4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/reciprocal_div.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/bootmem.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
75 #include <trace/sched.h>
78 #include <asm/irq_regs.h>
80 #include "sched_cpupri.h"
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
96 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101 * Helpers for converting nanosecond timing to jiffy resolution
103 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105 #define NICE_0_LOAD SCHED_LOAD_SCALE
106 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
109 * These are the 'tuning knobs' of the scheduler:
111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
112 * Timeslices get refilled after they expire.
114 #define DEF_TIMESLICE (100 * HZ / 1000)
117 * single value that denotes runtime == period, ie unlimited time.
119 #define RUNTIME_INF ((u64)~0ULL)
121 DEFINE_TRACE(sched_wait_task);
122 DEFINE_TRACE(sched_wakeup);
123 DEFINE_TRACE(sched_wakeup_new);
124 DEFINE_TRACE(sched_switch);
125 DEFINE_TRACE(sched_migrate_task);
129 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
132 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
133 * Since cpu_power is a 'constant', we can use a reciprocal divide.
135 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
137 return reciprocal_divide(load, sg->reciprocal_cpu_power);
141 * Each time a sched group cpu_power is changed,
142 * we must compute its reciprocal value
144 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
146 sg->__cpu_power += val;
147 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
151 static inline int rt_policy(int policy)
153 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
158 static inline int task_has_rt_policy(struct task_struct *p)
160 return rt_policy(p->policy);
164 * This is the priority-queue data structure of the RT scheduling class:
166 struct rt_prio_array {
167 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
168 struct list_head queue[MAX_RT_PRIO];
171 struct rt_bandwidth {
172 /* nests inside the rq lock: */
173 spinlock_t rt_runtime_lock;
176 struct hrtimer rt_period_timer;
179 static struct rt_bandwidth def_rt_bandwidth;
181 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
183 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
185 struct rt_bandwidth *rt_b =
186 container_of(timer, struct rt_bandwidth, rt_period_timer);
192 now = hrtimer_cb_get_time(timer);
193 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
198 idle = do_sched_rt_period_timer(rt_b, overrun);
201 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
205 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
207 rt_b->rt_period = ns_to_ktime(period);
208 rt_b->rt_runtime = runtime;
210 spin_lock_init(&rt_b->rt_runtime_lock);
212 hrtimer_init(&rt_b->rt_period_timer,
213 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
214 rt_b->rt_period_timer.function = sched_rt_period_timer;
217 static inline int rt_bandwidth_enabled(void)
219 return sysctl_sched_rt_runtime >= 0;
222 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
226 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
229 if (hrtimer_active(&rt_b->rt_period_timer))
232 spin_lock(&rt_b->rt_runtime_lock);
234 if (hrtimer_active(&rt_b->rt_period_timer))
237 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
238 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
239 hrtimer_start_expires(&rt_b->rt_period_timer,
242 spin_unlock(&rt_b->rt_runtime_lock);
245 #ifdef CONFIG_RT_GROUP_SCHED
246 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
248 hrtimer_cancel(&rt_b->rt_period_timer);
253 * sched_domains_mutex serializes calls to arch_init_sched_domains,
254 * detach_destroy_domains and partition_sched_domains.
256 static DEFINE_MUTEX(sched_domains_mutex);
258 #ifdef CONFIG_GROUP_SCHED
260 #include <linux/cgroup.h>
264 static LIST_HEAD(task_groups);
266 /* task group related information */
268 #ifdef CONFIG_CGROUP_SCHED
269 struct cgroup_subsys_state css;
272 #ifdef CONFIG_USER_SCHED
276 #ifdef CONFIG_FAIR_GROUP_SCHED
277 /* schedulable entities of this group on each cpu */
278 struct sched_entity **se;
279 /* runqueue "owned" by this group on each cpu */
280 struct cfs_rq **cfs_rq;
281 unsigned long shares;
284 #ifdef CONFIG_RT_GROUP_SCHED
285 struct sched_rt_entity **rt_se;
286 struct rt_rq **rt_rq;
288 struct rt_bandwidth rt_bandwidth;
292 struct list_head list;
294 struct task_group *parent;
295 struct list_head siblings;
296 struct list_head children;
299 #ifdef CONFIG_USER_SCHED
301 /* Helper function to pass uid information to create_sched_user() */
302 void set_tg_uid(struct user_struct *user)
304 user->tg->uid = user->uid;
309 * Every UID task group (including init_task_group aka UID-0) will
310 * be a child to this group.
312 struct task_group root_task_group;
314 #ifdef CONFIG_FAIR_GROUP_SCHED
315 /* Default task group's sched entity on each cpu */
316 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
317 /* Default task group's cfs_rq on each cpu */
318 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
319 #endif /* CONFIG_FAIR_GROUP_SCHED */
321 #ifdef CONFIG_RT_GROUP_SCHED
322 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
323 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
324 #endif /* CONFIG_RT_GROUP_SCHED */
325 #else /* !CONFIG_USER_SCHED */
326 #define root_task_group init_task_group
327 #endif /* CONFIG_USER_SCHED */
329 /* task_group_lock serializes add/remove of task groups and also changes to
330 * a task group's cpu shares.
332 static DEFINE_SPINLOCK(task_group_lock);
335 static int root_task_group_empty(void)
337 return list_empty(&root_task_group.children);
341 #ifdef CONFIG_FAIR_GROUP_SCHED
342 #ifdef CONFIG_USER_SCHED
343 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
344 #else /* !CONFIG_USER_SCHED */
345 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
346 #endif /* CONFIG_USER_SCHED */
349 * A weight of 0 or 1 can cause arithmetics problems.
350 * A weight of a cfs_rq is the sum of weights of which entities
351 * are queued on this cfs_rq, so a weight of a entity should not be
352 * too large, so as the shares value of a task group.
353 * (The default weight is 1024 - so there's no practical
354 * limitation from this.)
357 #define MAX_SHARES (1UL << 18)
359 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
362 /* Default task group.
363 * Every task in system belong to this group at bootup.
365 struct task_group init_task_group;
367 /* return group to which a task belongs */
368 static inline struct task_group *task_group(struct task_struct *p)
370 struct task_group *tg;
372 #ifdef CONFIG_USER_SCHED
374 tg = __task_cred(p)->user->tg;
376 #elif defined(CONFIG_CGROUP_SCHED)
377 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
378 struct task_group, css);
380 tg = &init_task_group;
385 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
386 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
388 #ifdef CONFIG_FAIR_GROUP_SCHED
389 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
390 p->se.parent = task_group(p)->se[cpu];
393 #ifdef CONFIG_RT_GROUP_SCHED
394 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
395 p->rt.parent = task_group(p)->rt_se[cpu];
402 static int root_task_group_empty(void)
408 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
409 static inline struct task_group *task_group(struct task_struct *p)
414 #endif /* CONFIG_GROUP_SCHED */
416 /* CFS-related fields in a runqueue */
418 struct load_weight load;
419 unsigned long nr_running;
424 struct rb_root tasks_timeline;
425 struct rb_node *rb_leftmost;
427 struct list_head tasks;
428 struct list_head *balance_iterator;
431 * 'curr' points to currently running entity on this cfs_rq.
432 * It is set to NULL otherwise (i.e when none are currently running).
434 struct sched_entity *curr, *next, *last;
436 unsigned int nr_spread_over;
438 #ifdef CONFIG_FAIR_GROUP_SCHED
439 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
442 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
443 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
444 * (like users, containers etc.)
446 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
447 * list is used during load balance.
449 struct list_head leaf_cfs_rq_list;
450 struct task_group *tg; /* group that "owns" this runqueue */
454 * the part of load.weight contributed by tasks
456 unsigned long task_weight;
459 * h_load = weight * f(tg)
461 * Where f(tg) is the recursive weight fraction assigned to
464 unsigned long h_load;
467 * this cpu's part of tg->shares
469 unsigned long shares;
472 * load.weight at the time we set shares
474 unsigned long rq_weight;
479 /* Real-Time classes' related field in a runqueue: */
481 struct rt_prio_array active;
482 unsigned long rt_nr_running;
483 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
485 int curr; /* highest queued rt task prio */
487 int next; /* next highest */
492 unsigned long rt_nr_migratory;
494 struct plist_head pushable_tasks;
499 /* Nests inside the rq lock: */
500 spinlock_t rt_runtime_lock;
502 #ifdef CONFIG_RT_GROUP_SCHED
503 unsigned long rt_nr_boosted;
506 struct list_head leaf_rt_rq_list;
507 struct task_group *tg;
508 struct sched_rt_entity *rt_se;
515 * We add the notion of a root-domain which will be used to define per-domain
516 * variables. Each exclusive cpuset essentially defines an island domain by
517 * fully partitioning the member cpus from any other cpuset. Whenever a new
518 * exclusive cpuset is created, we also create and attach a new root-domain
525 cpumask_var_t online;
528 * The "RT overload" flag: it gets set if a CPU has more than
529 * one runnable RT task.
531 cpumask_var_t rto_mask;
534 struct cpupri cpupri;
536 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
538 * Preferred wake up cpu nominated by sched_mc balance that will be
539 * used when most cpus are idle in the system indicating overall very
540 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
542 unsigned int sched_mc_preferred_wakeup_cpu;
547 * By default the system creates a single root-domain with all cpus as
548 * members (mimicking the global state we have today).
550 static struct root_domain def_root_domain;
555 * This is the main, per-CPU runqueue data structure.
557 * Locking rule: those places that want to lock multiple runqueues
558 * (such as the load balancing or the thread migration code), lock
559 * acquire operations must be ordered by ascending &runqueue.
566 * nr_running and cpu_load should be in the same cacheline because
567 * remote CPUs use both these fields when doing load calculation.
569 unsigned long nr_running;
570 #define CPU_LOAD_IDX_MAX 5
571 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
573 unsigned long last_tick_seen;
574 unsigned char in_nohz_recently;
576 /* capture load from *all* tasks on this cpu: */
577 struct load_weight load;
578 unsigned long nr_load_updates;
584 #ifdef CONFIG_FAIR_GROUP_SCHED
585 /* list of leaf cfs_rq on this cpu: */
586 struct list_head leaf_cfs_rq_list;
588 #ifdef CONFIG_RT_GROUP_SCHED
589 struct list_head leaf_rt_rq_list;
593 * This is part of a global counter where only the total sum
594 * over all CPUs matters. A task can increase this counter on
595 * one CPU and if it got migrated afterwards it may decrease
596 * it on another CPU. Always updated under the runqueue lock:
598 unsigned long nr_uninterruptible;
600 struct task_struct *curr, *idle;
601 unsigned long next_balance;
602 struct mm_struct *prev_mm;
609 struct root_domain *rd;
610 struct sched_domain *sd;
612 unsigned char idle_at_tick;
613 /* For active balancing */
616 /* cpu of this runqueue: */
620 unsigned long avg_load_per_task;
622 struct task_struct *migration_thread;
623 struct list_head migration_queue;
626 #ifdef CONFIG_SCHED_HRTICK
628 int hrtick_csd_pending;
629 struct call_single_data hrtick_csd;
631 struct hrtimer hrtick_timer;
634 #ifdef CONFIG_SCHEDSTATS
636 struct sched_info rq_sched_info;
637 unsigned long long rq_cpu_time;
638 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
640 /* sys_sched_yield() stats */
641 unsigned int yld_count;
643 /* schedule() stats */
644 unsigned int sched_switch;
645 unsigned int sched_count;
646 unsigned int sched_goidle;
648 /* try_to_wake_up() stats */
649 unsigned int ttwu_count;
650 unsigned int ttwu_local;
653 unsigned int bkl_count;
657 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
659 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
661 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
664 static inline int cpu_of(struct rq *rq)
674 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
675 * See detach_destroy_domains: synchronize_sched for details.
677 * The domain tree of any CPU may only be accessed from within
678 * preempt-disabled sections.
680 #define for_each_domain(cpu, __sd) \
681 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
683 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
684 #define this_rq() (&__get_cpu_var(runqueues))
685 #define task_rq(p) cpu_rq(task_cpu(p))
686 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
688 static inline void update_rq_clock(struct rq *rq)
690 rq->clock = sched_clock_cpu(cpu_of(rq));
694 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
696 #ifdef CONFIG_SCHED_DEBUG
697 # define const_debug __read_mostly
699 # define const_debug static const
705 * Returns true if the current cpu runqueue is locked.
706 * This interface allows printk to be called with the runqueue lock
707 * held and know whether or not it is OK to wake up the klogd.
709 int runqueue_is_locked(void)
712 struct rq *rq = cpu_rq(cpu);
715 ret = spin_is_locked(&rq->lock);
721 * Debugging: various feature bits
724 #define SCHED_FEAT(name, enabled) \
725 __SCHED_FEAT_##name ,
728 #include "sched_features.h"
733 #define SCHED_FEAT(name, enabled) \
734 (1UL << __SCHED_FEAT_##name) * enabled |
736 const_debug unsigned int sysctl_sched_features =
737 #include "sched_features.h"
742 #ifdef CONFIG_SCHED_DEBUG
743 #define SCHED_FEAT(name, enabled) \
746 static __read_mostly char *sched_feat_names[] = {
747 #include "sched_features.h"
753 static int sched_feat_show(struct seq_file *m, void *v)
757 for (i = 0; sched_feat_names[i]; i++) {
758 if (!(sysctl_sched_features & (1UL << i)))
760 seq_printf(m, "%s ", sched_feat_names[i]);
768 sched_feat_write(struct file *filp, const char __user *ubuf,
769 size_t cnt, loff_t *ppos)
779 if (copy_from_user(&buf, ubuf, cnt))
784 if (strncmp(buf, "NO_", 3) == 0) {
789 for (i = 0; sched_feat_names[i]; i++) {
790 int len = strlen(sched_feat_names[i]);
792 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
794 sysctl_sched_features &= ~(1UL << i);
796 sysctl_sched_features |= (1UL << i);
801 if (!sched_feat_names[i])
809 static int sched_feat_open(struct inode *inode, struct file *filp)
811 return single_open(filp, sched_feat_show, NULL);
814 static struct file_operations sched_feat_fops = {
815 .open = sched_feat_open,
816 .write = sched_feat_write,
819 .release = single_release,
822 static __init int sched_init_debug(void)
824 debugfs_create_file("sched_features", 0644, NULL, NULL,
829 late_initcall(sched_init_debug);
833 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
836 * Number of tasks to iterate in a single balance run.
837 * Limited because this is done with IRQs disabled.
839 const_debug unsigned int sysctl_sched_nr_migrate = 32;
842 * ratelimit for updating the group shares.
845 unsigned int sysctl_sched_shares_ratelimit = 250000;
848 * Inject some fuzzyness into changing the per-cpu group shares
849 * this avoids remote rq-locks at the expense of fairness.
852 unsigned int sysctl_sched_shares_thresh = 4;
855 * period over which we measure -rt task cpu usage in us.
858 unsigned int sysctl_sched_rt_period = 1000000;
860 static __read_mostly int scheduler_running;
863 * part of the period that we allow rt tasks to run in us.
866 int sysctl_sched_rt_runtime = 950000;
868 static inline u64 global_rt_period(void)
870 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
873 static inline u64 global_rt_runtime(void)
875 if (sysctl_sched_rt_runtime < 0)
878 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
881 #ifndef prepare_arch_switch
882 # define prepare_arch_switch(next) do { } while (0)
884 #ifndef finish_arch_switch
885 # define finish_arch_switch(prev) do { } while (0)
888 static inline int task_current(struct rq *rq, struct task_struct *p)
890 return rq->curr == p;
893 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
894 static inline int task_running(struct rq *rq, struct task_struct *p)
896 return task_current(rq, p);
899 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
903 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
905 #ifdef CONFIG_DEBUG_SPINLOCK
906 /* this is a valid case when another task releases the spinlock */
907 rq->lock.owner = current;
910 * If we are tracking spinlock dependencies then we have to
911 * fix up the runqueue lock - which gets 'carried over' from
914 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
916 spin_unlock_irq(&rq->lock);
919 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
920 static inline int task_running(struct rq *rq, struct task_struct *p)
925 return task_current(rq, p);
929 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
933 * We can optimise this out completely for !SMP, because the
934 * SMP rebalancing from interrupt is the only thing that cares
939 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
940 spin_unlock_irq(&rq->lock);
942 spin_unlock(&rq->lock);
946 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
950 * After ->oncpu is cleared, the task can be moved to a different CPU.
951 * We must ensure this doesn't happen until the switch is completely
957 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
961 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
964 * __task_rq_lock - lock the runqueue a given task resides on.
965 * Must be called interrupts disabled.
967 static inline struct rq *__task_rq_lock(struct task_struct *p)
971 struct rq *rq = task_rq(p);
972 spin_lock(&rq->lock);
973 if (likely(rq == task_rq(p)))
975 spin_unlock(&rq->lock);
980 * task_rq_lock - lock the runqueue a given task resides on and disable
981 * interrupts. Note the ordering: we can safely lookup the task_rq without
982 * explicitly disabling preemption.
984 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
990 local_irq_save(*flags);
992 spin_lock(&rq->lock);
993 if (likely(rq == task_rq(p)))
995 spin_unlock_irqrestore(&rq->lock, *flags);
999 void task_rq_unlock_wait(struct task_struct *p)
1001 struct rq *rq = task_rq(p);
1003 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1004 spin_unlock_wait(&rq->lock);
1007 static void __task_rq_unlock(struct rq *rq)
1008 __releases(rq->lock)
1010 spin_unlock(&rq->lock);
1013 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1014 __releases(rq->lock)
1016 spin_unlock_irqrestore(&rq->lock, *flags);
1020 * this_rq_lock - lock this runqueue and disable interrupts.
1022 static struct rq *this_rq_lock(void)
1023 __acquires(rq->lock)
1027 local_irq_disable();
1029 spin_lock(&rq->lock);
1034 #ifdef CONFIG_SCHED_HRTICK
1036 * Use HR-timers to deliver accurate preemption points.
1038 * Its all a bit involved since we cannot program an hrt while holding the
1039 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1042 * When we get rescheduled we reprogram the hrtick_timer outside of the
1048 * - enabled by features
1049 * - hrtimer is actually high res
1051 static inline int hrtick_enabled(struct rq *rq)
1053 if (!sched_feat(HRTICK))
1055 if (!cpu_active(cpu_of(rq)))
1057 return hrtimer_is_hres_active(&rq->hrtick_timer);
1060 static void hrtick_clear(struct rq *rq)
1062 if (hrtimer_active(&rq->hrtick_timer))
1063 hrtimer_cancel(&rq->hrtick_timer);
1067 * High-resolution timer tick.
1068 * Runs from hardirq context with interrupts disabled.
1070 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1072 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1074 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1076 spin_lock(&rq->lock);
1077 update_rq_clock(rq);
1078 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1079 spin_unlock(&rq->lock);
1081 return HRTIMER_NORESTART;
1086 * called from hardirq (IPI) context
1088 static void __hrtick_start(void *arg)
1090 struct rq *rq = arg;
1092 spin_lock(&rq->lock);
1093 hrtimer_restart(&rq->hrtick_timer);
1094 rq->hrtick_csd_pending = 0;
1095 spin_unlock(&rq->lock);
1099 * Called to set the hrtick timer state.
1101 * called with rq->lock held and irqs disabled
1103 static void hrtick_start(struct rq *rq, u64 delay)
1105 struct hrtimer *timer = &rq->hrtick_timer;
1106 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1108 hrtimer_set_expires(timer, time);
1110 if (rq == this_rq()) {
1111 hrtimer_restart(timer);
1112 } else if (!rq->hrtick_csd_pending) {
1113 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1114 rq->hrtick_csd_pending = 1;
1119 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1121 int cpu = (int)(long)hcpu;
1124 case CPU_UP_CANCELED:
1125 case CPU_UP_CANCELED_FROZEN:
1126 case CPU_DOWN_PREPARE:
1127 case CPU_DOWN_PREPARE_FROZEN:
1129 case CPU_DEAD_FROZEN:
1130 hrtick_clear(cpu_rq(cpu));
1137 static __init void init_hrtick(void)
1139 hotcpu_notifier(hotplug_hrtick, 0);
1143 * Called to set the hrtick timer state.
1145 * called with rq->lock held and irqs disabled
1147 static void hrtick_start(struct rq *rq, u64 delay)
1149 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1152 static inline void init_hrtick(void)
1155 #endif /* CONFIG_SMP */
1157 static void init_rq_hrtick(struct rq *rq)
1160 rq->hrtick_csd_pending = 0;
1162 rq->hrtick_csd.flags = 0;
1163 rq->hrtick_csd.func = __hrtick_start;
1164 rq->hrtick_csd.info = rq;
1167 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1168 rq->hrtick_timer.function = hrtick;
1170 #else /* CONFIG_SCHED_HRTICK */
1171 static inline void hrtick_clear(struct rq *rq)
1175 static inline void init_rq_hrtick(struct rq *rq)
1179 static inline void init_hrtick(void)
1182 #endif /* CONFIG_SCHED_HRTICK */
1185 * resched_task - mark a task 'to be rescheduled now'.
1187 * On UP this means the setting of the need_resched flag, on SMP it
1188 * might also involve a cross-CPU call to trigger the scheduler on
1193 #ifndef tsk_is_polling
1194 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1197 static void resched_task(struct task_struct *p)
1201 assert_spin_locked(&task_rq(p)->lock);
1203 if (test_tsk_need_resched(p))
1206 set_tsk_need_resched(p);
1209 if (cpu == smp_processor_id())
1212 /* NEED_RESCHED must be visible before we test polling */
1214 if (!tsk_is_polling(p))
1215 smp_send_reschedule(cpu);
1218 static void resched_cpu(int cpu)
1220 struct rq *rq = cpu_rq(cpu);
1221 unsigned long flags;
1223 if (!spin_trylock_irqsave(&rq->lock, flags))
1225 resched_task(cpu_curr(cpu));
1226 spin_unlock_irqrestore(&rq->lock, flags);
1231 * When add_timer_on() enqueues a timer into the timer wheel of an
1232 * idle CPU then this timer might expire before the next timer event
1233 * which is scheduled to wake up that CPU. In case of a completely
1234 * idle system the next event might even be infinite time into the
1235 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1236 * leaves the inner idle loop so the newly added timer is taken into
1237 * account when the CPU goes back to idle and evaluates the timer
1238 * wheel for the next timer event.
1240 void wake_up_idle_cpu(int cpu)
1242 struct rq *rq = cpu_rq(cpu);
1244 if (cpu == smp_processor_id())
1248 * This is safe, as this function is called with the timer
1249 * wheel base lock of (cpu) held. When the CPU is on the way
1250 * to idle and has not yet set rq->curr to idle then it will
1251 * be serialized on the timer wheel base lock and take the new
1252 * timer into account automatically.
1254 if (rq->curr != rq->idle)
1258 * We can set TIF_RESCHED on the idle task of the other CPU
1259 * lockless. The worst case is that the other CPU runs the
1260 * idle task through an additional NOOP schedule()
1262 set_tsk_need_resched(rq->idle);
1264 /* NEED_RESCHED must be visible before we test polling */
1266 if (!tsk_is_polling(rq->idle))
1267 smp_send_reschedule(cpu);
1269 #endif /* CONFIG_NO_HZ */
1271 #else /* !CONFIG_SMP */
1272 static void resched_task(struct task_struct *p)
1274 assert_spin_locked(&task_rq(p)->lock);
1275 set_tsk_need_resched(p);
1277 #endif /* CONFIG_SMP */
1279 #if BITS_PER_LONG == 32
1280 # define WMULT_CONST (~0UL)
1282 # define WMULT_CONST (1UL << 32)
1285 #define WMULT_SHIFT 32
1288 * Shift right and round:
1290 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1293 * delta *= weight / lw
1295 static unsigned long
1296 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1297 struct load_weight *lw)
1301 if (!lw->inv_weight) {
1302 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1305 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1309 tmp = (u64)delta_exec * weight;
1311 * Check whether we'd overflow the 64-bit multiplication:
1313 if (unlikely(tmp > WMULT_CONST))
1314 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1317 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1319 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1322 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1328 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1335 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1336 * of tasks with abnormal "nice" values across CPUs the contribution that
1337 * each task makes to its run queue's load is weighted according to its
1338 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1339 * scaled version of the new time slice allocation that they receive on time
1343 #define WEIGHT_IDLEPRIO 3
1344 #define WMULT_IDLEPRIO 1431655765
1347 * Nice levels are multiplicative, with a gentle 10% change for every
1348 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1349 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1350 * that remained on nice 0.
1352 * The "10% effect" is relative and cumulative: from _any_ nice level,
1353 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1354 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1355 * If a task goes up by ~10% and another task goes down by ~10% then
1356 * the relative distance between them is ~25%.)
1358 static const int prio_to_weight[40] = {
1359 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1360 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1361 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1362 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1363 /* 0 */ 1024, 820, 655, 526, 423,
1364 /* 5 */ 335, 272, 215, 172, 137,
1365 /* 10 */ 110, 87, 70, 56, 45,
1366 /* 15 */ 36, 29, 23, 18, 15,
1370 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1372 * In cases where the weight does not change often, we can use the
1373 * precalculated inverse to speed up arithmetics by turning divisions
1374 * into multiplications:
1376 static const u32 prio_to_wmult[40] = {
1377 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1378 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1379 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1380 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1381 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1382 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1383 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1384 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1387 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1390 * runqueue iterator, to support SMP load-balancing between different
1391 * scheduling classes, without having to expose their internal data
1392 * structures to the load-balancing proper:
1394 struct rq_iterator {
1396 struct task_struct *(*start)(void *);
1397 struct task_struct *(*next)(void *);
1401 static unsigned long
1402 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1403 unsigned long max_load_move, struct sched_domain *sd,
1404 enum cpu_idle_type idle, int *all_pinned,
1405 int *this_best_prio, struct rq_iterator *iterator);
1408 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1409 struct sched_domain *sd, enum cpu_idle_type idle,
1410 struct rq_iterator *iterator);
1413 #ifdef CONFIG_CGROUP_CPUACCT
1414 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1416 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1419 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1421 update_load_add(&rq->load, load);
1424 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1426 update_load_sub(&rq->load, load);
1429 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1430 typedef int (*tg_visitor)(struct task_group *, void *);
1433 * Iterate the full tree, calling @down when first entering a node and @up when
1434 * leaving it for the final time.
1436 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1438 struct task_group *parent, *child;
1442 parent = &root_task_group;
1444 ret = (*down)(parent, data);
1447 list_for_each_entry_rcu(child, &parent->children, siblings) {
1454 ret = (*up)(parent, data);
1459 parent = parent->parent;
1468 static int tg_nop(struct task_group *tg, void *data)
1475 static unsigned long source_load(int cpu, int type);
1476 static unsigned long target_load(int cpu, int type);
1477 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1479 static unsigned long cpu_avg_load_per_task(int cpu)
1481 struct rq *rq = cpu_rq(cpu);
1482 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1485 rq->avg_load_per_task = rq->load.weight / nr_running;
1487 rq->avg_load_per_task = 0;
1489 return rq->avg_load_per_task;
1492 #ifdef CONFIG_FAIR_GROUP_SCHED
1494 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1497 * Calculate and set the cpu's group shares.
1500 update_group_shares_cpu(struct task_group *tg, int cpu,
1501 unsigned long sd_shares, unsigned long sd_rq_weight)
1503 unsigned long shares;
1504 unsigned long rq_weight;
1509 rq_weight = tg->cfs_rq[cpu]->rq_weight;
1512 * \Sum shares * rq_weight
1513 * shares = -----------------------
1517 shares = (sd_shares * rq_weight) / sd_rq_weight;
1518 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1520 if (abs(shares - tg->se[cpu]->load.weight) >
1521 sysctl_sched_shares_thresh) {
1522 struct rq *rq = cpu_rq(cpu);
1523 unsigned long flags;
1525 spin_lock_irqsave(&rq->lock, flags);
1526 tg->cfs_rq[cpu]->shares = shares;
1528 __set_se_shares(tg->se[cpu], shares);
1529 spin_unlock_irqrestore(&rq->lock, flags);
1534 * Re-compute the task group their per cpu shares over the given domain.
1535 * This needs to be done in a bottom-up fashion because the rq weight of a
1536 * parent group depends on the shares of its child groups.
1538 static int tg_shares_up(struct task_group *tg, void *data)
1540 unsigned long weight, rq_weight = 0;
1541 unsigned long shares = 0;
1542 struct sched_domain *sd = data;
1545 for_each_cpu(i, sched_domain_span(sd)) {
1547 * If there are currently no tasks on the cpu pretend there
1548 * is one of average load so that when a new task gets to
1549 * run here it will not get delayed by group starvation.
1551 weight = tg->cfs_rq[i]->load.weight;
1553 weight = NICE_0_LOAD;
1555 tg->cfs_rq[i]->rq_weight = weight;
1556 rq_weight += weight;
1557 shares += tg->cfs_rq[i]->shares;
1560 if ((!shares && rq_weight) || shares > tg->shares)
1561 shares = tg->shares;
1563 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1564 shares = tg->shares;
1566 for_each_cpu(i, sched_domain_span(sd))
1567 update_group_shares_cpu(tg, i, shares, rq_weight);
1573 * Compute the cpu's hierarchical load factor for each task group.
1574 * This needs to be done in a top-down fashion because the load of a child
1575 * group is a fraction of its parents load.
1577 static int tg_load_down(struct task_group *tg, void *data)
1580 long cpu = (long)data;
1583 load = cpu_rq(cpu)->load.weight;
1585 load = tg->parent->cfs_rq[cpu]->h_load;
1586 load *= tg->cfs_rq[cpu]->shares;
1587 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1590 tg->cfs_rq[cpu]->h_load = load;
1595 static void update_shares(struct sched_domain *sd)
1597 u64 now = cpu_clock(raw_smp_processor_id());
1598 s64 elapsed = now - sd->last_update;
1600 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1601 sd->last_update = now;
1602 walk_tg_tree(tg_nop, tg_shares_up, sd);
1606 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1608 spin_unlock(&rq->lock);
1610 spin_lock(&rq->lock);
1613 static void update_h_load(long cpu)
1615 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1620 static inline void update_shares(struct sched_domain *sd)
1624 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1630 #ifdef CONFIG_PREEMPT
1633 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1634 * way at the expense of forcing extra atomic operations in all
1635 * invocations. This assures that the double_lock is acquired using the
1636 * same underlying policy as the spinlock_t on this architecture, which
1637 * reduces latency compared to the unfair variant below. However, it
1638 * also adds more overhead and therefore may reduce throughput.
1640 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1641 __releases(this_rq->lock)
1642 __acquires(busiest->lock)
1643 __acquires(this_rq->lock)
1645 spin_unlock(&this_rq->lock);
1646 double_rq_lock(this_rq, busiest);
1653 * Unfair double_lock_balance: Optimizes throughput at the expense of
1654 * latency by eliminating extra atomic operations when the locks are
1655 * already in proper order on entry. This favors lower cpu-ids and will
1656 * grant the double lock to lower cpus over higher ids under contention,
1657 * regardless of entry order into the function.
1659 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1660 __releases(this_rq->lock)
1661 __acquires(busiest->lock)
1662 __acquires(this_rq->lock)
1666 if (unlikely(!spin_trylock(&busiest->lock))) {
1667 if (busiest < this_rq) {
1668 spin_unlock(&this_rq->lock);
1669 spin_lock(&busiest->lock);
1670 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1673 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1678 #endif /* CONFIG_PREEMPT */
1681 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1683 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1685 if (unlikely(!irqs_disabled())) {
1686 /* printk() doesn't work good under rq->lock */
1687 spin_unlock(&this_rq->lock);
1691 return _double_lock_balance(this_rq, busiest);
1694 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1695 __releases(busiest->lock)
1697 spin_unlock(&busiest->lock);
1698 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1702 #ifdef CONFIG_FAIR_GROUP_SCHED
1703 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1706 cfs_rq->shares = shares;
1711 #include "sched_stats.h"
1712 #include "sched_idletask.c"
1713 #include "sched_fair.c"
1714 #include "sched_rt.c"
1715 #ifdef CONFIG_SCHED_DEBUG
1716 # include "sched_debug.c"
1719 #define sched_class_highest (&rt_sched_class)
1720 #define for_each_class(class) \
1721 for (class = sched_class_highest; class; class = class->next)
1723 static void inc_nr_running(struct rq *rq)
1728 static void dec_nr_running(struct rq *rq)
1733 static void set_load_weight(struct task_struct *p)
1735 if (task_has_rt_policy(p)) {
1736 p->se.load.weight = prio_to_weight[0] * 2;
1737 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1742 * SCHED_IDLE tasks get minimal weight:
1744 if (p->policy == SCHED_IDLE) {
1745 p->se.load.weight = WEIGHT_IDLEPRIO;
1746 p->se.load.inv_weight = WMULT_IDLEPRIO;
1750 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1751 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1754 static void update_avg(u64 *avg, u64 sample)
1756 s64 diff = sample - *avg;
1760 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1763 p->se.start_runtime = p->se.sum_exec_runtime;
1765 sched_info_queued(p);
1766 p->sched_class->enqueue_task(rq, p, wakeup);
1770 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1773 if (p->se.last_wakeup) {
1774 update_avg(&p->se.avg_overlap,
1775 p->se.sum_exec_runtime - p->se.last_wakeup);
1776 p->se.last_wakeup = 0;
1778 update_avg(&p->se.avg_wakeup,
1779 sysctl_sched_wakeup_granularity);
1783 sched_info_dequeued(p);
1784 p->sched_class->dequeue_task(rq, p, sleep);
1789 * __normal_prio - return the priority that is based on the static prio
1791 static inline int __normal_prio(struct task_struct *p)
1793 return p->static_prio;
1797 * Calculate the expected normal priority: i.e. priority
1798 * without taking RT-inheritance into account. Might be
1799 * boosted by interactivity modifiers. Changes upon fork,
1800 * setprio syscalls, and whenever the interactivity
1801 * estimator recalculates.
1803 static inline int normal_prio(struct task_struct *p)
1807 if (task_has_rt_policy(p))
1808 prio = MAX_RT_PRIO-1 - p->rt_priority;
1810 prio = __normal_prio(p);
1815 * Calculate the current priority, i.e. the priority
1816 * taken into account by the scheduler. This value might
1817 * be boosted by RT tasks, or might be boosted by
1818 * interactivity modifiers. Will be RT if the task got
1819 * RT-boosted. If not then it returns p->normal_prio.
1821 static int effective_prio(struct task_struct *p)
1823 p->normal_prio = normal_prio(p);
1825 * If we are RT tasks or we were boosted to RT priority,
1826 * keep the priority unchanged. Otherwise, update priority
1827 * to the normal priority:
1829 if (!rt_prio(p->prio))
1830 return p->normal_prio;
1835 * activate_task - move a task to the runqueue.
1837 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1839 if (task_contributes_to_load(p))
1840 rq->nr_uninterruptible--;
1842 enqueue_task(rq, p, wakeup);
1847 * deactivate_task - remove a task from the runqueue.
1849 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1851 if (task_contributes_to_load(p))
1852 rq->nr_uninterruptible++;
1854 dequeue_task(rq, p, sleep);
1859 * task_curr - is this task currently executing on a CPU?
1860 * @p: the task in question.
1862 inline int task_curr(const struct task_struct *p)
1864 return cpu_curr(task_cpu(p)) == p;
1867 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1869 set_task_rq(p, cpu);
1872 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1873 * successfuly executed on another CPU. We must ensure that updates of
1874 * per-task data have been completed by this moment.
1877 task_thread_info(p)->cpu = cpu;
1881 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1882 const struct sched_class *prev_class,
1883 int oldprio, int running)
1885 if (prev_class != p->sched_class) {
1886 if (prev_class->switched_from)
1887 prev_class->switched_from(rq, p, running);
1888 p->sched_class->switched_to(rq, p, running);
1890 p->sched_class->prio_changed(rq, p, oldprio, running);
1895 /* Used instead of source_load when we know the type == 0 */
1896 static unsigned long weighted_cpuload(const int cpu)
1898 return cpu_rq(cpu)->load.weight;
1902 * Is this task likely cache-hot:
1905 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1910 * Buddy candidates are cache hot:
1912 if (sched_feat(CACHE_HOT_BUDDY) &&
1913 (&p->se == cfs_rq_of(&p->se)->next ||
1914 &p->se == cfs_rq_of(&p->se)->last))
1917 if (p->sched_class != &fair_sched_class)
1920 if (sysctl_sched_migration_cost == -1)
1922 if (sysctl_sched_migration_cost == 0)
1925 delta = now - p->se.exec_start;
1927 return delta < (s64)sysctl_sched_migration_cost;
1931 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1933 int old_cpu = task_cpu(p);
1934 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1935 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1936 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1939 clock_offset = old_rq->clock - new_rq->clock;
1941 trace_sched_migrate_task(p, task_cpu(p), new_cpu);
1943 #ifdef CONFIG_SCHEDSTATS
1944 if (p->se.wait_start)
1945 p->se.wait_start -= clock_offset;
1946 if (p->se.sleep_start)
1947 p->se.sleep_start -= clock_offset;
1948 if (p->se.block_start)
1949 p->se.block_start -= clock_offset;
1950 if (old_cpu != new_cpu) {
1951 schedstat_inc(p, se.nr_migrations);
1952 if (task_hot(p, old_rq->clock, NULL))
1953 schedstat_inc(p, se.nr_forced2_migrations);
1956 p->se.vruntime -= old_cfsrq->min_vruntime -
1957 new_cfsrq->min_vruntime;
1959 __set_task_cpu(p, new_cpu);
1962 struct migration_req {
1963 struct list_head list;
1965 struct task_struct *task;
1968 struct completion done;
1972 * The task's runqueue lock must be held.
1973 * Returns true if you have to wait for migration thread.
1976 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1978 struct rq *rq = task_rq(p);
1981 * If the task is not on a runqueue (and not running), then
1982 * it is sufficient to simply update the task's cpu field.
1984 if (!p->se.on_rq && !task_running(rq, p)) {
1985 set_task_cpu(p, dest_cpu);
1989 init_completion(&req->done);
1991 req->dest_cpu = dest_cpu;
1992 list_add(&req->list, &rq->migration_queue);
1998 * wait_task_inactive - wait for a thread to unschedule.
2000 * If @match_state is nonzero, it's the @p->state value just checked and
2001 * not expected to change. If it changes, i.e. @p might have woken up,
2002 * then return zero. When we succeed in waiting for @p to be off its CPU,
2003 * we return a positive number (its total switch count). If a second call
2004 * a short while later returns the same number, the caller can be sure that
2005 * @p has remained unscheduled the whole time.
2007 * The caller must ensure that the task *will* unschedule sometime soon,
2008 * else this function might spin for a *long* time. This function can't
2009 * be called with interrupts off, or it may introduce deadlock with
2010 * smp_call_function() if an IPI is sent by the same process we are
2011 * waiting to become inactive.
2013 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2015 unsigned long flags;
2022 * We do the initial early heuristics without holding
2023 * any task-queue locks at all. We'll only try to get
2024 * the runqueue lock when things look like they will
2030 * If the task is actively running on another CPU
2031 * still, just relax and busy-wait without holding
2034 * NOTE! Since we don't hold any locks, it's not
2035 * even sure that "rq" stays as the right runqueue!
2036 * But we don't care, since "task_running()" will
2037 * return false if the runqueue has changed and p
2038 * is actually now running somewhere else!
2040 while (task_running(rq, p)) {
2041 if (match_state && unlikely(p->state != match_state))
2047 * Ok, time to look more closely! We need the rq
2048 * lock now, to be *sure*. If we're wrong, we'll
2049 * just go back and repeat.
2051 rq = task_rq_lock(p, &flags);
2052 trace_sched_wait_task(rq, p);
2053 running = task_running(rq, p);
2054 on_rq = p->se.on_rq;
2056 if (!match_state || p->state == match_state)
2057 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2058 task_rq_unlock(rq, &flags);
2061 * If it changed from the expected state, bail out now.
2063 if (unlikely(!ncsw))
2067 * Was it really running after all now that we
2068 * checked with the proper locks actually held?
2070 * Oops. Go back and try again..
2072 if (unlikely(running)) {
2078 * It's not enough that it's not actively running,
2079 * it must be off the runqueue _entirely_, and not
2082 * So if it was still runnable (but just not actively
2083 * running right now), it's preempted, and we should
2084 * yield - it could be a while.
2086 if (unlikely(on_rq)) {
2087 schedule_timeout_uninterruptible(1);
2092 * Ahh, all good. It wasn't running, and it wasn't
2093 * runnable, which means that it will never become
2094 * running in the future either. We're all done!
2103 * kick_process - kick a running thread to enter/exit the kernel
2104 * @p: the to-be-kicked thread
2106 * Cause a process which is running on another CPU to enter
2107 * kernel-mode, without any delay. (to get signals handled.)
2109 * NOTE: this function doesnt have to take the runqueue lock,
2110 * because all it wants to ensure is that the remote task enters
2111 * the kernel. If the IPI races and the task has been migrated
2112 * to another CPU then no harm is done and the purpose has been
2115 void kick_process(struct task_struct *p)
2121 if ((cpu != smp_processor_id()) && task_curr(p))
2122 smp_send_reschedule(cpu);
2127 * Return a low guess at the load of a migration-source cpu weighted
2128 * according to the scheduling class and "nice" value.
2130 * We want to under-estimate the load of migration sources, to
2131 * balance conservatively.
2133 static unsigned long source_load(int cpu, int type)
2135 struct rq *rq = cpu_rq(cpu);
2136 unsigned long total = weighted_cpuload(cpu);
2138 if (type == 0 || !sched_feat(LB_BIAS))
2141 return min(rq->cpu_load[type-1], total);
2145 * Return a high guess at the load of a migration-target cpu weighted
2146 * according to the scheduling class and "nice" value.
2148 static unsigned long target_load(int cpu, int type)
2150 struct rq *rq = cpu_rq(cpu);
2151 unsigned long total = weighted_cpuload(cpu);
2153 if (type == 0 || !sched_feat(LB_BIAS))
2156 return max(rq->cpu_load[type-1], total);
2160 * find_idlest_group finds and returns the least busy CPU group within the
2163 static struct sched_group *
2164 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2166 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2167 unsigned long min_load = ULONG_MAX, this_load = 0;
2168 int load_idx = sd->forkexec_idx;
2169 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2172 unsigned long load, avg_load;
2176 /* Skip over this group if it has no CPUs allowed */
2177 if (!cpumask_intersects(sched_group_cpus(group),
2181 local_group = cpumask_test_cpu(this_cpu,
2182 sched_group_cpus(group));
2184 /* Tally up the load of all CPUs in the group */
2187 for_each_cpu(i, sched_group_cpus(group)) {
2188 /* Bias balancing toward cpus of our domain */
2190 load = source_load(i, load_idx);
2192 load = target_load(i, load_idx);
2197 /* Adjust by relative CPU power of the group */
2198 avg_load = sg_div_cpu_power(group,
2199 avg_load * SCHED_LOAD_SCALE);
2202 this_load = avg_load;
2204 } else if (avg_load < min_load) {
2205 min_load = avg_load;
2208 } while (group = group->next, group != sd->groups);
2210 if (!idlest || 100*this_load < imbalance*min_load)
2216 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2219 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2221 unsigned long load, min_load = ULONG_MAX;
2225 /* Traverse only the allowed CPUs */
2226 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2227 load = weighted_cpuload(i);
2229 if (load < min_load || (load == min_load && i == this_cpu)) {
2239 * sched_balance_self: balance the current task (running on cpu) in domains
2240 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2243 * Balance, ie. select the least loaded group.
2245 * Returns the target CPU number, or the same CPU if no balancing is needed.
2247 * preempt must be disabled.
2249 static int sched_balance_self(int cpu, int flag)
2251 struct task_struct *t = current;
2252 struct sched_domain *tmp, *sd = NULL;
2254 for_each_domain(cpu, tmp) {
2256 * If power savings logic is enabled for a domain, stop there.
2258 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2260 if (tmp->flags & flag)
2268 struct sched_group *group;
2269 int new_cpu, weight;
2271 if (!(sd->flags & flag)) {
2276 group = find_idlest_group(sd, t, cpu);
2282 new_cpu = find_idlest_cpu(group, t, cpu);
2283 if (new_cpu == -1 || new_cpu == cpu) {
2284 /* Now try balancing at a lower domain level of cpu */
2289 /* Now try balancing at a lower domain level of new_cpu */
2291 weight = cpumask_weight(sched_domain_span(sd));
2293 for_each_domain(cpu, tmp) {
2294 if (weight <= cpumask_weight(sched_domain_span(tmp)))
2296 if (tmp->flags & flag)
2299 /* while loop will break here if sd == NULL */
2305 #endif /* CONFIG_SMP */
2308 * try_to_wake_up - wake up a thread
2309 * @p: the to-be-woken-up thread
2310 * @state: the mask of task states that can be woken
2311 * @sync: do a synchronous wakeup?
2313 * Put it on the run-queue if it's not already there. The "current"
2314 * thread is always on the run-queue (except when the actual
2315 * re-schedule is in progress), and as such you're allowed to do
2316 * the simpler "current->state = TASK_RUNNING" to mark yourself
2317 * runnable without the overhead of this.
2319 * returns failure only if the task is already active.
2321 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2323 int cpu, orig_cpu, this_cpu, success = 0;
2324 unsigned long flags;
2328 if (!sched_feat(SYNC_WAKEUPS))
2332 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2333 struct sched_domain *sd;
2335 this_cpu = raw_smp_processor_id();
2338 for_each_domain(this_cpu, sd) {
2339 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2348 rq = task_rq_lock(p, &flags);
2349 update_rq_clock(rq);
2350 old_state = p->state;
2351 if (!(old_state & state))
2359 this_cpu = smp_processor_id();
2362 if (unlikely(task_running(rq, p)))
2365 cpu = p->sched_class->select_task_rq(p, sync);
2366 if (cpu != orig_cpu) {
2367 set_task_cpu(p, cpu);
2368 task_rq_unlock(rq, &flags);
2369 /* might preempt at this point */
2370 rq = task_rq_lock(p, &flags);
2371 old_state = p->state;
2372 if (!(old_state & state))
2377 this_cpu = smp_processor_id();
2381 #ifdef CONFIG_SCHEDSTATS
2382 schedstat_inc(rq, ttwu_count);
2383 if (cpu == this_cpu)
2384 schedstat_inc(rq, ttwu_local);
2386 struct sched_domain *sd;
2387 for_each_domain(this_cpu, sd) {
2388 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2389 schedstat_inc(sd, ttwu_wake_remote);
2394 #endif /* CONFIG_SCHEDSTATS */
2397 #endif /* CONFIG_SMP */
2398 schedstat_inc(p, se.nr_wakeups);
2400 schedstat_inc(p, se.nr_wakeups_sync);
2401 if (orig_cpu != cpu)
2402 schedstat_inc(p, se.nr_wakeups_migrate);
2403 if (cpu == this_cpu)
2404 schedstat_inc(p, se.nr_wakeups_local);
2406 schedstat_inc(p, se.nr_wakeups_remote);
2407 activate_task(rq, p, 1);
2411 * Only attribute actual wakeups done by this task.
2413 if (!in_interrupt()) {
2414 struct sched_entity *se = ¤t->se;
2415 u64 sample = se->sum_exec_runtime;
2417 if (se->last_wakeup)
2418 sample -= se->last_wakeup;
2420 sample -= se->start_runtime;
2421 update_avg(&se->avg_wakeup, sample);
2423 se->last_wakeup = se->sum_exec_runtime;
2427 trace_sched_wakeup(rq, p, success);
2428 check_preempt_curr(rq, p, sync);
2430 p->state = TASK_RUNNING;
2432 if (p->sched_class->task_wake_up)
2433 p->sched_class->task_wake_up(rq, p);
2436 task_rq_unlock(rq, &flags);
2441 int wake_up_process(struct task_struct *p)
2443 return try_to_wake_up(p, TASK_ALL, 0);
2445 EXPORT_SYMBOL(wake_up_process);
2447 int wake_up_state(struct task_struct *p, unsigned int state)
2449 return try_to_wake_up(p, state, 0);
2453 * Perform scheduler related setup for a newly forked process p.
2454 * p is forked by current.
2456 * __sched_fork() is basic setup used by init_idle() too:
2458 static void __sched_fork(struct task_struct *p)
2460 p->se.exec_start = 0;
2461 p->se.sum_exec_runtime = 0;
2462 p->se.prev_sum_exec_runtime = 0;
2463 p->se.last_wakeup = 0;
2464 p->se.avg_overlap = 0;
2465 p->se.start_runtime = 0;
2466 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2468 #ifdef CONFIG_SCHEDSTATS
2469 p->se.wait_start = 0;
2470 p->se.sum_sleep_runtime = 0;
2471 p->se.sleep_start = 0;
2472 p->se.block_start = 0;
2473 p->se.sleep_max = 0;
2474 p->se.block_max = 0;
2476 p->se.slice_max = 0;
2480 INIT_LIST_HEAD(&p->rt.run_list);
2482 INIT_LIST_HEAD(&p->se.group_node);
2484 #ifdef CONFIG_PREEMPT_NOTIFIERS
2485 INIT_HLIST_HEAD(&p->preempt_notifiers);
2489 * We mark the process as running here, but have not actually
2490 * inserted it onto the runqueue yet. This guarantees that
2491 * nobody will actually run it, and a signal or other external
2492 * event cannot wake it up and insert it on the runqueue either.
2494 p->state = TASK_RUNNING;
2498 * fork()/clone()-time setup:
2500 void sched_fork(struct task_struct *p, int clone_flags)
2502 int cpu = get_cpu();
2507 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2509 set_task_cpu(p, cpu);
2512 * Make sure we do not leak PI boosting priority to the child:
2514 p->prio = current->normal_prio;
2515 if (!rt_prio(p->prio))
2516 p->sched_class = &fair_sched_class;
2518 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2519 if (likely(sched_info_on()))
2520 memset(&p->sched_info, 0, sizeof(p->sched_info));
2522 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2525 #ifdef CONFIG_PREEMPT
2526 /* Want to start with kernel preemption disabled. */
2527 task_thread_info(p)->preempt_count = 1;
2529 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2535 * wake_up_new_task - wake up a newly created task for the first time.
2537 * This function will do some initial scheduler statistics housekeeping
2538 * that must be done for every newly created context, then puts the task
2539 * on the runqueue and wakes it.
2541 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2543 unsigned long flags;
2546 rq = task_rq_lock(p, &flags);
2547 BUG_ON(p->state != TASK_RUNNING);
2548 update_rq_clock(rq);
2550 p->prio = effective_prio(p);
2552 if (!p->sched_class->task_new || !current->se.on_rq) {
2553 activate_task(rq, p, 0);
2556 * Let the scheduling class do new task startup
2557 * management (if any):
2559 p->sched_class->task_new(rq, p);
2562 trace_sched_wakeup_new(rq, p, 1);
2563 check_preempt_curr(rq, p, 0);
2565 if (p->sched_class->task_wake_up)
2566 p->sched_class->task_wake_up(rq, p);
2568 task_rq_unlock(rq, &flags);
2571 #ifdef CONFIG_PREEMPT_NOTIFIERS
2574 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2575 * @notifier: notifier struct to register
2577 void preempt_notifier_register(struct preempt_notifier *notifier)
2579 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
2581 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2584 * preempt_notifier_unregister - no longer interested in preemption notifications
2585 * @notifier: notifier struct to unregister
2587 * This is safe to call from within a preemption notifier.
2589 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2591 hlist_del(¬ifier->link);
2593 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2595 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2597 struct preempt_notifier *notifier;
2598 struct hlist_node *node;
2600 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2601 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2605 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2606 struct task_struct *next)
2608 struct preempt_notifier *notifier;
2609 struct hlist_node *node;
2611 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2612 notifier->ops->sched_out(notifier, next);
2615 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2617 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2622 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2623 struct task_struct *next)
2627 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2630 * prepare_task_switch - prepare to switch tasks
2631 * @rq: the runqueue preparing to switch
2632 * @prev: the current task that is being switched out
2633 * @next: the task we are going to switch to.
2635 * This is called with the rq lock held and interrupts off. It must
2636 * be paired with a subsequent finish_task_switch after the context
2639 * prepare_task_switch sets up locking and calls architecture specific
2643 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2644 struct task_struct *next)
2646 fire_sched_out_preempt_notifiers(prev, next);
2647 prepare_lock_switch(rq, next);
2648 prepare_arch_switch(next);
2652 * finish_task_switch - clean up after a task-switch
2653 * @rq: runqueue associated with task-switch
2654 * @prev: the thread we just switched away from.
2656 * finish_task_switch must be called after the context switch, paired
2657 * with a prepare_task_switch call before the context switch.
2658 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2659 * and do any other architecture-specific cleanup actions.
2661 * Note that we may have delayed dropping an mm in context_switch(). If
2662 * so, we finish that here outside of the runqueue lock. (Doing it
2663 * with the lock held can cause deadlocks; see schedule() for
2666 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2667 __releases(rq->lock)
2669 struct mm_struct *mm = rq->prev_mm;
2672 int post_schedule = 0;
2674 if (current->sched_class->needs_post_schedule)
2675 post_schedule = current->sched_class->needs_post_schedule(rq);
2681 * A task struct has one reference for the use as "current".
2682 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2683 * schedule one last time. The schedule call will never return, and
2684 * the scheduled task must drop that reference.
2685 * The test for TASK_DEAD must occur while the runqueue locks are
2686 * still held, otherwise prev could be scheduled on another cpu, die
2687 * there before we look at prev->state, and then the reference would
2689 * Manfred Spraul <manfred@colorfullife.com>
2691 prev_state = prev->state;
2692 finish_arch_switch(prev);
2693 finish_lock_switch(rq, prev);
2696 current->sched_class->post_schedule(rq);
2699 fire_sched_in_preempt_notifiers(current);
2702 if (unlikely(prev_state == TASK_DEAD)) {
2704 * Remove function-return probe instances associated with this
2705 * task and put them back on the free list.
2707 kprobe_flush_task(prev);
2708 put_task_struct(prev);
2713 * schedule_tail - first thing a freshly forked thread must call.
2714 * @prev: the thread we just switched away from.
2716 asmlinkage void schedule_tail(struct task_struct *prev)
2717 __releases(rq->lock)
2719 struct rq *rq = this_rq();
2721 finish_task_switch(rq, prev);
2722 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2723 /* In this case, finish_task_switch does not reenable preemption */
2726 if (current->set_child_tid)
2727 put_user(task_pid_vnr(current), current->set_child_tid);
2731 * context_switch - switch to the new MM and the new
2732 * thread's register state.
2735 context_switch(struct rq *rq, struct task_struct *prev,
2736 struct task_struct *next)
2738 struct mm_struct *mm, *oldmm;
2740 prepare_task_switch(rq, prev, next);
2741 trace_sched_switch(rq, prev, next);
2743 oldmm = prev->active_mm;
2745 * For paravirt, this is coupled with an exit in switch_to to
2746 * combine the page table reload and the switch backend into
2749 arch_enter_lazy_cpu_mode();
2751 if (unlikely(!mm)) {
2752 next->active_mm = oldmm;
2753 atomic_inc(&oldmm->mm_count);
2754 enter_lazy_tlb(oldmm, next);
2756 switch_mm(oldmm, mm, next);
2758 if (unlikely(!prev->mm)) {
2759 prev->active_mm = NULL;
2760 rq->prev_mm = oldmm;
2763 * Since the runqueue lock will be released by the next
2764 * task (which is an invalid locking op but in the case
2765 * of the scheduler it's an obvious special-case), so we
2766 * do an early lockdep release here:
2768 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2769 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2772 /* Here we just switch the register state and the stack. */
2773 switch_to(prev, next, prev);
2777 * this_rq must be evaluated again because prev may have moved
2778 * CPUs since it called schedule(), thus the 'rq' on its stack
2779 * frame will be invalid.
2781 finish_task_switch(this_rq(), prev);
2785 * nr_running, nr_uninterruptible and nr_context_switches:
2787 * externally visible scheduler statistics: current number of runnable
2788 * threads, current number of uninterruptible-sleeping threads, total
2789 * number of context switches performed since bootup.
2791 unsigned long nr_running(void)
2793 unsigned long i, sum = 0;
2795 for_each_online_cpu(i)
2796 sum += cpu_rq(i)->nr_running;
2801 unsigned long nr_uninterruptible(void)
2803 unsigned long i, sum = 0;
2805 for_each_possible_cpu(i)
2806 sum += cpu_rq(i)->nr_uninterruptible;
2809 * Since we read the counters lockless, it might be slightly
2810 * inaccurate. Do not allow it to go below zero though:
2812 if (unlikely((long)sum < 0))
2818 unsigned long long nr_context_switches(void)
2821 unsigned long long sum = 0;
2823 for_each_possible_cpu(i)
2824 sum += cpu_rq(i)->nr_switches;
2829 unsigned long nr_iowait(void)
2831 unsigned long i, sum = 0;
2833 for_each_possible_cpu(i)
2834 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2839 unsigned long nr_active(void)
2841 unsigned long i, running = 0, uninterruptible = 0;
2843 for_each_online_cpu(i) {
2844 running += cpu_rq(i)->nr_running;
2845 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2848 if (unlikely((long)uninterruptible < 0))
2849 uninterruptible = 0;
2851 return running + uninterruptible;
2855 * Update rq->cpu_load[] statistics. This function is usually called every
2856 * scheduler tick (TICK_NSEC).
2858 static void update_cpu_load(struct rq *this_rq)
2860 unsigned long this_load = this_rq->load.weight;
2863 this_rq->nr_load_updates++;
2865 /* Update our load: */
2866 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2867 unsigned long old_load, new_load;
2869 /* scale is effectively 1 << i now, and >> i divides by scale */
2871 old_load = this_rq->cpu_load[i];
2872 new_load = this_load;
2874 * Round up the averaging division if load is increasing. This
2875 * prevents us from getting stuck on 9 if the load is 10, for
2878 if (new_load > old_load)
2879 new_load += scale-1;
2880 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2887 * double_rq_lock - safely lock two runqueues
2889 * Note this does not disable interrupts like task_rq_lock,
2890 * you need to do so manually before calling.
2892 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2893 __acquires(rq1->lock)
2894 __acquires(rq2->lock)
2896 BUG_ON(!irqs_disabled());
2898 spin_lock(&rq1->lock);
2899 __acquire(rq2->lock); /* Fake it out ;) */
2902 spin_lock(&rq1->lock);
2903 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2905 spin_lock(&rq2->lock);
2906 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2909 update_rq_clock(rq1);
2910 update_rq_clock(rq2);
2914 * double_rq_unlock - safely unlock two runqueues
2916 * Note this does not restore interrupts like task_rq_unlock,
2917 * you need to do so manually after calling.
2919 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2920 __releases(rq1->lock)
2921 __releases(rq2->lock)
2923 spin_unlock(&rq1->lock);
2925 spin_unlock(&rq2->lock);
2927 __release(rq2->lock);
2931 * If dest_cpu is allowed for this process, migrate the task to it.
2932 * This is accomplished by forcing the cpu_allowed mask to only
2933 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2934 * the cpu_allowed mask is restored.
2936 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2938 struct migration_req req;
2939 unsigned long flags;
2942 rq = task_rq_lock(p, &flags);
2943 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
2944 || unlikely(!cpu_active(dest_cpu)))
2947 /* force the process onto the specified CPU */
2948 if (migrate_task(p, dest_cpu, &req)) {
2949 /* Need to wait for migration thread (might exit: take ref). */
2950 struct task_struct *mt = rq->migration_thread;
2952 get_task_struct(mt);
2953 task_rq_unlock(rq, &flags);
2954 wake_up_process(mt);
2955 put_task_struct(mt);
2956 wait_for_completion(&req.done);
2961 task_rq_unlock(rq, &flags);
2965 * sched_exec - execve() is a valuable balancing opportunity, because at
2966 * this point the task has the smallest effective memory and cache footprint.
2968 void sched_exec(void)
2970 int new_cpu, this_cpu = get_cpu();
2971 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2973 if (new_cpu != this_cpu)
2974 sched_migrate_task(current, new_cpu);
2978 * pull_task - move a task from a remote runqueue to the local runqueue.
2979 * Both runqueues must be locked.
2981 static void pull_task(struct rq *src_rq, struct task_struct *p,
2982 struct rq *this_rq, int this_cpu)
2984 deactivate_task(src_rq, p, 0);
2985 set_task_cpu(p, this_cpu);
2986 activate_task(this_rq, p, 0);
2988 * Note that idle threads have a prio of MAX_PRIO, for this test
2989 * to be always true for them.
2991 check_preempt_curr(this_rq, p, 0);
2995 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2998 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2999 struct sched_domain *sd, enum cpu_idle_type idle,
3002 int tsk_cache_hot = 0;
3004 * We do not migrate tasks that are:
3005 * 1) running (obviously), or
3006 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3007 * 3) are cache-hot on their current CPU.
3009 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3010 schedstat_inc(p, se.nr_failed_migrations_affine);
3015 if (task_running(rq, p)) {
3016 schedstat_inc(p, se.nr_failed_migrations_running);
3021 * Aggressive migration if:
3022 * 1) task is cache cold, or
3023 * 2) too many balance attempts have failed.
3026 tsk_cache_hot = task_hot(p, rq->clock, sd);
3027 if (!tsk_cache_hot ||
3028 sd->nr_balance_failed > sd->cache_nice_tries) {
3029 #ifdef CONFIG_SCHEDSTATS
3030 if (tsk_cache_hot) {
3031 schedstat_inc(sd, lb_hot_gained[idle]);
3032 schedstat_inc(p, se.nr_forced_migrations);
3038 if (tsk_cache_hot) {
3039 schedstat_inc(p, se.nr_failed_migrations_hot);
3045 static unsigned long
3046 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3047 unsigned long max_load_move, struct sched_domain *sd,
3048 enum cpu_idle_type idle, int *all_pinned,
3049 int *this_best_prio, struct rq_iterator *iterator)
3051 int loops = 0, pulled = 0, pinned = 0;
3052 struct task_struct *p;
3053 long rem_load_move = max_load_move;
3055 if (max_load_move == 0)
3061 * Start the load-balancing iterator:
3063 p = iterator->start(iterator->arg);
3065 if (!p || loops++ > sysctl_sched_nr_migrate)
3068 if ((p->se.load.weight >> 1) > rem_load_move ||
3069 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3070 p = iterator->next(iterator->arg);
3074 pull_task(busiest, p, this_rq, this_cpu);
3076 rem_load_move -= p->se.load.weight;
3078 #ifdef CONFIG_PREEMPT
3080 * NEWIDLE balancing is a source of latency, so preemptible kernels
3081 * will stop after the first task is pulled to minimize the critical
3084 if (idle == CPU_NEWLY_IDLE)
3089 * We only want to steal up to the prescribed amount of weighted load.
3091 if (rem_load_move > 0) {
3092 if (p->prio < *this_best_prio)
3093 *this_best_prio = p->prio;
3094 p = iterator->next(iterator->arg);
3099 * Right now, this is one of only two places pull_task() is called,
3100 * so we can safely collect pull_task() stats here rather than
3101 * inside pull_task().
3103 schedstat_add(sd, lb_gained[idle], pulled);
3106 *all_pinned = pinned;
3108 return max_load_move - rem_load_move;
3112 * move_tasks tries to move up to max_load_move weighted load from busiest to
3113 * this_rq, as part of a balancing operation within domain "sd".
3114 * Returns 1 if successful and 0 otherwise.
3116 * Called with both runqueues locked.
3118 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3119 unsigned long max_load_move,
3120 struct sched_domain *sd, enum cpu_idle_type idle,
3123 const struct sched_class *class = sched_class_highest;
3124 unsigned long total_load_moved = 0;
3125 int this_best_prio = this_rq->curr->prio;
3129 class->load_balance(this_rq, this_cpu, busiest,
3130 max_load_move - total_load_moved,
3131 sd, idle, all_pinned, &this_best_prio);
3132 class = class->next;
3134 #ifdef CONFIG_PREEMPT
3136 * NEWIDLE balancing is a source of latency, so preemptible
3137 * kernels will stop after the first task is pulled to minimize
3138 * the critical section.
3140 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3143 } while (class && max_load_move > total_load_moved);
3145 return total_load_moved > 0;
3149 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3150 struct sched_domain *sd, enum cpu_idle_type idle,
3151 struct rq_iterator *iterator)
3153 struct task_struct *p = iterator->start(iterator->arg);
3157 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3158 pull_task(busiest, p, this_rq, this_cpu);
3160 * Right now, this is only the second place pull_task()
3161 * is called, so we can safely collect pull_task()
3162 * stats here rather than inside pull_task().
3164 schedstat_inc(sd, lb_gained[idle]);
3168 p = iterator->next(iterator->arg);
3175 * move_one_task tries to move exactly one task from busiest to this_rq, as
3176 * part of active balancing operations within "domain".
3177 * Returns 1 if successful and 0 otherwise.
3179 * Called with both runqueues locked.
3181 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3182 struct sched_domain *sd, enum cpu_idle_type idle)
3184 const struct sched_class *class;
3186 for (class = sched_class_highest; class; class = class->next)
3187 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3192 /********** Helpers for find_busiest_group ************************/
3194 * sd_lb_stats - Structure to store the statistics of a sched_domain
3195 * during load balancing.
3197 struct sd_lb_stats {
3198 struct sched_group *busiest; /* Busiest group in this sd */
3199 struct sched_group *this; /* Local group in this sd */
3200 unsigned long total_load; /* Total load of all groups in sd */
3201 unsigned long total_pwr; /* Total power of all groups in sd */
3202 unsigned long avg_load; /* Average load across all groups in sd */
3204 /** Statistics of this group */
3205 unsigned long this_load;
3206 unsigned long this_load_per_task;
3207 unsigned long this_nr_running;
3209 /* Statistics of the busiest group */
3210 unsigned long max_load;
3211 unsigned long busiest_load_per_task;
3212 unsigned long busiest_nr_running;
3214 int group_imb; /* Is there imbalance in this sd */
3215 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3216 int power_savings_balance; /* Is powersave balance needed for this sd */
3217 struct sched_group *group_min; /* Least loaded group in sd */
3218 struct sched_group *group_leader; /* Group which relieves group_min */
3219 unsigned long min_load_per_task; /* load_per_task in group_min */
3220 unsigned long leader_nr_running; /* Nr running of group_leader */
3221 unsigned long min_nr_running; /* Nr running of group_min */
3226 * sg_lb_stats - stats of a sched_group required for load_balancing
3228 struct sg_lb_stats {
3229 unsigned long avg_load; /*Avg load across the CPUs of the group */
3230 unsigned long group_load; /* Total load over the CPUs of the group */
3231 unsigned long sum_nr_running; /* Nr tasks running in the group */
3232 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3233 unsigned long group_capacity;
3234 int group_imb; /* Is there an imbalance in the group ? */
3238 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3239 * @group: The group whose first cpu is to be returned.
3241 static inline unsigned int group_first_cpu(struct sched_group *group)
3243 return cpumask_first(sched_group_cpus(group));
3247 * get_sd_load_idx - Obtain the load index for a given sched domain.
3248 * @sd: The sched_domain whose load_idx is to be obtained.
3249 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3251 static inline int get_sd_load_idx(struct sched_domain *sd,
3252 enum cpu_idle_type idle)
3258 load_idx = sd->busy_idx;
3261 case CPU_NEWLY_IDLE:
3262 load_idx = sd->newidle_idx;
3265 load_idx = sd->idle_idx;
3273 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3275 * init_sd_power_savings_stats - Initialize power savings statistics for
3276 * the given sched_domain, during load balancing.
3278 * @sd: Sched domain whose power-savings statistics are to be initialized.
3279 * @sds: Variable containing the statistics for sd.
3280 * @idle: Idle status of the CPU at which we're performing load-balancing.
3282 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3283 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3286 * Busy processors will not participate in power savings
3289 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3290 sds->power_savings_balance = 0;
3292 sds->power_savings_balance = 1;
3293 sds->min_nr_running = ULONG_MAX;
3294 sds->leader_nr_running = 0;
3299 * update_sd_power_savings_stats - Update the power saving stats for a
3300 * sched_domain while performing load balancing.
3302 * @group: sched_group belonging to the sched_domain under consideration.
3303 * @sds: Variable containing the statistics of the sched_domain
3304 * @local_group: Does group contain the CPU for which we're performing
3306 * @sgs: Variable containing the statistics of the group.
3308 static inline void update_sd_power_savings_stats(struct sched_group *group,
3309 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3312 if (!sds->power_savings_balance)
3316 * If the local group is idle or completely loaded
3317 * no need to do power savings balance at this domain
3319 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3320 !sds->this_nr_running))
3321 sds->power_savings_balance = 0;
3324 * If a group is already running at full capacity or idle,
3325 * don't include that group in power savings calculations
3327 if (!sds->power_savings_balance ||
3328 sgs->sum_nr_running >= sgs->group_capacity ||
3329 !sgs->sum_nr_running)
3333 * Calculate the group which has the least non-idle load.
3334 * This is the group from where we need to pick up the load
3337 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3338 (sgs->sum_nr_running == sds->min_nr_running &&
3339 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3340 sds->group_min = group;
3341 sds->min_nr_running = sgs->sum_nr_running;
3342 sds->min_load_per_task = sgs->sum_weighted_load /
3343 sgs->sum_nr_running;
3347 * Calculate the group which is almost near its
3348 * capacity but still has some space to pick up some load
3349 * from other group and save more power
3351 if (sgs->sum_nr_running > sgs->group_capacity - 1)
3354 if (sgs->sum_nr_running > sds->leader_nr_running ||
3355 (sgs->sum_nr_running == sds->leader_nr_running &&
3356 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3357 sds->group_leader = group;
3358 sds->leader_nr_running = sgs->sum_nr_running;
3363 * check_power_save_busiest_group - Check if we have potential to perform
3364 * some power-savings balance. If yes, set the busiest group to be
3365 * the least loaded group in the sched_domain, so that it's CPUs can
3368 * @sds: Variable containing the statistics of the sched_domain
3369 * under consideration.
3370 * @this_cpu: Cpu at which we're currently performing load-balancing.
3371 * @imbalance: Variable to store the imbalance.
3373 * Returns 1 if there is potential to perform power-savings balance.
3376 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3377 int this_cpu, unsigned long *imbalance)
3379 if (!sds->power_savings_balance)
3382 if (sds->this != sds->group_leader ||
3383 sds->group_leader == sds->group_min)
3386 *imbalance = sds->min_load_per_task;
3387 sds->busiest = sds->group_min;
3389 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3390 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3391 group_first_cpu(sds->group_leader);
3397 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3398 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3399 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3404 static inline void update_sd_power_savings_stats(struct sched_group *group,
3405 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3410 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3411 int this_cpu, unsigned long *imbalance)
3415 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3419 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3420 * @group: sched_group whose statistics are to be updated.
3421 * @this_cpu: Cpu for which load balance is currently performed.
3422 * @idle: Idle status of this_cpu
3423 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3424 * @sd_idle: Idle status of the sched_domain containing group.
3425 * @local_group: Does group contain this_cpu.
3426 * @cpus: Set of cpus considered for load balancing.
3427 * @balance: Should we balance.
3428 * @sgs: variable to hold the statistics for this group.
3430 static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
3431 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3432 int local_group, const struct cpumask *cpus,
3433 int *balance, struct sg_lb_stats *sgs)
3435 unsigned long load, max_cpu_load, min_cpu_load;
3437 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3438 unsigned long sum_avg_load_per_task;
3439 unsigned long avg_load_per_task;
3442 balance_cpu = group_first_cpu(group);
3444 /* Tally up the load of all CPUs in the group */
3445 sum_avg_load_per_task = avg_load_per_task = 0;
3447 min_cpu_load = ~0UL;
3449 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3450 struct rq *rq = cpu_rq(i);
3452 if (*sd_idle && rq->nr_running)
3455 /* Bias balancing toward cpus of our domain */
3457 if (idle_cpu(i) && !first_idle_cpu) {
3462 load = target_load(i, load_idx);
3464 load = source_load(i, load_idx);
3465 if (load > max_cpu_load)
3466 max_cpu_load = load;
3467 if (min_cpu_load > load)
3468 min_cpu_load = load;
3471 sgs->group_load += load;
3472 sgs->sum_nr_running += rq->nr_running;
3473 sgs->sum_weighted_load += weighted_cpuload(i);
3475 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3479 * First idle cpu or the first cpu(busiest) in this sched group
3480 * is eligible for doing load balancing at this and above
3481 * domains. In the newly idle case, we will allow all the cpu's
3482 * to do the newly idle load balance.
3484 if (idle != CPU_NEWLY_IDLE && local_group &&
3485 balance_cpu != this_cpu && balance) {
3490 /* Adjust by relative CPU power of the group */
3491 sgs->avg_load = sg_div_cpu_power(group,
3492 sgs->group_load * SCHED_LOAD_SCALE);
3496 * Consider the group unbalanced when the imbalance is larger
3497 * than the average weight of two tasks.
3499 * APZ: with cgroup the avg task weight can vary wildly and
3500 * might not be a suitable number - should we keep a
3501 * normalized nr_running number somewhere that negates
3504 avg_load_per_task = sg_div_cpu_power(group,
3505 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3507 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3510 sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3515 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3516 * @sd: sched_domain whose statistics are to be updated.
3517 * @this_cpu: Cpu for which load balance is currently performed.
3518 * @idle: Idle status of this_cpu
3519 * @sd_idle: Idle status of the sched_domain containing group.
3520 * @cpus: Set of cpus considered for load balancing.
3521 * @balance: Should we balance.
3522 * @sds: variable to hold the statistics for this sched_domain.
3524 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3525 enum cpu_idle_type idle, int *sd_idle,
3526 const struct cpumask *cpus, int *balance,
3527 struct sd_lb_stats *sds)
3529 struct sched_group *group = sd->groups;
3530 struct sg_lb_stats sgs;
3533 init_sd_power_savings_stats(sd, sds, idle);
3534 load_idx = get_sd_load_idx(sd, idle);
3539 local_group = cpumask_test_cpu(this_cpu,
3540 sched_group_cpus(group));
3541 memset(&sgs, 0, sizeof(sgs));
3542 update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
3543 local_group, cpus, balance, &sgs);
3545 if (local_group && balance && !(*balance))
3548 sds->total_load += sgs.group_load;
3549 sds->total_pwr += group->__cpu_power;
3552 sds->this_load = sgs.avg_load;
3554 sds->this_nr_running = sgs.sum_nr_running;
3555 sds->this_load_per_task = sgs.sum_weighted_load;
3556 } else if (sgs.avg_load > sds->max_load &&
3557 (sgs.sum_nr_running > sgs.group_capacity ||
3559 sds->max_load = sgs.avg_load;
3560 sds->busiest = group;
3561 sds->busiest_nr_running = sgs.sum_nr_running;
3562 sds->busiest_load_per_task = sgs.sum_weighted_load;
3563 sds->group_imb = sgs.group_imb;
3566 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3567 group = group->next;
3568 } while (group != sd->groups);
3573 * fix_small_imbalance - Calculate the minor imbalance that exists
3574 * amongst the groups of a sched_domain, during
3576 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3577 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3578 * @imbalance: Variable to store the imbalance.
3580 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3581 int this_cpu, unsigned long *imbalance)
3583 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3584 unsigned int imbn = 2;
3586 if (sds->this_nr_running) {
3587 sds->this_load_per_task /= sds->this_nr_running;
3588 if (sds->busiest_load_per_task >
3589 sds->this_load_per_task)
3592 sds->this_load_per_task =
3593 cpu_avg_load_per_task(this_cpu);
3595 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3596 sds->busiest_load_per_task * imbn) {
3597 *imbalance = sds->busiest_load_per_task;
3602 * OK, we don't have enough imbalance to justify moving tasks,
3603 * however we may be able to increase total CPU power used by
3607 pwr_now += sds->busiest->__cpu_power *
3608 min(sds->busiest_load_per_task, sds->max_load);
3609 pwr_now += sds->this->__cpu_power *
3610 min(sds->this_load_per_task, sds->this_load);
3611 pwr_now /= SCHED_LOAD_SCALE;
3613 /* Amount of load we'd subtract */
3614 tmp = sg_div_cpu_power(sds->busiest,
3615 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3616 if (sds->max_load > tmp)
3617 pwr_move += sds->busiest->__cpu_power *
3618 min(sds->busiest_load_per_task, sds->max_load - tmp);
3620 /* Amount of load we'd add */
3621 if (sds->max_load * sds->busiest->__cpu_power <
3622 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3623 tmp = sg_div_cpu_power(sds->this,
3624 sds->max_load * sds->busiest->__cpu_power);
3626 tmp = sg_div_cpu_power(sds->this,
3627 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3628 pwr_move += sds->this->__cpu_power *
3629 min(sds->this_load_per_task, sds->this_load + tmp);
3630 pwr_move /= SCHED_LOAD_SCALE;
3632 /* Move if we gain throughput */
3633 if (pwr_move > pwr_now)
3634 *imbalance = sds->busiest_load_per_task;
3638 * calculate_imbalance - Calculate the amount of imbalance present within the
3639 * groups of a given sched_domain during load balance.
3640 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3641 * @this_cpu: Cpu for which currently load balance is being performed.
3642 * @imbalance: The variable to store the imbalance.
3644 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3645 unsigned long *imbalance)
3647 unsigned long max_pull;
3649 * In the presence of smp nice balancing, certain scenarios can have
3650 * max load less than avg load(as we skip the groups at or below
3651 * its cpu_power, while calculating max_load..)
3653 if (sds->max_load < sds->avg_load) {
3655 return fix_small_imbalance(sds, this_cpu, imbalance);
3658 /* Don't want to pull so many tasks that a group would go idle */
3659 max_pull = min(sds->max_load - sds->avg_load,
3660 sds->max_load - sds->busiest_load_per_task);
3662 /* How much load to actually move to equalise the imbalance */
3663 *imbalance = min(max_pull * sds->busiest->__cpu_power,
3664 (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
3668 * if *imbalance is less than the average load per runnable task
3669 * there is no gaurantee that any tasks will be moved so we'll have
3670 * a think about bumping its value to force at least one task to be
3673 if (*imbalance < sds->busiest_load_per_task)
3674 return fix_small_imbalance(sds, this_cpu, imbalance);