4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/stop_machine.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/debugfs.h>
71 #include <linux/ctype.h>
72 #include <linux/ftrace.h>
73 #include <linux/slab.h>
76 #include <asm/irq_regs.h>
77 #include <asm/mutex.h>
79 #include "sched_cpupri.h"
80 #include "workqueue_sched.h"
81 #include "sched_autogroup.h"
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/sched.h>
87 * Convert user-nice values [ -20 ... 0 ... 19 ]
88 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
91 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
92 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
93 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
96 * 'User priority' is the nice value converted to something we
97 * can work with better when scaling various scheduler parameters,
98 * it's a [ 0 ... 39 ] range.
100 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
101 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
102 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
105 * Helpers for converting nanosecond timing to jiffy resolution
107 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
109 #define NICE_0_LOAD SCHED_LOAD_SCALE
110 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
113 * These are the 'tuning knobs' of the scheduler:
115 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
116 * Timeslices get refilled after they expire.
118 #define DEF_TIMESLICE (100 * HZ / 1000)
121 * single value that denotes runtime == period, ie unlimited time.
123 #define RUNTIME_INF ((u64)~0ULL)
125 static inline int rt_policy(int policy)
127 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
132 static inline int task_has_rt_policy(struct task_struct *p)
134 return rt_policy(p->policy);
138 * This is the priority-queue data structure of the RT scheduling class:
140 struct rt_prio_array {
141 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
142 struct list_head queue[MAX_RT_PRIO];
145 struct rt_bandwidth {
146 /* nests inside the rq lock: */
147 raw_spinlock_t rt_runtime_lock;
150 struct hrtimer rt_period_timer;
153 static struct rt_bandwidth def_rt_bandwidth;
155 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
157 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
159 struct rt_bandwidth *rt_b =
160 container_of(timer, struct rt_bandwidth, rt_period_timer);
166 now = hrtimer_cb_get_time(timer);
167 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
172 idle = do_sched_rt_period_timer(rt_b, overrun);
175 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
179 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
181 rt_b->rt_period = ns_to_ktime(period);
182 rt_b->rt_runtime = runtime;
184 raw_spin_lock_init(&rt_b->rt_runtime_lock);
186 hrtimer_init(&rt_b->rt_period_timer,
187 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
188 rt_b->rt_period_timer.function = sched_rt_period_timer;
191 static inline int rt_bandwidth_enabled(void)
193 return sysctl_sched_rt_runtime >= 0;
196 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
200 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
203 if (hrtimer_active(&rt_b->rt_period_timer))
206 raw_spin_lock(&rt_b->rt_runtime_lock);
211 if (hrtimer_active(&rt_b->rt_period_timer))
214 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
215 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
217 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
218 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
219 delta = ktime_to_ns(ktime_sub(hard, soft));
220 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
221 HRTIMER_MODE_ABS_PINNED, 0);
223 raw_spin_unlock(&rt_b->rt_runtime_lock);
226 #ifdef CONFIG_RT_GROUP_SCHED
227 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
229 hrtimer_cancel(&rt_b->rt_period_timer);
234 * sched_domains_mutex serializes calls to init_sched_domains,
235 * detach_destroy_domains and partition_sched_domains.
237 static DEFINE_MUTEX(sched_domains_mutex);
239 #ifdef CONFIG_CGROUP_SCHED
241 #include <linux/cgroup.h>
245 static LIST_HEAD(task_groups);
247 /* task group related information */
249 struct cgroup_subsys_state css;
251 #ifdef CONFIG_FAIR_GROUP_SCHED
252 /* schedulable entities of this group on each cpu */
253 struct sched_entity **se;
254 /* runqueue "owned" by this group on each cpu */
255 struct cfs_rq **cfs_rq;
256 unsigned long shares;
258 atomic_t load_weight;
261 #ifdef CONFIG_RT_GROUP_SCHED
262 struct sched_rt_entity **rt_se;
263 struct rt_rq **rt_rq;
265 struct rt_bandwidth rt_bandwidth;
269 struct list_head list;
271 struct task_group *parent;
272 struct list_head siblings;
273 struct list_head children;
275 #ifdef CONFIG_SCHED_AUTOGROUP
276 struct autogroup *autogroup;
280 /* task_group_lock serializes the addition/removal of task groups */
281 static DEFINE_SPINLOCK(task_group_lock);
283 #ifdef CONFIG_FAIR_GROUP_SCHED
285 # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
288 * A weight of 0 or 1 can cause arithmetics problems.
289 * A weight of a cfs_rq is the sum of weights of which entities
290 * are queued on this cfs_rq, so a weight of a entity should not be
291 * too large, so as the shares value of a task group.
292 * (The default weight is 1024 - so there's no practical
293 * limitation from this.)
296 #define MAX_SHARES (1UL << (18 + SCHED_LOAD_RESOLUTION))
298 static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
301 /* Default task group.
302 * Every task in system belong to this group at bootup.
304 struct task_group root_task_group;
306 #endif /* CONFIG_CGROUP_SCHED */
308 /* CFS-related fields in a runqueue */
310 struct load_weight load;
311 unsigned long nr_running;
316 u64 min_vruntime_copy;
319 struct rb_root tasks_timeline;
320 struct rb_node *rb_leftmost;
322 struct list_head tasks;
323 struct list_head *balance_iterator;
326 * 'curr' points to currently running entity on this cfs_rq.
327 * It is set to NULL otherwise (i.e when none are currently running).
329 struct sched_entity *curr, *next, *last, *skip;
331 #ifdef CONFIG_SCHED_DEBUG
332 unsigned int nr_spread_over;
335 #ifdef CONFIG_FAIR_GROUP_SCHED
336 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
339 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
340 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
341 * (like users, containers etc.)
343 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
344 * list is used during load balance.
347 struct list_head leaf_cfs_rq_list;
348 struct task_group *tg; /* group that "owns" this runqueue */
352 * the part of load.weight contributed by tasks
354 unsigned long task_weight;
357 * h_load = weight * f(tg)
359 * Where f(tg) is the recursive weight fraction assigned to
362 unsigned long h_load;
365 * Maintaining per-cpu shares distribution for group scheduling
367 * load_stamp is the last time we updated the load average
368 * load_last is the last time we updated the load average and saw load
369 * load_unacc_exec_time is currently unaccounted execution time
373 u64 load_stamp, load_last, load_unacc_exec_time;
375 unsigned long load_contribution;
380 /* Real-Time classes' related field in a runqueue: */
382 struct rt_prio_array active;
383 unsigned long rt_nr_running;
384 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
386 int curr; /* highest queued rt task prio */
388 int next; /* next highest */
393 unsigned long rt_nr_migratory;
394 unsigned long rt_nr_total;
396 struct plist_head pushable_tasks;
401 /* Nests inside the rq lock: */
402 raw_spinlock_t rt_runtime_lock;
404 #ifdef CONFIG_RT_GROUP_SCHED
405 unsigned long rt_nr_boosted;
408 struct list_head leaf_rt_rq_list;
409 struct task_group *tg;
416 * We add the notion of a root-domain which will be used to define per-domain
417 * variables. Each exclusive cpuset essentially defines an island domain by
418 * fully partitioning the member cpus from any other cpuset. Whenever a new
419 * exclusive cpuset is created, we also create and attach a new root-domain
427 cpumask_var_t online;
430 * The "RT overload" flag: it gets set if a CPU has more than
431 * one runnable RT task.
433 cpumask_var_t rto_mask;
435 struct cpupri cpupri;
439 * By default the system creates a single root-domain with all cpus as
440 * members (mimicking the global state we have today).
442 static struct root_domain def_root_domain;
444 #endif /* CONFIG_SMP */
447 * This is the main, per-CPU runqueue data structure.
449 * Locking rule: those places that want to lock multiple runqueues
450 * (such as the load balancing or the thread migration code), lock
451 * acquire operations must be ordered by ascending &runqueue.
458 * nr_running and cpu_load should be in the same cacheline because
459 * remote CPUs use both these fields when doing load calculation.
461 unsigned long nr_running;
462 #define CPU_LOAD_IDX_MAX 5
463 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
464 unsigned long last_load_update_tick;
467 unsigned char nohz_balance_kick;
469 int skip_clock_update;
471 /* capture load from *all* tasks on this cpu: */
472 struct load_weight load;
473 unsigned long nr_load_updates;
479 #ifdef CONFIG_FAIR_GROUP_SCHED
480 /* list of leaf cfs_rq on this cpu: */
481 struct list_head leaf_cfs_rq_list;
483 #ifdef CONFIG_RT_GROUP_SCHED
484 struct list_head leaf_rt_rq_list;
488 * This is part of a global counter where only the total sum
489 * over all CPUs matters. A task can increase this counter on
490 * one CPU and if it got migrated afterwards it may decrease
491 * it on another CPU. Always updated under the runqueue lock:
493 unsigned long nr_uninterruptible;
495 struct task_struct *curr, *idle, *stop;
496 unsigned long next_balance;
497 struct mm_struct *prev_mm;
505 struct root_domain *rd;
506 struct sched_domain *sd;
508 unsigned long cpu_power;
510 unsigned char idle_at_tick;
511 /* For active balancing */
515 struct cpu_stop_work active_balance_work;
516 /* cpu of this runqueue: */
520 unsigned long avg_load_per_task;
528 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
532 /* calc_load related fields */
533 unsigned long calc_load_update;
534 long calc_load_active;
536 #ifdef CONFIG_SCHED_HRTICK
538 int hrtick_csd_pending;
539 struct call_single_data hrtick_csd;
541 struct hrtimer hrtick_timer;
544 #ifdef CONFIG_SCHEDSTATS
546 struct sched_info rq_sched_info;
547 unsigned long long rq_cpu_time;
548 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
550 /* sys_sched_yield() stats */
551 unsigned int yld_count;
553 /* schedule() stats */
554 unsigned int sched_switch;
555 unsigned int sched_count;
556 unsigned int sched_goidle;
558 /* try_to_wake_up() stats */
559 unsigned int ttwu_count;
560 unsigned int ttwu_local;
564 struct task_struct *wake_list;
568 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
571 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
573 static inline int cpu_of(struct rq *rq)
582 #define rcu_dereference_check_sched_domain(p) \
583 rcu_dereference_check((p), \
584 rcu_read_lock_held() || \
585 lockdep_is_held(&sched_domains_mutex))
588 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
589 * See detach_destroy_domains: synchronize_sched for details.
591 * The domain tree of any CPU may only be accessed from within
592 * preempt-disabled sections.
594 #define for_each_domain(cpu, __sd) \
595 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
597 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
598 #define this_rq() (&__get_cpu_var(runqueues))
599 #define task_rq(p) cpu_rq(task_cpu(p))
600 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
601 #define raw_rq() (&__raw_get_cpu_var(runqueues))
603 #ifdef CONFIG_CGROUP_SCHED
606 * Return the group to which this tasks belongs.
608 * We use task_subsys_state_check() and extend the RCU verification
609 * with lockdep_is_held(&p->pi_lock) because cpu_cgroup_attach()
610 * holds that lock for each task it moves into the cgroup. Therefore
611 * by holding that lock, we pin the task to the current cgroup.
613 static inline struct task_group *task_group(struct task_struct *p)
615 struct task_group *tg;
616 struct cgroup_subsys_state *css;
618 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
619 lockdep_is_held(&p->pi_lock));
620 tg = container_of(css, struct task_group, css);
622 return autogroup_task_group(p, tg);
625 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
626 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
628 #ifdef CONFIG_FAIR_GROUP_SCHED
629 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
630 p->se.parent = task_group(p)->se[cpu];
633 #ifdef CONFIG_RT_GROUP_SCHED
634 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
635 p->rt.parent = task_group(p)->rt_se[cpu];
639 #else /* CONFIG_CGROUP_SCHED */
641 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
642 static inline struct task_group *task_group(struct task_struct *p)
647 #endif /* CONFIG_CGROUP_SCHED */
649 static void update_rq_clock_task(struct rq *rq, s64 delta);
651 static void update_rq_clock(struct rq *rq)
655 if (rq->skip_clock_update > 0)
658 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
660 update_rq_clock_task(rq, delta);
664 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
666 #ifdef CONFIG_SCHED_DEBUG
667 # define const_debug __read_mostly
669 # define const_debug static const
673 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
674 * @cpu: the processor in question.
676 * This interface allows printk to be called with the runqueue lock
677 * held and know whether or not it is OK to wake up the klogd.
679 int runqueue_is_locked(int cpu)
681 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
685 * Debugging: various feature bits
688 #define SCHED_FEAT(name, enabled) \
689 __SCHED_FEAT_##name ,
692 #include "sched_features.h"
697 #define SCHED_FEAT(name, enabled) \
698 (1UL << __SCHED_FEAT_##name) * enabled |
700 const_debug unsigned int sysctl_sched_features =
701 #include "sched_features.h"
706 #ifdef CONFIG_SCHED_DEBUG
707 #define SCHED_FEAT(name, enabled) \
710 static __read_mostly char *sched_feat_names[] = {
711 #include "sched_features.h"
717 static int sched_feat_show(struct seq_file *m, void *v)
721 for (i = 0; sched_feat_names[i]; i++) {
722 if (!(sysctl_sched_features & (1UL << i)))
724 seq_printf(m, "%s ", sched_feat_names[i]);
732 sched_feat_write(struct file *filp, const char __user *ubuf,
733 size_t cnt, loff_t *ppos)
743 if (copy_from_user(&buf, ubuf, cnt))
749 if (strncmp(cmp, "NO_", 3) == 0) {
754 for (i = 0; sched_feat_names[i]; i++) {
755 if (strcmp(cmp, sched_feat_names[i]) == 0) {
757 sysctl_sched_features &= ~(1UL << i);
759 sysctl_sched_features |= (1UL << i);
764 if (!sched_feat_names[i])
772 static int sched_feat_open(struct inode *inode, struct file *filp)
774 return single_open(filp, sched_feat_show, NULL);
777 static const struct file_operations sched_feat_fops = {
778 .open = sched_feat_open,
779 .write = sched_feat_write,
782 .release = single_release,
785 static __init int sched_init_debug(void)
787 debugfs_create_file("sched_features", 0644, NULL, NULL,
792 late_initcall(sched_init_debug);
796 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
799 * Number of tasks to iterate in a single balance run.
800 * Limited because this is done with IRQs disabled.
802 const_debug unsigned int sysctl_sched_nr_migrate = 32;
805 * period over which we average the RT time consumption, measured
810 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
813 * period over which we measure -rt task cpu usage in us.
816 unsigned int sysctl_sched_rt_period = 1000000;
818 static __read_mostly int scheduler_running;
821 * part of the period that we allow rt tasks to run in us.
824 int sysctl_sched_rt_runtime = 950000;
826 static inline u64 global_rt_period(void)
828 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
831 static inline u64 global_rt_runtime(void)
833 if (sysctl_sched_rt_runtime < 0)
836 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
839 #ifndef prepare_arch_switch
840 # define prepare_arch_switch(next) do { } while (0)
842 #ifndef finish_arch_switch
843 # define finish_arch_switch(prev) do { } while (0)
846 static inline int task_current(struct rq *rq, struct task_struct *p)
848 return rq->curr == p;
851 static inline int task_running(struct rq *rq, struct task_struct *p)
856 return task_current(rq, p);
860 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
861 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
865 * We can optimise this out completely for !SMP, because the
866 * SMP rebalancing from interrupt is the only thing that cares
873 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
877 * After ->on_cpu is cleared, the task can be moved to a different CPU.
878 * We must ensure this doesn't happen until the switch is completely
884 #ifdef CONFIG_DEBUG_SPINLOCK
885 /* this is a valid case when another task releases the spinlock */
886 rq->lock.owner = current;
889 * If we are tracking spinlock dependencies then we have to
890 * fix up the runqueue lock - which gets 'carried over' from
893 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
895 raw_spin_unlock_irq(&rq->lock);
898 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
899 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
903 * We can optimise this out completely for !SMP, because the
904 * SMP rebalancing from interrupt is the only thing that cares
909 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
910 raw_spin_unlock_irq(&rq->lock);
912 raw_spin_unlock(&rq->lock);
916 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
920 * After ->on_cpu is cleared, the task can be moved to a different CPU.
921 * We must ensure this doesn't happen until the switch is completely
927 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
931 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
934 * __task_rq_lock - lock the rq @p resides on.
936 static inline struct rq *__task_rq_lock(struct task_struct *p)
941 lockdep_assert_held(&p->pi_lock);
945 raw_spin_lock(&rq->lock);
946 if (likely(rq == task_rq(p)))
948 raw_spin_unlock(&rq->lock);
953 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
955 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
956 __acquires(p->pi_lock)
962 raw_spin_lock_irqsave(&p->pi_lock, *flags);
964 raw_spin_lock(&rq->lock);
965 if (likely(rq == task_rq(p)))
967 raw_spin_unlock(&rq->lock);
968 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
972 static void __task_rq_unlock(struct rq *rq)
975 raw_spin_unlock(&rq->lock);
979 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
981 __releases(p->pi_lock)
983 raw_spin_unlock(&rq->lock);
984 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
988 * this_rq_lock - lock this runqueue and disable interrupts.
990 static struct rq *this_rq_lock(void)
997 raw_spin_lock(&rq->lock);
1002 #ifdef CONFIG_SCHED_HRTICK
1004 * Use HR-timers to deliver accurate preemption points.
1006 * Its all a bit involved since we cannot program an hrt while holding the
1007 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1010 * When we get rescheduled we reprogram the hrtick_timer outside of the
1016 * - enabled by features
1017 * - hrtimer is actually high res
1019 static inline int hrtick_enabled(struct rq *rq)
1021 if (!sched_feat(HRTICK))
1023 if (!cpu_active(cpu_of(rq)))
1025 return hrtimer_is_hres_active(&rq->hrtick_timer);
1028 static void hrtick_clear(struct rq *rq)
1030 if (hrtimer_active(&rq->hrtick_timer))
1031 hrtimer_cancel(&rq->hrtick_timer);
1035 * High-resolution timer tick.
1036 * Runs from hardirq context with interrupts disabled.
1038 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1040 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1042 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1044 raw_spin_lock(&rq->lock);
1045 update_rq_clock(rq);
1046 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1047 raw_spin_unlock(&rq->lock);
1049 return HRTIMER_NORESTART;
1054 * called from hardirq (IPI) context
1056 static void __hrtick_start(void *arg)
1058 struct rq *rq = arg;
1060 raw_spin_lock(&rq->lock);
1061 hrtimer_restart(&rq->hrtick_timer);
1062 rq->hrtick_csd_pending = 0;
1063 raw_spin_unlock(&rq->lock);
1067 * Called to set the hrtick timer state.
1069 * called with rq->lock held and irqs disabled
1071 static void hrtick_start(struct rq *rq, u64 delay)
1073 struct hrtimer *timer = &rq->hrtick_timer;
1074 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1076 hrtimer_set_expires(timer, time);
1078 if (rq == this_rq()) {
1079 hrtimer_restart(timer);
1080 } else if (!rq->hrtick_csd_pending) {
1081 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1082 rq->hrtick_csd_pending = 1;
1087 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1089 int cpu = (int)(long)hcpu;
1092 case CPU_UP_CANCELED:
1093 case CPU_UP_CANCELED_FROZEN:
1094 case CPU_DOWN_PREPARE:
1095 case CPU_DOWN_PREPARE_FROZEN:
1097 case CPU_DEAD_FROZEN:
1098 hrtick_clear(cpu_rq(cpu));
1105 static __init void init_hrtick(void)
1107 hotcpu_notifier(hotplug_hrtick, 0);
1111 * Called to set the hrtick timer state.
1113 * called with rq->lock held and irqs disabled
1115 static void hrtick_start(struct rq *rq, u64 delay)
1117 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1118 HRTIMER_MODE_REL_PINNED, 0);
1121 static inline void init_hrtick(void)
1124 #endif /* CONFIG_SMP */
1126 static void init_rq_hrtick(struct rq *rq)
1129 rq->hrtick_csd_pending = 0;
1131 rq->hrtick_csd.flags = 0;
1132 rq->hrtick_csd.func = __hrtick_start;
1133 rq->hrtick_csd.info = rq;
1136 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1137 rq->hrtick_timer.function = hrtick;
1139 #else /* CONFIG_SCHED_HRTICK */
1140 static inline void hrtick_clear(struct rq *rq)
1144 static inline void init_rq_hrtick(struct rq *rq)
1148 static inline void init_hrtick(void)
1151 #endif /* CONFIG_SCHED_HRTICK */
1154 * resched_task - mark a task 'to be rescheduled now'.
1156 * On UP this means the setting of the need_resched flag, on SMP it
1157 * might also involve a cross-CPU call to trigger the scheduler on
1162 #ifndef tsk_is_polling
1163 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1166 static void resched_task(struct task_struct *p)
1170 assert_raw_spin_locked(&task_rq(p)->lock);
1172 if (test_tsk_need_resched(p))
1175 set_tsk_need_resched(p);
1178 if (cpu == smp_processor_id())
1181 /* NEED_RESCHED must be visible before we test polling */
1183 if (!tsk_is_polling(p))
1184 smp_send_reschedule(cpu);
1187 static void resched_cpu(int cpu)
1189 struct rq *rq = cpu_rq(cpu);
1190 unsigned long flags;
1192 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1194 resched_task(cpu_curr(cpu));
1195 raw_spin_unlock_irqrestore(&rq->lock, flags);
1200 * In the semi idle case, use the nearest busy cpu for migrating timers
1201 * from an idle cpu. This is good for power-savings.
1203 * We don't do similar optimization for completely idle system, as
1204 * selecting an idle cpu will add more delays to the timers than intended
1205 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1207 int get_nohz_timer_target(void)
1209 int cpu = smp_processor_id();
1211 struct sched_domain *sd;
1214 for_each_domain(cpu, sd) {
1215 for_each_cpu(i, sched_domain_span(sd)) {
1227 * When add_timer_on() enqueues a timer into the timer wheel of an
1228 * idle CPU then this timer might expire before the next timer event
1229 * which is scheduled to wake up that CPU. In case of a completely
1230 * idle system the next event might even be infinite time into the
1231 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1232 * leaves the inner idle loop so the newly added timer is taken into
1233 * account when the CPU goes back to idle and evaluates the timer
1234 * wheel for the next timer event.
1236 void wake_up_idle_cpu(int cpu)
1238 struct rq *rq = cpu_rq(cpu);
1240 if (cpu == smp_processor_id())
1244 * This is safe, as this function is called with the timer
1245 * wheel base lock of (cpu) held. When the CPU is on the way
1246 * to idle and has not yet set rq->curr to idle then it will
1247 * be serialized on the timer wheel base lock and take the new
1248 * timer into account automatically.
1250 if (rq->curr != rq->idle)
1254 * We can set TIF_RESCHED on the idle task of the other CPU
1255 * lockless. The worst case is that the other CPU runs the
1256 * idle task through an additional NOOP schedule()
1258 set_tsk_need_resched(rq->idle);
1260 /* NEED_RESCHED must be visible before we test polling */
1262 if (!tsk_is_polling(rq->idle))
1263 smp_send_reschedule(cpu);
1266 #endif /* CONFIG_NO_HZ */
1268 static u64 sched_avg_period(void)
1270 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1273 static void sched_avg_update(struct rq *rq)
1275 s64 period = sched_avg_period();
1277 while ((s64)(rq->clock - rq->age_stamp) > period) {
1279 * Inline assembly required to prevent the compiler
1280 * optimising this loop into a divmod call.
1281 * See __iter_div_u64_rem() for another example of this.
1283 asm("" : "+rm" (rq->age_stamp));
1284 rq->age_stamp += period;
1289 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1291 rq->rt_avg += rt_delta;
1292 sched_avg_update(rq);
1295 #else /* !CONFIG_SMP */
1296 static void resched_task(struct task_struct *p)
1298 assert_raw_spin_locked(&task_rq(p)->lock);
1299 set_tsk_need_resched(p);
1302 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1306 static void sched_avg_update(struct rq *rq)
1309 #endif /* CONFIG_SMP */
1311 #if BITS_PER_LONG == 32
1312 # define WMULT_CONST (~0UL)
1314 # define WMULT_CONST (1UL << 32)
1317 #define WMULT_SHIFT 32
1320 * Shift right and round:
1322 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1325 * delta *= weight / lw
1327 static unsigned long
1328 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1329 struct load_weight *lw)
1334 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
1335 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
1336 * 2^SCHED_LOAD_RESOLUTION.
1338 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
1339 tmp = (u64)delta_exec * scale_load_down(weight);
1341 tmp = (u64)delta_exec;
1343 if (!lw->inv_weight) {
1344 unsigned long w = scale_load_down(lw->weight);
1346 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
1348 else if (unlikely(!w))
1349 lw->inv_weight = WMULT_CONST;
1351 lw->inv_weight = WMULT_CONST / w;
1355 * Check whether we'd overflow the 64-bit multiplication:
1357 if (unlikely(tmp > WMULT_CONST))
1358 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1361 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1363 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1366 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1372 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1378 static inline void update_load_set(struct load_weight *lw, unsigned long w)
1385 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1386 * of tasks with abnormal "nice" values across CPUs the contribution that
1387 * each task makes to its run queue's load is weighted according to its
1388 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1389 * scaled version of the new time slice allocation that they receive on time
1393 #define WEIGHT_IDLEPRIO 3
1394 #define WMULT_IDLEPRIO 1431655765
1397 * Nice levels are multiplicative, with a gentle 10% change for every
1398 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1399 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1400 * that remained on nice 0.
1402 * The "10% effect" is relative and cumulative: from _any_ nice level,
1403 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1404 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1405 * If a task goes up by ~10% and another task goes down by ~10% then
1406 * the relative distance between them is ~25%.)
1408 static const int prio_to_weight[40] = {
1409 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1410 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1411 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1412 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1413 /* 0 */ 1024, 820, 655, 526, 423,
1414 /* 5 */ 335, 272, 215, 172, 137,
1415 /* 10 */ 110, 87, 70, 56, 45,
1416 /* 15 */ 36, 29, 23, 18, 15,
1420 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1422 * In cases where the weight does not change often, we can use the
1423 * precalculated inverse to speed up arithmetics by turning divisions
1424 * into multiplications:
1426 static const u32 prio_to_wmult[40] = {
1427 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1428 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1429 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1430 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1431 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1432 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1433 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1434 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1437 /* Time spent by the tasks of the cpu accounting group executing in ... */
1438 enum cpuacct_stat_index {
1439 CPUACCT_STAT_USER, /* ... user mode */
1440 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1442 CPUACCT_STAT_NSTATS,
1445 #ifdef CONFIG_CGROUP_CPUACCT
1446 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1447 static void cpuacct_update_stats(struct task_struct *tsk,
1448 enum cpuacct_stat_index idx, cputime_t val);
1450 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1451 static inline void cpuacct_update_stats(struct task_struct *tsk,
1452 enum cpuacct_stat_index idx, cputime_t val) {}
1455 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1457 update_load_add(&rq->load, load);
1460 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1462 update_load_sub(&rq->load, load);
1465 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1466 typedef int (*tg_visitor)(struct task_group *, void *);
1469 * Iterate the full tree, calling @down when first entering a node and @up when
1470 * leaving it for the final time.
1472 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1474 struct task_group *parent, *child;
1478 parent = &root_task_group;
1480 ret = (*down)(parent, data);
1483 list_for_each_entry_rcu(child, &parent->children, siblings) {
1490 ret = (*up)(parent, data);
1495 parent = parent->parent;
1504 static int tg_nop(struct task_group *tg, void *data)
1511 /* Used instead of source_load when we know the type == 0 */
1512 static unsigned long weighted_cpuload(const int cpu)
1514 return cpu_rq(cpu)->load.weight;
1518 * Return a low guess at the load of a migration-source cpu weighted
1519 * according to the scheduling class and "nice" value.
1521 * We want to under-estimate the load of migration sources, to
1522 * balance conservatively.
1524 static unsigned long source_load(int cpu, int type)
1526 struct rq *rq = cpu_rq(cpu);
1527 unsigned long total = weighted_cpuload(cpu);
1529 if (type == 0 || !sched_feat(LB_BIAS))
1532 return min(rq->cpu_load[type-1], total);
1536 * Return a high guess at the load of a migration-target cpu weighted
1537 * according to the scheduling class and "nice" value.
1539 static unsigned long target_load(int cpu, int type)
1541 struct rq *rq = cpu_rq(cpu);
1542 unsigned long total = weighted_cpuload(cpu);
1544 if (type == 0 || !sched_feat(LB_BIAS))
1547 return max(rq->cpu_load[type-1], total);
1550 static unsigned long power_of(int cpu)
1552 return cpu_rq(cpu)->cpu_power;
1555 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1557 static unsigned long cpu_avg_load_per_task(int cpu)
1559 struct rq *rq = cpu_rq(cpu);
1560 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1563 rq->avg_load_per_task = rq->load.weight / nr_running;
1565 rq->avg_load_per_task = 0;
1567 return rq->avg_load_per_task;
1570 #ifdef CONFIG_FAIR_GROUP_SCHED
1573 * Compute the cpu's hierarchical load factor for each task group.
1574 * This needs to be done in a top-down fashion because the load of a child
1575 * group is a fraction of its parents load.
1577 static int tg_load_down(struct task_group *tg, void *data)
1580 long cpu = (long)data;
1583 load = cpu_rq(cpu)->load.weight;
1585 load = tg->parent->cfs_rq[cpu]->h_load;
1586 load *= tg->se[cpu]->load.weight;
1587 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1590 tg->cfs_rq[cpu]->h_load = load;
1595 static void update_h_load(long cpu)
1597 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1602 #ifdef CONFIG_PREEMPT
1604 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1607 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1608 * way at the expense of forcing extra atomic operations in all
1609 * invocations. This assures that the double_lock is acquired using the
1610 * same underlying policy as the spinlock_t on this architecture, which
1611 * reduces latency compared to the unfair variant below. However, it
1612 * also adds more overhead and therefore may reduce throughput.
1614 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1615 __releases(this_rq->lock)
1616 __acquires(busiest->lock)
1617 __acquires(this_rq->lock)
1619 raw_spin_unlock(&this_rq->lock);
1620 double_rq_lock(this_rq, busiest);
1627 * Unfair double_lock_balance: Optimizes throughput at the expense of
1628 * latency by eliminating extra atomic operations when the locks are
1629 * already in proper order on entry. This favors lower cpu-ids and will
1630 * grant the double lock to lower cpus over higher ids under contention,
1631 * regardless of entry order into the function.
1633 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1634 __releases(this_rq->lock)
1635 __acquires(busiest->lock)
1636 __acquires(this_rq->lock)
1640 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1641 if (busiest < this_rq) {
1642 raw_spin_unlock(&this_rq->lock);
1643 raw_spin_lock(&busiest->lock);
1644 raw_spin_lock_nested(&this_rq->lock,
1645 SINGLE_DEPTH_NESTING);
1648 raw_spin_lock_nested(&busiest->lock,
1649 SINGLE_DEPTH_NESTING);
1654 #endif /* CONFIG_PREEMPT */
1657 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1659 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1661 if (unlikely(!irqs_disabled())) {
1662 /* printk() doesn't work good under rq->lock */
1663 raw_spin_unlock(&this_rq->lock);
1667 return _double_lock_balance(this_rq, busiest);
1670 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1671 __releases(busiest->lock)
1673 raw_spin_unlock(&busiest->lock);
1674 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1678 * double_rq_lock - safely lock two runqueues
1680 * Note this does not disable interrupts like task_rq_lock,
1681 * you need to do so manually before calling.
1683 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1684 __acquires(rq1->lock)
1685 __acquires(rq2->lock)
1687 BUG_ON(!irqs_disabled());
1689 raw_spin_lock(&rq1->lock);
1690 __acquire(rq2->lock); /* Fake it out ;) */
1693 raw_spin_lock(&rq1->lock);
1694 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1696 raw_spin_lock(&rq2->lock);
1697 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1703 * double_rq_unlock - safely unlock two runqueues
1705 * Note this does not restore interrupts like task_rq_unlock,
1706 * you need to do so manually after calling.
1708 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1709 __releases(rq1->lock)
1710 __releases(rq2->lock)
1712 raw_spin_unlock(&rq1->lock);
1714 raw_spin_unlock(&rq2->lock);
1716 __release(rq2->lock);
1719 #else /* CONFIG_SMP */
1722 * double_rq_lock - safely lock two runqueues
1724 * Note this does not disable interrupts like task_rq_lock,
1725 * you need to do so manually before calling.
1727 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1728 __acquires(rq1->lock)
1729 __acquires(rq2->lock)
1731 BUG_ON(!irqs_disabled());
1733 raw_spin_lock(&rq1->lock);
1734 __acquire(rq2->lock); /* Fake it out ;) */
1738 * double_rq_unlock - safely unlock two runqueues
1740 * Note this does not restore interrupts like task_rq_unlock,
1741 * you need to do so manually after calling.
1743 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1744 __releases(rq1->lock)
1745 __releases(rq2->lock)
1748 raw_spin_unlock(&rq1->lock);
1749 __release(rq2->lock);
1754 static void calc_load_account_idle(struct rq *this_rq);
1755 static void update_sysctl(void);
1756 static int get_update_sysctl_factor(void);
1757 static void update_cpu_load(struct rq *this_rq);
1759 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1761 set_task_rq(p, cpu);
1764 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1765 * successfuly executed on another CPU. We must ensure that updates of
1766 * per-task data have been completed by this moment.
1769 task_thread_info(p)->cpu = cpu;
1773 static const struct sched_class rt_sched_class;
1775 #define sched_class_highest (&stop_sched_class)
1776 #define for_each_class(class) \
1777 for (class = sched_class_highest; class; class = class->next)
1779 #include "sched_stats.h"
1781 static void inc_nr_running(struct rq *rq)
1786 static void dec_nr_running(struct rq *rq)
1791 static void set_load_weight(struct task_struct *p)
1793 int prio = p->static_prio - MAX_RT_PRIO;
1794 struct load_weight *load = &p->se.load;
1797 * SCHED_IDLE tasks get minimal weight:
1799 if (p->policy == SCHED_IDLE) {
1800 load->weight = scale_load(WEIGHT_IDLEPRIO);
1801 load->inv_weight = WMULT_IDLEPRIO;
1805 load->weight = scale_load(prio_to_weight[prio]);
1806 load->inv_weight = prio_to_wmult[prio];
1809 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1811 update_rq_clock(rq);
1812 sched_info_queued(p);
1813 p->sched_class->enqueue_task(rq, p, flags);
1816 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1818 update_rq_clock(rq);
1819 sched_info_dequeued(p);
1820 p->sched_class->dequeue_task(rq, p, flags);
1824 * activate_task - move a task to the runqueue.
1826 static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1828 if (task_contributes_to_load(p))
1829 rq->nr_uninterruptible--;
1831 enqueue_task(rq, p, flags);
1836 * deactivate_task - remove a task from the runqueue.
1838 static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1840 if (task_contributes_to_load(p))
1841 rq->nr_uninterruptible++;
1843 dequeue_task(rq, p, flags);
1847 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1850 * There are no locks covering percpu hardirq/softirq time.
1851 * They are only modified in account_system_vtime, on corresponding CPU
1852 * with interrupts disabled. So, writes are safe.
1853 * They are read and saved off onto struct rq in update_rq_clock().
1854 * This may result in other CPU reading this CPU's irq time and can
1855 * race with irq/account_system_vtime on this CPU. We would either get old
1856 * or new value with a side effect of accounting a slice of irq time to wrong
1857 * task when irq is in progress while we read rq->clock. That is a worthy
1858 * compromise in place of having locks on each irq in account_system_time.
1860 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1861 static DEFINE_PER_CPU(u64, cpu_softirq_time);
1863 static DEFINE_PER_CPU(u64, irq_start_time);
1864 static int sched_clock_irqtime;
1866 void enable_sched_clock_irqtime(void)
1868 sched_clock_irqtime = 1;
1871 void disable_sched_clock_irqtime(void)
1873 sched_clock_irqtime = 0;
1876 #ifndef CONFIG_64BIT
1877 static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1879 static inline void irq_time_write_begin(void)
1881 __this_cpu_inc(irq_time_seq.sequence);
1885 static inline void irq_time_write_end(void)
1888 __this_cpu_inc(irq_time_seq.sequence);
1891 static inline u64 irq_time_read(int cpu)
1897 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1898 irq_time = per_cpu(cpu_softirq_time, cpu) +
1899 per_cpu(cpu_hardirq_time, cpu);
1900 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1904 #else /* CONFIG_64BIT */
1905 static inline void irq_time_write_begin(void)
1909 static inline void irq_time_write_end(void)
1913 static inline u64 irq_time_read(int cpu)
1915 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1917 #endif /* CONFIG_64BIT */
1920 * Called before incrementing preempt_count on {soft,}irq_enter
1921 * and before decrementing preempt_count on {soft,}irq_exit.
1923 void account_system_vtime(struct task_struct *curr)
1925 unsigned long flags;
1929 if (!sched_clock_irqtime)
1932 local_irq_save(flags);
1934 cpu = smp_processor_id();
1935 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
1936 __this_cpu_add(irq_start_time, delta);
1938 irq_time_write_begin();
1940 * We do not account for softirq time from ksoftirqd here.
1941 * We want to continue accounting softirq time to ksoftirqd thread
1942 * in that case, so as not to confuse scheduler with a special task
1943 * that do not consume any time, but still wants to run.
1945 if (hardirq_count())
1946 __this_cpu_add(cpu_hardirq_time, delta);
1947 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
1948 __this_cpu_add(cpu_softirq_time, delta);
1950 irq_time_write_end();
1951 local_irq_restore(flags);
1953 EXPORT_SYMBOL_GPL(account_system_vtime);
1955 static void update_rq_clock_task(struct rq *rq, s64 delta)
1959 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
1962 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1963 * this case when a previous update_rq_clock() happened inside a
1964 * {soft,}irq region.
1966 * When this happens, we stop ->clock_task and only update the
1967 * prev_irq_time stamp to account for the part that fit, so that a next
1968 * update will consume the rest. This ensures ->clock_task is
1971 * It does however cause some slight miss-attribution of {soft,}irq
1972 * time, a more accurate solution would be to update the irq_time using
1973 * the current rq->clock timestamp, except that would require using
1976 if (irq_delta > delta)
1979 rq->prev_irq_time += irq_delta;
1981 rq->clock_task += delta;
1983 if (irq_delta && sched_feat(NONIRQ_POWER))
1984 sched_rt_avg_update(rq, irq_delta);
1987 static int irqtime_account_hi_update(void)
1989 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1990 unsigned long flags;
1994 local_irq_save(flags);
1995 latest_ns = this_cpu_read(cpu_hardirq_time);
1996 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
1998 local_irq_restore(flags);
2002 static int irqtime_account_si_update(void)
2004 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2005 unsigned long flags;
2009 local_irq_save(flags);
2010 latest_ns = this_cpu_read(cpu_softirq_time);
2011 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
2013 local_irq_restore(flags);
2017 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
2019 #define sched_clock_irqtime (0)
2021 static void update_rq_clock_task(struct rq *rq, s64 delta)
2023 rq->clock_task += delta;
2026 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2028 #include "sched_idletask.c"
2029 #include "sched_fair.c"
2030 #include "sched_rt.c"
2031 #include "sched_autogroup.c"
2032 #include "sched_stoptask.c"
2033 #ifdef CONFIG_SCHED_DEBUG
2034 # include "sched_debug.c"
2037 void sched_set_stop_task(int cpu, struct task_struct *stop)
2039 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2040 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2044 * Make it appear like a SCHED_FIFO task, its something
2045 * userspace knows about and won't get confused about.
2047 * Also, it will make PI more or less work without too
2048 * much confusion -- but then, stop work should not
2049 * rely on PI working anyway.
2051 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
2053 stop->sched_class = &stop_sched_class;
2056 cpu_rq(cpu)->stop = stop;
2060 * Reset it back to a normal scheduling class so that
2061 * it can die in pieces.
2063 old_stop->sched_class = &rt_sched_class;
2068 * __normal_prio - return the priority that is based on the static prio
2070 static inline int __normal_prio(struct task_struct *p)
2072 return p->static_prio;
2076 * Calculate the expected normal priority: i.e. priority
2077 * without taking RT-inheritance into account. Might be
2078 * boosted by interactivity modifiers. Changes upon fork,
2079 * setprio syscalls, and whenever the interactivity
2080 * estimator recalculates.
2082 static inline int normal_prio(struct task_struct *p)
2086 if (task_has_rt_policy(p))
2087 prio = MAX_RT_PRIO-1 - p->rt_priority;
2089 prio = __normal_prio(p);
2094 * Calculate the current priority, i.e. the priority
2095 * taken into account by the scheduler. This value might
2096 * be boosted by RT tasks, or might be boosted by
2097 * interactivity modifiers. Will be RT if the task got
2098 * RT-boosted. If not then it returns p->normal_prio.
2100 static int effective_prio(struct task_struct *p)
2102 p->normal_prio = normal_prio(p);
2104 * If we are RT tasks or we were boosted to RT priority,
2105 * keep the priority unchanged. Otherwise, update priority
2106 * to the normal priority:
2108 if (!rt_prio(p->prio))
2109 return p->normal_prio;
2114 * task_curr - is this task currently executing on a CPU?
2115 * @p: the task in question.
2117 inline int task_curr(const struct task_struct *p)
2119 return cpu_curr(task_cpu(p)) == p;
2122 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2123 const struct sched_class *prev_class,
2126 if (prev_class != p->sched_class) {
2127 if (prev_class->switched_from)
2128 prev_class->switched_from(rq, p);
2129 p->sched_class->switched_to(rq, p);
2130 } else if (oldprio != p->prio)
2131 p->sched_class->prio_changed(rq, p, oldprio);
2134 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2136 const struct sched_class *class;
2138 if (p->sched_class == rq->curr->sched_class) {
2139 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2141 for_each_class(class) {
2142 if (class == rq->curr->sched_class)
2144 if (class == p->sched_class) {
2145 resched_task(rq->curr);
2152 * A queue event has occurred, and we're going to schedule. In
2153 * this case, we can save a useless back to back clock update.
2155 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
2156 rq->skip_clock_update = 1;
2161 * Is this task likely cache-hot:
2164 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2168 if (p->sched_class != &fair_sched_class)
2171 if (unlikely(p->policy == SCHED_IDLE))
2175 * Buddy candidates are cache hot:
2177 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2178 (&p->se == cfs_rq_of(&p->se)->next ||
2179 &p->se == cfs_rq_of(&p->se)->last))
2182 if (sysctl_sched_migration_cost == -1)
2184 if (sysctl_sched_migration_cost == 0)
2187 delta = now - p->se.exec_start;
2189 return delta < (s64)sysctl_sched_migration_cost;
2192 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2194 #ifdef CONFIG_SCHED_DEBUG
2196 * We should never call set_task_cpu() on a blocked task,
2197 * ttwu() will sort out the placement.
2199 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2200 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2202 #ifdef CONFIG_LOCKDEP
2203 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2204 lockdep_is_held(&task_rq(p)->lock)));
2208 trace_sched_migrate_task(p, new_cpu);
2210 if (task_cpu(p) != new_cpu) {
2211 p->se.nr_migrations++;
2212 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2215 __set_task_cpu(p, new_cpu);
2218 struct migration_arg {
2219 struct task_struct *task;
2223 static int migration_cpu_stop(void *data);
2226 * wait_task_inactive - wait for a thread to unschedule.
2228 * If @match_state is nonzero, it's the @p->state value just checked and
2229 * not expected to change. If it changes, i.e. @p might have woken up,
2230 * then return zero. When we succeed in waiting for @p to be off its CPU,
2231 * we return a positive number (its total switch count). If a second call
2232 * a short while later returns the same number, the caller can be sure that
2233 * @p has remained unscheduled the whole time.
2235 * The caller must ensure that the task *will* unschedule sometime soon,
2236 * else this function might spin for a *long* time. This function can't
2237 * be called with interrupts off, or it may introduce deadlock with
2238 * smp_call_function() if an IPI is sent by the same process we are
2239 * waiting to become inactive.
2241 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2243 unsigned long flags;
2250 * We do the initial early heuristics without holding
2251 * any task-queue locks at all. We'll only try to get
2252 * the runqueue lock when things look like they will
2258 * If the task is actively running on another CPU
2259 * still, just relax and busy-wait without holding
2262 * NOTE! Since we don't hold any locks, it's not
2263 * even sure that "rq" stays as the right runqueue!
2264 * But we don't care, since "task_running()" will
2265 * return false if the runqueue has changed and p
2266 * is actually now running somewhere else!
2268 while (task_running(rq, p)) {
2269 if (match_state && unlikely(p->state != match_state))
2275 * Ok, time to look more closely! We need the rq
2276 * lock now, to be *sure*. If we're wrong, we'll
2277 * just go back and repeat.
2279 rq = task_rq_lock(p, &flags);
2280 trace_sched_wait_task(p);
2281 running = task_running(rq, p);
2284 if (!match_state || p->state == match_state)
2285 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2286 task_rq_unlock(rq, p, &flags);
2289 * If it changed from the expected state, bail out now.
2291 if (unlikely(!ncsw))
2295 * Was it really running after all now that we
2296 * checked with the proper locks actually held?
2298 * Oops. Go back and try again..
2300 if (unlikely(running)) {
2306 * It's not enough that it's not actively running,
2307 * it must be off the runqueue _entirely_, and not
2310 * So if it was still runnable (but just not actively
2311 * running right now), it's preempted, and we should
2312 * yield - it could be a while.
2314 if (unlikely(on_rq)) {
2315 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
2317 set_current_state(TASK_UNINTERRUPTIBLE);
2318 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2323 * Ahh, all good. It wasn't running, and it wasn't
2324 * runnable, which means that it will never become
2325 * running in the future either. We're all done!
2334 * kick_process - kick a running thread to enter/exit the kernel
2335 * @p: the to-be-kicked thread
2337 * Cause a process which is running on another CPU to enter
2338 * kernel-mode, without any delay. (to get signals handled.)
2340 * NOTE: this function doesn't have to take the runqueue lock,
2341 * because all it wants to ensure is that the remote task enters
2342 * the kernel. If the IPI races and the task has been migrated
2343 * to another CPU then no harm is done and the purpose has been
2346 void kick_process(struct task_struct *p)
2352 if ((cpu != smp_processor_id()) && task_curr(p))
2353 smp_send_reschedule(cpu);
2356 EXPORT_SYMBOL_GPL(kick_process);
2357 #endif /* CONFIG_SMP */
2361 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
2363 static int select_fallback_rq(int cpu, struct task_struct *p)
2366 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2368 /* Look for allowed, online CPU in same node. */
2369 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2370 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2373 /* Any allowed, online CPU? */
2374 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2375 if (dest_cpu < nr_cpu_ids)
2378 /* No more Mr. Nice Guy. */
2379 dest_cpu = cpuset_cpus_allowed_fallback(p);
2381 * Don't tell them about moving exiting tasks or
2382 * kernel threads (both mm NULL), since they never
2385 if (p->mm && printk_ratelimit()) {
2386 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2387 task_pid_nr(p), p->comm, cpu);
2394 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
2397 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2399 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2402 * In order not to call set_task_cpu() on a blocking task we need
2403 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2406 * Since this is common to all placement strategies, this lives here.
2408 * [ this allows ->select_task() to simply return task_cpu(p) and
2409 * not worry about this generic constraint ]
2411 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2413 cpu = select_fallback_rq(task_cpu(p), p);
2418 static void update_avg(u64 *avg, u64 sample)
2420 s64 diff = sample - *avg;
2426 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2428 #ifdef CONFIG_SCHEDSTATS
2429 struct rq *rq = this_rq();
2432 int this_cpu = smp_processor_id();
2434 if (cpu == this_cpu) {
2435 schedstat_inc(rq, ttwu_local);
2436 schedstat_inc(p, se.statistics.nr_wakeups_local);
2438 struct sched_domain *sd;
2440 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2442 for_each_domain(this_cpu, sd) {
2443 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2444 schedstat_inc(sd, ttwu_wake_remote);
2450 #endif /* CONFIG_SMP */
2452 schedstat_inc(rq, ttwu_count);
2453 schedstat_inc(p, se.statistics.nr_wakeups);
2455 if (wake_flags & WF_SYNC)
2456 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2458 if (cpu != task_cpu(p))
2459 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2461 #endif /* CONFIG_SCHEDSTATS */
2464 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
2466 activate_task(rq, p, en_flags);
2469 /* if a worker is waking up, notify workqueue */
2470 if (p->flags & PF_WQ_WORKER)
2471 wq_worker_waking_up(p, cpu_of(rq));
2475 * Mark the task runnable and perform wakeup-preemption.
2478 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
2480 trace_sched_wakeup(p, true);
2481 check_preempt_curr(rq, p, wake_flags);
2483 p->state = TASK_RUNNING;
2485 if (p->sched_class->task_woken)
2486 p->sched_class->task_woken(rq, p);
2488 if (unlikely(rq->idle_stamp)) {
2489 u64 delta = rq->clock - rq->idle_stamp;
2490 u64 max = 2*sysctl_sched_migration_cost;
2495 update_avg(&rq->avg_idle, delta);
2502 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
2505 if (p->sched_contributes_to_load)
2506 rq->nr_uninterruptible--;
2509 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
2510 ttwu_do_wakeup(rq, p, wake_flags);
2514 * Called in case the task @p isn't fully descheduled from its runqueue,
2515 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2516 * since all we need to do is flip p->state to TASK_RUNNING, since
2517 * the task is still ->on_rq.
2519 static int ttwu_remote(struct task_struct *p, int wake_flags)
2524 rq = __task_rq_lock(p);
2526 ttwu_do_wakeup(rq, p, wake_flags);
2529 __task_rq_unlock(rq);
2535 static void sched_ttwu_pending(void)
2537 struct rq *rq = this_rq();
2538 struct task_struct *list = xchg(&rq->wake_list, NULL);
2543 raw_spin_lock(&rq->lock);
2546 struct task_struct *p = list;
2547 list = list->wake_entry;
2548 ttwu_do_activate(rq, p, 0);
2551 raw_spin_unlock(&rq->lock);
2554 void scheduler_ipi(void)
2556 sched_ttwu_pending();
2559 static void ttwu_queue_remote(struct task_struct *p, int cpu)
2561 struct rq *rq = cpu_rq(cpu);
2562 struct task_struct *next = rq->wake_list;
2565 struct task_struct *old = next;
2567 p->wake_entry = next;
2568 next = cmpxchg(&rq->wake_list, old, p);
2574 smp_send_reschedule(cpu);
2577 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2578 static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
2583 rq = __task_rq_lock(p);
2585 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2586 ttwu_do_wakeup(rq, p, wake_flags);
2589 __task_rq_unlock(rq);
2594 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2595 #endif /* CONFIG_SMP */
2597 static void ttwu_queue(struct task_struct *p, int cpu)
2599 struct rq *rq = cpu_rq(cpu);
2601 #if defined(CONFIG_SMP)
2602 if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
2603 ttwu_queue_remote(p, cpu);
2608 raw_spin_lock(&rq->lock);
2609 ttwu_do_activate(rq, p, 0);
2610 raw_spin_unlock(&rq->lock);
2614 * try_to_wake_up - wake up a thread
2615 * @p: the thread to be awakened
2616 * @state: the mask of task states that can be woken
2617 * @wake_flags: wake modifier flags (WF_*)
2619 * Put it on the run-queue if it's not already there. The "current"
2620 * thread is always on the run-queue (except when the actual
2621 * re-schedule is in progress), and as such you're allowed to do
2622 * the simpler "current->state = TASK_RUNNING" to mark yourself
2623 * runnable without the overhead of this.
2625 * Returns %true if @p was woken up, %false if it was already running
2626 * or @state didn't match @p's state.
2629 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2631 unsigned long flags;
2632 int cpu, success = 0;
2635 raw_spin_lock_irqsave(&p->pi_lock, flags);
2636 if (!(p->state & state))
2639 success = 1; /* we're going to change ->state */
2642 if (p->on_rq && ttwu_remote(p, wake_flags))
2647 * If the owning (remote) cpu is still in the middle of schedule() with
2648 * this task as prev, wait until its done referencing the task.
2651 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2653 * In case the architecture enables interrupts in
2654 * context_switch(), we cannot busy wait, since that
2655 * would lead to deadlocks when an interrupt hits and
2656 * tries to wake up @prev. So bail and do a complete
2659 if (ttwu_activate_remote(p, wake_flags))
2666 * Pairs with the smp_wmb() in finish_lock_switch().
2670 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2671 p->state = TASK_WAKING;
2673 if (p->sched_class->task_waking)
2674 p->sched_class->task_waking(p);
2676 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2677 if (task_cpu(p) != cpu)
2678 set_task_cpu(p, cpu);
2679 #endif /* CONFIG_SMP */
2683 ttwu_stat(p, cpu, wake_flags);
2685 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2691 * try_to_wake_up_local - try to wake up a local task with rq lock held
2692 * @p: the thread to be awakened
2694 * Put @p on the run-queue if it's not already there. The caller must
2695 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2698 static void try_to_wake_up_local(struct task_struct *p)
2700 struct rq *rq = task_rq(p);
2702 BUG_ON(rq != this_rq());
2703 BUG_ON(p == current);
2704 lockdep_assert_held(&rq->lock);
2706 if (!raw_spin_trylock(&p->pi_lock)) {
2707 raw_spin_unlock(&rq->lock);
2708 raw_spin_lock(&p->pi_lock);
2709 raw_spin_lock(&rq->lock);
2712 if (!(p->state & TASK_NORMAL))
2716 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2718 ttwu_do_wakeup(rq, p, 0);
2719 ttwu_stat(p, smp_processor_id(), 0);
2721 raw_spin_unlock(&p->pi_lock);
2725 * wake_up_process - Wake up a specific process
2726 * @p: The process to be woken up.
2728 * Attempt to wake up the nominated process and move it to the set of runnable
2729 * processes. Returns 1 if the process was woken up, 0 if it was already
2732 * It may be assumed that this function implies a write memory barrier before
2733 * changing the task state if and only if any tasks are woken up.
2735 int wake_up_process(struct task_struct *p)
2737 return try_to_wake_up(p, TASK_ALL, 0);
2739 EXPORT_SYMBOL(wake_up_process);
2741 int wake_up_state(struct task_struct *p, unsigned int state)
2743 return try_to_wake_up(p, state, 0);
2747 * Perform scheduler related setup for a newly forked process p.
2748 * p is forked by current.
2750 * __sched_fork() is basic setup used by init_idle() too:
2752 static void __sched_fork(struct task_struct *p)
2757 p->se.exec_start = 0;
2758 p->se.sum_exec_runtime = 0;
2759 p->se.prev_sum_exec_runtime = 0;
2760 p->se.nr_migrations = 0;
2762 INIT_LIST_HEAD(&p->se.group_node);
2764 #ifdef CONFIG_SCHEDSTATS
2765 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2768 INIT_LIST_HEAD(&p->rt.run_list);
2770 #ifdef CONFIG_PREEMPT_NOTIFIERS
2771 INIT_HLIST_HEAD(&p->preempt_notifiers);
2776 * fork()/clone()-time setup:
2778 void sched_fork(struct task_struct *p)
2780 unsigned long flags;
2781 int cpu = get_cpu();
2785 * We mark the process as running here. This guarantees that
2786 * nobody will actually run it, and a signal or other external
2787 * event cannot wake it up and insert it on the runqueue either.
2789 p->state = TASK_RUNNING;
2792 * Revert to default priority/policy on fork if requested.
2794 if (unlikely(p->sched_reset_on_fork)) {
2795 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2796 p->policy = SCHED_NORMAL;
2797 p->normal_prio = p->static_prio;
2800 if (PRIO_TO_NICE(p->static_prio) < 0) {
2801 p->static_prio = NICE_TO_PRIO(0);
2802 p->normal_prio = p->static_prio;
2807 * We don't need the reset flag anymore after the fork. It has
2808 * fulfilled its duty:
2810 p->sched_reset_on_fork = 0;
2814 * Make sure we do not leak PI boosting priority to the child.
2816 p->prio = current->normal_prio;
2818 if (!rt_prio(p->prio))
2819 p->sched_class = &fair_sched_class;
2821 if (p->sched_class->task_fork)
2822 p->sched_class->task_fork(p);
2825 * The child is not yet in the pid-hash so no cgroup attach races,
2826 * and the cgroup is pinned to this child due to cgroup_fork()
2827 * is ran before sched_fork().
2829 * Silence PROVE_RCU.
2831 raw_spin_lock_irqsave(&p->pi_lock, flags);
2832 set_task_cpu(p, cpu);
2833 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2835 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2836 if (likely(sched_info_on()))
2837 memset(&p->sched_info, 0, sizeof(p->sched_info));
2839 #if defined(CONFIG_SMP)
2842 #ifdef CONFIG_PREEMPT
2843 /* Want to start with kernel preemption disabled. */
2844 task_thread_info(p)->preempt_count = 1;
2847 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2854 * wake_up_new_task - wake up a newly created task for the first time.
2856 * This function will do some initial scheduler statistics housekeeping
2857 * that must be done for every newly created context, then puts the task
2858 * on the runqueue and wakes it.
2860 void wake_up_new_task(struct task_struct *p)
2862 unsigned long flags;
2865 raw_spin_lock_irqsave(&p->pi_lock, flags);
2868 * Fork balancing, do it here and not earlier because:
2869 * - cpus_allowed can change in the fork path
2870 * - any previously selected cpu might disappear through hotplug
2872 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
2875 rq = __task_rq_lock(p);
2876 activate_task(rq, p, 0);
2878 trace_sched_wakeup_new(p, true);
2879 check_preempt_curr(rq, p, WF_FORK);
2881 if (p->sched_class->task_woken)
2882 p->sched_class->task_woken(rq, p);
2884 task_rq_unlock(rq, p, &flags);
2887 #ifdef CONFIG_PREEMPT_NOTIFIERS
2890 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2891 * @notifier: notifier struct to register
2893 void preempt_notifier_register(struct preempt_notifier *notifier)
2895 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
2897 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2900 * preempt_notifier_unregister - no longer interested in preemption notifications
2901 * @notifier: notifier struct to unregister
2903 * This is safe to call from within a preemption notifier.
2905 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2907 hlist_del(¬ifier->link);
2909 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2911 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2913 struct preempt_notifier *notifier;
2914 struct hlist_node *node;
2916 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2917 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2921 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2922 struct task_struct *next)
2924 struct preempt_notifier *notifier;
2925 struct hlist_node *node;
2927 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2928 notifier->ops->sched_out(notifier, next);
2931 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2933 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2938 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2939 struct task_struct *next)
2943 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2946 * prepare_task_switch - prepare to switch tasks
2947 * @rq: the runqueue preparing to switch
2948 * @prev: the current task that is being switched out
2949 * @next: the task we are going to switch to.
2951 * This is called with the rq lock held and interrupts off. It must
2952 * be paired with a subsequent finish_task_switch after the context
2955 * prepare_task_switch sets up locking and calls architecture specific
2959 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2960 struct task_struct *next)
2962 sched_info_switch(prev, next);
2963 perf_event_task_sched_out(prev, next);
2964 fire_sched_out_preempt_notifiers(prev, next);
2965 prepare_lock_switch(rq, next);
2966 prepare_arch_switch(next);
2967 trace_sched_switch(prev, next);
2971 * finish_task_switch - clean up after a task-switch
2972 * @rq: runqueue associated with task-switch
2973 * @prev: the thread we just switched away from.
2975 * finish_task_switch must be called after the context switch, paired
2976 * with a prepare_task_switch call before the context switch.
2977 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2978 * and do any other architecture-specific cleanup actions.
2980 * Note that we may have delayed dropping an mm in context_switch(). If
2981 * so, we finish that here outside of the runqueue lock. (Doing it
2982 * with the lock held can cause deadlocks; see schedule() for
2985 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2986 __releases(rq->lock)
2988 struct mm_struct *mm = rq->prev_mm;
2994 * A task struct has one reference for the use as "current".
2995 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2996 * schedule one last time. The schedule call will never return, and
2997 * the scheduled task must drop that reference.
2998 * The test for TASK_DEAD must occur while the runqueue locks are
2999 * still held, otherwise prev could be scheduled on another cpu, die
3000 * there before we look at prev->state, and then the reference would
3002 * Manfred Spraul <manfred@colorfullife.com>
3004 prev_state = prev->state;
3005 finish_arch_switch(prev);
3006 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3007 local_irq_disable();
3008 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
3009 perf_event_task_sched_in(current);
3010 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3012 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
3013 finish_lock_switch(rq, prev);
3015 fire_sched_in_preempt_notifiers(current);
3018 if (unlikely(prev_state == TASK_DEAD)) {
3020 * Remove function-return probe instances associated with this
3021 * task and put them back on the free list.
3023 kprobe_flush_task(prev);
3024 put_task_struct(prev);
3030 /* assumes rq->lock is held */
3031 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
3033 if (prev->sched_class->pre_schedule)
3034 prev->sched_class->pre_schedule(rq, prev);
3037 /* rq->lock is NOT held, but preemption is disabled */
3038 static inline void post_schedule(struct rq *rq)
3040 if (rq->post_schedule) {
3041 unsigned long flags;
3043 raw_spin_lock_irqsave(&rq->lock, flags);
3044 if (rq->curr->sched_class->post_schedule)
3045 rq->curr->sched_class->post_schedule(rq);
3046 raw_spin_unlock_irqrestore(&rq->lock, flags);
3048 rq->post_schedule = 0;
3054 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
3058 static inline void post_schedule(struct rq *rq)
3065 * schedule_tail - first thing a freshly forked thread must call.
3066 * @prev: the thread we just switched away from.
3068 asmlinkage void schedule_tail(struct task_struct *prev)
3069 __releases(rq->lock)
3071 struct rq *rq = this_rq();
3073 finish_task_switch(rq, prev);
3076 * FIXME: do we need to worry about rq being invalidated by the
3081 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
3082 /* In this case, finish_task_switch does not reenable preemption */
3085 if (current->set_child_tid)
3086 put_user(task_pid_vnr(current), current->set_child_tid);
3090 * context_switch - switch to the new MM and the new
3091 * thread's register state.
3094 context_switch(struct rq *rq, struct task_struct *prev,
3095 struct task_struct *next)
3097 struct mm_struct *mm, *oldmm;
3099 prepare_task_switch(rq, prev, next);
3102 oldmm = prev->active_mm;
3104 * For paravirt, this is coupled with an exit in switch_to to
3105 * combine the page table reload and the switch backend into
3108 arch_start_context_switch(prev);
3111 next->active_mm = oldmm;
3112 atomic_inc(&oldmm->mm_count);
3113 enter_lazy_tlb(oldmm, next);
3115 switch_mm(oldmm, mm, next);
3118 prev->active_mm = NULL;
3119 rq->prev_mm = oldmm;
3122 * Since the runqueue lock will be released by the next
3123 * task (which is an invalid locking op but in the case
3124 * of the scheduler it's an obvious special-case), so we
3125 * do an early lockdep release here:
3127 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
3128 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3131 /* Here we just switch the register state and the stack. */
3132 switch_to(prev, next, prev);
3136 * this_rq must be evaluated again because prev may have moved
3137 * CPUs since it called schedule(), thus the 'rq' on its stack
3138 * frame will be invalid.
3140 finish_task_switch(this_rq(), prev);
3144 * nr_running, nr_uninterruptible and nr_context_switches:
3146 * externally visible scheduler statistics: current number of runnable
3147 * threads, current number of uninterruptible-sleeping threads, total
3148 * number of context switches performed since bootup.
3150 unsigned long nr_running(void)
3152 unsigned long i, sum = 0;
3154 for_each_online_cpu(i)
3155 sum += cpu_rq(i)->nr_running;
3160 unsigned long nr_uninterruptible(void)
3162 unsigned long i, sum = 0;
3164 for_each_possible_cpu(i)
3165 sum += cpu_rq(i)->nr_uninterruptible;
3168 * Since we read the counters lockless, it might be slightly
3169 * inaccurate. Do not allow it to go below zero though:
3171 if (unlikely((long)sum < 0))
3177 unsigned long long nr_context_switches(void)
3180 unsigned long long sum = 0;
3182 for_each_possible_cpu(i)
3183 sum += cpu_rq(i)->nr_switches;
3188 unsigned long nr_iowait(void)
3190 unsigned long i, sum = 0;
3192 for_each_possible_cpu(i)
3193 sum += atomic_read(&cpu_rq(i)->nr_iowait);
3198 unsigned long nr_iowait_cpu(int cpu)
3200 struct rq *this = cpu_rq(cpu);
3201 return atomic_read(&this->nr_iowait);
3204 unsigned long this_cpu_load(void)
3206 struct rq *this = this_rq();
3207 return this->cpu_load[0];
3211 /* Variables and functions for calc_load */
3212 static atomic_long_t calc_load_tasks;
3213 static unsigned long calc_load_update;
3214 unsigned long avenrun[3];
3215 EXPORT_SYMBOL(avenrun);
3217 static long calc_load_fold_active(struct rq *this_rq)
3219 long nr_active, delta = 0;
3221 nr_active = this_rq->nr_running;
3222 nr_active += (long) this_rq->nr_uninterruptible;
3224 if (nr_active != this_rq->calc_load_active) {
3225 delta = nr_active - this_rq->calc_load_active;
3226 this_rq->calc_load_active = nr_active;
3232 static unsigned long
3233 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3236 load += active * (FIXED_1 - exp);
3237 load += 1UL << (FSHIFT - 1);
3238 return load >> FSHIFT;
3243 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3245 * When making the ILB scale, we should try to pull this in as well.
3247 static atomic_long_t calc_load_tasks_idle;
3249 static void calc_load_account_idle(struct rq *this_rq)
3253 delta = calc_load_fold_active(this_rq);
3255 atomic_long_add(delta, &calc_load_tasks_idle);
3258 static long calc_load_fold_idle(void)
3263 * Its got a race, we don't care...
3265 if (atomic_long_read(&calc_load_tasks_idle))
3266 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3272 * fixed_power_int - compute: x^n, in O(log n) time
3274 * @x: base of the power
3275 * @frac_bits: fractional bits of @x
3276 * @n: power to raise @x to.
3278 * By exploiting the relation between the definition of the natural power
3279 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3280 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3281 * (where: n_i \elem {0, 1}, the binary vector representing n),
3282 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3283 * of course trivially computable in O(log_2 n), the length of our binary
3286 static unsigned long
3287 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3289 unsigned long result = 1UL << frac_bits;
3294 result += 1UL << (frac_bits - 1);
3295 result >>= frac_bits;
3301 x += 1UL << (frac_bits - 1);
3309 * a1 = a0 * e + a * (1 - e)
3311 * a2 = a1 * e + a * (1 - e)
3312 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3313 * = a0 * e^2 + a * (1 - e) * (1 + e)
3315 * a3 = a2 * e + a * (1 - e)
3316 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3317 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3321 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3322 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3323 * = a0 * e^n + a * (1 - e^n)
3325 * [1] application of the geometric series:
3328 * S_n := \Sum x^i = -------------
3331 static unsigned long
3332 calc_load_n(unsigned long load, unsigned long exp,
3333 unsigned long active, unsigned int n)
3336 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3340 * NO_HZ can leave us missing all per-cpu ticks calling
3341 * calc_load_account_active(), but since an idle CPU folds its delta into
3342 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3343 * in the pending idle delta if our idle period crossed a load cycle boundary.
3345 * Once we've updated the global active value, we need to apply the exponential
3346 * weights adjusted to the number of cycles missed.
3348 static void calc_global_nohz(unsigned long ticks)
3350 long delta, active, n;
3352 if (time_before(jiffies, calc_load_update))
3356 * If we crossed a calc_load_update boundary, make sure to fold
3357 * any pending idle changes, the respective CPUs might have
3358 * missed the tick driven calc_load_account_active() update
3361 delta = calc_load_fold_idle();
3363 atomic_long_add(delta, &calc_load_tasks);
3366 * If we were idle for multiple load cycles, apply them.
3368 if (ticks >= LOAD_FREQ) {
3369 n = ticks / LOAD_FREQ;
3371 active = atomic_long_read(&calc_load_tasks);
3372 active = active > 0 ? active * FIXED_1 : 0;
3374 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3375 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3376 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3378 calc_load_update += n * LOAD_FREQ;
3382 * Its possible the remainder of the above division also crosses
3383 * a LOAD_FREQ period, the regular check in calc_global_load()
3384 * which comes after this will take care of that.
3386 * Consider us being 11 ticks before a cycle completion, and us
3387 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3388 * age us 4 cycles, and the test in calc_global_load() will
3389 * pick up the final one.
3393 static void calc_load_account_idle(struct rq *this_rq)
3397 static inline long calc_load_fold_idle(void)
3402 static void calc_global_nohz(unsigned long ticks)
3408 * get_avenrun - get the load average array
3409 * @loads: pointer to dest load array
3410 * @offset: offset to add
3411 * @shift: shift count to shift the result left
3413 * These values are estimates at best, so no need for locking.
3415 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3417 loads[0] = (avenrun[0] + offset) << shift;
3418 loads[1] = (avenrun[1] + offset) << shift;
3419 loads[2] = (avenrun[2] + offset) << shift;
3423 * calc_load - update the avenrun load estimates 10 ticks after the
3424 * CPUs have updated calc_load_tasks.
3426 void calc_global_load(unsigned long ticks)
3430 calc_global_nohz(ticks);
3432 if (time_before(jiffies, calc_load_update + 10))
3435 active = atomic_long_read(&calc_load_tasks);
3436 active = active > 0 ? active * FIXED_1 : 0;
3438 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3439 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3440 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3442 calc_load_update += LOAD_FREQ;
3446 * Called from update_cpu_load() to periodically update this CPU's
3449 static void calc_load_account_active(struct rq *this_rq)
3453 if (time_before(jiffies, this_rq->calc_load_update))
3456 delta = calc_load_fold_active(this_rq);
3457 delta += calc_load_fold_idle();
3459 atomic_long_add(delta, &calc_load_tasks);
3461 this_rq->calc_load_update += LOAD_FREQ;
3465 * The exact cpuload at various idx values, calculated at every tick would be
3466 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3468 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3469 * on nth tick when cpu may be busy, then we have:
3470 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3471 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3473 * decay_load_missed() below does efficient calculation of
3474 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3475 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3477 * The calculation is approximated on a 128 point scale.
3478 * degrade_zero_ticks is the number of ticks after which load at any
3479 * particular idx is approximated to be zero.
3480 * degrade_factor is a precomputed table, a row for each load idx.
3481 * Each column corresponds to degradation factor for a power of two ticks,
3482 * based on 128 point scale.
3484 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3485 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3487 * With this power of 2 load factors, we can degrade the load n times
3488 * by looking at 1 bits in n and doing as many mult/shift instead of
3489 * n mult/shifts needed by the exact degradation.
3491 #define DEGRADE_SHIFT 7
3492 static const unsigned char
3493 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3494 static const unsigned char
3495 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3496 {0, 0, 0, 0, 0, 0, 0, 0},
3497 {64, 32, 8, 0, 0, 0, 0, 0},
3498 {96, 72, 40, 12, 1, 0, 0},
3499 {112, 98, 75, 43, 15, 1, 0},
3500 {120, 112, 98, 76, 45, 16, 2} };
3503 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3504 * would be when CPU is idle and so we just decay the old load without
3505 * adding any new load.
3507 static unsigned long
3508 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3512 if (!missed_updates)
3515 if (missed_updates >= degrade_zero_ticks[idx])
3519 return load >> missed_updates;
3521 while (missed_updates) {
3522 if (missed_updates % 2)
3523 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3525 missed_updates >>= 1;
3532 * Update rq->cpu_load[] statistics. This function is usually called every
3533 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3534 * every tick. We fix it up based on jiffies.
3536 static void update_cpu_load(struct rq *this_rq)
3538 unsigned long this_load = this_rq->load.weight;
3539 unsigned long curr_jiffies = jiffies;
3540 unsigned long pending_updates;
3543 this_rq->nr_load_updates++;
3545 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3546 if (curr_jiffies == this_rq->last_load_update_tick)
3549 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3550 this_rq->last_load_update_tick = curr_jiffies;
3552 /* Update our load: */
3553 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3554 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3555 unsigned long old_load, new_load;
3557 /* scale is effectively 1 << i now, and >> i divides by scale */
3559 old_load = this_rq->cpu_load[i];
3560 old_load = decay_load_missed(old_load, pending_updates - 1, i);
3561 new_load = this_load;
3563 * Round up the averaging division if load is increasing. This
3564 * prevents us from getting stuck on 9 if the load is 10, for
3567 if (new_load > old_load)
3568 new_load += scale - 1;
3570 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
3573 sched_avg_update(this_rq);
3576 static void update_cpu_load_active(struct rq *this_rq)
3578 update_cpu_load(this_rq);
3580 calc_load_account_active(this_rq);
3586 * sched_exec - execve() is a valuable balancing opportunity, because at
3587 * this point the task has the smallest effective memory and cache footprint.
3589 void sched_exec(void)
3591 struct task_struct *p = current;
3592 unsigned long flags;
3595 raw_spin_lock_irqsave(&p->pi_lock, flags);
3596 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
3597 if (dest_cpu == smp_processor_id())
3600 if (likely(cpu_active(dest_cpu))) {
3601 struct migration_arg arg = { p, dest_cpu };
3603 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3604 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3608 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3613 DEFINE_PER_CPU(struct kernel_stat, kstat);
3615 EXPORT_PER_CPU_SYMBOL(kstat);
3618 * Return any ns on the sched_clock that have not yet been accounted in
3619 * @p in case that task is currently running.
3621 * Called with task_rq_lock() held on @rq.
3623 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3627 if (task_current(rq, p)) {
3628 update_rq_clock(rq);
3629 ns = rq->clock_task - p->se.exec_start;
3637 unsigned long long task_delta_exec(struct task_struct *p)
3639 unsigned long flags;
3643 rq = task_rq_lock(p, &flags);
3644 ns = do_task_delta_exec(p, rq);
3645 task_rq_unlock(rq, p, &flags);
3651 * Return accounted runtime for the task.
3652 * In case the task is currently running, return the runtime plus current's
3653 * pending runtime that have not been accounted yet.
3655 unsigned long long task_sched_runtime(struct task_struct *p)
3657 unsigned long flags;
3661 rq = task_rq_lock(p, &flags);
3662 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3663 task_rq_unlock(rq, p, &flags);
3669 * Return sum_exec_runtime for the thread group.
3670 * In case the task is currently running, return the sum plus current's
3671 * pending runtime that have not been accounted yet.
3673 * Note that the thread group might have other running tasks as well,
3674 * so the return value not includes other pending runtime that other
3675 * running tasks might have.
3677 unsigned long long thread_group_sched_runtime(struct task_struct *p)
3679 struct task_cputime totals;
3680 unsigned long flags;
3684 rq = task_rq_lock(p, &flags);
3685 thread_group_cputime(p, &totals);
3686 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3687 task_rq_unlock(rq, p, &flags);
3693 * Account user cpu time to a process.
3694 * @p: the process that the cpu time gets accounted to
3695 * @cputime: the cpu time spent in user space since the last update
3696 * @cputime_scaled: cputime scaled by cpu frequency
3698 void account_user_time(struct task_struct *p, cputime_t cputime,
3699 cputime_t cputime_scaled)
3701 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3704 /* Add user time to process. */
3705 p->utime = cputime_add(p->utime, cputime);
3706 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3707 account_group_user_time(p, cputime);
3709 /* Add user time to cpustat. */
3710 tmp = cputime_to_cputime64(cputime);
3711 if (TASK_NICE(p) > 0)
3712 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3714 cpustat->user = cputime64_add(cpustat->user, tmp);
3716 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3717 /* Account for user time used */
3718 acct_update_integrals(p);
3722 * Account guest cpu time to a process.
3723 * @p: the process that the cpu time gets accounted to
3724 * @cputime: the cpu time spent in virtual machine since the last update
3725 * @cputime_scaled: cputime scaled by cpu frequency
3727 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3728 cputime_t cputime_scaled)
3731 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3733 tmp = cputime_to_cputime64(cputime);
3735 /* Add guest time to process. */
3736 p->utime = cputime_add(p->utime, cputime);
3737 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3738 account_group_user_time(p, cputime);
3739 p->gtime = cputime_add(p->gtime, cputime);
3741 /* Add guest time to cpustat. */
3742 if (TASK_NICE(p) > 0) {
3743 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3744 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3746 cpustat->user = cputime64_add(cpustat->user, tmp);
3747 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3752 * Account system cpu time to a process and desired cpustat field
3753 * @p: the process that the cpu time gets accounted to
3754 * @cputime: the cpu time spent in kernel space since the last update
3755 * @cputime_scaled: cputime scaled by cpu frequency
3756 * @target_cputime64: pointer to cpustat field that has to be updated
3759 void __account_system_time(struct task_struct *p, cputime_t cputime,
3760 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3762 cputime64_t tmp = cputime_to_cputime64(cputime);
3764 /* Add system time to process. */
3765 p->stime = cputime_add(p->stime, cputime);
3766 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3767 account_group_system_time(p, cputime);
3769 /* Add system time to cpustat. */
3770 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
3771 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3773 /* Account for system time used */
3774 acct_update_integrals(p);
3778 * Account system cpu time to a process.
3779 * @p: the process that the cpu time gets accounted to
3780 * @hardirq_offset: the offset to subtract from hardirq_count()
3781 * @cputime: the cpu time spent in kernel space since the last update
3782 * @cputime_scaled: cputime scaled by cpu frequency
3784 void account_system_time(struct task_struct *p, int hardirq_offset,
3785 cputime_t cputime, cputime_t cputime_scaled)
3787 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3788 cputime64_t *target_cputime64;
3790 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3791 account_guest_time(p, cputime, cputime_scaled);
3795 if (hardirq_count() - hardirq_offset)
3796 target_cputime64 = &cpustat->irq;
3797 else if (in_serving_softirq())
3798 target_cputime64 = &cpustat->softirq;
3800 target_cputime64 = &cpustat->system;
3802 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
3806 * Account for involuntary wait time.
3807 * @cputime: the cpu time spent in involuntary wait
3809 void account_steal_time(cputime_t cputime)
3811 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3812 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3814 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3818 * Account for idle time.
3819 * @cputime: the cpu time spent in idle wait
3821 void account_idle_time(cputime_t cputime)
3823 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3824 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3825 struct rq *rq = this_rq();
3827 if (atomic_read(&rq->nr_iowait) > 0)
3828 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3830 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3833 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3835 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
3837 * Account a tick to a process and cpustat
3838 * @p: the process that the cpu time gets accounted to
3839 * @user_tick: is the tick from userspace
3840 * @rq: the pointer to rq
3842 * Tick demultiplexing follows the order
3843 * - pending hardirq update
3844 * - pending softirq update
3848 * - check for guest_time
3849 * - else account as system_time
3851 * Check for hardirq is done both for system and user time as there is
3852 * no timer going off while we are on hardirq and hence we may never get an
3853 * opportunity to update it solely in system time.
3854 * p->stime and friends are only updated on system time and not on irq
3855 * softirq as those do not count in task exec_runtime any more.
3857 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3860 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3861 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
3862 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3864 if (irqtime_account_hi_update()) {
3865 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3866 } else if (irqtime_account_si_update()) {
3867 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3868 } else if (this_cpu_ksoftirqd() == p) {
3870 * ksoftirqd time do not get accounted in cpu_softirq_time.
3871 * So, we have to handle it separately here.
3872 * Also, p->stime needs to be updated for ksoftirqd.
3874 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3876 } else if (user_tick) {
3877 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3878 } else if (p == rq->idle) {
3879 account_idle_time(cputime_one_jiffy);
3880 } else if (p->flags & PF_VCPU) { /* System time or guest time */
3881 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
3883 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3888 static void irqtime_account_idle_ticks(int ticks)
3891 struct rq *rq = this_rq();
3893 for (i = 0; i < ticks; i++)
3894 irqtime_account_process_tick(current, 0, rq);
3896 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
3897 static void irqtime_account_idle_ticks(int ticks) {}
3898 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3900 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
3903 * Account a single tick of cpu time.
3904 * @p: the process that the cpu time gets accounted to
3905 * @user_tick: indicates if the tick is a user or a system tick
3907 void account_process_tick(struct task_struct *p, int user_tick)
3909 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3910 struct rq *rq = this_rq();
3912 if (sched_clock_irqtime) {
3913 irqtime_account_process_tick(p, user_tick, rq);
3918 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3919 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3920 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3923 account_idle_time(cputime_one_jiffy);
3927 * Account multiple ticks of steal time.
3928 * @p: the process from which the cpu time has been stolen
3929 * @ticks: number of stolen ticks
3931 void account_steal_ticks(unsigned long ticks)
3933 account_steal_time(jiffies_to_cputime(ticks));
3937 * Account multiple ticks of idle time.
3938 * @ticks: number of stolen ticks
3940 void account_idle_ticks(unsigned long ticks)
3943 if (sched_clock_irqtime) {
3944 irqtime_account_idle_ticks(ticks);
3948 account_idle_time(jiffies_to_cputime(ticks));
3954 * Use precise platform statistics if available:
3956 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3957 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3963 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3965 struct task_cputime cputime;
3967 thread_group_cputime(p, &cputime);
3969 *ut = cputime.utime;
3970 *st = cputime.stime;
3974 #ifndef nsecs_to_cputime
3975 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3978 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3980 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3983 * Use CFS's precise accounting:
3985 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3991 do_div(temp, total);
3992 utime = (cputime_t)temp;
3997 * Compare with previous values, to keep monotonicity:
3999 p->prev_utime = max(p->prev_utime, utime);
4000 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
4002 *ut = p->prev_utime;
4003 *st = p->prev_stime;
4007 * Must be called with siglock held.
4009 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4011 struct signal_struct *sig = p->signal;
4012 struct task_cputime cputime;
4013 cputime_t rtime, utime, total;
4015 thread_group_cputime(p, &cputime);
4017 total = cputime_add(cputime.utime, cputime.stime);
4018 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
4023 temp *= cputime.utime;
4024 do_div(temp, total);
4025 utime = (cputime_t)temp;
4029 sig->prev_utime = max(sig->prev_utime, utime);
4030 sig->prev_stime = max(sig->prev_stime,
4031 cputime_sub(rtime, sig->prev_utime));
4033 *ut = sig->prev_utime;
4034 *st = sig->prev_stime;
4039 * This function gets called by the timer code, with HZ frequency.
4040 * We call it with interrupts disabled.
4042 void scheduler_tick(void)
4044 int cpu = smp_processor_id();
4045 struct rq *rq = cpu_rq(cpu);
4046 struct task_struct *curr = rq->curr;
4050 raw_spin_lock(&rq->lock);
4051 update_rq_clock(rq);
4052 update_cpu_load_active(rq);
4053 curr->sched_class->task_tick(rq, curr, 0);
4054 raw_spin_unlock(&rq->lock);
4056 perf_event_task_tick();
4059 rq->idle_at_tick = idle_cpu(cpu);
4060 trigger_load_balance(rq, cpu);
4064 notrace unsigned long get_parent_ip(unsigned long addr)
4066 if (in_lock_functions(addr)) {
4067 addr = CALLER_ADDR2;
4068 if (in_lock_functions(addr))
4069 addr = CALLER_ADDR3;
4074 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4075 defined(CONFIG_PREEMPT_TRACER))
4077 void __kprobes add_preempt_count(int val)
4079 #ifdef CONFIG_DEBUG_PREEMPT
4083 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4086 preempt_count() += val;
4087 #ifdef CONFIG_DEBUG_PREEMPT
4089 * Spinlock count overflowing soon?
4091 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4094 if (preempt_count() == val)
4095 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4097 EXPORT_SYMBOL(add_preempt_count);
4099 void __kprobes sub_preempt_count(int val)
4101 #ifdef CONFIG_DEBUG_PREEMPT
4105 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4108 * Is the spinlock portion underflowing?
4110 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4111 !(preempt_count() & PREEMPT_MASK)))
4115 if (preempt_count() == val)
4116 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4117 preempt_count() -= val;
4119 EXPORT_SYMBOL(sub_preempt_count);
4124 * Print scheduling while atomic bug:
4126 static noinline void __schedule_bug(struct task_struct *prev)
4128 struct pt_regs *regs = get_irq_regs();
4130 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4131 prev->comm, prev->pid, preempt_count());
4133 debug_show_held_locks(prev);
4135 if (irqs_disabled())
4136 print_irqtrace_events(prev);
4145 * Various schedule()-time debugging checks and statistics:
4147 static inline void schedule_debug(struct task_struct *prev)
4150 * Test if we are atomic. Since do_exit() needs to call into
4151 * schedule() atomically, we ignore that path for now.
4152 * Otherwise, whine if we are scheduling when we should not be.
4154 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4155 __schedule_bug(prev);
4157 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4159 schedstat_inc(this_rq(), sched_count);
4162 static void put_prev_task(struct rq *rq, struct task_struct *prev)
4164 if (prev->on_rq || rq->skip_clock_update < 0)
4165 update_rq_clock(rq);
4166 prev->sched_class->put_prev_task(rq, prev);
4170 * Pick up the highest-prio task:
4172 static inline struct task_struct *
4173 pick_next_task(struct rq *rq)
4175 const struct sched_class *class;
4176 struct task_struct *p;
4179 * Optimization: we know that if all tasks are in
4180 * the fair class we can call that function directly:
4182 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4183 p = fair_sched_class.pick_next_task(rq);
4188 for_each_class(class) {
4189 p = class->pick_next_task(rq);
4194 BUG(); /* the idle class will always have a runnable task */
4198 * schedule() is the main scheduler function.
4200 asmlinkage void __sched schedule(void)
4202 struct task_struct *prev, *next;
4203 unsigned long *switch_count;
4209 cpu = smp_processor_id();
4211 rcu_note_context_switch(cpu);
4214 schedule_debug(prev);
4216 if (sched_feat(HRTICK))
4219 raw_spin_lock_irq(&rq->lock);
4221 switch_count = &prev->nivcsw;
4222 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4223 if (unlikely(signal_pending_state(prev->state, prev))) {
4224 prev->state = TASK_RUNNING;
4226 deactivate_task(rq, prev, DEQUEUE_SLEEP);
4230 * If a worker went to sleep, notify and ask workqueue
4231 * whether it wants to wake up a task to maintain
4234 if (prev->flags & PF_WQ_WORKER) {
4235 struct task_struct *to_wakeup;
4237 to_wakeup = wq_worker_sleeping(prev, cpu);
4239 try_to_wake_up_local(to_wakeup);
4243 * If we are going to sleep and we have plugged IO
4244 * queued, make sure to submit it to avoid deadlocks.
4246 if (blk_needs_flush_plug(prev)) {
4247 raw_spin_unlock(&rq->lock);
4248 blk_schedule_flush_plug(prev);
4249 raw_spin_lock(&rq->lock);
4252 switch_count = &prev->nvcsw;
4255 pre_schedule(rq, prev);
4257 if (unlikely(!rq->nr_running))
4258 idle_balance(cpu, rq);
4260 put_prev_task(rq, prev);
4261 next = pick_next_task(rq);
4262 clear_tsk_need_resched(prev);
4263 rq->skip_clock_update = 0;
4265 if (likely(prev != next)) {
4270 context_switch(rq, prev, next); /* unlocks the rq */
4272 * The context switch have flipped the stack from under us
4273 * and restored the local variables which were saved when
4274 * this task called schedule() in the past. prev == current
4275 * is still correct, but it can be moved to another cpu/rq.
4277 cpu = smp_processor_id();
4280 raw_spin_unlock_irq(&rq->lock);
4284 preempt_enable_no_resched();
4288 EXPORT_SYMBOL(schedule);
4290 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4292 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
4297 if (lock->owner != owner)
4301 * Ensure we emit the owner->on_cpu, dereference _after_ checking
4302 * lock->owner still matches owner, if that fails, owner might
4303 * point to free()d memory, if it still matches, the rcu_read_lock()
4304 * ensures the memory stays valid.
4308 ret = owner->on_cpu;
4316 * Look out! "owner" is an entirely speculative pointer
4317 * access and not reliable.
4319 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
4321 if (!sched_feat(OWNER_SPIN))
4324 while (owner_running(lock, owner)) {
4328 arch_mutex_cpu_relax();
4332 * If the owner changed to another task there is likely
4333 * heavy contention, stop spinning.
4342 #ifdef CONFIG_PREEMPT
4344 * this is the entry point to schedule() from in-kernel preemption
4345 * off of preempt_enable. Kernel preemptions off return from interrupt
4346 * occur there and call schedule directly.
4348 asmlinkage void __sched notrace preempt_schedule(void)
4350 struct thread_info *ti = current_thread_info();
4353 * If there is a non-zero preempt_count or interrupts are disabled,
4354 * we do not want to preempt the current task. Just return..
4356 if (likely(ti->preempt_count || irqs_disabled()))
4360 add_preempt_count_notrace(PREEMPT_ACTIVE);
4362 sub_preempt_count_notrace(PREEMPT_ACTIVE);
4365 * Check again in case we missed a preemption opportunity
4366 * between schedule and now.
4369 } while (need_resched());
4371 EXPORT_SYMBOL(preempt_schedule);
4374 * this is the entry point to schedule() from kernel preemption
4375 * off of irq context.
4376 * Note, that this is called and return with irqs disabled. This will
4377 * protect us against recursive calling from irq.
4379 asmlinkage void __sched preempt_schedule_irq(void)
4381 struct thread_info *ti = current_thread_info();
4383 /* Catch callers which need to be fixed */
4384 BUG_ON(ti->preempt_count || !irqs_disabled());
4387 add_preempt_count(PREEMPT_ACTIVE);
4390 local_irq_disable();
4391 sub_preempt_count(PREEMPT_ACTIVE);
4394 * Check again in case we missed a preemption opportunity
4395 * between schedule and now.
4398 } while (need_resched());
4401 #endif /* CONFIG_PREEMPT */
4403 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
4406 return try_to_wake_up(curr->private, mode, wake_flags);
4408 EXPORT_SYMBOL(default_wake_function);
4411 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4412 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4413 * number) then we wake all the non-exclusive tasks and one exclusive task.
4415 * There are circumstances in which we can try to wake a task which has already
4416 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4417 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4419 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4420 int nr_exclusive, int wake_flags, void *key)
4422 wait_queue_t *curr, *next;
4424 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4425 unsigned flags = curr->flags;
4427 if (curr->func(curr, mode, wake_flags, key) &&
4428 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4434 * __wake_up - wake up threads blocked on a waitqueue.
4436 * @mode: which threads
4437 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4438 * @key: is directly passed to the wakeup function