]> nv-tegra.nvidia Code Review - linux-2.6.git/blob - kernel/sched.c
Merge branch 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6.git] / kernel / sched.c
1 /*
2  *  kernel/sched.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *              make semaphores SMP safe
10  *  1998-11-19  Implemented schedule_timeout() and related stuff
11  *              by Andrea Arcangeli
12  *  2002-01-04  New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *              hybrid priority-list and round-robin design with
14  *              an array-switch method of distributing timeslices
15  *              and per-CPU runqueues.  Cleanups and useful suggestions
16  *              by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03  Interactivity tuning by Con Kolivas.
18  *  2004-04-02  Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/bootmem.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
77
78 #include "sched_cpupri.h"
79
80 /*
81  * Convert user-nice values [ -20 ... 0 ... 19 ]
82  * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
83  * and back.
84  */
85 #define NICE_TO_PRIO(nice)      (MAX_RT_PRIO + (nice) + 20)
86 #define PRIO_TO_NICE(prio)      ((prio) - MAX_RT_PRIO - 20)
87 #define TASK_NICE(p)            PRIO_TO_NICE((p)->static_prio)
88
89 /*
90  * 'User priority' is the nice value converted to something we
91  * can work with better when scaling various scheduler parameters,
92  * it's a [ 0 ... 39 ] range.
93  */
94 #define USER_PRIO(p)            ((p)-MAX_RT_PRIO)
95 #define TASK_USER_PRIO(p)       USER_PRIO((p)->static_prio)
96 #define MAX_USER_PRIO           (USER_PRIO(MAX_PRIO))
97
98 /*
99  * Helpers for converting nanosecond timing to jiffy resolution
100  */
101 #define NS_TO_JIFFIES(TIME)     ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
102
103 #define NICE_0_LOAD             SCHED_LOAD_SCALE
104 #define NICE_0_SHIFT            SCHED_LOAD_SHIFT
105
106 /*
107  * These are the 'tuning knobs' of the scheduler:
108  *
109  * default timeslice is 100 msecs (used only for SCHED_RR tasks).
110  * Timeslices get refilled after they expire.
111  */
112 #define DEF_TIMESLICE           (100 * HZ / 1000)
113
114 /*
115  * single value that denotes runtime == period, ie unlimited time.
116  */
117 #define RUNTIME_INF     ((u64)~0ULL)
118
119 #ifdef CONFIG_SMP
120 /*
121  * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
122  * Since cpu_power is a 'constant', we can use a reciprocal divide.
123  */
124 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
125 {
126         return reciprocal_divide(load, sg->reciprocal_cpu_power);
127 }
128
129 /*
130  * Each time a sched group cpu_power is changed,
131  * we must compute its reciprocal value
132  */
133 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
134 {
135         sg->__cpu_power += val;
136         sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
137 }
138 #endif
139
140 static inline int rt_policy(int policy)
141 {
142         if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
143                 return 1;
144         return 0;
145 }
146
147 static inline int task_has_rt_policy(struct task_struct *p)
148 {
149         return rt_policy(p->policy);
150 }
151
152 /*
153  * This is the priority-queue data structure of the RT scheduling class:
154  */
155 struct rt_prio_array {
156         DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
157         struct list_head queue[MAX_RT_PRIO];
158 };
159
160 struct rt_bandwidth {
161         /* nests inside the rq lock: */
162         spinlock_t              rt_runtime_lock;
163         ktime_t                 rt_period;
164         u64                     rt_runtime;
165         struct hrtimer          rt_period_timer;
166 };
167
168 static struct rt_bandwidth def_rt_bandwidth;
169
170 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
171
172 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
173 {
174         struct rt_bandwidth *rt_b =
175                 container_of(timer, struct rt_bandwidth, rt_period_timer);
176         ktime_t now;
177         int overrun;
178         int idle = 0;
179
180         for (;;) {
181                 now = hrtimer_cb_get_time(timer);
182                 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
183
184                 if (!overrun)
185                         break;
186
187                 idle = do_sched_rt_period_timer(rt_b, overrun);
188         }
189
190         return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
191 }
192
193 static
194 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
195 {
196         rt_b->rt_period = ns_to_ktime(period);
197         rt_b->rt_runtime = runtime;
198
199         spin_lock_init(&rt_b->rt_runtime_lock);
200
201         hrtimer_init(&rt_b->rt_period_timer,
202                         CLOCK_MONOTONIC, HRTIMER_MODE_REL);
203         rt_b->rt_period_timer.function = sched_rt_period_timer;
204         rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
205 }
206
207 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
208 {
209         ktime_t now;
210
211         if (rt_b->rt_runtime == RUNTIME_INF)
212                 return;
213
214         if (hrtimer_active(&rt_b->rt_period_timer))
215                 return;
216
217         spin_lock(&rt_b->rt_runtime_lock);
218         for (;;) {
219                 if (hrtimer_active(&rt_b->rt_period_timer))
220                         break;
221
222                 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
223                 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
224                 hrtimer_start(&rt_b->rt_period_timer,
225                               rt_b->rt_period_timer.expires,
226                               HRTIMER_MODE_ABS);
227         }
228         spin_unlock(&rt_b->rt_runtime_lock);
229 }
230
231 #ifdef CONFIG_RT_GROUP_SCHED
232 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
233 {
234         hrtimer_cancel(&rt_b->rt_period_timer);
235 }
236 #endif
237
238 /*
239  * sched_domains_mutex serializes calls to arch_init_sched_domains,
240  * detach_destroy_domains and partition_sched_domains.
241  */
242 static DEFINE_MUTEX(sched_domains_mutex);
243
244 #ifdef CONFIG_GROUP_SCHED
245
246 #include <linux/cgroup.h>
247
248 struct cfs_rq;
249
250 static LIST_HEAD(task_groups);
251
252 /* task group related information */
253 struct task_group {
254 #ifdef CONFIG_CGROUP_SCHED
255         struct cgroup_subsys_state css;
256 #endif
257
258 #ifdef CONFIG_FAIR_GROUP_SCHED
259         /* schedulable entities of this group on each cpu */
260         struct sched_entity **se;
261         /* runqueue "owned" by this group on each cpu */
262         struct cfs_rq **cfs_rq;
263         unsigned long shares;
264 #endif
265
266 #ifdef CONFIG_RT_GROUP_SCHED
267         struct sched_rt_entity **rt_se;
268         struct rt_rq **rt_rq;
269
270         struct rt_bandwidth rt_bandwidth;
271 #endif
272
273         struct rcu_head rcu;
274         struct list_head list;
275
276         struct task_group *parent;
277         struct list_head siblings;
278         struct list_head children;
279 };
280
281 #ifdef CONFIG_USER_SCHED
282
283 /*
284  * Root task group.
285  *      Every UID task group (including init_task_group aka UID-0) will
286  *      be a child to this group.
287  */
288 struct task_group root_task_group;
289
290 #ifdef CONFIG_FAIR_GROUP_SCHED
291 /* Default task group's sched entity on each cpu */
292 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
293 /* Default task group's cfs_rq on each cpu */
294 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
295 #endif /* CONFIG_FAIR_GROUP_SCHED */
296
297 #ifdef CONFIG_RT_GROUP_SCHED
298 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
299 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
300 #endif /* CONFIG_RT_GROUP_SCHED */
301 #else /* !CONFIG_FAIR_GROUP_SCHED */
302 #define root_task_group init_task_group
303 #endif /* CONFIG_FAIR_GROUP_SCHED */
304
305 /* task_group_lock serializes add/remove of task groups and also changes to
306  * a task group's cpu shares.
307  */
308 static DEFINE_SPINLOCK(task_group_lock);
309
310 #ifdef CONFIG_FAIR_GROUP_SCHED
311 #ifdef CONFIG_USER_SCHED
312 # define INIT_TASK_GROUP_LOAD   (2*NICE_0_LOAD)
313 #else /* !CONFIG_USER_SCHED */
314 # define INIT_TASK_GROUP_LOAD   NICE_0_LOAD
315 #endif /* CONFIG_USER_SCHED */
316
317 /*
318  * A weight of 0 or 1 can cause arithmetics problems.
319  * A weight of a cfs_rq is the sum of weights of which entities
320  * are queued on this cfs_rq, so a weight of a entity should not be
321  * too large, so as the shares value of a task group.
322  * (The default weight is 1024 - so there's no practical
323  *  limitation from this.)
324  */
325 #define MIN_SHARES      2
326 #define MAX_SHARES      (1UL << 18)
327
328 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
329 #endif
330
331 /* Default task group.
332  *      Every task in system belong to this group at bootup.
333  */
334 struct task_group init_task_group;
335
336 /* return group to which a task belongs */
337 static inline struct task_group *task_group(struct task_struct *p)
338 {
339         struct task_group *tg;
340
341 #ifdef CONFIG_USER_SCHED
342         tg = p->user->tg;
343 #elif defined(CONFIG_CGROUP_SCHED)
344         tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
345                                 struct task_group, css);
346 #else
347         tg = &init_task_group;
348 #endif
349         return tg;
350 }
351
352 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
353 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
354 {
355 #ifdef CONFIG_FAIR_GROUP_SCHED
356         p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
357         p->se.parent = task_group(p)->se[cpu];
358 #endif
359
360 #ifdef CONFIG_RT_GROUP_SCHED
361         p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
362         p->rt.parent = task_group(p)->rt_se[cpu];
363 #endif
364 }
365
366 #else
367
368 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
369 static inline struct task_group *task_group(struct task_struct *p)
370 {
371         return NULL;
372 }
373
374 #endif  /* CONFIG_GROUP_SCHED */
375
376 /* CFS-related fields in a runqueue */
377 struct cfs_rq {
378         struct load_weight load;
379         unsigned long nr_running;
380
381         u64 exec_clock;
382         u64 min_vruntime;
383         u64 pair_start;
384
385         struct rb_root tasks_timeline;
386         struct rb_node *rb_leftmost;
387
388         struct list_head tasks;
389         struct list_head *balance_iterator;
390
391         /*
392          * 'curr' points to currently running entity on this cfs_rq.
393          * It is set to NULL otherwise (i.e when none are currently running).
394          */
395         struct sched_entity *curr, *next;
396
397         unsigned long nr_spread_over;
398
399 #ifdef CONFIG_FAIR_GROUP_SCHED
400         struct rq *rq;  /* cpu runqueue to which this cfs_rq is attached */
401
402         /*
403          * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
404          * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
405          * (like users, containers etc.)
406          *
407          * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
408          * list is used during load balance.
409          */
410         struct list_head leaf_cfs_rq_list;
411         struct task_group *tg;  /* group that "owns" this runqueue */
412
413 #ifdef CONFIG_SMP
414         /*
415          * the part of load.weight contributed by tasks
416          */
417         unsigned long task_weight;
418
419         /*
420          *   h_load = weight * f(tg)
421          *
422          * Where f(tg) is the recursive weight fraction assigned to
423          * this group.
424          */
425         unsigned long h_load;
426
427         /*
428          * this cpu's part of tg->shares
429          */
430         unsigned long shares;
431
432         /*
433          * load.weight at the time we set shares
434          */
435         unsigned long rq_weight;
436 #endif
437 #endif
438 };
439
440 /* Real-Time classes' related field in a runqueue: */
441 struct rt_rq {
442         struct rt_prio_array active;
443         unsigned long rt_nr_running;
444 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
445         int highest_prio; /* highest queued rt task prio */
446 #endif
447 #ifdef CONFIG_SMP
448         unsigned long rt_nr_migratory;
449         int overloaded;
450 #endif
451         int rt_throttled;
452         u64 rt_time;
453         u64 rt_runtime;
454         /* Nests inside the rq lock: */
455         spinlock_t rt_runtime_lock;
456
457 #ifdef CONFIG_RT_GROUP_SCHED
458         unsigned long rt_nr_boosted;
459
460         struct rq *rq;
461         struct list_head leaf_rt_rq_list;
462         struct task_group *tg;
463         struct sched_rt_entity *rt_se;
464 #endif
465 };
466
467 #ifdef CONFIG_SMP
468
469 /*
470  * We add the notion of a root-domain which will be used to define per-domain
471  * variables. Each exclusive cpuset essentially defines an island domain by
472  * fully partitioning the member cpus from any other cpuset. Whenever a new
473  * exclusive cpuset is created, we also create and attach a new root-domain
474  * object.
475  *
476  */
477 struct root_domain {
478         atomic_t refcount;
479         cpumask_t span;
480         cpumask_t online;
481
482         /*
483          * The "RT overload" flag: it gets set if a CPU has more than
484          * one runnable RT task.
485          */
486         cpumask_t rto_mask;
487         atomic_t rto_count;
488 #ifdef CONFIG_SMP
489         struct cpupri cpupri;
490 #endif
491 };
492
493 /*
494  * By default the system creates a single root-domain with all cpus as
495  * members (mimicking the global state we have today).
496  */
497 static struct root_domain def_root_domain;
498
499 #endif
500
501 /*
502  * This is the main, per-CPU runqueue data structure.
503  *
504  * Locking rule: those places that want to lock multiple runqueues
505  * (such as the load balancing or the thread migration code), lock
506  * acquire operations must be ordered by ascending &runqueue.
507  */
508 struct rq {
509         /* runqueue lock: */
510         spinlock_t lock;
511
512         /*
513          * nr_running and cpu_load should be in the same cacheline because
514          * remote CPUs use both these fields when doing load calculation.
515          */
516         unsigned long nr_running;
517         #define CPU_LOAD_IDX_MAX 5
518         unsigned long cpu_load[CPU_LOAD_IDX_MAX];
519         unsigned char idle_at_tick;
520 #ifdef CONFIG_NO_HZ
521         unsigned long last_tick_seen;
522         unsigned char in_nohz_recently;
523 #endif
524         /* capture load from *all* tasks on this cpu: */
525         struct load_weight load;
526         unsigned long nr_load_updates;
527         u64 nr_switches;
528
529         struct cfs_rq cfs;
530         struct rt_rq rt;
531
532 #ifdef CONFIG_FAIR_GROUP_SCHED
533         /* list of leaf cfs_rq on this cpu: */
534         struct list_head leaf_cfs_rq_list;
535 #endif
536 #ifdef CONFIG_RT_GROUP_SCHED
537         struct list_head leaf_rt_rq_list;
538 #endif
539
540         /*
541          * This is part of a global counter where only the total sum
542          * over all CPUs matters. A task can increase this counter on
543          * one CPU and if it got migrated afterwards it may decrease
544          * it on another CPU. Always updated under the runqueue lock:
545          */
546         unsigned long nr_uninterruptible;
547
548         struct task_struct *curr, *idle;
549         unsigned long next_balance;
550         struct mm_struct *prev_mm;
551
552         u64 clock;
553
554         atomic_t nr_iowait;
555
556 #ifdef CONFIG_SMP
557         struct root_domain *rd;
558         struct sched_domain *sd;
559
560         /* For active balancing */
561         int active_balance;
562         int push_cpu;
563         /* cpu of this runqueue: */
564         int cpu;
565         int online;
566
567         unsigned long avg_load_per_task;
568
569         struct task_struct *migration_thread;
570         struct list_head migration_queue;
571 #endif
572
573 #ifdef CONFIG_SCHED_HRTICK
574 #ifdef CONFIG_SMP
575         int hrtick_csd_pending;
576         struct call_single_data hrtick_csd;
577 #endif
578         struct hrtimer hrtick_timer;
579 #endif
580
581 #ifdef CONFIG_SCHEDSTATS
582         /* latency stats */
583         struct sched_info rq_sched_info;
584
585         /* sys_sched_yield() stats */
586         unsigned int yld_exp_empty;
587         unsigned int yld_act_empty;
588         unsigned int yld_both_empty;
589         unsigned int yld_count;
590
591         /* schedule() stats */
592         unsigned int sched_switch;
593         unsigned int sched_count;
594         unsigned int sched_goidle;
595
596         /* try_to_wake_up() stats */
597         unsigned int ttwu_count;
598         unsigned int ttwu_local;
599
600         /* BKL stats */
601         unsigned int bkl_count;
602 #endif
603 };
604
605 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
606
607 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
608 {
609         rq->curr->sched_class->check_preempt_curr(rq, p);
610 }
611
612 static inline int cpu_of(struct rq *rq)
613 {
614 #ifdef CONFIG_SMP
615         return rq->cpu;
616 #else
617         return 0;
618 #endif
619 }
620
621 /*
622  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
623  * See detach_destroy_domains: synchronize_sched for details.
624  *
625  * The domain tree of any CPU may only be accessed from within
626  * preempt-disabled sections.
627  */
628 #define for_each_domain(cpu, __sd) \
629         for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
630
631 #define cpu_rq(cpu)             (&per_cpu(runqueues, (cpu)))
632 #define this_rq()               (&__get_cpu_var(runqueues))
633 #define task_rq(p)              cpu_rq(task_cpu(p))
634 #define cpu_curr(cpu)           (cpu_rq(cpu)->curr)
635
636 static inline void update_rq_clock(struct rq *rq)
637 {
638         rq->clock = sched_clock_cpu(cpu_of(rq));
639 }
640
641 /*
642  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
643  */
644 #ifdef CONFIG_SCHED_DEBUG
645 # define const_debug __read_mostly
646 #else
647 # define const_debug static const
648 #endif
649
650 /**
651  * runqueue_is_locked
652  *
653  * Returns true if the current cpu runqueue is locked.
654  * This interface allows printk to be called with the runqueue lock
655  * held and know whether or not it is OK to wake up the klogd.
656  */
657 int runqueue_is_locked(void)
658 {
659         int cpu = get_cpu();
660         struct rq *rq = cpu_rq(cpu);
661         int ret;
662
663         ret = spin_is_locked(&rq->lock);
664         put_cpu();
665         return ret;
666 }
667
668 /*
669  * Debugging: various feature bits
670  */
671
672 #define SCHED_FEAT(name, enabled)       \
673         __SCHED_FEAT_##name ,
674
675 enum {
676 #include "sched_features.h"
677 };
678
679 #undef SCHED_FEAT
680
681 #define SCHED_FEAT(name, enabled)       \
682         (1UL << __SCHED_FEAT_##name) * enabled |
683
684 const_debug unsigned int sysctl_sched_features =
685 #include "sched_features.h"
686         0;
687
688 #undef SCHED_FEAT
689
690 #ifdef CONFIG_SCHED_DEBUG
691 #define SCHED_FEAT(name, enabled)       \
692         #name ,
693
694 static __read_mostly char *sched_feat_names[] = {
695 #include "sched_features.h"
696         NULL
697 };
698
699 #undef SCHED_FEAT
700
701 static int sched_feat_open(struct inode *inode, struct file *filp)
702 {
703         filp->private_data = inode->i_private;
704         return 0;
705 }
706
707 static ssize_t
708 sched_feat_read(struct file *filp, char __user *ubuf,
709                 size_t cnt, loff_t *ppos)
710 {
711         char *buf;
712         int r = 0;
713         int len = 0;
714         int i;
715
716         for (i = 0; sched_feat_names[i]; i++) {
717                 len += strlen(sched_feat_names[i]);
718                 len += 4;
719         }
720
721         buf = kmalloc(len + 2, GFP_KERNEL);
722         if (!buf)
723                 return -ENOMEM;
724
725         for (i = 0; sched_feat_names[i]; i++) {
726                 if (sysctl_sched_features & (1UL << i))
727                         r += sprintf(buf + r, "%s ", sched_feat_names[i]);
728                 else
729                         r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
730         }
731
732         r += sprintf(buf + r, "\n");
733         WARN_ON(r >= len + 2);
734
735         r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
736
737         kfree(buf);
738
739         return r;
740 }
741
742 static ssize_t
743 sched_feat_write(struct file *filp, const char __user *ubuf,
744                 size_t cnt, loff_t *ppos)
745 {
746         char buf[64];
747         char *cmp = buf;
748         int neg = 0;
749         int i;
750
751         if (cnt > 63)
752                 cnt = 63;
753
754         if (copy_from_user(&buf, ubuf, cnt))
755                 return -EFAULT;
756
757         buf[cnt] = 0;
758
759         if (strncmp(buf, "NO_", 3) == 0) {
760                 neg = 1;
761                 cmp += 3;
762         }
763
764         for (i = 0; sched_feat_names[i]; i++) {
765                 int len = strlen(sched_feat_names[i]);
766
767                 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
768                         if (neg)
769                                 sysctl_sched_features &= ~(1UL << i);
770                         else
771                                 sysctl_sched_features |= (1UL << i);
772                         break;
773                 }
774         }
775
776         if (!sched_feat_names[i])
777                 return -EINVAL;
778
779         filp->f_pos += cnt;
780
781         return cnt;
782 }
783
784 static struct file_operations sched_feat_fops = {
785         .open   = sched_feat_open,
786         .read   = sched_feat_read,
787         .write  = sched_feat_write,
788 };
789
790 static __init int sched_init_debug(void)
791 {
792         debugfs_create_file("sched_features", 0644, NULL, NULL,
793                         &sched_feat_fops);
794
795         return 0;
796 }
797 late_initcall(sched_init_debug);
798
799 #endif
800
801 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
802
803 /*
804  * Number of tasks to iterate in a single balance run.
805  * Limited because this is done with IRQs disabled.
806  */
807 const_debug unsigned int sysctl_sched_nr_migrate = 32;
808
809 /*
810  * ratelimit for updating the group shares.
811  * default: 0.25ms
812  */
813 unsigned int sysctl_sched_shares_ratelimit = 250000;
814
815 /*
816  * period over which we measure -rt task cpu usage in us.
817  * default: 1s
818  */
819 unsigned int sysctl_sched_rt_period = 1000000;
820
821 static __read_mostly int scheduler_running;
822
823 /*
824  * part of the period that we allow rt tasks to run in us.
825  * default: 0.95s
826  */
827 int sysctl_sched_rt_runtime = 950000;
828
829 static inline u64 global_rt_period(void)
830 {
831         return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
832 }
833
834 static inline u64 global_rt_runtime(void)
835 {
836         if (sysctl_sched_rt_runtime < 0)
837                 return RUNTIME_INF;
838
839         return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
840 }
841
842 #ifndef prepare_arch_switch
843 # define prepare_arch_switch(next)      do { } while (0)
844 #endif
845 #ifndef finish_arch_switch
846 # define finish_arch_switch(prev)       do { } while (0)
847 #endif
848
849 static inline int task_current(struct rq *rq, struct task_struct *p)
850 {
851         return rq->curr == p;
852 }
853
854 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
855 static inline int task_running(struct rq *rq, struct task_struct *p)
856 {
857         return task_current(rq, p);
858 }
859
860 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
861 {
862 }
863
864 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
865 {
866 #ifdef CONFIG_DEBUG_SPINLOCK
867         /* this is a valid case when another task releases the spinlock */
868         rq->lock.owner = current;
869 #endif
870         /*
871          * If we are tracking spinlock dependencies then we have to
872          * fix up the runqueue lock - which gets 'carried over' from
873          * prev into current:
874          */
875         spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
876
877         spin_unlock_irq(&rq->lock);
878 }
879
880 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
881 static inline int task_running(struct rq *rq, struct task_struct *p)
882 {
883 #ifdef CONFIG_SMP
884         return p->oncpu;
885 #else
886         return task_current(rq, p);
887 #endif
888 }
889
890 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
891 {
892 #ifdef CONFIG_SMP
893         /*
894          * We can optimise this out completely for !SMP, because the
895          * SMP rebalancing from interrupt is the only thing that cares
896          * here.
897          */
898         next->oncpu = 1;
899 #endif
900 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
901         spin_unlock_irq(&rq->lock);
902 #else
903         spin_unlock(&rq->lock);
904 #endif
905 }
906
907 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
908 {
909 #ifdef CONFIG_SMP
910         /*
911          * After ->oncpu is cleared, the task can be moved to a different CPU.
912          * We must ensure this doesn't happen until the switch is completely
913          * finished.
914          */
915         smp_wmb();
916         prev->oncpu = 0;
917 #endif
918 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
919         local_irq_enable();
920 #endif
921 }
922 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
923
924 /*
925  * __task_rq_lock - lock the runqueue a given task resides on.
926  * Must be called interrupts disabled.
927  */
928 static inline struct rq *__task_rq_lock(struct task_struct *p)
929         __acquires(rq->lock)
930 {
931         for (;;) {
932                 struct rq *rq = task_rq(p);
933                 spin_lock(&rq->lock);
934                 if (likely(rq == task_rq(p)))
935                         return rq;
936                 spin_unlock(&rq->lock);
937         }
938 }
939
940 /*
941  * task_rq_lock - lock the runqueue a given task resides on and disable
942  * interrupts. Note the ordering: we can safely lookup the task_rq without
943  * explicitly disabling preemption.
944  */
945 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
946         __acquires(rq->lock)
947 {
948         struct rq *rq;
949
950         for (;;) {
951                 local_irq_save(*flags);
952                 rq = task_rq(p);
953                 spin_lock(&rq->lock);
954                 if (likely(rq == task_rq(p)))
955                         return rq;
956                 spin_unlock_irqrestore(&rq->lock, *flags);
957         }
958 }
959
960 static void __task_rq_unlock(struct rq *rq)
961         __releases(rq->lock)
962 {
963         spin_unlock(&rq->lock);
964 }
965
966 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
967         __releases(rq->lock)
968 {
969         spin_unlock_irqrestore(&rq->lock, *flags);
970 }
971
972 /*
973  * this_rq_lock - lock this runqueue and disable interrupts.
974  */
975 static struct rq *this_rq_lock(void)
976         __acquires(rq->lock)
977 {
978         struct rq *rq;
979
980         local_irq_disable();
981         rq = this_rq();
982         spin_lock(&rq->lock);
983
984         return rq;
985 }
986
987 #ifdef CONFIG_SCHED_HRTICK
988 /*
989  * Use HR-timers to deliver accurate preemption points.
990  *
991  * Its all a bit involved since we cannot program an hrt while holding the
992  * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
993  * reschedule event.
994  *
995  * When we get rescheduled we reprogram the hrtick_timer outside of the
996  * rq->lock.
997  */
998
999 /*
1000  * Use hrtick when:
1001  *  - enabled by features
1002  *  - hrtimer is actually high res
1003  */
1004 static inline int hrtick_enabled(struct rq *rq)
1005 {
1006         if (!sched_feat(HRTICK))
1007                 return 0;
1008         if (!cpu_active(cpu_of(rq)))
1009                 return 0;
1010         return hrtimer_is_hres_active(&rq->hrtick_timer);
1011 }
1012
1013 static void hrtick_clear(struct rq *rq)
1014 {
1015         if (hrtimer_active(&rq->hrtick_timer))
1016                 hrtimer_cancel(&rq->hrtick_timer);
1017 }
1018
1019 /*
1020  * High-resolution timer tick.
1021  * Runs from hardirq context with interrupts disabled.
1022  */
1023 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1024 {
1025         struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1026
1027         WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1028
1029         spin_lock(&rq->lock);
1030         update_rq_clock(rq);
1031         rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1032         spin_unlock(&rq->lock);
1033
1034         return HRTIMER_NORESTART;
1035 }
1036
1037 #ifdef CONFIG_SMP
1038 /*
1039  * called from hardirq (IPI) context
1040  */
1041 static void __hrtick_start(void *arg)
1042 {
1043         struct rq *rq = arg;
1044
1045         spin_lock(&rq->lock);
1046         hrtimer_restart(&rq->hrtick_timer);
1047         rq->hrtick_csd_pending = 0;
1048         spin_unlock(&rq->lock);
1049 }
1050
1051 /*
1052  * Called to set the hrtick timer state.
1053  *
1054  * called with rq->lock held and irqs disabled
1055  */
1056 static void hrtick_start(struct rq *rq, u64 delay)
1057 {
1058         struct hrtimer *timer = &rq->hrtick_timer;
1059         ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1060
1061         timer->expires = time;
1062
1063         if (rq == this_rq()) {
1064                 hrtimer_restart(timer);
1065         } else if (!rq->hrtick_csd_pending) {
1066                 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1067                 rq->hrtick_csd_pending = 1;
1068         }
1069 }
1070
1071 static int
1072 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1073 {
1074         int cpu = (int)(long)hcpu;
1075
1076         switch (action) {
1077         case CPU_UP_CANCELED:
1078         case CPU_UP_CANCELED_FROZEN:
1079         case CPU_DOWN_PREPARE:
1080         case CPU_DOWN_PREPARE_FROZEN:
1081         case CPU_DEAD:
1082         case CPU_DEAD_FROZEN:
1083                 hrtick_clear(cpu_rq(cpu));
1084                 return NOTIFY_OK;
1085         }
1086
1087         return NOTIFY_DONE;
1088 }
1089
1090 static void init_hrtick(void)
1091 {
1092         hotcpu_notifier(hotplug_hrtick, 0);
1093 }
1094 #else
1095 /*
1096  * Called to set the hrtick timer state.
1097  *
1098  * called with rq->lock held and irqs disabled
1099  */
1100 static void hrtick_start(struct rq *rq, u64 delay)
1101 {
1102         hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1103 }
1104
1105 static void init_hrtick(void)
1106 {
1107 }
1108 #endif /* CONFIG_SMP */
1109
1110 static void init_rq_hrtick(struct rq *rq)
1111 {
1112 #ifdef CONFIG_SMP
1113         rq->hrtick_csd_pending = 0;
1114
1115         rq->hrtick_csd.flags = 0;
1116         rq->hrtick_csd.func = __hrtick_start;
1117         rq->hrtick_csd.info = rq;
1118 #endif
1119
1120         hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1121         rq->hrtick_timer.function = hrtick;
1122         rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1123 }
1124 #else
1125 static inline void hrtick_clear(struct rq *rq)
1126 {
1127 }
1128
1129 static inline void init_rq_hrtick(struct rq *rq)
1130 {
1131 }
1132
1133 static inline void init_hrtick(void)
1134 {
1135 }
1136 #endif
1137
1138 /*
1139  * resched_task - mark a task 'to be rescheduled now'.
1140  *
1141  * On UP this means the setting of the need_resched flag, on SMP it
1142  * might also involve a cross-CPU call to trigger the scheduler on
1143  * the target CPU.
1144  */
1145 #ifdef CONFIG_SMP
1146
1147 #ifndef tsk_is_polling
1148 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1149 #endif
1150
1151 static void resched_task(struct task_struct *p)
1152 {
1153         int cpu;
1154
1155         assert_spin_locked(&task_rq(p)->lock);
1156
1157         if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1158                 return;
1159
1160         set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1161
1162         cpu = task_cpu(p);
1163         if (cpu == smp_processor_id())
1164                 return;
1165
1166         /* NEED_RESCHED must be visible before we test polling */
1167         smp_mb();
1168         if (!tsk_is_polling(p))
1169                 smp_send_reschedule(cpu);
1170 }
1171
1172 static void resched_cpu(int cpu)
1173 {
1174         struct rq *rq = cpu_rq(cpu);
1175         unsigned long flags;
1176
1177         if (!spin_trylock_irqsave(&rq->lock, flags))
1178                 return;
1179         resched_task(cpu_curr(cpu));
1180         spin_unlock_irqrestore(&rq->lock, flags);
1181 }
1182
1183 #ifdef CONFIG_NO_HZ
1184 /*
1185  * When add_timer_on() enqueues a timer into the timer wheel of an
1186  * idle CPU then this timer might expire before the next timer event
1187  * which is scheduled to wake up that CPU. In case of a completely
1188  * idle system the next event might even be infinite time into the
1189  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1190  * leaves the inner idle loop so the newly added timer is taken into
1191  * account when the CPU goes back to idle and evaluates the timer
1192  * wheel for the next timer event.
1193  */
1194 void wake_up_idle_cpu(int cpu)
1195 {
1196         struct rq *rq = cpu_rq(cpu);
1197
1198         if (cpu == smp_processor_id())
1199                 return;
1200
1201         /*
1202          * This is safe, as this function is called with the timer
1203          * wheel base lock of (cpu) held. When the CPU is on the way
1204          * to idle and has not yet set rq->curr to idle then it will
1205          * be serialized on the timer wheel base lock and take the new
1206          * timer into account automatically.
1207          */
1208         if (rq->curr != rq->idle)
1209                 return;
1210
1211         /*
1212          * We can set TIF_RESCHED on the idle task of the other CPU
1213          * lockless. The worst case is that the other CPU runs the
1214          * idle task through an additional NOOP schedule()
1215          */
1216         set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1217
1218         /* NEED_RESCHED must be visible before we test polling */
1219         smp_mb();
1220         if (!tsk_is_polling(rq->idle))
1221                 smp_send_reschedule(cpu);
1222 }
1223 #endif /* CONFIG_NO_HZ */
1224
1225 #else /* !CONFIG_SMP */
1226 static void resched_task(struct task_struct *p)
1227 {
1228         assert_spin_locked(&task_rq(p)->lock);
1229         set_tsk_need_resched(p);
1230 }
1231 #endif /* CONFIG_SMP */
1232
1233 #if BITS_PER_LONG == 32
1234 # define WMULT_CONST    (~0UL)
1235 #else
1236 # define WMULT_CONST    (1UL << 32)
1237 #endif
1238
1239 #define WMULT_SHIFT     32
1240
1241 /*
1242  * Shift right and round:
1243  */
1244 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1245
1246 /*
1247  * delta *= weight / lw
1248  */
1249 static unsigned long
1250 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1251                 struct load_weight *lw)
1252 {
1253         u64 tmp;
1254
1255         if (!lw->inv_weight) {
1256                 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1257                         lw->inv_weight = 1;
1258                 else
1259                         lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1260                                 / (lw->weight+1);
1261         }
1262
1263         tmp = (u64)delta_exec * weight;
1264         /*
1265          * Check whether we'd overflow the 64-bit multiplication:
1266          */
1267         if (unlikely(tmp > WMULT_CONST))
1268                 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1269                         WMULT_SHIFT/2);
1270         else
1271                 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1272
1273         return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1274 }
1275
1276 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1277 {
1278         lw->weight += inc;
1279         lw->inv_weight = 0;
1280 }
1281
1282 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1283 {
1284         lw->weight -= dec;
1285         lw->inv_weight = 0;
1286 }
1287
1288 /*
1289  * To aid in avoiding the subversion of "niceness" due to uneven distribution
1290  * of tasks with abnormal "nice" values across CPUs the contribution that
1291  * each task makes to its run queue's load is weighted according to its
1292  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1293  * scaled version of the new time slice allocation that they receive on time
1294  * slice expiry etc.
1295  */
1296
1297 #define WEIGHT_IDLEPRIO         2
1298 #define WMULT_IDLEPRIO          (1 << 31)
1299
1300 /*
1301  * Nice levels are multiplicative, with a gentle 10% change for every
1302  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1303  * nice 1, it will get ~10% less CPU time than another CPU-bound task
1304  * that remained on nice 0.
1305  *
1306  * The "10% effect" is relative and cumulative: from _any_ nice level,
1307  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1308  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1309  * If a task goes up by ~10% and another task goes down by ~10% then
1310  * the relative distance between them is ~25%.)
1311  */
1312 static const int prio_to_weight[40] = {
1313  /* -20 */     88761,     71755,     56483,     46273,     36291,
1314  /* -15 */     29154,     23254,     18705,     14949,     11916,
1315  /* -10 */      9548,      7620,      6100,      4904,      3906,
1316  /*  -5 */      3121,      2501,      1991,      1586,      1277,
1317  /*   0 */      1024,       820,       655,       526,       423,
1318  /*   5 */       335,       272,       215,       172,       137,
1319  /*  10 */       110,        87,        70,        56,        45,
1320  /*  15 */        36,        29,        23,        18,        15,
1321 };
1322
1323 /*
1324  * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1325  *
1326  * In cases where the weight does not change often, we can use the
1327  * precalculated inverse to speed up arithmetics by turning divisions
1328  * into multiplications:
1329  */
1330 static const u32 prio_to_wmult[40] = {
1331  /* -20 */     48388,     59856,     76040,     92818,    118348,
1332  /* -15 */    147320,    184698,    229616,    287308,    360437,
1333  /* -10 */    449829,    563644,    704093,    875809,   1099582,
1334  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
1335  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
1336  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
1337  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
1338  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1339 };
1340
1341 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1342
1343 /*
1344  * runqueue iterator, to support SMP load-balancing between different
1345  * scheduling classes, without having to expose their internal data
1346  * structures to the load-balancing proper:
1347  */
1348 struct rq_iterator {
1349         void *arg;
1350         struct task_struct *(*start)(void *);
1351         struct task_struct *(*next)(void *);
1352 };
1353
1354 #ifdef CONFIG_SMP
1355 static unsigned long
1356 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1357               unsigned long max_load_move, struct sched_domain *sd,
1358               enum cpu_idle_type idle, int *all_pinned,
1359               int *this_best_prio, struct rq_iterator *iterator);
1360
1361 static int
1362 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1363                    struct sched_domain *sd, enum cpu_idle_type idle,
1364                    struct rq_iterator *iterator);
1365 #endif
1366
1367 #ifdef CONFIG_CGROUP_CPUACCT
1368 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1369 #else
1370 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1371 #endif
1372
1373 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1374 {
1375         update_load_add(&rq->load, load);
1376 }
1377
1378 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1379 {
1380         update_load_sub(&rq->load, load);
1381 }
1382
1383 #ifdef CONFIG_SMP
1384 static unsigned long source_load(int cpu, int type);
1385 static unsigned long target_load(int cpu, int type);
1386 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1387
1388 static unsigned long cpu_avg_load_per_task(int cpu)
1389 {
1390         struct rq *rq = cpu_rq(cpu);
1391
1392         if (rq->nr_running)
1393                 rq->avg_load_per_task = rq->load.weight / rq->nr_running;
1394
1395         return rq->avg_load_per_task;
1396 }
1397
1398 #ifdef CONFIG_FAIR_GROUP_SCHED
1399
1400 typedef void (*tg_visitor)(struct task_group *, int, struct sched_domain *);
1401
1402 /*
1403  * Iterate the full tree, calling @down when first entering a node and @up when
1404  * leaving it for the final time.
1405  */
1406 static void
1407 walk_tg_tree(tg_visitor down, tg_visitor up, int cpu, struct sched_domain *sd)
1408 {
1409         struct task_group *parent, *child;
1410
1411         rcu_read_lock();
1412         parent = &root_task_group;
1413 down:
1414         (*down)(parent, cpu, sd);
1415         list_for_each_entry_rcu(child, &parent->children, siblings) {
1416                 parent = child;
1417                 goto down;
1418
1419 up:
1420                 continue;
1421         }
1422         (*up)(parent, cpu, sd);
1423
1424         child = parent;
1425         parent = parent->parent;
1426         if (parent)
1427                 goto up;
1428         rcu_read_unlock();
1429 }
1430
1431 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1432
1433 /*
1434  * Calculate and set the cpu's group shares.
1435  */
1436 static void
1437 __update_group_shares_cpu(struct task_group *tg, int cpu,
1438                           unsigned long sd_shares, unsigned long sd_rq_weight)
1439 {
1440         int boost = 0;
1441         unsigned long shares;
1442         unsigned long rq_weight;
1443
1444         if (!tg->se[cpu])
1445                 return;
1446
1447         rq_weight = tg->cfs_rq[cpu]->load.weight;
1448
1449         /*
1450          * If there are currently no tasks on the cpu pretend there is one of
1451          * average load so that when a new task gets to run here it will not
1452          * get delayed by group starvation.
1453          */
1454         if (!rq_weight) {
1455                 boost = 1;
1456                 rq_weight = NICE_0_LOAD;
1457         }
1458
1459         if (unlikely(rq_weight > sd_rq_weight))
1460                 rq_weight = sd_rq_weight;
1461
1462         /*
1463          *           \Sum shares * rq_weight
1464          * shares =  -----------------------
1465          *               \Sum rq_weight
1466          *
1467          */
1468         shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
1469
1470         /*
1471          * record the actual number of shares, not the boosted amount.
1472          */
1473         tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1474         tg->cfs_rq[cpu]->rq_weight = rq_weight;
1475
1476         if (shares < MIN_SHARES)
1477                 shares = MIN_SHARES;
1478         else if (shares > MAX_SHARES)
1479                 shares = MAX_SHARES;
1480
1481         __set_se_shares(tg->se[cpu], shares);
1482 }
1483
1484 /*
1485  * Re-compute the task group their per cpu shares over the given domain.
1486  * This needs to be done in a bottom-up fashion because the rq weight of a
1487  * parent group depends on the shares of its child groups.
1488  */
1489 static void
1490 tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd)
1491 {
1492         unsigned long rq_weight = 0;
1493         unsigned long shares = 0;
1494         int i;
1495
1496         for_each_cpu_mask(i, sd->span) {
1497                 rq_weight += tg->cfs_rq[i]->load.weight;
1498                 shares += tg->cfs_rq[i]->shares;
1499         }
1500
1501         if ((!shares && rq_weight) || shares > tg->shares)
1502                 shares = tg->shares;
1503
1504         if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1505                 shares = tg->shares;
1506
1507         if (!rq_weight)
1508                 rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
1509
1510         for_each_cpu_mask(i, sd->span) {
1511                 struct rq *rq = cpu_rq(i);
1512                 unsigned long flags;
1513
1514                 spin_lock_irqsave(&rq->lock, flags);
1515                 __update_group_shares_cpu(tg, i, shares, rq_weight);
1516                 spin_unlock_irqrestore(&rq->lock, flags);
1517         }
1518 }
1519
1520 /*
1521  * Compute the cpu's hierarchical load factor for each task group.
1522  * This needs to be done in a top-down fashion because the load of a child
1523  * group is a fraction of its parents load.
1524  */
1525 static void
1526 tg_load_down(struct task_group *tg, int cpu, struct sched_domain *sd)
1527 {
1528         unsigned long load;
1529
1530         if (!tg->parent) {
1531                 load = cpu_rq(cpu)->load.weight;
1532         } else {
1533                 load = tg->parent->cfs_rq[cpu]->h_load;
1534                 load *= tg->cfs_rq[cpu]->shares;
1535                 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1536         }
1537
1538         tg->cfs_rq[cpu]->h_load = load;
1539 }
1540
1541 static void
1542 tg_nop(struct task_group *tg, int cpu, struct sched_domain *sd)
1543 {
1544 }
1545
1546 static void update_shares(struct sched_domain *sd)
1547 {
1548         u64 now = cpu_clock(raw_smp_processor_id());
1549         s64 elapsed = now - sd->last_update;
1550
1551         if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1552                 sd->last_update = now;
1553                 walk_tg_tree(tg_nop, tg_shares_up, 0, sd);
1554         }
1555 }
1556
1557 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1558 {
1559         spin_unlock(&rq->lock);
1560         update_shares(sd);
1561         spin_lock(&rq->lock);
1562 }
1563
1564 static void update_h_load(int cpu)
1565 {
1566         walk_tg_tree(tg_load_down, tg_nop, cpu, NULL);
1567 }
1568
1569 #else
1570
1571 static inline void update_shares(struct sched_domain *sd)
1572 {
1573 }
1574
1575 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1576 {
1577 }
1578
1579 #endif
1580
1581 #endif
1582
1583 #ifdef CONFIG_FAIR_GROUP_SCHED
1584 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1585 {
1586 #ifdef CONFIG_SMP
1587         cfs_rq->shares = shares;
1588 #endif
1589 }
1590 #endif
1591
1592 #include "sched_stats.h"
1593 #include "sched_idletask.c"
1594 #include "sched_fair.c"
1595 #include "sched_rt.c"
1596 #ifdef CONFIG_SCHED_DEBUG
1597 # include "sched_debug.c"
1598 #endif
1599
1600 #define sched_class_highest (&rt_sched_class)
1601 #define for_each_class(class) \
1602    for (class = sched_class_highest; class; class = class->next)
1603
1604 static void inc_nr_running(struct rq *rq)
1605 {
1606         rq->nr_running++;
1607 }
1608
1609 static void dec_nr_running(struct rq *rq)
1610 {
1611         rq->nr_running--;
1612 }
1613
1614 static void set_load_weight(struct task_struct *p)
1615 {
1616         if (task_has_rt_policy(p)) {
1617                 p->se.load.weight = prio_to_weight[0] * 2;
1618                 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1619                 return;
1620         }
1621
1622         /*
1623          * SCHED_IDLE tasks get minimal weight:
1624          */
1625         if (p->policy == SCHED_IDLE) {
1626                 p->se.load.weight = WEIGHT_IDLEPRIO;
1627                 p->se.load.inv_weight = WMULT_IDLEPRIO;
1628                 return;
1629         }
1630
1631         p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1632         p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1633 }
1634
1635 static void update_avg(u64 *avg, u64 sample)
1636 {
1637         s64 diff = sample - *avg;
1638         *avg += diff >> 3;
1639 }
1640
1641 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1642 {
1643         sched_info_queued(p);
1644         p->sched_class->enqueue_task(rq, p, wakeup);
1645         p->se.on_rq = 1;
1646 }
1647
1648 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1649 {
1650         if (sleep && p->se.last_wakeup) {
1651                 update_avg(&p->se.avg_overlap,
1652                            p->se.sum_exec_runtime - p->se.last_wakeup);
1653                 p->se.last_wakeup = 0;
1654         }
1655
1656         sched_info_dequeued(p);
1657         p->sched_class->dequeue_task(rq, p, sleep);
1658         p->se.on_rq = 0;
1659 }
1660
1661 /*
1662  * __normal_prio - return the priority that is based on the static prio
1663  */
1664 static inline int __normal_prio(struct task_struct *p)
1665 {
1666         return p->static_prio;
1667 }
1668
1669 /*
1670  * Calculate the expected normal priority: i.e. priority
1671  * without taking RT-inheritance into account. Might be
1672  * boosted by interactivity modifiers. Changes upon fork,
1673  * setprio syscalls, and whenever the interactivity
1674  * estimator recalculates.
1675  */
1676 static inline int normal_prio(struct task_struct *p)
1677 {
1678         int prio;
1679
1680         if (task_has_rt_policy(p))
1681                 prio = MAX_RT_PRIO-1 - p->rt_priority;
1682         else
1683                 prio = __normal_prio(p);
1684         return prio;
1685 }
1686
1687 /*
1688  * Calculate the current priority, i.e. the priority
1689  * taken into account by the scheduler. This value might
1690  * be boosted by RT tasks, or might be boosted by
1691  * interactivity modifiers. Will be RT if the task got
1692  * RT-boosted. If not then it returns p->normal_prio.
1693  */
1694 static int effective_prio(struct task_struct *p)
1695 {
1696         p->normal_prio = normal_prio(p);
1697         /*
1698          * If we are RT tasks or we were boosted to RT priority,
1699          * keep the priority unchanged. Otherwise, update priority
1700          * to the normal priority:
1701          */
1702         if (!rt_prio(p->prio))
1703                 return p->normal_prio;
1704         return p->prio;
1705 }
1706
1707 /*
1708  * activate_task - move a task to the runqueue.
1709  */
1710 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1711 {
1712         if (task_contributes_to_load(p))
1713                 rq->nr_uninterruptible--;
1714
1715         enqueue_task(rq, p, wakeup);
1716         inc_nr_running(rq);
1717 }
1718
1719 /*
1720  * deactivate_task - remove a task from the runqueue.
1721  */
1722 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1723 {
1724         if (task_contributes_to_load(p))
1725                 rq->nr_uninterruptible++;
1726
1727         dequeue_task(rq, p, sleep);
1728         dec_nr_running(rq);
1729 }
1730
1731 /**
1732  * task_curr - is this task currently executing on a CPU?
1733  * @p: the task in question.
1734  */
1735 inline int task_curr(const struct task_struct *p)
1736 {
1737         return cpu_curr(task_cpu(p)) == p;
1738 }
1739
1740 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1741 {
1742         set_task_rq(p, cpu);
1743 #ifdef CONFIG_SMP
1744         /*
1745          * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1746          * successfuly executed on another CPU. We must ensure that updates of
1747          * per-task data have been completed by this moment.
1748          */
1749         smp_wmb();
1750         task_thread_info(p)->cpu = cpu;
1751 #endif
1752 }
1753
1754 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1755                                        const struct sched_class *prev_class,
1756                                        int oldprio, int running)
1757 {
1758         if (prev_class != p->sched_class) {
1759                 if (prev_class->switched_from)
1760                         prev_class->switched_from(rq, p, running);
1761                 p->sched_class->switched_to(rq, p, running);
1762         } else
1763                 p->sched_class->prio_changed(rq, p, oldprio, running);
1764 }
1765
1766 #ifdef CONFIG_SMP
1767
1768 /* Used instead of source_load when we know the type == 0 */
1769 static unsigned long weighted_cpuload(const int cpu)
1770 {
1771         return cpu_rq(cpu)->load.weight;
1772 }
1773
1774 /*
1775  * Is this task likely cache-hot:
1776  */
1777 static int
1778 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1779 {
1780         s64 delta;
1781
1782         /*
1783          * Buddy candidates are cache hot:
1784          */
1785         if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
1786                 return 1;
1787
1788         if (p->sched_class != &fair_sched_class)
1789                 return 0;
1790
1791         if (sysctl_sched_migration_cost == -1)
1792                 return 1;
1793         if (sysctl_sched_migration_cost == 0)
1794                 return 0;
1795
1796         delta = now - p->se.exec_start;
1797
1798         return delta < (s64)sysctl_sched_migration_cost;
1799 }
1800
1801
1802 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1803 {
1804         int old_cpu = task_cpu(p);
1805         struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1806         struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1807                       *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1808         u64 clock_offset;
1809
1810         clock_offset = old_rq->clock - new_rq->clock;
1811
1812 #ifdef CONFIG_SCHEDSTATS
1813         if (p->se.wait_start)
1814                 p->se.wait_start -= clock_offset;
1815         if (p->se.sleep_start)
1816                 p->se.sleep_start -= clock_offset;
1817         if (p->se.block_start)
1818                 p->se.block_start -= clock_offset;
1819         if (old_cpu != new_cpu) {
1820                 schedstat_inc(p, se.nr_migrations);
1821                 if (task_hot(p, old_rq->clock, NULL))
1822                         schedstat_inc(p, se.nr_forced2_migrations);
1823         }
1824 #endif
1825         p->se.vruntime -= old_cfsrq->min_vruntime -
1826                                          new_cfsrq->min_vruntime;
1827
1828         __set_task_cpu(p, new_cpu);
1829 }
1830
1831 struct migration_req {
1832         struct list_head list;
1833
1834         struct task_struct *task;
1835         int dest_cpu;
1836
1837         struct completion done;
1838 };
1839
1840 /*
1841  * The task's runqueue lock must be held.
1842  * Returns true if you have to wait for migration thread.
1843  */
1844 static int
1845 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1846 {
1847         struct rq *rq = task_rq(p);
1848
1849         /*
1850          * If the task is not on a runqueue (and not running), then
1851          * it is sufficient to simply update the task's cpu field.
1852          */
1853         if (!p->se.on_rq && !task_running(rq, p)) {
1854                 set_task_cpu(p, dest_cpu);
1855                 return 0;
1856         }
1857
1858         init_completion(&req->done);
1859         req->task = p;
1860         req->dest_cpu = dest_cpu;
1861         list_add(&req->list, &rq->migration_queue);
1862
1863         return 1;
1864 }
1865
1866 /*
1867  * wait_task_inactive - wait for a thread to unschedule.
1868  *
1869  * If @match_state is nonzero, it's the @p->state value just checked and
1870  * not expected to change.  If it changes, i.e. @p might have woken up,
1871  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1872  * we return a positive number (its total switch count).  If a second call
1873  * a short while later returns the same number, the caller can be sure that
1874  * @p has remained unscheduled the whole time.
1875  *
1876  * The caller must ensure that the task *will* unschedule sometime soon,
1877  * else this function might spin for a *long* time. This function can't
1878  * be called with interrupts off, or it may introduce deadlock with
1879  * smp_call_function() if an IPI is sent by the same process we are
1880  * waiting to become inactive.
1881  */
1882 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1883 {
1884         unsigned long flags;
1885         int running, on_rq;
1886         unsigned long ncsw;
1887         struct rq *rq;
1888
1889         for (;;) {
1890                 /*
1891                  * We do the initial early heuristics without holding
1892                  * any task-queue locks at all. We'll only try to get
1893                  * the runqueue lock when things look like they will
1894                  * work out!
1895                  */
1896                 rq = task_rq(p);
1897
1898                 /*
1899                  * If the task is actively running on another CPU
1900                  * still, just relax and busy-wait without holding
1901                  * any locks.
1902                  *
1903                  * NOTE! Since we don't hold any locks, it's not
1904                  * even sure that "rq" stays as the right runqueue!
1905                  * But we don't care, since "task_running()" will
1906                  * return false if the runqueue has changed and p
1907                  * is actually now running somewhere else!
1908                  */
1909                 while (task_running(rq, p)) {
1910                         if (match_state && unlikely(p->state != match_state))
1911                                 return 0;
1912                         cpu_relax();
1913                 }
1914
1915                 /*
1916                  * Ok, time to look more closely! We need the rq
1917                  * lock now, to be *sure*. If we're wrong, we'll
1918                  * just go back and repeat.
1919                  */
1920                 rq = task_rq_lock(p, &flags);
1921                 running = task_running(rq, p);
1922                 on_rq = p->se.on_rq;
1923                 ncsw = 0;
1924                 if (!match_state || p->state == match_state) {
1925                         ncsw = p->nivcsw + p->nvcsw;
1926                         if (unlikely(!ncsw))
1927                                 ncsw = 1;
1928                 }
1929                 task_rq_unlock(rq, &flags);
1930
1931                 /*
1932                  * If it changed from the expected state, bail out now.
1933                  */
1934                 if (unlikely(!ncsw))
1935                         break;
1936
1937                 /*
1938                  * Was it really running after all now that we
1939                  * checked with the proper locks actually held?
1940                  *
1941                  * Oops. Go back and try again..
1942                  */
1943                 if (unlikely(running)) {
1944                         cpu_relax();
1945                         continue;
1946                 }
1947
1948                 /*
1949                  * It's not enough that it's not actively running,
1950                  * it must be off the runqueue _entirely_, and not
1951                  * preempted!
1952                  *
1953                  * So if it wa still runnable (but just not actively
1954                  * running right now), it's preempted, and we should
1955                  * yield - it could be a while.
1956                  */
1957                 if (unlikely(on_rq)) {
1958                         schedule_timeout_uninterruptible(1);
1959                         continue;
1960                 }
1961
1962                 /*
1963                  * Ahh, all good. It wasn't running, and it wasn't
1964                  * runnable, which means that it will never become
1965                  * running in the future either. We're all done!
1966                  */
1967                 break;
1968         }
1969
1970         return ncsw;
1971 }
1972
1973 /***
1974  * kick_process - kick a running thread to enter/exit the kernel
1975  * @p: the to-be-kicked thread
1976  *
1977  * Cause a process which is running on another CPU to enter
1978  * kernel-mode, without any delay. (to get signals handled.)
1979  *
1980  * NOTE: this function doesnt have to take the runqueue lock,
1981  * because all it wants to ensure is that the remote task enters
1982  * the kernel. If the IPI races and the task has been migrated
1983  * to another CPU then no harm is done and the purpose has been
1984  * achieved as well.
1985  */
1986 void kick_process(struct task_struct *p)
1987 {
1988         int cpu;
1989
1990         preempt_disable();
1991         cpu = task_cpu(p);
1992         if ((cpu != smp_processor_id()) && task_curr(p))
1993                 smp_send_reschedule(cpu);
1994         preempt_enable();
1995 }
1996
1997 /*
1998  * Return a low guess at the load of a migration-source cpu weighted
1999  * according to the scheduling class and "nice" value.
2000  *
2001  * We want to under-estimate the load of migration sources, to
2002  * balance conservatively.
2003  */
2004 static unsigned long source_load(int cpu, int type)
2005 {
2006         struct rq *rq = cpu_rq(cpu);
2007         unsigned long total = weighted_cpuload(cpu);
2008
2009         if (type == 0 || !sched_feat(LB_BIAS))
2010                 return total;
2011
2012         return min(rq->cpu_load[type-1], total);
2013 }
2014
2015 /*
2016  * Return a high guess at the load of a migration-target cpu weighted
2017  * according to the scheduling class and "nice" value.
2018  */
2019 static unsigned long target_load(int cpu, int type)
2020 {
2021         struct rq *rq = cpu_rq(cpu);
2022         unsigned long total = weighted_cpuload(cpu);
2023
2024         if (type == 0 || !sched_feat(LB_BIAS))
2025                 return total;
2026
2027         return max(rq->cpu_load[type-1], total);
2028 }
2029
2030 /*
2031  * find_idlest_group finds and returns the least busy CPU group within the
2032  * domain.
2033  */
2034 static struct sched_group *
2035 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2036 {
2037         struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2038         unsigned long min_load = ULONG_MAX, this_load = 0;
2039         int load_idx = sd->forkexec_idx;
2040         int imbalance = 100 + (sd->imbalance_pct-100)/2;
2041
2042         do {
2043                 unsigned long load, avg_load;
2044                 int local_group;
2045                 int i;
2046
2047                 /* Skip over this group if it has no CPUs allowed */
2048                 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2049                         continue;
2050
2051                 local_group = cpu_isset(this_cpu, group->cpumask);
2052
2053                 /* Tally up the load of all CPUs in the group */
2054                 avg_load = 0;
2055
2056                 for_each_cpu_mask_nr(i, group->cpumask) {
2057                         /* Bias balancing toward cpus of our domain */
2058                         if (local_group)
2059                                 load = source_load(i, load_idx);
2060                         else
2061                                 load = target_load(i, load_idx);
2062
2063                         avg_load += load;
2064                 }
2065
2066                 /* Adjust by relative CPU power of the group */
2067                 avg_load = sg_div_cpu_power(group,
2068                                 avg_load * SCHED_LOAD_SCALE);
2069
2070                 if (local_group) {
2071                         this_load = avg_load;
2072                         this = group;
2073                 } else if (avg_load < min_load) {
2074                         min_load = avg_load;
2075                         idlest = group;
2076                 }
2077         } while (group = group->next, group != sd->groups);
2078
2079         if (!idlest || 100*this_load < imbalance*min_load)
2080                 return NULL;
2081         return idlest;
2082 }
2083
2084 /*
2085  * find_idlest_cpu - find the idlest cpu among the cpus in group.
2086  */
2087 static int
2088 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2089                 cpumask_t *tmp)
2090 {
2091         unsigned long load, min_load = ULONG_MAX;
2092         int idlest = -1;
2093         int i;
2094
2095         /* Traverse only the allowed CPUs */
2096         cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2097
2098         for_each_cpu_mask_nr(i, *tmp) {
2099                 load = weighted_cpuload(i);
2100
2101                 if (load < min_load || (load == min_load && i == this_cpu)) {
2102                         min_load = load;
2103                         idlest = i;
2104                 }
2105         }
2106
2107         return idlest;
2108 }
2109
2110 /*
2111  * sched_balance_self: balance the current task (running on cpu) in domains
2112  * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2113  * SD_BALANCE_EXEC.
2114  *
2115  * Balance, ie. select the least loaded group.
2116  *
2117  * Returns the target CPU number, or the same CPU if no balancing is needed.
2118  *
2119  * preempt must be disabled.
2120  */
2121 static int sched_balance_self(int cpu, int flag)
2122 {
2123         struct task_struct *t = current;
2124         struct sched_domain *tmp, *sd = NULL;
2125
2126         for_each_domain(cpu, tmp) {
2127                 /*
2128                  * If power savings logic is enabled for a domain, stop there.
2129                  */
2130                 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2131                         break;
2132                 if (tmp->flags & flag)
2133                         sd = tmp;
2134         }
2135
2136         if (sd)
2137                 update_shares(sd);
2138
2139         while (sd) {
2140                 cpumask_t span, tmpmask;
2141                 struct sched_group *group;
2142                 int new_cpu, weight;
2143
2144                 if (!(sd->flags & flag)) {
2145                         sd = sd->child;
2146                         continue;
2147                 }
2148
2149                 span = sd->span;
2150                 group = find_idlest_group(sd, t, cpu);
2151                 if (!group) {
2152                         sd = sd->child;
2153                         continue;
2154                 }
2155
2156                 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2157                 if (new_cpu == -1 || new_cpu == cpu) {
2158                         /* Now try balancing at a lower domain level of cpu */
2159                         sd = sd->child;
2160                         continue;
2161                 }
2162
2163                 /* Now try balancing at a lower domain level of new_cpu */
2164                 cpu = new_cpu;
2165                 sd = NULL;
2166                 weight = cpus_weight(span);
2167                 for_each_domain(cpu, tmp) {
2168                         if (weight <= cpus_weight(tmp->span))
2169                                 break;
2170                         if (tmp->flags & flag)
2171                                 sd = tmp;
2172                 }
2173                 /* while loop will break here if sd == NULL */
2174         }
2175
2176         return cpu;
2177 }
2178
2179 #endif /* CONFIG_SMP */
2180
2181 /***
2182  * try_to_wake_up - wake up a thread
2183  * @p: the to-be-woken-up thread
2184  * @state: the mask of task states that can be woken
2185  * @sync: do a synchronous wakeup?
2186  *
2187  * Put it on the run-queue if it's not already there. The "current"
2188  * thread is always on the run-queue (except when the actual
2189  * re-schedule is in progress), and as such you're allowed to do
2190  * the simpler "current->state = TASK_RUNNING" to mark yourself
2191  * runnable without the overhead of this.
2192  *
2193  * returns failure only if the task is already active.
2194  */
2195 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2196 {
2197         int cpu, orig_cpu, this_cpu, success = 0;
2198         unsigned long flags;
2199         long old_state;
2200         struct rq *rq;
2201
2202         if (!sched_feat(SYNC_WAKEUPS))
2203                 sync = 0;
2204
2205 #ifdef CONFIG_SMP
2206         if (sched_feat(LB_WAKEUP_UPDATE)) {
2207                 struct sched_domain *sd;
2208
2209                 this_cpu = raw_smp_processor_id();
2210                 cpu = task_cpu(p);
2211
2212                 for_each_domain(this_cpu, sd) {
2213                         if (cpu_isset(cpu, sd->span)) {
2214                                 update_shares(sd);
2215                                 break;
2216                         }
2217                 }
2218         }
2219 #endif
2220
2221         smp_wmb();
2222         rq = task_rq_lock(p, &flags);
2223         old_state = p->state;
2224         if (!(old_state & state))
2225                 goto out;
2226
2227         if (p->se.on_rq)
2228                 goto out_running;
2229
2230         cpu = task_cpu(p);
2231         orig_cpu = cpu;
2232         this_cpu = smp_processor_id();
2233
2234 #ifdef CONFIG_SMP
2235         if (unlikely(task_running(rq, p)))
2236                 goto out_activate;
2237
2238         cpu = p->sched_class->select_task_rq(p, sync);
2239         if (cpu != orig_cpu) {
2240                 set_task_cpu(p, cpu);
2241                 task_rq_unlock(rq, &flags);
2242                 /* might preempt at this point */
2243                 rq = task_rq_lock(p, &flags);
2244                 old_state = p->state;
2245                 if (!(old_state & state))
2246                         goto out;
2247                 if (p->se.on_rq)
2248                         goto out_running;
2249
2250                 this_cpu = smp_processor_id();
2251                 cpu = task_cpu(p);
2252         }
2253
2254 #ifdef CONFIG_SCHEDSTATS
2255         schedstat_inc(rq, ttwu_count);
2256         if (cpu == this_cpu)
2257                 schedstat_inc(rq, ttwu_local);
2258         else {
2259                 struct sched_domain *sd;
2260                 for_each_domain(this_cpu, sd) {
2261                         if (cpu_isset(cpu, sd->span)) {
2262                                 schedstat_inc(sd, ttwu_wake_remote);
2263                                 break;
2264                         }
2265                 }
2266         }
2267 #endif /* CONFIG_SCHEDSTATS */
2268
2269 out_activate:
2270 #endif /* CONFIG_SMP */
2271         schedstat_inc(p, se.nr_wakeups);
2272         if (sync)
2273                 schedstat_inc(p, se.nr_wakeups_sync);
2274         if (orig_cpu != cpu)
2275                 schedstat_inc(p, se.nr_wakeups_migrate);
2276         if (cpu == this_cpu)
2277                 schedstat_inc(p, se.nr_wakeups_local);
2278         else
2279                 schedstat_inc(p, se.nr_wakeups_remote);
2280         update_rq_clock(rq);
2281         activate_task(rq, p, 1);
2282         success = 1;
2283
2284 out_running:
2285         trace_mark(kernel_sched_wakeup,
2286                 "pid %d state %ld ## rq %p task %p rq->curr %p",
2287                 p->pid, p->state, rq, p, rq->curr);
2288         check_preempt_curr(rq, p);
2289
2290         p->state = TASK_RUNNING;
2291 #ifdef CONFIG_SMP
2292         if (p->sched_class->task_wake_up)
2293                 p->sched_class->task_wake_up(rq, p);
2294 #endif
2295 out:
2296         current->se.last_wakeup = current->se.sum_exec_runtime;
2297
2298         task_rq_unlock(rq, &flags);
2299
2300         return success;
2301 }
2302
2303 int wake_up_process(struct task_struct *p)
2304 {
2305         return try_to_wake_up(p, TASK_ALL, 0);
2306 }
2307 EXPORT_SYMBOL(wake_up_process);
2308
2309 int wake_up_state(struct task_struct *p, unsigned int state)
2310 {
2311         return try_to_wake_up(p, state, 0);
2312 }
2313
2314 /*
2315  * Perform scheduler related setup for a newly forked process p.
2316  * p is forked by current.
2317  *
2318  * __sched_fork() is basic setup used by init_idle() too:
2319  */
2320 static void __sched_fork(struct task_struct *p)
2321 {
2322         p->se.exec_start                = 0;
2323         p->se.sum_exec_runtime          = 0;
2324         p->se.prev_sum_exec_runtime     = 0;
2325         p->se.last_wakeup               = 0;
2326         p->se.avg_overlap               = 0;
2327
2328 #ifdef CONFIG_SCHEDSTATS
2329         p->se.wait_start                = 0;
2330         p->se.sum_sleep_runtime         = 0;
2331         p->se.sleep_start               = 0;
2332         p->se.block_start               = 0;
2333         p->se.sleep_max                 = 0;
2334         p->se.block_max                 = 0;
2335         p->se.exec_max                  = 0;
2336         p->se.slice_max                 = 0;
2337         p->se.wait_max                  = 0;
2338 #endif
2339
2340         INIT_LIST_HEAD(&p->rt.run_list);
2341         p->se.on_rq = 0;
2342         INIT_LIST_HEAD(&p->se.group_node);
2343
2344 #ifdef CONFIG_PREEMPT_NOTIFIERS
2345         INIT_HLIST_HEAD(&p->preempt_notifiers);
2346 #endif
2347
2348         /*
2349          * We mark the process as running here, but have not actually
2350          * inserted it onto the runqueue yet. This guarantees that
2351          * nobody will actually run it, and a signal or other external
2352          * event cannot wake it up and insert it on the runqueue either.
2353          */
2354         p->state = TASK_RUNNING;
2355 }
2356
2357 /*
2358  * fork()/clone()-time setup:
2359  */
2360 void sched_fork(struct task_struct *p, int clone_flags)
2361 {
2362         int cpu = get_cpu();
2363
2364         __sched_fork(p);
2365
2366 #ifdef CONFIG_SMP
2367         cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2368 #endif
2369         set_task_cpu(p, cpu);
2370
2371         /*
2372          * Make sure we do not leak PI boosting priority to the child:
2373          */
2374         p->prio = current->normal_prio;
2375         if (!rt_prio(p->prio))
2376                 p->sched_class = &fair_sched_class;
2377
2378 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2379         if (likely(sched_info_on()))
2380                 memset(&p->sched_info, 0, sizeof(p->sched_info));
2381 #endif
2382 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2383         p->oncpu = 0;
2384 #endif
2385 #ifdef CONFIG_PREEMPT
2386         /* Want to start with kernel preemption disabled. */
2387         task_thread_info(p)->preempt_count = 1;
2388 #endif
2389         put_cpu();
2390 }
2391
2392 /*
2393  * wake_up_new_task - wake up a newly created task for the first time.
2394  *
2395  * This function will do some initial scheduler statistics housekeeping
2396  * that must be done for every newly created context, then puts the task
2397  * on the runqueue and wakes it.
2398  */
2399 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2400 {
2401         unsigned long flags;
2402         struct rq *rq;
2403
2404         rq = task_rq_lock(p, &flags);
2405         BUG_ON(p->state != TASK_RUNNING);
2406         update_rq_clock(rq);
2407
2408         p->prio = effective_prio(p);
2409
2410         if (!p->sched_class->task_new || !current->se.on_rq) {
2411                 activate_task(rq, p, 0);
2412         } else {
2413                 /*
2414                  * Let the scheduling class do new task startup
2415                  * management (if any):
2416                  */
2417                 p->sched_class->task_new(rq, p);
2418                 inc_nr_running(rq);
2419         }
2420         trace_mark(kernel_sched_wakeup_new,
2421                 "pid %d state %ld ## rq %p task %p rq->curr %p",
2422                 p->pid, p->state, rq, p, rq->curr);
2423         check_preempt_curr(rq, p);
2424 #ifdef CONFIG_SMP
2425         if (p->sched_class->task_wake_up)
2426                 p->sched_class->task_wake_up(rq, p);
2427 #endif
2428         task_rq_unlock(rq, &flags);
2429 }
2430
2431 #ifdef CONFIG_PREEMPT_NOTIFIERS
2432
2433 /**
2434  * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2435  * @notifier: notifier struct to register
2436  */
2437 void preempt_notifier_register(struct preempt_notifier *notifier)
2438 {
2439         hlist_add_head(&notifier->link, &current->preempt_notifiers);
2440 }
2441 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2442
2443 /**
2444  * preempt_notifier_unregister - no longer interested in preemption notifications
2445  * @notifier: notifier struct to unregister
2446  *
2447  * This is safe to call from within a preemption notifier.
2448  */
2449 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2450 {
2451         hlist_del(&notifier->link);
2452 }
2453 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2454
2455 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2456 {
2457         struct preempt_notifier *notifier;
2458         struct hlist_node *node;
2459
2460         hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2461                 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2462 }
2463
2464 static void
2465 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2466                                  struct task_struct *next)
2467 {
2468         struct preempt_notifier *notifier;
2469         struct hlist_node *node;
2470
2471         hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2472                 notifier->ops->sched_out(notifier, next);
2473 }
2474
2475 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2476
2477 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2478 {
2479 }
2480
2481 static void
2482 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2483                                  struct task_struct *next)
2484 {
2485 }
2486
2487 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2488
2489 /**
2490  * prepare_task_switch - prepare to switch tasks
2491  * @rq: the runqueue preparing to switch
2492  * @prev: the current task that is being switched out
2493  * @next: the task we are going to switch to.
2494  *
2495  * This is called with the rq lock held and interrupts off. It must
2496  * be paired with a subsequent finish_task_switch after the context
2497  * switch.
2498  *
2499  * prepare_task_switch sets up locking and calls architecture specific
2500  * hooks.
2501  */
2502 static inline void
2503 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2504                     struct task_struct *next)
2505 {
2506         fire_sched_out_preempt_notifiers(prev, next);
2507         prepare_lock_switch(rq, next);
2508         prepare_arch_switch(next);
2509 }
2510
2511 /**
2512  * finish_task_switch - clean up after a task-switch
2513  * @rq: runqueue associated with task-switch
2514  * @prev: the thread we just switched away from.
2515  *
2516  * finish_task_switch must be called after the context switch, paired
2517  * with a prepare_task_switch call before the context switch.
2518  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2519  * and do any other architecture-specific cleanup actions.
2520  *
2521  * Note that we may have delayed dropping an mm in context_switch(). If
2522  * so, we finish that here outside of the runqueue lock. (Doing it
2523  * with the lock held can cause deadlocks; see schedule() for
2524  * details.)
2525  */
2526 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2527         __releases(rq->lock)
2528 {
2529         struct mm_struct *mm = rq->prev_mm;
2530         long prev_state;
2531
2532         rq->prev_mm = NULL;
2533
2534         /*
2535          * A task struct has one reference for the use as "current".
2536          * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2537          * schedule one last time. The schedule call will never return, and
2538          * the scheduled task must drop that reference.
2539          * The test for TASK_DEAD must occur while the runqueue locks are
2540          * still held, otherwise prev could be scheduled on another cpu, die
2541          * there before we look at prev->state, and then the reference would
2542          * be dropped twice.
2543          *              Manfred Spraul <manfred@colorfullife.com>
2544          */
2545         prev_state = prev->state;
2546         finish_arch_switch(prev);
2547         finish_lock_switch(rq, prev);
2548 #ifdef CONFIG_SMP
2549         if (current->sched_class->post_schedule)
2550                 current->sched_class->post_schedule(rq);
2551 #endif
2552
2553         fire_sched_in_preempt_notifiers(current);
2554         if (mm)
2555                 mmdrop(mm);
2556         if (unlikely(prev_state == TASK_DEAD)) {
2557                 /*
2558                  * Remove function-return probe instances associated with this
2559                  * task and put them back on the free list.
2560                  */
2561                 kprobe_flush_task(prev);
2562                 put_task_struct(prev);
2563         }
2564 }
2565
2566 /**
2567  * schedule_tail - first thing a freshly forked thread must call.
2568  * @prev: the thread we just switched away from.
2569  */
2570 asmlinkage void schedule_tail(struct task_struct *prev)
2571         __releases(rq->lock)
2572 {
2573         struct rq *rq = this_rq();
2574
2575         finish_task_switch(rq, prev);
2576 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2577         /* In this case, finish_task_switch does not reenable preemption */
2578         preempt_enable();
2579 #endif
2580         if (current->set_child_tid)
2581                 put_user(task_pid_vnr(current), current->set_child_tid);
2582 }
2583
2584 /*
2585  * context_switch - switch to the new MM and the new
2586  * thread's register state.
2587  */
2588 static inline void
2589 context_switch(struct rq *rq, struct task_struct *prev,
2590                struct task_struct *next)
2591 {
2592         struct mm_struct *mm, *oldmm;
2593
2594         prepare_task_switch(rq, prev, next);
2595         trace_mark(kernel_sched_schedule,
2596                 "prev_pid %d next_pid %d prev_state %ld "
2597                 "## rq %p prev %p next %p",
2598                 prev->pid, next->pid, prev->state,
2599                 rq, prev, next);
2600         mm = next->mm;
2601         oldmm = prev->active_mm;
2602         /*
2603          * For paravirt, this is coupled with an exit in switch_to to
2604          * combine the page table reload and the switch backend into
2605          * one hypercall.
2606          */
2607         arch_enter_lazy_cpu_mode();
2608
2609         if (unlikely(!mm)) {
2610                 next->active_mm = oldmm;
2611                 atomic_inc(&oldmm->mm_count);
2612                 enter_lazy_tlb(oldmm, next);
2613         } else
2614                 switch_mm(oldmm, mm, next);
2615
2616         if (unlikely(!prev->mm)) {
2617                 prev->active_mm = NULL;
2618                 rq->prev_mm = oldmm;
2619         }
2620         /*
2621          * Since the runqueue lock will be released by the next
2622          * task (which is an invalid locking op but in the case
2623          * of the scheduler it's an obvious special-case), so we
2624          * do an early lockdep release here:
2625          */
2626 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2627         spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2628 #endif
2629
2630         /* Here we just switch the register state and the stack. */
2631         switch_to(prev, next, prev);
2632
2633         barrier();
2634         /*
2635          * this_rq must be evaluated again because prev may have moved
2636          * CPUs since it called schedule(), thus the 'rq' on its stack
2637          * frame will be invalid.
2638          */
2639         finish_task_switch(this_rq(), prev);
2640 }
2641
2642 /*
2643  * nr_running, nr_uninterruptible and nr_context_switches:
2644  *
2645  * externally visible scheduler statistics: current number of runnable
2646  * threads, current number of uninterruptible-sleeping threads, total
2647  * number of context switches performed since bootup.
2648  */
2649 unsigned long nr_running(void)
2650 {
2651         unsigned long i, sum = 0;
2652
2653         for_each_online_cpu(i)
2654                 sum += cpu_rq(i)->nr_running;
2655
2656         return sum;
2657 }
2658
2659 unsigned long nr_uninterruptible(void)
2660 {
2661         unsigned long i, sum = 0;
2662
2663         for_each_possible_cpu(i)
2664                 sum += cpu_rq(i)->nr_uninterruptible;
2665
2666         /*
2667          * Since we read the counters lockless, it might be slightly
2668          * inaccurate. Do not allow it to go below zero though:
2669          */
2670         if (unlikely((long)sum < 0))
2671                 sum = 0;
2672
2673         return sum;
2674 }
2675
2676 unsigned long long nr_context_switches(void)
2677 {
2678         int i;
2679         unsigned long long sum = 0;
2680
2681         for_each_possible_cpu(i)
2682                 sum += cpu_rq(i)->nr_switches;
2683
2684         return sum;
2685 }
2686
2687 unsigned long nr_iowait(void)
2688 {
2689         unsigned long i, sum = 0;
2690
2691         for_each_possible_cpu(i)
2692                 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2693
2694         return sum;
2695 }
2696
2697 unsigned long nr_active(void)
2698 {
2699         unsigned long i, running = 0, uninterruptible = 0;
2700
2701         for_each_online_cpu(i) {
2702                 running += cpu_rq(i)->nr_running;
2703                 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2704         }
2705
2706         if (unlikely((long)uninterruptible < 0))
2707                 uninterruptible = 0;
2708
2709         return running + uninterruptible;
2710 }
2711
2712 /*
2713  * Update rq->cpu_load[] statistics. This function is usually called every
2714  * scheduler tick (TICK_NSEC).
2715  */
2716 static void update_cpu_load(struct rq *this_rq)
2717 {
2718         unsigned long this_load = this_rq->load.weight;
2719         int i, scale;
2720
2721         this_rq->nr_load_updates++;
2722
2723         /* Update our load: */
2724         for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2725                 unsigned long old_load, new_load;
2726
2727                 /* scale is effectively 1 << i now, and >> i divides by scale */
2728
2729                 old_load = this_rq->cpu_load[i];
2730                 new_load = this_load;
2731                 /*
2732                  * Round up the averaging division if load is increasing. This
2733                  * prevents us from getting stuck on 9 if the load is 10, for
2734                  * example.
2735                  */
2736                 if (new_load > old_load)
2737                         new_load += scale-1;
2738                 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2739         }
2740 }
2741
2742 #ifdef CONFIG_SMP
2743
2744 /*
2745  * double_rq_lock - safely lock two runqueues
2746  *
2747  * Note this does not disable interrupts like task_rq_lock,
2748  * you need to do so manually before calling.
2749  */
2750 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2751         __acquires(rq1->lock)
2752         __acquires(rq2->lock)
2753 {
2754         BUG_ON(!irqs_disabled());
2755         if (rq1 == rq2) {
2756                 spin_lock(&rq1->lock);
2757                 __acquire(rq2->lock);   /* Fake it out ;) */
2758         } else {
2759                 if (rq1 < rq2) {
2760                         spin_lock(&rq1->lock);
2761                         spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2762                 } else {
2763                         spin_lock(&rq2->lock);
2764                         spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2765                 }
2766         }
2767         update_rq_clock(rq1);
2768         update_rq_clock(rq2);
2769 }
2770
2771 /*
2772  * double_rq_unlock - safely unlock two runqueues
2773  *
2774  * Note this does not restore interrupts like task_rq_unlock,
2775  * you need to do so manually after calling.
2776  */
2777 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2778         __releases(rq1->lock)
2779         __releases(rq2->lock)
2780 {
2781         spin_unlock(&rq1->lock);
2782         if (rq1 != rq2)
2783                 spin_unlock(&rq2->lock);
2784         else
2785                 __release(rq2->lock);
2786 }
2787
2788 /*
2789  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2790  */
2791 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2792         __releases(this_rq->lock)
2793         __acquires(busiest->lock)
2794         __acquires(this_rq->lock)
2795 {
2796         int ret = 0;
2797
2798         if (unlikely(!irqs_disabled())) {
2799                 /* printk() doesn't work good under rq->lock */
2800                 spin_unlock(&this_rq->lock);
2801                 BUG_ON(1);
2802         }
2803         if (unlikely(!spin_trylock(&busiest->lock))) {
2804                 if (busiest < this_rq) {
2805                         spin_unlock(&this_rq->lock);
2806                         spin_lock(&busiest->lock);
2807                         spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
2808                         ret = 1;
2809                 } else
2810                         spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
2811         }
2812         return ret;
2813 }
2814
2815 static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2816         __releases(busiest->lock)
2817 {
2818         spin_unlock(&busiest->lock);
2819         lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2820 }
2821
2822 /*
2823  * If dest_cpu is allowed for this process, migrate the task to it.
2824  * This is accomplished by forcing the cpu_allowed mask to only
2825  * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2826  * the cpu_allowed mask is restored.
2827  */
2828 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2829 {
2830         struct migration_req req;
2831         unsigned long flags;
2832         struct rq *rq;
2833
2834         rq = task_rq_lock(p, &flags);
2835         if (!cpu_isset(dest_cpu, p->cpus_allowed)
2836             || unlikely(!cpu_active(dest_cpu)))
2837                 goto out;
2838
2839         /* force the process onto the specified CPU */
2840         if (migrate_task(p, dest_cpu, &req)) {
2841                 /* Need to wait for migration thread (might exit: take ref). */
2842                 struct task_struct *mt = rq->migration_thread;
2843
2844                 get_task_struct(mt);
2845                 task_rq_unlock(rq, &flags);
2846                 wake_up_process(mt);
2847                 put_task_struct(mt);
2848                 wait_for_completion(&req.done);
2849
2850                 return;
2851         }
2852 out:
2853         task_rq_unlock(rq, &flags);
2854 }
2855
2856 /*
2857  * sched_exec - execve() is a valuable balancing opportunity, because at
2858  * this point the task has the smallest effective memory and cache footprint.
2859  */
2860 void sched_exec(void)
2861 {
2862         int new_cpu, this_cpu = get_cpu();
2863         new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2864         put_cpu();
2865         if (new_cpu != this_cpu)
2866                 sched_migrate_task(current, new_cpu);
2867 }
2868
2869 /*
2870  * pull_task - move a task from a remote runqueue to the local runqueue.
2871  * Both runqueues must be locked.
2872  */
2873 static void pull_task(struct rq *src_rq, struct task_struct *p,
2874                       struct rq *this_rq, int this_cpu)
2875 {
2876         deactivate_task(src_rq, p, 0);
2877         set_task_cpu(p, this_cpu);
2878         activate_task(this_rq, p, 0);
2879         /*
2880          * Note that idle threads have a prio of MAX_PRIO, for this test
2881          * to be always true for them.
2882          */
2883         check_preempt_curr(this_rq, p);
2884 }
2885
2886 /*
2887  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2888  */
2889 static
2890 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2891                      struct sched_domain *sd, enum cpu_idle_type idle,
2892                      int *all_pinned)
2893 {
2894         /*
2895          * We do not migrate tasks that are:
2896          * 1) running (obviously), or
2897          * 2) cannot be migrated to this CPU due to cpus_allowed, or
2898          * 3) are cache-hot on their current CPU.
2899          */
2900         if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2901                 schedstat_inc(p, se.nr_failed_migrations_affine);
2902                 return 0;
2903         }
2904         *all_pinned = 0;
2905
2906         if (task_running(rq, p)) {
2907                 schedstat_inc(p, se.nr_failed_migrations_running);
2908                 return 0;
2909         }
2910
2911         /*
2912          * Aggressive migration if:
2913          * 1) task is cache cold, or
2914          * 2) too many balance attempts have failed.
2915          */
2916
2917         if (!task_hot(p, rq->clock, sd) ||
2918                         sd->nr_balance_failed > sd->cache_nice_tries) {
2919 #ifdef CONFIG_SCHEDSTATS
2920                 if (task_hot(p, rq->clock, sd)) {
2921                         schedstat_inc(sd, lb_hot_gained[idle]);
2922                         schedstat_inc(p, se.nr_forced_migrations);
2923                 }
2924 #endif
2925                 return 1;
2926         }
2927
2928         if (task_hot(p, rq->clock, sd)) {
2929                 schedstat_inc(p, se.nr_failed_migrations_hot);
2930                 return 0;
2931         }
2932         return 1;
2933 }
2934
2935 static unsigned long
2936 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2937               unsigned long max_load_move, struct sched_domain *sd,
2938               enum cpu_idle_type idle, int *all_pinned,
2939               int *this_best_prio, struct rq_iterator *iterator)
2940 {
2941         int loops = 0, pulled = 0, pinned = 0;
2942         struct task_struct *p;
2943         long rem_load_move = max_load_move;
2944
2945         if (max_load_move == 0)
2946                 goto out;
2947
2948         pinned = 1;
2949
2950         /*
2951          * Start the load-balancing iterator:
2952          */
2953         p = iterator->start(iterator->arg);
2954 next:
2955         if (!p || loops++ > sysctl_sched_nr_migrate)
2956                 goto out;
2957
2958         if ((p->se.load.weight >> 1) > rem_load_move ||
2959             !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2960                 p = iterator->next(iterator->arg);
2961                 goto next;
2962         }
2963
2964         pull_task(busiest, p, this_rq, this_cpu);
2965         pulled++;
2966         rem_load_move -= p->se.load.weight;
2967
2968         /*
2969          * We only want to steal up to the prescribed amount of weighted load.
2970          */
2971         if (rem_load_move > 0) {
2972                 if (p->prio < *this_best_prio)
2973                         *this_best_prio = p->prio;
2974                 p = iterator->next(iterator->arg);
2975                 goto next;
2976         }
2977 out:
2978         /*
2979          * Right now, this is one of only two places pull_task() is called,
2980          * so we can safely collect pull_task() stats here rather than
2981          * inside pull_task().
2982          */
2983         schedstat_add(sd, lb_gained[idle], pulled);
2984
2985         if (all_pinned)
2986                 *all_pinned = pinned;
2987
2988         return max_load_move - rem_load_move;
2989 }
2990
2991 /*
2992  * move_tasks tries to move up to max_load_move weighted load from busiest to
2993  * this_rq, as part of a balancing operation within domain "sd".
2994  * Returns 1 if successful and 0 otherwise.
2995  *
2996  * Called with both runqueues locked.
2997  */
2998 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2999                       unsigned long max_load_move,
3000                       struct sched_domain *sd, enum cpu_idle_type idle,
3001                       int *all_pinned)
3002 {
3003         const struct sched_class *class = sched_class_highest;
3004         unsigned long total_load_moved = 0;
3005         int this_best_prio = this_rq->curr->prio;
3006
3007         do {
3008                 total_load_moved +=
3009                         class->load_balance(this_rq, this_cpu, busiest,
3010                                 max_load_move - total_load_moved,
3011                                 sd, idle, all_pinned, &this_best_prio);
3012                 class = class->next;
3013
3014                 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3015                         break;
3016
3017         } while (class && max_load_move > total_load_moved);
3018
3019         return total_load_moved > 0;
3020 }
3021
3022 static int
3023 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3024                    struct sched_domain *sd, enum cpu_idle_type idle,
3025                    struct rq_iterator *iterator)
3026 {
3027         struct task_struct *p = iterator->start(iterator->arg);
3028         int pinned = 0;
3029
3030         while (p) {
3031                 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3032                         pull_task(busiest, p, this_rq, this_cpu);
3033                         /*
3034                          * Right now, this is only the second place pull_task()
3035                          * is called, so we can safely collect pull_task()
3036                          * stats here rather than inside pull_task().
3037                          */
3038                         schedstat_inc(sd, lb_gained[idle]);
3039
3040                         return 1;
3041                 }
3042                 p = iterator->next(iterator->arg);
3043         }
3044
3045         return 0;
3046 }
3047
3048 /*
3049  * move_one_task tries to move exactly one task from busiest to this_rq, as
3050  * part of active balancing operations within "domain".
3051  * Returns 1 if successful and 0 otherwise.
3052  *
3053  * Called with both runqueues locked.
3054  */
3055 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3056                          struct sched_domain *sd, enum cpu_idle_type idle)
3057 {
3058         const struct sched_class *class;
3059
3060         for (class = sched_class_highest; class; class = class->next)
3061                 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3062                         return 1;
3063
3064         return 0;
3065 }
3066
3067 /*
3068  * find_busiest_group finds and returns the busiest CPU group within the
3069  * domain. It calculates and returns the amount of weighted load which
3070  * should be moved to restore balance via the imbalance parameter.
3071  */
3072 static struct sched_group *
3073 find_busiest_group(struct sched_domain *sd, int this_cpu,
3074                    unsigned long *imbalance, enum cpu_idle_type idle,
3075                    int *sd_idle, const cpumask_t *cpus, int *balance)
3076 {
3077         struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3078         unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3079         unsigned long max_pull;
3080         unsigned long busiest_load_per_task, busiest_nr_running;
3081         unsigned long this_load_per_task, this_nr_running;
3082         int load_idx, group_imb = 0;
3083 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3084         int power_savings_balance = 1;
3085         unsigned long leader_nr_running = 0, min_load_per_task = 0;
3086         unsigned long min_nr_running = ULONG_MAX;
3087         struct sched_group *group_min = NULL, *group_leader = NULL;
3088 #endif
3089
3090         max_load = this_load = total_load = total_pwr = 0;
3091         busiest_load_per_task = busiest_nr_running = 0;
3092         this_load_per_task = this_nr_running = 0;
3093
3094         if (idle == CPU_NOT_IDLE)
3095                 load_idx = sd->busy_idx;
3096         else if (idle == CPU_NEWLY_IDLE)
3097                 load_idx = sd->newidle_idx;
3098         else
3099                 load_idx = sd->idle_idx;
3100
3101         do {
3102                 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
3103                 int local_group;
3104                 int i;
3105                 int __group_imb = 0;
3106                 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3107                 unsigned long sum_nr_running, sum_weighted_load;
3108                 unsigned long sum_avg_load_per_task;
3109                 unsigned long avg_load_per_task;
3110
3111                 local_group = cpu_isset(this_cpu, group->cpumask);
3112
3113                 if (local_group)
3114                         balance_cpu = first_cpu(group->cpumask);
3115
3116                 /* Tally up the load of all CPUs in the group */
3117                 sum_weighted_load = sum_nr_running = avg_load = 0;
3118                 sum_avg_load_per_task = avg_load_per_task = 0;
3119
3120                 max_cpu_load = 0;
3121                 min_cpu_load = ~0UL;
3122
3123                 for_each_cpu_mask_nr(i, group->cpumask) {
3124                         struct rq *rq;
3125
3126                         if (!cpu_isset(i, *cpus))
3127                                 continue;
3128
3129                         rq = cpu_rq(i);
3130
3131                         if (*sd_idle && rq->nr_running)
3132                                 *sd_idle = 0;
3133
3134                         /* Bias balancing toward cpus of our domain */
3135                         if (local_group) {
3136                                 if (idle_cpu(i) && !first_idle_cpu) {
3137                                         first_idle_cpu = 1;
3138                                         balance_cpu = i;
3139                                 }
3140
3141                                 load = target_load(i, load_idx);
3142                         } else {
3143                                 load = source_load(i, load_idx);
3144                                 if (load > max_cpu_load)
3145                                         max_cpu_load = load;
3146                                 if (min_cpu_load > load)
3147                                         min_cpu_load = load;
3148                         }
3149
3150                         avg_load += load;
3151                         sum_nr_running += rq->nr_running;
3152                         sum_weighted_load += weighted_cpuload(i);
3153
3154                         sum_avg_load_per_task += cpu_avg_load_per_task(i);
3155                 }
3156
3157                 /*
3158                  * First idle cpu or the first cpu(busiest) in this sched group
3159                  * is eligible for doing load balancing at this and above
3160                  * domains. In the newly idle case, we will allow all the cpu's
3161                  * to do the newly idle load balance.
3162                  */
3163                 if (idle != CPU_NEWLY_IDLE && local_group &&
3164                     balance_cpu != this_cpu && balance) {
3165                         *balance = 0;
3166                         goto ret;
3167                 }
3168
3169                 total_load += avg_load;
3170                 total_pwr += group->__cpu_power;
3171
3172                 /* Adjust by relative CPU power of the group */
3173                 avg_load = sg_div_cpu_power(group,
3174                                 avg_load * SCHED_LOAD_SCALE);
3175
3176
3177                 /*
3178                  * Consider the group unbalanced when the imbalance is larger
3179                  * than the average weight of two tasks.
3180                  *
3181                  * APZ: with cgroup the avg task weight can vary wildly and
3182                  *      might not be a suitable number - should we keep a
3183                  *      normalized nr_running number somewhere that negates
3184                  *      the hierarchy?
3185                  */
3186                 avg_load_per_task = sg_div_cpu_power(group,
3187                                 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3188
3189                 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3190                         __group_imb = 1;
3191
3192                 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3193
3194                 if (local_group) {
3195                         this_load = avg_load;
3196                         this = group;
3197                         this_nr_running = sum_nr_running;
3198                         this_load_per_task = sum_weighted_load;
3199                 } else if (avg_load > max_load &&
3200                            (sum_nr_running > group_capacity || __group_imb)) {
3201                         max_load = avg_load;
3202                         busiest = group;
3203                         busiest_nr_running = sum_nr_running;
3204                         busiest_load_per_task = sum_weighted_load;
3205                         group_imb = __group_imb;
3206                 }
3207
3208 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3209                 /*
3210                  * Busy processors will not participate in power savings
3211                  * balance.
3212                  */
3213                 if (idle == CPU_NOT_IDLE ||
3214                                 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3215                         goto group_next;
3216
3217                 /*
3218                  * If the local group is idle or completely loaded
3219                  * no need to do power savings balance at this domain
3220                  */
3221                 if (local_group && (this_nr_running >= group_capacity ||
3222                                     !this_nr_running))
3223                         power_savings_balance = 0;
3224
3225                 /*
3226                  * If a group is already running at full capacity or idle,
3227                  * don't include that group in power savings calculations
3228                  */
3229                 if (!power_savings_balance || sum_nr_running >= group_capacity
3230                     || !sum_nr_running)
3231                         goto group_next;
3232
3233                 /*
3234                  * Calculate the group which has the least non-idle load.
3235                  * This is the group from where we need to pick up the load
3236                  * for saving power
3237                  */
3238                 if ((sum_nr_running < min_nr_running) ||
3239                     (sum_nr_running == min_nr_running &&
3240                      first_cpu(group->cpumask) <
3241                      first_cpu(group_min->cpumask))) {
3242                         group_min = group;
3243                         min_nr_running = sum_nr_running;
3244                         min_load_per_task = sum_weighted_load /
3245                                                 sum_nr_running;
3246                 }
3247
3248                 /*
3249                  * Calculate the group which is almost near its
3250                  * capacity but still has some space to pick up some load
3251                  * from other group and save more power
3252                  */
3253                 if (sum_nr_running <= group_capacity - 1) {
3254                         if (sum_nr_running > leader_nr_running ||
3255                             (sum_nr_running == leader_nr_running &&
3256                              first_cpu(group->cpumask) >
3257                               first_cpu(group_leader->cpumask))) {
3258                                 group_leader = group;
3259                                 leader_nr_running = sum_nr_running;
3260                         }
3261                 }
3262 group_next:
3263 #endif
3264                 group = group->next;
3265         } while (group != sd->groups);
3266
3267         if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3268                 goto out_balanced;
3269
3270         avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3271
3272         if (this_load >= avg_load ||
3273                         100*max_load <= sd->imbalance_pct*this_load)
3274                 goto out_balanced;
3275
3276         busiest_load_per_task /= busiest_nr_running;
3277         if (group_imb)
3278                 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3279
3280         /*
3281          * We're trying to get all the cpus to the average_load, so we don't
3282          * want to push ourselves above the average load, nor do we wish to
3283          * reduce the max loaded cpu below the average load, as either of these
3284          * actions would just result in more rebalancing later, and ping-pong
3285          * tasks around. Thus we look for the minimum possible imbalance.
3286          * Negative imbalances (*we* are more loaded than anyone else) will
3287          * be counted as no imbalance for these purposes -- we can't fix that
3288          * by pulling tasks to us. Be careful of negative numbers as they'll
3289          * appear as very large values with unsigned longs.
3290          */
3291         if (max_load <= busiest_load_per_task)
3292                 goto out_balanced;
3293
3294         /*
3295          * In the presence of smp nice balancing, certain scenarios can have
3296          * max load less than avg load(as we skip the groups at or below
3297          * its cpu_power, while calculating max_load..)
3298          */
3299         if (max_load < avg_load) {
3300                 *imbalance = 0;
3301                 goto small_imbalance;
3302         }
3303
3304         /* Don't want to pull so many tasks that a group would go idle */
3305         max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3306
3307         /* How much load to actually move to equalise the imbalance */
3308         *imbalance = min(max_pull * busiest->__cpu_power,
3309                                 (avg_load - this_load) * this->__cpu_power)
3310                         / SCHED_LOAD_SCALE;
3311
3312         /*
3313          * if *imbalance is less than the average load per runnable task
3314          * there is no gaurantee that any tasks will be moved so we'll have
3315          * a think about bumping its value to force at least one task to be
3316          * moved
3317          */
3318         if (*imbalance < busiest_load_per_task) {
3319                 unsigned long tmp, pwr_now, pwr_move;
3320                 unsigned int imbn;
3321
3322 small_imbalance:
3323                 pwr_move = pwr_now = 0;
3324                 imbn = 2;
3325                 if (this_nr_running) {
3326                         this_load_per_task /= this_nr_running;
3327                         if (busiest_load_per_task > this_load_per_task)
3328                                 imbn = 1;
3329                 } else
3330                         this_load_per_task = cpu_avg_load_per_task(this_cpu);
3331
3332                 if (max_load - this_load + 2*busiest_load_per_task >=
3333                                         busiest_load_per_task * imbn) {
3334                         *imbalance = busiest_load_per_task;
3335                         return busiest;
3336                 }
3337
3338                 /*
3339                  * OK, we don't have enough imbalance to justify moving tasks,
3340                  * however we may be able to increase total CPU power used by
3341                  * moving them.
3342                  */
3343
3344                 pwr_now += busiest->__cpu_power *
3345                                 min(busiest_load_per_task, max_load);
3346                 pwr_now += this->__cpu_power *
3347                                 min(this_load_per_task, this_load);
3348                 pwr_now /= SCHED_LOAD_SCALE;
3349
3350                 /* Amount of load we'd subtract */
3351                 tmp = sg_div_cpu_power(busiest,
3352                                 busiest_load_per_task * SCHED_LOAD_SCALE);
3353                 if (max_load > tmp)
3354                         pwr_move += busiest->__cpu_power *
3355                                 min(busiest_load_per_task, max_load - tmp);
3356
3357                 /* Amount of load we'd add */
3358                 if (max_load * busiest->__cpu_power <
3359                                 busiest_load_per_task * SCHED_LOAD_SCALE)
3360                         tmp = sg_div_cpu_power(this,
3361                                         max_load * busiest->__cpu_power);
3362                 else
3363                         tmp = sg_div_cpu_power(this,
3364                                 busiest_load_per_task * SCHED_LOAD_SCALE);
3365                 pwr_move += this->__cpu_power *
3366                                 min(this_load_per_task, this_load + tmp);
3367                 pwr_move /= SCHED_LOAD_SCALE;
3368
3369                 /* Move if we gain throughput */
3370                 if (pwr_move > pwr_now)
3371                         *imbalance = busiest_load_per_task;
3372         }
3373
3374         return busiest;
3375
3376 out_balanced:
3377 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3378         if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3379                 goto ret;
3380
3381         if (this == group_leader && group_leader != group_min) {
3382                 *imbalance = min_load_per_task;
3383                 return group_min;
3384         }
3385 #endif
3386 ret:
3387         *imbalance = 0;
3388         return NULL;
3389 }
3390
3391 /*
3392  * find_busiest_queue - find the busiest runqueue among the cpus in group.
3393  */
3394 static struct rq *
3395 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3396                    unsigned long imbalance, const cpumask_t *cpus)
3397 {
3398         struct rq *busiest = NULL, *rq;
3399         unsigned long max_load = 0;
3400         int i;
3401
3402         for_each_cpu_mask_nr(i, group->cpumask) {
3403                 unsigned long wl;
3404
3405                 if (!cpu_isset(i, *cpus))
3406                         continue;
3407
3408                 rq = cpu_rq(i);
3409                 wl = weighted_cpuload(i);
3410
3411                 if (rq->nr_running == 1 && wl > imbalance)
3412                         continue;
3413
3414                 if (wl > max_load) {
3415                         max_load = wl;
3416                         busiest = rq;
3417                 }
3418         }
3419
3420         return busiest;
3421 }
3422
3423 /*
3424  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3425  * so long as it is large enough.
3426  */
3427 #define MAX_PINNED_INTERVAL     512
3428
3429 /*
3430  * Check this_cpu to ensure it is balanced within domain. Attempt to move
3431  * tasks if there is an imbalance.
3432  */
3433 static int load_balance(int this_cpu, struct rq *this_rq,
3434                         struct sched_domain *sd, enum cpu_idle_type idle,
3435                         int *balance, cpumask_t *cpus)
3436 {
3437         int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3438         struct sched_group *group;
3439         unsigned long imbalance;
3440         struct rq *busiest;
3441         unsigned long flags;
3442
3443         cpus_setall(*cpus);
3444
3445         /*
3446          * When power savings policy is enabled for the parent domain, idle
3447          * sibling can pick up load irrespective of busy siblings. In this case,
3448          * let the state of idle sibling percolate up as CPU_IDLE, instead of
3449          * portraying it as CPU_NOT_IDLE.
3450          */
3451         if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3452             !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3453                 sd_idle = 1;
3454
3455         schedstat_inc(sd, lb_count[idle]);
3456
3457 redo:
3458         update_shares(sd);
3459         group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3460                                    cpus, balance);
3461
3462         if (*balance == 0)
3463                 goto out_balanced;
3464
3465         if (!group) {
3466                 schedstat_inc(sd, lb_nobusyg[idle]);
3467                 goto out_balanced;
3468         }
3469
3470         busiest = find_busiest_queue(group, idle, imbalance, cpus);
3471         if (!busiest) {
3472                 schedstat_inc(sd, lb_nobusyq[idle]);
3473                 goto out_balanced;
3474         }
3475
3476         BUG_ON(busiest == this_rq);
3477
3478         schedstat_add(sd, lb_imbalance[idle], imbalance);
3479
3480         ld_moved = 0;
3481         if (busiest->nr_running > 1) {
3482                 /*
3483                  * Attempt to move tasks. If find_busiest_group has found
3484                  * an imbalance but busiest->nr_running <= 1, the group is
3485                  * still unbalanced. ld_moved simply stays zero, so it is
3486                  * correctly treated as an imbalance.
3487                  */
3488                 local_irq_save(flags);
3489                 double_rq_lock(this_rq, busiest);
3490                 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3491                                       imbalance, sd, idle, &all_pinned);
3492                 double_rq_unlock(this_rq, busiest);
3493                 local_irq_restore(flags);
3494
3495                 /*
3496                  * some other cpu did the load balance for us.
3497                  */
3498                 if (ld_moved && this_cpu != smp_processor_id())
3499                         resched_cpu(this_cpu);
3500
3501                 /* All tasks on this runqueue were pinned by CPU affinity */
3502                 if (unlikely(all_pinned)) {
3503                         cpu_clear(cpu_of(busiest), *cpus);
3504                         if (!cpus_empty(*cpus))
3505                                 goto redo;
3506                         goto out_balanced;
3507                 }
3508         }
3509
3510         if (!ld_moved) {
3511                 schedstat_inc(sd, lb_failed[idle]);
3512                 sd->nr_balance_failed++;
3513
3514                 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3515
3516                         spin_lock_irqsave(&busiest->lock, flags);
3517
3518                         /* don't kick the migration_thread, if the curr
3519                          * task on busiest cpu can't be moved to this_cpu
3520                          */
3521                         if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3522                                 spin_unlock_irqrestore(&busiest->lock, flags);
3523                                 all_pinned = 1;
3524                                 goto out_one_pinned;
3525                         }
3526
3527                         if (!busiest->active_balance) {
3528                                 busiest->active_balance = 1;
3529                                 busiest->push_cpu = this_cpu;
3530                                 active_balance = 1;
3531                         }
3532                         spin_unlock_irqrestore(&busiest->lock, flags);
3533                         if (active_balance)
3534                                 wake_up_process(busiest->migration_thread);
3535
3536                         /*
3537                          * We've kicked active balancing, reset the failure
3538                          * counter.
3539                          */
3540                         sd->nr_balance_failed = sd->cache_nice_tries+1;
3541                 }
3542         } else
3543                 sd->nr_balance_failed = 0;
3544
3545         if (likely(!active_balance)) {
3546                 /* We were unbalanced, so reset the balancing interval */
3547                 sd->balance_interval = sd->min_interval;
3548         } else {
3549                 /*
3550                  * If we've begun active balancing, start to back off. This
3551                  * case may not be covered by the all_pinned logic if there
3552                  * is only 1 task on the busy runqueue (because we don't call
3553                  * move_tasks).
3554                  */
3555                 if (sd->balance_interval < sd->max_interval)
3556                         sd->balance_interval *= 2;
3557         }
3558
3559         if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3560             !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3561                 ld_moved = -1;
3562
3563         goto out;
3564
3565 out_balanced:
3566         schedstat_inc(sd, lb_balanced[idle]);
3567
3568         sd->nr_balance_failed = 0;
3569
3570 out_one_pinned:
3571         /* tune up the balancing interval */
3572         if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3573                         (sd->balance_interval < sd->max_interval))
3574                 sd->balance_interval *= 2;
3575
3576         if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3577             !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3578                 ld_moved = -1;
3579         else
3580                 ld_moved = 0;
3581 out:
3582         if (ld_moved)
3583                 update_shares(sd);
3584         return ld_moved;
3585 }
3586
3587 /*
3588  * Check this_cpu to ensure it is balanced within domain. Attempt to move
3589  * tasks if there is an imbalance.
3590  *
3591  * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3592  * this_rq is locked.
3593  */
3594 static int
3595 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3596                         cpumask_t *cpus)
3597 {
3598         struct sched_group *group;
3599         struct rq *busiest = NULL;
3600         unsigned long imbalance;
3601         int ld_moved = 0;
3602         int sd_idle = 0;
3603         int all_pinned = 0;
3604
3605         cpus_setall(*cpus);
3606
3607         /*
3608          * When power savings policy is enabled for the parent domain, idle
3609          * sibling can pick up load irrespective of busy siblings. In this case,
3610          * let the state of idle sibling percolate up as IDLE, instead of
3611          * portraying it as CPU_NOT_IDLE.
3612          */
3613         if (sd->flags & SD_SHARE_CPUPOWER &&
3614             !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3615                 sd_idle = 1;
3616
3617         schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3618 redo:
3619         update_shares_locked(this_rq, sd);
3620         group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3621                                    &sd_idle, cpus, NULL);
3622         if (!group) {
3623                 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3624                 goto out_balanced;
3625         }
3626
3627         busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3628         if (!busiest) {
3629                 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3630           &