]> nv-tegra.nvidia Code Review - linux-2.6.git/blob - kernel/sched.c
Merge branch 'linus' into cpus4096
[linux-2.6.git] / kernel / sched.c
1 /*
2  *  kernel/sched.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *              make semaphores SMP safe
10  *  1998-11-19  Implemented schedule_timeout() and related stuff
11  *              by Andrea Arcangeli
12  *  2002-01-04  New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *              hybrid priority-list and round-robin design with
14  *              an array-switch method of distributing timeslices
15  *              and per-CPU runqueues.  Cleanups and useful suggestions
16  *              by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03  Interactivity tuning by Con Kolivas.
18  *  2004-04-02  Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/bootmem.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
77
78 #include "sched_cpupri.h"
79
80 /*
81  * Convert user-nice values [ -20 ... 0 ... 19 ]
82  * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
83  * and back.
84  */
85 #define NICE_TO_PRIO(nice)      (MAX_RT_PRIO + (nice) + 20)
86 #define PRIO_TO_NICE(prio)      ((prio) - MAX_RT_PRIO - 20)
87 #define TASK_NICE(p)            PRIO_TO_NICE((p)->static_prio)
88
89 /*
90  * 'User priority' is the nice value converted to something we
91  * can work with better when scaling various scheduler parameters,
92  * it's a [ 0 ... 39 ] range.
93  */
94 #define USER_PRIO(p)            ((p)-MAX_RT_PRIO)
95 #define TASK_USER_PRIO(p)       USER_PRIO((p)->static_prio)
96 #define MAX_USER_PRIO           (USER_PRIO(MAX_PRIO))
97
98 /*
99  * Helpers for converting nanosecond timing to jiffy resolution
100  */
101 #define NS_TO_JIFFIES(TIME)     ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
102
103 #define NICE_0_LOAD             SCHED_LOAD_SCALE
104 #define NICE_0_SHIFT            SCHED_LOAD_SHIFT
105
106 /*
107  * These are the 'tuning knobs' of the scheduler:
108  *
109  * default timeslice is 100 msecs (used only for SCHED_RR tasks).
110  * Timeslices get refilled after they expire.
111  */
112 #define DEF_TIMESLICE           (100 * HZ / 1000)
113
114 /*
115  * single value that denotes runtime == period, ie unlimited time.
116  */
117 #define RUNTIME_INF     ((u64)~0ULL)
118
119 #ifdef CONFIG_SMP
120 /*
121  * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
122  * Since cpu_power is a 'constant', we can use a reciprocal divide.
123  */
124 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
125 {
126         return reciprocal_divide(load, sg->reciprocal_cpu_power);
127 }
128
129 /*
130  * Each time a sched group cpu_power is changed,
131  * we must compute its reciprocal value
132  */
133 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
134 {
135         sg->__cpu_power += val;
136         sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
137 }
138 #endif
139
140 static inline int rt_policy(int policy)
141 {
142         if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
143                 return 1;
144         return 0;
145 }
146
147 static inline int task_has_rt_policy(struct task_struct *p)
148 {
149         return rt_policy(p->policy);
150 }
151
152 /*
153  * This is the priority-queue data structure of the RT scheduling class:
154  */
155 struct rt_prio_array {
156         DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
157         struct list_head queue[MAX_RT_PRIO];
158 };
159
160 struct rt_bandwidth {
161         /* nests inside the rq lock: */
162         spinlock_t              rt_runtime_lock;
163         ktime_t                 rt_period;
164         u64                     rt_runtime;
165         struct hrtimer          rt_period_timer;
166 };
167
168 static struct rt_bandwidth def_rt_bandwidth;
169
170 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
171
172 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
173 {
174         struct rt_bandwidth *rt_b =
175                 container_of(timer, struct rt_bandwidth, rt_period_timer);
176         ktime_t now;
177         int overrun;
178         int idle = 0;
179
180         for (;;) {
181                 now = hrtimer_cb_get_time(timer);
182                 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
183
184                 if (!overrun)
185                         break;
186
187                 idle = do_sched_rt_period_timer(rt_b, overrun);
188         }
189
190         return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
191 }
192
193 static
194 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
195 {
196         rt_b->rt_period = ns_to_ktime(period);
197         rt_b->rt_runtime = runtime;
198
199         spin_lock_init(&rt_b->rt_runtime_lock);
200
201         hrtimer_init(&rt_b->rt_period_timer,
202                         CLOCK_MONOTONIC, HRTIMER_MODE_REL);
203         rt_b->rt_period_timer.function = sched_rt_period_timer;
204         rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
205 }
206
207 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
208 {
209         ktime_t now;
210
211         if (rt_b->rt_runtime == RUNTIME_INF)
212                 return;
213
214         if (hrtimer_active(&rt_b->rt_period_timer))
215                 return;
216
217         spin_lock(&rt_b->rt_runtime_lock);
218         for (;;) {
219                 if (hrtimer_active(&rt_b->rt_period_timer))
220                         break;
221
222                 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
223                 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
224                 hrtimer_start(&rt_b->rt_period_timer,
225                               rt_b->rt_period_timer.expires,
226                               HRTIMER_MODE_ABS);
227         }
228         spin_unlock(&rt_b->rt_runtime_lock);
229 }
230
231 #ifdef CONFIG_RT_GROUP_SCHED
232 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
233 {
234         hrtimer_cancel(&rt_b->rt_period_timer);
235 }
236 #endif
237
238 /*
239  * sched_domains_mutex serializes calls to arch_init_sched_domains,
240  * detach_destroy_domains and partition_sched_domains.
241  */
242 static DEFINE_MUTEX(sched_domains_mutex);
243
244 #ifdef CONFIG_GROUP_SCHED
245
246 #include <linux/cgroup.h>
247
248 struct cfs_rq;
249
250 static LIST_HEAD(task_groups);
251
252 /* task group related information */
253 struct task_group {
254 #ifdef CONFIG_CGROUP_SCHED
255         struct cgroup_subsys_state css;
256 #endif
257
258 #ifdef CONFIG_FAIR_GROUP_SCHED
259         /* schedulable entities of this group on each cpu */
260         struct sched_entity **se;
261         /* runqueue "owned" by this group on each cpu */
262         struct cfs_rq **cfs_rq;
263         unsigned long shares;
264 #endif
265
266 #ifdef CONFIG_RT_GROUP_SCHED
267         struct sched_rt_entity **rt_se;
268         struct rt_rq **rt_rq;
269
270         struct rt_bandwidth rt_bandwidth;
271 #endif
272
273         struct rcu_head rcu;
274         struct list_head list;
275
276         struct task_group *parent;
277         struct list_head siblings;
278         struct list_head children;
279 };
280
281 #ifdef CONFIG_USER_SCHED
282
283 /*
284  * Root task group.
285  *      Every UID task group (including init_task_group aka UID-0) will
286  *      be a child to this group.
287  */
288 struct task_group root_task_group;
289
290 #ifdef CONFIG_FAIR_GROUP_SCHED
291 /* Default task group's sched entity on each cpu */
292 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
293 /* Default task group's cfs_rq on each cpu */
294 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
295 #endif /* CONFIG_FAIR_GROUP_SCHED */
296
297 #ifdef CONFIG_RT_GROUP_SCHED
298 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
299 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
300 #endif /* CONFIG_RT_GROUP_SCHED */
301 #else /* !CONFIG_FAIR_GROUP_SCHED */
302 #define root_task_group init_task_group
303 #endif /* CONFIG_FAIR_GROUP_SCHED */
304
305 /* task_group_lock serializes add/remove of task groups and also changes to
306  * a task group's cpu shares.
307  */
308 static DEFINE_SPINLOCK(task_group_lock);
309
310 #ifdef CONFIG_FAIR_GROUP_SCHED
311 #ifdef CONFIG_USER_SCHED
312 # define INIT_TASK_GROUP_LOAD   (2*NICE_0_LOAD)
313 #else /* !CONFIG_USER_SCHED */
314 # define INIT_TASK_GROUP_LOAD   NICE_0_LOAD
315 #endif /* CONFIG_USER_SCHED */
316
317 /*
318  * A weight of 0 or 1 can cause arithmetics problems.
319  * A weight of a cfs_rq is the sum of weights of which entities
320  * are queued on this cfs_rq, so a weight of a entity should not be
321  * too large, so as the shares value of a task group.
322  * (The default weight is 1024 - so there's no practical
323  *  limitation from this.)
324  */
325 #define MIN_SHARES      2
326 #define MAX_SHARES      (1UL << 18)
327
328 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
329 #endif
330
331 /* Default task group.
332  *      Every task in system belong to this group at bootup.
333  */
334 struct task_group init_task_group;
335
336 /* return group to which a task belongs */
337 static inline struct task_group *task_group(struct task_struct *p)
338 {
339         struct task_group *tg;
340
341 #ifdef CONFIG_USER_SCHED
342         tg = p->user->tg;
343 #elif defined(CONFIG_CGROUP_SCHED)
344         tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
345                                 struct task_group, css);
346 #else
347         tg = &init_task_group;
348 #endif
349         return tg;
350 }
351
352 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
353 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
354 {
355 #ifdef CONFIG_FAIR_GROUP_SCHED
356         p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
357         p->se.parent = task_group(p)->se[cpu];
358 #endif
359
360 #ifdef CONFIG_RT_GROUP_SCHED
361         p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
362         p->rt.parent = task_group(p)->rt_se[cpu];
363 #endif
364 }
365
366 #else
367
368 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
369 static inline struct task_group *task_group(struct task_struct *p)
370 {
371         return NULL;
372 }
373
374 #endif  /* CONFIG_GROUP_SCHED */
375
376 /* CFS-related fields in a runqueue */
377 struct cfs_rq {
378         struct load_weight load;
379         unsigned long nr_running;
380
381         u64 exec_clock;
382         u64 min_vruntime;
383         u64 pair_start;
384
385         struct rb_root tasks_timeline;
386         struct rb_node *rb_leftmost;
387
388         struct list_head tasks;
389         struct list_head *balance_iterator;
390
391         /*
392          * 'curr' points to currently running entity on this cfs_rq.
393          * It is set to NULL otherwise (i.e when none are currently running).
394          */
395         struct sched_entity *curr, *next;
396
397         unsigned long nr_spread_over;
398
399 #ifdef CONFIG_FAIR_GROUP_SCHED
400         struct rq *rq;  /* cpu runqueue to which this cfs_rq is attached */
401
402         /*
403          * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
404          * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
405          * (like users, containers etc.)
406          *
407          * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
408          * list is used during load balance.
409          */
410         struct list_head leaf_cfs_rq_list;
411         struct task_group *tg;  /* group that "owns" this runqueue */
412
413 #ifdef CONFIG_SMP
414         /*
415          * the part of load.weight contributed by tasks
416          */
417         unsigned long task_weight;
418
419         /*
420          *   h_load = weight * f(tg)
421          *
422          * Where f(tg) is the recursive weight fraction assigned to
423          * this group.
424          */
425         unsigned long h_load;
426
427         /*
428          * this cpu's part of tg->shares
429          */
430         unsigned long shares;
431
432         /*
433          * load.weight at the time we set shares
434          */
435         unsigned long rq_weight;
436 #endif
437 #endif
438 };
439
440 /* Real-Time classes' related field in a runqueue: */
441 struct rt_rq {
442         struct rt_prio_array active;
443         unsigned long rt_nr_running;
444 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
445         int highest_prio; /* highest queued rt task prio */
446 #endif
447 #ifdef CONFIG_SMP
448         unsigned long rt_nr_migratory;
449         int overloaded;
450 #endif
451         int rt_throttled;
452         u64 rt_time;
453         u64 rt_runtime;
454         /* Nests inside the rq lock: */
455         spinlock_t rt_runtime_lock;
456
457 #ifdef CONFIG_RT_GROUP_SCHED
458         unsigned long rt_nr_boosted;
459
460         struct rq *rq;
461         struct list_head leaf_rt_rq_list;
462         struct task_group *tg;
463         struct sched_rt_entity *rt_se;
464 #endif
465 };
466
467 #ifdef CONFIG_SMP
468
469 /*
470  * We add the notion of a root-domain which will be used to define per-domain
471  * variables. Each exclusive cpuset essentially defines an island domain by
472  * fully partitioning the member cpus from any other cpuset. Whenever a new
473  * exclusive cpuset is created, we also create and attach a new root-domain
474  * object.
475  *
476  */
477 struct root_domain {
478         atomic_t refcount;
479         cpumask_t span;
480         cpumask_t online;
481
482         /*
483          * The "RT overload" flag: it gets set if a CPU has more than
484          * one runnable RT task.
485          */
486         cpumask_t rto_mask;
487         atomic_t rto_count;
488 #ifdef CONFIG_SMP
489         struct cpupri cpupri;
490 #endif
491 };
492
493 /*
494  * By default the system creates a single root-domain with all cpus as
495  * members (mimicking the global state we have today).
496  */
497 static struct root_domain def_root_domain;
498
499 #endif
500
501 /*
502  * This is the main, per-CPU runqueue data structure.
503  *
504  * Locking rule: those places that want to lock multiple runqueues
505  * (such as the load balancing or the thread migration code), lock
506  * acquire operations must be ordered by ascending &runqueue.
507  */
508 struct rq {
509         /* runqueue lock: */
510         spinlock_t lock;
511
512         /*
513          * nr_running and cpu_load should be in the same cacheline because
514          * remote CPUs use both these fields when doing load calculation.
515          */
516         unsigned long nr_running;
517         #define CPU_LOAD_IDX_MAX 5
518         unsigned long cpu_load[CPU_LOAD_IDX_MAX];
519         unsigned char idle_at_tick;
520 #ifdef CONFIG_NO_HZ
521         unsigned long last_tick_seen;
522         unsigned char in_nohz_recently;
523 #endif
524         /* capture load from *all* tasks on this cpu: */
525         struct load_weight load;
526         unsigned long nr_load_updates;
527         u64 nr_switches;
528
529         struct cfs_rq cfs;
530         struct rt_rq rt;
531
532 #ifdef CONFIG_FAIR_GROUP_SCHED
533         /* list of leaf cfs_rq on this cpu: */
534         struct list_head leaf_cfs_rq_list;
535 #endif
536 #ifdef CONFIG_RT_GROUP_SCHED
537         struct list_head leaf_rt_rq_list;
538 #endif
539
540         /*
541          * This is part of a global counter where only the total sum
542          * over all CPUs matters. A task can increase this counter on
543          * one CPU and if it got migrated afterwards it may decrease
544          * it on another CPU. Always updated under the runqueue lock:
545          */
546         unsigned long nr_uninterruptible;
547
548         struct task_struct *curr, *idle;
549         unsigned long next_balance;
550         struct mm_struct *prev_mm;
551
552         u64 clock;
553
554         atomic_t nr_iowait;
555
556 #ifdef CONFIG_SMP
557         struct root_domain *rd;
558         struct sched_domain *sd;
559
560         /* For active balancing */
561         int active_balance;
562         int push_cpu;
563         /* cpu of this runqueue: */
564         int cpu;
565         int online;
566
567         unsigned long avg_load_per_task;
568
569         struct task_struct *migration_thread;
570         struct list_head migration_queue;
571 #endif
572
573 #ifdef CONFIG_SCHED_HRTICK
574         unsigned long hrtick_flags;
575         ktime_t hrtick_expire;
576         struct hrtimer hrtick_timer;
577 #endif
578
579 #ifdef CONFIG_SCHEDSTATS
580         /* latency stats */
581         struct sched_info rq_sched_info;
582
583         /* sys_sched_yield() stats */
584         unsigned int yld_exp_empty;
585         unsigned int yld_act_empty;
586         unsigned int yld_both_empty;
587         unsigned int yld_count;
588
589         /* schedule() stats */
590         unsigned int sched_switch;
591         unsigned int sched_count;
592         unsigned int sched_goidle;
593
594         /* try_to_wake_up() stats */
595         unsigned int ttwu_count;
596         unsigned int ttwu_local;
597
598         /* BKL stats */
599         unsigned int bkl_count;
600 #endif
601         struct lock_class_key rq_lock_key;
602 };
603
604 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
605
606 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
607 {
608         rq->curr->sched_class->check_preempt_curr(rq, p);
609 }
610
611 static inline int cpu_of(struct rq *rq)
612 {
613 #ifdef CONFIG_SMP
614         return rq->cpu;
615 #else
616         return 0;
617 #endif
618 }
619
620 /*
621  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
622  * See detach_destroy_domains: synchronize_sched for details.
623  *
624  * The domain tree of any CPU may only be accessed from within
625  * preempt-disabled sections.
626  */
627 #define for_each_domain(cpu, __sd) \
628         for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
629
630 #define cpu_rq(cpu)             (&per_cpu(runqueues, (cpu)))
631 #define this_rq()               (&__get_cpu_var(runqueues))
632 #define task_rq(p)              cpu_rq(task_cpu(p))
633 #define cpu_curr(cpu)           (cpu_rq(cpu)->curr)
634
635 static inline void update_rq_clock(struct rq *rq)
636 {
637         rq->clock = sched_clock_cpu(cpu_of(rq));
638 }
639
640 /*
641  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
642  */
643 #ifdef CONFIG_SCHED_DEBUG
644 # define const_debug __read_mostly
645 #else
646 # define const_debug static const
647 #endif
648
649 /**
650  * runqueue_is_locked
651  *
652  * Returns true if the current cpu runqueue is locked.
653  * This interface allows printk to be called with the runqueue lock
654  * held and know whether or not it is OK to wake up the klogd.
655  */
656 int runqueue_is_locked(void)
657 {
658         int cpu = get_cpu();
659         struct rq *rq = cpu_rq(cpu);
660         int ret;
661
662         ret = spin_is_locked(&rq->lock);
663         put_cpu();
664         return ret;
665 }
666
667 /*
668  * Debugging: various feature bits
669  */
670
671 #define SCHED_FEAT(name, enabled)       \
672         __SCHED_FEAT_##name ,
673
674 enum {
675 #include "sched_features.h"
676 };
677
678 #undef SCHED_FEAT
679
680 #define SCHED_FEAT(name, enabled)       \
681         (1UL << __SCHED_FEAT_##name) * enabled |
682
683 const_debug unsigned int sysctl_sched_features =
684 #include "sched_features.h"
685         0;
686
687 #undef SCHED_FEAT
688
689 #ifdef CONFIG_SCHED_DEBUG
690 #define SCHED_FEAT(name, enabled)       \
691         #name ,
692
693 static __read_mostly char *sched_feat_names[] = {
694 #include "sched_features.h"
695         NULL
696 };
697
698 #undef SCHED_FEAT
699
700 static int sched_feat_open(struct inode *inode, struct file *filp)
701 {
702         filp->private_data = inode->i_private;
703         return 0;
704 }
705
706 static ssize_t
707 sched_feat_read(struct file *filp, char __user *ubuf,
708                 size_t cnt, loff_t *ppos)
709 {
710         char *buf;
711         int r = 0;
712         int len = 0;
713         int i;
714
715         for (i = 0; sched_feat_names[i]; i++) {
716                 len += strlen(sched_feat_names[i]);
717                 len += 4;
718         }
719
720         buf = kmalloc(len + 2, GFP_KERNEL);
721         if (!buf)
722                 return -ENOMEM;
723
724         for (i = 0; sched_feat_names[i]; i++) {
725                 if (sysctl_sched_features & (1UL << i))
726                         r += sprintf(buf + r, "%s ", sched_feat_names[i]);
727                 else
728                         r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
729         }
730
731         r += sprintf(buf + r, "\n");
732         WARN_ON(r >= len + 2);
733
734         r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
735
736         kfree(buf);
737
738         return r;
739 }
740
741 static ssize_t
742 sched_feat_write(struct file *filp, const char __user *ubuf,
743                 size_t cnt, loff_t *ppos)
744 {
745         char buf[64];
746         char *cmp = buf;
747         int neg = 0;
748         int i;
749
750         if (cnt > 63)
751                 cnt = 63;
752
753         if (copy_from_user(&buf, ubuf, cnt))
754                 return -EFAULT;
755
756         buf[cnt] = 0;
757
758         if (strncmp(buf, "NO_", 3) == 0) {
759                 neg = 1;
760                 cmp += 3;
761         }
762
763         for (i = 0; sched_feat_names[i]; i++) {
764                 int len = strlen(sched_feat_names[i]);
765
766                 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
767                         if (neg)
768                                 sysctl_sched_features &= ~(1UL << i);
769                         else
770                                 sysctl_sched_features |= (1UL << i);
771                         break;
772                 }
773         }
774
775         if (!sched_feat_names[i])
776                 return -EINVAL;
777
778         filp->f_pos += cnt;
779
780         return cnt;
781 }
782
783 static struct file_operations sched_feat_fops = {
784         .open   = sched_feat_open,
785         .read   = sched_feat_read,
786         .write  = sched_feat_write,
787 };
788
789 static __init int sched_init_debug(void)
790 {
791         debugfs_create_file("sched_features", 0644, NULL, NULL,
792                         &sched_feat_fops);
793
794         return 0;
795 }
796 late_initcall(sched_init_debug);
797
798 #endif
799
800 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
801
802 /*
803  * Number of tasks to iterate in a single balance run.
804  * Limited because this is done with IRQs disabled.
805  */
806 const_debug unsigned int sysctl_sched_nr_migrate = 32;
807
808 /*
809  * ratelimit for updating the group shares.
810  * default: 0.5ms
811  */
812 const_debug unsigned int sysctl_sched_shares_ratelimit = 500000;
813
814 /*
815  * period over which we measure -rt task cpu usage in us.
816  * default: 1s
817  */
818 unsigned int sysctl_sched_rt_period = 1000000;
819
820 static __read_mostly int scheduler_running;
821
822 /*
823  * part of the period that we allow rt tasks to run in us.
824  * default: 0.95s
825  */
826 int sysctl_sched_rt_runtime = 950000;
827
828 static inline u64 global_rt_period(void)
829 {
830         return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
831 }
832
833 static inline u64 global_rt_runtime(void)
834 {
835         if (sysctl_sched_rt_period < 0)
836                 return RUNTIME_INF;
837
838         return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
839 }
840
841 #ifndef prepare_arch_switch
842 # define prepare_arch_switch(next)      do { } while (0)
843 #endif
844 #ifndef finish_arch_switch
845 # define finish_arch_switch(prev)       do { } while (0)
846 #endif
847
848 static inline int task_current(struct rq *rq, struct task_struct *p)
849 {
850         return rq->curr == p;
851 }
852
853 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
854 static inline int task_running(struct rq *rq, struct task_struct *p)
855 {
856         return task_current(rq, p);
857 }
858
859 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
860 {
861 }
862
863 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
864 {
865 #ifdef CONFIG_DEBUG_SPINLOCK
866         /* this is a valid case when another task releases the spinlock */
867         rq->lock.owner = current;
868 #endif
869         /*
870          * If we are tracking spinlock dependencies then we have to
871          * fix up the runqueue lock - which gets 'carried over' from
872          * prev into current:
873          */
874         spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
875
876         spin_unlock_irq(&rq->lock);
877 }
878
879 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
880 static inline int task_running(struct rq *rq, struct task_struct *p)
881 {
882 #ifdef CONFIG_SMP
883         return p->oncpu;
884 #else
885         return task_current(rq, p);
886 #endif
887 }
888
889 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
890 {
891 #ifdef CONFIG_SMP
892         /*
893          * We can optimise this out completely for !SMP, because the
894          * SMP rebalancing from interrupt is the only thing that cares
895          * here.
896          */
897         next->oncpu = 1;
898 #endif
899 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
900         spin_unlock_irq(&rq->lock);
901 #else
902         spin_unlock(&rq->lock);
903 #endif
904 }
905
906 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
907 {
908 #ifdef CONFIG_SMP
909         /*
910          * After ->oncpu is cleared, the task can be moved to a different CPU.
911          * We must ensure this doesn't happen until the switch is completely
912          * finished.
913          */
914         smp_wmb();
915         prev->oncpu = 0;
916 #endif
917 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
918         local_irq_enable();
919 #endif
920 }
921 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
922
923 /*
924  * __task_rq_lock - lock the runqueue a given task resides on.
925  * Must be called interrupts disabled.
926  */
927 static inline struct rq *__task_rq_lock(struct task_struct *p)
928         __acquires(rq->lock)
929 {
930         for (;;) {
931                 struct rq *rq = task_rq(p);
932                 spin_lock(&rq->lock);
933                 if (likely(rq == task_rq(p)))
934                         return rq;
935                 spin_unlock(&rq->lock);
936         }
937 }
938
939 /*
940  * task_rq_lock - lock the runqueue a given task resides on and disable
941  * interrupts. Note the ordering: we can safely lookup the task_rq without
942  * explicitly disabling preemption.
943  */
944 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
945         __acquires(rq->lock)
946 {
947         struct rq *rq;
948
949         for (;;) {
950                 local_irq_save(*flags);
951                 rq = task_rq(p);
952                 spin_lock(&rq->lock);
953                 if (likely(rq == task_rq(p)))
954                         return rq;
955                 spin_unlock_irqrestore(&rq->lock, *flags);
956         }
957 }
958
959 static void __task_rq_unlock(struct rq *rq)
960         __releases(rq->lock)
961 {
962         spin_unlock(&rq->lock);
963 }
964
965 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
966         __releases(rq->lock)
967 {
968         spin_unlock_irqrestore(&rq->lock, *flags);
969 }
970
971 /*
972  * this_rq_lock - lock this runqueue and disable interrupts.
973  */
974 static struct rq *this_rq_lock(void)
975         __acquires(rq->lock)
976 {
977         struct rq *rq;
978
979         local_irq_disable();
980         rq = this_rq();
981         spin_lock(&rq->lock);
982
983         return rq;
984 }
985
986 static void __resched_task(struct task_struct *p, int tif_bit);
987
988 static inline void resched_task(struct task_struct *p)
989 {
990         __resched_task(p, TIF_NEED_RESCHED);
991 }
992
993 #ifdef CONFIG_SCHED_HRTICK
994 /*
995  * Use HR-timers to deliver accurate preemption points.
996  *
997  * Its all a bit involved since we cannot program an hrt while holding the
998  * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
999  * reschedule event.
1000  *
1001  * When we get rescheduled we reprogram the hrtick_timer outside of the
1002  * rq->lock.
1003  */
1004 static inline void resched_hrt(struct task_struct *p)
1005 {
1006         __resched_task(p, TIF_HRTICK_RESCHED);
1007 }
1008
1009 static inline void resched_rq(struct rq *rq)
1010 {
1011         unsigned long flags;
1012
1013         spin_lock_irqsave(&rq->lock, flags);
1014         resched_task(rq->curr);
1015         spin_unlock_irqrestore(&rq->lock, flags);
1016 }
1017
1018 enum {
1019         HRTICK_SET,             /* re-programm hrtick_timer */
1020         HRTICK_RESET,           /* not a new slice */
1021         HRTICK_BLOCK,           /* stop hrtick operations */
1022 };
1023
1024 /*
1025  * Use hrtick when:
1026  *  - enabled by features
1027  *  - hrtimer is actually high res
1028  */
1029 static inline int hrtick_enabled(struct rq *rq)
1030 {
1031         if (!sched_feat(HRTICK))
1032                 return 0;
1033         if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
1034                 return 0;
1035         return hrtimer_is_hres_active(&rq->hrtick_timer);
1036 }
1037
1038 /*
1039  * Called to set the hrtick timer state.
1040  *
1041  * called with rq->lock held and irqs disabled
1042  */
1043 static void hrtick_start(struct rq *rq, u64 delay, int reset)
1044 {
1045         assert_spin_locked(&rq->lock);
1046
1047         /*
1048          * preempt at: now + delay
1049          */
1050         rq->hrtick_expire =
1051                 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
1052         /*
1053          * indicate we need to program the timer
1054          */
1055         __set_bit(HRTICK_SET, &rq->hrtick_flags);
1056         if (reset)
1057                 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
1058
1059         /*
1060          * New slices are called from the schedule path and don't need a
1061          * forced reschedule.
1062          */
1063         if (reset)
1064                 resched_hrt(rq->curr);
1065 }
1066
1067 static void hrtick_clear(struct rq *rq)
1068 {
1069         if (hrtimer_active(&rq->hrtick_timer))
1070                 hrtimer_cancel(&rq->hrtick_timer);
1071 }
1072
1073 /*
1074  * Update the timer from the possible pending state.
1075  */
1076 static void hrtick_set(struct rq *rq)
1077 {
1078         ktime_t time;
1079         int set, reset;
1080         unsigned long flags;
1081
1082         WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1083
1084         spin_lock_irqsave(&rq->lock, flags);
1085         set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
1086         reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
1087         time = rq->hrtick_expire;
1088         clear_thread_flag(TIF_HRTICK_RESCHED);
1089         spin_unlock_irqrestore(&rq->lock, flags);
1090
1091         if (set) {
1092                 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
1093                 if (reset && !hrtimer_active(&rq->hrtick_timer))
1094                         resched_rq(rq);
1095         } else
1096                 hrtick_clear(rq);
1097 }
1098
1099 /*
1100  * High-resolution timer tick.
1101  * Runs from hardirq context with interrupts disabled.
1102  */
1103 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1104 {
1105         struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1106
1107         WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1108
1109         spin_lock(&rq->lock);
1110         update_rq_clock(rq);
1111         rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1112         spin_unlock(&rq->lock);
1113
1114         return HRTIMER_NORESTART;
1115 }
1116
1117 #ifdef CONFIG_SMP
1118 static void hotplug_hrtick_disable(int cpu)
1119 {
1120         struct rq *rq = cpu_rq(cpu);
1121         unsigned long flags;
1122
1123         spin_lock_irqsave(&rq->lock, flags);
1124         rq->hrtick_flags = 0;
1125         __set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1126         spin_unlock_irqrestore(&rq->lock, flags);
1127
1128         hrtick_clear(rq);
1129 }
1130
1131 static void hotplug_hrtick_enable(int cpu)
1132 {
1133         struct rq *rq = cpu_rq(cpu);
1134         unsigned long flags;
1135
1136         spin_lock_irqsave(&rq->lock, flags);
1137         __clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1138         spin_unlock_irqrestore(&rq->lock, flags);
1139 }
1140
1141 static int
1142 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1143 {
1144         int cpu = (int)(long)hcpu;
1145
1146         switch (action) {
1147         case CPU_UP_CANCELED:
1148         case CPU_UP_CANCELED_FROZEN:
1149         case CPU_DOWN_PREPARE:
1150         case CPU_DOWN_PREPARE_FROZEN:
1151         case CPU_DEAD:
1152         case CPU_DEAD_FROZEN:
1153                 hotplug_hrtick_disable(cpu);
1154                 return NOTIFY_OK;
1155
1156         case CPU_UP_PREPARE:
1157         case CPU_UP_PREPARE_FROZEN:
1158         case CPU_DOWN_FAILED:
1159         case CPU_DOWN_FAILED_FROZEN:
1160         case CPU_ONLINE:
1161         case CPU_ONLINE_FROZEN:
1162                 hotplug_hrtick_enable(cpu);
1163                 return NOTIFY_OK;
1164         }
1165
1166         return NOTIFY_DONE;
1167 }
1168
1169 static void init_hrtick(void)
1170 {
1171         hotcpu_notifier(hotplug_hrtick, 0);
1172 }
1173 #endif /* CONFIG_SMP */
1174
1175 static void init_rq_hrtick(struct rq *rq)
1176 {
1177         rq->hrtick_flags = 0;
1178         hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1179         rq->hrtick_timer.function = hrtick;
1180         rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1181 }
1182
1183 void hrtick_resched(void)
1184 {
1185         struct rq *rq;
1186         unsigned long flags;
1187
1188         if (!test_thread_flag(TIF_HRTICK_RESCHED))
1189                 return;
1190
1191         local_irq_save(flags);
1192         rq = cpu_rq(smp_processor_id());
1193         hrtick_set(rq);
1194         local_irq_restore(flags);
1195 }
1196 #else
1197 static inline void hrtick_clear(struct rq *rq)
1198 {
1199 }
1200
1201 static inline void hrtick_set(struct rq *rq)
1202 {
1203 }
1204
1205 static inline void init_rq_hrtick(struct rq *rq)
1206 {
1207 }
1208
1209 void hrtick_resched(void)
1210 {
1211 }
1212
1213 static inline void init_hrtick(void)
1214 {
1215 }
1216 #endif
1217
1218 /*
1219  * resched_task - mark a task 'to be rescheduled now'.
1220  *
1221  * On UP this means the setting of the need_resched flag, on SMP it
1222  * might also involve a cross-CPU call to trigger the scheduler on
1223  * the target CPU.
1224  */
1225 #ifdef CONFIG_SMP
1226
1227 #ifndef tsk_is_polling
1228 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1229 #endif
1230
1231 static void __resched_task(struct task_struct *p, int tif_bit)
1232 {
1233         int cpu;
1234
1235         assert_spin_locked(&task_rq(p)->lock);
1236
1237         if (unlikely(test_tsk_thread_flag(p, tif_bit)))
1238                 return;
1239
1240         set_tsk_thread_flag(p, tif_bit);
1241
1242         cpu = task_cpu(p);
1243         if (cpu == smp_processor_id())
1244                 return;
1245
1246         /* NEED_RESCHED must be visible before we test polling */
1247         smp_mb();
1248         if (!tsk_is_polling(p))
1249                 smp_send_reschedule(cpu);
1250 }
1251
1252 static void resched_cpu(int cpu)
1253 {
1254         struct rq *rq = cpu_rq(cpu);
1255         unsigned long flags;
1256
1257         if (!spin_trylock_irqsave(&rq->lock, flags))
1258                 return;
1259         resched_task(cpu_curr(cpu));
1260         spin_unlock_irqrestore(&rq->lock, flags);
1261 }
1262
1263 #ifdef CONFIG_NO_HZ
1264 /*
1265  * When add_timer_on() enqueues a timer into the timer wheel of an
1266  * idle CPU then this timer might expire before the next timer event
1267  * which is scheduled to wake up that CPU. In case of a completely
1268  * idle system the next event might even be infinite time into the
1269  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1270  * leaves the inner idle loop so the newly added timer is taken into
1271  * account when the CPU goes back to idle and evaluates the timer
1272  * wheel for the next timer event.
1273  */
1274 void wake_up_idle_cpu(int cpu)
1275 {
1276         struct rq *rq = cpu_rq(cpu);
1277
1278         if (cpu == smp_processor_id())
1279                 return;
1280
1281         /*
1282          * This is safe, as this function is called with the timer
1283          * wheel base lock of (cpu) held. When the CPU is on the way
1284          * to idle and has not yet set rq->curr to idle then it will
1285          * be serialized on the timer wheel base lock and take the new
1286          * timer into account automatically.
1287          */
1288         if (rq->curr != rq->idle)
1289                 return;
1290
1291         /*
1292          * We can set TIF_RESCHED on the idle task of the other CPU
1293          * lockless. The worst case is that the other CPU runs the
1294          * idle task through an additional NOOP schedule()
1295          */
1296         set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1297
1298         /* NEED_RESCHED must be visible before we test polling */
1299         smp_mb();
1300         if (!tsk_is_polling(rq->idle))
1301                 smp_send_reschedule(cpu);
1302 }
1303 #endif /* CONFIG_NO_HZ */
1304
1305 #else /* !CONFIG_SMP */
1306 static void __resched_task(struct task_struct *p, int tif_bit)
1307 {
1308         assert_spin_locked(&task_rq(p)->lock);
1309         set_tsk_thread_flag(p, tif_bit);
1310 }
1311 #endif /* CONFIG_SMP */
1312
1313 #if BITS_PER_LONG == 32
1314 # define WMULT_CONST    (~0UL)
1315 #else
1316 # define WMULT_CONST    (1UL << 32)
1317 #endif
1318
1319 #define WMULT_SHIFT     32
1320
1321 /*
1322  * Shift right and round:
1323  */
1324 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1325
1326 /*
1327  * delta *= weight / lw
1328  */
1329 static unsigned long
1330 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1331                 struct load_weight *lw)
1332 {
1333         u64 tmp;
1334
1335         if (!lw->inv_weight) {
1336                 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1337                         lw->inv_weight = 1;
1338                 else
1339                         lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1340                                 / (lw->weight+1);
1341         }
1342
1343         tmp = (u64)delta_exec * weight;
1344         /*
1345          * Check whether we'd overflow the 64-bit multiplication:
1346          */
1347         if (unlikely(tmp > WMULT_CONST))
1348                 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1349                         WMULT_SHIFT/2);
1350         else
1351                 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1352
1353         return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1354 }
1355
1356 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1357 {
1358         lw->weight += inc;
1359         lw->inv_weight = 0;
1360 }
1361
1362 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1363 {
1364         lw->weight -= dec;
1365         lw->inv_weight = 0;
1366 }
1367
1368 /*
1369  * To aid in avoiding the subversion of "niceness" due to uneven distribution
1370  * of tasks with abnormal "nice" values across CPUs the contribution that
1371  * each task makes to its run queue's load is weighted according to its
1372  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1373  * scaled version of the new time slice allocation that they receive on time
1374  * slice expiry etc.
1375  */
1376
1377 #define WEIGHT_IDLEPRIO         2
1378 #define WMULT_IDLEPRIO          (1 << 31)
1379
1380 /*
1381  * Nice levels are multiplicative, with a gentle 10% change for every
1382  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1383  * nice 1, it will get ~10% less CPU time than another CPU-bound task
1384  * that remained on nice 0.
1385  *
1386  * The "10% effect" is relative and cumulative: from _any_ nice level,
1387  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1388  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1389  * If a task goes up by ~10% and another task goes down by ~10% then
1390  * the relative distance between them is ~25%.)
1391  */
1392 static const int prio_to_weight[40] = {
1393  /* -20 */     88761,     71755,     56483,     46273,     36291,
1394  /* -15 */     29154,     23254,     18705,     14949,     11916,
1395  /* -10 */      9548,      7620,      6100,      4904,      3906,
1396  /*  -5 */      3121,      2501,      1991,      1586,      1277,
1397  /*   0 */      1024,       820,       655,       526,       423,
1398  /*   5 */       335,       272,       215,       172,       137,
1399  /*  10 */       110,        87,        70,        56,        45,
1400  /*  15 */        36,        29,        23,        18,        15,
1401 };
1402
1403 /*
1404  * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1405  *
1406  * In cases where the weight does not change often, we can use the
1407  * precalculated inverse to speed up arithmetics by turning divisions
1408  * into multiplications:
1409  */
1410 static const u32 prio_to_wmult[40] = {
1411  /* -20 */     48388,     59856,     76040,     92818,    118348,
1412  /* -15 */    147320,    184698,    229616,    287308,    360437,
1413  /* -10 */    449829,    563644,    704093,    875809,   1099582,
1414  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
1415  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
1416  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
1417  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
1418  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1419 };
1420
1421 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1422
1423 /*
1424  * runqueue iterator, to support SMP load-balancing between different
1425  * scheduling classes, without having to expose their internal data
1426  * structures to the load-balancing proper:
1427  */
1428 struct rq_iterator {
1429         void *arg;
1430         struct task_struct *(*start)(void *);
1431         struct task_struct *(*next)(void *);
1432 };
1433
1434 #ifdef CONFIG_SMP
1435 static unsigned long
1436 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1437               unsigned long max_load_move, struct sched_domain *sd,
1438               enum cpu_idle_type idle, int *all_pinned,
1439               int *this_best_prio, struct rq_iterator *iterator);
1440
1441 static int
1442 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1443                    struct sched_domain *sd, enum cpu_idle_type idle,
1444                    struct rq_iterator *iterator);
1445 #endif
1446
1447 #ifdef CONFIG_CGROUP_CPUACCT
1448 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1449 #else
1450 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1451 #endif
1452
1453 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1454 {
1455         update_load_add(&rq->load, load);
1456 }
1457
1458 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1459 {
1460         update_load_sub(&rq->load, load);
1461 }
1462
1463 #ifdef CONFIG_SMP
1464 static unsigned long source_load(int cpu, int type);
1465 static unsigned long target_load(int cpu, int type);
1466 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1467
1468 static unsigned long cpu_avg_load_per_task(int cpu)
1469 {
1470         struct rq *rq = cpu_rq(cpu);
1471
1472         if (rq->nr_running)
1473                 rq->avg_load_per_task = rq->load.weight / rq->nr_running;
1474
1475         return rq->avg_load_per_task;
1476 }
1477
1478 #ifdef CONFIG_FAIR_GROUP_SCHED
1479
1480 typedef void (*tg_visitor)(struct task_group *, int, struct sched_domain *);
1481
1482 /*
1483  * Iterate the full tree, calling @down when first entering a node and @up when
1484  * leaving it for the final time.
1485  */
1486 static void
1487 walk_tg_tree(tg_visitor down, tg_visitor up, int cpu, struct sched_domain *sd)
1488 {
1489         struct task_group *parent, *child;
1490
1491         rcu_read_lock();
1492         parent = &root_task_group;
1493 down:
1494         (*down)(parent, cpu, sd);
1495         list_for_each_entry_rcu(child, &parent->children, siblings) {
1496                 parent = child;
1497                 goto down;
1498
1499 up:
1500                 continue;
1501         }
1502         (*up)(parent, cpu, sd);
1503
1504         child = parent;
1505         parent = parent->parent;
1506         if (parent)
1507                 goto up;
1508         rcu_read_unlock();
1509 }
1510
1511 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1512
1513 /*
1514  * Calculate and set the cpu's group shares.
1515  */
1516 static void
1517 __update_group_shares_cpu(struct task_group *tg, int cpu,
1518                           unsigned long sd_shares, unsigned long sd_rq_weight)
1519 {
1520         int boost = 0;
1521         unsigned long shares;
1522         unsigned long rq_weight;
1523
1524         if (!tg->se[cpu])
1525                 return;
1526
1527         rq_weight = tg->cfs_rq[cpu]->load.weight;
1528
1529         /*
1530          * If there are currently no tasks on the cpu pretend there is one of
1531          * average load so that when a new task gets to run here it will not
1532          * get delayed by group starvation.
1533          */
1534         if (!rq_weight) {
1535                 boost = 1;
1536                 rq_weight = NICE_0_LOAD;
1537         }
1538
1539         if (unlikely(rq_weight > sd_rq_weight))
1540                 rq_weight = sd_rq_weight;
1541
1542         /*
1543          *           \Sum shares * rq_weight
1544          * shares =  -----------------------
1545          *               \Sum rq_weight
1546          *
1547          */
1548         shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
1549
1550         /*
1551          * record the actual number of shares, not the boosted amount.
1552          */
1553         tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1554         tg->cfs_rq[cpu]->rq_weight = rq_weight;
1555
1556         if (shares < MIN_SHARES)
1557                 shares = MIN_SHARES;
1558         else if (shares > MAX_SHARES)
1559                 shares = MAX_SHARES;
1560
1561         __set_se_shares(tg->se[cpu], shares);
1562 }
1563
1564 /*
1565  * Re-compute the task group their per cpu shares over the given domain.
1566  * This needs to be done in a bottom-up fashion because the rq weight of a
1567  * parent group depends on the shares of its child groups.
1568  */
1569 static void
1570 tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd)
1571 {
1572         unsigned long rq_weight = 0;
1573         unsigned long shares = 0;
1574         int i;
1575
1576         for_each_cpu_mask(i, sd->span) {
1577                 rq_weight += tg->cfs_rq[i]->load.weight;
1578                 shares += tg->cfs_rq[i]->shares;
1579         }
1580
1581         if ((!shares && rq_weight) || shares > tg->shares)
1582                 shares = tg->shares;
1583
1584         if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1585                 shares = tg->shares;
1586
1587         if (!rq_weight)
1588                 rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
1589
1590         for_each_cpu_mask(i, sd->span) {
1591                 struct rq *rq = cpu_rq(i);
1592                 unsigned long flags;
1593
1594                 spin_lock_irqsave(&rq->lock, flags);
1595                 __update_group_shares_cpu(tg, i, shares, rq_weight);
1596                 spin_unlock_irqrestore(&rq->lock, flags);
1597         }
1598 }
1599
1600 /*
1601  * Compute the cpu's hierarchical load factor for each task group.
1602  * This needs to be done in a top-down fashion because the load of a child
1603  * group is a fraction of its parents load.
1604  */
1605 static void
1606 tg_load_down(struct task_group *tg, int cpu, struct sched_domain *sd)
1607 {
1608         unsigned long load;
1609
1610         if (!tg->parent) {
1611                 load = cpu_rq(cpu)->load.weight;
1612         } else {
1613                 load = tg->parent->cfs_rq[cpu]->h_load;
1614                 load *= tg->cfs_rq[cpu]->shares;
1615                 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1616         }
1617
1618         tg->cfs_rq[cpu]->h_load = load;
1619 }
1620
1621 static void
1622 tg_nop(struct task_group *tg, int cpu, struct sched_domain *sd)
1623 {
1624 }
1625
1626 static void update_shares(struct sched_domain *sd)
1627 {
1628         u64 now = cpu_clock(raw_smp_processor_id());
1629         s64 elapsed = now - sd->last_update;
1630
1631         if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1632                 sd->last_update = now;
1633                 walk_tg_tree(tg_nop, tg_shares_up, 0, sd);
1634         }
1635 }
1636
1637 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1638 {
1639         spin_unlock(&rq->lock);
1640         update_shares(sd);
1641         spin_lock(&rq->lock);
1642 }
1643
1644 static void update_h_load(int cpu)
1645 {
1646         walk_tg_tree(tg_load_down, tg_nop, cpu, NULL);
1647 }
1648
1649 #else
1650
1651 static inline void update_shares(struct sched_domain *sd)
1652 {
1653 }
1654
1655 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1656 {
1657 }
1658
1659 #endif
1660
1661 #endif
1662
1663 #ifdef CONFIG_FAIR_GROUP_SCHED
1664 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1665 {
1666 #ifdef CONFIG_SMP
1667         cfs_rq->shares = shares;
1668 #endif
1669 }
1670 #endif
1671
1672 #include "sched_stats.h"
1673 #include "sched_idletask.c"
1674 #include "sched_fair.c"
1675 #include "sched_rt.c"
1676 #ifdef CONFIG_SCHED_DEBUG
1677 # include "sched_debug.c"
1678 #endif
1679
1680 #define sched_class_highest (&rt_sched_class)
1681 #define for_each_class(class) \
1682    for (class = sched_class_highest; class; class = class->next)
1683
1684 static void inc_nr_running(struct rq *rq)
1685 {
1686         rq->nr_running++;
1687 }
1688
1689 static void dec_nr_running(struct rq *rq)
1690 {
1691         rq->nr_running--;
1692 }
1693
1694 static void set_load_weight(struct task_struct *p)
1695 {
1696         if (task_has_rt_policy(p)) {
1697                 p->se.load.weight = prio_to_weight[0] * 2;
1698                 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1699                 return;
1700         }
1701
1702         /*
1703          * SCHED_IDLE tasks get minimal weight:
1704          */
1705         if (p->policy == SCHED_IDLE) {
1706                 p->se.load.weight = WEIGHT_IDLEPRIO;
1707                 p->se.load.inv_weight = WMULT_IDLEPRIO;
1708                 return;
1709         }
1710
1711         p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1712         p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1713 }
1714
1715 static void update_avg(u64 *avg, u64 sample)
1716 {
1717         s64 diff = sample - *avg;
1718         *avg += diff >> 3;
1719 }
1720
1721 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1722 {
1723         sched_info_queued(p);
1724         p->sched_class->enqueue_task(rq, p, wakeup);
1725         p->se.on_rq = 1;
1726 }
1727
1728 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1729 {
1730         if (sleep && p->se.last_wakeup) {
1731                 update_avg(&p->se.avg_overlap,
1732                            p->se.sum_exec_runtime - p->se.last_wakeup);
1733                 p->se.last_wakeup = 0;
1734         }
1735
1736         sched_info_dequeued(p);
1737         p->sched_class->dequeue_task(rq, p, sleep);
1738         p->se.on_rq = 0;
1739 }
1740
1741 /*
1742  * __normal_prio - return the priority that is based on the static prio
1743  */
1744 static inline int __normal_prio(struct task_struct *p)
1745 {
1746         return p->static_prio;
1747 }
1748
1749 /*
1750  * Calculate the expected normal priority: i.e. priority
1751  * without taking RT-inheritance into account. Might be
1752  * boosted by interactivity modifiers. Changes upon fork,
1753  * setprio syscalls, and whenever the interactivity
1754  * estimator recalculates.
1755  */
1756 static inline int normal_prio(struct task_struct *p)
1757 {
1758         int prio;
1759
1760         if (task_has_rt_policy(p))
1761                 prio = MAX_RT_PRIO-1 - p->rt_priority;
1762         else
1763                 prio = __normal_prio(p);
1764         return prio;
1765 }
1766
1767 /*
1768  * Calculate the current priority, i.e. the priority
1769  * taken into account by the scheduler. This value might
1770  * be boosted by RT tasks, or might be boosted by
1771  * interactivity modifiers. Will be RT if the task got
1772  * RT-boosted. If not then it returns p->normal_prio.
1773  */
1774 static int effective_prio(struct task_struct *p)
1775 {
1776         p->normal_prio = normal_prio(p);
1777         /*
1778          * If we are RT tasks or we were boosted to RT priority,
1779          * keep the priority unchanged. Otherwise, update priority
1780          * to the normal priority:
1781          */
1782         if (!rt_prio(p->prio))
1783                 return p->normal_prio;
1784         return p->prio;
1785 }
1786
1787 /*
1788  * activate_task - move a task to the runqueue.
1789  */
1790 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1791 {
1792         if (task_contributes_to_load(p))
1793                 rq->nr_uninterruptible--;
1794
1795         enqueue_task(rq, p, wakeup);
1796         inc_nr_running(rq);
1797 }
1798
1799 /*
1800  * deactivate_task - remove a task from the runqueue.
1801  */
1802 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1803 {
1804         if (task_contributes_to_load(p))
1805                 rq->nr_uninterruptible++;
1806
1807         dequeue_task(rq, p, sleep);
1808         dec_nr_running(rq);
1809 }
1810
1811 /**
1812  * task_curr - is this task currently executing on a CPU?
1813  * @p: the task in question.
1814  */
1815 inline int task_curr(const struct task_struct *p)
1816 {
1817         return cpu_curr(task_cpu(p)) == p;
1818 }
1819
1820 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1821 {
1822         set_task_rq(p, cpu);
1823 #ifdef CONFIG_SMP
1824         /*
1825          * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1826          * successfuly executed on another CPU. We must ensure that updates of
1827          * per-task data have been completed by this moment.
1828          */
1829         smp_wmb();
1830         task_thread_info(p)->cpu = cpu;
1831 #endif
1832 }
1833
1834 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1835                                        const struct sched_class *prev_class,
1836                                        int oldprio, int running)
1837 {
1838         if (prev_class != p->sched_class) {
1839                 if (prev_class->switched_from)
1840                         prev_class->switched_from(rq, p, running);
1841                 p->sched_class->switched_to(rq, p, running);
1842         } else
1843                 p->sched_class->prio_changed(rq, p, oldprio, running);
1844 }
1845
1846 #ifdef CONFIG_SMP
1847
1848 /* Used instead of source_load when we know the type == 0 */
1849 static unsigned long weighted_cpuload(const int cpu)
1850 {
1851         return cpu_rq(cpu)->load.weight;
1852 }
1853
1854 /*
1855  * Is this task likely cache-hot:
1856  */
1857 static int
1858 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1859 {
1860         s64 delta;
1861
1862         /*
1863          * Buddy candidates are cache hot:
1864          */
1865         if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
1866                 return 1;
1867
1868         if (p->sched_class != &fair_sched_class)
1869                 return 0;
1870
1871         if (sysctl_sched_migration_cost == -1)
1872                 return 1;
1873         if (sysctl_sched_migration_cost == 0)
1874                 return 0;
1875
1876         delta = now - p->se.exec_start;
1877
1878         return delta < (s64)sysctl_sched_migration_cost;
1879 }
1880
1881
1882 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1883 {
1884         int old_cpu = task_cpu(p);
1885         struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1886         struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1887                       *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1888         u64 clock_offset;
1889
1890         clock_offset = old_rq->clock - new_rq->clock;
1891
1892 #ifdef CONFIG_SCHEDSTATS
1893         if (p->se.wait_start)
1894                 p->se.wait_start -= clock_offset;
1895         if (p->se.sleep_start)
1896                 p->se.sleep_start -= clock_offset;
1897         if (p->se.block_start)
1898                 p->se.block_start -= clock_offset;
1899         if (old_cpu != new_cpu) {
1900                 schedstat_inc(p, se.nr_migrations);
1901                 if (task_hot(p, old_rq->clock, NULL))
1902                         schedstat_inc(p, se.nr_forced2_migrations);
1903         }
1904 #endif
1905         p->se.vruntime -= old_cfsrq->min_vruntime -
1906                                          new_cfsrq->min_vruntime;
1907
1908         __set_task_cpu(p, new_cpu);
1909 }
1910
1911 struct migration_req {
1912         struct list_head list;
1913
1914         struct task_struct *task;
1915         int dest_cpu;
1916
1917         struct completion done;
1918 };
1919
1920 /*
1921  * The task's runqueue lock must be held.
1922  * Returns true if you have to wait for migration thread.
1923  */
1924 static int
1925 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1926 {
1927         struct rq *rq = task_rq(p);
1928
1929         /*
1930          * If the task is not on a runqueue (and not running), then
1931          * it is sufficient to simply update the task's cpu field.
1932          */
1933         if (!p->se.on_rq && !task_running(rq, p)) {
1934                 set_task_cpu(p, dest_cpu);
1935                 return 0;
1936         }
1937
1938         init_completion(&req->done);
1939         req->task = p;
1940         req->dest_cpu = dest_cpu;
1941         list_add(&req->list, &rq->migration_queue);
1942
1943         return 1;
1944 }
1945
1946 /*
1947  * wait_task_inactive - wait for a thread to unschedule.
1948  *
1949  * The caller must ensure that the task *will* unschedule sometime soon,
1950  * else this function might spin for a *long* time. This function can't
1951  * be called with interrupts off, or it may introduce deadlock with
1952  * smp_call_function() if an IPI is sent by the same process we are
1953  * waiting to become inactive.
1954  */
1955 void wait_task_inactive(struct task_struct *p)
1956 {
1957         unsigned long flags;
1958         int running, on_rq;
1959         struct rq *rq;
1960
1961         for (;;) {
1962                 /*
1963                  * We do the initial early heuristics without holding
1964                  * any task-queue locks at all. We'll only try to get
1965                  * the runqueue lock when things look like they will
1966                  * work out!
1967                  */
1968                 rq = task_rq(p);
1969
1970                 /*
1971                  * If the task is actively running on another CPU
1972                  * still, just relax and busy-wait without holding
1973                  * any locks.
1974                  *
1975                  * NOTE! Since we don't hold any locks, it's not
1976                  * even sure that "rq" stays as the right runqueue!
1977                  * But we don't care, since "task_running()" will
1978                  * return false if the runqueue has changed and p
1979                  * is actually now running somewhere else!
1980                  */
1981                 while (task_running(rq, p))
1982                         cpu_relax();
1983
1984                 /*
1985                  * Ok, time to look more closely! We need the rq
1986                  * lock now, to be *sure*. If we're wrong, we'll
1987                  * just go back and repeat.
1988                  */
1989                 rq = task_rq_lock(p, &flags);
1990                 running = task_running(rq, p);
1991                 on_rq = p->se.on_rq;
1992                 task_rq_unlock(rq, &flags);
1993
1994                 /*
1995                  * Was it really running after all now that we
1996                  * checked with the proper locks actually held?
1997                  *
1998                  * Oops. Go back and try again..
1999                  */
2000                 if (unlikely(running)) {
2001                         cpu_relax();
2002                         continue;
2003                 }
2004
2005                 /*
2006                  * It's not enough that it's not actively running,
2007                  * it must be off the runqueue _entirely_, and not
2008                  * preempted!
2009                  *
2010                  * So if it wa still runnable (but just not actively
2011                  * running right now), it's preempted, and we should
2012                  * yield - it could be a while.
2013                  */
2014                 if (unlikely(on_rq)) {
2015                         schedule_timeout_uninterruptible(1);
2016                         continue;
2017                 }
2018
2019                 /*
2020                  * Ahh, all good. It wasn't running, and it wasn't
2021                  * runnable, which means that it will never become
2022                  * running in the future either. We're all done!
2023                  */
2024                 break;
2025         }
2026 }
2027
2028 /***
2029  * kick_process - kick a running thread to enter/exit the kernel
2030  * @p: the to-be-kicked thread
2031  *
2032  * Cause a process which is running on another CPU to enter
2033  * kernel-mode, without any delay. (to get signals handled.)
2034  *
2035  * NOTE: this function doesnt have to take the runqueue lock,
2036  * because all it wants to ensure is that the remote task enters
2037  * the kernel. If the IPI races and the task has been migrated
2038  * to another CPU then no harm is done and the purpose has been
2039  * achieved as well.
2040  */
2041 void kick_process(struct task_struct *p)
2042 {
2043         int cpu;
2044
2045         preempt_disable();
2046         cpu = task_cpu(p);
2047         if ((cpu != smp_processor_id()) && task_curr(p))
2048                 smp_send_reschedule(cpu);
2049         preempt_enable();
2050 }
2051
2052 /*
2053  * Return a low guess at the load of a migration-source cpu weighted
2054  * according to the scheduling class and "nice" value.
2055  *
2056  * We want to under-estimate the load of migration sources, to
2057  * balance conservatively.
2058  */
2059 static unsigned long source_load(int cpu, int type)
2060 {
2061         struct rq *rq = cpu_rq(cpu);
2062         unsigned long total = weighted_cpuload(cpu);
2063
2064         if (type == 0 || !sched_feat(LB_BIAS))
2065                 return total;
2066
2067         return min(rq->cpu_load[type-1], total);
2068 }
2069
2070 /*
2071  * Return a high guess at the load of a migration-target cpu weighted
2072  * according to the scheduling class and "nice" value.
2073  */
2074 static unsigned long target_load(int cpu, int type)
2075 {
2076         struct rq *rq = cpu_rq(cpu);
2077         unsigned long total = weighted_cpuload(cpu);
2078
2079         if (type == 0 || !sched_feat(LB_BIAS))
2080                 return total;
2081
2082         return max(rq->cpu_load[type-1], total);
2083 }
2084
2085 /*
2086  * find_idlest_group finds and returns the least busy CPU group within the
2087  * domain.
2088  */
2089 static struct sched_group *
2090 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2091 {
2092         struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2093         unsigned long min_load = ULONG_MAX, this_load = 0;
2094         int load_idx = sd->forkexec_idx;
2095         int imbalance = 100 + (sd->imbalance_pct-100)/2;
2096
2097         do {
2098                 unsigned long load, avg_load;
2099                 int local_group;
2100                 int i;
2101
2102                 /* Skip over this group if it has no CPUs allowed */
2103                 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2104                         continue;
2105
2106                 local_group = cpu_isset(this_cpu, group->cpumask);
2107
2108                 /* Tally up the load of all CPUs in the group */
2109                 avg_load = 0;
2110
2111                 for_each_cpu_mask_nr(i, group->cpumask) {
2112                         /* Bias balancing toward cpus of our domain */
2113                         if (local_group)
2114                                 load = source_load(i, load_idx);
2115                         else
2116                                 load = target_load(i, load_idx);
2117
2118                         avg_load += load;
2119                 }
2120
2121                 /* Adjust by relative CPU power of the group */
2122                 avg_load = sg_div_cpu_power(group,
2123                                 avg_load * SCHED_LOAD_SCALE);
2124
2125                 if (local_group) {
2126                         this_load = avg_load;
2127                         this = group;
2128                 } else if (avg_load < min_load) {
2129                         min_load = avg_load;
2130                         idlest = group;
2131                 }
2132         } while (group = group->next, group != sd->groups);
2133
2134         if (!idlest || 100*this_load < imbalance*min_load)
2135                 return NULL;
2136         return idlest;
2137 }
2138
2139 /*
2140  * find_idlest_cpu - find the idlest cpu among the cpus in group.
2141  */
2142 static int
2143 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2144                 cpumask_t *tmp)
2145 {
2146         unsigned long load, min_load = ULONG_MAX;
2147         int idlest = -1;
2148         int i;
2149
2150         /* Traverse only the allowed CPUs */
2151         cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2152
2153         for_each_cpu_mask_nr(i, *tmp) {
2154                 load = weighted_cpuload(i);
2155
2156                 if (load < min_load || (load == min_load && i == this_cpu)) {
2157                         min_load = load;
2158                         idlest = i;
2159                 }
2160         }
2161
2162         return idlest;
2163 }
2164
2165 /*
2166  * sched_balance_self: balance the current task (running on cpu) in domains
2167  * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2168  * SD_BALANCE_EXEC.
2169  *
2170  * Balance, ie. select the least loaded group.
2171  *
2172  * Returns the target CPU number, or the same CPU if no balancing is needed.
2173  *
2174  * preempt must be disabled.
2175  */
2176 static int sched_balance_self(int cpu, int flag)
2177 {
2178         struct task_struct *t = current;
2179         struct sched_domain *tmp, *sd = NULL;
2180
2181         for_each_domain(cpu, tmp) {
2182                 /*
2183                  * If power savings logic is enabled for a domain, stop there.
2184                  */
2185                 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2186                         break;
2187                 if (tmp->flags & flag)
2188                         sd = tmp;
2189         }
2190
2191         if (sd)
2192                 update_shares(sd);
2193
2194         while (sd) {
2195                 cpumask_t span, tmpmask;
2196                 struct sched_group *group;
2197                 int new_cpu, weight;
2198
2199                 if (!(sd->flags & flag)) {
2200                         sd = sd->child;
2201                         continue;
2202                 }
2203
2204                 span = sd->span;
2205                 group = find_idlest_group(sd, t, cpu);
2206                 if (!group) {
2207                         sd = sd->child;
2208                         continue;
2209                 }
2210
2211                 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2212                 if (new_cpu == -1 || new_cpu == cpu) {
2213                         /* Now try balancing at a lower domain level of cpu */
2214                         sd = sd->child;
2215                         continue;
2216                 }
2217
2218                 /* Now try balancing at a lower domain level of new_cpu */
2219                 cpu = new_cpu;
2220                 sd = NULL;
2221                 weight = cpus_weight(span);
2222                 for_each_domain(cpu, tmp) {
2223                         if (weight <= cpus_weight(tmp->span))
2224                                 break;
2225                         if (tmp->flags & flag)
2226                                 sd = tmp;
2227                 }
2228                 /* while loop will break here if sd == NULL */
2229         }
2230
2231         return cpu;
2232 }
2233
2234 #endif /* CONFIG_SMP */
2235
2236 /***
2237  * try_to_wake_up - wake up a thread
2238  * @p: the to-be-woken-up thread
2239  * @state: the mask of task states that can be woken
2240  * @sync: do a synchronous wakeup?
2241  *
2242  * Put it on the run-queue if it's not already there. The "current"
2243  * thread is always on the run-queue (except when the actual
2244  * re-schedule is in progress), and as such you're allowed to do
2245  * the simpler "current->state = TASK_RUNNING" to mark yourself
2246  * runnable without the overhead of this.
2247  *
2248  * returns failure only if the task is already active.
2249  */
2250 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2251 {
2252         int cpu, orig_cpu, this_cpu, success = 0;
2253         unsigned long flags;
2254         long old_state;
2255         struct rq *rq;
2256
2257         if (!sched_feat(SYNC_WAKEUPS))
2258                 sync = 0;
2259
2260 #ifdef CONFIG_SMP
2261         if (sched_feat(LB_WAKEUP_UPDATE)) {
2262                 struct sched_domain *sd;
2263
2264                 this_cpu = raw_smp_processor_id();
2265                 cpu = task_cpu(p);
2266
2267                 for_each_domain(this_cpu, sd) {
2268                         if (cpu_isset(cpu, sd->span)) {
2269                                 update_shares(sd);
2270                                 break;
2271                         }
2272                 }
2273         }
2274 #endif
2275
2276         smp_wmb();
2277         rq = task_rq_lock(p, &flags);
2278         old_state = p->state;
2279         if (!(old_state & state))
2280                 goto out;
2281
2282         if (p->se.on_rq)
2283                 goto out_running;
2284
2285         cpu = task_cpu(p);
2286         orig_cpu = cpu;
2287         this_cpu = smp_processor_id();
2288
2289 #ifdef CONFIG_SMP
2290         if (unlikely(task_running(rq, p)))
2291                 goto out_activate;
2292
2293         cpu = p->sched_class->select_task_rq(p, sync);
2294         if (cpu != orig_cpu) {
2295                 set_task_cpu(p, cpu);
2296                 task_rq_unlock(rq, &flags);
2297                 /* might preempt at this point */
2298                 rq = task_rq_lock(p, &flags);
2299                 old_state = p->state;
2300                 if (!(old_state & state))
2301                         goto out;
2302                 if (p->se.on_rq)
2303                         goto out_running;
2304
2305                 this_cpu = smp_processor_id();
2306                 cpu = task_cpu(p);
2307         }
2308
2309 #ifdef CONFIG_SCHEDSTATS
2310         schedstat_inc(rq, ttwu_count);
2311         if (cpu == this_cpu)
2312                 schedstat_inc(rq, ttwu_local);
2313         else {
2314                 struct sched_domain *sd;
2315                 for_each_domain(this_cpu, sd) {
2316                         if (cpu_isset(cpu, sd->span)) {
2317                                 schedstat_inc(sd, ttwu_wake_remote);
2318                                 break;
2319                         }
2320                 }
2321         }
2322 #endif /* CONFIG_SCHEDSTATS */
2323
2324 out_activate:
2325 #endif /* CONFIG_SMP */
2326         schedstat_inc(p, se.nr_wakeups);
2327         if (sync)
2328                 schedstat_inc(p, se.nr_wakeups_sync);
2329         if (orig_cpu != cpu)
2330                 schedstat_inc(p, se.nr_wakeups_migrate);
2331         if (cpu == this_cpu)
2332                 schedstat_inc(p, se.nr_wakeups_local);
2333         else
2334                 schedstat_inc(p, se.nr_wakeups_remote);
2335         update_rq_clock(rq);
2336         activate_task(rq, p, 1);
2337         success = 1;
2338
2339 out_running:
2340         trace_mark(kernel_sched_wakeup,
2341                 "pid %d state %ld ## rq %p task %p rq->curr %p",
2342                 p->pid, p->state, rq, p, rq->curr);
2343         check_preempt_curr(rq, p);
2344
2345         p->state = TASK_RUNNING;
2346 #ifdef CONFIG_SMP
2347         if (p->sched_class->task_wake_up)
2348                 p->sched_class->task_wake_up(rq, p);
2349 #endif
2350 out:
2351         current->se.last_wakeup = current->se.sum_exec_runtime;
2352
2353         task_rq_unlock(rq, &flags);
2354
2355         return success;
2356 }
2357
2358 int wake_up_process(struct task_struct *p)
2359 {
2360         return try_to_wake_up(p, TASK_ALL, 0);
2361 }
2362 EXPORT_SYMBOL(wake_up_process);
2363
2364 int wake_up_state(struct task_struct *p, unsigned int state)
2365 {
2366         return try_to_wake_up(p, state, 0);
2367 }
2368
2369 /*
2370  * Perform scheduler related setup for a newly forked process p.
2371  * p is forked by current.
2372  *
2373  * __sched_fork() is basic setup used by init_idle() too:
2374  */
2375 static void __sched_fork(struct task_struct *p)
2376 {
2377         p->se.exec_start                = 0;
2378         p->se.sum_exec_runtime          = 0;
2379         p->se.prev_sum_exec_runtime     = 0;
2380         p->se.last_wakeup               = 0;
2381         p->se.avg_overlap               = 0;
2382
2383 #ifdef CONFIG_SCHEDSTATS
2384         p->se.wait_start                = 0;
2385         p->se.sum_sleep_runtime         = 0;
2386         p->se.sleep_start               = 0;
2387         p->se.block_start               = 0;
2388         p->se.sleep_max                 = 0;
2389         p->se.block_max                 = 0;
2390         p->se.exec_max                  = 0;
2391         p->se.slice_max                 = 0;
2392         p->se.wait_max                  = 0;
2393 #endif
2394
2395         INIT_LIST_HEAD(&p->rt.run_list);
2396         p->se.on_rq = 0;
2397         INIT_LIST_HEAD(&p->se.group_node);
2398
2399 #ifdef CONFIG_PREEMPT_NOTIFIERS
2400         INIT_HLIST_HEAD(&p->preempt_notifiers);
2401 #endif
2402
2403         /*
2404          * We mark the process as running here, but have not actually
2405          * inserted it onto the runqueue yet. This guarantees that
2406          * nobody will actually run it, and a signal or other external
2407          * event cannot wake it up and insert it on the runqueue either.
2408          */
2409         p->state = TASK_RUNNING;
2410 }
2411
2412 /*
2413  * fork()/clone()-time setup:
2414  */
2415 void sched_fork(struct task_struct *p, int clone_flags)
2416 {
2417         int cpu = get_cpu();
2418
2419         __sched_fork(p);
2420
2421 #ifdef CONFIG_SMP
2422         cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2423 #endif
2424         set_task_cpu(p, cpu);
2425
2426         /*
2427          * Make sure we do not leak PI boosting priority to the child:
2428          */
2429         p->prio = current->normal_prio;
2430         if (!rt_prio(p->prio))
2431                 p->sched_class = &fair_sched_class;
2432
2433 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2434         if (likely(sched_info_on()))
2435                 memset(&p->sched_info, 0, sizeof(p->sched_info));
2436 #endif
2437 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2438         p->oncpu = 0;
2439 #endif
2440 #ifdef CONFIG_PREEMPT
2441         /* Want to start with kernel preemption disabled. */
2442         task_thread_info(p)->preempt_count = 1;
2443 #endif
2444         put_cpu();
2445 }
2446
2447 /*
2448  * wake_up_new_task - wake up a newly created task for the first time.
2449  *
2450  * This function will do some initial scheduler statistics housekeeping
2451  * that must be done for every newly created context, then puts the task
2452  * on the runqueue and wakes it.
2453  */
2454 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2455 {
2456         unsigned long flags;
2457         struct rq *rq;
2458
2459         rq = task_rq_lock(p, &flags);
2460         BUG_ON(p->state != TASK_RUNNING);
2461         update_rq_clock(rq);
2462
2463         p->prio = effective_prio(p);
2464
2465         if (!p->sched_class->task_new || !current->se.on_rq) {
2466                 activate_task(rq, p, 0);
2467         } else {
2468                 /*
2469                  * Let the scheduling class do new task startup
2470                  * management (if any):
2471                  */
2472                 p->sched_class->task_new(rq, p);
2473                 inc_nr_running(rq);
2474         }
2475         trace_mark(kernel_sched_wakeup_new,
2476                 "pid %d state %ld ## rq %p task %p rq->curr %p",
2477                 p->pid, p->state, rq, p, rq->curr);
2478         check_preempt_curr(rq, p);
2479 #ifdef CONFIG_SMP
2480         if (p->sched_class->task_wake_up)
2481                 p->sched_class->task_wake_up(rq, p);
2482 #endif
2483         task_rq_unlock(rq, &flags);
2484 }
2485
2486 #ifdef CONFIG_PREEMPT_NOTIFIERS
2487
2488 /**
2489  * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2490  * @notifier: notifier struct to register
2491  */
2492 void preempt_notifier_register(struct preempt_notifier *notifier)
2493 {
2494         hlist_add_head(&notifier->link, &current->preempt_notifiers);
2495 }
2496 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2497
2498 /**
2499  * preempt_notifier_unregister - no longer interested in preemption notifications
2500  * @notifier: notifier struct to unregister
2501  *
2502  * This is safe to call from within a preemption notifier.
2503  */
2504 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2505 {
2506         hlist_del(&notifier->link);
2507 }
2508 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2509
2510 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2511 {
2512         struct preempt_notifier *notifier;
2513         struct hlist_node *node;
2514
2515         hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2516                 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2517 }
2518
2519 static void
2520 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2521                                  struct task_struct *next)
2522 {
2523         struct preempt_notifier *notifier;
2524         struct hlist_node *node;
2525
2526         hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2527                 notifier->ops->sched_out(notifier, next);
2528 }
2529
2530 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2531
2532 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2533 {
2534 }
2535
2536 static void
2537 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2538                                  struct task_struct *next)
2539 {
2540 }
2541
2542 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2543
2544 /**
2545  * prepare_task_switch - prepare to switch tasks
2546  * @rq: the runqueue preparing to switch
2547  * @prev: the current task that is being switched out
2548  * @next: the task we are going to switch to.
2549  *
2550  * This is called with the rq lock held and interrupts off. It must
2551  * be paired with a subsequent finish_task_switch after the context
2552  * switch.
2553  *
2554  * prepare_task_switch sets up locking and calls architecture specific
2555  * hooks.
2556  */
2557 static inline void
2558 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2559                     struct task_struct *next)
2560 {
2561         fire_sched_out_preempt_notifiers(prev, next);
2562         prepare_lock_switch(rq, next);
2563         prepare_arch_switch(next);
2564 }
2565
2566 /**
2567  * finish_task_switch - clean up after a task-switch
2568  * @rq: runqueue associated with task-switch
2569  * @prev: the thread we just switched away from.
2570  *
2571  * finish_task_switch must be called after the context switch, paired
2572  * with a prepare_task_switch call before the context switch.
2573  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2574  * and do any other architecture-specific cleanup actions.
2575  *
2576  * Note that we may have delayed dropping an mm in context_switch(). If
2577  * so, we finish that here outside of the runqueue lock. (Doing it
2578  * with the lock held can cause deadlocks; see schedule() for
2579  * details.)
2580  */
2581 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2582         __releases(rq->lock)
2583 {
2584         struct mm_struct *mm = rq->prev_mm;
2585         long prev_state;
2586
2587         rq->prev_mm = NULL;
2588
2589         /*
2590          * A task struct has one reference for the use as "current".
2591          * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2592          * schedule one last time. The schedule call will never return, and
2593          * the scheduled task must drop that reference.
2594          * The test for TASK_DEAD must occur while the runqueue locks are
2595          * still held, otherwise prev could be scheduled on another cpu, die
2596          * there before we look at prev->state, and then the reference would
2597          * be dropped twice.
2598          *              Manfred Spraul <manfred@colorfullife.com>
2599          */
2600         prev_state = prev->state;
2601         finish_arch_switch(prev);
2602         finish_lock_switch(rq, prev);
2603 #ifdef CONFIG_SMP
2604         if (current->sched_class->post_schedule)
2605                 current->sched_class->post_schedule(rq);
2606 #endif
2607
2608         fire_sched_in_preempt_notifiers(current);
2609         if (mm)
2610                 mmdrop(mm);
2611         if (unlikely(prev_state == TASK_DEAD)) {
2612                 /*
2613                  * Remove function-return probe instances associated with this
2614                  * task and put them back on the free list.
2615                  */
2616                 kprobe_flush_task(prev);
2617                 put_task_struct(prev);
2618         }
2619 }
2620
2621 /**
2622  * schedule_tail - first thing a freshly forked thread must call.
2623  * @prev: the thread we just switched away from.
2624  */
2625 asmlinkage void schedule_tail(struct task_struct *prev)
2626         __releases(rq->lock)
2627 {
2628         struct rq *rq = this_rq();
2629
2630         finish_task_switch(rq, prev);
2631 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2632         /* In this case, finish_task_switch does not reenable preemption */
2633         preempt_enable();
2634 #endif
2635         if (current->set_child_tid)
2636                 put_user(task_pid_vnr(current), current->set_child_tid);
2637 }
2638
2639 /*
2640  * context_switch - switch to the new MM and the new
2641  * thread's register state.
2642  */
2643 static inline void
2644 context_switch(struct rq *rq, struct task_struct *prev,
2645                struct task_struct *next)
2646 {
2647         struct mm_struct *mm, *oldmm;
2648
2649         prepare_task_switch(rq, prev, next);
2650         trace_mark(kernel_sched_schedule,
2651                 "prev_pid %d next_pid %d prev_state %ld "
2652                 "## rq %p prev %p next %p",
2653                 prev->pid, next->pid, prev->state,
2654                 rq, prev, next);
2655         mm = next->mm;
2656         oldmm = prev->active_mm;
2657         /*
2658          * For paravirt, this is coupled with an exit in switch_to to
2659          * combine the page table reload and the switch backend into
2660          * one hypercall.
2661          */
2662         arch_enter_lazy_cpu_mode();
2663
2664         if (unlikely(!mm)) {
2665                 next->active_mm = oldmm;
2666                 atomic_inc(&oldmm->mm_count);
2667                 enter_lazy_tlb(oldmm, next);
2668         } else
2669                 switch_mm(oldmm, mm, next);
2670
2671         if (unlikely(!prev->mm)) {
2672                 prev->active_mm = NULL;
2673                 rq->prev_mm = oldmm;
2674         }
2675         /*
2676          * Since the runqueue lock will be released by the next
2677          * task (which is an invalid locking op but in the case
2678          * of the scheduler it's an obvious special-case), so we
2679          * do an early lockdep release here:
2680          */
2681 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2682         spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2683 #endif
2684
2685         /* Here we just switch the register state and the stack. */
2686         switch_to(prev, next, prev);
2687
2688         barrier();
2689         /*
2690          * this_rq must be evaluated again because prev may have moved
2691          * CPUs since it called schedule(), thus the 'rq' on its stack
2692          * frame will be invalid.
2693          */
2694         finish_task_switch(this_rq(), prev);
2695 }
2696
2697 /*
2698  * nr_running, nr_uninterruptible and nr_context_switches:
2699  *
2700  * externally visible scheduler statistics: current number of runnable
2701  * threads, current number of uninterruptible-sleeping threads, total
2702  * number of context switches performed since bootup.
2703  */
2704 unsigned long nr_running(void)
2705 {
2706         unsigned long i, sum = 0;
2707
2708         for_each_online_cpu(i)
2709                 sum += cpu_rq(i)->nr_running;
2710
2711         return sum;
2712 }
2713
2714 unsigned long nr_uninterruptible(void)
2715 {
2716         unsigned long i, sum = 0;
2717
2718         for_each_possible_cpu(i)
2719                 sum += cpu_rq(i)->nr_uninterruptible;
2720
2721         /*
2722          * Since we read the counters lockless, it might be slightly
2723          * inaccurate. Do not allow it to go below zero though:
2724          */
2725         if (unlikely((long)sum < 0))
2726                 sum = 0;
2727
2728         return sum;
2729 }
2730
2731 unsigned long long nr_context_switches(void)
2732 {
2733         int i;
2734         unsigned long long sum = 0;
2735
2736         for_each_possible_cpu(i)
2737                 sum += cpu_rq(i)->nr_switches;
2738
2739         return sum;
2740 }
2741
2742 unsigned long nr_iowait(void)
2743 {
2744         unsigned long i, sum = 0;
2745
2746         for_each_possible_cpu(i)
2747                 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2748
2749         return sum;
2750 }
2751
2752 unsigned long nr_active(void)
2753 {
2754         unsigned long i, running = 0, uninterruptible = 0;
2755
2756         for_each_online_cpu(i) {
2757                 running += cpu_rq(i)->nr_running;
2758                 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2759         }
2760
2761         if (unlikely((long)uninterruptible < 0))
2762                 uninterruptible = 0;
2763
2764         return running + uninterruptible;
2765 }
2766
2767 /*
2768  * Update rq->cpu_load[] statistics. This function is usually called every
2769  * scheduler tick (TICK_NSEC).
2770  */
2771 static void update_cpu_load(struct rq *this_rq)
2772 {
2773         unsigned long this_load = this_rq->load.weight;
2774         int i, scale;
2775
2776         this_rq->nr_load_updates++;
2777
2778         /* Update our load: */
2779         for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2780                 unsigned long old_load, new_load;
2781
2782                 /* scale is effectively 1 << i now, and >> i divides by scale */
2783
2784                 old_load = this_rq->cpu_load[i];
2785                 new_load = this_load;
2786                 /*
2787                  * Round up the averaging division if load is increasing. This
2788                  * prevents us from getting stuck on 9 if the load is 10, for
2789                  * example.
2790                  */
2791                 if (new_load > old_load)
2792                         new_load += scale-1;
2793                 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2794         }
2795 }
2796
2797 #ifdef CONFIG_SMP
2798
2799 /*
2800  * double_rq_lock - safely lock two runqueues
2801  *
2802  * Note this does not disable interrupts like task_rq_lock,
2803  * you need to do so manually before calling.
2804  */
2805 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2806         __acquires(rq1->lock)
2807         __acquires(rq2->lock)
2808 {
2809         BUG_ON(!irqs_disabled());
2810         if (rq1 == rq2) {
2811                 spin_lock(&rq1->lock);
2812                 __acquire(rq2->lock);   /* Fake it out ;) */
2813         } else {
2814                 if (rq1 < rq2) {
2815                         spin_lock(&rq1->lock);
2816                         spin_lock(&rq2->lock);
2817                 } else {
2818                         spin_lock(&rq2->lock);
2819                         spin_lock(&rq1->lock);
2820                 }
2821         }
2822         update_rq_clock(rq1);
2823         update_rq_clock(rq2);
2824 }
2825
2826 /*
2827  * double_rq_unlock - safely unlock two runqueues
2828  *
2829  * Note this does not restore interrupts like task_rq_unlock,
2830  * you need to do so manually after calling.
2831  */
2832 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2833         __releases(rq1->lock)
2834         __releases(rq2->lock)
2835 {
2836         spin_unlock(&rq1->lock);
2837         if (rq1 != rq2)
2838                 spin_unlock(&rq2->lock);
2839         else
2840                 __release(rq2->lock);
2841 }
2842
2843 /*
2844  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2845  */
2846 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2847         __releases(this_rq->lock)
2848         __acquires(busiest->lock)
2849         __acquires(this_rq->lock)
2850 {
2851         int ret = 0;
2852
2853         if (unlikely(!irqs_disabled())) {
2854                 /* printk() doesn't work good under rq->lock */
2855                 spin_unlock(&this_rq->lock);
2856                 BUG_ON(1);
2857         }
2858         if (unlikely(!spin_trylock(&busiest->lock))) {
2859                 if (busiest < this_rq) {
2860                         spin_unlock(&this_rq->lock);
2861                         spin_lock(&busiest->lock);
2862                         spin_lock(&this_rq->lock);
2863                         ret = 1;
2864                 } else
2865                         spin_lock(&busiest->lock);
2866         }
2867         return ret;
2868 }
2869
2870 /*
2871  * If dest_cpu is allowed for this process, migrate the task to it.
2872  * This is accomplished by forcing the cpu_allowed mask to only
2873  * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2874  * the cpu_allowed mask is restored.
2875  */
2876 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2877 {
2878         struct migration_req req;
2879         unsigned long flags;
2880         struct rq *rq;
2881
2882         rq = task_rq_lock(p, &flags);
2883         if (!cpu_isset(dest_cpu, p->cpus_allowed)
2884             || unlikely(cpu_is_offline(dest_cpu)))
2885                 goto out;
2886
2887         /* force the process onto the specified CPU */
2888         if (migrate_task(p, dest_cpu, &req)) {
2889                 /* Need to wait for migration thread (might exit: take ref). */
2890                 struct task_struct *mt = rq->migration_thread;
2891
2892                 get_task_struct(mt);
2893                 task_rq_unlock(rq, &flags);
2894                 wake_up_process(mt);
2895                 put_task_struct(mt);
2896                 wait_for_completion(&req.done);
2897
2898                 return;
2899         }
2900 out:
2901         task_rq_unlock(rq, &flags);
2902 }
2903
2904 /*
2905  * sched_exec - execve() is a valuable balancing opportunity, because at
2906  * this point the task has the smallest effective memory and cache footprint.
2907  */
2908 void sched_exec(void)
2909 {
2910         int new_cpu, this_cpu = get_cpu();
2911         new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2912         put_cpu();
2913         if (new_cpu != this_cpu)
2914                 sched_migrate_task(current, new_cpu);
2915 }
2916
2917 /*
2918  * pull_task - move a task from a remote runqueue to the local runqueue.
2919  * Both runqueues must be locked.
2920  */
2921 static void pull_task(struct rq *src_rq, struct task_struct *p,
2922                       struct rq *this_rq, int this_cpu)
2923 {
2924         deactivate_task(src_rq, p, 0);
2925         set_task_cpu(p, this_cpu);
2926         activate_task(this_rq, p, 0);
2927         /*
2928          * Note that idle threads have a prio of MAX_PRIO, for this test
2929          * to be always true for them.
2930          */
2931         check_preempt_curr(this_rq, p);
2932 }
2933
2934 /*
2935  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2936  */
2937 static
2938 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2939                      struct sched_domain *sd, enum cpu_idle_type idle,
2940                      int *all_pinned)
2941 {
2942         /*
2943          * We do not migrate tasks that are:
2944          * 1) running (obviously), or
2945          * 2) cannot be migrated to this CPU due to cpus_allowed, or
2946          * 3) are cache-hot on their current CPU.
2947          */
2948         if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2949                 schedstat_inc(p, se.nr_failed_migrations_affine);
2950                 return 0;
2951         }
2952         *all_pinned = 0;
2953
2954         if (task_running(rq, p)) {
2955                 schedstat_inc(p, se.nr_failed_migrations_running);
2956                 return 0;
2957         }
2958
2959         /*
2960          * Aggressive migration if:
2961          * 1) task is cache cold, or
2962          * 2) too many balance attempts have failed.
2963          */
2964
2965         if (!task_hot(p, rq->clock, sd) ||
2966                         sd->nr_balance_failed > sd->cache_nice_tries) {
2967 #ifdef CONFIG_SCHEDSTATS
2968                 if (task_hot(p, rq->clock, sd)) {
2969                         schedstat_inc(sd, lb_hot_gained[idle]);
2970                         schedstat_inc(p, se.nr_forced_migrations);
2971                 }
2972 #endif
2973                 return 1;
2974         }
2975
2976         if (task_hot(p, rq->clock, sd)) {
2977                 schedstat_inc(p, se.nr_failed_migrations_hot);
2978                 return 0;
2979         }
2980         return 1;
2981 }
2982
2983 static unsigned long
2984 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2985               unsigned long max_load_move, struct sched_domain *sd,
2986               enum cpu_idle_type idle, int *all_pinned,
2987               int *this_best_prio, struct rq_iterator *iterator)
2988 {
2989         int loops = 0, pulled = 0, pinned = 0;
2990         struct task_struct *p;
2991         long rem_load_move = max_load_move;
2992
2993         if (max_load_move == 0)
2994                 goto out;
2995
2996         pinned = 1;
2997
2998         /*
2999          * Start the load-balancing iterator:
3000          */
3001         p = iterator->start(iterator->arg);
3002 next:
3003         if (!p || loops++ > sysctl_sched_nr_migrate)
3004                 goto out;
3005
3006         if ((p->se.load.weight >> 1) > rem_load_move ||
3007             !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3008                 p = iterator->next(iterator->arg);
3009                 goto next;
3010         }
3011
3012         pull_task(busiest, p, this_rq, this_cpu);
3013         pulled++;
3014         rem_load_move -= p->se.load.weight;
3015
3016         /*
3017          * We only want to steal up to the prescribed amount of weighted load.
3018          */
3019         if (rem_load_move > 0) {
3020                 if (p->prio < *this_best_prio)
3021                         *this_best_prio = p->prio;
3022                 p = iterator->next(iterator->arg);
3023                 goto next;
3024         }
3025 out:
3026         /*
3027          * Right now, this is one of only two places pull_task() is called,
3028          * so we can safely collect pull_task() stats here rather than
3029          * inside pull_task().
3030          */
3031         schedstat_add(sd, lb_gained[idle], pulled);
3032
3033         if (all_pinned)
3034                 *all_pinned = pinned;
3035
3036         return max_load_move - rem_load_move;
3037 }
3038
3039 /*
3040  * move_tasks tries to move up to max_load_move weighted load from busiest to
3041  * this_rq, as part of a balancing operation within domain "sd".
3042  * Returns 1 if successful and 0 otherwise.
3043  *
3044  * Called with both runqueues locked.
3045  */
3046 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3047                       unsigned long max_load_move,
3048                       struct sched_domain *sd, enum cpu_idle_type idle,
3049                       int *all_pinned)
3050 {
3051         const struct sched_class *class = sched_class_highest;
3052         unsigned long total_load_moved = 0;
3053         int this_best_prio = this_rq->curr->prio;
3054
3055         do {
3056                 total_load_moved +=
3057                         class->load_balance(this_rq, this_cpu, busiest,
3058                                 max_load_move - total_load_moved,
3059                                 sd, idle, all_pinned, &this_best_prio);
3060                 class = class->next;
3061
3062                 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3063                         break;
3064
3065         } while (class && max_load_move > total_load_moved);
3066
3067         return total_load_moved > 0;
3068 }
3069
3070 static int
3071 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3072                    struct sched_domain *sd, enum cpu_idle_type idle,
3073                    struct rq_iterator *iterator)
3074 {
3075         struct task_struct *p = iterator->start(iterator->arg);
3076         int pinned = 0;
3077
3078         while (p) {
3079                 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3080                         pull_task(busiest, p, this_rq, this_cpu);
3081                         /*
3082                          * Right now, this is only the second place pull_task()
3083                          * is called, so we can safely collect pull_task()
3084                          * stats here rather than inside pull_task().
3085                          */
3086                         schedstat_inc(sd, lb_gained[idle]);
3087
3088                         return 1;
3089                 }
3090                 p = iterator->next(iterator->arg);
3091         }
3092
3093         return 0;
3094 }
3095
3096 /*
3097  * move_one_task tries to move exactly one task from busiest to this_rq, as
3098  * part of active balancing operations within "domain".
3099  * Returns 1 if successful and 0 otherwise.
3100  *
3101  * Called with both runqueues locked.
3102  */
3103 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3104                          struct sched_domain *sd, enum cpu_idle_type idle)
3105 {
3106         const struct sched_class *class;
3107
3108         for (class = sched_class_highest; class; class = class->next)
3109                 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3110                         return 1;
3111
3112         return 0;
3113 }
3114
3115 /*
3116  * find_busiest_group finds and returns the busiest CPU group within the
3117  * domain. It calculates and returns the amount of weighted load which
3118  * should be moved to restore balance via the imbalance parameter.
3119  */
3120 static struct sched_group *
3121 find_busiest_group(struct sched_domain *sd, int this_cpu,
3122                    unsigned long *imbalance, enum cpu_idle_type idle,
3123                    int *sd_idle, const cpumask_t *cpus, int *balance)
3124 {
3125         struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3126         unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3127         unsigned long max_pull;
3128         unsigned long busiest_load_per_task, busiest_nr_running;
3129         unsigned long this_load_per_task, this_nr_running;
3130         int load_idx, group_imb = 0;
3131 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3132         int power_savings_balance = 1;
3133         unsigned long leader_nr_running = 0, min_load_per_task = 0;
3134         unsigned long min_nr_running = ULONG_MAX;
3135         struct sched_group *group_min = NULL, *group_leader = NULL;
3136 #endif
3137
3138         max_load = this_load = total_load = total_pwr = 0;
3139         busiest_load_per_task = busiest_nr_running = 0;
3140         this_load_per_task = this_nr_running = 0;
3141
3142         if (idle == CPU_NOT_IDLE)
3143                 load_idx = sd->busy_idx;
3144         else if (idle == CPU_NEWLY_IDLE)
3145                 load_idx = sd->newidle_idx;
3146         else
3147                 load_idx = sd->idle_idx;
3148
3149         do {
3150                 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
3151                 int local_group;
3152                 int i;
3153                 int __group_imb = 0;
3154                 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3155                 unsigned long sum_nr_running, sum_weighted_load;
3156                 unsigned long sum_avg_load_per_task;
3157                 unsigned long avg_load_per_task;
3158
3159                 local_group = cpu_isset(this_cpu, group->cpumask);
3160
3161                 if (local_group)
3162                         balance_cpu = first_cpu(group->cpumask);
3163
3164                 /* Tally up the load of all CPUs in the group */
3165                 sum_weighted_load = sum_nr_running = avg_load = 0;
3166                 sum_avg_load_per_task = avg_load_per_task = 0;
3167
3168                 max_cpu_load = 0;
3169                 min_cpu_load = ~0UL;
3170
3171                 for_each_cpu_mask_nr(i, group->cpumask) {
3172                         struct rq *rq;
3173
3174                         if (!cpu_isset(i, *cpus))
3175                                 continue;
3176
3177                         rq = cpu_rq(i);
3178
3179                         if (*sd_idle && rq->nr_running)
3180                                 *sd_idle = 0;
3181
3182                         /* Bias balancing toward cpus of our domain */
3183                         if (local_group) {
3184                                 if (idle_cpu(i) && !first_idle_cpu) {
3185                                         first_idle_cpu = 1;
3186                                         balance_cpu = i;
3187                                 }
3188
3189                                 load = target_load(i, load_idx);
3190                         } else {
3191                                 load = source_load(i, load_idx);
3192                                 if (load > max_cpu_load)
3193                                         max_cpu_load = load;
3194                                 if (min_cpu_load > load)
3195                                         min_cpu_load = load;
3196                         }
3197
3198                         avg_load += load;
3199                         sum_nr_running += rq->nr_running;
3200                         sum_weighted_load += weighted_cpuload(i);
3201
3202                         sum_avg_load_per_task += cpu_avg_load_per_task(i);
3203                 }
3204
3205                 /*
3206                  * First idle cpu or the first cpu(busiest) in this sched group
3207                  * is eligible for doing load balancing at this and above
3208                  * domains. In the newly idle case, we will allow all the cpu's
3209                  * to do the newly idle load balance.
3210                  */
3211                 if (idle != CPU_NEWLY_IDLE && local_group &&
3212                     balance_cpu != this_cpu && balance) {
3213                         *balance = 0;
3214                         goto ret;
3215                 }
3216
3217                 total_load += avg_load;
3218                 total_pwr += group->__cpu_power;
3219
3220                 /* Adjust by relative CPU power of the group */
3221                 avg_load = sg_div_cpu_power(group,
3222                                 avg_load * SCHED_LOAD_SCALE);
3223
3224
3225                 /*
3226                  * Consider the group unbalanced when the imbalance is larger
3227                  * than the average weight of two tasks.
3228                  *
3229                  * APZ: with cgroup the avg task weight can vary wildly and
3230                  *      might not be a suitable number - should we keep a
3231                  *      normalized nr_running number somewhere that negates
3232                  *      the hierarchy?
3233                  */
3234                 avg_load_per_task = sg_div_cpu_power(group,
3235                                 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3236
3237                 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3238                         __group_imb = 1;
3239
3240                 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3241
3242                 if (local_group) {
3243                         this_load = avg_load;
3244                         this = group;
3245                         this_nr_running = sum_nr_running;
3246                         this_load_per_task = sum_weighted_load;
3247                 } else if (avg_load > max_load &&
3248                            (sum_nr_running > group_capacity || __group_imb)) {
3249                         max_load = avg_load;
3250                         busiest = group;
3251                         busiest_nr_running = sum_nr_running;
3252                         busiest_load_per_task = sum_weighted_load;
3253                         group_imb = __group_imb;
3254                 }
3255
3256 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3257                 /*
3258                  * Busy processors will not participate in power savings
3259                  * balance.
3260                  */
3261                 if (idle == CPU_NOT_IDLE ||
3262                                 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3263                         goto group_next;
3264
3265                 /*
3266                  * If the local group is idle or completely loaded
3267                  * no need to do power savings balance at this domain
3268                  */
3269                 if (local_group && (this_nr_running >= group_capacity ||
3270                                     !this_nr_running))
3271                         power_savings_balance = 0;
3272
3273                 /*
3274                  * If a group is already running at full capacity or idle,
3275                  * don't include that group in power savings calculations
3276                  */
3277                 if (!power_savings_balance || sum_nr_running >= group_capacity
3278                     || !sum_nr_running)
3279                         goto group_next;
3280
3281                 /*
3282                  * Calculate the group which has the least non-idle load.
3283                  * This is the group from where we need to pick up the load
3284                  * for saving power
3285                  */
3286                 if ((sum_nr_running < min_nr_running) ||
3287                     (sum_nr_running == min_nr_running &&
3288                      first_cpu(group->cpumask) <
3289                      first_cpu(group_min->cpumask))) {
3290                         group_min = group;
3291                         min_nr_running = sum_nr_running;
3292                         min_load_per_task = sum_weighted_load /
3293                                                 sum_nr_running;
3294                 }
3295
3296                 /*
3297                  * Calculate the group which is almost near its
3298                  * capacity but still has some space to pick up some load
3299                  * from other group and save more power
3300                  */
3301                 if (sum_nr_running <= group_capacity - 1) {
3302                         if (sum_nr_running > leader_nr_running ||
3303                             (sum_nr_running == leader_nr_running &&
3304                              first_cpu(group->cpumask) >
3305                               first_cpu(group_leader->cpumask))) {
3306                                 group_leader = group;
3307                                 leader_nr_running = sum_nr_running;
3308                         }
3309                 }
3310 group_next:
3311 #endif
3312                 group = group->next;
3313         } while (group != sd->groups);
3314
3315         if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3316                 goto out_balanced;
3317
3318         avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3319
3320         if (this_load >= avg_load ||
3321                         100*max_load <= sd->imbalance_pct*this_load)
3322                 goto out_balanced;
3323
3324         busiest_load_per_task /= busiest_nr_running;
3325         if (group_imb)
3326                 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3327
3328         /*
3329          * We're trying to get all the cpus to the average_load, so we don't
3330          * want to push ourselves above the average load, nor do we wish to
3331          * reduce the max loaded cpu below the average load, as either of these
3332          * actions would just result in more rebalancing later, and ping-pong
3333          * tasks around. Thus we look for the minimum possible imbalance.
3334          * Negative imbalances (*we* are more loaded than anyone else) will
3335          * be counted as no imbalance for these purposes -- we can't fix that
3336          * by pulling tasks to us. Be careful of negative numbers as they'll
3337          * appear as very large values with unsigned longs.
3338          */
3339         if (max_load <= busiest_load_per_task)
3340                 goto out_balanced;
3341
3342         /*
3343          * In the presence of smp nice balancing, certain scenarios can have
3344          * max load less than avg load(as we skip the groups at or below
3345          * its cpu_power, while calculating max_load..)
3346          */
3347         if (max_load < avg_load) {
3348                 *imbalance = 0;
3349                 goto small_imbalance;
3350         }
3351
3352         /* Don't want to pull so many tasks that a group would go idle */
3353         max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3354
3355         /* How much load to actually move to equalise the imbalance */
3356         *imbalance = min(max_pull * busiest->__cpu_power,
3357                                 (avg_load - this_load) * this->__cpu_power)
3358                         / SCHED_LOAD_SCALE;
3359
3360         /*
3361          * if *imbalance is less than the average load per runnable task
3362          * there is no gaurantee that any tasks will be moved so we'll have
3363          * a think about bumping its value to force at least one task to be
3364          * moved
3365          */
3366         if (*imbalance < busiest_load_per_task) {
3367                 unsigned long tmp, pwr_now, pwr_move;
3368                 unsigned int imbn;
3369
3370 small_imbalance:
3371                 pwr_move = pwr_now = 0;
3372                 imbn = 2;
3373                 if (this_nr_running) {
3374                         this_load_per_task /= this_nr_running;
3375                         if (busiest_load_per_task > this_load_per_task)
3376                                 imbn = 1;
3377                 } else
3378                         this_load_per_task = cpu_avg_load_per_task(this_cpu);
3379
3380                 if (max_load - this_load + 2*busiest_load_per_task >=
3381                                         busiest_load_per_task * imbn) {
3382                         *imbalance = busiest_load_per_task;
3383                         return busiest;
3384                 }
3385
3386                 /*
3387                  * OK, we don't have enough imbalance to justify moving tasks,
3388                  * however we may be able to increase total CPU power used by
3389                  * moving them.
3390                  */
3391
3392                 pwr_now += busiest->__cpu_power *
3393                                 min(busiest_load_per_task, max_load);
3394                 pwr_now += this->__cpu_power *
3395                                 min(this_load_per_task, this_load);
3396                 pwr_now /= SCHED_LOAD_SCALE;
3397
3398                 /* Amount of load we'd subtract */
3399                 tmp = sg_div_cpu_power(busiest,
3400                                 busiest_load_per_task * SCHED_LOAD_SCALE);
3401                 if (max_load > tmp)
3402                         pwr_move += busiest->__cpu_power *
3403                                 min(busiest_load_per_task, max_load - tmp);
3404
3405                 /* Amount of load we'd add */
3406                 if (max_load * busiest->__cpu_power <
3407                                 busiest_load_per_task * SCHED_LOAD_SCALE)
3408                         tmp = sg_div_cpu_power(this,
3409                                         max_load * busiest->__cpu_power);
3410                 else
3411                         tmp = sg_div_cpu_power(this,
3412                                 busiest_load_per_task * SCHED_LOAD_SCALE);
3413                 pwr_move += this->__cpu_power *
3414                                 min(this_load_per_task, this_load + tmp);
3415                 pwr_move /= SCHED_LOAD_SCALE;
3416
3417                 /* Move if we gain throughput */
3418                 if (pwr_move > pwr_now)
3419                         *imbalance = busiest_load_per_task;
3420         }
3421
3422         return busiest;
3423
3424 out_balanced:
3425 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3426         if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3427                 goto ret;
3428
3429         if (this == group_leader && group_leader != group_min) {
3430                 *imbalance = min_load_per_task;
3431                 return group_min;
3432         }
3433 #endif
3434 ret:
3435         *imbalance = 0;
3436         return NULL;
3437 }
3438
3439 /*
3440  * find_busiest_queue - find the busiest runqueue among the cpus in group.
3441  */
3442 static struct rq *
3443 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3444                    unsigned long imbalance, const cpumask_t *cpus)
3445 {
3446         struct rq *busiest = NULL, *rq;
3447         unsigned long max_load = 0;
3448         int i;
3449
3450         for_each_cpu_mask_nr(i, group->cpumask) {
3451                 unsigned long wl;
3452
3453                 if (!cpu_isset(i, *cpus))
3454                         continue;
3455
3456                 rq = cpu_rq(i);
3457                 wl = weighted_cpuload(i);
3458
3459                 if (rq->nr_running == 1 && wl > imbalance)
3460                         continue;
3461
3462                 if (wl > max_load) {
3463                         max_load = wl;
3464                         busiest = rq;
3465                 }
3466         }
3467
3468         return busiest;
3469 }
3470
3471 /*
3472  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3473  * so long as it is large enough.
3474  */
3475 #define MAX_PINNED_INTERVAL     512
3476
3477 /*
3478  * Check this_cpu to ensure it is balanced within domain. Attempt to move
3479  * tasks if there is an imbalance.
3480  */
3481 static int load_balance(int this_cpu, struct rq *this_rq,
3482                         struct sched_domain *sd, enum cpu_idle_type idle,
3483                         int *balance, cpumask_t *cpus)
3484 {
3485         int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3486         struct sched_group *group;
3487         unsigned long imbalance;
3488         struct rq *busiest;
3489         unsigned long flags;
3490
3491         cpus_setall(*cpus);
3492
3493         /*
3494          * When power savings policy is enabled for the parent domain, idle
3495          * sibling can pick up load irrespective of busy siblings. In this case,
3496          * let the state of idle sibling percolate up as CPU_IDLE, instead of
3497          * portraying it as CPU_NOT_IDLE.
3498          */
3499         if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3500             !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3501                 sd_idle = 1;
3502
3503         schedstat_inc(sd, lb_count[idle]);
3504
3505 redo:
3506         update_shares(sd);
3507         group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3508                                    cpus, balance);
3509
3510         if (*balance == 0)
3511                 goto out_balanced;
3512
3513         if (!group) {
3514                 schedstat_inc(sd, lb_nobusyg[idle]);
3515                 goto out_balanced;
3516         }
3517
3518         busiest = find_busiest_queue(group, idle, imbalance, cpus);
3519         if (!busiest) {
3520                 schedstat_inc(sd, lb_nobusyq[idle]);
3521                 goto out_balanced;
3522         }
3523
3524         BUG_ON(busiest == this_rq);
3525
3526         schedstat_add(sd, lb_imbalance[idle], imbalance);
3527
3528         ld_moved = 0;
3529         if (busiest->nr_running > 1) {
3530                 /*
3531                  * Attempt to move tasks. If find_busiest_group has found
3532                  * an imbalance but busiest->nr_running <= 1, the group is
3533                  * still unbalanced. ld_moved simply stays zero, so it is
3534                  * correctly treated as an imbalance.
3535                  */
3536                 local_irq_save(flags);
3537                 double_rq_lock(this_rq, busiest);
3538                 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3539                                       imbalance, sd, idle, &all_pinned);
3540                 double_rq_unlock(this_rq, busiest);
3541                 local_irq_restore(flags);
3542
3543                 /*
3544                  * some other cpu did the load balance for us.
3545                  */
3546                 if (ld_moved && this_cpu != smp_processor_id())
3547                         resched_cpu(this_cpu);
3548
3549                 /* All tasks on this runqueue were pinned by CPU affinity */
3550                 if (unlikely(all_pinned)) {
3551                         cpu_clear(cpu_of(busiest), *cpus);
3552                         if (!cpus_empty(*cpus))
3553                                 goto redo;
3554                         goto out_balanced;
3555                 }
3556         }
3557
3558         if (!ld_moved) {
3559                 schedstat_inc(sd, lb_failed[idle]);
3560                 sd->nr_balance_failed++;
3561
3562                 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3563
3564                         spin_lock_irqsave(&busiest->lock, flags);
3565
3566                         /* don't kick the migration_thread, if the curr
3567                          * task on busiest cpu can't be moved to this_cpu
3568                          */
3569                         if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3570                                 spin_unlock_irqrestore(&busiest->lock, flags);
3571                                 all_pinned = 1;
3572                                 goto out_one_pinned;
3573                         }
3574
3575                         if (!busiest->active_balance) {
3576                                 busiest->active_balance = 1;
3577                                 busiest->push_cpu = this_cpu;
3578                                 active_balance = 1;
3579                         }
3580                         spin_unlock_irqrestore(&busiest->lock, flags);
3581                         if (active_balance)
3582                                 wake_up_process(busiest->migration_thread);
3583
3584                         /*
3585                          * We've kicked active balancing, reset the failure
3586                          * counter.
3587                          */
3588                         sd->nr_balance_failed = sd->cache_nice_tries+1;
3589                 }
3590         } else
3591                 sd->nr_balance_failed = 0;
3592
3593         if (likely(!active_balance)) {
3594                 /* We were unbalanced, so reset the balancing interval */
3595                 sd->balance_interval = sd->min_interval;
3596         } else {
3597                 /*
3598                  * If we've begun active balancing, start to back off. This
3599                  * case may not be covered by the all_pinned logic if there
3600                  * is only 1 task on the busy runqueue (because we don't call
3601                  * move_tasks).
3602                  */
3603                 if (sd->balance_interval < sd->max_interval)
3604                         sd->balance_interval *= 2;
3605         }
3606
3607         if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3608             !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3609                 ld_moved = -1;
3610
3611         goto out;
3612
3613 out_balanced:
3614         schedstat_inc(sd, lb_balanced[idle]);
3615
3616         sd->nr_balance_failed = 0;
3617
3618 out_one_pinned:
3619         /* tune up the balancing interval */
3620         if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3621                         (sd->balance_interval < sd->max_interval))
3622                 sd->balance_interval *= 2;
3623
3624         if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3625             !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3626                 ld_moved = -1;
3627         else
3628                 ld_moved = 0;
3629 out:
3630         if (ld_moved)
3631                 update_shares(sd);
3632         return ld_moved;
3633 }
3634
3635 /*
3636  * Check this_cpu to ensure it is balanced within domain. Attempt to move
3637  * tasks if there is an imbalance.
3638  *