4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/reciprocal_div.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/bootmem.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
75 #include <trace/sched.h>
78 #include <asm/irq_regs.h>
80 #include "sched_cpupri.h"
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
96 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101 * Helpers for converting nanosecond timing to jiffy resolution
103 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105 #define NICE_0_LOAD SCHED_LOAD_SCALE
106 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
109 * These are the 'tuning knobs' of the scheduler:
111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
112 * Timeslices get refilled after they expire.
114 #define DEF_TIMESLICE (100 * HZ / 1000)
117 * single value that denotes runtime == period, ie unlimited time.
119 #define RUNTIME_INF ((u64)~0ULL)
121 DEFINE_TRACE(sched_wait_task);
122 DEFINE_TRACE(sched_wakeup);
123 DEFINE_TRACE(sched_wakeup_new);
124 DEFINE_TRACE(sched_switch);
125 DEFINE_TRACE(sched_migrate_task);
129 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
132 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
133 * Since cpu_power is a 'constant', we can use a reciprocal divide.
135 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
137 return reciprocal_divide(load, sg->reciprocal_cpu_power);
141 * Each time a sched group cpu_power is changed,
142 * we must compute its reciprocal value
144 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
146 sg->__cpu_power += val;
147 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
151 static inline int rt_policy(int policy)
153 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
158 static inline int task_has_rt_policy(struct task_struct *p)
160 return rt_policy(p->policy);
164 * This is the priority-queue data structure of the RT scheduling class:
166 struct rt_prio_array {
167 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
168 struct list_head queue[MAX_RT_PRIO];
171 struct rt_bandwidth {
172 /* nests inside the rq lock: */
173 spinlock_t rt_runtime_lock;
176 struct hrtimer rt_period_timer;
179 static struct rt_bandwidth def_rt_bandwidth;
181 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
183 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
185 struct rt_bandwidth *rt_b =
186 container_of(timer, struct rt_bandwidth, rt_period_timer);
192 now = hrtimer_cb_get_time(timer);
193 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
198 idle = do_sched_rt_period_timer(rt_b, overrun);
201 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
205 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
207 rt_b->rt_period = ns_to_ktime(period);
208 rt_b->rt_runtime = runtime;
210 spin_lock_init(&rt_b->rt_runtime_lock);
212 hrtimer_init(&rt_b->rt_period_timer,
213 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
214 rt_b->rt_period_timer.function = sched_rt_period_timer;
217 static inline int rt_bandwidth_enabled(void)
219 return sysctl_sched_rt_runtime >= 0;
222 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
226 if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
229 if (hrtimer_active(&rt_b->rt_period_timer))
232 spin_lock(&rt_b->rt_runtime_lock);
234 if (hrtimer_active(&rt_b->rt_period_timer))
237 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
238 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
239 hrtimer_start_expires(&rt_b->rt_period_timer,
242 spin_unlock(&rt_b->rt_runtime_lock);
245 #ifdef CONFIG_RT_GROUP_SCHED
246 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
248 hrtimer_cancel(&rt_b->rt_period_timer);
253 * sched_domains_mutex serializes calls to arch_init_sched_domains,
254 * detach_destroy_domains and partition_sched_domains.
256 static DEFINE_MUTEX(sched_domains_mutex);
258 #ifdef CONFIG_GROUP_SCHED
260 #include <linux/cgroup.h>
264 static LIST_HEAD(task_groups);
266 /* task group related information */
268 #ifdef CONFIG_CGROUP_SCHED
269 struct cgroup_subsys_state css;
272 #ifdef CONFIG_USER_SCHED
276 #ifdef CONFIG_FAIR_GROUP_SCHED
277 /* schedulable entities of this group on each cpu */
278 struct sched_entity **se;
279 /* runqueue "owned" by this group on each cpu */
280 struct cfs_rq **cfs_rq;
281 unsigned long shares;
284 #ifdef CONFIG_RT_GROUP_SCHED
285 struct sched_rt_entity **rt_se;
286 struct rt_rq **rt_rq;
288 struct rt_bandwidth rt_bandwidth;
292 struct list_head list;
294 struct task_group *parent;
295 struct list_head siblings;
296 struct list_head children;
299 #ifdef CONFIG_USER_SCHED
301 /* Helper function to pass uid information to create_sched_user() */
302 void set_tg_uid(struct user_struct *user)
304 user->tg->uid = user->uid;
309 * Every UID task group (including init_task_group aka UID-0) will
310 * be a child to this group.
312 struct task_group root_task_group;
314 #ifdef CONFIG_FAIR_GROUP_SCHED
315 /* Default task group's sched entity on each cpu */
316 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
317 /* Default task group's cfs_rq on each cpu */
318 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
319 #endif /* CONFIG_FAIR_GROUP_SCHED */
321 #ifdef CONFIG_RT_GROUP_SCHED
322 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
323 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
324 #endif /* CONFIG_RT_GROUP_SCHED */
325 #else /* !CONFIG_USER_SCHED */
326 #define root_task_group init_task_group
327 #endif /* CONFIG_USER_SCHED */
329 /* task_group_lock serializes add/remove of task groups and also changes to
330 * a task group's cpu shares.
332 static DEFINE_SPINLOCK(task_group_lock);
334 #ifdef CONFIG_FAIR_GROUP_SCHED
335 #ifdef CONFIG_USER_SCHED
336 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
337 #else /* !CONFIG_USER_SCHED */
338 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
339 #endif /* CONFIG_USER_SCHED */
342 * A weight of 0 or 1 can cause arithmetics problems.
343 * A weight of a cfs_rq is the sum of weights of which entities
344 * are queued on this cfs_rq, so a weight of a entity should not be
345 * too large, so as the shares value of a task group.
346 * (The default weight is 1024 - so there's no practical
347 * limitation from this.)
350 #define MAX_SHARES (1UL << 18)
352 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
355 /* Default task group.
356 * Every task in system belong to this group at bootup.
358 struct task_group init_task_group;
360 /* return group to which a task belongs */
361 static inline struct task_group *task_group(struct task_struct *p)
363 struct task_group *tg;
365 #ifdef CONFIG_USER_SCHED
367 tg = __task_cred(p)->user->tg;
369 #elif defined(CONFIG_CGROUP_SCHED)
370 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
371 struct task_group, css);
373 tg = &init_task_group;
378 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
379 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
381 #ifdef CONFIG_FAIR_GROUP_SCHED
382 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
383 p->se.parent = task_group(p)->se[cpu];
386 #ifdef CONFIG_RT_GROUP_SCHED
387 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
388 p->rt.parent = task_group(p)->rt_se[cpu];
394 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
395 static inline struct task_group *task_group(struct task_struct *p)
400 #endif /* CONFIG_GROUP_SCHED */
402 /* CFS-related fields in a runqueue */
404 struct load_weight load;
405 unsigned long nr_running;
410 struct rb_root tasks_timeline;
411 struct rb_node *rb_leftmost;
413 struct list_head tasks;
414 struct list_head *balance_iterator;
417 * 'curr' points to currently running entity on this cfs_rq.
418 * It is set to NULL otherwise (i.e when none are currently running).
420 struct sched_entity *curr, *next, *last;
422 unsigned int nr_spread_over;
424 #ifdef CONFIG_FAIR_GROUP_SCHED
425 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
428 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
429 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
430 * (like users, containers etc.)
432 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
433 * list is used during load balance.
435 struct list_head leaf_cfs_rq_list;
436 struct task_group *tg; /* group that "owns" this runqueue */
440 * the part of load.weight contributed by tasks
442 unsigned long task_weight;
445 * h_load = weight * f(tg)
447 * Where f(tg) is the recursive weight fraction assigned to
450 unsigned long h_load;
453 * this cpu's part of tg->shares
455 unsigned long shares;
458 * load.weight at the time we set shares
460 unsigned long rq_weight;
465 /* Real-Time classes' related field in a runqueue: */
467 struct rt_prio_array active;
468 unsigned long rt_nr_running;
469 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
470 int highest_prio; /* highest queued rt task prio */
473 unsigned long rt_nr_migratory;
479 /* Nests inside the rq lock: */
480 spinlock_t rt_runtime_lock;
482 #ifdef CONFIG_RT_GROUP_SCHED
483 unsigned long rt_nr_boosted;
486 struct list_head leaf_rt_rq_list;
487 struct task_group *tg;
488 struct sched_rt_entity *rt_se;
495 * We add the notion of a root-domain which will be used to define per-domain
496 * variables. Each exclusive cpuset essentially defines an island domain by
497 * fully partitioning the member cpus from any other cpuset. Whenever a new
498 * exclusive cpuset is created, we also create and attach a new root-domain
505 cpumask_var_t online;
508 * The "RT overload" flag: it gets set if a CPU has more than
509 * one runnable RT task.
511 cpumask_var_t rto_mask;
514 struct cpupri cpupri;
516 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
518 * Preferred wake up cpu nominated by sched_mc balance that will be
519 * used when most cpus are idle in the system indicating overall very
520 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
522 unsigned int sched_mc_preferred_wakeup_cpu;
527 * By default the system creates a single root-domain with all cpus as
528 * members (mimicking the global state we have today).
530 static struct root_domain def_root_domain;
535 * This is the main, per-CPU runqueue data structure.
537 * Locking rule: those places that want to lock multiple runqueues
538 * (such as the load balancing or the thread migration code), lock
539 * acquire operations must be ordered by ascending &runqueue.
546 * nr_running and cpu_load should be in the same cacheline because
547 * remote CPUs use both these fields when doing load calculation.
549 unsigned long nr_running;
550 #define CPU_LOAD_IDX_MAX 5
551 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
552 unsigned char idle_at_tick;
554 unsigned long last_tick_seen;
555 unsigned char in_nohz_recently;
557 /* capture load from *all* tasks on this cpu: */
558 struct load_weight load;
559 unsigned long nr_load_updates;
565 #ifdef CONFIG_FAIR_GROUP_SCHED
566 /* list of leaf cfs_rq on this cpu: */
567 struct list_head leaf_cfs_rq_list;
569 #ifdef CONFIG_RT_GROUP_SCHED
570 struct list_head leaf_rt_rq_list;
574 * This is part of a global counter where only the total sum
575 * over all CPUs matters. A task can increase this counter on
576 * one CPU and if it got migrated afterwards it may decrease
577 * it on another CPU. Always updated under the runqueue lock:
579 unsigned long nr_uninterruptible;
581 struct task_struct *curr, *idle;
582 unsigned long next_balance;
583 struct mm_struct *prev_mm;
590 struct root_domain *rd;
591 struct sched_domain *sd;
593 /* For active balancing */
596 /* cpu of this runqueue: */
600 unsigned long avg_load_per_task;
602 struct task_struct *migration_thread;
603 struct list_head migration_queue;
606 #ifdef CONFIG_SCHED_HRTICK
608 int hrtick_csd_pending;
609 struct call_single_data hrtick_csd;
611 struct hrtimer hrtick_timer;
614 #ifdef CONFIG_SCHEDSTATS
616 struct sched_info rq_sched_info;
617 unsigned long long rq_cpu_time;
618 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
620 /* sys_sched_yield() stats */
621 unsigned int yld_exp_empty;
622 unsigned int yld_act_empty;
623 unsigned int yld_both_empty;
624 unsigned int yld_count;
626 /* schedule() stats */
627 unsigned int sched_switch;
628 unsigned int sched_count;
629 unsigned int sched_goidle;
631 /* try_to_wake_up() stats */
632 unsigned int ttwu_count;
633 unsigned int ttwu_local;
636 unsigned int bkl_count;
640 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
642 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
644 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
647 static inline int cpu_of(struct rq *rq)
657 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
658 * See detach_destroy_domains: synchronize_sched for details.
660 * The domain tree of any CPU may only be accessed from within
661 * preempt-disabled sections.
663 #define for_each_domain(cpu, __sd) \
664 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
666 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
667 #define this_rq() (&__get_cpu_var(runqueues))
668 #define task_rq(p) cpu_rq(task_cpu(p))
669 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
671 static inline void update_rq_clock(struct rq *rq)
673 rq->clock = sched_clock_cpu(cpu_of(rq));
677 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
679 #ifdef CONFIG_SCHED_DEBUG
680 # define const_debug __read_mostly
682 # define const_debug static const
688 * Returns true if the current cpu runqueue is locked.
689 * This interface allows printk to be called with the runqueue lock
690 * held and know whether or not it is OK to wake up the klogd.
692 int runqueue_is_locked(void)
695 struct rq *rq = cpu_rq(cpu);
698 ret = spin_is_locked(&rq->lock);
704 * Debugging: various feature bits
707 #define SCHED_FEAT(name, enabled) \
708 __SCHED_FEAT_##name ,
711 #include "sched_features.h"
716 #define SCHED_FEAT(name, enabled) \
717 (1UL << __SCHED_FEAT_##name) * enabled |
719 const_debug unsigned int sysctl_sched_features =
720 #include "sched_features.h"
725 #ifdef CONFIG_SCHED_DEBUG
726 #define SCHED_FEAT(name, enabled) \
729 static __read_mostly char *sched_feat_names[] = {
730 #include "sched_features.h"
736 static int sched_feat_show(struct seq_file *m, void *v)
740 for (i = 0; sched_feat_names[i]; i++) {
741 if (!(sysctl_sched_features & (1UL << i)))
743 seq_printf(m, "%s ", sched_feat_names[i]);
751 sched_feat_write(struct file *filp, const char __user *ubuf,
752 size_t cnt, loff_t *ppos)
762 if (copy_from_user(&buf, ubuf, cnt))
767 if (strncmp(buf, "NO_", 3) == 0) {
772 for (i = 0; sched_feat_names[i]; i++) {
773 int len = strlen(sched_feat_names[i]);
775 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
777 sysctl_sched_features &= ~(1UL << i);
779 sysctl_sched_features |= (1UL << i);
784 if (!sched_feat_names[i])
792 static int sched_feat_open(struct inode *inode, struct file *filp)
794 return single_open(filp, sched_feat_show, NULL);
797 static struct file_operations sched_feat_fops = {
798 .open = sched_feat_open,
799 .write = sched_feat_write,
802 .release = single_release,
805 static __init int sched_init_debug(void)
807 debugfs_create_file("sched_features", 0644, NULL, NULL,
812 late_initcall(sched_init_debug);
816 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
819 * Number of tasks to iterate in a single balance run.
820 * Limited because this is done with IRQs disabled.
822 const_debug unsigned int sysctl_sched_nr_migrate = 32;
825 * ratelimit for updating the group shares.
828 unsigned int sysctl_sched_shares_ratelimit = 250000;
831 * Inject some fuzzyness into changing the per-cpu group shares
832 * this avoids remote rq-locks at the expense of fairness.
835 unsigned int sysctl_sched_shares_thresh = 4;
838 * period over which we measure -rt task cpu usage in us.
841 unsigned int sysctl_sched_rt_period = 1000000;
843 static __read_mostly int scheduler_running;
846 * part of the period that we allow rt tasks to run in us.
849 int sysctl_sched_rt_runtime = 950000;
851 static inline u64 global_rt_period(void)
853 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
856 static inline u64 global_rt_runtime(void)
858 if (sysctl_sched_rt_runtime < 0)
861 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
864 #ifndef prepare_arch_switch
865 # define prepare_arch_switch(next) do { } while (0)
867 #ifndef finish_arch_switch
868 # define finish_arch_switch(prev) do { } while (0)
871 static inline int task_current(struct rq *rq, struct task_struct *p)
873 return rq->curr == p;
876 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
877 static inline int task_running(struct rq *rq, struct task_struct *p)
879 return task_current(rq, p);
882 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
886 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
888 #ifdef CONFIG_DEBUG_SPINLOCK
889 /* this is a valid case when another task releases the spinlock */
890 rq->lock.owner = current;
893 * If we are tracking spinlock dependencies then we have to
894 * fix up the runqueue lock - which gets 'carried over' from
897 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
899 spin_unlock_irq(&rq->lock);
902 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
903 static inline int task_running(struct rq *rq, struct task_struct *p)
908 return task_current(rq, p);
912 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
916 * We can optimise this out completely for !SMP, because the
917 * SMP rebalancing from interrupt is the only thing that cares
922 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
923 spin_unlock_irq(&rq->lock);
925 spin_unlock(&rq->lock);
929 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
933 * After ->oncpu is cleared, the task can be moved to a different CPU.
934 * We must ensure this doesn't happen until the switch is completely
940 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
944 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
947 * __task_rq_lock - lock the runqueue a given task resides on.
948 * Must be called interrupts disabled.
950 static inline struct rq *__task_rq_lock(struct task_struct *p)
954 struct rq *rq = task_rq(p);
955 spin_lock(&rq->lock);
956 if (likely(rq == task_rq(p)))
958 spin_unlock(&rq->lock);
963 * task_rq_lock - lock the runqueue a given task resides on and disable
964 * interrupts. Note the ordering: we can safely lookup the task_rq without
965 * explicitly disabling preemption.
967 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
973 local_irq_save(*flags);
975 spin_lock(&rq->lock);
976 if (likely(rq == task_rq(p)))
978 spin_unlock_irqrestore(&rq->lock, *flags);
982 void task_rq_unlock_wait(struct task_struct *p)
984 struct rq *rq = task_rq(p);
986 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
987 spin_unlock_wait(&rq->lock);
990 static void __task_rq_unlock(struct rq *rq)
993 spin_unlock(&rq->lock);
996 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
999 spin_unlock_irqrestore(&rq->lock, *flags);
1003 * this_rq_lock - lock this runqueue and disable interrupts.
1005 static struct rq *this_rq_lock(void)
1006 __acquires(rq->lock)
1010 local_irq_disable();
1012 spin_lock(&rq->lock);
1017 #ifdef CONFIG_SCHED_HRTICK
1019 * Use HR-timers to deliver accurate preemption points.
1021 * Its all a bit involved since we cannot program an hrt while holding the
1022 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1025 * When we get rescheduled we reprogram the hrtick_timer outside of the
1031 * - enabled by features
1032 * - hrtimer is actually high res
1034 static inline int hrtick_enabled(struct rq *rq)
1036 if (!sched_feat(HRTICK))
1038 if (!cpu_active(cpu_of(rq)))
1040 return hrtimer_is_hres_active(&rq->hrtick_timer);
1043 static void hrtick_clear(struct rq *rq)
1045 if (hrtimer_active(&rq->hrtick_timer))
1046 hrtimer_cancel(&rq->hrtick_timer);
1050 * High-resolution timer tick.
1051 * Runs from hardirq context with interrupts disabled.
1053 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1055 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1057 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1059 spin_lock(&rq->lock);
1060 update_rq_clock(rq);
1061 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1062 spin_unlock(&rq->lock);
1064 return HRTIMER_NORESTART;
1069 * called from hardirq (IPI) context
1071 static void __hrtick_start(void *arg)
1073 struct rq *rq = arg;
1075 spin_lock(&rq->lock);
1076 hrtimer_restart(&rq->hrtick_timer);
1077 rq->hrtick_csd_pending = 0;
1078 spin_unlock(&rq->lock);
1082 * Called to set the hrtick timer state.
1084 * called with rq->lock held and irqs disabled
1086 static void hrtick_start(struct rq *rq, u64 delay)
1088 struct hrtimer *timer = &rq->hrtick_timer;
1089 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1091 hrtimer_set_expires(timer, time);
1093 if (rq == this_rq()) {
1094 hrtimer_restart(timer);
1095 } else if (!rq->hrtick_csd_pending) {
1096 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1097 rq->hrtick_csd_pending = 1;
1102 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1104 int cpu = (int)(long)hcpu;
1107 case CPU_UP_CANCELED:
1108 case CPU_UP_CANCELED_FROZEN:
1109 case CPU_DOWN_PREPARE:
1110 case CPU_DOWN_PREPARE_FROZEN:
1112 case CPU_DEAD_FROZEN:
1113 hrtick_clear(cpu_rq(cpu));
1120 static __init void init_hrtick(void)
1122 hotcpu_notifier(hotplug_hrtick, 0);
1126 * Called to set the hrtick timer state.
1128 * called with rq->lock held and irqs disabled
1130 static void hrtick_start(struct rq *rq, u64 delay)
1132 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1135 static inline void init_hrtick(void)
1138 #endif /* CONFIG_SMP */
1140 static void init_rq_hrtick(struct rq *rq)
1143 rq->hrtick_csd_pending = 0;
1145 rq->hrtick_csd.flags = 0;
1146 rq->hrtick_csd.func = __hrtick_start;
1147 rq->hrtick_csd.info = rq;
1150 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1151 rq->hrtick_timer.function = hrtick;
1153 #else /* CONFIG_SCHED_HRTICK */
1154 static inline void hrtick_clear(struct rq *rq)
1158 static inline void init_rq_hrtick(struct rq *rq)
1162 static inline void init_hrtick(void)
1165 #endif /* CONFIG_SCHED_HRTICK */
1168 * resched_task - mark a task 'to be rescheduled now'.
1170 * On UP this means the setting of the need_resched flag, on SMP it
1171 * might also involve a cross-CPU call to trigger the scheduler on
1176 #ifndef tsk_is_polling
1177 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1180 static void resched_task(struct task_struct *p)
1184 assert_spin_locked(&task_rq(p)->lock);
1186 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1189 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1192 if (cpu == smp_processor_id())
1195 /* NEED_RESCHED must be visible before we test polling */
1197 if (!tsk_is_polling(p))
1198 smp_send_reschedule(cpu);
1201 static void resched_cpu(int cpu)
1203 struct rq *rq = cpu_rq(cpu);
1204 unsigned long flags;
1206 if (!spin_trylock_irqsave(&rq->lock, flags))
1208 resched_task(cpu_curr(cpu));
1209 spin_unlock_irqrestore(&rq->lock, flags);
1214 * When add_timer_on() enqueues a timer into the timer wheel of an
1215 * idle CPU then this timer might expire before the next timer event
1216 * which is scheduled to wake up that CPU. In case of a completely
1217 * idle system the next event might even be infinite time into the
1218 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1219 * leaves the inner idle loop so the newly added timer is taken into
1220 * account when the CPU goes back to idle and evaluates the timer
1221 * wheel for the next timer event.
1223 void wake_up_idle_cpu(int cpu)
1225 struct rq *rq = cpu_rq(cpu);
1227 if (cpu == smp_processor_id())
1231 * This is safe, as this function is called with the timer
1232 * wheel base lock of (cpu) held. When the CPU is on the way
1233 * to idle and has not yet set rq->curr to idle then it will
1234 * be serialized on the timer wheel base lock and take the new
1235 * timer into account automatically.
1237 if (rq->curr != rq->idle)
1241 * We can set TIF_RESCHED on the idle task of the other CPU
1242 * lockless. The worst case is that the other CPU runs the
1243 * idle task through an additional NOOP schedule()
1245 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1247 /* NEED_RESCHED must be visible before we test polling */
1249 if (!tsk_is_polling(rq->idle))
1250 smp_send_reschedule(cpu);
1252 #endif /* CONFIG_NO_HZ */
1254 #else /* !CONFIG_SMP */
1255 static void resched_task(struct task_struct *p)
1257 assert_spin_locked(&task_rq(p)->lock);
1258 set_tsk_need_resched(p);
1260 #endif /* CONFIG_SMP */
1262 #if BITS_PER_LONG == 32
1263 # define WMULT_CONST (~0UL)
1265 # define WMULT_CONST (1UL << 32)
1268 #define WMULT_SHIFT 32
1271 * Shift right and round:
1273 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1276 * delta *= weight / lw
1278 static unsigned long
1279 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1280 struct load_weight *lw)
1284 if (!lw->inv_weight) {
1285 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1288 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1292 tmp = (u64)delta_exec * weight;
1294 * Check whether we'd overflow the 64-bit multiplication:
1296 if (unlikely(tmp > WMULT_CONST))
1297 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1300 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1302 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1305 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1311 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1318 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1319 * of tasks with abnormal "nice" values across CPUs the contribution that
1320 * each task makes to its run queue's load is weighted according to its
1321 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1322 * scaled version of the new time slice allocation that they receive on time
1326 #define WEIGHT_IDLEPRIO 3
1327 #define WMULT_IDLEPRIO 1431655765
1330 * Nice levels are multiplicative, with a gentle 10% change for every
1331 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1332 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1333 * that remained on nice 0.
1335 * The "10% effect" is relative and cumulative: from _any_ nice level,
1336 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1337 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1338 * If a task goes up by ~10% and another task goes down by ~10% then
1339 * the relative distance between them is ~25%.)
1341 static const int prio_to_weight[40] = {
1342 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1343 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1344 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1345 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1346 /* 0 */ 1024, 820, 655, 526, 423,
1347 /* 5 */ 335, 272, 215, 172, 137,
1348 /* 10 */ 110, 87, 70, 56, 45,
1349 /* 15 */ 36, 29, 23, 18, 15,
1353 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1355 * In cases where the weight does not change often, we can use the
1356 * precalculated inverse to speed up arithmetics by turning divisions
1357 * into multiplications:
1359 static const u32 prio_to_wmult[40] = {
1360 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1361 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1362 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1363 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1364 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1365 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1366 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1367 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1370 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1373 * runqueue iterator, to support SMP load-balancing between different
1374 * scheduling classes, without having to expose their internal data
1375 * structures to the load-balancing proper:
1377 struct rq_iterator {
1379 struct task_struct *(*start)(void *);
1380 struct task_struct *(*next)(void *);
1384 static unsigned long
1385 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1386 unsigned long max_load_move, struct sched_domain *sd,
1387 enum cpu_idle_type idle, int *all_pinned,
1388 int *this_best_prio, struct rq_iterator *iterator);
1391 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1392 struct sched_domain *sd, enum cpu_idle_type idle,
1393 struct rq_iterator *iterator);
1396 /* Time spent by the tasks of the cpu accounting group executing in ... */
1397 enum cpuacct_stat_index {
1398 CPUACCT_STAT_USER, /* ... user mode */
1399 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1401 CPUACCT_STAT_NSTATS,
1404 #ifdef CONFIG_CGROUP_CPUACCT
1405 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1406 static void cpuacct_update_stats(struct task_struct *tsk,
1407 enum cpuacct_stat_index idx, cputime_t val);
1409 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1410 static inline void cpuacct_update_stats(struct task_struct *tsk,
1411 enum cpuacct_stat_index idx, cputime_t val) {}
1414 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1416 update_load_add(&rq->load, load);
1419 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1421 update_load_sub(&rq->load, load);
1424 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1425 typedef int (*tg_visitor)(struct task_group *, void *);
1428 * Iterate the full tree, calling @down when first entering a node and @up when
1429 * leaving it for the final time.
1431 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1433 struct task_group *parent, *child;
1437 parent = &root_task_group;
1439 ret = (*down)(parent, data);
1442 list_for_each_entry_rcu(child, &parent->children, siblings) {
1449 ret = (*up)(parent, data);
1454 parent = parent->parent;
1463 static int tg_nop(struct task_group *tg, void *data)
1470 static unsigned long source_load(int cpu, int type);
1471 static unsigned long target_load(int cpu, int type);
1472 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1474 static unsigned long cpu_avg_load_per_task(int cpu)
1476 struct rq *rq = cpu_rq(cpu);
1477 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1480 rq->avg_load_per_task = rq->load.weight / nr_running;
1482 rq->avg_load_per_task = 0;
1484 return rq->avg_load_per_task;
1487 #ifdef CONFIG_FAIR_GROUP_SCHED
1489 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1492 * Calculate and set the cpu's group shares.
1495 update_group_shares_cpu(struct task_group *tg, int cpu,
1496 unsigned long sd_shares, unsigned long sd_rq_weight)
1498 unsigned long shares;
1499 unsigned long rq_weight;
1504 rq_weight = tg->cfs_rq[cpu]->rq_weight;
1507 * \Sum shares * rq_weight
1508 * shares = -----------------------
1512 shares = (sd_shares * rq_weight) / sd_rq_weight;
1513 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1515 if (abs(shares - tg->se[cpu]->load.weight) >
1516 sysctl_sched_shares_thresh) {
1517 struct rq *rq = cpu_rq(cpu);
1518 unsigned long flags;
1520 spin_lock_irqsave(&rq->lock, flags);
1521 tg->cfs_rq[cpu]->shares = shares;
1523 __set_se_shares(tg->se[cpu], shares);
1524 spin_unlock_irqrestore(&rq->lock, flags);
1529 * Re-compute the task group their per cpu shares over the given domain.
1530 * This needs to be done in a bottom-up fashion because the rq weight of a
1531 * parent group depends on the shares of its child groups.
1533 static int tg_shares_up(struct task_group *tg, void *data)
1535 unsigned long weight, rq_weight = 0;
1536 unsigned long shares = 0;
1537 struct sched_domain *sd = data;
1540 for_each_cpu(i, sched_domain_span(sd)) {
1542 * If there are currently no tasks on the cpu pretend there
1543 * is one of average load so that when a new task gets to
1544 * run here it will not get delayed by group starvation.
1546 weight = tg->cfs_rq[i]->load.weight;
1548 weight = NICE_0_LOAD;
1550 tg->cfs_rq[i]->rq_weight = weight;
1551 rq_weight += weight;
1552 shares += tg->cfs_rq[i]->shares;
1555 if ((!shares && rq_weight) || shares > tg->shares)
1556 shares = tg->shares;
1558 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1559 shares = tg->shares;
1561 for_each_cpu(i, sched_domain_span(sd))
1562 update_group_shares_cpu(tg, i, shares, rq_weight);
1568 * Compute the cpu's hierarchical load factor for each task group.
1569 * This needs to be done in a top-down fashion because the load of a child
1570 * group is a fraction of its parents load.
1572 static int tg_load_down(struct task_group *tg, void *data)
1575 long cpu = (long)data;
1578 load = cpu_rq(cpu)->load.weight;
1580 load = tg->parent->cfs_rq[cpu]->h_load;
1581 load *= tg->cfs_rq[cpu]->shares;
1582 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1585 tg->cfs_rq[cpu]->h_load = load;
1590 static void update_shares(struct sched_domain *sd)
1592 u64 now = cpu_clock(raw_smp_processor_id());
1593 s64 elapsed = now - sd->last_update;
1595 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1596 sd->last_update = now;
1597 walk_tg_tree(tg_nop, tg_shares_up, sd);
1601 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1603 spin_unlock(&rq->lock);
1605 spin_lock(&rq->lock);
1608 static void update_h_load(long cpu)
1610 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1615 static inline void update_shares(struct sched_domain *sd)
1619 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1626 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1628 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1629 __releases(this_rq->lock)
1630 __acquires(busiest->lock)
1631 __acquires(this_rq->lock)
1635 if (unlikely(!irqs_disabled())) {
1636 /* printk() doesn't work good under rq->lock */
1637 spin_unlock(&this_rq->lock);
1640 if (unlikely(!spin_trylock(&busiest->lock))) {
1641 if (busiest < this_rq) {
1642 spin_unlock(&this_rq->lock);
1643 spin_lock(&busiest->lock);
1644 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1647 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1652 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1653 __releases(busiest->lock)
1655 spin_unlock(&busiest->lock);
1656 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1660 #ifdef CONFIG_FAIR_GROUP_SCHED
1661 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1664 cfs_rq->shares = shares;
1669 #include "sched_stats.h"
1670 #include "sched_idletask.c"
1671 #include "sched_fair.c"
1672 #include "sched_rt.c"
1673 #ifdef CONFIG_SCHED_DEBUG
1674 # include "sched_debug.c"
1677 #define sched_class_highest (&rt_sched_class)
1678 #define for_each_class(class) \
1679 for (class = sched_class_highest; class; class = class->next)
1681 static void inc_nr_running(struct rq *rq)
1686 static void dec_nr_running(struct rq *rq)
1691 static void set_load_weight(struct task_struct *p)
1693 if (task_has_rt_policy(p)) {
1694 p->se.load.weight = prio_to_weight[0] * 2;
1695 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1700 * SCHED_IDLE tasks get minimal weight:
1702 if (p->policy == SCHED_IDLE) {
1703 p->se.load.weight = WEIGHT_IDLEPRIO;
1704 p->se.load.inv_weight = WMULT_IDLEPRIO;
1708 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1709 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1712 static void update_avg(u64 *avg, u64 sample)
1714 s64 diff = sample - *avg;
1718 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1720 sched_info_queued(p);
1721 p->sched_class->enqueue_task(rq, p, wakeup);
1725 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1727 if (sleep && p->se.last_wakeup) {
1728 update_avg(&p->se.avg_overlap,
1729 p->se.sum_exec_runtime - p->se.last_wakeup);
1730 p->se.last_wakeup = 0;
1733 sched_info_dequeued(p);
1734 p->sched_class->dequeue_task(rq, p, sleep);
1739 * __normal_prio - return the priority that is based on the static prio
1741 static inline int __normal_prio(struct task_struct *p)
1743 return p->static_prio;
1747 * Calculate the expected normal priority: i.e. priority
1748 * without taking RT-inheritance into account. Might be
1749 * boosted by interactivity modifiers. Changes upon fork,
1750 * setprio syscalls, and whenever the interactivity
1751 * estimator recalculates.
1753 static inline int normal_prio(struct task_struct *p)
1757 if (task_has_rt_policy(p))
1758 prio = MAX_RT_PRIO-1 - p->rt_priority;
1760 prio = __normal_prio(p);
1765 * Calculate the current priority, i.e. the priority
1766 * taken into account by the scheduler. This value might
1767 * be boosted by RT tasks, or might be boosted by
1768 * interactivity modifiers. Will be RT if the task got
1769 * RT-boosted. If not then it returns p->normal_prio.
1771 static int effective_prio(struct task_struct *p)
1773 p->normal_prio = normal_prio(p);
1775 * If we are RT tasks or we were boosted to RT priority,
1776 * keep the priority unchanged. Otherwise, update priority
1777 * to the normal priority:
1779 if (!rt_prio(p->prio))
1780 return p->normal_prio;
1785 * activate_task - move a task to the runqueue.
1787 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1789 if (task_contributes_to_load(p))
1790 rq->nr_uninterruptible--;
1792 enqueue_task(rq, p, wakeup);
1797 * deactivate_task - remove a task from the runqueue.
1799 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1801 if (task_contributes_to_load(p))
1802 rq->nr_uninterruptible++;
1804 dequeue_task(rq, p, sleep);
1809 * task_curr - is this task currently executing on a CPU?
1810 * @p: the task in question.
1812 inline int task_curr(const struct task_struct *p)
1814 return cpu_curr(task_cpu(p)) == p;
1817 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1819 set_task_rq(p, cpu);
1822 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1823 * successfuly executed on another CPU. We must ensure that updates of
1824 * per-task data have been completed by this moment.
1827 task_thread_info(p)->cpu = cpu;
1831 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1832 const struct sched_class *prev_class,
1833 int oldprio, int running)
1835 if (prev_class != p->sched_class) {
1836 if (prev_class->switched_from)
1837 prev_class->switched_from(rq, p, running);
1838 p->sched_class->switched_to(rq, p, running);
1840 p->sched_class->prio_changed(rq, p, oldprio, running);
1845 /* Used instead of source_load when we know the type == 0 */
1846 static unsigned long weighted_cpuload(const int cpu)
1848 return cpu_rq(cpu)->load.weight;
1852 * Is this task likely cache-hot:
1855 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1860 * Buddy candidates are cache hot:
1862 if (sched_feat(CACHE_HOT_BUDDY) &&
1863 (&p->se == cfs_rq_of(&p->se)->next ||
1864 &p->se == cfs_rq_of(&p->se)->last))
1867 if (p->sched_class != &fair_sched_class)
1870 if (sysctl_sched_migration_cost == -1)
1872 if (sysctl_sched_migration_cost == 0)
1875 delta = now - p->se.exec_start;
1877 return delta < (s64)sysctl_sched_migration_cost;
1881 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1883 int old_cpu = task_cpu(p);
1884 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1885 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1886 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1889 clock_offset = old_rq->clock - new_rq->clock;
1891 trace_sched_migrate_task(p, task_cpu(p), new_cpu);
1893 #ifdef CONFIG_SCHEDSTATS
1894 if (p->se.wait_start)
1895 p->se.wait_start -= clock_offset;
1896 if (p->se.sleep_start)
1897 p->se.sleep_start -= clock_offset;
1898 if (p->se.block_start)
1899 p->se.block_start -= clock_offset;
1900 if (old_cpu != new_cpu) {
1901 schedstat_inc(p, se.nr_migrations);
1902 if (task_hot(p, old_rq->clock, NULL))
1903 schedstat_inc(p, se.nr_forced2_migrations);
1906 p->se.vruntime -= old_cfsrq->min_vruntime -
1907 new_cfsrq->min_vruntime;
1909 __set_task_cpu(p, new_cpu);
1912 struct migration_req {
1913 struct list_head list;
1915 struct task_struct *task;
1918 struct completion done;
1922 * The task's runqueue lock must be held.
1923 * Returns true if you have to wait for migration thread.
1926 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1928 struct rq *rq = task_rq(p);
1931 * If the task is not on a runqueue (and not running), then
1932 * it is sufficient to simply update the task's cpu field.
1934 if (!p->se.on_rq && !task_running(rq, p)) {
1935 set_task_cpu(p, dest_cpu);
1939 init_completion(&req->done);
1941 req->dest_cpu = dest_cpu;
1942 list_add(&req->list, &rq->migration_queue);
1948 * wait_task_inactive - wait for a thread to unschedule.
1950 * If @match_state is nonzero, it's the @p->state value just checked and
1951 * not expected to change. If it changes, i.e. @p might have woken up,
1952 * then return zero. When we succeed in waiting for @p to be off its CPU,
1953 * we return a positive number (its total switch count). If a second call
1954 * a short while later returns the same number, the caller can be sure that
1955 * @p has remained unscheduled the whole time.
1957 * The caller must ensure that the task *will* unschedule sometime soon,
1958 * else this function might spin for a *long* time. This function can't
1959 * be called with interrupts off, or it may introduce deadlock with
1960 * smp_call_function() if an IPI is sent by the same process we are
1961 * waiting to become inactive.
1963 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1965 unsigned long flags;
1972 * We do the initial early heuristics without holding
1973 * any task-queue locks at all. We'll only try to get
1974 * the runqueue lock when things look like they will
1980 * If the task is actively running on another CPU
1981 * still, just relax and busy-wait without holding
1984 * NOTE! Since we don't hold any locks, it's not
1985 * even sure that "rq" stays as the right runqueue!
1986 * But we don't care, since "task_running()" will
1987 * return false if the runqueue has changed and p
1988 * is actually now running somewhere else!
1990 while (task_running(rq, p)) {
1991 if (match_state && unlikely(p->state != match_state))
1997 * Ok, time to look more closely! We need the rq
1998 * lock now, to be *sure*. If we're wrong, we'll
1999 * just go back and repeat.
2001 rq = task_rq_lock(p, &flags);
2002 trace_sched_wait_task(rq, p);
2003 running = task_running(rq, p);
2004 on_rq = p->se.on_rq;
2006 if (!match_state || p->state == match_state)
2007 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2008 task_rq_unlock(rq, &flags);
2011 * If it changed from the expected state, bail out now.
2013 if (unlikely(!ncsw))
2017 * Was it really running after all now that we
2018 * checked with the proper locks actually held?
2020 * Oops. Go back and try again..
2022 if (unlikely(running)) {
2028 * It's not enough that it's not actively running,
2029 * it must be off the runqueue _entirely_, and not
2032 * So if it wa still runnable (but just not actively
2033 * running right now), it's preempted, and we should
2034 * yield - it could be a while.
2036 if (unlikely(on_rq)) {
2037 schedule_timeout_uninterruptible(1);
2042 * Ahh, all good. It wasn't running, and it wasn't
2043 * runnable, which means that it will never become
2044 * running in the future either. We're all done!
2053 * kick_process - kick a running thread to enter/exit the kernel
2054 * @p: the to-be-kicked thread
2056 * Cause a process which is running on another CPU to enter
2057 * kernel-mode, without any delay. (to get signals handled.)
2059 * NOTE: this function doesnt have to take the runqueue lock,
2060 * because all it wants to ensure is that the remote task enters
2061 * the kernel. If the IPI races and the task has been migrated
2062 * to another CPU then no harm is done and the purpose has been
2065 void kick_process(struct task_struct *p)
2071 if ((cpu != smp_processor_id()) && task_curr(p))
2072 smp_send_reschedule(cpu);
2077 * Return a low guess at the load of a migration-source cpu weighted
2078 * according to the scheduling class and "nice" value.
2080 * We want to under-estimate the load of migration sources, to
2081 * balance conservatively.
2083 static unsigned long source_load(int cpu, int type)
2085 struct rq *rq = cpu_rq(cpu);
2086 unsigned long total = weighted_cpuload(cpu);
2088 if (type == 0 || !sched_feat(LB_BIAS))
2091 return min(rq->cpu_load[type-1], total);
2095 * Return a high guess at the load of a migration-target cpu weighted
2096 * according to the scheduling class and "nice" value.
2098 static unsigned long target_load(int cpu, int type)
2100 struct rq *rq = cpu_rq(cpu);
2101 unsigned long total = weighted_cpuload(cpu);
2103 if (type == 0 || !sched_feat(LB_BIAS))
2106 return max(rq->cpu_load[type-1], total);
2110 * find_idlest_group finds and returns the least busy CPU group within the
2113 static struct sched_group *
2114 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2116 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2117 unsigned long min_load = ULONG_MAX, this_load = 0;
2118 int load_idx = sd->forkexec_idx;
2119 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2122 unsigned long load, avg_load;
2126 /* Skip over this group if it has no CPUs allowed */
2127 if (!cpumask_intersects(sched_group_cpus(group),
2131 local_group = cpumask_test_cpu(this_cpu,
2132 sched_group_cpus(group));
2134 /* Tally up the load of all CPUs in the group */
2137 for_each_cpu(i, sched_group_cpus(group)) {
2138 /* Bias balancing toward cpus of our domain */
2140 load = source_load(i, load_idx);
2142 load = target_load(i, load_idx);
2147 /* Adjust by relative CPU power of the group */
2148 avg_load = sg_div_cpu_power(group,
2149 avg_load * SCHED_LOAD_SCALE);
2152 this_load = avg_load;
2154 } else if (avg_load < min_load) {
2155 min_load = avg_load;
2158 } while (group = group->next, group != sd->groups);
2160 if (!idlest || 100*this_load < imbalance*min_load)
2166 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2169 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2171 unsigned long load, min_load = ULONG_MAX;
2175 /* Traverse only the allowed CPUs */
2176 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2177 load = weighted_cpuload(i);
2179 if (load < min_load || (load == min_load && i == this_cpu)) {
2189 * sched_balance_self: balance the current task (running on cpu) in domains
2190 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2193 * Balance, ie. select the least loaded group.
2195 * Returns the target CPU number, or the same CPU if no balancing is needed.
2197 * preempt must be disabled.
2199 static int sched_balance_self(int cpu, int flag)
2201 struct task_struct *t = current;
2202 struct sched_domain *tmp, *sd = NULL;
2204 for_each_domain(cpu, tmp) {
2206 * If power savings logic is enabled for a domain, stop there.
2208 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2210 if (tmp->flags & flag)
2218 struct sched_group *group;
2219 int new_cpu, weight;
2221 if (!(sd->flags & flag)) {
2226 group = find_idlest_group(sd, t, cpu);
2232 new_cpu = find_idlest_cpu(group, t, cpu);
2233 if (new_cpu == -1 || new_cpu == cpu) {
2234 /* Now try balancing at a lower domain level of cpu */
2239 /* Now try balancing at a lower domain level of new_cpu */
2241 weight = cpumask_weight(sched_domain_span(sd));
2243 for_each_domain(cpu, tmp) {
2244 if (weight <= cpumask_weight(sched_domain_span(tmp)))
2246 if (tmp->flags & flag)
2249 /* while loop will break here if sd == NULL */
2255 #endif /* CONFIG_SMP */
2258 * try_to_wake_up - wake up a thread
2259 * @p: the to-be-woken-up thread
2260 * @state: the mask of task states that can be woken
2261 * @sync: do a synchronous wakeup?
2263 * Put it on the run-queue if it's not already there. The "current"
2264 * thread is always on the run-queue (except when the actual
2265 * re-schedule is in progress), and as such you're allowed to do
2266 * the simpler "current->state = TASK_RUNNING" to mark yourself
2267 * runnable without the overhead of this.
2269 * returns failure only if the task is already active.
2271 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2273 int cpu, orig_cpu, this_cpu, success = 0;
2274 unsigned long flags;
2278 if (!sched_feat(SYNC_WAKEUPS))
2282 if (current->se.avg_overlap < sysctl_sched_migration_cost &&
2283 p->se.avg_overlap < sysctl_sched_migration_cost)
2286 if (current->se.avg_overlap >= sysctl_sched_migration_cost ||
2287 p->se.avg_overlap >= sysctl_sched_migration_cost)
2292 if (sched_feat(LB_WAKEUP_UPDATE)) {
2293 struct sched_domain *sd;
2295 this_cpu = raw_smp_processor_id();
2298 for_each_domain(this_cpu, sd) {
2299 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2308 rq = task_rq_lock(p, &flags);
2309 update_rq_clock(rq);
2310 old_state = p->state;
2311 if (!(old_state & state))
2319 this_cpu = smp_processor_id();
2322 if (unlikely(task_running(rq, p)))
2325 cpu = p->sched_class->select_task_rq(p, sync);
2326 if (cpu != orig_cpu) {
2327 set_task_cpu(p, cpu);
2328 task_rq_unlock(rq, &flags);
2329 /* might preempt at this point */
2330 rq = task_rq_lock(p, &flags);
2331 old_state = p->state;
2332 if (!(old_state & state))
2337 this_cpu = smp_processor_id();
2341 #ifdef CONFIG_SCHEDSTATS
2342 schedstat_inc(rq, ttwu_count);
2343 if (cpu == this_cpu)
2344 schedstat_inc(rq, ttwu_local);
2346 struct sched_domain *sd;
2347 for_each_domain(this_cpu, sd) {
2348 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2349 schedstat_inc(sd, ttwu_wake_remote);
2354 #endif /* CONFIG_SCHEDSTATS */
2357 #endif /* CONFIG_SMP */
2358 schedstat_inc(p, se.nr_wakeups);
2360 schedstat_inc(p, se.nr_wakeups_sync);
2361 if (orig_cpu != cpu)
2362 schedstat_inc(p, se.nr_wakeups_migrate);
2363 if (cpu == this_cpu)
2364 schedstat_inc(p, se.nr_wakeups_local);
2366 schedstat_inc(p, se.nr_wakeups_remote);
2367 activate_task(rq, p, 1);
2371 trace_sched_wakeup(rq, p, success);
2372 check_preempt_curr(rq, p, sync);
2374 p->state = TASK_RUNNING;
2376 if (p->sched_class->task_wake_up)
2377 p->sched_class->task_wake_up(rq, p);
2380 current->se.last_wakeup = current->se.sum_exec_runtime;
2382 task_rq_unlock(rq, &flags);
2387 int wake_up_process(struct task_struct *p)
2389 return try_to_wake_up(p, TASK_ALL, 0);
2391 EXPORT_SYMBOL(wake_up_process);
2393 int wake_up_state(struct task_struct *p, unsigned int state)
2395 return try_to_wake_up(p, state, 0);
2399 * Perform scheduler related setup for a newly forked process p.
2400 * p is forked by current.
2402 * __sched_fork() is basic setup used by init_idle() too:
2404 static void __sched_fork(struct task_struct *p)
2406 p->se.exec_start = 0;
2407 p->se.sum_exec_runtime = 0;
2408 p->se.prev_sum_exec_runtime = 0;
2409 p->se.last_wakeup = 0;
2410 p->se.avg_overlap = 0;
2412 #ifdef CONFIG_SCHEDSTATS
2413 p->se.wait_start = 0;
2414 p->se.sum_sleep_runtime = 0;
2415 p->se.sleep_start = 0;
2416 p->se.block_start = 0;
2417 p->se.sleep_max = 0;
2418 p->se.block_max = 0;
2420 p->se.slice_max = 0;
2424 INIT_LIST_HEAD(&p->rt.run_list);
2426 INIT_LIST_HEAD(&p->se.group_node);
2428 #ifdef CONFIG_PREEMPT_NOTIFIERS
2429 INIT_HLIST_HEAD(&p->preempt_notifiers);
2433 * We mark the process as running here, but have not actually
2434 * inserted it onto the runqueue yet. This guarantees that
2435 * nobody will actually run it, and a signal or other external
2436 * event cannot wake it up and insert it on the runqueue either.
2438 p->state = TASK_RUNNING;
2442 * fork()/clone()-time setup:
2444 void sched_fork(struct task_struct *p, int clone_flags)
2446 int cpu = get_cpu();
2451 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2453 set_task_cpu(p, cpu);
2456 * Make sure we do not leak PI boosting priority to the child:
2458 p->prio = current->normal_prio;
2459 if (!rt_prio(p->prio))
2460 p->sched_class = &fair_sched_class;
2462 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2463 if (likely(sched_info_on()))
2464 memset(&p->sched_info, 0, sizeof(p->sched_info));
2466 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2469 #ifdef CONFIG_PREEMPT
2470 /* Want to start with kernel preemption disabled. */
2471 task_thread_info(p)->preempt_count = 1;
2477 * wake_up_new_task - wake up a newly created task for the first time.
2479 * This function will do some initial scheduler statistics housekeeping
2480 * that must be done for every newly created context, then puts the task
2481 * on the runqueue and wakes it.
2483 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2485 unsigned long flags;
2488 rq = task_rq_lock(p, &flags);
2489 BUG_ON(p->state != TASK_RUNNING);
2490 update_rq_clock(rq);
2492 p->prio = effective_prio(p);
2494 if (!p->sched_class->task_new || !current->se.on_rq) {
2495 activate_task(rq, p, 0);
2498 * Let the scheduling class do new task startup
2499 * management (if any):
2501 p->sched_class->task_new(rq, p);
2504 trace_sched_wakeup_new(rq, p, 1);
2505 check_preempt_curr(rq, p, 0);
2507 if (p->sched_class->task_wake_up)
2508 p->sched_class->task_wake_up(rq, p);
2510 task_rq_unlock(rq, &flags);
2513 #ifdef CONFIG_PREEMPT_NOTIFIERS
2516 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2517 * @notifier: notifier struct to register
2519 void preempt_notifier_register(struct preempt_notifier *notifier)
2521 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
2523 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2526 * preempt_notifier_unregister - no longer interested in preemption notifications
2527 * @notifier: notifier struct to unregister
2529 * This is safe to call from within a preemption notifier.
2531 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2533 hlist_del(¬ifier->link);
2535 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2537 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2539 struct preempt_notifier *notifier;
2540 struct hlist_node *node;
2542 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2543 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2547 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2548 struct task_struct *next)
2550 struct preempt_notifier *notifier;
2551 struct hlist_node *node;
2553 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2554 notifier->ops->sched_out(notifier, next);
2557 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2559 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2564 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2565 struct task_struct *next)
2569 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2572 * prepare_task_switch - prepare to switch tasks
2573 * @rq: the runqueue preparing to switch
2574 * @prev: the current task that is being switched out
2575 * @next: the task we are going to switch to.
2577 * This is called with the rq lock held and interrupts off. It must
2578 * be paired with a subsequent finish_task_switch after the context
2581 * prepare_task_switch sets up locking and calls architecture specific
2585 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2586 struct task_struct *next)
2588 fire_sched_out_preempt_notifiers(prev, next);
2589 prepare_lock_switch(rq, next);
2590 prepare_arch_switch(next);
2594 * finish_task_switch - clean up after a task-switch
2595 * @rq: runqueue associated with task-switch
2596 * @prev: the thread we just switched away from.
2598 * finish_task_switch must be called after the context switch, paired
2599 * with a prepare_task_switch call before the context switch.
2600 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2601 * and do any other architecture-specific cleanup actions.
2603 * Note that we may have delayed dropping an mm in context_switch(). If
2604 * so, we finish that here outside of the runqueue lock. (Doing it
2605 * with the lock held can cause deadlocks; see schedule() for
2608 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2609 __releases(rq->lock)
2611 struct mm_struct *mm = rq->prev_mm;
2617 * A task struct has one reference for the use as "current".
2618 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2619 * schedule one last time. The schedule call will never return, and
2620 * the scheduled task must drop that reference.
2621 * The test for TASK_DEAD must occur while the runqueue locks are
2622 * still held, otherwise prev could be scheduled on another cpu, die
2623 * there before we look at prev->state, and then the reference would
2625 * Manfred Spraul <manfred@colorfullife.com>
2627 prev_state = prev->state;
2628 finish_arch_switch(prev);
2629 finish_lock_switch(rq, prev);
2631 if (current->sched_class->post_schedule)
2632 current->sched_class->post_schedule(rq);
2635 fire_sched_in_preempt_notifiers(current);
2638 if (unlikely(prev_state == TASK_DEAD)) {
2640 * Remove function-return probe instances associated with this
2641 * task and put them back on the free list.
2643 kprobe_flush_task(prev);
2644 put_task_struct(prev);
2649 * schedule_tail - first thing a freshly forked thread must call.
2650 * @prev: the thread we just switched away from.
2652 asmlinkage void schedule_tail(struct task_struct *prev)
2653 __releases(rq->lock)
2655 struct rq *rq = this_rq();
2657 finish_task_switch(rq, prev);
2658 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2659 /* In this case, finish_task_switch does not reenable preemption */
2662 if (current->set_child_tid)
2663 put_user(task_pid_vnr(current), current->set_child_tid);
2667 * context_switch - switch to the new MM and the new
2668 * thread's register state.
2671 context_switch(struct rq *rq, struct task_struct *prev,
2672 struct task_struct *next)
2674 struct mm_struct *mm, *oldmm;
2676 prepare_task_switch(rq, prev, next);
2677 trace_sched_switch(rq, prev, next);
2679 oldmm = prev->active_mm;
2681 * For paravirt, this is coupled with an exit in switch_to to
2682 * combine the page table reload and the switch backend into
2685 arch_enter_lazy_cpu_mode();
2687 if (unlikely(!mm)) {
2688 next->active_mm = oldmm;
2689 atomic_inc(&oldmm->mm_count);
2690 enter_lazy_tlb(oldmm, next);
2692 switch_mm(oldmm, mm, next);
2694 if (unlikely(!prev->mm)) {
2695 prev->active_mm = NULL;
2696 rq->prev_mm = oldmm;
2699 * Since the runqueue lock will be released by the next
2700 * task (which is an invalid locking op but in the case
2701 * of the scheduler it's an obvious special-case), so we
2702 * do an early lockdep release here:
2704 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2705 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2708 /* Here we just switch the register state and the stack. */
2709 switch_to(prev, next, prev);
2713 * this_rq must be evaluated again because prev may have moved
2714 * CPUs since it called schedule(), thus the 'rq' on its stack
2715 * frame will be invalid.
2717 finish_task_switch(this_rq(), prev);
2721 * nr_running, nr_uninterruptible and nr_context_switches:
2723 * externally visible scheduler statistics: current number of runnable
2724 * threads, current number of uninterruptible-sleeping threads, total
2725 * number of context switches performed since bootup.
2727 unsigned long nr_running(void)
2729 unsigned long i, sum = 0;
2731 for_each_online_cpu(i)
2732 sum += cpu_rq(i)->nr_running;
2737 unsigned long nr_uninterruptible(void)
2739 unsigned long i, sum = 0;
2741 for_each_possible_cpu(i)
2742 sum += cpu_rq(i)->nr_uninterruptible;
2745 * Since we read the counters lockless, it might be slightly
2746 * inaccurate. Do not allow it to go below zero though:
2748 if (unlikely((long)sum < 0))
2754 unsigned long long nr_context_switches(void)
2757 unsigned long long sum = 0;
2759 for_each_possible_cpu(i)
2760 sum += cpu_rq(i)->nr_switches;
2765 unsigned long nr_iowait(void)
2767 unsigned long i, sum = 0;
2769 for_each_possible_cpu(i)
2770 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2775 unsigned long nr_active(void)
2777 unsigned long i, running = 0, uninterruptible = 0;
2779 for_each_online_cpu(i) {
2780 running += cpu_rq(i)->nr_running;
2781 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2784 if (unlikely((long)uninterruptible < 0))
2785 uninterruptible = 0;
2787 return running + uninterruptible;
2791 * Update rq->cpu_load[] statistics. This function is usually called every
2792 * scheduler tick (TICK_NSEC).
2794 static void update_cpu_load(struct rq *this_rq)
2796 unsigned long this_load = this_rq->load.weight;
2799 this_rq->nr_load_updates++;
2801 /* Update our load: */
2802 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2803 unsigned long old_load, new_load;
2805 /* scale is effectively 1 << i now, and >> i divides by scale */
2807 old_load = this_rq->cpu_load[i];
2808 new_load = this_load;
2810 * Round up the averaging division if load is increasing. This
2811 * prevents us from getting stuck on 9 if the load is 10, for
2814 if (new_load > old_load)
2815 new_load += scale-1;
2816 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2823 * double_rq_lock - safely lock two runqueues
2825 * Note this does not disable interrupts like task_rq_lock,
2826 * you need to do so manually before calling.
2828 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2829 __acquires(rq1->lock)
2830 __acquires(rq2->lock)
2832 BUG_ON(!irqs_disabled());
2834 spin_lock(&rq1->lock);
2835 __acquire(rq2->lock); /* Fake it out ;) */
2838 spin_lock(&rq1->lock);
2839 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2841 spin_lock(&rq2->lock);
2842 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2845 update_rq_clock(rq1);
2846 update_rq_clock(rq2);
2850 * double_rq_unlock - safely unlock two runqueues
2852 * Note this does not restore interrupts like task_rq_unlock,
2853 * you need to do so manually after calling.
2855 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2856 __releases(rq1->lock)
2857 __releases(rq2->lock)
2859 spin_unlock(&rq1->lock);
2861 spin_unlock(&rq2->lock);
2863 __release(rq2->lock);
2867 * If dest_cpu is allowed for this process, migrate the task to it.
2868 * This is accomplished by forcing the cpu_allowed mask to only
2869 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2870 * the cpu_allowed mask is restored.
2872 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2874 struct migration_req req;
2875 unsigned long flags;
2878 rq = task_rq_lock(p, &flags);
2879 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
2880 || unlikely(!cpu_active(dest_cpu)))
2883 /* force the process onto the specified CPU */
2884 if (migrate_task(p, dest_cpu, &req)) {
2885 /* Need to wait for migration thread (might exit: take ref). */
2886 struct task_struct *mt = rq->migration_thread;
2888 get_task_struct(mt);
2889 task_rq_unlock(rq, &flags);
2890 wake_up_process(mt);
2891 put_task_struct(mt);
2892 wait_for_completion(&req.done);
2897 task_rq_unlock(rq, &flags);
2901 * sched_exec - execve() is a valuable balancing opportunity, because at
2902 * this point the task has the smallest effective memory and cache footprint.
2904 void sched_exec(void)
2906 int new_cpu, this_cpu = get_cpu();
2907 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2909 if (new_cpu != this_cpu)
2910 sched_migrate_task(current, new_cpu);
2914 * pull_task - move a task from a remote runqueue to the local runqueue.
2915 * Both runqueues must be locked.
2917 static void pull_task(struct rq *src_rq, struct task_struct *p,
2918 struct rq *this_rq, int this_cpu)
2920 deactivate_task(src_rq, p, 0);
2921 set_task_cpu(p, this_cpu);
2922 activate_task(this_rq, p, 0);
2924 * Note that idle threads have a prio of MAX_PRIO, for this test
2925 * to be always true for them.
2927 check_preempt_curr(this_rq, p, 0);
2931 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2934 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2935 struct sched_domain *sd, enum cpu_idle_type idle,
2939 * We do not migrate tasks that are:
2940 * 1) running (obviously), or
2941 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2942 * 3) are cache-hot on their current CPU.
2944 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
2945 schedstat_inc(p, se.nr_failed_migrations_affine);
2950 if (task_running(rq, p)) {
2951 schedstat_inc(p, se.nr_failed_migrations_running);
2956 * Aggressive migration if:
2957 * 1) task is cache cold, or
2958 * 2) too many balance attempts have failed.
2961 if (!task_hot(p, rq->clock, sd) ||
2962 sd->nr_balance_failed > sd->cache_nice_tries) {
2963 #ifdef CONFIG_SCHEDSTATS
2964 if (task_hot(p, rq->clock, sd)) {
2965 schedstat_inc(sd, lb_hot_gained[idle]);
2966 schedstat_inc(p, se.nr_forced_migrations);
2972 if (task_hot(p, rq->clock, sd)) {
2973 schedstat_inc(p, se.nr_failed_migrations_hot);
2979 static unsigned long
2980 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2981 unsigned long max_load_move, struct sched_domain *sd,
2982 enum cpu_idle_type idle, int *all_pinned,
2983 int *this_best_prio, struct rq_iterator *iterator)
2985 int loops = 0, pulled = 0, pinned = 0;
2986 struct task_struct *p;
2987 long rem_load_move = max_load_move;
2989 if (max_load_move == 0)
2995 * Start the load-balancing iterator:
2997 p = iterator->start(iterator->arg);
2999 if (!p || loops++ > sysctl_sched_nr_migrate)
3002 if ((p->se.load.weight >> 1) > rem_load_move ||
3003 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3004 p = iterator->next(iterator->arg);
3008 pull_task(busiest, p, this_rq, this_cpu);
3010 rem_load_move -= p->se.load.weight;
3013 * We only want to steal up to the prescribed amount of weighted load.
3015 if (rem_load_move > 0) {
3016 if (p->prio < *this_best_prio)
3017 *this_best_prio = p->prio;
3018 p = iterator->next(iterator->arg);
3023 * Right now, this is one of only two places pull_task() is called,
3024 * so we can safely collect pull_task() stats here rather than
3025 * inside pull_task().
3027 schedstat_add(sd, lb_gained[idle], pulled);
3030 *all_pinned = pinned;
3032 return max_load_move - rem_load_move;
3036 * move_tasks tries to move up to max_load_move weighted load from busiest to
3037 * this_rq, as part of a balancing operation within domain "sd".
3038 * Returns 1 if successful and 0 otherwise.
3040 * Called with both runqueues locked.
3042 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3043 unsigned long max_load_move,
3044 struct sched_domain *sd, enum cpu_idle_type idle,
3047 const struct sched_class *class = sched_class_highest;
3048 unsigned long total_load_moved = 0;
3049 int this_best_prio = this_rq->curr->prio;
3053 class->load_balance(this_rq, this_cpu, busiest,
3054 max_load_move - total_load_moved,
3055 sd, idle, all_pinned, &this_best_prio);
3056 class = class->next;
3058 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3061 } while (class && max_load_move > total_load_moved);
3063 return total_load_moved > 0;
3067 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3068 struct sched_domain *sd, enum cpu_idle_type idle,
3069 struct rq_iterator *iterator)
3071 struct task_struct *p = iterator->start(iterator->arg);
3075 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3076 pull_task(busiest, p, this_rq, this_cpu);
3078 * Right now, this is only the second place pull_task()
3079 * is called, so we can safely collect pull_task()
3080 * stats here rather than inside pull_task().
3082 schedstat_inc(sd, lb_gained[idle]);
3086 p = iterator->next(iterator->arg);
3093 * move_one_task tries to move exactly one task from busiest to this_rq, as
3094 * part of active balancing operations within "domain".
3095 * Returns 1 if successful and 0 otherwise.
3097 * Called with both runqueues locked.
3099 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3100 struct sched_domain *sd, enum cpu_idle_type idle)
3102 const struct sched_class *class;
3104 for (class = sched_class_highest; class; class = class->next)
3105 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3112 * find_busiest_group finds and returns the busiest CPU group within the
3113 * domain. It calculates and returns the amount of weighted load which
3114 * should be moved to restore balance via the imbalance parameter.
3116 static struct sched_group *
3117 find_busiest_group(struct sched_domain *sd, int this_cpu,
3118 unsigned long *imbalance, enum cpu_idle_type idle,
3119 int *sd_idle, const struct cpumask *cpus, int *balance)
3121 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3122 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3123 unsigned long max_pull;
3124 unsigned long busiest_load_per_task, busiest_nr_running;
3125 unsigned long this_load_per_task, this_nr_running;
3126 int load_idx, group_imb = 0;
3127 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3128 int power_savings_balance = 1;
3129 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3130 unsigned long min_nr_running = ULONG_MAX;
3131 struct sched_group *group_min = NULL, *group_leader = NULL;
3134 max_load = this_load = total_load = total_pwr = 0;
3135 busiest_load_per_task = busiest_nr_running = 0;
3136 this_load_per_task = this_nr_running = 0;
3138 if (idle == CPU_NOT_IDLE)
3139 load_idx = sd->busy_idx;
3140 else if (idle == CPU_NEWLY_IDLE)
3141 load_idx = sd->newidle_idx;
3143 load_idx = sd->idle_idx;
3146 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
3149 int __group_imb = 0;
3150 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3151 unsigned long sum_nr_running, sum_weighted_load;
3152 unsigned long sum_avg_load_per_task;
3153 unsigned long avg_load_per_task;
3155 local_group = cpumask_test_cpu(this_cpu,
3156 sched_group_cpus(group));
3159 balance_cpu = cpumask_first(sched_group_cpus(group));
3161 /* Tally up the load of all CPUs in the group */
3162 sum_weighted_load = sum_nr_running = avg_load = 0;
3163 sum_avg_load_per_task = avg_load_per_task = 0;
3166 min_cpu_load = ~0UL;
3168 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3169 struct rq *rq = cpu_rq(i);
3171 if (*sd_idle && rq->nr_running)
3174 /* Bias balancing toward cpus of our domain */
3176 if (idle_cpu(i) && !first_idle_cpu) {
3181 load = target_load(i, load_idx);
3183 load = source_load(i, load_idx);
3184 if (load > max_cpu_load)
3185 max_cpu_load = load;
3186 if (min_cpu_load > load)
3187 min_cpu_load = load;
3191 sum_nr_running += rq->nr_running;
3192 sum_weighted_load += weighted_cpuload(i);
3194 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3198 * First idle cpu or the first cpu(busiest) in this sched group
3199 * is eligible for doing load balancing at this and above
3200 * domains. In the newly idle case, we will allow all the cpu's
3201 * to do the newly idle load balance.
3203 if (idle != CPU_NEWLY_IDLE && local_group &&
3204 balance_cpu != this_cpu && balance) {
3209 total_load += avg_load;
3210 total_pwr += group->__cpu_power;
3212 /* Adjust by relative CPU power of the group */
3213 avg_load = sg_div_cpu_power(group,
3214 avg_load * SCHED_LOAD_SCALE);
3218 * Consider the group unbalanced when the imbalance is larger
3219 * than the average weight of two tasks.
3221 * APZ: with cgroup the avg task weight can vary wildly and
3222 * might not be a suitable number - should we keep a
3223 * normalized nr_running number somewhere that negates
3226 avg_load_per_task = sg_div_cpu_power(group,
3227 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3229 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3232 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3235 this_load = avg_load;
3237 this_nr_running = sum_nr_running;
3238 this_load_per_task = sum_weighted_load;
3239 } else if (avg_load > max_load &&
3240 (sum_nr_running > group_capacity || __group_imb)) {
3241 max_load = avg_load;
3243 busiest_nr_running = sum_nr_running;
3244 busiest_load_per_task = sum_weighted_load;
3245 group_imb = __group_imb;
3248 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3250 * Busy processors will not participate in power savings
3253 if (idle == CPU_NOT_IDLE ||
3254 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3258 * If the local group is idle or completely loaded
3259 * no need to do power savings balance at this domain
3261 if (local_group && (this_nr_running >= group_capacity ||
3263 power_savings_balance = 0;
3266 * If a group is already running at full capacity or idle,
3267 * don't include that group in power savings calculations
3269 if (!power_savings_balance || sum_nr_running >= group_capacity
3274 * Calculate the group which has the least non-idle load.
3275 * This is the group from where we need to pick up the load
3278 if ((sum_nr_running < min_nr_running) ||
3279 (sum_nr_running == min_nr_running &&
3280 cpumask_first(sched_group_cpus(group)) >
3281 cpumask_first(sched_group_cpus(group_min)))) {
3283 min_nr_running = sum_nr_running;
3284 min_load_per_task = sum_weighted_load /
3289 * Calculate the group which is almost near its
3290 * capacity but still has some space to pick up some load
3291 * from other group and save more power
3293 if (sum_nr_running <= group_capacity - 1) {
3294 if (sum_nr_running > leader_nr_running ||
3295 (sum_nr_running == leader_nr_running &&
3296 cpumask_first(sched_group_cpus(group)) <
3297 cpumask_first(sched_group_cpus(group_leader)))) {
3298 group_leader = group;
3299 leader_nr_running = sum_nr_running;
3304 group = group->next;
3305 } while (group != sd->groups);
3307 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3310 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3312 if (this_load >= avg_load ||
3313 100*max_load <= sd->imbalance_pct*this_load)
3316 busiest_load_per_task /= busiest_nr_running;
3318 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3321 * We're trying to get all the cpus to the average_load, so we don't
3322 * want to push ourselves above the average load, nor do we wish to
3323 * reduce the max loaded cpu below the average load, as either of these
3324 * actions would just result in more rebalancing later, and ping-pong
3325 * tasks around. Thus we look for the minimum possible imbalance.
3326 * Negative imbalances (*we* are more loaded than anyone else) will
3327 * be counted as no imbalance for these purposes -- we can't fix that
3328 * by pulling tasks to us. Be careful of negative numbers as they'll
3329 * appear as very large values with unsigned longs.
3331 if (max_load <= busiest_load_per_task)
3335 * In the presence of smp nice balancing, certain scenarios can have
3336 * max load less than avg load(as we skip the groups at or below
3337 * its cpu_power, while calculating max_load..)
3339 if (max_load < avg_load) {
3341 goto small_imbalance;
3344 /* Don't want to pull so many tasks that a group would go idle */
3345 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3347 /* How much load to actually move to equalise the imbalance */
3348 *imbalance = min(max_pull * busiest->__cpu_power,
3349 (avg_load - this_load) * this->__cpu_power)
3353 * if *imbalance is less than the average load per runnable task
3354 * there is no gaurantee that any tasks will be moved so we'll have
3355 * a think about bumping its value to force at least one task to be
3358 if (*imbalance < busiest_load_per_task) {
3359 unsigned long tmp, pwr_now, pwr_move;
3363 pwr_move = pwr_now = 0;
3365 if (this_nr_running) {
3366 this_load_per_task /= this_nr_running;
3367 if (busiest_load_per_task > this_load_per_task)
3370 this_load_per_task = cpu_avg_load_per_task(this_cpu);
3372 if (max_load - this_load + busiest_load_per_task >=
3373 busiest_load_per_task * imbn) {
3374 *imbalance = busiest_load_per_task;
3379 * OK, we don't have enough imbalance to justify moving tasks,
3380 * however we may be able to increase total CPU power used by
3384 pwr_now += busiest->__cpu_power *
3385 min(busiest_load_per_task, max_load);
3386 pwr_now += this->__cpu_power *
3387 min(this_load_per_task, this_load);
3388 pwr_now /= SCHED_LOAD_SCALE;
3390 /* Amount of load we'd subtract */
3391 tmp = sg_div_cpu_power(busiest,
3392 busiest_load_per_task * SCHED_LOAD_SCALE);
3394 pwr_move += busiest->__cpu_power *
3395 min(busiest_load_per_task, max_load - tmp);
3397 /* Amount of load we'd add */
3398 if (max_load * busiest->__cpu_power <
3399 busiest_load_per_task * SCHED_LOAD_SCALE)
3400 tmp = sg_div_cpu_power(this,
3401 max_load * busiest->__cpu_power);
3403 tmp = sg_div_cpu_power(this,
3404 busiest_load_per_task * SCHED_LOAD_SCALE);
3405 pwr_move += this->__cpu_power *
3406 min(this_load_per_task, this_load + tmp);
3407 pwr_move /= SCHED_LOAD_SCALE;
3409 /* Move if we gain throughput */
3410 if (pwr_move > pwr_now)
3411 *imbalance = busiest_load_per_task;
3417 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3418 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3421 if (this == group_leader && group_leader != group_min) {
3422 *imbalance = min_load_per_task;
3423 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3424 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3425 cpumask_first(sched_group_cpus(group_leader));
3436 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3439 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3440 unsigned long imbalance, const struct cpumask *cpus)
3442 struct rq *busiest = NULL, *rq;
3443 unsigned long max_load = 0;
3446 for_each_cpu(i, sched_group_cpus(group)) {
3449 if (!cpumask_test_cpu(i, cpus))
3453 wl = weighted_cpuload(i);
3455 if (rq->nr_running == 1 && wl > imbalance)
3458 if (wl > max_load) {
3468 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3469 * so long as it is large enough.
3471 #define MAX_PINNED_INTERVAL 512
3474 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3475 * tasks if there is an imbalance.
3477 static int load_balance(int this_cpu, struct rq *this_rq,
3478 struct sched_domain *sd, enum cpu_idle_type idle,
3479 int *balance, struct cpumask *cpus)
3481 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3482 struct sched_group *group;
3483 unsigned long imbalance;
3485 unsigned long flags;
3487 cpumask_setall(cpus);
3490 * When power savings policy is enabled for the parent domain, idle
3491 * sibling can pick up load irrespective of busy siblings. In this case,
3492 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3493 * portraying it as CPU_NOT_IDLE.
3495 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3496 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3499 schedstat_inc(sd, lb_count[idle]);
3503 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3510 schedstat_inc(sd, lb_nobusyg[idle]);
3514 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3516 schedstat_inc(sd, lb_nobusyq[idle]);
3520 BUG_ON(busiest == this_rq);
3522 schedstat_add(sd, lb_imbalance[idle], imbalance);
3525 if (busiest->nr_running > 1) {
3527 * Attempt to move tasks. If find_busiest_group has found
3528 * an imbalance but busiest->nr_running <= 1, the group is
3529 * still unbalanced. ld_moved simply stays zero, so it is
3530 * correctly treated as an imbalance.
3532 local_irq_save(flags);
3533 double_rq_lock(this_rq, busiest);
3534 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3535 imbalance, sd, idle, &all_pinned);
3536 double_rq_unlock(this_rq, busiest);
3537 local_irq_restore(flags);
3540 * some other cpu did the load balance for us.
3542 if (ld_moved && this_cpu != smp_processor_id())
3543 resched_cpu(this_cpu);
3545 /* All tasks on this runqueue were pinned by CPU affinity */
3546 if (unlikely(all_pinned)) {
3547 cpumask_clear_cpu(cpu_of(busiest), cpus);
3548 if (!cpumask_empty(cpus))
3555 schedstat_inc(sd, lb_failed[idle]);
3556 sd->nr_balance_failed++;
3558 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3560 spin_lock_irqsave(&busiest->lock, flags);
3562 /* don't kick the migration_thread, if the curr
3563 * task on busiest cpu can't be moved to this_cpu
3565 if (!cpumask_test_cpu(this_cpu,
3566 &busiest->curr->cpus_allowed)) {
3567 spin_unlock_irqrestore(&busiest->lock, flags);
3569 goto out_one_pinned;
3572 if (!busiest->active_balance) {
3573 busiest->active_balance = 1;
3574 busiest->push_cpu = this_cpu;
3577 spin_unlock_irqrestore(&busiest->lock, flags);
3579 wake_up_process(busiest->migration_thread);
3582 * We've kicked active balancing, reset the failure
3585 sd->nr_balance_failed = sd->cache_nice_tries+1;
3588 sd->nr_balance_failed = 0;
3590 if (likely(!active_balance)) {
3591 /* We were unbalanced, so reset the balancing interval */
3592 sd->balance_interval = sd->min_interval;
3595 * If we've begun active balancing, start to back off. This
3596 * case may not be covered by the all_pinned logic if there
3597 * is only 1 task on the busy runqueue (because we don't call
3600 if (sd->balance_interval < sd->max_interval)
3601 sd->balance_interval *= 2;
3604 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3605 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3611 schedstat_inc(sd, lb_balanced[idle]);
3613 sd->nr_balance_failed = 0;
3616 /* tune up the balancing interval */
3617 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3618 (sd->balance_interval < sd->max_interval))
3619 sd->balance_interval *= 2;
3621 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3622 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))