4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/bootmem.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
75 #include <asm/irq_regs.h>
77 #include "sched_cpupri.h"
80 * Convert user-nice values [ -20 ... 0 ... 19 ]
81 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
84 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
85 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
86 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
89 * 'User priority' is the nice value converted to something we
90 * can work with better when scaling various scheduler parameters,
91 * it's a [ 0 ... 39 ] range.
93 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
94 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
95 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
98 * Helpers for converting nanosecond timing to jiffy resolution
100 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
102 #define NICE_0_LOAD SCHED_LOAD_SCALE
103 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
106 * These are the 'tuning knobs' of the scheduler:
108 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
109 * Timeslices get refilled after they expire.
111 #define DEF_TIMESLICE (100 * HZ / 1000)
114 * single value that denotes runtime == period, ie unlimited time.
116 #define RUNTIME_INF ((u64)~0ULL)
120 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
121 * Since cpu_power is a 'constant', we can use a reciprocal divide.
123 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
125 return reciprocal_divide(load, sg->reciprocal_cpu_power);
129 * Each time a sched group cpu_power is changed,
130 * we must compute its reciprocal value
132 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
134 sg->__cpu_power += val;
135 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
139 static inline int rt_policy(int policy)
141 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
146 static inline int task_has_rt_policy(struct task_struct *p)
148 return rt_policy(p->policy);
152 * This is the priority-queue data structure of the RT scheduling class:
154 struct rt_prio_array {
155 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
156 struct list_head queue[MAX_RT_PRIO];
159 struct rt_bandwidth {
160 /* nests inside the rq lock: */
161 spinlock_t rt_runtime_lock;
164 struct hrtimer rt_period_timer;
167 static struct rt_bandwidth def_rt_bandwidth;
169 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
171 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
173 struct rt_bandwidth *rt_b =
174 container_of(timer, struct rt_bandwidth, rt_period_timer);
180 now = hrtimer_cb_get_time(timer);
181 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
186 idle = do_sched_rt_period_timer(rt_b, overrun);
189 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
193 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
195 rt_b->rt_period = ns_to_ktime(period);
196 rt_b->rt_runtime = runtime;
198 spin_lock_init(&rt_b->rt_runtime_lock);
200 hrtimer_init(&rt_b->rt_period_timer,
201 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
202 rt_b->rt_period_timer.function = sched_rt_period_timer;
203 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
206 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
210 if (rt_b->rt_runtime == RUNTIME_INF)
213 if (hrtimer_active(&rt_b->rt_period_timer))
216 spin_lock(&rt_b->rt_runtime_lock);
218 if (hrtimer_active(&rt_b->rt_period_timer))
221 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
222 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
223 hrtimer_start(&rt_b->rt_period_timer,
224 rt_b->rt_period_timer.expires,
227 spin_unlock(&rt_b->rt_runtime_lock);
230 #ifdef CONFIG_RT_GROUP_SCHED
231 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
233 hrtimer_cancel(&rt_b->rt_period_timer);
238 * sched_domains_mutex serializes calls to arch_init_sched_domains,
239 * detach_destroy_domains and partition_sched_domains.
241 static DEFINE_MUTEX(sched_domains_mutex);
243 #ifdef CONFIG_GROUP_SCHED
245 #include <linux/cgroup.h>
249 static LIST_HEAD(task_groups);
251 /* task group related information */
253 #ifdef CONFIG_CGROUP_SCHED
254 struct cgroup_subsys_state css;
257 #ifdef CONFIG_FAIR_GROUP_SCHED
258 /* schedulable entities of this group on each cpu */
259 struct sched_entity **se;
260 /* runqueue "owned" by this group on each cpu */
261 struct cfs_rq **cfs_rq;
262 unsigned long shares;
265 #ifdef CONFIG_RT_GROUP_SCHED
266 struct sched_rt_entity **rt_se;
267 struct rt_rq **rt_rq;
269 struct rt_bandwidth rt_bandwidth;
273 struct list_head list;
275 struct task_group *parent;
276 struct list_head siblings;
277 struct list_head children;
280 #ifdef CONFIG_USER_SCHED
284 * Every UID task group (including init_task_group aka UID-0) will
285 * be a child to this group.
287 struct task_group root_task_group;
289 #ifdef CONFIG_FAIR_GROUP_SCHED
290 /* Default task group's sched entity on each cpu */
291 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
292 /* Default task group's cfs_rq on each cpu */
293 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
294 #endif /* CONFIG_FAIR_GROUP_SCHED */
296 #ifdef CONFIG_RT_GROUP_SCHED
297 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
298 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
299 #endif /* CONFIG_RT_GROUP_SCHED */
300 #else /* !CONFIG_FAIR_GROUP_SCHED */
301 #define root_task_group init_task_group
302 #endif /* CONFIG_FAIR_GROUP_SCHED */
304 /* task_group_lock serializes add/remove of task groups and also changes to
305 * a task group's cpu shares.
307 static DEFINE_SPINLOCK(task_group_lock);
309 #ifdef CONFIG_FAIR_GROUP_SCHED
310 #ifdef CONFIG_USER_SCHED
311 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
312 #else /* !CONFIG_USER_SCHED */
313 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
314 #endif /* CONFIG_USER_SCHED */
317 * A weight of 0 or 1 can cause arithmetics problems.
318 * A weight of a cfs_rq is the sum of weights of which entities
319 * are queued on this cfs_rq, so a weight of a entity should not be
320 * too large, so as the shares value of a task group.
321 * (The default weight is 1024 - so there's no practical
322 * limitation from this.)
325 #define MAX_SHARES (1UL << 18)
327 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
330 /* Default task group.
331 * Every task in system belong to this group at bootup.
333 struct task_group init_task_group;
335 /* return group to which a task belongs */
336 static inline struct task_group *task_group(struct task_struct *p)
338 struct task_group *tg;
340 #ifdef CONFIG_USER_SCHED
342 #elif defined(CONFIG_CGROUP_SCHED)
343 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
344 struct task_group, css);
346 tg = &init_task_group;
351 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
352 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
354 #ifdef CONFIG_FAIR_GROUP_SCHED
355 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
356 p->se.parent = task_group(p)->se[cpu];
359 #ifdef CONFIG_RT_GROUP_SCHED
360 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
361 p->rt.parent = task_group(p)->rt_se[cpu];
367 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
368 static inline struct task_group *task_group(struct task_struct *p)
373 #endif /* CONFIG_GROUP_SCHED */
375 /* CFS-related fields in a runqueue */
377 struct load_weight load;
378 unsigned long nr_running;
384 struct rb_root tasks_timeline;
385 struct rb_node *rb_leftmost;
387 struct list_head tasks;
388 struct list_head *balance_iterator;
391 * 'curr' points to currently running entity on this cfs_rq.
392 * It is set to NULL otherwise (i.e when none are currently running).
394 struct sched_entity *curr, *next;
396 unsigned long nr_spread_over;
398 #ifdef CONFIG_FAIR_GROUP_SCHED
399 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
402 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
403 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
404 * (like users, containers etc.)
406 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
407 * list is used during load balance.
409 struct list_head leaf_cfs_rq_list;
410 struct task_group *tg; /* group that "owns" this runqueue */
414 * the part of load.weight contributed by tasks
416 unsigned long task_weight;
419 * h_load = weight * f(tg)
421 * Where f(tg) is the recursive weight fraction assigned to
424 unsigned long h_load;
427 * this cpu's part of tg->shares
429 unsigned long shares;
432 * load.weight at the time we set shares
434 unsigned long rq_weight;
439 /* Real-Time classes' related field in a runqueue: */
441 struct rt_prio_array active;
442 unsigned long rt_nr_running;
443 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
444 int highest_prio; /* highest queued rt task prio */
447 unsigned long rt_nr_migratory;
453 /* Nests inside the rq lock: */
454 spinlock_t rt_runtime_lock;
456 #ifdef CONFIG_RT_GROUP_SCHED
457 unsigned long rt_nr_boosted;
460 struct list_head leaf_rt_rq_list;
461 struct task_group *tg;
462 struct sched_rt_entity *rt_se;
469 * We add the notion of a root-domain which will be used to define per-domain
470 * variables. Each exclusive cpuset essentially defines an island domain by
471 * fully partitioning the member cpus from any other cpuset. Whenever a new
472 * exclusive cpuset is created, we also create and attach a new root-domain
482 * The "RT overload" flag: it gets set if a CPU has more than
483 * one runnable RT task.
488 struct cpupri cpupri;
493 * By default the system creates a single root-domain with all cpus as
494 * members (mimicking the global state we have today).
496 static struct root_domain def_root_domain;
501 * This is the main, per-CPU runqueue data structure.
503 * Locking rule: those places that want to lock multiple runqueues
504 * (such as the load balancing or the thread migration code), lock
505 * acquire operations must be ordered by ascending &runqueue.
512 * nr_running and cpu_load should be in the same cacheline because
513 * remote CPUs use both these fields when doing load calculation.
515 unsigned long nr_running;
516 #define CPU_LOAD_IDX_MAX 5
517 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
518 unsigned char idle_at_tick;
520 unsigned long last_tick_seen;
521 unsigned char in_nohz_recently;
523 /* capture load from *all* tasks on this cpu: */
524 struct load_weight load;
525 unsigned long nr_load_updates;
531 #ifdef CONFIG_FAIR_GROUP_SCHED
532 /* list of leaf cfs_rq on this cpu: */
533 struct list_head leaf_cfs_rq_list;
535 #ifdef CONFIG_RT_GROUP_SCHED
536 struct list_head leaf_rt_rq_list;
540 * This is part of a global counter where only the total sum
541 * over all CPUs matters. A task can increase this counter on
542 * one CPU and if it got migrated afterwards it may decrease
543 * it on another CPU. Always updated under the runqueue lock:
545 unsigned long nr_uninterruptible;
547 struct task_struct *curr, *idle;
548 unsigned long next_balance;
549 struct mm_struct *prev_mm;
556 struct root_domain *rd;
557 struct sched_domain *sd;
559 /* For active balancing */
562 /* cpu of this runqueue: */
566 unsigned long avg_load_per_task;
568 struct task_struct *migration_thread;
569 struct list_head migration_queue;
572 #ifdef CONFIG_SCHED_HRTICK
573 unsigned long hrtick_flags;
574 ktime_t hrtick_expire;
575 struct hrtimer hrtick_timer;
578 #ifdef CONFIG_SCHEDSTATS
580 struct sched_info rq_sched_info;
582 /* sys_sched_yield() stats */
583 unsigned int yld_exp_empty;
584 unsigned int yld_act_empty;
585 unsigned int yld_both_empty;
586 unsigned int yld_count;
588 /* schedule() stats */
589 unsigned int sched_switch;
590 unsigned int sched_count;
591 unsigned int sched_goidle;
593 /* try_to_wake_up() stats */
594 unsigned int ttwu_count;
595 unsigned int ttwu_local;
598 unsigned int bkl_count;
600 struct lock_class_key rq_lock_key;
603 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
605 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
607 rq->curr->sched_class->check_preempt_curr(rq, p);
610 static inline int cpu_of(struct rq *rq)
620 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
621 * See detach_destroy_domains: synchronize_sched for details.
623 * The domain tree of any CPU may only be accessed from within
624 * preempt-disabled sections.
626 #define for_each_domain(cpu, __sd) \
627 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
629 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
630 #define this_rq() (&__get_cpu_var(runqueues))
631 #define task_rq(p) cpu_rq(task_cpu(p))
632 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
634 static inline void update_rq_clock(struct rq *rq)
636 rq->clock = sched_clock_cpu(cpu_of(rq));
640 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
642 #ifdef CONFIG_SCHED_DEBUG
643 # define const_debug __read_mostly
645 # define const_debug static const
649 * Debugging: various feature bits
652 #define SCHED_FEAT(name, enabled) \
653 __SCHED_FEAT_##name ,
656 #include "sched_features.h"
661 #define SCHED_FEAT(name, enabled) \
662 (1UL << __SCHED_FEAT_##name) * enabled |
664 const_debug unsigned int sysctl_sched_features =
665 #include "sched_features.h"
670 #ifdef CONFIG_SCHED_DEBUG
671 #define SCHED_FEAT(name, enabled) \
674 static __read_mostly char *sched_feat_names[] = {
675 #include "sched_features.h"
681 static int sched_feat_open(struct inode *inode, struct file *filp)
683 filp->private_data = inode->i_private;
688 sched_feat_read(struct file *filp, char __user *ubuf,
689 size_t cnt, loff_t *ppos)
696 for (i = 0; sched_feat_names[i]; i++) {
697 len += strlen(sched_feat_names[i]);
701 buf = kmalloc(len + 2, GFP_KERNEL);
705 for (i = 0; sched_feat_names[i]; i++) {
706 if (sysctl_sched_features & (1UL << i))
707 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
709 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
712 r += sprintf(buf + r, "\n");
713 WARN_ON(r >= len + 2);
715 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
723 sched_feat_write(struct file *filp, const char __user *ubuf,
724 size_t cnt, loff_t *ppos)
734 if (copy_from_user(&buf, ubuf, cnt))
739 if (strncmp(buf, "NO_", 3) == 0) {
744 for (i = 0; sched_feat_names[i]; i++) {
745 int len = strlen(sched_feat_names[i]);
747 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
749 sysctl_sched_features &= ~(1UL << i);
751 sysctl_sched_features |= (1UL << i);
756 if (!sched_feat_names[i])
764 static struct file_operations sched_feat_fops = {
765 .open = sched_feat_open,
766 .read = sched_feat_read,
767 .write = sched_feat_write,
770 static __init int sched_init_debug(void)
772 debugfs_create_file("sched_features", 0644, NULL, NULL,
777 late_initcall(sched_init_debug);
781 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
784 * Number of tasks to iterate in a single balance run.
785 * Limited because this is done with IRQs disabled.
787 const_debug unsigned int sysctl_sched_nr_migrate = 32;
790 * ratelimit for updating the group shares.
793 const_debug unsigned int sysctl_sched_shares_ratelimit = 500000;
796 * period over which we measure -rt task cpu usage in us.
799 unsigned int sysctl_sched_rt_period = 1000000;
801 static __read_mostly int scheduler_running;
804 * part of the period that we allow rt tasks to run in us.
807 int sysctl_sched_rt_runtime = 950000;
809 static inline u64 global_rt_period(void)
811 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
814 static inline u64 global_rt_runtime(void)
816 if (sysctl_sched_rt_period < 0)
819 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
822 #ifndef prepare_arch_switch
823 # define prepare_arch_switch(next) do { } while (0)
825 #ifndef finish_arch_switch
826 # define finish_arch_switch(prev) do { } while (0)
829 static inline int task_current(struct rq *rq, struct task_struct *p)
831 return rq->curr == p;
834 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
835 static inline int task_running(struct rq *rq, struct task_struct *p)
837 return task_current(rq, p);
840 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
844 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
846 #ifdef CONFIG_DEBUG_SPINLOCK
847 /* this is a valid case when another task releases the spinlock */
848 rq->lock.owner = current;
851 * If we are tracking spinlock dependencies then we have to
852 * fix up the runqueue lock - which gets 'carried over' from
855 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
857 spin_unlock_irq(&rq->lock);
860 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
861 static inline int task_running(struct rq *rq, struct task_struct *p)
866 return task_current(rq, p);
870 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
874 * We can optimise this out completely for !SMP, because the
875 * SMP rebalancing from interrupt is the only thing that cares
880 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
881 spin_unlock_irq(&rq->lock);
883 spin_unlock(&rq->lock);
887 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
891 * After ->oncpu is cleared, the task can be moved to a different CPU.
892 * We must ensure this doesn't happen until the switch is completely
898 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
902 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
905 * __task_rq_lock - lock the runqueue a given task resides on.
906 * Must be called interrupts disabled.
908 static inline struct rq *__task_rq_lock(struct task_struct *p)
912 struct rq *rq = task_rq(p);
913 spin_lock(&rq->lock);
914 if (likely(rq == task_rq(p)))
916 spin_unlock(&rq->lock);
921 * task_rq_lock - lock the runqueue a given task resides on and disable
922 * interrupts. Note the ordering: we can safely lookup the task_rq without
923 * explicitly disabling preemption.
925 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
931 local_irq_save(*flags);
933 spin_lock(&rq->lock);
934 if (likely(rq == task_rq(p)))
936 spin_unlock_irqrestore(&rq->lock, *flags);
940 static void __task_rq_unlock(struct rq *rq)
943 spin_unlock(&rq->lock);
946 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
949 spin_unlock_irqrestore(&rq->lock, *flags);
953 * this_rq_lock - lock this runqueue and disable interrupts.
955 static struct rq *this_rq_lock(void)
962 spin_lock(&rq->lock);
967 static void __resched_task(struct task_struct *p, int tif_bit);
969 static inline void resched_task(struct task_struct *p)
971 __resched_task(p, TIF_NEED_RESCHED);
974 #ifdef CONFIG_SCHED_HRTICK
976 * Use HR-timers to deliver accurate preemption points.
978 * Its all a bit involved since we cannot program an hrt while holding the
979 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
982 * When we get rescheduled we reprogram the hrtick_timer outside of the
985 static inline void resched_hrt(struct task_struct *p)
987 __resched_task(p, TIF_HRTICK_RESCHED);
990 static inline void resched_rq(struct rq *rq)
994 spin_lock_irqsave(&rq->lock, flags);
995 resched_task(rq->curr);
996 spin_unlock_irqrestore(&rq->lock, flags);
1000 HRTICK_SET, /* re-programm hrtick_timer */
1001 HRTICK_RESET, /* not a new slice */
1002 HRTICK_BLOCK, /* stop hrtick operations */
1007 * - enabled by features
1008 * - hrtimer is actually high res
1010 static inline int hrtick_enabled(struct rq *rq)
1012 if (!sched_feat(HRTICK))
1014 if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
1016 return hrtimer_is_hres_active(&rq->hrtick_timer);
1020 * Called to set the hrtick timer state.
1022 * called with rq->lock held and irqs disabled
1024 static void hrtick_start(struct rq *rq, u64 delay, int reset)
1026 assert_spin_locked(&rq->lock);
1029 * preempt at: now + delay
1032 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
1034 * indicate we need to program the timer
1036 __set_bit(HRTICK_SET, &rq->hrtick_flags);
1038 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
1041 * New slices are called from the schedule path and don't need a
1042 * forced reschedule.
1045 resched_hrt(rq->curr);
1048 static void hrtick_clear(struct rq *rq)
1050 if (hrtimer_active(&rq->hrtick_timer))
1051 hrtimer_cancel(&rq->hrtick_timer);
1055 * Update the timer from the possible pending state.
1057 static void hrtick_set(struct rq *rq)
1061 unsigned long flags;
1063 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1065 spin_lock_irqsave(&rq->lock, flags);
1066 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
1067 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
1068 time = rq->hrtick_expire;
1069 clear_thread_flag(TIF_HRTICK_RESCHED);
1070 spin_unlock_irqrestore(&rq->lock, flags);
1073 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
1074 if (reset && !hrtimer_active(&rq->hrtick_timer))
1081 * High-resolution timer tick.
1082 * Runs from hardirq context with interrupts disabled.
1084 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1086 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1088 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1090 spin_lock(&rq->lock);
1091 update_rq_clock(rq);
1092 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1093 spin_unlock(&rq->lock);
1095 return HRTIMER_NORESTART;
1099 static void hotplug_hrtick_disable(int cpu)
1101 struct rq *rq = cpu_rq(cpu);
1102 unsigned long flags;
1104 spin_lock_irqsave(&rq->lock, flags);
1105 rq->hrtick_flags = 0;
1106 __set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1107 spin_unlock_irqrestore(&rq->lock, flags);
1112 static void hotplug_hrtick_enable(int cpu)
1114 struct rq *rq = cpu_rq(cpu);
1115 unsigned long flags;
1117 spin_lock_irqsave(&rq->lock, flags);
1118 __clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1119 spin_unlock_irqrestore(&rq->lock, flags);
1123 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1125 int cpu = (int)(long)hcpu;
1128 case CPU_UP_CANCELED:
1129 case CPU_UP_CANCELED_FROZEN:
1130 case CPU_DOWN_PREPARE:
1131 case CPU_DOWN_PREPARE_FROZEN:
1133 case CPU_DEAD_FROZEN:
1134 hotplug_hrtick_disable(cpu);
1137 case CPU_UP_PREPARE:
1138 case CPU_UP_PREPARE_FROZEN:
1139 case CPU_DOWN_FAILED:
1140 case CPU_DOWN_FAILED_FROZEN:
1142 case CPU_ONLINE_FROZEN:
1143 hotplug_hrtick_enable(cpu);
1150 static void init_hrtick(void)
1152 hotcpu_notifier(hotplug_hrtick, 0);
1154 #endif /* CONFIG_SMP */
1156 static void init_rq_hrtick(struct rq *rq)
1158 rq->hrtick_flags = 0;
1159 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1160 rq->hrtick_timer.function = hrtick;
1161 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1164 void hrtick_resched(void)
1167 unsigned long flags;
1169 if (!test_thread_flag(TIF_HRTICK_RESCHED))
1172 local_irq_save(flags);
1173 rq = cpu_rq(smp_processor_id());
1175 local_irq_restore(flags);
1178 static inline void hrtick_clear(struct rq *rq)
1182 static inline void hrtick_set(struct rq *rq)
1186 static inline void init_rq_hrtick(struct rq *rq)
1190 void hrtick_resched(void)
1194 static inline void init_hrtick(void)
1200 * resched_task - mark a task 'to be rescheduled now'.
1202 * On UP this means the setting of the need_resched flag, on SMP it
1203 * might also involve a cross-CPU call to trigger the scheduler on
1208 #ifndef tsk_is_polling
1209 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1212 static void __resched_task(struct task_struct *p, int tif_bit)
1216 assert_spin_locked(&task_rq(p)->lock);
1218 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
1221 set_tsk_thread_flag(p, tif_bit);
1224 if (cpu == smp_processor_id())
1227 /* NEED_RESCHED must be visible before we test polling */
1229 if (!tsk_is_polling(p))
1230 smp_send_reschedule(cpu);
1233 static void resched_cpu(int cpu)
1235 struct rq *rq = cpu_rq(cpu);
1236 unsigned long flags;
1238 if (!spin_trylock_irqsave(&rq->lock, flags))
1240 resched_task(cpu_curr(cpu));
1241 spin_unlock_irqrestore(&rq->lock, flags);
1246 * When add_timer_on() enqueues a timer into the timer wheel of an
1247 * idle CPU then this timer might expire before the next timer event
1248 * which is scheduled to wake up that CPU. In case of a completely
1249 * idle system the next event might even be infinite time into the
1250 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1251 * leaves the inner idle loop so the newly added timer is taken into
1252 * account when the CPU goes back to idle and evaluates the timer
1253 * wheel for the next timer event.
1255 void wake_up_idle_cpu(int cpu)
1257 struct rq *rq = cpu_rq(cpu);
1259 if (cpu == smp_processor_id())
1263 * This is safe, as this function is called with the timer
1264 * wheel base lock of (cpu) held. When the CPU is on the way
1265 * to idle and has not yet set rq->curr to idle then it will
1266 * be serialized on the timer wheel base lock and take the new
1267 * timer into account automatically.
1269 if (rq->curr != rq->idle)
1273 * We can set TIF_RESCHED on the idle task of the other CPU
1274 * lockless. The worst case is that the other CPU runs the
1275 * idle task through an additional NOOP schedule()
1277 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1279 /* NEED_RESCHED must be visible before we test polling */
1281 if (!tsk_is_polling(rq->idle))
1282 smp_send_reschedule(cpu);
1284 #endif /* CONFIG_NO_HZ */
1286 #else /* !CONFIG_SMP */
1287 static void __resched_task(struct task_struct *p, int tif_bit)
1289 assert_spin_locked(&task_rq(p)->lock);
1290 set_tsk_thread_flag(p, tif_bit);
1292 #endif /* CONFIG_SMP */
1294 #if BITS_PER_LONG == 32
1295 # define WMULT_CONST (~0UL)
1297 # define WMULT_CONST (1UL << 32)
1300 #define WMULT_SHIFT 32
1303 * Shift right and round:
1305 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1308 * delta *= weight / lw
1310 static unsigned long
1311 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1312 struct load_weight *lw)
1316 if (!lw->inv_weight) {
1317 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1320 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1324 tmp = (u64)delta_exec * weight;
1326 * Check whether we'd overflow the 64-bit multiplication:
1328 if (unlikely(tmp > WMULT_CONST))
1329 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1332 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1334 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1337 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1343 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1350 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1351 * of tasks with abnormal "nice" values across CPUs the contribution that
1352 * each task makes to its run queue's load is weighted according to its
1353 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1354 * scaled version of the new time slice allocation that they receive on time
1358 #define WEIGHT_IDLEPRIO 2
1359 #define WMULT_IDLEPRIO (1 << 31)
1362 * Nice levels are multiplicative, with a gentle 10% change for every
1363 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1364 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1365 * that remained on nice 0.
1367 * The "10% effect" is relative and cumulative: from _any_ nice level,
1368 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1369 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1370 * If a task goes up by ~10% and another task goes down by ~10% then
1371 * the relative distance between them is ~25%.)
1373 static const int prio_to_weight[40] = {
1374 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1375 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1376 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1377 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1378 /* 0 */ 1024, 820, 655, 526, 423,
1379 /* 5 */ 335, 272, 215, 172, 137,
1380 /* 10 */ 110, 87, 70, 56, 45,
1381 /* 15 */ 36, 29, 23, 18, 15,
1385 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1387 * In cases where the weight does not change often, we can use the
1388 * precalculated inverse to speed up arithmetics by turning divisions
1389 * into multiplications:
1391 static const u32 prio_to_wmult[40] = {
1392 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1393 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1394 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1395 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1396 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1397 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1398 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1399 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1402 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1405 * runqueue iterator, to support SMP load-balancing between different
1406 * scheduling classes, without having to expose their internal data
1407 * structures to the load-balancing proper:
1409 struct rq_iterator {
1411 struct task_struct *(*start)(void *);
1412 struct task_struct *(*next)(void *);
1416 static unsigned long
1417 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1418 unsigned long max_load_move, struct sched_domain *sd,
1419 enum cpu_idle_type idle, int *all_pinned,
1420 int *this_best_prio, struct rq_iterator *iterator);
1423 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1424 struct sched_domain *sd, enum cpu_idle_type idle,
1425 struct rq_iterator *iterator);
1428 #ifdef CONFIG_CGROUP_CPUACCT
1429 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1431 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1434 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1436 update_load_add(&rq->load, load);
1439 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1441 update_load_sub(&rq->load, load);
1445 static unsigned long source_load(int cpu, int type);
1446 static unsigned long target_load(int cpu, int type);
1447 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1449 static unsigned long cpu_avg_load_per_task(int cpu)
1451 struct rq *rq = cpu_rq(cpu);
1454 rq->avg_load_per_task = rq->load.weight / rq->nr_running;
1456 return rq->avg_load_per_task;
1459 #ifdef CONFIG_FAIR_GROUP_SCHED
1461 typedef void (*tg_visitor)(struct task_group *, int, struct sched_domain *);
1464 * Iterate the full tree, calling @down when first entering a node and @up when
1465 * leaving it for the final time.
1468 walk_tg_tree(tg_visitor down, tg_visitor up, int cpu, struct sched_domain *sd)
1470 struct task_group *parent, *child;
1473 parent = &root_task_group;
1475 (*down)(parent, cpu, sd);
1476 list_for_each_entry_rcu(child, &parent->children, siblings) {
1483 (*up)(parent, cpu, sd);
1486 parent = parent->parent;
1492 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1495 * Calculate and set the cpu's group shares.
1498 __update_group_shares_cpu(struct task_group *tg, int cpu,
1499 unsigned long sd_shares, unsigned long sd_rq_weight)
1502 unsigned long shares;
1503 unsigned long rq_weight;
1508 rq_weight = tg->cfs_rq[cpu]->load.weight;
1511 * If there are currently no tasks on the cpu pretend there is one of
1512 * average load so that when a new task gets to run here it will not
1513 * get delayed by group starvation.
1517 rq_weight = NICE_0_LOAD;
1520 if (unlikely(rq_weight > sd_rq_weight))
1521 rq_weight = sd_rq_weight;
1524 * \Sum shares * rq_weight
1525 * shares = -----------------------
1529 shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
1532 * record the actual number of shares, not the boosted amount.
1534 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1535 tg->cfs_rq[cpu]->rq_weight = rq_weight;
1537 if (shares < MIN_SHARES)
1538 shares = MIN_SHARES;
1539 else if (shares > MAX_SHARES)
1540 shares = MAX_SHARES;
1542 __set_se_shares(tg->se[cpu], shares);
1546 * Re-compute the task group their per cpu shares over the given domain.
1547 * This needs to be done in a bottom-up fashion because the rq weight of a
1548 * parent group depends on the shares of its child groups.
1551 tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd)
1553 unsigned long rq_weight = 0;
1554 unsigned long shares = 0;
1557 for_each_cpu_mask(i, sd->span) {
1558 rq_weight += tg->cfs_rq[i]->load.weight;
1559 shares += tg->cfs_rq[i]->shares;
1562 if ((!shares && rq_weight) || shares > tg->shares)
1563 shares = tg->shares;
1565 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1566 shares = tg->shares;
1569 rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
1571 for_each_cpu_mask(i, sd->span) {
1572 struct rq *rq = cpu_rq(i);
1573 unsigned long flags;
1575 spin_lock_irqsave(&rq->lock, flags);
1576 __update_group_shares_cpu(tg, i, shares, rq_weight);
1577 spin_unlock_irqrestore(&rq->lock, flags);
1582 * Compute the cpu's hierarchical load factor for each task group.
1583 * This needs to be done in a top-down fashion because the load of a child
1584 * group is a fraction of its parents load.
1587 tg_load_down(struct task_group *tg, int cpu, struct sched_domain *sd)
1592 load = cpu_rq(cpu)->load.weight;
1594 load = tg->parent->cfs_rq[cpu]->h_load;
1595 load *= tg->cfs_rq[cpu]->shares;
1596 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1599 tg->cfs_rq[cpu]->h_load = load;
1603 tg_nop(struct task_group *tg, int cpu, struct sched_domain *sd)
1607 static void update_shares(struct sched_domain *sd)
1609 u64 now = cpu_clock(raw_smp_processor_id());
1610 s64 elapsed = now - sd->last_update;
1612 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1613 sd->last_update = now;
1614 walk_tg_tree(tg_nop, tg_shares_up, 0, sd);
1618 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1620 spin_unlock(&rq->lock);
1622 spin_lock(&rq->lock);
1625 static void update_h_load(int cpu)
1627 walk_tg_tree(tg_load_down, tg_nop, cpu, NULL);
1632 static inline void update_shares(struct sched_domain *sd)
1636 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1644 #ifdef CONFIG_FAIR_GROUP_SCHED
1645 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1648 cfs_rq->shares = shares;
1653 #include "sched_stats.h"
1654 #include "sched_idletask.c"
1655 #include "sched_fair.c"
1656 #include "sched_rt.c"
1657 #ifdef CONFIG_SCHED_DEBUG
1658 # include "sched_debug.c"
1661 #define sched_class_highest (&rt_sched_class)
1662 #define for_each_class(class) \
1663 for (class = sched_class_highest; class; class = class->next)
1665 static void inc_nr_running(struct rq *rq)
1670 static void dec_nr_running(struct rq *rq)
1675 static void set_load_weight(struct task_struct *p)
1677 if (task_has_rt_policy(p)) {
1678 p->se.load.weight = prio_to_weight[0] * 2;
1679 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1684 * SCHED_IDLE tasks get minimal weight:
1686 if (p->policy == SCHED_IDLE) {
1687 p->se.load.weight = WEIGHT_IDLEPRIO;
1688 p->se.load.inv_weight = WMULT_IDLEPRIO;
1692 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1693 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1696 static void update_avg(u64 *avg, u64 sample)
1698 s64 diff = sample - *avg;
1702 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1704 sched_info_queued(p);
1705 p->sched_class->enqueue_task(rq, p, wakeup);
1709 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1711 if (sleep && p->se.last_wakeup) {
1712 update_avg(&p->se.avg_overlap,
1713 p->se.sum_exec_runtime - p->se.last_wakeup);
1714 p->se.last_wakeup = 0;
1717 sched_info_dequeued(p);
1718 p->sched_class->dequeue_task(rq, p, sleep);
1723 * __normal_prio - return the priority that is based on the static prio
1725 static inline int __normal_prio(struct task_struct *p)
1727 return p->static_prio;
1731 * Calculate the expected normal priority: i.e. priority
1732 * without taking RT-inheritance into account. Might be
1733 * boosted by interactivity modifiers. Changes upon fork,
1734 * setprio syscalls, and whenever the interactivity
1735 * estimator recalculates.
1737 static inline int normal_prio(struct task_struct *p)
1741 if (task_has_rt_policy(p))
1742 prio = MAX_RT_PRIO-1 - p->rt_priority;
1744 prio = __normal_prio(p);
1749 * Calculate the current priority, i.e. the priority
1750 * taken into account by the scheduler. This value might
1751 * be boosted by RT tasks, or might be boosted by
1752 * interactivity modifiers. Will be RT if the task got
1753 * RT-boosted. If not then it returns p->normal_prio.
1755 static int effective_prio(struct task_struct *p)
1757 p->normal_prio = normal_prio(p);
1759 * If we are RT tasks or we were boosted to RT priority,
1760 * keep the priority unchanged. Otherwise, update priority
1761 * to the normal priority:
1763 if (!rt_prio(p->prio))
1764 return p->normal_prio;
1769 * activate_task - move a task to the runqueue.
1771 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1773 if (task_contributes_to_load(p))
1774 rq->nr_uninterruptible--;
1776 enqueue_task(rq, p, wakeup);
1781 * deactivate_task - remove a task from the runqueue.
1783 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1785 if (task_contributes_to_load(p))
1786 rq->nr_uninterruptible++;
1788 dequeue_task(rq, p, sleep);
1793 * task_curr - is this task currently executing on a CPU?
1794 * @p: the task in question.
1796 inline int task_curr(const struct task_struct *p)
1798 return cpu_curr(task_cpu(p)) == p;
1801 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1803 set_task_rq(p, cpu);
1806 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1807 * successfuly executed on another CPU. We must ensure that updates of
1808 * per-task data have been completed by this moment.
1811 task_thread_info(p)->cpu = cpu;
1815 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1816 const struct sched_class *prev_class,
1817 int oldprio, int running)
1819 if (prev_class != p->sched_class) {
1820 if (prev_class->switched_from)
1821 prev_class->switched_from(rq, p, running);
1822 p->sched_class->switched_to(rq, p, running);
1824 p->sched_class->prio_changed(rq, p, oldprio, running);
1829 /* Used instead of source_load when we know the type == 0 */
1830 static unsigned long weighted_cpuload(const int cpu)
1832 return cpu_rq(cpu)->load.weight;
1836 * Is this task likely cache-hot:
1839 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1844 * Buddy candidates are cache hot:
1846 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
1849 if (p->sched_class != &fair_sched_class)
1852 if (sysctl_sched_migration_cost == -1)
1854 if (sysctl_sched_migration_cost == 0)
1857 delta = now - p->se.exec_start;
1859 return delta < (s64)sysctl_sched_migration_cost;
1863 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1865 int old_cpu = task_cpu(p);
1866 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1867 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1868 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1871 clock_offset = old_rq->clock - new_rq->clock;
1873 #ifdef CONFIG_SCHEDSTATS
1874 if (p->se.wait_start)
1875 p->se.wait_start -= clock_offset;
1876 if (p->se.sleep_start)
1877 p->se.sleep_start -= clock_offset;
1878 if (p->se.block_start)
1879 p->se.block_start -= clock_offset;
1880 if (old_cpu != new_cpu) {
1881 schedstat_inc(p, se.nr_migrations);
1882 if (task_hot(p, old_rq->clock, NULL))
1883 schedstat_inc(p, se.nr_forced2_migrations);
1886 p->se.vruntime -= old_cfsrq->min_vruntime -
1887 new_cfsrq->min_vruntime;
1889 __set_task_cpu(p, new_cpu);
1892 struct migration_req {
1893 struct list_head list;
1895 struct task_struct *task;
1898 struct completion done;
1902 * The task's runqueue lock must be held.
1903 * Returns true if you have to wait for migration thread.
1906 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1908 struct rq *rq = task_rq(p);
1911 * If the task is not on a runqueue (and not running), then
1912 * it is sufficient to simply update the task's cpu field.
1914 if (!p->se.on_rq && !task_running(rq, p)) {
1915 set_task_cpu(p, dest_cpu);
1919 init_completion(&req->done);
1921 req->dest_cpu = dest_cpu;
1922 list_add(&req->list, &rq->migration_queue);
1928 * wait_task_inactive - wait for a thread to unschedule.
1930 * The caller must ensure that the task *will* unschedule sometime soon,
1931 * else this function might spin for a *long* time. This function can't
1932 * be called with interrupts off, or it may introduce deadlock with
1933 * smp_call_function() if an IPI is sent by the same process we are
1934 * waiting to become inactive.
1936 void wait_task_inactive(struct task_struct *p)
1938 unsigned long flags;
1944 * We do the initial early heuristics without holding
1945 * any task-queue locks at all. We'll only try to get
1946 * the runqueue lock when things look like they will
1952 * If the task is actively running on another CPU
1953 * still, just relax and busy-wait without holding
1956 * NOTE! Since we don't hold any locks, it's not
1957 * even sure that "rq" stays as the right runqueue!
1958 * But we don't care, since "task_running()" will
1959 * return false if the runqueue has changed and p
1960 * is actually now running somewhere else!
1962 while (task_running(rq, p))
1966 * Ok, time to look more closely! We need the rq
1967 * lock now, to be *sure*. If we're wrong, we'll
1968 * just go back and repeat.
1970 rq = task_rq_lock(p, &flags);
1971 running = task_running(rq, p);
1972 on_rq = p->se.on_rq;
1973 task_rq_unlock(rq, &flags);
1976 * Was it really running after all now that we
1977 * checked with the proper locks actually held?
1979 * Oops. Go back and try again..
1981 if (unlikely(running)) {
1987 * It's not enough that it's not actively running,
1988 * it must be off the runqueue _entirely_, and not
1991 * So if it wa still runnable (but just not actively
1992 * running right now), it's preempted, and we should
1993 * yield - it could be a while.
1995 if (unlikely(on_rq)) {
1996 schedule_timeout_uninterruptible(1);
2001 * Ahh, all good. It wasn't running, and it wasn't
2002 * runnable, which means that it will never become
2003 * running in the future either. We're all done!
2010 * kick_process - kick a running thread to enter/exit the kernel
2011 * @p: the to-be-kicked thread
2013 * Cause a process which is running on another CPU to enter
2014 * kernel-mode, without any delay. (to get signals handled.)
2016 * NOTE: this function doesnt have to take the runqueue lock,
2017 * because all it wants to ensure is that the remote task enters
2018 * the kernel. If the IPI races and the task has been migrated
2019 * to another CPU then no harm is done and the purpose has been
2022 void kick_process(struct task_struct *p)
2028 if ((cpu != smp_processor_id()) && task_curr(p))
2029 smp_send_reschedule(cpu);
2034 * Return a low guess at the load of a migration-source cpu weighted
2035 * according to the scheduling class and "nice" value.
2037 * We want to under-estimate the load of migration sources, to
2038 * balance conservatively.
2040 static unsigned long source_load(int cpu, int type)
2042 struct rq *rq = cpu_rq(cpu);
2043 unsigned long total = weighted_cpuload(cpu);
2045 if (type == 0 || !sched_feat(LB_BIAS))
2048 return min(rq->cpu_load[type-1], total);
2052 * Return a high guess at the load of a migration-target cpu weighted
2053 * according to the scheduling class and "nice" value.
2055 static unsigned long target_load(int cpu, int type)
2057 struct rq *rq = cpu_rq(cpu);
2058 unsigned long total = weighted_cpuload(cpu);
2060 if (type == 0 || !sched_feat(LB_BIAS))
2063 return max(rq->cpu_load[type-1], total);
2067 * find_idlest_group finds and returns the least busy CPU group within the
2070 static struct sched_group *
2071 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2073 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2074 unsigned long min_load = ULONG_MAX, this_load = 0;
2075 int load_idx = sd->forkexec_idx;
2076 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2079 unsigned long load, avg_load;
2083 /* Skip over this group if it has no CPUs allowed */
2084 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2087 local_group = cpu_isset(this_cpu, group->cpumask);
2089 /* Tally up the load of all CPUs in the group */
2092 for_each_cpu_mask(i, group->cpumask) {
2093 /* Bias balancing toward cpus of our domain */
2095 load = source_load(i, load_idx);
2097 load = target_load(i, load_idx);
2102 /* Adjust by relative CPU power of the group */
2103 avg_load = sg_div_cpu_power(group,
2104 avg_load * SCHED_LOAD_SCALE);
2107 this_load = avg_load;
2109 } else if (avg_load < min_load) {
2110 min_load = avg_load;
2113 } while (group = group->next, group != sd->groups);
2115 if (!idlest || 100*this_load < imbalance*min_load)
2121 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2124 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2127 unsigned long load, min_load = ULONG_MAX;
2131 /* Traverse only the allowed CPUs */
2132 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2134 for_each_cpu_mask(i, *tmp) {
2135 load = weighted_cpuload(i);
2137 if (load < min_load || (load == min_load && i == this_cpu)) {
2147 * sched_balance_self: balance the current task (running on cpu) in domains
2148 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2151 * Balance, ie. select the least loaded group.
2153 * Returns the target CPU number, or the same CPU if no balancing is needed.
2155 * preempt must be disabled.
2157 static int sched_balance_self(int cpu, int flag)
2159 struct task_struct *t = current;
2160 struct sched_domain *tmp, *sd = NULL;
2162 for_each_domain(cpu, tmp) {
2164 * If power savings logic is enabled for a domain, stop there.
2166 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2168 if (tmp->flags & flag)
2176 cpumask_t span, tmpmask;
2177 struct sched_group *group;
2178 int new_cpu, weight;
2180 if (!(sd->flags & flag)) {
2186 group = find_idlest_group(sd, t, cpu);
2192 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2193 if (new_cpu == -1 || new_cpu == cpu) {
2194 /* Now try balancing at a lower domain level of cpu */
2199 /* Now try balancing at a lower domain level of new_cpu */
2202 weight = cpus_weight(span);
2203 for_each_domain(cpu, tmp) {
2204 if (weight <= cpus_weight(tmp->span))
2206 if (tmp->flags & flag)
2209 /* while loop will break here if sd == NULL */
2215 #endif /* CONFIG_SMP */
2218 * try_to_wake_up - wake up a thread
2219 * @p: the to-be-woken-up thread
2220 * @state: the mask of task states that can be woken
2221 * @sync: do a synchronous wakeup?
2223 * Put it on the run-queue if it's not already there. The "current"
2224 * thread is always on the run-queue (except when the actual
2225 * re-schedule is in progress), and as such you're allowed to do
2226 * the simpler "current->state = TASK_RUNNING" to mark yourself
2227 * runnable without the overhead of this.
2229 * returns failure only if the task is already active.
2231 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2233 int cpu, orig_cpu, this_cpu, success = 0;
2234 unsigned long flags;
2238 if (!sched_feat(SYNC_WAKEUPS))
2242 if (sched_feat(LB_WAKEUP_UPDATE)) {
2243 struct sched_domain *sd;
2245 this_cpu = raw_smp_processor_id();
2248 for_each_domain(this_cpu, sd) {
2249 if (cpu_isset(cpu, sd->span)) {
2258 rq = task_rq_lock(p, &flags);
2259 old_state = p->state;
2260 if (!(old_state & state))
2268 this_cpu = smp_processor_id();
2271 if (unlikely(task_running(rq, p)))
2274 cpu = p->sched_class->select_task_rq(p, sync);
2275 if (cpu != orig_cpu) {
2276 set_task_cpu(p, cpu);
2277 task_rq_unlock(rq, &flags);
2278 /* might preempt at this point */
2279 rq = task_rq_lock(p, &flags);
2280 old_state = p->state;
2281 if (!(old_state & state))
2286 this_cpu = smp_processor_id();
2290 #ifdef CONFIG_SCHEDSTATS
2291 schedstat_inc(rq, ttwu_count);
2292 if (cpu == this_cpu)
2293 schedstat_inc(rq, ttwu_local);
2295 struct sched_domain *sd;
2296 for_each_domain(this_cpu, sd) {
2297 if (cpu_isset(cpu, sd->span)) {
2298 schedstat_inc(sd, ttwu_wake_remote);
2303 #endif /* CONFIG_SCHEDSTATS */
2306 #endif /* CONFIG_SMP */
2307 schedstat_inc(p, se.nr_wakeups);
2309 schedstat_inc(p, se.nr_wakeups_sync);
2310 if (orig_cpu != cpu)
2311 schedstat_inc(p, se.nr_wakeups_migrate);
2312 if (cpu == this_cpu)
2313 schedstat_inc(p, se.nr_wakeups_local);
2315 schedstat_inc(p, se.nr_wakeups_remote);
2316 update_rq_clock(rq);
2317 activate_task(rq, p, 1);
2321 check_preempt_curr(rq, p);
2323 p->state = TASK_RUNNING;
2325 if (p->sched_class->task_wake_up)
2326 p->sched_class->task_wake_up(rq, p);
2329 current->se.last_wakeup = current->se.sum_exec_runtime;
2331 task_rq_unlock(rq, &flags);
2336 int wake_up_process(struct task_struct *p)
2338 return try_to_wake_up(p, TASK_ALL, 0);
2340 EXPORT_SYMBOL(wake_up_process);
2342 int wake_up_state(struct task_struct *p, unsigned int state)
2344 return try_to_wake_up(p, state, 0);
2348 * Perform scheduler related setup for a newly forked process p.
2349 * p is forked by current.
2351 * __sched_fork() is basic setup used by init_idle() too:
2353 static void __sched_fork(struct task_struct *p)
2355 p->se.exec_start = 0;
2356 p->se.sum_exec_runtime = 0;
2357 p->se.prev_sum_exec_runtime = 0;
2358 p->se.last_wakeup = 0;
2359 p->se.avg_overlap = 0;
2361 #ifdef CONFIG_SCHEDSTATS
2362 p->se.wait_start = 0;
2363 p->se.sum_sleep_runtime = 0;
2364 p->se.sleep_start = 0;
2365 p->se.block_start = 0;
2366 p->se.sleep_max = 0;
2367 p->se.block_max = 0;
2369 p->se.slice_max = 0;
2373 INIT_LIST_HEAD(&p->rt.run_list);
2375 INIT_LIST_HEAD(&p->se.group_node);
2377 #ifdef CONFIG_PREEMPT_NOTIFIERS
2378 INIT_HLIST_HEAD(&p->preempt_notifiers);
2382 * We mark the process as running here, but have not actually
2383 * inserted it onto the runqueue yet. This guarantees that
2384 * nobody will actually run it, and a signal or other external
2385 * event cannot wake it up and insert it on the runqueue either.
2387 p->state = TASK_RUNNING;
2391 * fork()/clone()-time setup:
2393 void sched_fork(struct task_struct *p, int clone_flags)
2395 int cpu = get_cpu();
2400 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2402 set_task_cpu(p, cpu);
2405 * Make sure we do not leak PI boosting priority to the child:
2407 p->prio = current->normal_prio;
2408 if (!rt_prio(p->prio))
2409 p->sched_class = &fair_sched_class;
2411 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2412 if (likely(sched_info_on()))
2413 memset(&p->sched_info, 0, sizeof(p->sched_info));
2415 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2418 #ifdef CONFIG_PREEMPT
2419 /* Want to start with kernel preemption disabled. */
2420 task_thread_info(p)->preempt_count = 1;
2426 * wake_up_new_task - wake up a newly created task for the first time.
2428 * This function will do some initial scheduler statistics housekeeping
2429 * that must be done for every newly created context, then puts the task
2430 * on the runqueue and wakes it.
2432 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2434 unsigned long flags;
2437 rq = task_rq_lock(p, &flags);
2438 BUG_ON(p->state != TASK_RUNNING);
2439 update_rq_clock(rq);
2441 p->prio = effective_prio(p);
2443 if (!p->sched_class->task_new || !current->se.on_rq) {
2444 activate_task(rq, p, 0);
2447 * Let the scheduling class do new task startup
2448 * management (if any):
2450 p->sched_class->task_new(rq, p);
2453 check_preempt_curr(rq, p);
2455 if (p->sched_class->task_wake_up)
2456 p->sched_class->task_wake_up(rq, p);
2458 task_rq_unlock(rq, &flags);
2461 #ifdef CONFIG_PREEMPT_NOTIFIERS
2464 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2465 * @notifier: notifier struct to register
2467 void preempt_notifier_register(struct preempt_notifier *notifier)
2469 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
2471 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2474 * preempt_notifier_unregister - no longer interested in preemption notifications
2475 * @notifier: notifier struct to unregister
2477 * This is safe to call from within a preemption notifier.
2479 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2481 hlist_del(¬ifier->link);
2483 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2485 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2487 struct preempt_notifier *notifier;
2488 struct hlist_node *node;
2490 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2491 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2495 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2496 struct task_struct *next)
2498 struct preempt_notifier *notifier;
2499 struct hlist_node *node;
2501 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2502 notifier->ops->sched_out(notifier, next);
2505 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2507 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2512 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2513 struct task_struct *next)
2517 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2520 * prepare_task_switch - prepare to switch tasks
2521 * @rq: the runqueue preparing to switch
2522 * @prev: the current task that is being switched out
2523 * @next: the task we are going to switch to.
2525 * This is called with the rq lock held and interrupts off. It must
2526 * be paired with a subsequent finish_task_switch after the context
2529 * prepare_task_switch sets up locking and calls architecture specific
2533 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2534 struct task_struct *next)
2536 fire_sched_out_preempt_notifiers(prev, next);
2537 prepare_lock_switch(rq, next);
2538 prepare_arch_switch(next);
2542 * finish_task_switch - clean up after a task-switch
2543 * @rq: runqueue associated with task-switch
2544 * @prev: the thread we just switched away from.
2546 * finish_task_switch must be called after the context switch, paired
2547 * with a prepare_task_switch call before the context switch.
2548 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2549 * and do any other architecture-specific cleanup actions.
2551 * Note that we may have delayed dropping an mm in context_switch(). If
2552 * so, we finish that here outside of the runqueue lock. (Doing it
2553 * with the lock held can cause deadlocks; see schedule() for
2556 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2557 __releases(rq->lock)
2559 struct mm_struct *mm = rq->prev_mm;
2565 * A task struct has one reference for the use as "current".
2566 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2567 * schedule one last time. The schedule call will never return, and
2568 * the scheduled task must drop that reference.
2569 * The test for TASK_DEAD must occur while the runqueue locks are
2570 * still held, otherwise prev could be scheduled on another cpu, die
2571 * there before we look at prev->state, and then the reference would
2573 * Manfred Spraul <manfred@colorfullife.com>
2575 prev_state = prev->state;
2576 finish_arch_switch(prev);
2577 finish_lock_switch(rq, prev);
2579 if (current->sched_class->post_schedule)
2580 current->sched_class->post_schedule(rq);
2583 fire_sched_in_preempt_notifiers(current);
2586 if (unlikely(prev_state == TASK_DEAD)) {
2588 * Remove function-return probe instances associated with this
2589 * task and put them back on the free list.
2591 kprobe_flush_task(prev);
2592 put_task_struct(prev);
2597 * schedule_tail - first thing a freshly forked thread must call.
2598 * @prev: the thread we just switched away from.
2600 asmlinkage void schedule_tail(struct task_struct *prev)
2601 __releases(rq->lock)
2603 struct rq *rq = this_rq();
2605 finish_task_switch(rq, prev);
2606 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2607 /* In this case, finish_task_switch does not reenable preemption */
2610 if (current->set_child_tid)
2611 put_user(task_pid_vnr(current), current->set_child_tid);
2615 * context_switch - switch to the new MM and the new
2616 * thread's register state.
2619 context_switch(struct rq *rq, struct task_struct *prev,
2620 struct task_struct *next)
2622 struct mm_struct *mm, *oldmm;
2624 prepare_task_switch(rq, prev, next);
2626 oldmm = prev->active_mm;
2628 * For paravirt, this is coupled with an exit in switch_to to
2629 * combine the page table reload and the switch backend into
2632 arch_enter_lazy_cpu_mode();
2634 if (unlikely(!mm)) {
2635 next->active_mm = oldmm;
2636 atomic_inc(&oldmm->mm_count);
2637 enter_lazy_tlb(oldmm, next);
2639 switch_mm(oldmm, mm, next);
2641 if (unlikely(!prev->mm)) {
2642 prev->active_mm = NULL;
2643 rq->prev_mm = oldmm;
2646 * Since the runqueue lock will be released by the next
2647 * task (which is an invalid locking op but in the case
2648 * of the scheduler it's an obvious special-case), so we
2649 * do an early lockdep release here:
2651 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2652 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2655 /* Here we just switch the register state and the stack. */
2656 switch_to(prev, next, prev);
2660 * this_rq must be evaluated again because prev may have moved
2661 * CPUs since it called schedule(), thus the 'rq' on its stack
2662 * frame will be invalid.
2664 finish_task_switch(this_rq(), prev);
2668 * nr_running, nr_uninterruptible and nr_context_switches:
2670 * externally visible scheduler statistics: current number of runnable
2671 * threads, current number of uninterruptible-sleeping threads, total
2672 * number of context switches performed since bootup.
2674 unsigned long nr_running(void)
2676 unsigned long i, sum = 0;
2678 for_each_online_cpu(i)
2679 sum += cpu_rq(i)->nr_running;
2684 unsigned long nr_uninterruptible(void)
2686 unsigned long i, sum = 0;
2688 for_each_possible_cpu(i)
2689 sum += cpu_rq(i)->nr_uninterruptible;
2692 * Since we read the counters lockless, it might be slightly
2693 * inaccurate. Do not allow it to go below zero though:
2695 if (unlikely((long)sum < 0))
2701 unsigned long long nr_context_switches(void)
2704 unsigned long long sum = 0;
2706 for_each_possible_cpu(i)
2707 sum += cpu_rq(i)->nr_switches;
2712 unsigned long nr_iowait(void)
2714 unsigned long i, sum = 0;
2716 for_each_possible_cpu(i)
2717 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2722 unsigned long nr_active(void)
2724 unsigned long i, running = 0, uninterruptible = 0;
2726 for_each_online_cpu(i) {
2727 running += cpu_rq(i)->nr_running;
2728 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2731 if (unlikely((long)uninterruptible < 0))
2732 uninterruptible = 0;
2734 return running + uninterruptible;
2738 * Update rq->cpu_load[] statistics. This function is usually called every
2739 * scheduler tick (TICK_NSEC).
2741 static void update_cpu_load(struct rq *this_rq)
2743 unsigned long this_load = this_rq->load.weight;
2746 this_rq->nr_load_updates++;
2748 /* Update our load: */
2749 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2750 unsigned long old_load, new_load;
2752 /* scale is effectively 1 << i now, and >> i divides by scale */
2754 old_load = this_rq->cpu_load[i];
2755 new_load = this_load;
2757 * Round up the averaging division if load is increasing. This
2758 * prevents us from getting stuck on 9 if the load is 10, for
2761 if (new_load > old_load)
2762 new_load += scale-1;
2763 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2770 * double_rq_lock - safely lock two runqueues
2772 * Note this does not disable interrupts like task_rq_lock,
2773 * you need to do so manually before calling.
2775 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2776 __acquires(rq1->lock)
2777 __acquires(rq2->lock)
2779 BUG_ON(!irqs_disabled());
2781 spin_lock(&rq1->lock);
2782 __acquire(rq2->lock); /* Fake it out ;) */
2785 spin_lock(&rq1->lock);
2786 spin_lock(&rq2->lock);
2788 spin_lock(&rq2->lock);
2789 spin_lock(&rq1->lock);
2792 update_rq_clock(rq1);
2793 update_rq_clock(rq2);
2797 * double_rq_unlock - safely unlock two runqueues
2799 * Note this does not restore interrupts like task_rq_unlock,
2800 * you need to do so manually after calling.
2802 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2803 __releases(rq1->lock)
2804 __releases(rq2->lock)
2806 spin_unlock(&rq1->lock);
2808 spin_unlock(&rq2->lock);
2810 __release(rq2->lock);
2814 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2816 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2817 __releases(this_rq->lock)
2818 __acquires(busiest->lock)
2819 __acquires(this_rq->lock)
2823 if (unlikely(!irqs_disabled())) {
2824 /* printk() doesn't work good under rq->lock */
2825 spin_unlock(&this_rq->lock);
2828 if (unlikely(!spin_trylock(&busiest->lock))) {
2829 if (busiest < this_rq) {
2830 spin_unlock(&this_rq->lock);
2831 spin_lock(&busiest->lock);
2832 spin_lock(&this_rq->lock);
2835 spin_lock(&busiest->lock);
2841 * If dest_cpu is allowed for this process, migrate the task to it.
2842 * This is accomplished by forcing the cpu_allowed mask to only
2843 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2844 * the cpu_allowed mask is restored.
2846 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2848 struct migration_req req;
2849 unsigned long flags;
2852 rq = task_rq_lock(p, &flags);
2853 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2854 || unlikely(cpu_is_offline(dest_cpu)))
2857 /* force the process onto the specified CPU */
2858 if (migrate_task(p, dest_cpu, &req)) {
2859 /* Need to wait for migration thread (might exit: take ref). */
2860 struct task_struct *mt = rq->migration_thread;
2862 get_task_struct(mt);
2863 task_rq_unlock(rq, &flags);
2864 wake_up_process(mt);
2865 put_task_struct(mt);
2866 wait_for_completion(&req.done);
2871 task_rq_unlock(rq, &flags);
2875 * sched_exec - execve() is a valuable balancing opportunity, because at
2876 * this point the task has the smallest effective memory and cache footprint.
2878 void sched_exec(void)
2880 int new_cpu, this_cpu = get_cpu();
2881 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2883 if (new_cpu != this_cpu)
2884 sched_migrate_task(current, new_cpu);
2888 * pull_task - move a task from a remote runqueue to the local runqueue.
2889 * Both runqueues must be locked.
2891 static void pull_task(struct rq *src_rq, struct task_struct *p,
2892 struct rq *this_rq, int this_cpu)
2894 deactivate_task(src_rq, p, 0);
2895 set_task_cpu(p, this_cpu);
2896 activate_task(this_rq, p, 0);
2898 * Note that idle threads have a prio of MAX_PRIO, for this test
2899 * to be always true for them.
2901 check_preempt_curr(this_rq, p);
2905 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2908 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2909 struct sched_domain *sd, enum cpu_idle_type idle,
2913 * We do not migrate tasks that are:
2914 * 1) running (obviously), or
2915 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2916 * 3) are cache-hot on their current CPU.
2918 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2919 schedstat_inc(p, se.nr_failed_migrations_affine);
2924 if (task_running(rq, p)) {
2925 schedstat_inc(p, se.nr_failed_migrations_running);
2930 * Aggressive migration if:
2931 * 1) task is cache cold, or
2932 * 2) too many balance attempts have failed.
2935 if (!task_hot(p, rq->clock, sd) ||
2936 sd->nr_balance_failed > sd->cache_nice_tries) {
2937 #ifdef CONFIG_SCHEDSTATS
2938 if (task_hot(p, rq->clock, sd)) {
2939 schedstat_inc(sd, lb_hot_gained[idle]);
2940 schedstat_inc(p, se.nr_forced_migrations);
2946 if (task_hot(p, rq->clock, sd)) {
2947 schedstat_inc(p, se.nr_failed_migrations_hot);
2953 static unsigned long
2954 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2955 unsigned long max_load_move, struct sched_domain *sd,
2956 enum cpu_idle_type idle, int *all_pinned,
2957 int *this_best_prio, struct rq_iterator *iterator)
2959 int loops = 0, pulled = 0, pinned = 0;
2960 struct task_struct *p;
2961 long rem_load_move = max_load_move;
2963 if (max_load_move == 0)
2969 * Start the load-balancing iterator:
2971 p = iterator->start(iterator->arg);
2973 if (!p || loops++ > sysctl_sched_nr_migrate)
2976 if ((p->se.load.weight >> 1) > rem_load_move ||
2977 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2978 p = iterator->next(iterator->arg);
2982 pull_task(busiest, p, this_rq, this_cpu);
2984 rem_load_move -= p->se.load.weight;
2987 * We only want to steal up to the prescribed amount of weighted load.
2989 if (rem_load_move > 0) {
2990 if (p->prio < *this_best_prio)
2991 *this_best_prio = p->prio;
2992 p = iterator->next(iterator->arg);
2997 * Right now, this is one of only two places pull_task() is called,
2998 * so we can safely collect pull_task() stats here rather than
2999 * inside pull_task().
3001 schedstat_add(sd, lb_gained[idle], pulled);
3004 *all_pinned = pinned;
3006 return max_load_move - rem_load_move;
3010 * move_tasks tries to move up to max_load_move weighted load from busiest to
3011 * this_rq, as part of a balancing operation within domain "sd".
3012 * Returns 1 if successful and 0 otherwise.
3014 * Called with both runqueues locked.
3016 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3017 unsigned long max_load_move,
3018 struct sched_domain *sd, enum cpu_idle_type idle,
3021 const struct sched_class *class = sched_class_highest;
3022 unsigned long total_load_moved = 0;
3023 int this_best_prio = this_rq->curr->prio;
3027 class->load_balance(this_rq, this_cpu, busiest,
3028 max_load_move - total_load_moved,
3029 sd, idle, all_pinned, &this_best_prio);
3030 class = class->next;
3032 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3035 } while (class && max_load_move > total_load_moved);
3037 return total_load_moved > 0;
3041 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3042 struct sched_domain *sd, enum cpu_idle_type idle,
3043 struct rq_iterator *iterator)
3045 struct task_struct *p = iterator->start(iterator->arg);
3049 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3050 pull_task(busiest, p, this_rq, this_cpu);
3052 * Right now, this is only the second place pull_task()
3053 * is called, so we can safely collect pull_task()
3054 * stats here rather than inside pull_task().
3056 schedstat_inc(sd, lb_gained[idle]);
3060 p = iterator->next(iterator->arg);
3067 * move_one_task tries to move exactly one task from busiest to this_rq, as
3068 * part of active balancing operations within "domain".
3069 * Returns 1 if successful and 0 otherwise.
3071 * Called with both runqueues locked.
3073 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3074 struct sched_domain *sd, enum cpu_idle_type idle)
3076 const struct sched_class *class;
3078 for (class = sched_class_highest; class; class = class->next)
3079 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3086 * find_busiest_group finds and returns the busiest CPU group within the
3087 * domain. It calculates and returns the amount of weighted load which
3088 * should be moved to restore balance via the imbalance parameter.
3090 static struct sched_group *
3091 find_busiest_group(struct sched_domain *sd, int this_cpu,
3092 unsigned long *imbalance, enum cpu_idle_type idle,
3093 int *sd_idle, const cpumask_t *cpus, int *balance)
3095 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3096 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3097 unsigned long max_pull;
3098 unsigned long busiest_load_per_task, busiest_nr_running;
3099 unsigned long this_load_per_task, this_nr_running;
3100 int load_idx, group_imb = 0;
3101 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3102 int power_savings_balance = 1;
3103 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3104 unsigned long min_nr_running = ULONG_MAX;
3105 struct sched_group *group_min = NULL, *group_leader = NULL;
3108 max_load = this_load = total_load = total_pwr = 0;
3109 busiest_load_per_task = busiest_nr_running = 0;
3110 this_load_per_task = this_nr_running = 0;
3112 if (idle == CPU_NOT_IDLE)
3113 load_idx = sd->busy_idx;
3114 else if (idle == CPU_NEWLY_IDLE)
3115 load_idx = sd->newidle_idx;
3117 load_idx = sd->idle_idx;
3120 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
3123 int __group_imb = 0;
3124 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3125 unsigned long sum_nr_running, sum_weighted_load;
3126 unsigned long sum_avg_load_per_task;
3127 unsigned long avg_load_per_task;
3129 local_group = cpu_isset(this_cpu, group->cpumask);
3132 balance_cpu = first_cpu(group->cpumask);
3134 /* Tally up the load of all CPUs in the group */
3135 sum_weighted_load = sum_nr_running = avg_load = 0;
3136 sum_avg_load_per_task = avg_load_per_task = 0;
3139 min_cpu_load = ~0UL;
3141 for_each_cpu_mask(i, group->cpumask) {
3144 if (!cpu_isset(i, *cpus))
3149 if (*sd_idle && rq->nr_running)
3152 /* Bias balancing toward cpus of our domain */
3154 if (idle_cpu(i) && !first_idle_cpu) {
3159 load = target_load(i, load_idx);
3161 load = source_load(i, load_idx);
3162 if (load > max_cpu_load)
3163 max_cpu_load = load;
3164 if (min_cpu_load > load)
3165 min_cpu_load = load;
3169 sum_nr_running += rq->nr_running;
3170 sum_weighted_load += weighted_cpuload(i);
3172 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3176 * First idle cpu or the first cpu(busiest) in this sched group
3177 * is eligible for doing load balancing at this and above
3178 * domains. In the newly idle case, we will allow all the cpu's
3179 * to do the newly idle load balance.
3181 if (idle != CPU_NEWLY_IDLE && local_group &&
3182 balance_cpu != this_cpu && balance) {
3187 total_load += avg_load;
3188 total_pwr += group->__cpu_power;
3190 /* Adjust by relative CPU power of the group */
3191 avg_load = sg_div_cpu_power(group,
3192 avg_load * SCHED_LOAD_SCALE);
3196 * Consider the group unbalanced when the imbalance is larger
3197 * than the average weight of two tasks.
3199 * APZ: with cgroup the avg task weight can vary wildly and
3200 * might not be a suitable number - should we keep a
3201 * normalized nr_running number somewhere that negates
3204 avg_load_per_task = sg_div_cpu_power(group,
3205 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3207 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3210 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3213 this_load = avg_load;
3215 this_nr_running = sum_nr_running;
3216 this_load_per_task = sum_weighted_load;
3217 } else if (avg_load > max_load &&
3218 (sum_nr_running > group_capacity || __group_imb)) {
3219 max_load = avg_load;
3221 busiest_nr_running = sum_nr_running;
3222 busiest_load_per_task = sum_weighted_load;
3223 group_imb = __group_imb;
3226 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3228 * Busy processors will not participate in power savings
3231 if (idle == CPU_NOT_IDLE ||
3232 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3236 * If the local group is idle or completely loaded
3237 * no need to do power savings balance at this domain
3239 if (local_group && (this_nr_running >= group_capacity ||
3241 power_savings_balance = 0;
3244 * If a group is already running at full capacity or idle,
3245 * don't include that group in power savings calculations
3247 if (!power_savings_balance || sum_nr_running >= group_capacity
3252 * Calculate the group which has the least non-idle load.
3253 * This is the group from where we need to pick up the load
3256 if ((sum_nr_running < min_nr_running) ||
3257 (sum_nr_running == min_nr_running &&
3258 first_cpu(group->cpumask) <
3259 first_cpu(group_min->cpumask))) {
3261 min_nr_running = sum_nr_running;
3262 min_load_per_task = sum_weighted_load /
3267 * Calculate the group which is almost near its
3268 * capacity but still has some space to pick up some load
3269 * from other group and save more power
3271 if (sum_nr_running <= group_capacity - 1) {
3272 if (sum_nr_running > leader_nr_running ||
3273 (sum_nr_running == leader_nr_running &&
3274 first_cpu(group->cpumask) >
3275 first_cpu(group_leader->cpumask))) {
3276 group_leader = group;
3277 leader_nr_running = sum_nr_running;
3282 group = group->next;
3283 } while (group != sd->groups);
3285 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3288 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3290 if (this_load >= avg_load ||
3291 100*max_load <= sd->imbalance_pct*this_load)
3294 busiest_load_per_task /= busiest_nr_running;
3296 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3299 * We're trying to get all the cpus to the average_load, so we don't
3300 * want to push ourselves above the average load, nor do we wish to
3301 * reduce the max loaded cpu below the average load, as either of these
3302 * actions would just result in more rebalancing later, and ping-pong
3303 * tasks around. Thus we look for the minimum possible imbalance.
3304 * Negative imbalances (*we* are more loaded than anyone else) will
3305 * be counted as no imbalance for these purposes -- we can't fix that
3306 * by pulling tasks to us. Be careful of negative numbers as they'll
3307 * appear as very large values with unsigned longs.
3309 if (max_load <= busiest_load_per_task)
3313 * In the presence of smp nice balancing, certain scenarios can have
3314 * max load less than avg load(as we skip the groups at or below
3315 * its cpu_power, while calculating max_load..)
3317 if (max_load < avg_load) {
3319 goto small_imbalance;
3322 /* Don't want to pull so many tasks that a group would go idle */
3323 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3325 /* How much load to actually move to equalise the imbalance */
3326 *imbalance = min(max_pull * busiest->__cpu_power,
3327 (avg_load - this_load) * this->__cpu_power)
3331 * if *imbalance is less than the average load per runnable task
3332 * there is no gaurantee that any tasks will be moved so we'll have
3333 * a think about bumping its value to force at least one task to be
3336 if (*imbalance < busiest_load_per_task) {
3337 unsigned long tmp, pwr_now, pwr_move;
3341 pwr_move = pwr_now = 0;
3343 if (this_nr_running) {
3344 this_load_per_task /= this_nr_running;
3345 if (busiest_load_per_task > this_load_per_task)
3348 this_load_per_task = cpu_avg_load_per_task(this_cpu);
3350 if (max_load - this_load + 2*busiest_load_per_task >=
3351 busiest_load_per_task * imbn) {
3352 *imbalance = busiest_load_per_task;
3357 * OK, we don't have enough imbalance to justify moving tasks,
3358 * however we may be able to increase total CPU power used by
3362 pwr_now += busiest->__cpu_power *
3363 min(busiest_load_per_task, max_load);
3364 pwr_now += this->__cpu_power *
3365 min(this_load_per_task, this_load);
3366 pwr_now /= SCHED_LOAD_SCALE;
3368 /* Amount of load we'd subtract */
3369 tmp = sg_div_cpu_power(busiest,
3370 busiest_load_per_task * SCHED_LOAD_SCALE);
3372 pwr_move += busiest->__cpu_power *
3373 min(busiest_load_per_task, max_load - tmp);
3375 /* Amount of load we'd add */
3376 if (max_load * busiest->__cpu_power <
3377 busiest_load_per_task * SCHED_LOAD_SCALE)
3378 tmp = sg_div_cpu_power(this,
3379 max_load * busiest->__cpu_power);
3381 tmp = sg_div_cpu_power(this,
3382 busiest_load_per_task * SCHED_LOAD_SCALE);
3383 pwr_move += this->__cpu_power *
3384 min(this_load_per_task, this_load + tmp);
3385 pwr_move /= SCHED_LOAD_SCALE;
3387 /* Move if we gain throughput */
3388 if (pwr_move > pwr_now)
3389 *imbalance = busiest_load_per_task;
3395 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3396 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3399 if (this == group_leader && group_leader != group_min) {
3400 *imbalance = min_load_per_task;
3410 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3413 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3414 unsigned long imbalance, const cpumask_t *cpus)
3416 struct rq *busiest = NULL, *rq;
3417 unsigned long max_load = 0;
3420 for_each_cpu_mask(i, group->cpumask) {
3423 if (!cpu_isset(i, *cpus))
3427 wl = weighted_cpuload(i);
3429 if (rq->nr_running == 1 && wl > imbalance)
3432 if (wl > max_load) {
3442 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3443 * so long as it is large enough.
3445 #define MAX_PINNED_INTERVAL 512
3448 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3449 * tasks if there is an imbalance.
3451 static int load_balance(int this_cpu, struct rq *this_rq,
3452 struct sched_domain *sd, enum cpu_idle_type idle,
3453 int *balance, cpumask_t *cpus)
3455 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3456 struct sched_group *group;
3457 unsigned long imbalance;
3459 unsigned long flags;
3464 * When power savings policy is enabled for the parent domain, idle
3465 * sibling can pick up load irrespective of busy siblings. In this case,
3466 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3467 * portraying it as CPU_NOT_IDLE.
3469 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3470 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3473 schedstat_inc(sd, lb_count[idle]);
3477 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3484 schedstat_inc(sd, lb_nobusyg[idle]);
3488 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3490 schedstat_inc(sd, lb_nobusyq[idle]);
3494 BUG_ON(busiest == this_rq);
3496 schedstat_add(sd, lb_imbalance[idle], imbalance);
3499 if (busiest->nr_running > 1) {
3501 * Attempt to move tasks. If find_busiest_group has found
3502 * an imbalance but busiest->nr_running <= 1, the group is
3503 * still unbalanced. ld_moved simply stays zero, so it is
3504 * correctly treated as an imbalance.
3506 local_irq_save(flags);
3507 double_rq_lock(this_rq, busiest);
3508 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3509 imbalance, sd, idle, &all_pinned);
3510 double_rq_unlock(this_rq, busiest);
3511 local_irq_restore(flags);
3514 * some other cpu did the load balance for us.
3516 if (ld_moved && this_cpu != smp_processor_id())
3517 resched_cpu(this_cpu);
3519 /* All tasks on this runqueue were pinned by CPU affinity */
3520 if (unlikely(all_pinned)) {
3521 cpu_clear(cpu_of(busiest), *cpus);
3522 if (!cpus_empty(*cpus))
3529 schedstat_inc(sd, lb_failed[idle]);
3530 sd->nr_balance_failed++;
3532 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3534 spin_lock_irqsave(&busiest->lock, flags);
3536 /* don't kick the migration_thread, if the curr
3537 * task on busiest cpu can't be moved to this_cpu
3539 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3540 spin_unlock_irqrestore(&busiest->lock, flags);
3542 goto out_one_pinned;
3545 if (!busiest->active_balance) {
3546 busiest->active_balance = 1;
3547 busiest->push_cpu = this_cpu;
3550 spin_unlock_irqrestore(&busiest->lock, flags);
3552 wake_up_process(busiest->migration_thread);
3555 * We've kicked active balancing, reset the failure
3558 sd->nr_balance_failed = sd->cache_nice_tries+1;
3561 sd->nr_balance_failed = 0;
3563 if (likely(!active_balance)) {
3564 /* We were unbalanced, so reset the balancing interval */
3565 sd->balance_interval = sd->min_interval;
3568 * If we've begun active balancing, start to back off. This
3569 * case may not be covered by the all_pinned logic if there
3570 * is only 1 task on the busy runqueue (because we don't call
3573 if (sd->balance_interval < sd->max_interval)
3574 sd->balance_interval *= 2;
3577 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3578 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3584 schedstat_inc(sd, lb_balanced[idle]);
3586 sd->nr_balance_failed = 0;
3589 /* tune up the balancing interval */
3590 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3591 (sd->balance_interval < sd->max_interval))
3592 sd->balance_interval *= 2;
3594 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3595 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3606 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3607 * tasks if there is an imbalance.
3609 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3610 * this_rq is locked.
3613 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3616 struct sched_group *group;
3617 struct rq *busiest = NULL;
3618 unsigned long imbalance;
3626 * When power savings policy is enabled for the parent domain, idle
3627 * sibling can pick up load irrespective of busy siblings. In this case,
3628 * let the state of idle sibling percolate up as IDLE, instead of
3629 * portraying it as CPU_NOT_IDLE.
3631 if (sd->flags & SD_SHARE_CPUPOWER &&
3632 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3635 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3637 update_shares_locked(this_rq, sd);
3638 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,