4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/bootmem.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
76 #include <asm/irq_regs.h>
78 #include "sched_cpupri.h"
81 * Convert user-nice values [ -20 ... 0 ... 19 ]
82 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
86 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
87 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90 * 'User priority' is the nice value converted to something we
91 * can work with better when scaling various scheduler parameters,
92 * it's a [ 0 ... 39 ] range.
94 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
95 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
96 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99 * Helpers for converting nanosecond timing to jiffy resolution
101 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
103 #define NICE_0_LOAD SCHED_LOAD_SCALE
104 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
107 * These are the 'tuning knobs' of the scheduler:
109 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
110 * Timeslices get refilled after they expire.
112 #define DEF_TIMESLICE (100 * HZ / 1000)
115 * single value that denotes runtime == period, ie unlimited time.
117 #define RUNTIME_INF ((u64)~0ULL)
121 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
122 * Since cpu_power is a 'constant', we can use a reciprocal divide.
124 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
126 return reciprocal_divide(load, sg->reciprocal_cpu_power);
130 * Each time a sched group cpu_power is changed,
131 * we must compute its reciprocal value
133 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
135 sg->__cpu_power += val;
136 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
140 static inline int rt_policy(int policy)
142 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
147 static inline int task_has_rt_policy(struct task_struct *p)
149 return rt_policy(p->policy);
153 * This is the priority-queue data structure of the RT scheduling class:
155 struct rt_prio_array {
156 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
157 struct list_head queue[MAX_RT_PRIO];
160 struct rt_bandwidth {
161 /* nests inside the rq lock: */
162 spinlock_t rt_runtime_lock;
165 struct hrtimer rt_period_timer;
168 static struct rt_bandwidth def_rt_bandwidth;
170 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
172 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
174 struct rt_bandwidth *rt_b =
175 container_of(timer, struct rt_bandwidth, rt_period_timer);
181 now = hrtimer_cb_get_time(timer);
182 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
187 idle = do_sched_rt_period_timer(rt_b, overrun);
190 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
194 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
196 rt_b->rt_period = ns_to_ktime(period);
197 rt_b->rt_runtime = runtime;
199 spin_lock_init(&rt_b->rt_runtime_lock);
201 hrtimer_init(&rt_b->rt_period_timer,
202 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
203 rt_b->rt_period_timer.function = sched_rt_period_timer;
204 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
207 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
211 if (rt_b->rt_runtime == RUNTIME_INF)
214 if (hrtimer_active(&rt_b->rt_period_timer))
217 spin_lock(&rt_b->rt_runtime_lock);
219 if (hrtimer_active(&rt_b->rt_period_timer))
222 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
223 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
224 hrtimer_start(&rt_b->rt_period_timer,
225 rt_b->rt_period_timer.expires,
228 spin_unlock(&rt_b->rt_runtime_lock);
231 #ifdef CONFIG_RT_GROUP_SCHED
232 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
234 hrtimer_cancel(&rt_b->rt_period_timer);
239 * sched_domains_mutex serializes calls to arch_init_sched_domains,
240 * detach_destroy_domains and partition_sched_domains.
242 static DEFINE_MUTEX(sched_domains_mutex);
244 #ifdef CONFIG_GROUP_SCHED
246 #include <linux/cgroup.h>
250 static LIST_HEAD(task_groups);
252 /* task group related information */
254 #ifdef CONFIG_CGROUP_SCHED
255 struct cgroup_subsys_state css;
258 #ifdef CONFIG_FAIR_GROUP_SCHED
259 /* schedulable entities of this group on each cpu */
260 struct sched_entity **se;
261 /* runqueue "owned" by this group on each cpu */
262 struct cfs_rq **cfs_rq;
263 unsigned long shares;
266 #ifdef CONFIG_RT_GROUP_SCHED
267 struct sched_rt_entity **rt_se;
268 struct rt_rq **rt_rq;
270 struct rt_bandwidth rt_bandwidth;
274 struct list_head list;
276 struct task_group *parent;
277 struct list_head siblings;
278 struct list_head children;
281 #ifdef CONFIG_USER_SCHED
285 * Every UID task group (including init_task_group aka UID-0) will
286 * be a child to this group.
288 struct task_group root_task_group;
290 #ifdef CONFIG_FAIR_GROUP_SCHED
291 /* Default task group's sched entity on each cpu */
292 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
293 /* Default task group's cfs_rq on each cpu */
294 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
295 #endif /* CONFIG_FAIR_GROUP_SCHED */
297 #ifdef CONFIG_RT_GROUP_SCHED
298 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
299 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
300 #endif /* CONFIG_RT_GROUP_SCHED */
301 #else /* !CONFIG_FAIR_GROUP_SCHED */
302 #define root_task_group init_task_group
303 #endif /* CONFIG_FAIR_GROUP_SCHED */
305 /* task_group_lock serializes add/remove of task groups and also changes to
306 * a task group's cpu shares.
308 static DEFINE_SPINLOCK(task_group_lock);
310 #ifdef CONFIG_FAIR_GROUP_SCHED
311 #ifdef CONFIG_USER_SCHED
312 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
313 #else /* !CONFIG_USER_SCHED */
314 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
315 #endif /* CONFIG_USER_SCHED */
318 * A weight of 0 or 1 can cause arithmetics problems.
319 * A weight of a cfs_rq is the sum of weights of which entities
320 * are queued on this cfs_rq, so a weight of a entity should not be
321 * too large, so as the shares value of a task group.
322 * (The default weight is 1024 - so there's no practical
323 * limitation from this.)
326 #define MAX_SHARES (1UL << 18)
328 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
331 /* Default task group.
332 * Every task in system belong to this group at bootup.
334 struct task_group init_task_group;
336 /* return group to which a task belongs */
337 static inline struct task_group *task_group(struct task_struct *p)
339 struct task_group *tg;
341 #ifdef CONFIG_USER_SCHED
343 #elif defined(CONFIG_CGROUP_SCHED)
344 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
345 struct task_group, css);
347 tg = &init_task_group;
352 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
353 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
355 #ifdef CONFIG_FAIR_GROUP_SCHED
356 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
357 p->se.parent = task_group(p)->se[cpu];
360 #ifdef CONFIG_RT_GROUP_SCHED
361 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
362 p->rt.parent = task_group(p)->rt_se[cpu];
368 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
369 static inline struct task_group *task_group(struct task_struct *p)
374 #endif /* CONFIG_GROUP_SCHED */
376 /* CFS-related fields in a runqueue */
378 struct load_weight load;
379 unsigned long nr_running;
385 struct rb_root tasks_timeline;
386 struct rb_node *rb_leftmost;
388 struct list_head tasks;
389 struct list_head *balance_iterator;
392 * 'curr' points to currently running entity on this cfs_rq.
393 * It is set to NULL otherwise (i.e when none are currently running).
395 struct sched_entity *curr, *next;
397 unsigned long nr_spread_over;
399 #ifdef CONFIG_FAIR_GROUP_SCHED
400 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
403 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
404 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
405 * (like users, containers etc.)
407 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
408 * list is used during load balance.
410 struct list_head leaf_cfs_rq_list;
411 struct task_group *tg; /* group that "owns" this runqueue */
415 * the part of load.weight contributed by tasks
417 unsigned long task_weight;
420 * h_load = weight * f(tg)
422 * Where f(tg) is the recursive weight fraction assigned to
425 unsigned long h_load;
428 * this cpu's part of tg->shares
430 unsigned long shares;
433 * load.weight at the time we set shares
435 unsigned long rq_weight;
440 /* Real-Time classes' related field in a runqueue: */
442 struct rt_prio_array active;
443 unsigned long rt_nr_running;
444 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
445 int highest_prio; /* highest queued rt task prio */
448 unsigned long rt_nr_migratory;
454 /* Nests inside the rq lock: */
455 spinlock_t rt_runtime_lock;
457 #ifdef CONFIG_RT_GROUP_SCHED
458 unsigned long rt_nr_boosted;
461 struct list_head leaf_rt_rq_list;
462 struct task_group *tg;
463 struct sched_rt_entity *rt_se;
470 * We add the notion of a root-domain which will be used to define per-domain
471 * variables. Each exclusive cpuset essentially defines an island domain by
472 * fully partitioning the member cpus from any other cpuset. Whenever a new
473 * exclusive cpuset is created, we also create and attach a new root-domain
483 * The "RT overload" flag: it gets set if a CPU has more than
484 * one runnable RT task.
489 struct cpupri cpupri;
494 * By default the system creates a single root-domain with all cpus as
495 * members (mimicking the global state we have today).
497 static struct root_domain def_root_domain;
502 * This is the main, per-CPU runqueue data structure.
504 * Locking rule: those places that want to lock multiple runqueues
505 * (such as the load balancing or the thread migration code), lock
506 * acquire operations must be ordered by ascending &runqueue.
513 * nr_running and cpu_load should be in the same cacheline because
514 * remote CPUs use both these fields when doing load calculation.
516 unsigned long nr_running;
517 #define CPU_LOAD_IDX_MAX 5
518 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
519 unsigned char idle_at_tick;
521 unsigned long last_tick_seen;
522 unsigned char in_nohz_recently;
524 /* capture load from *all* tasks on this cpu: */
525 struct load_weight load;
526 unsigned long nr_load_updates;
532 #ifdef CONFIG_FAIR_GROUP_SCHED
533 /* list of leaf cfs_rq on this cpu: */
534 struct list_head leaf_cfs_rq_list;
536 #ifdef CONFIG_RT_GROUP_SCHED
537 struct list_head leaf_rt_rq_list;
541 * This is part of a global counter where only the total sum
542 * over all CPUs matters. A task can increase this counter on
543 * one CPU and if it got migrated afterwards it may decrease
544 * it on another CPU. Always updated under the runqueue lock:
546 unsigned long nr_uninterruptible;
548 struct task_struct *curr, *idle;
549 unsigned long next_balance;
550 struct mm_struct *prev_mm;
557 struct root_domain *rd;
558 struct sched_domain *sd;
560 /* For active balancing */
563 /* cpu of this runqueue: */
567 unsigned long avg_load_per_task;
569 struct task_struct *migration_thread;
570 struct list_head migration_queue;
573 #ifdef CONFIG_SCHED_HRTICK
575 int hrtick_csd_pending;
576 struct call_single_data hrtick_csd;
578 struct hrtimer hrtick_timer;
581 #ifdef CONFIG_SCHEDSTATS
583 struct sched_info rq_sched_info;
585 /* sys_sched_yield() stats */
586 unsigned int yld_exp_empty;
587 unsigned int yld_act_empty;
588 unsigned int yld_both_empty;
589 unsigned int yld_count;
591 /* schedule() stats */
592 unsigned int sched_switch;
593 unsigned int sched_count;
594 unsigned int sched_goidle;
596 /* try_to_wake_up() stats */
597 unsigned int ttwu_count;
598 unsigned int ttwu_local;
601 unsigned int bkl_count;
605 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
607 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
609 rq->curr->sched_class->check_preempt_curr(rq, p);
612 static inline int cpu_of(struct rq *rq)
622 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
623 * See detach_destroy_domains: synchronize_sched for details.
625 * The domain tree of any CPU may only be accessed from within
626 * preempt-disabled sections.
628 #define for_each_domain(cpu, __sd) \
629 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
631 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
632 #define this_rq() (&__get_cpu_var(runqueues))
633 #define task_rq(p) cpu_rq(task_cpu(p))
634 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
636 static inline void update_rq_clock(struct rq *rq)
638 rq->clock = sched_clock_cpu(cpu_of(rq));
642 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
644 #ifdef CONFIG_SCHED_DEBUG
645 # define const_debug __read_mostly
647 # define const_debug static const
653 * Returns true if the current cpu runqueue is locked.
654 * This interface allows printk to be called with the runqueue lock
655 * held and know whether or not it is OK to wake up the klogd.
657 int runqueue_is_locked(void)
660 struct rq *rq = cpu_rq(cpu);
663 ret = spin_is_locked(&rq->lock);
669 * Debugging: various feature bits
672 #define SCHED_FEAT(name, enabled) \
673 __SCHED_FEAT_##name ,
676 #include "sched_features.h"
681 #define SCHED_FEAT(name, enabled) \
682 (1UL << __SCHED_FEAT_##name) * enabled |
684 const_debug unsigned int sysctl_sched_features =
685 #include "sched_features.h"
690 #ifdef CONFIG_SCHED_DEBUG
691 #define SCHED_FEAT(name, enabled) \
694 static __read_mostly char *sched_feat_names[] = {
695 #include "sched_features.h"
701 static int sched_feat_open(struct inode *inode, struct file *filp)
703 filp->private_data = inode->i_private;
708 sched_feat_read(struct file *filp, char __user *ubuf,
709 size_t cnt, loff_t *ppos)
716 for (i = 0; sched_feat_names[i]; i++) {
717 len += strlen(sched_feat_names[i]);
721 buf = kmalloc(len + 2, GFP_KERNEL);
725 for (i = 0; sched_feat_names[i]; i++) {
726 if (sysctl_sched_features & (1UL << i))
727 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
729 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
732 r += sprintf(buf + r, "\n");
733 WARN_ON(r >= len + 2);
735 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
743 sched_feat_write(struct file *filp, const char __user *ubuf,
744 size_t cnt, loff_t *ppos)
754 if (copy_from_user(&buf, ubuf, cnt))
759 if (strncmp(buf, "NO_", 3) == 0) {
764 for (i = 0; sched_feat_names[i]; i++) {
765 int len = strlen(sched_feat_names[i]);
767 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
769 sysctl_sched_features &= ~(1UL << i);
771 sysctl_sched_features |= (1UL << i);
776 if (!sched_feat_names[i])
784 static struct file_operations sched_feat_fops = {
785 .open = sched_feat_open,
786 .read = sched_feat_read,
787 .write = sched_feat_write,
790 static __init int sched_init_debug(void)
792 debugfs_create_file("sched_features", 0644, NULL, NULL,
797 late_initcall(sched_init_debug);
801 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
804 * Number of tasks to iterate in a single balance run.
805 * Limited because this is done with IRQs disabled.
807 const_debug unsigned int sysctl_sched_nr_migrate = 32;
810 * ratelimit for updating the group shares.
813 unsigned int sysctl_sched_shares_ratelimit = 250000;
816 * period over which we measure -rt task cpu usage in us.
819 unsigned int sysctl_sched_rt_period = 1000000;
821 static __read_mostly int scheduler_running;
824 * part of the period that we allow rt tasks to run in us.
827 int sysctl_sched_rt_runtime = 950000;
829 static inline u64 global_rt_period(void)
831 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
834 static inline u64 global_rt_runtime(void)
836 if (sysctl_sched_rt_runtime < 0)
839 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
842 #ifndef prepare_arch_switch
843 # define prepare_arch_switch(next) do { } while (0)
845 #ifndef finish_arch_switch
846 # define finish_arch_switch(prev) do { } while (0)
849 static inline int task_current(struct rq *rq, struct task_struct *p)
851 return rq->curr == p;
854 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
855 static inline int task_running(struct rq *rq, struct task_struct *p)
857 return task_current(rq, p);
860 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
864 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
866 #ifdef CONFIG_DEBUG_SPINLOCK
867 /* this is a valid case when another task releases the spinlock */
868 rq->lock.owner = current;
871 * If we are tracking spinlock dependencies then we have to
872 * fix up the runqueue lock - which gets 'carried over' from
875 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
877 spin_unlock_irq(&rq->lock);
880 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
881 static inline int task_running(struct rq *rq, struct task_struct *p)
886 return task_current(rq, p);
890 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
894 * We can optimise this out completely for !SMP, because the
895 * SMP rebalancing from interrupt is the only thing that cares
900 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
901 spin_unlock_irq(&rq->lock);
903 spin_unlock(&rq->lock);
907 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
911 * After ->oncpu is cleared, the task can be moved to a different CPU.
912 * We must ensure this doesn't happen until the switch is completely
918 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
922 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
925 * __task_rq_lock - lock the runqueue a given task resides on.
926 * Must be called interrupts disabled.
928 static inline struct rq *__task_rq_lock(struct task_struct *p)
932 struct rq *rq = task_rq(p);
933 spin_lock(&rq->lock);
934 if (likely(rq == task_rq(p)))
936 spin_unlock(&rq->lock);
941 * task_rq_lock - lock the runqueue a given task resides on and disable
942 * interrupts. Note the ordering: we can safely lookup the task_rq without
943 * explicitly disabling preemption.
945 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
951 local_irq_save(*flags);
953 spin_lock(&rq->lock);
954 if (likely(rq == task_rq(p)))
956 spin_unlock_irqrestore(&rq->lock, *flags);
960 static void __task_rq_unlock(struct rq *rq)
963 spin_unlock(&rq->lock);
966 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
969 spin_unlock_irqrestore(&rq->lock, *flags);
973 * this_rq_lock - lock this runqueue and disable interrupts.
975 static struct rq *this_rq_lock(void)
982 spin_lock(&rq->lock);
987 #ifdef CONFIG_SCHED_HRTICK
989 * Use HR-timers to deliver accurate preemption points.
991 * Its all a bit involved since we cannot program an hrt while holding the
992 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
995 * When we get rescheduled we reprogram the hrtick_timer outside of the
1001 * - enabled by features
1002 * - hrtimer is actually high res
1004 static inline int hrtick_enabled(struct rq *rq)
1006 if (!sched_feat(HRTICK))
1008 if (!cpu_active(cpu_of(rq)))
1010 return hrtimer_is_hres_active(&rq->hrtick_timer);
1013 static void hrtick_clear(struct rq *rq)
1015 if (hrtimer_active(&rq->hrtick_timer))
1016 hrtimer_cancel(&rq->hrtick_timer);
1020 * High-resolution timer tick.
1021 * Runs from hardirq context with interrupts disabled.
1023 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1025 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1027 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1029 spin_lock(&rq->lock);
1030 update_rq_clock(rq);
1031 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1032 spin_unlock(&rq->lock);
1034 return HRTIMER_NORESTART;
1039 * called from hardirq (IPI) context
1041 static void __hrtick_start(void *arg)
1043 struct rq *rq = arg;
1045 spin_lock(&rq->lock);
1046 hrtimer_restart(&rq->hrtick_timer);
1047 rq->hrtick_csd_pending = 0;
1048 spin_unlock(&rq->lock);
1052 * Called to set the hrtick timer state.
1054 * called with rq->lock held and irqs disabled
1056 static void hrtick_start(struct rq *rq, u64 delay)
1058 struct hrtimer *timer = &rq->hrtick_timer;
1059 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1061 timer->expires = time;
1063 if (rq == this_rq()) {
1064 hrtimer_restart(timer);
1065 } else if (!rq->hrtick_csd_pending) {
1066 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1067 rq->hrtick_csd_pending = 1;
1072 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1074 int cpu = (int)(long)hcpu;
1077 case CPU_UP_CANCELED:
1078 case CPU_UP_CANCELED_FROZEN:
1079 case CPU_DOWN_PREPARE:
1080 case CPU_DOWN_PREPARE_FROZEN:
1082 case CPU_DEAD_FROZEN:
1083 hrtick_clear(cpu_rq(cpu));
1090 static void init_hrtick(void)
1092 hotcpu_notifier(hotplug_hrtick, 0);
1096 * Called to set the hrtick timer state.
1098 * called with rq->lock held and irqs disabled
1100 static void hrtick_start(struct rq *rq, u64 delay)
1102 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1105 static void init_hrtick(void)
1108 #endif /* CONFIG_SMP */
1110 static void init_rq_hrtick(struct rq *rq)
1113 rq->hrtick_csd_pending = 0;
1115 rq->hrtick_csd.flags = 0;
1116 rq->hrtick_csd.func = __hrtick_start;
1117 rq->hrtick_csd.info = rq;
1120 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1121 rq->hrtick_timer.function = hrtick;
1122 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1125 static inline void hrtick_clear(struct rq *rq)
1129 static inline void init_rq_hrtick(struct rq *rq)
1133 static inline void init_hrtick(void)
1139 * resched_task - mark a task 'to be rescheduled now'.
1141 * On UP this means the setting of the need_resched flag, on SMP it
1142 * might also involve a cross-CPU call to trigger the scheduler on
1147 #ifndef tsk_is_polling
1148 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1151 static void resched_task(struct task_struct *p)
1155 assert_spin_locked(&task_rq(p)->lock);
1157 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1160 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1163 if (cpu == smp_processor_id())
1166 /* NEED_RESCHED must be visible before we test polling */
1168 if (!tsk_is_polling(p))
1169 smp_send_reschedule(cpu);
1172 static void resched_cpu(int cpu)
1174 struct rq *rq = cpu_rq(cpu);
1175 unsigned long flags;
1177 if (!spin_trylock_irqsave(&rq->lock, flags))
1179 resched_task(cpu_curr(cpu));
1180 spin_unlock_irqrestore(&rq->lock, flags);
1185 * When add_timer_on() enqueues a timer into the timer wheel of an
1186 * idle CPU then this timer might expire before the next timer event
1187 * which is scheduled to wake up that CPU. In case of a completely
1188 * idle system the next event might even be infinite time into the
1189 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1190 * leaves the inner idle loop so the newly added timer is taken into
1191 * account when the CPU goes back to idle and evaluates the timer
1192 * wheel for the next timer event.
1194 void wake_up_idle_cpu(int cpu)
1196 struct rq *rq = cpu_rq(cpu);
1198 if (cpu == smp_processor_id())
1202 * This is safe, as this function is called with the timer
1203 * wheel base lock of (cpu) held. When the CPU is on the way
1204 * to idle and has not yet set rq->curr to idle then it will
1205 * be serialized on the timer wheel base lock and take the new
1206 * timer into account automatically.
1208 if (rq->curr != rq->idle)
1212 * We can set TIF_RESCHED on the idle task of the other CPU
1213 * lockless. The worst case is that the other CPU runs the
1214 * idle task through an additional NOOP schedule()
1216 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1218 /* NEED_RESCHED must be visible before we test polling */
1220 if (!tsk_is_polling(rq->idle))
1221 smp_send_reschedule(cpu);
1223 #endif /* CONFIG_NO_HZ */
1225 #else /* !CONFIG_SMP */
1226 static void resched_task(struct task_struct *p)
1228 assert_spin_locked(&task_rq(p)->lock);
1229 set_tsk_need_resched(p);
1231 #endif /* CONFIG_SMP */
1233 #if BITS_PER_LONG == 32
1234 # define WMULT_CONST (~0UL)
1236 # define WMULT_CONST (1UL << 32)
1239 #define WMULT_SHIFT 32
1242 * Shift right and round:
1244 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1247 * delta *= weight / lw
1249 static unsigned long
1250 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1251 struct load_weight *lw)
1255 if (!lw->inv_weight) {
1256 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1259 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1263 tmp = (u64)delta_exec * weight;
1265 * Check whether we'd overflow the 64-bit multiplication:
1267 if (unlikely(tmp > WMULT_CONST))
1268 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1271 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1273 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1276 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1282 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1289 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1290 * of tasks with abnormal "nice" values across CPUs the contribution that
1291 * each task makes to its run queue's load is weighted according to its
1292 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1293 * scaled version of the new time slice allocation that they receive on time
1297 #define WEIGHT_IDLEPRIO 2
1298 #define WMULT_IDLEPRIO (1 << 31)
1301 * Nice levels are multiplicative, with a gentle 10% change for every
1302 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1303 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1304 * that remained on nice 0.
1306 * The "10% effect" is relative and cumulative: from _any_ nice level,
1307 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1308 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1309 * If a task goes up by ~10% and another task goes down by ~10% then
1310 * the relative distance between them is ~25%.)
1312 static const int prio_to_weight[40] = {
1313 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1314 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1315 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1316 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1317 /* 0 */ 1024, 820, 655, 526, 423,
1318 /* 5 */ 335, 272, 215, 172, 137,
1319 /* 10 */ 110, 87, 70, 56, 45,
1320 /* 15 */ 36, 29, 23, 18, 15,
1324 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1326 * In cases where the weight does not change often, we can use the
1327 * precalculated inverse to speed up arithmetics by turning divisions
1328 * into multiplications:
1330 static const u32 prio_to_wmult[40] = {
1331 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1332 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1333 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1334 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1335 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1336 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1337 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1338 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1341 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1344 * runqueue iterator, to support SMP load-balancing between different
1345 * scheduling classes, without having to expose their internal data
1346 * structures to the load-balancing proper:
1348 struct rq_iterator {
1350 struct task_struct *(*start)(void *);
1351 struct task_struct *(*next)(void *);
1355 static unsigned long
1356 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1357 unsigned long max_load_move, struct sched_domain *sd,
1358 enum cpu_idle_type idle, int *all_pinned,
1359 int *this_best_prio, struct rq_iterator *iterator);
1362 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1363 struct sched_domain *sd, enum cpu_idle_type idle,
1364 struct rq_iterator *iterator);
1367 #ifdef CONFIG_CGROUP_CPUACCT
1368 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1370 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1373 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1375 update_load_add(&rq->load, load);
1378 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1380 update_load_sub(&rq->load, load);
1384 static unsigned long source_load(int cpu, int type);
1385 static unsigned long target_load(int cpu, int type);
1386 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1388 static unsigned long cpu_avg_load_per_task(int cpu)
1390 struct rq *rq = cpu_rq(cpu);
1393 rq->avg_load_per_task = rq->load.weight / rq->nr_running;
1395 return rq->avg_load_per_task;
1398 #ifdef CONFIG_FAIR_GROUP_SCHED
1400 typedef void (*tg_visitor)(struct task_group *, int, struct sched_domain *);
1403 * Iterate the full tree, calling @down when first entering a node and @up when
1404 * leaving it for the final time.
1407 walk_tg_tree(tg_visitor down, tg_visitor up, int cpu, struct sched_domain *sd)
1409 struct task_group *parent, *child;
1412 parent = &root_task_group;
1414 (*down)(parent, cpu, sd);
1415 list_for_each_entry_rcu(child, &parent->children, siblings) {
1422 (*up)(parent, cpu, sd);
1425 parent = parent->parent;
1431 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1434 * Calculate and set the cpu's group shares.
1437 __update_group_shares_cpu(struct task_group *tg, int cpu,
1438 unsigned long sd_shares, unsigned long sd_rq_weight)
1441 unsigned long shares;
1442 unsigned long rq_weight;
1447 rq_weight = tg->cfs_rq[cpu]->load.weight;
1450 * If there are currently no tasks on the cpu pretend there is one of
1451 * average load so that when a new task gets to run here it will not
1452 * get delayed by group starvation.
1456 rq_weight = NICE_0_LOAD;
1459 if (unlikely(rq_weight > sd_rq_weight))
1460 rq_weight = sd_rq_weight;
1463 * \Sum shares * rq_weight
1464 * shares = -----------------------
1468 shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
1471 * record the actual number of shares, not the boosted amount.
1473 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1474 tg->cfs_rq[cpu]->rq_weight = rq_weight;
1476 if (shares < MIN_SHARES)
1477 shares = MIN_SHARES;
1478 else if (shares > MAX_SHARES)
1479 shares = MAX_SHARES;
1481 __set_se_shares(tg->se[cpu], shares);
1485 * Re-compute the task group their per cpu shares over the given domain.
1486 * This needs to be done in a bottom-up fashion because the rq weight of a
1487 * parent group depends on the shares of its child groups.
1490 tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd)
1492 unsigned long rq_weight = 0;
1493 unsigned long shares = 0;
1496 for_each_cpu_mask(i, sd->span) {
1497 rq_weight += tg->cfs_rq[i]->load.weight;
1498 shares += tg->cfs_rq[i]->shares;
1501 if ((!shares && rq_weight) || shares > tg->shares)
1502 shares = tg->shares;
1504 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1505 shares = tg->shares;
1508 rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
1510 for_each_cpu_mask(i, sd->span) {
1511 struct rq *rq = cpu_rq(i);
1512 unsigned long flags;
1514 spin_lock_irqsave(&rq->lock, flags);
1515 __update_group_shares_cpu(tg, i, shares, rq_weight);
1516 spin_unlock_irqrestore(&rq->lock, flags);
1521 * Compute the cpu's hierarchical load factor for each task group.
1522 * This needs to be done in a top-down fashion because the load of a child
1523 * group is a fraction of its parents load.
1526 tg_load_down(struct task_group *tg, int cpu, struct sched_domain *sd)
1531 load = cpu_rq(cpu)->load.weight;
1533 load = tg->parent->cfs_rq[cpu]->h_load;
1534 load *= tg->cfs_rq[cpu]->shares;
1535 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1538 tg->cfs_rq[cpu]->h_load = load;
1542 tg_nop(struct task_group *tg, int cpu, struct sched_domain *sd)
1546 static void update_shares(struct sched_domain *sd)
1548 u64 now = cpu_clock(raw_smp_processor_id());
1549 s64 elapsed = now - sd->last_update;
1551 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1552 sd->last_update = now;
1553 walk_tg_tree(tg_nop, tg_shares_up, 0, sd);
1557 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1559 spin_unlock(&rq->lock);
1561 spin_lock(&rq->lock);
1564 static void update_h_load(int cpu)
1566 walk_tg_tree(tg_load_down, tg_nop, cpu, NULL);
1571 static inline void update_shares(struct sched_domain *sd)
1575 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1583 #ifdef CONFIG_FAIR_GROUP_SCHED
1584 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1587 cfs_rq->shares = shares;
1592 #include "sched_stats.h"
1593 #include "sched_idletask.c"
1594 #include "sched_fair.c"
1595 #include "sched_rt.c"
1596 #ifdef CONFIG_SCHED_DEBUG
1597 # include "sched_debug.c"
1600 #define sched_class_highest (&rt_sched_class)
1601 #define for_each_class(class) \
1602 for (class = sched_class_highest; class; class = class->next)
1604 static void inc_nr_running(struct rq *rq)
1609 static void dec_nr_running(struct rq *rq)
1614 static void set_load_weight(struct task_struct *p)
1616 if (task_has_rt_policy(p)) {
1617 p->se.load.weight = prio_to_weight[0] * 2;
1618 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1623 * SCHED_IDLE tasks get minimal weight:
1625 if (p->policy == SCHED_IDLE) {
1626 p->se.load.weight = WEIGHT_IDLEPRIO;
1627 p->se.load.inv_weight = WMULT_IDLEPRIO;
1631 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1632 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1635 static void update_avg(u64 *avg, u64 sample)
1637 s64 diff = sample - *avg;
1641 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1643 sched_info_queued(p);
1644 p->sched_class->enqueue_task(rq, p, wakeup);
1648 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1650 if (sleep && p->se.last_wakeup) {
1651 update_avg(&p->se.avg_overlap,
1652 p->se.sum_exec_runtime - p->se.last_wakeup);
1653 p->se.last_wakeup = 0;
1656 sched_info_dequeued(p);
1657 p->sched_class->dequeue_task(rq, p, sleep);
1662 * __normal_prio - return the priority that is based on the static prio
1664 static inline int __normal_prio(struct task_struct *p)
1666 return p->static_prio;
1670 * Calculate the expected normal priority: i.e. priority
1671 * without taking RT-inheritance into account. Might be
1672 * boosted by interactivity modifiers. Changes upon fork,
1673 * setprio syscalls, and whenever the interactivity
1674 * estimator recalculates.
1676 static inline int normal_prio(struct task_struct *p)
1680 if (task_has_rt_policy(p))
1681 prio = MAX_RT_PRIO-1 - p->rt_priority;
1683 prio = __normal_prio(p);
1688 * Calculate the current priority, i.e. the priority
1689 * taken into account by the scheduler. This value might
1690 * be boosted by RT tasks, or might be boosted by
1691 * interactivity modifiers. Will be RT if the task got
1692 * RT-boosted. If not then it returns p->normal_prio.
1694 static int effective_prio(struct task_struct *p)
1696 p->normal_prio = normal_prio(p);
1698 * If we are RT tasks or we were boosted to RT priority,
1699 * keep the priority unchanged. Otherwise, update priority
1700 * to the normal priority:
1702 if (!rt_prio(p->prio))
1703 return p->normal_prio;
1708 * activate_task - move a task to the runqueue.
1710 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1712 if (task_contributes_to_load(p))
1713 rq->nr_uninterruptible--;
1715 enqueue_task(rq, p, wakeup);
1720 * deactivate_task - remove a task from the runqueue.
1722 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1724 if (task_contributes_to_load(p))
1725 rq->nr_uninterruptible++;
1727 dequeue_task(rq, p, sleep);
1732 * task_curr - is this task currently executing on a CPU?
1733 * @p: the task in question.
1735 inline int task_curr(const struct task_struct *p)
1737 return cpu_curr(task_cpu(p)) == p;
1740 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1742 set_task_rq(p, cpu);
1745 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1746 * successfuly executed on another CPU. We must ensure that updates of
1747 * per-task data have been completed by this moment.
1750 task_thread_info(p)->cpu = cpu;
1754 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1755 const struct sched_class *prev_class,
1756 int oldprio, int running)
1758 if (prev_class != p->sched_class) {
1759 if (prev_class->switched_from)
1760 prev_class->switched_from(rq, p, running);
1761 p->sched_class->switched_to(rq, p, running);
1763 p->sched_class->prio_changed(rq, p, oldprio, running);
1768 /* Used instead of source_load when we know the type == 0 */
1769 static unsigned long weighted_cpuload(const int cpu)
1771 return cpu_rq(cpu)->load.weight;
1775 * Is this task likely cache-hot:
1778 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1783 * Buddy candidates are cache hot:
1785 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
1788 if (p->sched_class != &fair_sched_class)
1791 if (sysctl_sched_migration_cost == -1)
1793 if (sysctl_sched_migration_cost == 0)
1796 delta = now - p->se.exec_start;
1798 return delta < (s64)sysctl_sched_migration_cost;
1802 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1804 int old_cpu = task_cpu(p);
1805 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1806 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1807 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1810 clock_offset = old_rq->clock - new_rq->clock;
1812 #ifdef CONFIG_SCHEDSTATS
1813 if (p->se.wait_start)
1814 p->se.wait_start -= clock_offset;
1815 if (p->se.sleep_start)
1816 p->se.sleep_start -= clock_offset;
1817 if (p->se.block_start)
1818 p->se.block_start -= clock_offset;
1819 if (old_cpu != new_cpu) {
1820 schedstat_inc(p, se.nr_migrations);
1821 if (task_hot(p, old_rq->clock, NULL))
1822 schedstat_inc(p, se.nr_forced2_migrations);
1825 p->se.vruntime -= old_cfsrq->min_vruntime -
1826 new_cfsrq->min_vruntime;
1828 __set_task_cpu(p, new_cpu);
1831 struct migration_req {
1832 struct list_head list;
1834 struct task_struct *task;
1837 struct completion done;
1841 * The task's runqueue lock must be held.
1842 * Returns true if you have to wait for migration thread.
1845 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1847 struct rq *rq = task_rq(p);
1850 * If the task is not on a runqueue (and not running), then
1851 * it is sufficient to simply update the task's cpu field.
1853 if (!p->se.on_rq && !task_running(rq, p)) {
1854 set_task_cpu(p, dest_cpu);
1858 init_completion(&req->done);
1860 req->dest_cpu = dest_cpu;
1861 list_add(&req->list, &rq->migration_queue);
1867 * wait_task_inactive - wait for a thread to unschedule.
1869 * If @match_state is nonzero, it's the @p->state value just checked and
1870 * not expected to change. If it changes, i.e. @p might have woken up,
1871 * then return zero. When we succeed in waiting for @p to be off its CPU,
1872 * we return a positive number (its total switch count). If a second call
1873 * a short while later returns the same number, the caller can be sure that
1874 * @p has remained unscheduled the whole time.
1876 * The caller must ensure that the task *will* unschedule sometime soon,
1877 * else this function might spin for a *long* time. This function can't
1878 * be called with interrupts off, or it may introduce deadlock with
1879 * smp_call_function() if an IPI is sent by the same process we are
1880 * waiting to become inactive.
1882 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1884 unsigned long flags;
1891 * We do the initial early heuristics without holding
1892 * any task-queue locks at all. We'll only try to get
1893 * the runqueue lock when things look like they will
1899 * If the task is actively running on another CPU
1900 * still, just relax and busy-wait without holding
1903 * NOTE! Since we don't hold any locks, it's not
1904 * even sure that "rq" stays as the right runqueue!
1905 * But we don't care, since "task_running()" will
1906 * return false if the runqueue has changed and p
1907 * is actually now running somewhere else!
1909 while (task_running(rq, p)) {
1910 if (match_state && unlikely(p->state != match_state))
1916 * Ok, time to look more closely! We need the rq
1917 * lock now, to be *sure*. If we're wrong, we'll
1918 * just go back and repeat.
1920 rq = task_rq_lock(p, &flags);
1921 running = task_running(rq, p);
1922 on_rq = p->se.on_rq;
1924 if (!match_state || p->state == match_state) {
1925 ncsw = p->nivcsw + p->nvcsw;
1926 if (unlikely(!ncsw))
1929 task_rq_unlock(rq, &flags);
1932 * If it changed from the expected state, bail out now.
1934 if (unlikely(!ncsw))
1938 * Was it really running after all now that we
1939 * checked with the proper locks actually held?
1941 * Oops. Go back and try again..
1943 if (unlikely(running)) {
1949 * It's not enough that it's not actively running,
1950 * it must be off the runqueue _entirely_, and not
1953 * So if it wa still runnable (but just not actively
1954 * running right now), it's preempted, and we should
1955 * yield - it could be a while.
1957 if (unlikely(on_rq)) {
1958 schedule_timeout_uninterruptible(1);
1963 * Ahh, all good. It wasn't running, and it wasn't
1964 * runnable, which means that it will never become
1965 * running in the future either. We're all done!
1974 * kick_process - kick a running thread to enter/exit the kernel
1975 * @p: the to-be-kicked thread
1977 * Cause a process which is running on another CPU to enter
1978 * kernel-mode, without any delay. (to get signals handled.)
1980 * NOTE: this function doesnt have to take the runqueue lock,
1981 * because all it wants to ensure is that the remote task enters
1982 * the kernel. If the IPI races and the task has been migrated
1983 * to another CPU then no harm is done and the purpose has been
1986 void kick_process(struct task_struct *p)
1992 if ((cpu != smp_processor_id()) && task_curr(p))
1993 smp_send_reschedule(cpu);
1998 * Return a low guess at the load of a migration-source cpu weighted
1999 * according to the scheduling class and "nice" value.
2001 * We want to under-estimate the load of migration sources, to
2002 * balance conservatively.
2004 static unsigned long source_load(int cpu, int type)
2006 struct rq *rq = cpu_rq(cpu);
2007 unsigned long total = weighted_cpuload(cpu);
2009 if (type == 0 || !sched_feat(LB_BIAS))
2012 return min(rq->cpu_load[type-1], total);
2016 * Return a high guess at the load of a migration-target cpu weighted
2017 * according to the scheduling class and "nice" value.
2019 static unsigned long target_load(int cpu, int type)
2021 struct rq *rq = cpu_rq(cpu);
2022 unsigned long total = weighted_cpuload(cpu);
2024 if (type == 0 || !sched_feat(LB_BIAS))
2027 return max(rq->cpu_load[type-1], total);
2031 * find_idlest_group finds and returns the least busy CPU group within the
2034 static struct sched_group *
2035 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2037 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2038 unsigned long min_load = ULONG_MAX, this_load = 0;
2039 int load_idx = sd->forkexec_idx;
2040 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2043 unsigned long load, avg_load;
2047 /* Skip over this group if it has no CPUs allowed */
2048 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2051 local_group = cpu_isset(this_cpu, group->cpumask);
2053 /* Tally up the load of all CPUs in the group */
2056 for_each_cpu_mask_nr(i, group->cpumask) {
2057 /* Bias balancing toward cpus of our domain */
2059 load = source_load(i, load_idx);
2061 load = target_load(i, load_idx);
2066 /* Adjust by relative CPU power of the group */
2067 avg_load = sg_div_cpu_power(group,
2068 avg_load * SCHED_LOAD_SCALE);
2071 this_load = avg_load;
2073 } else if (avg_load < min_load) {
2074 min_load = avg_load;
2077 } while (group = group->next, group != sd->groups);
2079 if (!idlest || 100*this_load < imbalance*min_load)
2085 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2088 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2091 unsigned long load, min_load = ULONG_MAX;
2095 /* Traverse only the allowed CPUs */
2096 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2098 for_each_cpu_mask_nr(i, *tmp) {
2099 load = weighted_cpuload(i);
2101 if (load < min_load || (load == min_load && i == this_cpu)) {
2111 * sched_balance_self: balance the current task (running on cpu) in domains
2112 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2115 * Balance, ie. select the least loaded group.
2117 * Returns the target CPU number, or the same CPU if no balancing is needed.
2119 * preempt must be disabled.
2121 static int sched_balance_self(int cpu, int flag)
2123 struct task_struct *t = current;
2124 struct sched_domain *tmp, *sd = NULL;
2126 for_each_domain(cpu, tmp) {
2128 * If power savings logic is enabled for a domain, stop there.
2130 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2132 if (tmp->flags & flag)
2140 cpumask_t span, tmpmask;
2141 struct sched_group *group;
2142 int new_cpu, weight;
2144 if (!(sd->flags & flag)) {
2150 group = find_idlest_group(sd, t, cpu);
2156 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2157 if (new_cpu == -1 || new_cpu == cpu) {
2158 /* Now try balancing at a lower domain level of cpu */
2163 /* Now try balancing at a lower domain level of new_cpu */
2166 weight = cpus_weight(span);
2167 for_each_domain(cpu, tmp) {
2168 if (weight <= cpus_weight(tmp->span))
2170 if (tmp->flags & flag)
2173 /* while loop will break here if sd == NULL */
2179 #endif /* CONFIG_SMP */
2182 * try_to_wake_up - wake up a thread
2183 * @p: the to-be-woken-up thread
2184 * @state: the mask of task states that can be woken
2185 * @sync: do a synchronous wakeup?
2187 * Put it on the run-queue if it's not already there. The "current"
2188 * thread is always on the run-queue (except when the actual
2189 * re-schedule is in progress), and as such you're allowed to do
2190 * the simpler "current->state = TASK_RUNNING" to mark yourself
2191 * runnable without the overhead of this.
2193 * returns failure only if the task is already active.
2195 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2197 int cpu, orig_cpu, this_cpu, success = 0;
2198 unsigned long flags;
2202 if (!sched_feat(SYNC_WAKEUPS))
2206 if (sched_feat(LB_WAKEUP_UPDATE)) {
2207 struct sched_domain *sd;
2209 this_cpu = raw_smp_processor_id();
2212 for_each_domain(this_cpu, sd) {
2213 if (cpu_isset(cpu, sd->span)) {
2222 rq = task_rq_lock(p, &flags);
2223 old_state = p->state;
2224 if (!(old_state & state))
2232 this_cpu = smp_processor_id();
2235 if (unlikely(task_running(rq, p)))
2238 cpu = p->sched_class->select_task_rq(p, sync);
2239 if (cpu != orig_cpu) {
2240 set_task_cpu(p, cpu);
2241 task_rq_unlock(rq, &flags);
2242 /* might preempt at this point */
2243 rq = task_rq_lock(p, &flags);
2244 old_state = p->state;
2245 if (!(old_state & state))
2250 this_cpu = smp_processor_id();
2254 #ifdef CONFIG_SCHEDSTATS
2255 schedstat_inc(rq, ttwu_count);
2256 if (cpu == this_cpu)
2257 schedstat_inc(rq, ttwu_local);
2259 struct sched_domain *sd;
2260 for_each_domain(this_cpu, sd) {
2261 if (cpu_isset(cpu, sd->span)) {
2262 schedstat_inc(sd, ttwu_wake_remote);
2267 #endif /* CONFIG_SCHEDSTATS */
2270 #endif /* CONFIG_SMP */
2271 schedstat_inc(p, se.nr_wakeups);
2273 schedstat_inc(p, se.nr_wakeups_sync);
2274 if (orig_cpu != cpu)
2275 schedstat_inc(p, se.nr_wakeups_migrate);
2276 if (cpu == this_cpu)
2277 schedstat_inc(p, se.nr_wakeups_local);
2279 schedstat_inc(p, se.nr_wakeups_remote);
2280 update_rq_clock(rq);
2281 activate_task(rq, p, 1);
2285 trace_mark(kernel_sched_wakeup,
2286 "pid %d state %ld ## rq %p task %p rq->curr %p",
2287 p->pid, p->state, rq, p, rq->curr);
2288 check_preempt_curr(rq, p);
2290 p->state = TASK_RUNNING;
2292 if (p->sched_class->task_wake_up)
2293 p->sched_class->task_wake_up(rq, p);
2296 current->se.last_wakeup = current->se.sum_exec_runtime;
2298 task_rq_unlock(rq, &flags);
2303 int wake_up_process(struct task_struct *p)
2305 return try_to_wake_up(p, TASK_ALL, 0);
2307 EXPORT_SYMBOL(wake_up_process);
2309 int wake_up_state(struct task_struct *p, unsigned int state)
2311 return try_to_wake_up(p, state, 0);
2315 * Perform scheduler related setup for a newly forked process p.
2316 * p is forked by current.
2318 * __sched_fork() is basic setup used by init_idle() too:
2320 static void __sched_fork(struct task_struct *p)
2322 p->se.exec_start = 0;
2323 p->se.sum_exec_runtime = 0;
2324 p->se.prev_sum_exec_runtime = 0;
2325 p->se.last_wakeup = 0;
2326 p->se.avg_overlap = 0;
2328 #ifdef CONFIG_SCHEDSTATS
2329 p->se.wait_start = 0;
2330 p->se.sum_sleep_runtime = 0;
2331 p->se.sleep_start = 0;
2332 p->se.block_start = 0;
2333 p->se.sleep_max = 0;
2334 p->se.block_max = 0;
2336 p->se.slice_max = 0;
2340 INIT_LIST_HEAD(&p->rt.run_list);
2342 INIT_LIST_HEAD(&p->se.group_node);
2344 #ifdef CONFIG_PREEMPT_NOTIFIERS
2345 INIT_HLIST_HEAD(&p->preempt_notifiers);
2349 * We mark the process as running here, but have not actually
2350 * inserted it onto the runqueue yet. This guarantees that
2351 * nobody will actually run it, and a signal or other external
2352 * event cannot wake it up and insert it on the runqueue either.
2354 p->state = TASK_RUNNING;
2358 * fork()/clone()-time setup:
2360 void sched_fork(struct task_struct *p, int clone_flags)
2362 int cpu = get_cpu();
2367 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2369 set_task_cpu(p, cpu);
2372 * Make sure we do not leak PI boosting priority to the child:
2374 p->prio = current->normal_prio;
2375 if (!rt_prio(p->prio))
2376 p->sched_class = &fair_sched_class;
2378 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2379 if (likely(sched_info_on()))
2380 memset(&p->sched_info, 0, sizeof(p->sched_info));
2382 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2385 #ifdef CONFIG_PREEMPT
2386 /* Want to start with kernel preemption disabled. */
2387 task_thread_info(p)->preempt_count = 1;
2393 * wake_up_new_task - wake up a newly created task for the first time.
2395 * This function will do some initial scheduler statistics housekeeping
2396 * that must be done for every newly created context, then puts the task
2397 * on the runqueue and wakes it.
2399 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2401 unsigned long flags;
2404 rq = task_rq_lock(p, &flags);
2405 BUG_ON(p->state != TASK_RUNNING);
2406 update_rq_clock(rq);
2408 p->prio = effective_prio(p);
2410 if (!p->sched_class->task_new || !current->se.on_rq) {
2411 activate_task(rq, p, 0);
2414 * Let the scheduling class do new task startup
2415 * management (if any):
2417 p->sched_class->task_new(rq, p);
2420 trace_mark(kernel_sched_wakeup_new,
2421 "pid %d state %ld ## rq %p task %p rq->curr %p",
2422 p->pid, p->state, rq, p, rq->curr);
2423 check_preempt_curr(rq, p);
2425 if (p->sched_class->task_wake_up)
2426 p->sched_class->task_wake_up(rq, p);
2428 task_rq_unlock(rq, &flags);
2431 #ifdef CONFIG_PREEMPT_NOTIFIERS
2434 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2435 * @notifier: notifier struct to register
2437 void preempt_notifier_register(struct preempt_notifier *notifier)
2439 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
2441 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2444 * preempt_notifier_unregister - no longer interested in preemption notifications
2445 * @notifier: notifier struct to unregister
2447 * This is safe to call from within a preemption notifier.
2449 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2451 hlist_del(¬ifier->link);
2453 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2455 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2457 struct preempt_notifier *notifier;
2458 struct hlist_node *node;
2460 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2461 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2465 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2466 struct task_struct *next)
2468 struct preempt_notifier *notifier;
2469 struct hlist_node *node;
2471 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2472 notifier->ops->sched_out(notifier, next);
2475 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2477 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2482 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2483 struct task_struct *next)
2487 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2490 * prepare_task_switch - prepare to switch tasks
2491 * @rq: the runqueue preparing to switch
2492 * @prev: the current task that is being switched out
2493 * @next: the task we are going to switch to.
2495 * This is called with the rq lock held and interrupts off. It must
2496 * be paired with a subsequent finish_task_switch after the context
2499 * prepare_task_switch sets up locking and calls architecture specific
2503 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2504 struct task_struct *next)
2506 fire_sched_out_preempt_notifiers(prev, next);
2507 prepare_lock_switch(rq, next);
2508 prepare_arch_switch(next);
2512 * finish_task_switch - clean up after a task-switch
2513 * @rq: runqueue associated with task-switch
2514 * @prev: the thread we just switched away from.
2516 * finish_task_switch must be called after the context switch, paired
2517 * with a prepare_task_switch call before the context switch.
2518 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2519 * and do any other architecture-specific cleanup actions.
2521 * Note that we may have delayed dropping an mm in context_switch(). If
2522 * so, we finish that here outside of the runqueue lock. (Doing it
2523 * with the lock held can cause deadlocks; see schedule() for
2526 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2527 __releases(rq->lock)
2529 struct mm_struct *mm = rq->prev_mm;
2535 * A task struct has one reference for the use as "current".
2536 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2537 * schedule one last time. The schedule call will never return, and
2538 * the scheduled task must drop that reference.
2539 * The test for TASK_DEAD must occur while the runqueue locks are
2540 * still held, otherwise prev could be scheduled on another cpu, die
2541 * there before we look at prev->state, and then the reference would
2543 * Manfred Spraul <manfred@colorfullife.com>
2545 prev_state = prev->state;
2546 finish_arch_switch(prev);
2547 finish_lock_switch(rq, prev);
2549 if (current->sched_class->post_schedule)
2550 current->sched_class->post_schedule(rq);
2553 fire_sched_in_preempt_notifiers(current);
2556 if (unlikely(prev_state == TASK_DEAD)) {
2558 * Remove function-return probe instances associated with this
2559 * task and put them back on the free list.
2561 kprobe_flush_task(prev);
2562 put_task_struct(prev);
2567 * schedule_tail - first thing a freshly forked thread must call.
2568 * @prev: the thread we just switched away from.
2570 asmlinkage void schedule_tail(struct task_struct *prev)
2571 __releases(rq->lock)
2573 struct rq *rq = this_rq();
2575 finish_task_switch(rq, prev);
2576 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2577 /* In this case, finish_task_switch does not reenable preemption */
2580 if (current->set_child_tid)
2581 put_user(task_pid_vnr(current), current->set_child_tid);
2585 * context_switch - switch to the new MM and the new
2586 * thread's register state.
2589 context_switch(struct rq *rq, struct task_struct *prev,
2590 struct task_struct *next)
2592 struct mm_struct *mm, *oldmm;
2594 prepare_task_switch(rq, prev, next);
2595 trace_mark(kernel_sched_schedule,
2596 "prev_pid %d next_pid %d prev_state %ld "
2597 "## rq %p prev %p next %p",
2598 prev->pid, next->pid, prev->state,
2601 oldmm = prev->active_mm;
2603 * For paravirt, this is coupled with an exit in switch_to to
2604 * combine the page table reload and the switch backend into
2607 arch_enter_lazy_cpu_mode();
2609 if (unlikely(!mm)) {
2610 next->active_mm = oldmm;
2611 atomic_inc(&oldmm->mm_count);
2612 enter_lazy_tlb(oldmm, next);
2614 switch_mm(oldmm, mm, next);
2616 if (unlikely(!prev->mm)) {
2617 prev->active_mm = NULL;
2618 rq->prev_mm = oldmm;
2621 * Since the runqueue lock will be released by the next
2622 * task (which is an invalid locking op but in the case
2623 * of the scheduler it's an obvious special-case), so we
2624 * do an early lockdep release here:
2626 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2627 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2630 /* Here we just switch the register state and the stack. */
2631 switch_to(prev, next, prev);
2635 * this_rq must be evaluated again because prev may have moved
2636 * CPUs since it called schedule(), thus the 'rq' on its stack
2637 * frame will be invalid.
2639 finish_task_switch(this_rq(), prev);
2643 * nr_running, nr_uninterruptible and nr_context_switches:
2645 * externally visible scheduler statistics: current number of runnable
2646 * threads, current number of uninterruptible-sleeping threads, total
2647 * number of context switches performed since bootup.
2649 unsigned long nr_running(void)
2651 unsigned long i, sum = 0;
2653 for_each_online_cpu(i)
2654 sum += cpu_rq(i)->nr_running;
2659 unsigned long nr_uninterruptible(void)
2661 unsigned long i, sum = 0;
2663 for_each_possible_cpu(i)
2664 sum += cpu_rq(i)->nr_uninterruptible;
2667 * Since we read the counters lockless, it might be slightly
2668 * inaccurate. Do not allow it to go below zero though:
2670 if (unlikely((long)sum < 0))
2676 unsigned long long nr_context_switches(void)
2679 unsigned long long sum = 0;
2681 for_each_possible_cpu(i)
2682 sum += cpu_rq(i)->nr_switches;
2687 unsigned long nr_iowait(void)
2689 unsigned long i, sum = 0;
2691 for_each_possible_cpu(i)
2692 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2697 unsigned long nr_active(void)
2699 unsigned long i, running = 0, uninterruptible = 0;
2701 for_each_online_cpu(i) {
2702 running += cpu_rq(i)->nr_running;
2703 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2706 if (unlikely((long)uninterruptible < 0))
2707 uninterruptible = 0;
2709 return running + uninterruptible;
2713 * Update rq->cpu_load[] statistics. This function is usually called every
2714 * scheduler tick (TICK_NSEC).
2716 static void update_cpu_load(struct rq *this_rq)
2718 unsigned long this_load = this_rq->load.weight;
2721 this_rq->nr_load_updates++;
2723 /* Update our load: */
2724 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2725 unsigned long old_load, new_load;
2727 /* scale is effectively 1 << i now, and >> i divides by scale */
2729 old_load = this_rq->cpu_load[i];
2730 new_load = this_load;
2732 * Round up the averaging division if load is increasing. This
2733 * prevents us from getting stuck on 9 if the load is 10, for
2736 if (new_load > old_load)
2737 new_load += scale-1;
2738 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2745 * double_rq_lock - safely lock two runqueues
2747 * Note this does not disable interrupts like task_rq_lock,
2748 * you need to do so manually before calling.
2750 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2751 __acquires(rq1->lock)
2752 __acquires(rq2->lock)
2754 BUG_ON(!irqs_disabled());
2756 spin_lock(&rq1->lock);
2757 __acquire(rq2->lock); /* Fake it out ;) */
2760 spin_lock(&rq1->lock);
2761 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2763 spin_lock(&rq2->lock);
2764 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2767 update_rq_clock(rq1);
2768 update_rq_clock(rq2);
2772 * double_rq_unlock - safely unlock two runqueues
2774 * Note this does not restore interrupts like task_rq_unlock,
2775 * you need to do so manually after calling.
2777 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2778 __releases(rq1->lock)
2779 __releases(rq2->lock)
2781 spin_unlock(&rq1->lock);
2783 spin_unlock(&rq2->lock);
2785 __release(rq2->lock);
2789 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2791 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2792 __releases(this_rq->lock)
2793 __acquires(busiest->lock)
2794 __acquires(this_rq->lock)
2798 if (unlikely(!irqs_disabled())) {
2799 /* printk() doesn't work good under rq->lock */
2800 spin_unlock(&this_rq->lock);
2803 if (unlikely(!spin_trylock(&busiest->lock))) {
2804 if (busiest < this_rq) {
2805 spin_unlock(&this_rq->lock);
2806 spin_lock(&busiest->lock);
2807 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
2810 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
2815 static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2816 __releases(busiest->lock)
2818 spin_unlock(&busiest->lock);
2819 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2823 * If dest_cpu is allowed for this process, migrate the task to it.
2824 * This is accomplished by forcing the cpu_allowed mask to only
2825 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2826 * the cpu_allowed mask is restored.
2828 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2830 struct migration_req req;
2831 unsigned long flags;
2834 rq = task_rq_lock(p, &flags);
2835 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2836 || unlikely(!cpu_active(dest_cpu)))
2839 /* force the process onto the specified CPU */
2840 if (migrate_task(p, dest_cpu, &req)) {
2841 /* Need to wait for migration thread (might exit: take ref). */
2842 struct task_struct *mt = rq->migration_thread;
2844 get_task_struct(mt);
2845 task_rq_unlock(rq, &flags);
2846 wake_up_process(mt);
2847 put_task_struct(mt);
2848 wait_for_completion(&req.done);
2853 task_rq_unlock(rq, &flags);
2857 * sched_exec - execve() is a valuable balancing opportunity, because at
2858 * this point the task has the smallest effective memory and cache footprint.
2860 void sched_exec(void)
2862 int new_cpu, this_cpu = get_cpu();
2863 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2865 if (new_cpu != this_cpu)
2866 sched_migrate_task(current, new_cpu);
2870 * pull_task - move a task from a remote runqueue to the local runqueue.
2871 * Both runqueues must be locked.
2873 static void pull_task(struct rq *src_rq, struct task_struct *p,
2874 struct rq *this_rq, int this_cpu)
2876 deactivate_task(src_rq, p, 0);
2877 set_task_cpu(p, this_cpu);
2878 activate_task(this_rq, p, 0);
2880 * Note that idle threads have a prio of MAX_PRIO, for this test
2881 * to be always true for them.
2883 check_preempt_curr(this_rq, p);
2887 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2890 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2891 struct sched_domain *sd, enum cpu_idle_type idle,
2895 * We do not migrate tasks that are:
2896 * 1) running (obviously), or
2897 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2898 * 3) are cache-hot on their current CPU.
2900 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2901 schedstat_inc(p, se.nr_failed_migrations_affine);
2906 if (task_running(rq, p)) {
2907 schedstat_inc(p, se.nr_failed_migrations_running);
2912 * Aggressive migration if:
2913 * 1) task is cache cold, or
2914 * 2) too many balance attempts have failed.
2917 if (!task_hot(p, rq->clock, sd) ||
2918 sd->nr_balance_failed > sd->cache_nice_tries) {
2919 #ifdef CONFIG_SCHEDSTATS
2920 if (task_hot(p, rq->clock, sd)) {
2921 schedstat_inc(sd, lb_hot_gained[idle]);
2922 schedstat_inc(p, se.nr_forced_migrations);
2928 if (task_hot(p, rq->clock, sd)) {
2929 schedstat_inc(p, se.nr_failed_migrations_hot);
2935 static unsigned long
2936 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2937 unsigned long max_load_move, struct sched_domain *sd,
2938 enum cpu_idle_type idle, int *all_pinned,
2939 int *this_best_prio, struct rq_iterator *iterator)
2941 int loops = 0, pulled = 0, pinned = 0;
2942 struct task_struct *p;
2943 long rem_load_move = max_load_move;
2945 if (max_load_move == 0)
2951 * Start the load-balancing iterator:
2953 p = iterator->start(iterator->arg);
2955 if (!p || loops++ > sysctl_sched_nr_migrate)
2958 if ((p->se.load.weight >> 1) > rem_load_move ||
2959 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2960 p = iterator->next(iterator->arg);
2964 pull_task(busiest, p, this_rq, this_cpu);
2966 rem_load_move -= p->se.load.weight;
2969 * We only want to steal up to the prescribed amount of weighted load.
2971 if (rem_load_move > 0) {
2972 if (p->prio < *this_best_prio)
2973 *this_best_prio = p->prio;
2974 p = iterator->next(iterator->arg);
2979 * Right now, this is one of only two places pull_task() is called,
2980 * so we can safely collect pull_task() stats here rather than
2981 * inside pull_task().
2983 schedstat_add(sd, lb_gained[idle], pulled);
2986 *all_pinned = pinned;
2988 return max_load_move - rem_load_move;
2992 * move_tasks tries to move up to max_load_move weighted load from busiest to
2993 * this_rq, as part of a balancing operation within domain "sd".
2994 * Returns 1 if successful and 0 otherwise.
2996 * Called with both runqueues locked.
2998 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2999 unsigned long max_load_move,
3000 struct sched_domain *sd, enum cpu_idle_type idle,
3003 const struct sched_class *class = sched_class_highest;
3004 unsigned long total_load_moved = 0;
3005 int this_best_prio = this_rq->curr->prio;
3009 class->load_balance(this_rq, this_cpu, busiest,
3010 max_load_move - total_load_moved,
3011 sd, idle, all_pinned, &this_best_prio);
3012 class = class->next;
3014 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3017 } while (class && max_load_move > total_load_moved);
3019 return total_load_moved > 0;
3023 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3024 struct sched_domain *sd, enum cpu_idle_type idle,
3025 struct rq_iterator *iterator)
3027 struct task_struct *p = iterator->start(iterator->arg);
3031 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3032 pull_task(busiest, p, this_rq, this_cpu);
3034 * Right now, this is only the second place pull_task()
3035 * is called, so we can safely collect pull_task()
3036 * stats here rather than inside pull_task().
3038 schedstat_inc(sd, lb_gained[idle]);
3042 p = iterator->next(iterator->arg);
3049 * move_one_task tries to move exactly one task from busiest to this_rq, as
3050 * part of active balancing operations within "domain".
3051 * Returns 1 if successful and 0 otherwise.
3053 * Called with both runqueues locked.
3055 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3056 struct sched_domain *sd, enum cpu_idle_type idle)
3058 const struct sched_class *class;
3060 for (class = sched_class_highest; class; class = class->next)
3061 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3068 * find_busiest_group finds and returns the busiest CPU group within the
3069 * domain. It calculates and returns the amount of weighted load which
3070 * should be moved to restore balance via the imbalance parameter.
3072 static struct sched_group *
3073 find_busiest_group(struct sched_domain *sd, int this_cpu,
3074 unsigned long *imbalance, enum cpu_idle_type idle,
3075 int *sd_idle, const cpumask_t *cpus, int *balance)
3077 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3078 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3079 unsigned long max_pull;
3080 unsigned long busiest_load_per_task, busiest_nr_running;
3081 unsigned long this_load_per_task, this_nr_running;
3082 int load_idx, group_imb = 0;
3083 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3084 int power_savings_balance = 1;
3085 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3086 unsigned long min_nr_running = ULONG_MAX;
3087 struct sched_group *group_min = NULL, *group_leader = NULL;
3090 max_load = this_load = total_load = total_pwr = 0;
3091 busiest_load_per_task = busiest_nr_running = 0;
3092 this_load_per_task = this_nr_running = 0;
3094 if (idle == CPU_NOT_IDLE)
3095 load_idx = sd->busy_idx;
3096 else if (idle == CPU_NEWLY_IDLE)
3097 load_idx = sd->newidle_idx;
3099 load_idx = sd->idle_idx;
3102 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
3105 int __group_imb = 0;
3106 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3107 unsigned long sum_nr_running, sum_weighted_load;
3108 unsigned long sum_avg_load_per_task;
3109 unsigned long avg_load_per_task;
3111 local_group = cpu_isset(this_cpu, group->cpumask);
3114 balance_cpu = first_cpu(group->cpumask);
3116 /* Tally up the load of all CPUs in the group */
3117 sum_weighted_load = sum_nr_running = avg_load = 0;
3118 sum_avg_load_per_task = avg_load_per_task = 0;
3121 min_cpu_load = ~0UL;
3123 for_each_cpu_mask_nr(i, group->cpumask) {
3126 if (!cpu_isset(i, *cpus))
3131 if (*sd_idle && rq->nr_running)
3134 /* Bias balancing toward cpus of our domain */
3136 if (idle_cpu(i) && !first_idle_cpu) {
3141 load = target_load(i, load_idx);
3143 load = source_load(i, load_idx);
3144 if (load > max_cpu_load)
3145 max_cpu_load = load;
3146 if (min_cpu_load > load)
3147 min_cpu_load = load;
3151 sum_nr_running += rq->nr_running;
3152 sum_weighted_load += weighted_cpuload(i);
3154 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3158 * First idle cpu or the first cpu(busiest) in this sched group
3159 * is eligible for doing load balancing at this and above
3160 * domains. In the newly idle case, we will allow all the cpu's
3161 * to do the newly idle load balance.
3163 if (idle != CPU_NEWLY_IDLE && local_group &&
3164 balance_cpu != this_cpu && balance) {
3169 total_load += avg_load;
3170 total_pwr += group->__cpu_power;
3172 /* Adjust by relative CPU power of the group */
3173 avg_load = sg_div_cpu_power(group,
3174 avg_load * SCHED_LOAD_SCALE);
3178 * Consider the group unbalanced when the imbalance is larger
3179 * than the average weight of two tasks.
3181 * APZ: with cgroup the avg task weight can vary wildly and
3182 * might not be a suitable number - should we keep a
3183 * normalized nr_running number somewhere that negates
3186 avg_load_per_task = sg_div_cpu_power(group,
3187 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3189 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3192 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3195 this_load = avg_load;
3197 this_nr_running = sum_nr_running;
3198 this_load_per_task = sum_weighted_load;
3199 } else if (avg_load > max_load &&
3200 (sum_nr_running > group_capacity || __group_imb)) {
3201 max_load = avg_load;
3203 busiest_nr_running = sum_nr_running;
3204 busiest_load_per_task = sum_weighted_load;
3205 group_imb = __group_imb;
3208 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3210 * Busy processors will not participate in power savings
3213 if (idle == CPU_NOT_IDLE ||
3214 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3218 * If the local group is idle or completely loaded
3219 * no need to do power savings balance at this domain
3221 if (local_group && (this_nr_running >= group_capacity ||
3223 power_savings_balance = 0;
3226 * If a group is already running at full capacity or idle,
3227 * don't include that group in power savings calculations
3229 if (!power_savings_balance || sum_nr_running >= group_capacity
3234 * Calculate the group which has the least non-idle load.
3235 * This is the group from where we need to pick up the load
3238 if ((sum_nr_running < min_nr_running) ||
3239 (sum_nr_running == min_nr_running &&
3240 first_cpu(group->cpumask) <
3241 first_cpu(group_min->cpumask))) {
3243 min_nr_running = sum_nr_running;
3244 min_load_per_task = sum_weighted_load /
3249 * Calculate the group which is almost near its
3250 * capacity but still has some space to pick up some load
3251 * from other group and save more power
3253 if (sum_nr_running <= group_capacity - 1) {
3254 if (sum_nr_running > leader_nr_running ||
3255 (sum_nr_running == leader_nr_running &&
3256 first_cpu(group->cpumask) >
3257 first_cpu(group_leader->cpumask))) {
3258 group_leader = group;
3259 leader_nr_running = sum_nr_running;
3264 group = group->next;
3265 } while (group != sd->groups);
3267 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3270 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3272 if (this_load >= avg_load ||
3273 100*max_load <= sd->imbalance_pct*this_load)
3276 busiest_load_per_task /= busiest_nr_running;
3278 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3281 * We're trying to get all the cpus to the average_load, so we don't
3282 * want to push ourselves above the average load, nor do we wish to
3283 * reduce the max loaded cpu below the average load, as either of these
3284 * actions would just result in more rebalancing later, and ping-pong
3285 * tasks around. Thus we look for the minimum possible imbalance.
3286 * Negative imbalances (*we* are more loaded than anyone else) will
3287 * be counted as no imbalance for these purposes -- we can't fix that
3288 * by pulling tasks to us. Be careful of negative numbers as they'll
3289 * appear as very large values with unsigned longs.
3291 if (max_load <= busiest_load_per_task)
3295 * In the presence of smp nice balancing, certain scenarios can have
3296 * max load less than avg load(as we skip the groups at or below
3297 * its cpu_power, while calculating max_load..)
3299 if (max_load < avg_load) {
3301 goto small_imbalance;
3304 /* Don't want to pull so many tasks that a group would go idle */
3305 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3307 /* How much load to actually move to equalise the imbalance */
3308 *imbalance = min(max_pull * busiest->__cpu_power,
3309 (avg_load - this_load) * this->__cpu_power)
3313 * if *imbalance is less than the average load per runnable task
3314 * there is no gaurantee that any tasks will be moved so we'll have
3315 * a think about bumping its value to force at least one task to be
3318 if (*imbalance < busiest_load_per_task) {
3319 unsigned long tmp, pwr_now, pwr_move;
3323 pwr_move = pwr_now = 0;
3325 if (this_nr_running) {
3326 this_load_per_task /= this_nr_running;
3327 if (busiest_load_per_task > this_load_per_task)
3330 this_load_per_task = cpu_avg_load_per_task(this_cpu);
3332 if (max_load - this_load + 2*busiest_load_per_task >=
3333 busiest_load_per_task * imbn) {
3334 *imbalance = busiest_load_per_task;
3339 * OK, we don't have enough imbalance to justify moving tasks,
3340 * however we may be able to increase total CPU power used by
3344 pwr_now += busiest->__cpu_power *
3345 min(busiest_load_per_task, max_load);
3346 pwr_now += this->__cpu_power *
3347 min(this_load_per_task, this_load);
3348 pwr_now /= SCHED_LOAD_SCALE;
3350 /* Amount of load we'd subtract */
3351 tmp = sg_div_cpu_power(busiest,
3352 busiest_load_per_task * SCHED_LOAD_SCALE);
3354 pwr_move += busiest->__cpu_power *
3355 min(busiest_load_per_task, max_load - tmp);
3357 /* Amount of load we'd add */
3358 if (max_load * busiest->__cpu_power <
3359 busiest_load_per_task * SCHED_LOAD_SCALE)
3360 tmp = sg_div_cpu_power(this,
3361 max_load * busiest->__cpu_power);
3363 tmp = sg_div_cpu_power(this,
3364 busiest_load_per_task * SCHED_LOAD_SCALE);
3365 pwr_move += this->__cpu_power *
3366 min(this_load_per_task, this_load + tmp);
3367 pwr_move /= SCHED_LOAD_SCALE;
3369 /* Move if we gain throughput */
3370 if (pwr_move > pwr_now)
3371 *imbalance = busiest_load_per_task;
3377 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3378 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3381 if (this == group_leader && group_leader != group_min) {
3382 *imbalance = min_load_per_task;
3392 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3395 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3396 unsigned long imbalance, const cpumask_t *cpus)
3398 struct rq *busiest = NULL, *rq;
3399 unsigned long max_load = 0;
3402 for_each_cpu_mask_nr(i, group->cpumask) {
3405 if (!cpu_isset(i, *cpus))
3409 wl = weighted_cpuload(i);
3411 if (rq->nr_running == 1 && wl > imbalance)
3414 if (wl > max_load) {
3424 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3425 * so long as it is large enough.
3427 #define MAX_PINNED_INTERVAL 512
3430 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3431 * tasks if there is an imbalance.
3433 static int load_balance(int this_cpu, struct rq *this_rq,
3434 struct sched_domain *sd, enum cpu_idle_type idle,
3435 int *balance, cpumask_t *cpus)
3437 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3438 struct sched_group *group;
3439 unsigned long imbalance;
3441 unsigned long flags;
3446 * When power savings policy is enabled for the parent domain, idle
3447 * sibling can pick up load irrespective of busy siblings. In this case,
3448 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3449 * portraying it as CPU_NOT_IDLE.
3451 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3452 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3455 schedstat_inc(sd, lb_count[idle]);
3459 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3466 schedstat_inc(sd, lb_nobusyg[idle]);
3470 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3472 schedstat_inc(sd, lb_nobusyq[idle]);
3476 BUG_ON(busiest == this_rq);
3478 schedstat_add(sd, lb_imbalance[idle], imbalance);
3481 if (busiest->nr_running > 1) {
3483 * Attempt to move tasks. If find_busiest_group has found
3484 * an imbalance but busiest->nr_running <= 1, the group is
3485 * still unbalanced. ld_moved simply stays zero, so it is
3486 * correctly treated as an imbalance.
3488 local_irq_save(flags);
3489 double_rq_lock(this_rq, busiest);
3490 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3491 imbalance, sd, idle, &all_pinned);
3492 double_rq_unlock(this_rq, busiest);
3493 local_irq_restore(flags);
3496 * some other cpu did the load balance for us.
3498 if (ld_moved && this_cpu != smp_processor_id())
3499 resched_cpu(this_cpu);
3501 /* All tasks on this runqueue were pinned by CPU affinity */
3502 if (unlikely(all_pinned)) {
3503 cpu_clear(cpu_of(busiest), *cpus);
3504 if (!cpus_empty(*cpus))
3511 schedstat_inc(sd, lb_failed[idle]);
3512 sd->nr_balance_failed++;
3514 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3516 spin_lock_irqsave(&busiest->lock, flags);
3518 /* don't kick the migration_thread, if the curr
3519 * task on busiest cpu can't be moved to this_cpu
3521 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3522 spin_unlock_irqrestore(&busiest->lock, flags);
3524 goto out_one_pinned;
3527 if (!busiest->active_balance) {
3528 busiest->active_balance = 1;
3529 busiest->push_cpu = this_cpu;
3532 spin_unlock_irqrestore(&busiest->lock, flags);
3534 wake_up_process(busiest->migration_thread);
3537 * We've kicked active balancing, reset the failure
3540 sd->nr_balance_failed = sd->cache_nice_tries+1;
3543 sd->nr_balance_failed = 0;
3545 if (likely(!active_balance)) {
3546 /* We were unbalanced, so reset the balancing interval */
3547 sd->balance_interval = sd->min_interval;
3550 * If we've begun active balancing, start to back off. This
3551 * case may not be covered by the all_pinned logic if there
3552 * is only 1 task on the busy runqueue (because we don't call
3555 if (sd->balance_interval < sd->max_interval)
3556 sd->balance_interval *= 2;
3559 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3560 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3566 schedstat_inc(sd, lb_balanced[idle]);
3568 sd->nr_balance_failed = 0;
3571 /* tune up the balancing interval */
3572 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3573 (sd->balance_interval < sd->max_interval))
3574 sd->balance_interval *= 2;
3576 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3577 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3588 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3589 * tasks if there is an imbalance.
3591 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3592 * this_rq is locked.
3595 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3598 struct sched_group *group;
3599 struct rq *busiest = NULL;
3600 unsigned long imbalance;
3608 * When power savings policy is enabled for the parent domain, idle
3609 * sibling can pick up load irrespective of busy siblings. In this case,
3610 * let the state of idle sibling percolate up as IDLE, instead of
3611 * portraying it as CPU_NOT_IDLE.
3613 if (sd->flags & SD_SHARE_CPUPOWER &&
3614 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3617 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3619 update_shares_locked(this_rq, sd);
3620 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3621 &sd_idle, cpus, NULL);
3623 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3627 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3629 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);