4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
76 #include <asm/irq_regs.h>
78 #include "sched_cpupri.h"
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/sched.h>
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102 * Helpers for converting nanosecond timing to jiffy resolution
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
110 * These are the 'tuning knobs' of the scheduler:
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
115 #define DEF_TIMESLICE (100 * HZ / 1000)
118 * single value that denotes runtime == period, ie unlimited time.
120 #define RUNTIME_INF ((u64)~0ULL)
122 static inline int rt_policy(int policy)
124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
129 static inline int task_has_rt_policy(struct task_struct *p)
131 return rt_policy(p->policy);
135 * This is the priority-queue data structure of the RT scheduling class:
137 struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
142 struct rt_bandwidth {
143 /* nests inside the rq lock: */
144 raw_spinlock_t rt_runtime_lock;
147 struct hrtimer rt_period_timer;
150 static struct rt_bandwidth def_rt_bandwidth;
152 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
154 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
169 idle = do_sched_rt_period_timer(rt_b, overrun);
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
176 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
181 raw_spin_lock_init(&rt_b->rt_runtime_lock);
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
188 static inline int rt_bandwidth_enabled(void)
190 return sysctl_sched_rt_runtime >= 0;
193 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
200 if (hrtimer_active(&rt_b->rt_period_timer))
203 raw_spin_lock(&rt_b->rt_runtime_lock);
208 if (hrtimer_active(&rt_b->rt_period_timer))
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218 HRTIMER_MODE_ABS_PINNED, 0);
220 raw_spin_unlock(&rt_b->rt_runtime_lock);
223 #ifdef CONFIG_RT_GROUP_SCHED
224 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
226 hrtimer_cancel(&rt_b->rt_period_timer);
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
234 static DEFINE_MUTEX(sched_domains_mutex);
236 #ifdef CONFIG_CGROUP_SCHED
238 #include <linux/cgroup.h>
242 static LIST_HEAD(task_groups);
244 /* task group related information */
246 struct cgroup_subsys_state css;
248 #ifdef CONFIG_FAIR_GROUP_SCHED
249 /* schedulable entities of this group on each cpu */
250 struct sched_entity **se;
251 /* runqueue "owned" by this group on each cpu */
252 struct cfs_rq **cfs_rq;
253 unsigned long shares;
256 #ifdef CONFIG_RT_GROUP_SCHED
257 struct sched_rt_entity **rt_se;
258 struct rt_rq **rt_rq;
260 struct rt_bandwidth rt_bandwidth;
264 struct list_head list;
266 struct task_group *parent;
267 struct list_head siblings;
268 struct list_head children;
271 #define root_task_group init_task_group
273 /* task_group_lock serializes add/remove of task groups and also changes to
274 * a task group's cpu shares.
276 static DEFINE_SPINLOCK(task_group_lock);
278 #ifdef CONFIG_FAIR_GROUP_SCHED
281 static int root_task_group_empty(void)
283 return list_empty(&root_task_group.children);
287 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
290 * A weight of 0 or 1 can cause arithmetics problems.
291 * A weight of a cfs_rq is the sum of weights of which entities
292 * are queued on this cfs_rq, so a weight of a entity should not be
293 * too large, so as the shares value of a task group.
294 * (The default weight is 1024 - so there's no practical
295 * limitation from this.)
298 #define MAX_SHARES (1UL << 18)
300 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
303 /* Default task group.
304 * Every task in system belong to this group at bootup.
306 struct task_group init_task_group;
308 /* return group to which a task belongs */
309 static inline struct task_group *task_group(struct task_struct *p)
311 struct task_group *tg;
313 #ifdef CONFIG_CGROUP_SCHED
314 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
315 struct task_group, css);
317 tg = &init_task_group;
322 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
323 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
325 #ifdef CONFIG_FAIR_GROUP_SCHED
326 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
327 p->se.parent = task_group(p)->se[cpu];
330 #ifdef CONFIG_RT_GROUP_SCHED
331 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
332 p->rt.parent = task_group(p)->rt_se[cpu];
338 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
339 static inline struct task_group *task_group(struct task_struct *p)
344 #endif /* CONFIG_CGROUP_SCHED */
346 /* CFS-related fields in a runqueue */
348 struct load_weight load;
349 unsigned long nr_running;
354 struct rb_root tasks_timeline;
355 struct rb_node *rb_leftmost;
357 struct list_head tasks;
358 struct list_head *balance_iterator;
361 * 'curr' points to currently running entity on this cfs_rq.
362 * It is set to NULL otherwise (i.e when none are currently running).
364 struct sched_entity *curr, *next, *last;
366 unsigned int nr_spread_over;
368 #ifdef CONFIG_FAIR_GROUP_SCHED
369 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
372 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
373 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
374 * (like users, containers etc.)
376 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
377 * list is used during load balance.
379 struct list_head leaf_cfs_rq_list;
380 struct task_group *tg; /* group that "owns" this runqueue */
384 * the part of load.weight contributed by tasks
386 unsigned long task_weight;
389 * h_load = weight * f(tg)
391 * Where f(tg) is the recursive weight fraction assigned to
394 unsigned long h_load;
397 * this cpu's part of tg->shares
399 unsigned long shares;
402 * load.weight at the time we set shares
404 unsigned long rq_weight;
409 /* Real-Time classes' related field in a runqueue: */
411 struct rt_prio_array active;
412 unsigned long rt_nr_running;
413 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
415 int curr; /* highest queued rt task prio */
417 int next; /* next highest */
422 unsigned long rt_nr_migratory;
423 unsigned long rt_nr_total;
425 struct plist_head pushable_tasks;
430 /* Nests inside the rq lock: */
431 raw_spinlock_t rt_runtime_lock;
433 #ifdef CONFIG_RT_GROUP_SCHED
434 unsigned long rt_nr_boosted;
437 struct list_head leaf_rt_rq_list;
438 struct task_group *tg;
445 * We add the notion of a root-domain which will be used to define per-domain
446 * variables. Each exclusive cpuset essentially defines an island domain by
447 * fully partitioning the member cpus from any other cpuset. Whenever a new
448 * exclusive cpuset is created, we also create and attach a new root-domain
455 cpumask_var_t online;
458 * The "RT overload" flag: it gets set if a CPU has more than
459 * one runnable RT task.
461 cpumask_var_t rto_mask;
464 struct cpupri cpupri;
469 * By default the system creates a single root-domain with all cpus as
470 * members (mimicking the global state we have today).
472 static struct root_domain def_root_domain;
477 * This is the main, per-CPU runqueue data structure.
479 * Locking rule: those places that want to lock multiple runqueues
480 * (such as the load balancing or the thread migration code), lock
481 * acquire operations must be ordered by ascending &runqueue.
488 * nr_running and cpu_load should be in the same cacheline because
489 * remote CPUs use both these fields when doing load calculation.
491 unsigned long nr_running;
492 #define CPU_LOAD_IDX_MAX 5
493 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
495 unsigned char in_nohz_recently;
497 /* capture load from *all* tasks on this cpu: */
498 struct load_weight load;
499 unsigned long nr_load_updates;
505 #ifdef CONFIG_FAIR_GROUP_SCHED
506 /* list of leaf cfs_rq on this cpu: */
507 struct list_head leaf_cfs_rq_list;
509 #ifdef CONFIG_RT_GROUP_SCHED
510 struct list_head leaf_rt_rq_list;
514 * This is part of a global counter where only the total sum
515 * over all CPUs matters. A task can increase this counter on
516 * one CPU and if it got migrated afterwards it may decrease
517 * it on another CPU. Always updated under the runqueue lock:
519 unsigned long nr_uninterruptible;
521 struct task_struct *curr, *idle;
522 unsigned long next_balance;
523 struct mm_struct *prev_mm;
530 struct root_domain *rd;
531 struct sched_domain *sd;
533 unsigned char idle_at_tick;
534 /* For active balancing */
538 /* cpu of this runqueue: */
542 unsigned long avg_load_per_task;
544 struct task_struct *migration_thread;
545 struct list_head migration_queue;
553 /* calc_load related fields */
554 unsigned long calc_load_update;
555 long calc_load_active;
557 #ifdef CONFIG_SCHED_HRTICK
559 int hrtick_csd_pending;
560 struct call_single_data hrtick_csd;
562 struct hrtimer hrtick_timer;
565 #ifdef CONFIG_SCHEDSTATS
567 struct sched_info rq_sched_info;
568 unsigned long long rq_cpu_time;
569 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
571 /* sys_sched_yield() stats */
572 unsigned int yld_count;
574 /* schedule() stats */
575 unsigned int sched_switch;
576 unsigned int sched_count;
577 unsigned int sched_goidle;
579 /* try_to_wake_up() stats */
580 unsigned int ttwu_count;
581 unsigned int ttwu_local;
584 unsigned int bkl_count;
588 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
591 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
593 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
596 static inline int cpu_of(struct rq *rq)
605 #define rcu_dereference_check_sched_domain(p) \
606 rcu_dereference_check((p), \
607 rcu_read_lock_sched_held() || \
608 lockdep_is_held(&sched_domains_mutex))
611 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
612 * See detach_destroy_domains: synchronize_sched for details.
614 * The domain tree of any CPU may only be accessed from within
615 * preempt-disabled sections.
617 #define for_each_domain(cpu, __sd) \
618 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
620 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
621 #define this_rq() (&__get_cpu_var(runqueues))
622 #define task_rq(p) cpu_rq(task_cpu(p))
623 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
624 #define raw_rq() (&__raw_get_cpu_var(runqueues))
626 inline void update_rq_clock(struct rq *rq)
628 rq->clock = sched_clock_cpu(cpu_of(rq));
632 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
634 #ifdef CONFIG_SCHED_DEBUG
635 # define const_debug __read_mostly
637 # define const_debug static const
642 * @cpu: the processor in question.
644 * Returns true if the current cpu runqueue is locked.
645 * This interface allows printk to be called with the runqueue lock
646 * held and know whether or not it is OK to wake up the klogd.
648 int runqueue_is_locked(int cpu)
650 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
654 * Debugging: various feature bits
657 #define SCHED_FEAT(name, enabled) \
658 __SCHED_FEAT_##name ,
661 #include "sched_features.h"
666 #define SCHED_FEAT(name, enabled) \
667 (1UL << __SCHED_FEAT_##name) * enabled |
669 const_debug unsigned int sysctl_sched_features =
670 #include "sched_features.h"
675 #ifdef CONFIG_SCHED_DEBUG
676 #define SCHED_FEAT(name, enabled) \
679 static __read_mostly char *sched_feat_names[] = {
680 #include "sched_features.h"
686 static int sched_feat_show(struct seq_file *m, void *v)
690 for (i = 0; sched_feat_names[i]; i++) {
691 if (!(sysctl_sched_features & (1UL << i)))
693 seq_printf(m, "%s ", sched_feat_names[i]);
701 sched_feat_write(struct file *filp, const char __user *ubuf,
702 size_t cnt, loff_t *ppos)
712 if (copy_from_user(&buf, ubuf, cnt))
717 if (strncmp(buf, "NO_", 3) == 0) {
722 for (i = 0; sched_feat_names[i]; i++) {
723 int len = strlen(sched_feat_names[i]);
725 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
727 sysctl_sched_features &= ~(1UL << i);
729 sysctl_sched_features |= (1UL << i);
734 if (!sched_feat_names[i])
742 static int sched_feat_open(struct inode *inode, struct file *filp)
744 return single_open(filp, sched_feat_show, NULL);
747 static const struct file_operations sched_feat_fops = {
748 .open = sched_feat_open,
749 .write = sched_feat_write,
752 .release = single_release,
755 static __init int sched_init_debug(void)
757 debugfs_create_file("sched_features", 0644, NULL, NULL,
762 late_initcall(sched_init_debug);
766 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
769 * Number of tasks to iterate in a single balance run.
770 * Limited because this is done with IRQs disabled.
772 const_debug unsigned int sysctl_sched_nr_migrate = 32;
775 * ratelimit for updating the group shares.
778 unsigned int sysctl_sched_shares_ratelimit = 250000;
779 unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
782 * Inject some fuzzyness into changing the per-cpu group shares
783 * this avoids remote rq-locks at the expense of fairness.
786 unsigned int sysctl_sched_shares_thresh = 4;
789 * period over which we average the RT time consumption, measured
794 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
797 * period over which we measure -rt task cpu usage in us.
800 unsigned int sysctl_sched_rt_period = 1000000;
802 static __read_mostly int scheduler_running;
805 * part of the period that we allow rt tasks to run in us.
808 int sysctl_sched_rt_runtime = 950000;
810 static inline u64 global_rt_period(void)
812 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
815 static inline u64 global_rt_runtime(void)
817 if (sysctl_sched_rt_runtime < 0)
820 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
823 #ifndef prepare_arch_switch
824 # define prepare_arch_switch(next) do { } while (0)
826 #ifndef finish_arch_switch
827 # define finish_arch_switch(prev) do { } while (0)
830 static inline int task_current(struct rq *rq, struct task_struct *p)
832 return rq->curr == p;
835 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
836 static inline int task_running(struct rq *rq, struct task_struct *p)
838 return task_current(rq, p);
841 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
845 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
847 #ifdef CONFIG_DEBUG_SPINLOCK
848 /* this is a valid case when another task releases the spinlock */
849 rq->lock.owner = current;
852 * If we are tracking spinlock dependencies then we have to
853 * fix up the runqueue lock - which gets 'carried over' from
856 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
858 raw_spin_unlock_irq(&rq->lock);
861 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
862 static inline int task_running(struct rq *rq, struct task_struct *p)
867 return task_current(rq, p);
871 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
875 * We can optimise this out completely for !SMP, because the
876 * SMP rebalancing from interrupt is the only thing that cares
881 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
882 raw_spin_unlock_irq(&rq->lock);
884 raw_spin_unlock(&rq->lock);
888 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
892 * After ->oncpu is cleared, the task can be moved to a different CPU.
893 * We must ensure this doesn't happen until the switch is completely
899 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
903 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
906 * Check whether the task is waking, we use this to synchronize against
907 * ttwu() so that task_cpu() reports a stable number.
909 * We need to make an exception for PF_STARTING tasks because the fork
910 * path might require task_rq_lock() to work, eg. it can call
911 * set_cpus_allowed_ptr() from the cpuset clone_ns code.
913 static inline int task_is_waking(struct task_struct *p)
915 return unlikely((p->state == TASK_WAKING) && !(p->flags & PF_STARTING));
919 * __task_rq_lock - lock the runqueue a given task resides on.
920 * Must be called interrupts disabled.
922 static inline struct rq *__task_rq_lock(struct task_struct *p)
928 while (task_is_waking(p))
931 raw_spin_lock(&rq->lock);
932 if (likely(rq == task_rq(p) && !task_is_waking(p)))
934 raw_spin_unlock(&rq->lock);
939 * task_rq_lock - lock the runqueue a given task resides on and disable
940 * interrupts. Note the ordering: we can safely lookup the task_rq without
941 * explicitly disabling preemption.
943 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
949 while (task_is_waking(p))
951 local_irq_save(*flags);
953 raw_spin_lock(&rq->lock);
954 if (likely(rq == task_rq(p) && !task_is_waking(p)))
956 raw_spin_unlock_irqrestore(&rq->lock, *flags);
960 void task_rq_unlock_wait(struct task_struct *p)
962 struct rq *rq = task_rq(p);
964 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
965 raw_spin_unlock_wait(&rq->lock);
968 static void __task_rq_unlock(struct rq *rq)
971 raw_spin_unlock(&rq->lock);
974 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
977 raw_spin_unlock_irqrestore(&rq->lock, *flags);
981 * this_rq_lock - lock this runqueue and disable interrupts.
983 static struct rq *this_rq_lock(void)
990 raw_spin_lock(&rq->lock);
995 #ifdef CONFIG_SCHED_HRTICK
997 * Use HR-timers to deliver accurate preemption points.
999 * Its all a bit involved since we cannot program an hrt while holding the
1000 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1003 * When we get rescheduled we reprogram the hrtick_timer outside of the
1009 * - enabled by features
1010 * - hrtimer is actually high res
1012 static inline int hrtick_enabled(struct rq *rq)
1014 if (!sched_feat(HRTICK))
1016 if (!cpu_active(cpu_of(rq)))
1018 return hrtimer_is_hres_active(&rq->hrtick_timer);
1021 static void hrtick_clear(struct rq *rq)
1023 if (hrtimer_active(&rq->hrtick_timer))
1024 hrtimer_cancel(&rq->hrtick_timer);
1028 * High-resolution timer tick.
1029 * Runs from hardirq context with interrupts disabled.
1031 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1033 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1035 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1037 raw_spin_lock(&rq->lock);
1038 update_rq_clock(rq);
1039 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1040 raw_spin_unlock(&rq->lock);
1042 return HRTIMER_NORESTART;
1047 * called from hardirq (IPI) context
1049 static void __hrtick_start(void *arg)
1051 struct rq *rq = arg;
1053 raw_spin_lock(&rq->lock);
1054 hrtimer_restart(&rq->hrtick_timer);
1055 rq->hrtick_csd_pending = 0;
1056 raw_spin_unlock(&rq->lock);
1060 * Called to set the hrtick timer state.
1062 * called with rq->lock held and irqs disabled
1064 static void hrtick_start(struct rq *rq, u64 delay)
1066 struct hrtimer *timer = &rq->hrtick_timer;
1067 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1069 hrtimer_set_expires(timer, time);
1071 if (rq == this_rq()) {
1072 hrtimer_restart(timer);
1073 } else if (!rq->hrtick_csd_pending) {
1074 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1075 rq->hrtick_csd_pending = 1;
1080 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1082 int cpu = (int)(long)hcpu;
1085 case CPU_UP_CANCELED:
1086 case CPU_UP_CANCELED_FROZEN:
1087 case CPU_DOWN_PREPARE:
1088 case CPU_DOWN_PREPARE_FROZEN:
1090 case CPU_DEAD_FROZEN:
1091 hrtick_clear(cpu_rq(cpu));
1098 static __init void init_hrtick(void)
1100 hotcpu_notifier(hotplug_hrtick, 0);
1104 * Called to set the hrtick timer state.
1106 * called with rq->lock held and irqs disabled
1108 static void hrtick_start(struct rq *rq, u64 delay)
1110 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1111 HRTIMER_MODE_REL_PINNED, 0);
1114 static inline void init_hrtick(void)
1117 #endif /* CONFIG_SMP */
1119 static void init_rq_hrtick(struct rq *rq)
1122 rq->hrtick_csd_pending = 0;
1124 rq->hrtick_csd.flags = 0;
1125 rq->hrtick_csd.func = __hrtick_start;
1126 rq->hrtick_csd.info = rq;
1129 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1130 rq->hrtick_timer.function = hrtick;
1132 #else /* CONFIG_SCHED_HRTICK */
1133 static inline void hrtick_clear(struct rq *rq)
1137 static inline void init_rq_hrtick(struct rq *rq)
1141 static inline void init_hrtick(void)
1144 #endif /* CONFIG_SCHED_HRTICK */
1147 * resched_task - mark a task 'to be rescheduled now'.
1149 * On UP this means the setting of the need_resched flag, on SMP it
1150 * might also involve a cross-CPU call to trigger the scheduler on
1155 #ifndef tsk_is_polling
1156 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1159 static void resched_task(struct task_struct *p)
1163 assert_raw_spin_locked(&task_rq(p)->lock);
1165 if (test_tsk_need_resched(p))
1168 set_tsk_need_resched(p);
1171 if (cpu == smp_processor_id())
1174 /* NEED_RESCHED must be visible before we test polling */
1176 if (!tsk_is_polling(p))
1177 smp_send_reschedule(cpu);
1180 static void resched_cpu(int cpu)
1182 struct rq *rq = cpu_rq(cpu);
1183 unsigned long flags;
1185 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1187 resched_task(cpu_curr(cpu));
1188 raw_spin_unlock_irqrestore(&rq->lock, flags);
1193 * When add_timer_on() enqueues a timer into the timer wheel of an
1194 * idle CPU then this timer might expire before the next timer event
1195 * which is scheduled to wake up that CPU. In case of a completely
1196 * idle system the next event might even be infinite time into the
1197 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1198 * leaves the inner idle loop so the newly added timer is taken into
1199 * account when the CPU goes back to idle and evaluates the timer
1200 * wheel for the next timer event.
1202 void wake_up_idle_cpu(int cpu)
1204 struct rq *rq = cpu_rq(cpu);
1206 if (cpu == smp_processor_id())
1210 * This is safe, as this function is called with the timer
1211 * wheel base lock of (cpu) held. When the CPU is on the way
1212 * to idle and has not yet set rq->curr to idle then it will
1213 * be serialized on the timer wheel base lock and take the new
1214 * timer into account automatically.
1216 if (rq->curr != rq->idle)
1220 * We can set TIF_RESCHED on the idle task of the other CPU
1221 * lockless. The worst case is that the other CPU runs the
1222 * idle task through an additional NOOP schedule()
1224 set_tsk_need_resched(rq->idle);
1226 /* NEED_RESCHED must be visible before we test polling */
1228 if (!tsk_is_polling(rq->idle))
1229 smp_send_reschedule(cpu);
1231 #endif /* CONFIG_NO_HZ */
1233 static u64 sched_avg_period(void)
1235 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1238 static void sched_avg_update(struct rq *rq)
1240 s64 period = sched_avg_period();
1242 while ((s64)(rq->clock - rq->age_stamp) > period) {
1243 rq->age_stamp += period;
1248 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1250 rq->rt_avg += rt_delta;
1251 sched_avg_update(rq);
1254 #else /* !CONFIG_SMP */
1255 static void resched_task(struct task_struct *p)
1257 assert_raw_spin_locked(&task_rq(p)->lock);
1258 set_tsk_need_resched(p);
1261 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1264 #endif /* CONFIG_SMP */
1266 #if BITS_PER_LONG == 32
1267 # define WMULT_CONST (~0UL)
1269 # define WMULT_CONST (1UL << 32)
1272 #define WMULT_SHIFT 32
1275 * Shift right and round:
1277 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1280 * delta *= weight / lw
1282 static unsigned long
1283 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1284 struct load_weight *lw)
1288 if (!lw->inv_weight) {
1289 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1292 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1296 tmp = (u64)delta_exec * weight;
1298 * Check whether we'd overflow the 64-bit multiplication:
1300 if (unlikely(tmp > WMULT_CONST))
1301 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1304 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1306 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1309 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1315 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1322 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1323 * of tasks with abnormal "nice" values across CPUs the contribution that
1324 * each task makes to its run queue's load is weighted according to its
1325 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1326 * scaled version of the new time slice allocation that they receive on time
1330 #define WEIGHT_IDLEPRIO 3
1331 #define WMULT_IDLEPRIO 1431655765
1334 * Nice levels are multiplicative, with a gentle 10% change for every
1335 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1336 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1337 * that remained on nice 0.
1339 * The "10% effect" is relative and cumulative: from _any_ nice level,
1340 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1341 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1342 * If a task goes up by ~10% and another task goes down by ~10% then
1343 * the relative distance between them is ~25%.)
1345 static const int prio_to_weight[40] = {
1346 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1347 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1348 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1349 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1350 /* 0 */ 1024, 820, 655, 526, 423,
1351 /* 5 */ 335, 272, 215, 172, 137,
1352 /* 10 */ 110, 87, 70, 56, 45,
1353 /* 15 */ 36, 29, 23, 18, 15,
1357 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1359 * In cases where the weight does not change often, we can use the
1360 * precalculated inverse to speed up arithmetics by turning divisions
1361 * into multiplications:
1363 static const u32 prio_to_wmult[40] = {
1364 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1365 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1366 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1367 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1368 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1369 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1370 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1371 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1374 /* Time spent by the tasks of the cpu accounting group executing in ... */
1375 enum cpuacct_stat_index {
1376 CPUACCT_STAT_USER, /* ... user mode */
1377 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1379 CPUACCT_STAT_NSTATS,
1382 #ifdef CONFIG_CGROUP_CPUACCT
1383 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1384 static void cpuacct_update_stats(struct task_struct *tsk,
1385 enum cpuacct_stat_index idx, cputime_t val);
1387 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1388 static inline void cpuacct_update_stats(struct task_struct *tsk,
1389 enum cpuacct_stat_index idx, cputime_t val) {}
1392 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1394 update_load_add(&rq->load, load);
1397 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1399 update_load_sub(&rq->load, load);
1402 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1403 typedef int (*tg_visitor)(struct task_group *, void *);
1406 * Iterate the full tree, calling @down when first entering a node and @up when
1407 * leaving it for the final time.
1409 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1411 struct task_group *parent, *child;
1415 parent = &root_task_group;
1417 ret = (*down)(parent, data);
1420 list_for_each_entry_rcu(child, &parent->children, siblings) {
1427 ret = (*up)(parent, data);
1432 parent = parent->parent;
1441 static int tg_nop(struct task_group *tg, void *data)
1448 /* Used instead of source_load when we know the type == 0 */
1449 static unsigned long weighted_cpuload(const int cpu)
1451 return cpu_rq(cpu)->load.weight;
1455 * Return a low guess at the load of a migration-source cpu weighted
1456 * according to the scheduling class and "nice" value.
1458 * We want to under-estimate the load of migration sources, to
1459 * balance conservatively.
1461 static unsigned long source_load(int cpu, int type)
1463 struct rq *rq = cpu_rq(cpu);
1464 unsigned long total = weighted_cpuload(cpu);
1466 if (type == 0 || !sched_feat(LB_BIAS))
1469 return min(rq->cpu_load[type-1], total);
1473 * Return a high guess at the load of a migration-target cpu weighted
1474 * according to the scheduling class and "nice" value.
1476 static unsigned long target_load(int cpu, int type)
1478 struct rq *rq = cpu_rq(cpu);
1479 unsigned long total = weighted_cpuload(cpu);
1481 if (type == 0 || !sched_feat(LB_BIAS))
1484 return max(rq->cpu_load[type-1], total);
1487 static struct sched_group *group_of(int cpu)
1489 struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd);
1497 static unsigned long power_of(int cpu)
1499 struct sched_group *group = group_of(cpu);
1502 return SCHED_LOAD_SCALE;
1504 return group->cpu_power;
1507 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1509 static unsigned long cpu_avg_load_per_task(int cpu)
1511 struct rq *rq = cpu_rq(cpu);
1512 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1515 rq->avg_load_per_task = rq->load.weight / nr_running;
1517 rq->avg_load_per_task = 0;
1519 return rq->avg_load_per_task;
1522 #ifdef CONFIG_FAIR_GROUP_SCHED
1524 static __read_mostly unsigned long __percpu *update_shares_data;
1526 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1529 * Calculate and set the cpu's group shares.
1531 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1532 unsigned long sd_shares,
1533 unsigned long sd_rq_weight,
1534 unsigned long *usd_rq_weight)
1536 unsigned long shares, rq_weight;
1539 rq_weight = usd_rq_weight[cpu];
1542 rq_weight = NICE_0_LOAD;
1546 * \Sum_j shares_j * rq_weight_i
1547 * shares_i = -----------------------------
1548 * \Sum_j rq_weight_j
1550 shares = (sd_shares * rq_weight) / sd_rq_weight;
1551 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1553 if (abs(shares - tg->se[cpu]->load.weight) >
1554 sysctl_sched_shares_thresh) {
1555 struct rq *rq = cpu_rq(cpu);
1556 unsigned long flags;
1558 raw_spin_lock_irqsave(&rq->lock, flags);
1559 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1560 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1561 __set_se_shares(tg->se[cpu], shares);
1562 raw_spin_unlock_irqrestore(&rq->lock, flags);
1567 * Re-compute the task group their per cpu shares over the given domain.
1568 * This needs to be done in a bottom-up fashion because the rq weight of a
1569 * parent group depends on the shares of its child groups.
1571 static int tg_shares_up(struct task_group *tg, void *data)
1573 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1574 unsigned long *usd_rq_weight;
1575 struct sched_domain *sd = data;
1576 unsigned long flags;
1582 local_irq_save(flags);
1583 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1585 for_each_cpu(i, sched_domain_span(sd)) {
1586 weight = tg->cfs_rq[i]->load.weight;
1587 usd_rq_weight[i] = weight;
1589 rq_weight += weight;
1591 * If there are currently no tasks on the cpu pretend there
1592 * is one of average load so that when a new task gets to
1593 * run here it will not get delayed by group starvation.
1596 weight = NICE_0_LOAD;
1598 sum_weight += weight;
1599 shares += tg->cfs_rq[i]->shares;
1603 rq_weight = sum_weight;
1605 if ((!shares && rq_weight) || shares > tg->shares)
1606 shares = tg->shares;
1608 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1609 shares = tg->shares;
1611 for_each_cpu(i, sched_domain_span(sd))
1612 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1614 local_irq_restore(flags);
1620 * Compute the cpu's hierarchical load factor for each task group.
1621 * This needs to be done in a top-down fashion because the load of a child
1622 * group is a fraction of its parents load.
1624 static int tg_load_down(struct task_group *tg, void *data)
1627 long cpu = (long)data;
1630 load = cpu_rq(cpu)->load.weight;
1632 load = tg->parent->cfs_rq[cpu]->h_load;
1633 load *= tg->cfs_rq[cpu]->shares;
1634 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1637 tg->cfs_rq[cpu]->h_load = load;
1642 static void update_shares(struct sched_domain *sd)
1647 if (root_task_group_empty())
1650 now = cpu_clock(raw_smp_processor_id());
1651 elapsed = now - sd->last_update;
1653 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1654 sd->last_update = now;
1655 walk_tg_tree(tg_nop, tg_shares_up, sd);
1659 static void update_h_load(long cpu)
1661 if (root_task_group_empty())
1664 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1669 static inline void update_shares(struct sched_domain *sd)
1675 #ifdef CONFIG_PREEMPT
1677 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1680 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1681 * way at the expense of forcing extra atomic operations in all
1682 * invocations. This assures that the double_lock is acquired using the
1683 * same underlying policy as the spinlock_t on this architecture, which
1684 * reduces latency compared to the unfair variant below. However, it
1685 * also adds more overhead and therefore may reduce throughput.
1687 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1688 __releases(this_rq->lock)
1689 __acquires(busiest->lock)
1690 __acquires(this_rq->lock)
1692 raw_spin_unlock(&this_rq->lock);
1693 double_rq_lock(this_rq, busiest);
1700 * Unfair double_lock_balance: Optimizes throughput at the expense of
1701 * latency by eliminating extra atomic operations when the locks are
1702 * already in proper order on entry. This favors lower cpu-ids and will
1703 * grant the double lock to lower cpus over higher ids under contention,
1704 * regardless of entry order into the function.
1706 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1707 __releases(this_rq->lock)
1708 __acquires(busiest->lock)
1709 __acquires(this_rq->lock)
1713 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1714 if (busiest < this_rq) {
1715 raw_spin_unlock(&this_rq->lock);
1716 raw_spin_lock(&busiest->lock);
1717 raw_spin_lock_nested(&this_rq->lock,
1718 SINGLE_DEPTH_NESTING);
1721 raw_spin_lock_nested(&busiest->lock,
1722 SINGLE_DEPTH_NESTING);
1727 #endif /* CONFIG_PREEMPT */
1730 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1732 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1734 if (unlikely(!irqs_disabled())) {
1735 /* printk() doesn't work good under rq->lock */
1736 raw_spin_unlock(&this_rq->lock);
1740 return _double_lock_balance(this_rq, busiest);
1743 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1744 __releases(busiest->lock)
1746 raw_spin_unlock(&busiest->lock);
1747 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1751 * double_rq_lock - safely lock two runqueues
1753 * Note this does not disable interrupts like task_rq_lock,
1754 * you need to do so manually before calling.
1756 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1757 __acquires(rq1->lock)
1758 __acquires(rq2->lock)
1760 BUG_ON(!irqs_disabled());
1762 raw_spin_lock(&rq1->lock);
1763 __acquire(rq2->lock); /* Fake it out ;) */
1766 raw_spin_lock(&rq1->lock);
1767 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1769 raw_spin_lock(&rq2->lock);
1770 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1773 update_rq_clock(rq1);
1774 update_rq_clock(rq2);
1778 * double_rq_unlock - safely unlock two runqueues
1780 * Note this does not restore interrupts like task_rq_unlock,
1781 * you need to do so manually after calling.
1783 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1784 __releases(rq1->lock)
1785 __releases(rq2->lock)
1787 raw_spin_unlock(&rq1->lock);
1789 raw_spin_unlock(&rq2->lock);
1791 __release(rq2->lock);
1796 #ifdef CONFIG_FAIR_GROUP_SCHED
1797 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1800 cfs_rq->shares = shares;
1805 static void calc_load_account_active(struct rq *this_rq);
1806 static void update_sysctl(void);
1807 static int get_update_sysctl_factor(void);
1809 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1811 set_task_rq(p, cpu);
1814 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1815 * successfuly executed on another CPU. We must ensure that updates of
1816 * per-task data have been completed by this moment.
1819 task_thread_info(p)->cpu = cpu;
1823 static const struct sched_class rt_sched_class;
1825 #define sched_class_highest (&rt_sched_class)
1826 #define for_each_class(class) \
1827 for (class = sched_class_highest; class; class = class->next)
1829 #include "sched_stats.h"
1831 static void inc_nr_running(struct rq *rq)
1836 static void dec_nr_running(struct rq *rq)
1841 static void set_load_weight(struct task_struct *p)
1843 if (task_has_rt_policy(p)) {
1844 p->se.load.weight = prio_to_weight[0] * 2;
1845 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1850 * SCHED_IDLE tasks get minimal weight:
1852 if (p->policy == SCHED_IDLE) {
1853 p->se.load.weight = WEIGHT_IDLEPRIO;
1854 p->se.load.inv_weight = WMULT_IDLEPRIO;
1858 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1859 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1862 static void update_avg(u64 *avg, u64 sample)
1864 s64 diff = sample - *avg;
1869 enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, bool head)
1872 p->se.start_runtime = p->se.sum_exec_runtime;
1874 sched_info_queued(p);
1875 p->sched_class->enqueue_task(rq, p, wakeup, head);
1879 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1882 if (p->se.last_wakeup) {
1883 update_avg(&p->se.avg_overlap,
1884 p->se.sum_exec_runtime - p->se.last_wakeup);
1885 p->se.last_wakeup = 0;
1887 update_avg(&p->se.avg_wakeup,
1888 sysctl_sched_wakeup_granularity);
1892 sched_info_dequeued(p);
1893 p->sched_class->dequeue_task(rq, p, sleep);
1898 * activate_task - move a task to the runqueue.
1900 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1902 if (task_contributes_to_load(p))
1903 rq->nr_uninterruptible--;
1905 enqueue_task(rq, p, wakeup, false);
1910 * deactivate_task - remove a task from the runqueue.
1912 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1914 if (task_contributes_to_load(p))
1915 rq->nr_uninterruptible++;
1917 dequeue_task(rq, p, sleep);
1921 #include "sched_idletask.c"
1922 #include "sched_fair.c"
1923 #include "sched_rt.c"
1924 #ifdef CONFIG_SCHED_DEBUG
1925 # include "sched_debug.c"
1929 * __normal_prio - return the priority that is based on the static prio
1931 static inline int __normal_prio(struct task_struct *p)
1933 return p->static_prio;
1937 * Calculate the expected normal priority: i.e. priority
1938 * without taking RT-inheritance into account. Might be
1939 * boosted by interactivity modifiers. Changes upon fork,
1940 * setprio syscalls, and whenever the interactivity
1941 * estimator recalculates.
1943 static inline int normal_prio(struct task_struct *p)
1947 if (task_has_rt_policy(p))
1948 prio = MAX_RT_PRIO-1 - p->rt_priority;
1950 prio = __normal_prio(p);
1955 * Calculate the current priority, i.e. the priority
1956 * taken into account by the scheduler. This value might
1957 * be boosted by RT tasks, or might be boosted by
1958 * interactivity modifiers. Will be RT if the task got
1959 * RT-boosted. If not then it returns p->normal_prio.
1961 static int effective_prio(struct task_struct *p)
1963 p->normal_prio = normal_prio(p);
1965 * If we are RT tasks or we were boosted to RT priority,
1966 * keep the priority unchanged. Otherwise, update priority
1967 * to the normal priority:
1969 if (!rt_prio(p->prio))
1970 return p->normal_prio;
1975 * task_curr - is this task currently executing on a CPU?
1976 * @p: the task in question.
1978 inline int task_curr(const struct task_struct *p)
1980 return cpu_curr(task_cpu(p)) == p;
1983 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1984 const struct sched_class *prev_class,
1985 int oldprio, int running)
1987 if (prev_class != p->sched_class) {
1988 if (prev_class->switched_from)
1989 prev_class->switched_from(rq, p, running);
1990 p->sched_class->switched_to(rq, p, running);
1992 p->sched_class->prio_changed(rq, p, oldprio, running);
1997 * Is this task likely cache-hot:
2000 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2004 if (p->sched_class != &fair_sched_class)
2008 * Buddy candidates are cache hot:
2010 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2011 (&p->se == cfs_rq_of(&p->se)->next ||
2012 &p->se == cfs_rq_of(&p->se)->last))
2015 if (sysctl_sched_migration_cost == -1)
2017 if (sysctl_sched_migration_cost == 0)
2020 delta = now - p->se.exec_start;
2022 return delta < (s64)sysctl_sched_migration_cost;
2025 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2027 #ifdef CONFIG_SCHED_DEBUG
2029 * We should never call set_task_cpu() on a blocked task,
2030 * ttwu() will sort out the placement.
2032 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2033 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2036 trace_sched_migrate_task(p, new_cpu);
2038 if (task_cpu(p) != new_cpu) {
2039 p->se.nr_migrations++;
2040 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2043 __set_task_cpu(p, new_cpu);
2046 struct migration_req {
2047 struct list_head list;
2049 struct task_struct *task;
2052 struct completion done;
2056 * The task's runqueue lock must be held.
2057 * Returns true if you have to wait for migration thread.
2060 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2062 struct rq *rq = task_rq(p);
2065 * If the task is not on a runqueue (and not running), then
2066 * the next wake-up will properly place the task.
2068 if (!p->se.on_rq && !task_running(rq, p))
2071 init_completion(&req->done);
2073 req->dest_cpu = dest_cpu;
2074 list_add(&req->list, &rq->migration_queue);
2080 * wait_task_context_switch - wait for a thread to complete at least one
2083 * @p must not be current.
2085 void wait_task_context_switch(struct task_struct *p)
2087 unsigned long nvcsw, nivcsw, flags;
2095 * The runqueue is assigned before the actual context
2096 * switch. We need to take the runqueue lock.
2098 * We could check initially without the lock but it is
2099 * very likely that we need to take the lock in every
2102 rq = task_rq_lock(p, &flags);
2103 running = task_running(rq, p);
2104 task_rq_unlock(rq, &flags);
2106 if (likely(!running))
2109 * The switch count is incremented before the actual
2110 * context switch. We thus wait for two switches to be
2111 * sure at least one completed.
2113 if ((p->nvcsw - nvcsw) > 1)
2115 if ((p->nivcsw - nivcsw) > 1)
2123 * wait_task_inactive - wait for a thread to unschedule.
2125 * If @match_state is nonzero, it's the @p->state value just checked and
2126 * not expected to change. If it changes, i.e. @p might have woken up,
2127 * then return zero. When we succeed in waiting for @p to be off its CPU,
2128 * we return a positive number (its total switch count). If a second call
2129 * a short while later returns the same number, the caller can be sure that
2130 * @p has remained unscheduled the whole time.
2132 * The caller must ensure that the task *will* unschedule sometime soon,
2133 * else this function might spin for a *long* time. This function can't
2134 * be called with interrupts off, or it may introduce deadlock with
2135 * smp_call_function() if an IPI is sent by the same process we are
2136 * waiting to become inactive.
2138 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2140 unsigned long flags;
2147 * We do the initial early heuristics without holding
2148 * any task-queue locks at all. We'll only try to get
2149 * the runqueue lock when things look like they will
2155 * If the task is actively running on another CPU
2156 * still, just relax and busy-wait without holding
2159 * NOTE! Since we don't hold any locks, it's not
2160 * even sure that "rq" stays as the right runqueue!
2161 * But we don't care, since "task_running()" will
2162 * return false if the runqueue has changed and p
2163 * is actually now running somewhere else!
2165 while (task_running(rq, p)) {
2166 if (match_state && unlikely(p->state != match_state))
2172 * Ok, time to look more closely! We need the rq
2173 * lock now, to be *sure*. If we're wrong, we'll
2174 * just go back and repeat.
2176 rq = task_rq_lock(p, &flags);
2177 trace_sched_wait_task(rq, p);
2178 running = task_running(rq, p);
2179 on_rq = p->se.on_rq;
2181 if (!match_state || p->state == match_state)
2182 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2183 task_rq_unlock(rq, &flags);
2186 * If it changed from the expected state, bail out now.
2188 if (unlikely(!ncsw))
2192 * Was it really running after all now that we
2193 * checked with the proper locks actually held?
2195 * Oops. Go back and try again..
2197 if (unlikely(running)) {
2203 * It's not enough that it's not actively running,
2204 * it must be off the runqueue _entirely_, and not
2207 * So if it was still runnable (but just not actively
2208 * running right now), it's preempted, and we should
2209 * yield - it could be a while.
2211 if (unlikely(on_rq)) {
2212 schedule_timeout_uninterruptible(1);
2217 * Ahh, all good. It wasn't running, and it wasn't
2218 * runnable, which means that it will never become
2219 * running in the future either. We're all done!
2228 * kick_process - kick a running thread to enter/exit the kernel
2229 * @p: the to-be-kicked thread
2231 * Cause a process which is running on another CPU to enter
2232 * kernel-mode, without any delay. (to get signals handled.)
2234 * NOTE: this function doesnt have to take the runqueue lock,
2235 * because all it wants to ensure is that the remote task enters
2236 * the kernel. If the IPI races and the task has been migrated
2237 * to another CPU then no harm is done and the purpose has been
2240 void kick_process(struct task_struct *p)
2246 if ((cpu != smp_processor_id()) && task_curr(p))
2247 smp_send_reschedule(cpu);
2250 EXPORT_SYMBOL_GPL(kick_process);
2251 #endif /* CONFIG_SMP */
2254 * task_oncpu_function_call - call a function on the cpu on which a task runs
2255 * @p: the task to evaluate
2256 * @func: the function to be called
2257 * @info: the function call argument
2259 * Calls the function @func when the task is currently running. This might
2260 * be on the current CPU, which just calls the function directly
2262 void task_oncpu_function_call(struct task_struct *p,
2263 void (*func) (void *info), void *info)
2270 smp_call_function_single(cpu, func, info, 1);
2275 static int select_fallback_rq(int cpu, struct task_struct *p)
2278 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2280 /* Look for allowed, online CPU in same node. */
2281 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2282 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2285 /* Any allowed, online CPU? */
2286 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2287 if (dest_cpu < nr_cpu_ids)
2290 /* No more Mr. Nice Guy. */
2291 if (dest_cpu >= nr_cpu_ids) {
2293 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
2295 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
2298 * Don't tell them about moving exiting tasks or
2299 * kernel threads (both mm NULL), since they never
2302 if (p->mm && printk_ratelimit()) {
2303 printk(KERN_INFO "process %d (%s) no "
2304 "longer affine to cpu%d\n",
2305 task_pid_nr(p), p->comm, cpu);
2313 * Gets called from 3 sites (exec, fork, wakeup), since it is called without
2314 * holding rq->lock we need to ensure ->cpus_allowed is stable, this is done
2317 * exec: is unstable, retry loop
2318 * fork & wake-up: serialize ->cpus_allowed against TASK_WAKING
2321 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2323 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2326 * In order not to call set_task_cpu() on a blocking task we need
2327 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2330 * Since this is common to all placement strategies, this lives here.
2332 * [ this allows ->select_task() to simply return task_cpu(p) and
2333 * not worry about this generic constraint ]
2335 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2337 cpu = select_fallback_rq(task_cpu(p), p);
2344 * try_to_wake_up - wake up a thread
2345 * @p: the to-be-woken-up thread
2346 * @state: the mask of task states that can be woken
2347 * @sync: do a synchronous wakeup?
2349 * Put it on the run-queue if it's not already there. The "current"
2350 * thread is always on the run-queue (except when the actual
2351 * re-schedule is in progress), and as such you're allowed to do
2352 * the simpler "current->state = TASK_RUNNING" to mark yourself
2353 * runnable without the overhead of this.
2355 * returns failure only if the task is already active.
2357 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2360 int cpu, orig_cpu, this_cpu, success = 0;
2361 unsigned long flags;
2364 if (!sched_feat(SYNC_WAKEUPS))
2365 wake_flags &= ~WF_SYNC;
2367 this_cpu = get_cpu();
2370 rq = task_rq_lock(p, &flags);
2371 update_rq_clock(rq);
2372 if (!(p->state & state))
2382 if (unlikely(task_running(rq, p)))
2386 * In order to handle concurrent wakeups and release the rq->lock
2387 * we put the task in TASK_WAKING state.
2389 * First fix up the nr_uninterruptible count:
2391 if (task_contributes_to_load(p))
2392 rq->nr_uninterruptible--;
2393 p->state = TASK_WAKING;
2395 if (p->sched_class->task_waking)
2396 p->sched_class->task_waking(rq, p);
2398 __task_rq_unlock(rq);
2400 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2401 if (cpu != orig_cpu) {
2403 * Since we migrate the task without holding any rq->lock,
2404 * we need to be careful with task_rq_lock(), since that
2405 * might end up locking an invalid rq.
2407 set_task_cpu(p, cpu);
2411 raw_spin_lock(&rq->lock);
2412 update_rq_clock(rq);
2415 * We migrated the task without holding either rq->lock, however
2416 * since the task is not on the task list itself, nobody else
2417 * will try and migrate the task, hence the rq should match the
2418 * cpu we just moved it to.
2420 WARN_ON(task_cpu(p) != cpu);
2421 WARN_ON(p->state != TASK_WAKING);
2423 #ifdef CONFIG_SCHEDSTATS
2424 schedstat_inc(rq, ttwu_count);
2425 if (cpu == this_cpu)
2426 schedstat_inc(rq, ttwu_local);
2428 struct sched_domain *sd;
2429 for_each_domain(this_cpu, sd) {
2430 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2431 schedstat_inc(sd, ttwu_wake_remote);
2436 #endif /* CONFIG_SCHEDSTATS */
2439 #endif /* CONFIG_SMP */
2440 schedstat_inc(p, se.nr_wakeups);
2441 if (wake_flags & WF_SYNC)
2442 schedstat_inc(p, se.nr_wakeups_sync);
2443 if (orig_cpu != cpu)
2444 schedstat_inc(p, se.nr_wakeups_migrate);
2445 if (cpu == this_cpu)
2446 schedstat_inc(p, se.nr_wakeups_local);
2448 schedstat_inc(p, se.nr_wakeups_remote);
2449 activate_task(rq, p, 1);
2453 * Only attribute actual wakeups done by this task.
2455 if (!in_interrupt()) {
2456 struct sched_entity *se = ¤t->se;
2457 u64 sample = se->sum_exec_runtime;
2459 if (se->last_wakeup)
2460 sample -= se->last_wakeup;
2462 sample -= se->start_runtime;
2463 update_avg(&se->avg_wakeup, sample);
2465 se->last_wakeup = se->sum_exec_runtime;
2469 trace_sched_wakeup(rq, p, success);
2470 check_preempt_curr(rq, p, wake_flags);
2472 p->state = TASK_RUNNING;
2474 if (p->sched_class->task_woken)
2475 p->sched_class->task_woken(rq, p);
2477 if (unlikely(rq->idle_stamp)) {
2478 u64 delta = rq->clock - rq->idle_stamp;
2479 u64 max = 2*sysctl_sched_migration_cost;
2484 update_avg(&rq->avg_idle, delta);
2489 task_rq_unlock(rq, &flags);
2496 * wake_up_process - Wake up a specific process
2497 * @p: The process to be woken up.
2499 * Attempt to wake up the nominated process and move it to the set of runnable
2500 * processes. Returns 1 if the process was woken up, 0 if it was already
2503 * It may be assumed that this function implies a write memory barrier before
2504 * changing the task state if and only if any tasks are woken up.
2506 int wake_up_process(struct task_struct *p)
2508 return try_to_wake_up(p, TASK_ALL, 0);
2510 EXPORT_SYMBOL(wake_up_process);
2512 int wake_up_state(struct task_struct *p, unsigned int state)
2514 return try_to_wake_up(p, state, 0);
2518 * Perform scheduler related setup for a newly forked process p.
2519 * p is forked by current.
2521 * __sched_fork() is basic setup used by init_idle() too:
2523 static void __sched_fork(struct task_struct *p)
2525 p->se.exec_start = 0;
2526 p->se.sum_exec_runtime = 0;
2527 p->se.prev_sum_exec_runtime = 0;
2528 p->se.nr_migrations = 0;
2529 p->se.last_wakeup = 0;
2530 p->se.avg_overlap = 0;
2531 p->se.start_runtime = 0;
2532 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2534 #ifdef CONFIG_SCHEDSTATS
2535 p->se.wait_start = 0;
2537 p->se.wait_count = 0;
2540 p->se.sleep_start = 0;
2541 p->se.sleep_max = 0;
2542 p->se.sum_sleep_runtime = 0;
2544 p->se.block_start = 0;
2545 p->se.block_max = 0;
2547 p->se.slice_max = 0;
2549 p->se.nr_migrations_cold = 0;
2550 p->se.nr_failed_migrations_affine = 0;
2551 p->se.nr_failed_migrations_running = 0;
2552 p->se.nr_failed_migrations_hot = 0;
2553 p->se.nr_forced_migrations = 0;
2555 p->se.nr_wakeups = 0;
2556 p->se.nr_wakeups_sync = 0;
2557 p->se.nr_wakeups_migrate = 0;
2558 p->se.nr_wakeups_local = 0;
2559 p->se.nr_wakeups_remote = 0;
2560 p->se.nr_wakeups_affine = 0;
2561 p->se.nr_wakeups_affine_attempts = 0;
2562 p->se.nr_wakeups_passive = 0;
2563 p->se.nr_wakeups_idle = 0;
2567 INIT_LIST_HEAD(&p->rt.run_list);
2569 INIT_LIST_HEAD(&p->se.group_node);
2571 #ifdef CONFIG_PREEMPT_NOTIFIERS
2572 INIT_HLIST_HEAD(&p->preempt_notifiers);
2577 * fork()/clone()-time setup:
2579 void sched_fork(struct task_struct *p, int clone_flags)
2581 int cpu = get_cpu();
2585 * We mark the process as waking here. This guarantees that
2586 * nobody will actually run it, and a signal or other external
2587 * event cannot wake it up and insert it on the runqueue either.
2589 p->state = TASK_WAKING;
2592 * Revert to default priority/policy on fork if requested.
2594 if (unlikely(p->sched_reset_on_fork)) {
2595 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2596 p->policy = SCHED_NORMAL;
2597 p->normal_prio = p->static_prio;
2600 if (PRIO_TO_NICE(p->static_prio) < 0) {
2601 p->static_prio = NICE_TO_PRIO(0);
2602 p->normal_prio = p->static_prio;
2607 * We don't need the reset flag anymore after the fork. It has
2608 * fulfilled its duty:
2610 p->sched_reset_on_fork = 0;
2614 * Make sure we do not leak PI boosting priority to the child.
2616 p->prio = current->normal_prio;
2618 if (!rt_prio(p->prio))
2619 p->sched_class = &fair_sched_class;
2621 if (p->sched_class->task_fork)
2622 p->sched_class->task_fork(p);
2624 set_task_cpu(p, cpu);
2626 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2627 if (likely(sched_info_on()))
2628 memset(&p->sched_info, 0, sizeof(p->sched_info));
2630 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2633 #ifdef CONFIG_PREEMPT
2634 /* Want to start with kernel preemption disabled. */
2635 task_thread_info(p)->preempt_count = 1;
2637 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2643 * wake_up_new_task - wake up a newly created task for the first time.
2645 * This function will do some initial scheduler statistics housekeeping
2646 * that must be done for every newly created context, then puts the task
2647 * on the runqueue and wakes it.
2649 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2651 unsigned long flags;
2653 int cpu = get_cpu();
2657 * Fork balancing, do it here and not earlier because:
2658 * - cpus_allowed can change in the fork path
2659 * - any previously selected cpu might disappear through hotplug
2661 * We still have TASK_WAKING but PF_STARTING is gone now, meaning
2662 * ->cpus_allowed is stable, we have preemption disabled, meaning
2663 * cpu_online_mask is stable.
2665 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
2666 set_task_cpu(p, cpu);
2670 * Since the task is not on the rq and we still have TASK_WAKING set
2671 * nobody else will migrate this task.
2674 raw_spin_lock_irqsave(&rq->lock, flags);
2676 BUG_ON(p->state != TASK_WAKING);
2677 p->state = TASK_RUNNING;
2678 update_rq_clock(rq);
2679 activate_task(rq, p, 0);
2680 trace_sched_wakeup_new(rq, p, 1);
2681 check_preempt_curr(rq, p, WF_FORK);
2683 if (p->sched_class->task_woken)
2684 p->sched_class->task_woken(rq, p);
2686 task_rq_unlock(rq, &flags);
2690 #ifdef CONFIG_PREEMPT_NOTIFIERS
2693 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2694 * @notifier: notifier struct to register
2696 void preempt_notifier_register(struct preempt_notifier *notifier)
2698 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
2700 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2703 * preempt_notifier_unregister - no longer interested in preemption notifications
2704 * @notifier: notifier struct to unregister
2706 * This is safe to call from within a preemption notifier.
2708 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2710 hlist_del(¬ifier->link);
2712 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2714 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2716 struct preempt_notifier *notifier;
2717 struct hlist_node *node;
2719 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2720 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2724 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2725 struct task_struct *next)
2727 struct preempt_notifier *notifier;
2728 struct hlist_node *node;
2730 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2731 notifier->ops->sched_out(notifier, next);
2734 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2736 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2741 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2742 struct task_struct *next)
2746 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2749 * prepare_task_switch - prepare to switch tasks
2750 * @rq: the runqueue preparing to switch
2751 * @prev: the current task that is being switched out
2752 * @next: the task we are going to switch to.
2754 * This is called with the rq lock held and interrupts off. It must
2755 * be paired with a subsequent finish_task_switch after the context
2758 * prepare_task_switch sets up locking and calls architecture specific
2762 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2763 struct task_struct *next)
2765 fire_sched_out_preempt_notifiers(prev, next);
2766 prepare_lock_switch(rq, next);
2767 prepare_arch_switch(next);
2771 * finish_task_switch - clean up after a task-switch
2772 * @rq: runqueue associated with task-switch
2773 * @prev: the thread we just switched away from.
2775 * finish_task_switch must be called after the context switch, paired
2776 * with a prepare_task_switch call before the context switch.
2777 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2778 * and do any other architecture-specific cleanup actions.
2780 * Note that we may have delayed dropping an mm in context_switch(). If
2781 * so, we finish that here outside of the runqueue lock. (Doing it
2782 * with the lock held can cause deadlocks; see schedule() for
2785 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2786 __releases(rq->lock)
2788 struct mm_struct *mm = rq->prev_mm;
2794 * A task struct has one reference for the use as "current".
2795 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2796 * schedule one last time. The schedule call will never return, and
2797 * the scheduled task must drop that reference.
2798 * The test for TASK_DEAD must occur while the runqueue locks are
2799 * still held, otherwise prev could be scheduled on another cpu, die
2800 * there before we look at prev->state, and then the reference would
2802 * Manfred Spraul <manfred@colorfullife.com>
2804 prev_state = prev->state;
2805 finish_arch_switch(prev);
2806 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2807 local_irq_disable();
2808 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2809 perf_event_task_sched_in(current);
2810 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2812 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2813 finish_lock_switch(rq, prev);
2815 fire_sched_in_preempt_notifiers(current);
2818 if (unlikely(prev_state == TASK_DEAD)) {
2820 * Remove function-return probe instances associated with this
2821 * task and put them back on the free list.
2823 kprobe_flush_task(prev);
2824 put_task_struct(prev);
2830 /* assumes rq->lock is held */
2831 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2833 if (prev->sched_class->pre_schedule)
2834 prev->sched_class->pre_schedule(rq, prev);
2837 /* rq->lock is NOT held, but preemption is disabled */
2838 static inline void post_schedule(struct rq *rq)
2840 if (rq->post_schedule) {
2841 unsigned long flags;
2843 raw_spin_lock_irqsave(&rq->lock, flags);
2844 if (rq->curr->sched_class->post_schedule)
2845 rq->curr->sched_class->post_schedule(rq);
2846 raw_spin_unlock_irqrestore(&rq->lock, flags);
2848 rq->post_schedule = 0;
2854 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2858 static inline void post_schedule(struct rq *rq)
2865 * schedule_tail - first thing a freshly forked thread must call.
2866 * @prev: the thread we just switched away from.
2868 asmlinkage void schedule_tail(struct task_struct *prev)
2869 __releases(rq->lock)
2871 struct rq *rq = this_rq();
2873 finish_task_switch(rq, prev);
2876 * FIXME: do we need to worry about rq being invalidated by the
2881 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2882 /* In this case, finish_task_switch does not reenable preemption */
2885 if (current->set_child_tid)
2886 put_user(task_pid_vnr(current), current->set_child_tid);
2890 * context_switch - switch to the new MM and the new
2891 * thread's register state.
2894 context_switch(struct rq *rq, struct task_struct *prev,
2895 struct task_struct *next)
2897 struct mm_struct *mm, *oldmm;
2899 prepare_task_switch(rq, prev, next);
2900 trace_sched_switch(rq, prev, next);
2902 oldmm = prev->active_mm;
2904 * For paravirt, this is coupled with an exit in switch_to to
2905 * combine the page table reload and the switch backend into
2908 arch_start_context_switch(prev);
2911 next->active_mm = oldmm;
2912 atomic_inc(&oldmm->mm_count);
2913 enter_lazy_tlb(oldmm, next);
2915 switch_mm(oldmm, mm, next);
2917 if (likely(!prev->mm)) {
2918 prev->active_mm = NULL;
2919 rq->prev_mm = oldmm;
2922 * Since the runqueue lock will be released by the next
2923 * task (which is an invalid locking op but in the case
2924 * of the scheduler it's an obvious special-case), so we
2925 * do an early lockdep release here:
2927 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2928 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2931 /* Here we just switch the register state and the stack. */
2932 switch_to(prev, next, prev);
2936 * this_rq must be evaluated again because prev may have moved
2937 * CPUs since it called schedule(), thus the 'rq' on its stack
2938 * frame will be invalid.
2940 finish_task_switch(this_rq(), prev);
2944 * nr_running, nr_uninterruptible and nr_context_switches:
2946 * externally visible scheduler statistics: current number of runnable
2947 * threads, current number of uninterruptible-sleeping threads, total
2948 * number of context switches performed since bootup.
2950 unsigned long nr_running(void)
2952 unsigned long i, sum = 0;
2954 for_each_online_cpu(i)
2955 sum += cpu_rq(i)->nr_running;
2960 unsigned long nr_uninterruptible(void)
2962 unsigned long i, sum = 0;
2964 for_each_possible_cpu(i)
2965 sum += cpu_rq(i)->nr_uninterruptible;
2968 * Since we read the counters lockless, it might be slightly
2969 * inaccurate. Do not allow it to go below zero though:
2971 if (unlikely((long)sum < 0))
2977 unsigned long long nr_context_switches(void)
2980 unsigned long long sum = 0;
2982 for_each_possible_cpu(i)
2983 sum += cpu_rq(i)->nr_switches;
2988 unsigned long nr_iowait(void)
2990 unsigned long i, sum = 0;
2992 for_each_possible_cpu(i)
2993 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2998 unsigned long nr_iowait_cpu(void)
3000 struct rq *this = this_rq();
3001 return atomic_read(&this->nr_iowait);
3004 unsigned long this_cpu_load(void)
3006 struct rq *this = this_rq();
3007 return this->cpu_load[0];
3011 /* Variables and functions for calc_load */
3012 static atomic_long_t calc_load_tasks;
3013 static unsigned long calc_load_update;
3014 unsigned long avenrun[3];
3015 EXPORT_SYMBOL(avenrun);
3018 * get_avenrun - get the load average array
3019 * @loads: pointer to dest load array
3020 * @offset: offset to add
3021 * @shift: shift count to shift the result left
3023 * These values are estimates at best, so no need for locking.
3025 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3027 loads[0] = (avenrun[0] + offset) << shift;
3028 loads[1] = (avenrun[1] + offset) << shift;
3029 loads[2] = (avenrun[2] + offset) << shift;
3032 static unsigned long
3033 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3036 load += active * (FIXED_1 - exp);
3037 return load >> FSHIFT;
3041 * calc_load - update the avenrun load estimates 10 ticks after the
3042 * CPUs have updated calc_load_tasks.
3044 void calc_global_load(void)
3046 unsigned long upd = calc_load_update + 10;
3049 if (time_before(jiffies, upd))
3052 active = atomic_long_read(&calc_load_tasks);
3053 active = active > 0 ? active * FIXED_1 : 0;
3055 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3056 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3057 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3059 calc_load_update += LOAD_FREQ;
3063 * Either called from update_cpu_load() or from a cpu going idle
3065 static void calc_load_account_active(struct rq *this_rq)
3067 long nr_active, delta;
3069 nr_active = this_rq->nr_running;
3070 nr_active += (long) this_rq->nr_uninterruptible;
3072 if (nr_active != this_rq->calc_load_active) {
3073 delta = nr_active - this_rq->calc_load_active;
3074 this_rq->calc_load_active = nr_active;
3075 atomic_long_add(delta, &calc_load_tasks);
3080 * Update rq->cpu_load[] statistics. This function is usually called every
3081 * scheduler tick (TICK_NSEC).
3083 static void update_cpu_load(struct rq *this_rq)
3085 unsigned long this_load = this_rq->load.weight;
3088 this_rq->nr_load_updates++;
3090 /* Update our load: */
3091 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3092 unsigned long old_load, new_load;
3094 /* scale is effectively 1 << i now, and >> i divides by scale */
3096 old_load = this_rq->cpu_load[i];
3097 new_load = this_load;
3099 * Round up the averaging division if load is increasing. This
3100 * prevents us from getting stuck on 9 if the load is 10, for
3103 if (new_load > old_load)
3104 new_load += scale-1;
3105 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3108 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3109 this_rq->calc_load_update += LOAD_FREQ;
3110 calc_load_account_active(this_rq);
3117 * sched_exec - execve() is a valuable balancing opportunity, because at
3118 * this point the task has the smallest effective memory and cache footprint.
3120 void sched_exec(void)
3122 struct task_struct *p = current;
3123 struct migration_req req;
3124 int dest_cpu, this_cpu;
3125 unsigned long flags;
3129 this_cpu = get_cpu();
3130 dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
3131 if (dest_cpu == this_cpu) {
3136 rq = task_rq_lock(p, &flags);
3140 * select_task_rq() can race against ->cpus_allowed
3142 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3143 || unlikely(!cpu_active(dest_cpu))) {
3144 task_rq_unlock(rq, &flags);
3148 /* force the process onto the specified CPU */
3149 if (migrate_task(p, dest_cpu, &req)) {
3150 /* Need to wait for migration thread (might exit: take ref). */
3151 struct task_struct *mt = rq->migration_thread;
3153 get_task_struct(mt);
3154 task_rq_unlock(rq, &flags);
3155 wake_up_process(mt);
3156 put_task_struct(mt);
3157 wait_for_completion(&req.done);
3161 task_rq_unlock(rq, &flags);
3166 DEFINE_PER_CPU(struct kernel_stat, kstat);
3168 EXPORT_PER_CPU_SYMBOL(kstat);
3171 * Return any ns on the sched_clock that have not yet been accounted in
3172 * @p in case that task is currently running.
3174 * Called with task_rq_lock() held on @rq.
3176 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3180 if (task_current(rq, p)) {
3181 update_rq_clock(rq);
3182 ns = rq->clock - p->se.exec_start;
3190 unsigned long long task_delta_exec(struct task_struct *p)
3192 unsigned long flags;
3196 rq = task_rq_lock(p, &flags);
3197 ns = do_task_delta_exec(p, rq);
3198 task_rq_unlock(rq, &flags);
3204 * Return accounted runtime for the task.
3205 * In case the task is currently running, return the runtime plus current's
3206 * pending runtime that have not been accounted yet.
3208 unsigned long long task_sched_runtime(struct task_struct *p)
3210 unsigned long flags;
3214 rq = task_rq_lock(p, &flags);
3215 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3216 task_rq_unlock(rq, &flags);
3222 * Return sum_exec_runtime for the thread group.
3223 * In case the task is currently running, return the sum plus current's
3224 * pending runtime that have not been accounted yet.
3226 * Note that the thread group might have other running tasks as well,
3227 * so the return value not includes other pending runtime that other
3228 * running tasks might have.
3230 unsigned long long thread_group_sched_runtime(struct task_struct *p)
3232 struct task_cputime totals;
3233 unsigned long flags;
3237 rq = task_rq_lock(p, &flags);
3238 thread_group_cputime(p, &totals);
3239 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3240 task_rq_unlock(rq, &flags);
3246 * Account user cpu time to a process.
3247 * @p: the process that the cpu time gets accounted to
3248 * @cputime: the cpu time spent in user space since the last update
3249 * @cputime_scaled: cputime scaled by cpu frequency
3251 void account_user_time(struct task_struct *p, cputime_t cputime,
3252 cputime_t cputime_scaled)
3254 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3257 /* Add user time to process. */
3258 p->utime = cputime_add(p->utime, cputime);
3259 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3260 account_group_user_time(p, cputime);
3262 /* Add user time to cpustat. */
3263 tmp = cputime_to_cputime64(cputime);
3264 if (TASK_NICE(p) > 0)
3265 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3267 cpustat->user = cputime64_add(cpustat->user, tmp);
3269 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3270 /* Account for user time used */
3271 acct_update_integrals(p);
3275 * Account guest cpu time to a process.
3276 * @p: the process that the cpu time gets accounted to
3277 * @cputime: the cpu time spent in virtual machine since the last update
3278 * @cputime_scaled: cputime scaled by cpu frequency
3280 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3281 cputime_t cputime_scaled)
3284 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3286 tmp = cputime_to_cputime64(cputime);
3288 /* Add guest time to process. */
3289 p->utime = cputime_add(p->utime, cputime);
3290 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3291 account_group_user_time(p, cputime);
3292 p->gtime = cputime_add(p->gtime, cputime);
3294 /* Add guest time to cpustat. */
3295 if (TASK_NICE(p) > 0) {
3296 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3297 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3299 cpustat->user = cputime64_add(cpustat->user, tmp);
3300 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3305 * Account system cpu time to a process.
3306 * @p: the process that the cpu time gets accounted to
3307 * @hardirq_offset: the offset to subtract from hardirq_count()
3308 * @cputime: the cpu time spent in kernel space since the last update
3309 * @cputime_scaled: cputime scaled by cpu frequency
3311 void account_system_time(struct task_struct *p, int hardirq_offset,
3312 cputime_t cputime, cputime_t cputime_scaled)
3314 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3317 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3318 account_guest_time(p, cputime, cputime_scaled);
3322 /* Add system time to process. */
3323 p->stime = cputime_add(p->stime, cputime);
3324 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3325 account_group_system_time(p, cputime);
3327 /* Add system time to cpustat. */
3328 tmp = cputime_to_cputime64(cputime);
3329 if (hardirq_count() - hardirq_offset)
3330 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3331 else if (softirq_count())
3332 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3334 cpustat->system = cputime64_add(cpustat->system, tmp);
3336 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3338 /* Account for system time used */
3339 acct_update_integrals(p);
3343 * Account for involuntary wait time.
3344 * @steal: the cpu time spent in involuntary wait
3346 void account_steal_time(cputime_t cputime)
3348 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3349 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3351 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3355 * Account for idle time.
3356 * @cputime: the cpu time spent in idle wait
3358 void account_idle_time(cputime_t cputime)
3360 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3361 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3362 struct rq *rq = this_rq();
3364 if (atomic_read(&rq->nr_iowait) > 0)
3365 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3367 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3370 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3373 * Account a single tick of cpu time.
3374 * @p: the process that the cpu time gets accounted to
3375 * @user_tick: indicates if the tick is a user or a system tick
3377 void account_process_tick(struct task_struct *p, int user_tick)
3379 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3380 struct rq *rq = this_rq();
3383 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3384 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3385 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3388 account_idle_time(cputime_one_jiffy);
3392 * Account multiple ticks of steal time.
3393 * @p: the process from which the cpu time has been stolen
3394 * @ticks: number of stolen ticks
3396 void account_steal_ticks(unsigned long ticks)
3398 account_steal_time(jiffies_to_cputime(ticks));
3402 * Account multiple ticks of idle time.
3403 * @ticks: number of stolen ticks
3405 void account_idle_ticks(unsigned long ticks)
3407 account_idle_time(jiffies_to_cputime(ticks));
3413 * Use precise platform statistics if available:
3415 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3416 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3422 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3424 struct task_cputime cputime;
3426 thread_group_cputime(p, &cputime);
3428 *ut = cputime.utime;
3429 *st = cputime.stime;
3433 #ifndef nsecs_to_cputime
3434 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3437 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3439 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3442 * Use CFS's precise accounting:
3444 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3449 temp = (u64)(rtime * utime);
3450 do_div(temp, total);
3451 utime = (cputime_t)temp;
3456 * Compare with previous values, to keep monotonicity:
3458 p->prev_utime = max(p->prev_utime, utime);
3459 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3461 *ut = p->prev_utime;
3462 *st = p->prev_stime;
3466 * Must be called with siglock held.
3468 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3470 struct signal_struct *sig = p->signal;
3471 struct task_cputime cputime;
3472 cputime_t rtime, utime, total;
3474 thread_group_cputime(p, &cputime);
3476 total = cputime_add(cputime.utime, cputime.stime);
3477 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3482 temp = (u64)(rtime * cputime.utime);
3483 do_div(temp, total);
3484 utime = (cputime_t)temp;
3488 sig->prev_utime = max(sig->prev_utime, utime);
3489 sig->prev_stime = max(sig->prev_stime,
3490 cputime_sub(rtime, sig->prev_utime));
3492 *ut = sig->prev_utime;
3493 *st = sig->prev_stime;
3498 * This function gets called by the timer code, with HZ frequency.
3499 * We call it with interrupts disabled.
3501 * It also gets called by the fork code, when changing the parent's
3504 void scheduler_tick(void)
3506 int cpu = smp_processor_id();
3507 struct rq *rq = cpu_rq(cpu);
3508 struct task_struct *curr = rq->curr;
3512 raw_spin_lock(&rq->lock);
3513 update_rq_clock(rq);
3514 update_cpu_load(rq);
3515 curr->sched_class->task_tick(rq, curr, 0);
3516 raw_spin_unlock(&rq->lock);
3518 perf_event_task_tick(curr);
3521 rq->idle_at_tick = idle_cpu(cpu);
3522 trigger_load_balance(rq, cpu);
3526 notrace unsigned long get_parent_ip(unsigned long addr)
3528 if (in_lock_functions(addr)) {
3529 addr = CALLER_ADDR2;
3530 if (in_lock_functions(addr))
3531 addr = CALLER_ADDR3;
3536 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3537 defined(CONFIG_PREEMPT_TRACER))
3539 void __kprobes add_preempt_count(int val)
3541 #ifdef CONFIG_DEBUG_PREEMPT
3545 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3548 preempt_count() += val;
3549 #ifdef CONFIG_DEBUG_PREEMPT
3551 * Spinlock count overflowing soon?
3553 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3556 if (preempt_count() == val)
3557 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3559 EXPORT_SYMBOL(add_preempt_count);
3561 void __kprobes sub_preempt_count(int val)
3563 #ifdef CONFIG_DEBUG_PREEMPT
3567 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3570 * Is the spinlock portion underflowing?
3572 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3573 !(preempt_count() & PREEMPT_MASK)))
3577 if (preempt_count() == val)
3578 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3579 preempt_count() -= val;
3581 EXPORT_SYMBOL(sub_preempt_count);
3586 * Print scheduling while atomic bug:
3588 static noinline void __schedule_bug(struct task_struct *prev)
3590 struct pt_regs *regs = get_irq_regs();
3592 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3593 prev->comm, prev->pid, preempt_count());
3595 debug_show_held_locks(prev);
3597 if (irqs_disabled())
3598 print_irqtrace_events(prev);
3607 * Various schedule()-time debugging checks and statistics:
3609 static inline void schedule_debug(struct task_struct *prev)
3612 * Test if we are atomic. Since do_exit() needs to call into
3613 * schedule() atomically, we ignore that path for now.
3614 * Otherwise, whine if we are scheduling when we should not be.
3616 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3617 __schedule_bug(prev);
3619 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3621 schedstat_inc(this_rq(), sched_count);
3622 #ifdef CONFIG_SCHEDSTATS
3623 if (unlikely(prev->lock_depth >= 0)) {
3624 schedstat_inc(this_rq(), bkl_count);
3625 schedstat_inc(prev, sched_info.bkl_count);
3630 static void put_prev_task(struct rq *rq, struct task_struct *prev)
3632 if (prev->state == TASK_RUNNING) {
3633 u64 runtime = prev->se.sum_exec_runtime;
3635 runtime -= prev->se.prev_sum_exec_runtime;
3636 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
3639 * In order to avoid avg_overlap growing stale when we are
3640 * indeed overlapping and hence not getting put to sleep, grow
3641 * the avg_overlap on preemption.
3643 * We use the average preemption runtime because that
3644 * correlates to the amount of cache footprint a task can
3647 update_avg(&prev->se.avg_overlap, runtime);
3649 prev->sched_class->put_prev_task(rq, prev);
3653 * Pick up the highest-prio task:
3655 static inline struct task_struct *
3656 pick_next_task(struct rq *rq)
3658 const struct sched_class *class;
3659 struct task_struct *p;
3662 * Optimization: we know that if all tasks are in
3663 * the fair class we can call that function directly:
3665 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3666 p = fair_sched_class.pick_next_task(rq);
3671 class = sched_class_highest;
3673 p = class->pick_next_task(rq);
3677 * Will never be NULL as the idle class always
3678 * returns a non-NULL p:
3680 class = class->next;
3685 * schedule() is the main scheduler function.
3687 asmlinkage void __sched schedule(void)
3689 struct task_struct *prev, *next;
3690 unsigned long *switch_count;
3696 cpu = smp_processor_id();
3700 switch_count = &prev->nivcsw;
3702 release_kernel_lock(prev);
3703 need_resched_nonpreemptible:
3705 schedule_debug(prev);
3707 if (sched_feat(HRTICK))
3710 raw_spin_lock_irq(&rq->lock);
3711 update_rq_clock(rq);
3712 clear_tsk_need_resched(prev);
3714 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3715 if (unlikely(signal_pending_state(prev->state, prev)))
3716 prev->state = TASK_RUNNING;
3718 deactivate_task(rq, prev, 1);
3719 switch_count = &prev->nvcsw;
3722 pre_schedule(rq, prev);
3724 if (unlikely(!rq->nr_running))
3725 idle_balance(cpu, rq);
3727 put_prev_task(rq, prev);
3728 next = pick_next_task(rq);
3730 if (likely(prev != next)) {
3731 sched_info_switch(prev, next);
3732 perf_event_task_sched_out(prev, next);