand->siglock);
1813 read_unlock(&tasklist_lock);
1816 finish_stop(stop_count);
1821 * Do appropriate magic when group_stop_count > 0.
1822 * We return nonzero if we stopped, after releasing the siglock.
1823 * We return zero if we still hold the siglock and should look
1824 * for another signal without checking group_stop_count again.
1826 static inline int handle_group_stop(void)
1830 if (current->signal->group_exit_task == current) {
1832 * Group stop is so we can do a core dump,
1833 * We are the initiating thread, so get on with it.
1835 current->signal->group_exit_task = NULL;
1839 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1841 * Group stop is so another thread can do a core dump,
1842 * or else we are racing against a death signal.
1843 * Just punt the stop so we can get the next signal.
1848 * There is a group stop in progress. We stop
1849 * without any associated signal being in our queue.
1851 stop_count = --current->signal->group_stop_count;
1852 if (stop_count == 0)
1853 current->signal->flags = SIGNAL_STOP_STOPPED;
1854 current->exit_code = current->signal->group_exit_code;
1855 set_current_state(TASK_STOPPED);
1856 spin_unlock_irq(¤t->sighand->siglock);
1857 finish_stop(stop_count);
1861 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1862 struct pt_regs *regs, void *cookie)
1864 sigset_t *mask = ¤t->blocked;
1868 spin_lock_irq(¤t->sighand->siglock);
1870 struct k_sigaction *ka;
1872 if (unlikely(current->signal->group_stop_count > 0) &&
1873 handle_group_stop())
1876 signr = dequeue_signal(current, mask, info);
1879 break; /* will return 0 */
1881 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1882 ptrace_signal_deliver(regs, cookie);
1884 /* Let the debugger run. */
1885 ptrace_stop(signr, signr, info);
1887 /* We're back. Did the debugger cancel the sig or group_exit? */
1888 signr = current->exit_code;
1889 if (signr == 0 || current->signal->flags & SIGNAL_GROUP_EXIT)
1892 current->exit_code = 0;
1894 /* Update the siginfo structure if the signal has
1895 changed. If the debugger wanted something
1896 specific in the siginfo structure then it should
1897 have updated *info via PTRACE_SETSIGINFO. */
1898 if (signr != info->si_signo) {
1899 info->si_signo = signr;
1901 info->si_code = SI_USER;
1902 info->si_pid = current->parent->pid;
1903 info->si_uid = current->parent->uid;
1906 /* If the (new) signal is now blocked, requeue it. */
1907 if (sigismember(¤t->blocked, signr)) {
1908 specific_send_sig_info(signr, info, current);
1913 ka = ¤t->sighand->action[signr-1];
1914 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1916 if (ka->sa.sa_handler != SIG_DFL) {
1917 /* Run the handler. */
1920 if (ka->sa.sa_flags & SA_ONESHOT)
1921 ka->sa.sa_handler = SIG_DFL;
1923 break; /* will return non-zero "signr" value */
1927 * Now we are doing the default action for this signal.
1929 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1932 /* Init gets no signals it doesn't want. */
1933 if (current->pid == 1)
1936 if (sig_kernel_stop(signr)) {
1938 * The default action is to stop all threads in
1939 * the thread group. The job control signals
1940 * do nothing in an orphaned pgrp, but SIGSTOP
1941 * always works. Note that siglock needs to be
1942 * dropped during the call to is_orphaned_pgrp()
1943 * because of lock ordering with tasklist_lock.
1944 * This allows an intervening SIGCONT to be posted.
1945 * We need to check for that and bail out if necessary.
1947 if (signr != SIGSTOP) {
1948 spin_unlock_irq(¤t->sighand->siglock);
1950 /* signals can be posted during this window */
1952 if (is_orphaned_pgrp(process_group(current)))
1955 spin_lock_irq(¤t->sighand->siglock);
1958 if (likely(do_signal_stop(signr))) {
1959 /* It released the siglock. */
1964 * We didn't actually stop, due to a race
1965 * with SIGCONT or something like that.
1970 spin_unlock_irq(¤t->sighand->siglock);
1973 * Anything else is fatal, maybe with a core dump.
1975 current->flags |= PF_SIGNALED;
1976 if (sig_kernel_coredump(signr)) {
1978 * If it was able to dump core, this kills all
1979 * other threads in the group and synchronizes with
1980 * their demise. If we lost the race with another
1981 * thread getting here, it set group_exit_code
1982 * first and our do_group_exit call below will use
1983 * that value and ignore the one we pass it.
1985 do_coredump((long)signr, signr, regs);
1989 * Death signals, no core dump.
1991 do_group_exit(signr);
1994 spin_unlock_irq(¤t->sighand->siglock);
1998 EXPORT_SYMBOL(recalc_sigpending);
1999 EXPORT_SYMBOL_GPL(dequeue_signal);
2000 EXPORT_SYMBOL(flush_signals);
2001 EXPORT_SYMBOL(force_sig);
2002 EXPORT_SYMBOL(kill_pg);
2003 EXPORT_SYMBOL(kill_proc);
2004 EXPORT_SYMBOL(ptrace_notify);
2005 EXPORT_SYMBOL(send_sig);
2006 EXPORT_SYMBOL(send_sig_info);
2007 EXPORT_SYMBOL(sigprocmask);
2008 EXPORT_SYMBOL(block_all_signals);
2009 EXPORT_SYMBOL(unblock_all_signals);
2013 * System call entry points.
2016 asmlinkage long sys_restart_syscall(void)
2018 struct restart_block *restart = ¤t_thread_info()->restart_block;
2019 return restart->fn(restart);
2022 long do_no_restart_syscall(struct restart_block *param)
2028 * We don't need to get the kernel lock - this is all local to this
2029 * particular thread.. (and that's good, because this is _heavily_
2030 * used by various programs)
2034 * This is also useful for kernel threads that want to temporarily
2035 * (or permanently) block certain signals.
2037 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2038 * interface happily blocks "unblockable" signals like SIGKILL
2041 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2046 spin_lock_irq(¤t->sighand->siglock);
2047 old_block = current->blocked;
2051 sigorsets(¤t->blocked, ¤t->blocked, set);
2054 signandsets(¤t->blocked, ¤t->blocked, set);
2057 current->blocked = *set;
2062 recalc_sigpending();
2063 spin_unlock_irq(¤t->sighand->siglock);
2065 *oldset = old_block;
2070 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
2072 int error = -EINVAL;
2073 sigset_t old_set, new_set;
2075 /* XXX: Don't preclude handling different sized sigset_t's. */
2076 if (sigsetsize != sizeof(sigset_t))
2081 if (copy_from_user(&new_set, set, sizeof(*set)))
2083 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2085 error = sigprocmask(how, &new_set, &old_set);
2091 spin_lock_irq(¤t->sighand->siglock);
2092 old_set = current->blocked;
2093 spin_unlock_irq(¤t->sighand->siglock);
2097 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2105 long do_sigpending(void __user *set, unsigned long sigsetsize)
2107 long error = -EINVAL;
2110 if (sigsetsize > sizeof(sigset_t))
2113 spin_lock_irq(¤t->sighand->siglock);
2114 sigorsets(&pending, ¤t->pending.signal,
2115 ¤t->signal->shared_pending.signal);
2116 spin_unlock_irq(¤t->sighand->siglock);
2118 /* Outside the lock because only this thread touches it. */
2119 sigandsets(&pending, ¤t->blocked, &pending);
2122 if (!copy_to_user(set, &pending, sigsetsize))
2130 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2132 return do_sigpending(set, sigsetsize);
2135 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2137 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2141 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2143 if (from->si_code < 0)
2144 return __copy_to_user(to, from, sizeof(siginfo_t))
2147 * If you change siginfo_t structure, please be sure
2148 * this code is fixed accordingly.
2149 * It should never copy any pad contained in the structure
2150 * to avoid security leaks, but must copy the generic
2151 * 3 ints plus the relevant union member.
2153 err = __put_user(from->si_signo, &to->si_signo);
2154 err |= __put_user(from->si_errno, &to->si_errno);
2155 err |= __put_user((short)from->si_code, &to->si_code);
2156 switch (from->si_code & __SI_MASK) {
2158 err |= __put_user(from->si_pid, &to->si_pid);
2159 err |= __put_user(from->si_uid, &to->si_uid);
2162 err |= __put_user(from->si_tid, &to->si_tid);
2163 err |= __put_user(from->si_overrun, &to->si_overrun);
2164 err |= __put_user(from->si_ptr, &to->si_ptr);
2167 err |= __put_user(from->si_band, &to->si_band);
2168 err |= __put_user(from->si_fd, &to->si_fd);
2171 err |= __put_user(from->si_addr, &to->si_addr);
2172 #ifdef __ARCH_SI_TRAPNO
2173 err |= __put_user(from->si_trapno, &to->si_trapno);
2177 err |= __put_user(from->si_pid, &to->si_pid);
2178 err |= __put_user(from->si_uid, &to->si_uid);
2179 err |= __put_user(from->si_status, &to->si_status);
2180 err |= __put_user(from->si_utime, &to->si_utime);
2181 err |= __put_user(from->si_stime, &to->si_stime);
2183 case __SI_RT: /* This is not generated by the kernel as of now. */
2184 case __SI_MESGQ: /* But this is */
2185 err |= __put_user(from->si_pid, &to->si_pid);
2186 err |= __put_user(from->si_uid, &to->si_uid);
2187 err |= __put_user(from->si_ptr, &to->si_ptr);
2189 default: /* this is just in case for now ... */
2190 err |= __put_user(from->si_pid, &to->si_pid);
2191 err |= __put_user(from->si_uid, &to->si_uid);
2200 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2201 siginfo_t __user *uinfo,
2202 const struct timespec __user *uts,
2211 /* XXX: Don't preclude handling different sized sigset_t's. */
2212 if (sigsetsize != sizeof(sigset_t))
2215 if (copy_from_user(&these, uthese, sizeof(these)))
2219 * Invert the set of allowed signals to get those we
2222 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2226 if (copy_from_user(&ts, uts, sizeof(ts)))
2228 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2233 spin_lock_irq(¤t->sighand->siglock);
2234 sig = dequeue_signal(current, &these, &info);
2236 timeout = MAX_SCHEDULE_TIMEOUT;
2238 timeout = (timespec_to_jiffies(&ts)
2239 + (ts.tv_sec || ts.tv_nsec));
2242 /* None ready -- temporarily unblock those we're
2243 * interested while we are sleeping in so that we'll
2244 * be awakened when they arrive. */
2245 current->real_blocked = current->blocked;
2246 sigandsets(¤t->blocked, ¤t->blocked, &these);
2247 recalc_sigpending();
2248 spin_unlock_irq(¤t->sighand->siglock);
2250 timeout = schedule_timeout_interruptible(timeout);
2253 spin_lock_irq(¤t->sighand->siglock);
2254 sig = dequeue_signal(current, &these, &info);
2255 current->blocked = current->real_blocked;
2256 siginitset(¤t->real_blocked, 0);
2257 recalc_sigpending();
2260 spin_unlock_irq(¤t->sighand->siglock);
2265 if (copy_siginfo_to_user(uinfo, &info))
2278 sys_kill(int pid, int sig)
2280 struct siginfo info;
2282 info.si_signo = sig;
2284 info.si_code = SI_USER;
2285 info.si_pid = current->tgid;
2286 info.si_uid = current->uid;
2288 return kill_something_info(sig, &info, pid);
2291 static int do_tkill(int tgid, int pid, int sig)
2294 struct siginfo info;
2295 struct task_struct *p;
2298 info.si_signo = sig;
2300 info.si_code = SI_TKILL;
2301 info.si_pid = current->tgid;
2302 info.si_uid = current->uid;
2304 read_lock(&tasklist_lock);
2305 p = find_task_by_pid(pid);
2306 if (p && (tgid <= 0 || p->tgid == tgid)) {
2307 error = check_kill_permission(sig, &info, p);
2309 * The null signal is a permissions and process existence
2310 * probe. No signal is actually delivered.
2312 if (!error && sig && p->sighand) {
2313 spin_lock_irq(&p->sighand->siglock);
2314 handle_stop_signal(sig, p);
2315 error = specific_send_sig_info(sig, &info, p);
2316 spin_unlock_irq(&p->sighand->siglock);
2319 read_unlock(&tasklist_lock);
2325 * sys_tgkill - send signal to one specific thread
2326 * @tgid: the thread group ID of the thread
2327 * @pid: the PID of the thread
2328 * @sig: signal to be sent
2330 * This syscall also checks the tgid and returns -ESRCH even if the PID
2331 * exists but it's not belonging to the target process anymore. This
2332 * method solves the problem of threads exiting and PIDs getting reused.
2334 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2336 /* This is only valid for single tasks */
2337 if (pid <= 0 || tgid <= 0)
2340 return do_tkill(tgid, pid, sig);
2344 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2347 sys_tkill(int pid, int sig)
2349 /* This is only valid for single tasks */
2353 return do_tkill(0, pid, sig);
2357 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2361 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2364 /* Not even root can pretend to send signals from the kernel.
2365 Nor can they impersonate a kill(), which adds source info. */
2366 if (info.si_code >= 0)
2368 info.si_signo = sig;
2370 /* POSIX.1b doesn't mention process groups. */
2371 return kill_proc_info(sig, &info, pid);
2375 do_sigaction(int sig, const struct k_sigaction *act, struct k_sigaction *oact)
2377 struct k_sigaction *k;
2379 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2382 k = ¤t->sighand->action[sig-1];
2384 spin_lock_irq(¤t->sighand->siglock);
2385 if (signal_pending(current)) {
2387 * If there might be a fatal signal pending on multiple
2388 * threads, make sure we take it before changing the action.
2390 spin_unlock_irq(¤t->sighand->siglock);
2391 return -ERESTARTNOINTR;
2400 * "Setting a signal action to SIG_IGN for a signal that is
2401 * pending shall cause the pending signal to be discarded,
2402 * whether or not it is blocked."
2404 * "Setting a signal action to SIG_DFL for a signal that is
2405 * pending and whose default action is to ignore the signal
2406 * (for example, SIGCHLD), shall cause the pending signal to
2407 * be discarded, whether or not it is blocked"
2409 if (act->sa.sa_handler == SIG_IGN ||
2410 (act->sa.sa_handler == SIG_DFL &&
2411 sig_kernel_ignore(sig))) {
2413 * This is a fairly rare case, so we only take the
2414 * tasklist_lock once we're sure we'll need it.
2415 * Now we must do this little unlock and relock
2416 * dance to maintain the lock hierarchy.
2418 struct task_struct *t = current;
2419 spin_unlock_irq(&t->sighand->siglock);
2420 read_lock(&tasklist_lock);
2421 spin_lock_irq(&t->sighand->siglock);
2423 sigdelsetmask(&k->sa.sa_mask,
2424 sigmask(SIGKILL) | sigmask(SIGSTOP));
2425 rm_from_queue(sigmask(sig), &t->signal->shared_pending);
2427 rm_from_queue(sigmask(sig), &t->pending);
2428 recalc_sigpending_tsk(t);
2430 } while (t != current);
2431 spin_unlock_irq(¤t->sighand->siglock);
2432 read_unlock(&tasklist_lock);
2437 sigdelsetmask(&k->sa.sa_mask,
2438 sigmask(SIGKILL) | sigmask(SIGSTOP));
2441 spin_unlock_irq(¤t->sighand->siglock);
2446 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2452 oss.ss_sp = (void __user *) current->sas_ss_sp;
2453 oss.ss_size = current->sas_ss_size;
2454 oss.ss_flags = sas_ss_flags(sp);
2463 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2464 || __get_user(ss_sp, &uss->ss_sp)
2465 || __get_user(ss_flags, &uss->ss_flags)
2466 || __get_user(ss_size, &uss->ss_size))
2470 if (on_sig_stack(sp))
2476 * Note - this code used to test ss_flags incorrectly
2477 * old code may have been written using ss_flags==0
2478 * to mean ss_flags==SS_ONSTACK (as this was the only
2479 * way that worked) - this fix preserves that older
2482 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2485 if (ss_flags == SS_DISABLE) {
2490 if (ss_size < MINSIGSTKSZ)
2494 current->sas_ss_sp = (unsigned long) ss_sp;
2495 current->sas_ss_size = ss_size;
2500 if (copy_to_user(uoss, &oss, sizeof(oss)))
2509 #ifdef __ARCH_WANT_SYS_SIGPENDING
2512 sys_sigpending(old_sigset_t __user *set)
2514 return do_sigpending(set, sizeof(*set));
2519 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2520 /* Some platforms have their own version with special arguments others
2521 support only sys_rt_sigprocmask. */
2524 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2527 old_sigset_t old_set, new_set;
2531 if (copy_from_user(&new_set, set, sizeof(*set)))
2533 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2535 spin_lock_irq(¤t->sighand->siglock);
2536 old_set = current->blocked.sig[0];
2544 sigaddsetmask(¤t->blocked, new_set);
2547 sigdelsetmask(¤t->blocked, new_set);
2550 current->blocked.sig[0] = new_set;
2554 recalc_sigpending();
2555 spin_unlock_irq(¤t->sighand->siglock);
2561 old_set = current->blocked.sig[0];
2564 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2571 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2573 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2575 sys_rt_sigaction(int sig,
2576 const struct sigaction __user *act,
2577 struct sigaction __user *oact,
2580 struct k_sigaction new_sa, old_sa;
2583 /* XXX: Don't preclude handling different sized sigset_t's. */
2584 if (sigsetsize != sizeof(sigset_t))
2588 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2592 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2595 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2601 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2603 #ifdef __ARCH_WANT_SYS_SGETMASK
2606 * For backwards compatibility. Functionality superseded by sigprocmask.
2612 return current->blocked.sig[0];
2616 sys_ssetmask(int newmask)
2620 spin_lock_irq(¤t->sighand->siglock);
2621 old = current->blocked.sig[0];
2623 siginitset(¤t->blocked, newmask & ~(sigmask(SIGKILL)|
2625 recalc_sigpending();
2626 spin_unlock_irq(¤t->sighand->siglock);
2630 #endif /* __ARCH_WANT_SGETMASK */
2632 #ifdef __ARCH_WANT_SYS_SIGNAL
2634 * For backwards compatibility. Functionality superseded by sigaction.
2636 asmlinkage unsigned long
2637 sys_signal(int sig, __sighandler_t handler)
2639 struct k_sigaction new_sa, old_sa;
2642 new_sa.sa.sa_handler = handler;
2643 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2645 ret = do_sigaction(sig, &new_sa, &old_sa);
2647 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2649 #endif /* __ARCH_WANT_SYS_SIGNAL */
2651 #ifdef __ARCH_WANT_SYS_PAUSE
2656 current->state = TASK_INTERRUPTIBLE;
2658 return -ERESTARTNOHAND;
2663 void __init signals_init(void)
2666 kmem_cache_create("sigqueue",
2667 sizeof(struct sigqueue),
2668 __alignof__(struct sigqueue),
2669 SLAB_PANIC, NULL, NULL);