]> nv-tegra.nvidia Code Review - linux-2.6.git/blob - kernel/sched.c
Merge branch 'linus' into sched/core
[linux-2.6.git] / kernel / sched.c
1 /*
2  *  kernel/sched.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *              make semaphores SMP safe
10  *  1998-11-19  Implemented schedule_timeout() and related stuff
11  *              by Andrea Arcangeli
12  *  2002-01-04  New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *              hybrid priority-list and round-robin design with
14  *              an array-switch method of distributing timeslices
15  *              and per-CPU runqueues.  Cleanups and useful suggestions
16  *              by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03  Interactivity tuning by Con Kolivas.
18  *  2004-04-02  Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_counter.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/reciprocal_div.h>
68 #include <linux/unistd.h>
69 #include <linux/pagemap.h>
70 #include <linux/hrtimer.h>
71 #include <linux/tick.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
75
76 #include <asm/tlb.h>
77 #include <asm/irq_regs.h>
78
79 #include "sched_cpupri.h"
80
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/sched.h>
83
84 /*
85  * Convert user-nice values [ -20 ... 0 ... 19 ]
86  * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87  * and back.
88  */
89 #define NICE_TO_PRIO(nice)      (MAX_RT_PRIO + (nice) + 20)
90 #define PRIO_TO_NICE(prio)      ((prio) - MAX_RT_PRIO - 20)
91 #define TASK_NICE(p)            PRIO_TO_NICE((p)->static_prio)
92
93 /*
94  * 'User priority' is the nice value converted to something we
95  * can work with better when scaling various scheduler parameters,
96  * it's a [ 0 ... 39 ] range.
97  */
98 #define USER_PRIO(p)            ((p)-MAX_RT_PRIO)
99 #define TASK_USER_PRIO(p)       USER_PRIO((p)->static_prio)
100 #define MAX_USER_PRIO           (USER_PRIO(MAX_PRIO))
101
102 /*
103  * Helpers for converting nanosecond timing to jiffy resolution
104  */
105 #define NS_TO_JIFFIES(TIME)     ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
106
107 #define NICE_0_LOAD             SCHED_LOAD_SCALE
108 #define NICE_0_SHIFT            SCHED_LOAD_SHIFT
109
110 /*
111  * These are the 'tuning knobs' of the scheduler:
112  *
113  * default timeslice is 100 msecs (used only for SCHED_RR tasks).
114  * Timeslices get refilled after they expire.
115  */
116 #define DEF_TIMESLICE           (100 * HZ / 1000)
117
118 /*
119  * single value that denotes runtime == period, ie unlimited time.
120  */
121 #define RUNTIME_INF     ((u64)~0ULL)
122
123 #ifdef CONFIG_SMP
124
125 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
126
127 /*
128  * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
129  * Since cpu_power is a 'constant', we can use a reciprocal divide.
130  */
131 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
132 {
133         return reciprocal_divide(load, sg->reciprocal_cpu_power);
134 }
135
136 /*
137  * Each time a sched group cpu_power is changed,
138  * we must compute its reciprocal value
139  */
140 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
141 {
142         sg->__cpu_power += val;
143         sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
144 }
145 #endif
146
147 static inline int rt_policy(int policy)
148 {
149         if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
150                 return 1;
151         return 0;
152 }
153
154 static inline int task_has_rt_policy(struct task_struct *p)
155 {
156         return rt_policy(p->policy);
157 }
158
159 /*
160  * This is the priority-queue data structure of the RT scheduling class:
161  */
162 struct rt_prio_array {
163         DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
164         struct list_head queue[MAX_RT_PRIO];
165 };
166
167 struct rt_bandwidth {
168         /* nests inside the rq lock: */
169         spinlock_t              rt_runtime_lock;
170         ktime_t                 rt_period;
171         u64                     rt_runtime;
172         struct hrtimer          rt_period_timer;
173 };
174
175 static struct rt_bandwidth def_rt_bandwidth;
176
177 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
178
179 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
180 {
181         struct rt_bandwidth *rt_b =
182                 container_of(timer, struct rt_bandwidth, rt_period_timer);
183         ktime_t now;
184         int overrun;
185         int idle = 0;
186
187         for (;;) {
188                 now = hrtimer_cb_get_time(timer);
189                 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
190
191                 if (!overrun)
192                         break;
193
194                 idle = do_sched_rt_period_timer(rt_b, overrun);
195         }
196
197         return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
198 }
199
200 static
201 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
202 {
203         rt_b->rt_period = ns_to_ktime(period);
204         rt_b->rt_runtime = runtime;
205
206         spin_lock_init(&rt_b->rt_runtime_lock);
207
208         hrtimer_init(&rt_b->rt_period_timer,
209                         CLOCK_MONOTONIC, HRTIMER_MODE_REL);
210         rt_b->rt_period_timer.function = sched_rt_period_timer;
211 }
212
213 static inline int rt_bandwidth_enabled(void)
214 {
215         return sysctl_sched_rt_runtime >= 0;
216 }
217
218 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
219 {
220         ktime_t now;
221
222         if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
223                 return;
224
225         if (hrtimer_active(&rt_b->rt_period_timer))
226                 return;
227
228         spin_lock(&rt_b->rt_runtime_lock);
229         for (;;) {
230                 unsigned long delta;
231                 ktime_t soft, hard;
232
233                 if (hrtimer_active(&rt_b->rt_period_timer))
234                         break;
235
236                 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
237                 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
238
239                 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
240                 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
241                 delta = ktime_to_ns(ktime_sub(hard, soft));
242                 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
243                                 HRTIMER_MODE_ABS_PINNED, 0);
244         }
245         spin_unlock(&rt_b->rt_runtime_lock);
246 }
247
248 #ifdef CONFIG_RT_GROUP_SCHED
249 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
250 {
251         hrtimer_cancel(&rt_b->rt_period_timer);
252 }
253 #endif
254
255 /*
256  * sched_domains_mutex serializes calls to arch_init_sched_domains,
257  * detach_destroy_domains and partition_sched_domains.
258  */
259 static DEFINE_MUTEX(sched_domains_mutex);
260
261 #ifdef CONFIG_GROUP_SCHED
262
263 #include <linux/cgroup.h>
264
265 struct cfs_rq;
266
267 static LIST_HEAD(task_groups);
268
269 /* task group related information */
270 struct task_group {
271 #ifdef CONFIG_CGROUP_SCHED
272         struct cgroup_subsys_state css;
273 #endif
274
275 #ifdef CONFIG_USER_SCHED
276         uid_t uid;
277 #endif
278
279 #ifdef CONFIG_FAIR_GROUP_SCHED
280         /* schedulable entities of this group on each cpu */
281         struct sched_entity **se;
282         /* runqueue "owned" by this group on each cpu */
283         struct cfs_rq **cfs_rq;
284         unsigned long shares;
285 #endif
286
287 #ifdef CONFIG_RT_GROUP_SCHED
288         struct sched_rt_entity **rt_se;
289         struct rt_rq **rt_rq;
290
291         struct rt_bandwidth rt_bandwidth;
292 #endif
293
294         struct rcu_head rcu;
295         struct list_head list;
296
297         struct task_group *parent;
298         struct list_head siblings;
299         struct list_head children;
300 };
301
302 #ifdef CONFIG_USER_SCHED
303
304 /* Helper function to pass uid information to create_sched_user() */
305 void set_tg_uid(struct user_struct *user)
306 {
307         user->tg->uid = user->uid;
308 }
309
310 /*
311  * Root task group.
312  *      Every UID task group (including init_task_group aka UID-0) will
313  *      be a child to this group.
314  */
315 struct task_group root_task_group;
316
317 #ifdef CONFIG_FAIR_GROUP_SCHED
318 /* Default task group's sched entity on each cpu */
319 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
320 /* Default task group's cfs_rq on each cpu */
321 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
322 #endif /* CONFIG_FAIR_GROUP_SCHED */
323
324 #ifdef CONFIG_RT_GROUP_SCHED
325 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
326 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
327 #endif /* CONFIG_RT_GROUP_SCHED */
328 #else /* !CONFIG_USER_SCHED */
329 #define root_task_group init_task_group
330 #endif /* CONFIG_USER_SCHED */
331
332 /* task_group_lock serializes add/remove of task groups and also changes to
333  * a task group's cpu shares.
334  */
335 static DEFINE_SPINLOCK(task_group_lock);
336
337 #ifdef CONFIG_SMP
338 static int root_task_group_empty(void)
339 {
340         return list_empty(&root_task_group.children);
341 }
342 #endif
343
344 #ifdef CONFIG_FAIR_GROUP_SCHED
345 #ifdef CONFIG_USER_SCHED
346 # define INIT_TASK_GROUP_LOAD   (2*NICE_0_LOAD)
347 #else /* !CONFIG_USER_SCHED */
348 # define INIT_TASK_GROUP_LOAD   NICE_0_LOAD
349 #endif /* CONFIG_USER_SCHED */
350
351 /*
352  * A weight of 0 or 1 can cause arithmetics problems.
353  * A weight of a cfs_rq is the sum of weights of which entities
354  * are queued on this cfs_rq, so a weight of a entity should not be
355  * too large, so as the shares value of a task group.
356  * (The default weight is 1024 - so there's no practical
357  *  limitation from this.)
358  */
359 #define MIN_SHARES      2
360 #define MAX_SHARES      (1UL << 18)
361
362 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
363 #endif
364
365 /* Default task group.
366  *      Every task in system belong to this group at bootup.
367  */
368 struct task_group init_task_group;
369
370 /* return group to which a task belongs */
371 static inline struct task_group *task_group(struct task_struct *p)
372 {
373         struct task_group *tg;
374
375 #ifdef CONFIG_USER_SCHED
376         rcu_read_lock();
377         tg = __task_cred(p)->user->tg;
378         rcu_read_unlock();
379 #elif defined(CONFIG_CGROUP_SCHED)
380         tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
381                                 struct task_group, css);
382 #else
383         tg = &init_task_group;
384 #endif
385         return tg;
386 }
387
388 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
389 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
390 {
391 #ifdef CONFIG_FAIR_GROUP_SCHED
392         p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
393         p->se.parent = task_group(p)->se[cpu];
394 #endif
395
396 #ifdef CONFIG_RT_GROUP_SCHED
397         p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
398         p->rt.parent = task_group(p)->rt_se[cpu];
399 #endif
400 }
401
402 #else
403
404 #ifdef CONFIG_SMP
405 static int root_task_group_empty(void)
406 {
407         return 1;
408 }
409 #endif
410
411 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
412 static inline struct task_group *task_group(struct task_struct *p)
413 {
414         return NULL;
415 }
416
417 #endif  /* CONFIG_GROUP_SCHED */
418
419 /* CFS-related fields in a runqueue */
420 struct cfs_rq {
421         struct load_weight load;
422         unsigned long nr_running;
423
424         u64 exec_clock;
425         u64 min_vruntime;
426
427         struct rb_root tasks_timeline;
428         struct rb_node *rb_leftmost;
429
430         struct list_head tasks;
431         struct list_head *balance_iterator;
432
433         /*
434          * 'curr' points to currently running entity on this cfs_rq.
435          * It is set to NULL otherwise (i.e when none are currently running).
436          */
437         struct sched_entity *curr, *next, *last;
438
439         unsigned int nr_spread_over;
440
441 #ifdef CONFIG_FAIR_GROUP_SCHED
442         struct rq *rq;  /* cpu runqueue to which this cfs_rq is attached */
443
444         /*
445          * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
446          * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
447          * (like users, containers etc.)
448          *
449          * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
450          * list is used during load balance.
451          */
452         struct list_head leaf_cfs_rq_list;
453         struct task_group *tg;  /* group that "owns" this runqueue */
454
455 #ifdef CONFIG_SMP
456         /*
457          * the part of load.weight contributed by tasks
458          */
459         unsigned long task_weight;
460
461         /*
462          *   h_load = weight * f(tg)
463          *
464          * Where f(tg) is the recursive weight fraction assigned to
465          * this group.
466          */
467         unsigned long h_load;
468
469         /*
470          * this cpu's part of tg->shares
471          */
472         unsigned long shares;
473
474         /*
475          * load.weight at the time we set shares
476          */
477         unsigned long rq_weight;
478 #endif
479 #endif
480 };
481
482 /* Real-Time classes' related field in a runqueue: */
483 struct rt_rq {
484         struct rt_prio_array active;
485         unsigned long rt_nr_running;
486 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
487         struct {
488                 int curr; /* highest queued rt task prio */
489 #ifdef CONFIG_SMP
490                 int next; /* next highest */
491 #endif
492         } highest_prio;
493 #endif
494 #ifdef CONFIG_SMP
495         unsigned long rt_nr_migratory;
496         int overloaded;
497         struct plist_head pushable_tasks;
498 #endif
499         int rt_throttled;
500         u64 rt_time;
501         u64 rt_runtime;
502         /* Nests inside the rq lock: */
503         spinlock_t rt_runtime_lock;
504
505 #ifdef CONFIG_RT_GROUP_SCHED
506         unsigned long rt_nr_boosted;
507
508         struct rq *rq;
509         struct list_head leaf_rt_rq_list;
510         struct task_group *tg;
511         struct sched_rt_entity *rt_se;
512 #endif
513 };
514
515 #ifdef CONFIG_SMP
516
517 /*
518  * We add the notion of a root-domain which will be used to define per-domain
519  * variables. Each exclusive cpuset essentially defines an island domain by
520  * fully partitioning the member cpus from any other cpuset. Whenever a new
521  * exclusive cpuset is created, we also create and attach a new root-domain
522  * object.
523  *
524  */
525 struct root_domain {
526         atomic_t refcount;
527         cpumask_var_t span;
528         cpumask_var_t online;
529
530         /*
531          * The "RT overload" flag: it gets set if a CPU has more than
532          * one runnable RT task.
533          */
534         cpumask_var_t rto_mask;
535         atomic_t rto_count;
536 #ifdef CONFIG_SMP
537         struct cpupri cpupri;
538 #endif
539 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
540         /*
541          * Preferred wake up cpu nominated by sched_mc balance that will be
542          * used when most cpus are idle in the system indicating overall very
543          * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
544          */
545         unsigned int sched_mc_preferred_wakeup_cpu;
546 #endif
547 };
548
549 /*
550  * By default the system creates a single root-domain with all cpus as
551  * members (mimicking the global state we have today).
552  */
553 static struct root_domain def_root_domain;
554
555 #endif
556
557 /*
558  * This is the main, per-CPU runqueue data structure.
559  *
560  * Locking rule: those places that want to lock multiple runqueues
561  * (such as the load balancing or the thread migration code), lock
562  * acquire operations must be ordered by ascending &runqueue.
563  */
564 struct rq {
565         /* runqueue lock: */
566         spinlock_t lock;
567
568         /*
569          * nr_running and cpu_load should be in the same cacheline because
570          * remote CPUs use both these fields when doing load calculation.
571          */
572         unsigned long nr_running;
573         #define CPU_LOAD_IDX_MAX 5
574         unsigned long cpu_load[CPU_LOAD_IDX_MAX];
575 #ifdef CONFIG_NO_HZ
576         unsigned long last_tick_seen;
577         unsigned char in_nohz_recently;
578 #endif
579         /* capture load from *all* tasks on this cpu: */
580         struct load_weight load;
581         unsigned long nr_load_updates;
582         u64 nr_switches;
583         u64 nr_migrations_in;
584
585         struct cfs_rq cfs;
586         struct rt_rq rt;
587
588 #ifdef CONFIG_FAIR_GROUP_SCHED
589         /* list of leaf cfs_rq on this cpu: */
590         struct list_head leaf_cfs_rq_list;
591 #endif
592 #ifdef CONFIG_RT_GROUP_SCHED
593         struct list_head leaf_rt_rq_list;
594 #endif
595
596         /*
597          * This is part of a global counter where only the total sum
598          * over all CPUs matters. A task can increase this counter on
599          * one CPU and if it got migrated afterwards it may decrease
600          * it on another CPU. Always updated under the runqueue lock:
601          */
602         unsigned long nr_uninterruptible;
603
604         struct task_struct *curr, *idle;
605         unsigned long next_balance;
606         struct mm_struct *prev_mm;
607
608         u64 clock;
609
610         atomic_t nr_iowait;
611
612 #ifdef CONFIG_SMP
613         struct root_domain *rd;
614         struct sched_domain *sd;
615
616         unsigned char idle_at_tick;
617         /* For active balancing */
618         int active_balance;
619         int push_cpu;
620         /* cpu of this runqueue: */
621         int cpu;
622         int online;
623
624         unsigned long avg_load_per_task;
625
626         struct task_struct *migration_thread;
627         struct list_head migration_queue;
628 #endif
629
630         /* calc_load related fields */
631         unsigned long calc_load_update;
632         long calc_load_active;
633
634 #ifdef CONFIG_SCHED_HRTICK
635 #ifdef CONFIG_SMP
636         int hrtick_csd_pending;
637         struct call_single_data hrtick_csd;
638 #endif
639         struct hrtimer hrtick_timer;
640 #endif
641
642 #ifdef CONFIG_SCHEDSTATS
643         /* latency stats */
644         struct sched_info rq_sched_info;
645         unsigned long long rq_cpu_time;
646         /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
647
648         /* sys_sched_yield() stats */
649         unsigned int yld_count;
650
651         /* schedule() stats */
652         unsigned int sched_switch;
653         unsigned int sched_count;
654         unsigned int sched_goidle;
655
656         /* try_to_wake_up() stats */
657         unsigned int ttwu_count;
658         unsigned int ttwu_local;
659
660         /* BKL stats */
661         unsigned int bkl_count;
662 #endif
663 };
664
665 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
666
667 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
668 {
669         rq->curr->sched_class->check_preempt_curr(rq, p, sync);
670 }
671
672 static inline int cpu_of(struct rq *rq)
673 {
674 #ifdef CONFIG_SMP
675         return rq->cpu;
676 #else
677         return 0;
678 #endif
679 }
680
681 /*
682  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
683  * See detach_destroy_domains: synchronize_sched for details.
684  *
685  * The domain tree of any CPU may only be accessed from within
686  * preempt-disabled sections.
687  */
688 #define for_each_domain(cpu, __sd) \
689         for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
690
691 #define cpu_rq(cpu)             (&per_cpu(runqueues, (cpu)))
692 #define this_rq()               (&__get_cpu_var(runqueues))
693 #define task_rq(p)              cpu_rq(task_cpu(p))
694 #define cpu_curr(cpu)           (cpu_rq(cpu)->curr)
695
696 inline void update_rq_clock(struct rq *rq)
697 {
698         rq->clock = sched_clock_cpu(cpu_of(rq));
699 }
700
701 /*
702  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
703  */
704 #ifdef CONFIG_SCHED_DEBUG
705 # define const_debug __read_mostly
706 #else
707 # define const_debug static const
708 #endif
709
710 /**
711  * runqueue_is_locked
712  *
713  * Returns true if the current cpu runqueue is locked.
714  * This interface allows printk to be called with the runqueue lock
715  * held and know whether or not it is OK to wake up the klogd.
716  */
717 int runqueue_is_locked(void)
718 {
719         int cpu = get_cpu();
720         struct rq *rq = cpu_rq(cpu);
721         int ret;
722
723         ret = spin_is_locked(&rq->lock);
724         put_cpu();
725         return ret;
726 }
727
728 /*
729  * Debugging: various feature bits
730  */
731
732 #define SCHED_FEAT(name, enabled)       \
733         __SCHED_FEAT_##name ,
734
735 enum {
736 #include "sched_features.h"
737 };
738
739 #undef SCHED_FEAT
740
741 #define SCHED_FEAT(name, enabled)       \
742         (1UL << __SCHED_FEAT_##name) * enabled |
743
744 const_debug unsigned int sysctl_sched_features =
745 #include "sched_features.h"
746         0;
747
748 #undef SCHED_FEAT
749
750 #ifdef CONFIG_SCHED_DEBUG
751 #define SCHED_FEAT(name, enabled)       \
752         #name ,
753
754 static __read_mostly char *sched_feat_names[] = {
755 #include "sched_features.h"
756         NULL
757 };
758
759 #undef SCHED_FEAT
760
761 static int sched_feat_show(struct seq_file *m, void *v)
762 {
763         int i;
764
765         for (i = 0; sched_feat_names[i]; i++) {
766                 if (!(sysctl_sched_features & (1UL << i)))
767                         seq_puts(m, "NO_");
768                 seq_printf(m, "%s ", sched_feat_names[i]);
769         }
770         seq_puts(m, "\n");
771
772         return 0;
773 }
774
775 static ssize_t
776 sched_feat_write(struct file *filp, const char __user *ubuf,
777                 size_t cnt, loff_t *ppos)
778 {
779         char buf[64];
780         char *cmp = buf;
781         int neg = 0;
782         int i;
783
784         if (cnt > 63)
785                 cnt = 63;
786
787         if (copy_from_user(&buf, ubuf, cnt))
788                 return -EFAULT;
789
790         buf[cnt] = 0;
791
792         if (strncmp(buf, "NO_", 3) == 0) {
793                 neg = 1;
794                 cmp += 3;
795         }
796
797         for (i = 0; sched_feat_names[i]; i++) {
798                 int len = strlen(sched_feat_names[i]);
799
800                 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
801                         if (neg)
802                                 sysctl_sched_features &= ~(1UL << i);
803                         else
804                                 sysctl_sched_features |= (1UL << i);
805                         break;
806                 }
807         }
808
809         if (!sched_feat_names[i])
810                 return -EINVAL;
811
812         filp->f_pos += cnt;
813
814         return cnt;
815 }
816
817 static int sched_feat_open(struct inode *inode, struct file *filp)
818 {
819         return single_open(filp, sched_feat_show, NULL);
820 }
821
822 static struct file_operations sched_feat_fops = {
823         .open           = sched_feat_open,
824         .write          = sched_feat_write,
825         .read           = seq_read,
826         .llseek         = seq_lseek,
827         .release        = single_release,
828 };
829
830 static __init int sched_init_debug(void)
831 {
832         debugfs_create_file("sched_features", 0644, NULL, NULL,
833                         &sched_feat_fops);
834
835         return 0;
836 }
837 late_initcall(sched_init_debug);
838
839 #endif
840
841 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
842
843 /*
844  * Number of tasks to iterate in a single balance run.
845  * Limited because this is done with IRQs disabled.
846  */
847 const_debug unsigned int sysctl_sched_nr_migrate = 32;
848
849 /*
850  * ratelimit for updating the group shares.
851  * default: 0.25ms
852  */
853 unsigned int sysctl_sched_shares_ratelimit = 250000;
854
855 /*
856  * Inject some fuzzyness into changing the per-cpu group shares
857  * this avoids remote rq-locks at the expense of fairness.
858  * default: 4
859  */
860 unsigned int sysctl_sched_shares_thresh = 4;
861
862 /*
863  * period over which we measure -rt task cpu usage in us.
864  * default: 1s
865  */
866 unsigned int sysctl_sched_rt_period = 1000000;
867
868 static __read_mostly int scheduler_running;
869
870 /*
871  * part of the period that we allow rt tasks to run in us.
872  * default: 0.95s
873  */
874 int sysctl_sched_rt_runtime = 950000;
875
876 static inline u64 global_rt_period(void)
877 {
878         return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
879 }
880
881 static inline u64 global_rt_runtime(void)
882 {
883         if (sysctl_sched_rt_runtime < 0)
884                 return RUNTIME_INF;
885
886         return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
887 }
888
889 #ifndef prepare_arch_switch
890 # define prepare_arch_switch(next)      do { } while (0)
891 #endif
892 #ifndef finish_arch_switch
893 # define finish_arch_switch(prev)       do { } while (0)
894 #endif
895
896 static inline int task_current(struct rq *rq, struct task_struct *p)
897 {
898         return rq->curr == p;
899 }
900
901 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
902 static inline int task_running(struct rq *rq, struct task_struct *p)
903 {
904         return task_current(rq, p);
905 }
906
907 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
908 {
909 }
910
911 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
912 {
913 #ifdef CONFIG_DEBUG_SPINLOCK
914         /* this is a valid case when another task releases the spinlock */
915         rq->lock.owner = current;
916 #endif
917         /*
918          * If we are tracking spinlock dependencies then we have to
919          * fix up the runqueue lock - which gets 'carried over' from
920          * prev into current:
921          */
922         spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
923
924         spin_unlock_irq(&rq->lock);
925 }
926
927 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
928 static inline int task_running(struct rq *rq, struct task_struct *p)
929 {
930 #ifdef CONFIG_SMP
931         return p->oncpu;
932 #else
933         return task_current(rq, p);
934 #endif
935 }
936
937 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
938 {
939 #ifdef CONFIG_SMP
940         /*
941          * We can optimise this out completely for !SMP, because the
942          * SMP rebalancing from interrupt is the only thing that cares
943          * here.
944          */
945         next->oncpu = 1;
946 #endif
947 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
948         spin_unlock_irq(&rq->lock);
949 #else
950         spin_unlock(&rq->lock);
951 #endif
952 }
953
954 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
955 {
956 #ifdef CONFIG_SMP
957         /*
958          * After ->oncpu is cleared, the task can be moved to a different CPU.
959          * We must ensure this doesn't happen until the switch is completely
960          * finished.
961          */
962         smp_wmb();
963         prev->oncpu = 0;
964 #endif
965 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
966         local_irq_enable();
967 #endif
968 }
969 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
970
971 /*
972  * __task_rq_lock - lock the runqueue a given task resides on.
973  * Must be called interrupts disabled.
974  */
975 static inline struct rq *__task_rq_lock(struct task_struct *p)
976         __acquires(rq->lock)
977 {
978         for (;;) {
979                 struct rq *rq = task_rq(p);
980                 spin_lock(&rq->lock);
981                 if (likely(rq == task_rq(p)))
982                         return rq;
983                 spin_unlock(&rq->lock);
984         }
985 }
986
987 /*
988  * task_rq_lock - lock the runqueue a given task resides on and disable
989  * interrupts. Note the ordering: we can safely lookup the task_rq without
990  * explicitly disabling preemption.
991  */
992 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
993         __acquires(rq->lock)
994 {
995         struct rq *rq;
996
997         for (;;) {
998                 local_irq_save(*flags);
999                 rq = task_rq(p);
1000                 spin_lock(&rq->lock);
1001                 if (likely(rq == task_rq(p)))
1002                         return rq;
1003                 spin_unlock_irqrestore(&rq->lock, *flags);
1004         }
1005 }
1006
1007 void task_rq_unlock_wait(struct task_struct *p)
1008 {
1009         struct rq *rq = task_rq(p);
1010
1011         smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1012         spin_unlock_wait(&rq->lock);
1013 }
1014
1015 static void __task_rq_unlock(struct rq *rq)
1016         __releases(rq->lock)
1017 {
1018         spin_unlock(&rq->lock);
1019 }
1020
1021 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1022         __releases(rq->lock)
1023 {
1024         spin_unlock_irqrestore(&rq->lock, *flags);
1025 }
1026
1027 /*
1028  * this_rq_lock - lock this runqueue and disable interrupts.
1029  */
1030 static struct rq *this_rq_lock(void)
1031         __acquires(rq->lock)
1032 {
1033         struct rq *rq;
1034
1035         local_irq_disable();
1036         rq = this_rq();
1037         spin_lock(&rq->lock);
1038
1039         return rq;
1040 }
1041
1042 #ifdef CONFIG_SCHED_HRTICK
1043 /*
1044  * Use HR-timers to deliver accurate preemption points.
1045  *
1046  * Its all a bit involved since we cannot program an hrt while holding the
1047  * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1048  * reschedule event.
1049  *
1050  * When we get rescheduled we reprogram the hrtick_timer outside of the
1051  * rq->lock.
1052  */
1053
1054 /*
1055  * Use hrtick when:
1056  *  - enabled by features
1057  *  - hrtimer is actually high res
1058  */
1059 static inline int hrtick_enabled(struct rq *rq)
1060 {
1061         if (!sched_feat(HRTICK))
1062                 return 0;
1063         if (!cpu_active(cpu_of(rq)))
1064                 return 0;
1065         return hrtimer_is_hres_active(&rq->hrtick_timer);
1066 }
1067
1068 static void hrtick_clear(struct rq *rq)
1069 {
1070         if (hrtimer_active(&rq->hrtick_timer))
1071                 hrtimer_cancel(&rq->hrtick_timer);
1072 }
1073
1074 /*
1075  * High-resolution timer tick.
1076  * Runs from hardirq context with interrupts disabled.
1077  */
1078 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1079 {
1080         struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1081
1082         WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1083
1084         spin_lock(&rq->lock);
1085         update_rq_clock(rq);
1086         rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1087         spin_unlock(&rq->lock);
1088
1089         return HRTIMER_NORESTART;
1090 }
1091
1092 #ifdef CONFIG_SMP
1093 /*
1094  * called from hardirq (IPI) context
1095  */
1096 static void __hrtick_start(void *arg)
1097 {
1098         struct rq *rq = arg;
1099
1100         spin_lock(&rq->lock);
1101         hrtimer_restart(&rq->hrtick_timer);
1102         rq->hrtick_csd_pending = 0;
1103         spin_unlock(&rq->lock);
1104 }
1105
1106 /*
1107  * Called to set the hrtick timer state.
1108  *
1109  * called with rq->lock held and irqs disabled
1110  */
1111 static void hrtick_start(struct rq *rq, u64 delay)
1112 {
1113         struct hrtimer *timer = &rq->hrtick_timer;
1114         ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1115
1116         hrtimer_set_expires(timer, time);
1117
1118         if (rq == this_rq()) {
1119                 hrtimer_restart(timer);
1120         } else if (!rq->hrtick_csd_pending) {
1121                 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1122                 rq->hrtick_csd_pending = 1;
1123         }
1124 }
1125
1126 static int
1127 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1128 {
1129         int cpu = (int)(long)hcpu;
1130
1131         switch (action) {
1132         case CPU_UP_CANCELED:
1133         case CPU_UP_CANCELED_FROZEN:
1134         case CPU_DOWN_PREPARE:
1135         case CPU_DOWN_PREPARE_FROZEN:
1136         case CPU_DEAD:
1137         case CPU_DEAD_FROZEN:
1138                 hrtick_clear(cpu_rq(cpu));
1139                 return NOTIFY_OK;
1140         }
1141
1142         return NOTIFY_DONE;
1143 }
1144
1145 static __init void init_hrtick(void)
1146 {
1147         hotcpu_notifier(hotplug_hrtick, 0);
1148 }
1149 #else
1150 /*
1151  * Called to set the hrtick timer state.
1152  *
1153  * called with rq->lock held and irqs disabled
1154  */
1155 static void hrtick_start(struct rq *rq, u64 delay)
1156 {
1157         __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1158                         HRTIMER_MODE_REL_PINNED, 0);
1159 }
1160
1161 static inline void init_hrtick(void)
1162 {
1163 }
1164 #endif /* CONFIG_SMP */
1165
1166 static void init_rq_hrtick(struct rq *rq)
1167 {
1168 #ifdef CONFIG_SMP
1169         rq->hrtick_csd_pending = 0;
1170
1171         rq->hrtick_csd.flags = 0;
1172         rq->hrtick_csd.func = __hrtick_start;
1173         rq->hrtick_csd.info = rq;
1174 #endif
1175
1176         hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1177         rq->hrtick_timer.function = hrtick;
1178 }
1179 #else   /* CONFIG_SCHED_HRTICK */
1180 static inline void hrtick_clear(struct rq *rq)
1181 {
1182 }
1183
1184 static inline void init_rq_hrtick(struct rq *rq)
1185 {
1186 }
1187
1188 static inline void init_hrtick(void)
1189 {
1190 }
1191 #endif  /* CONFIG_SCHED_HRTICK */
1192
1193 /*
1194  * resched_task - mark a task 'to be rescheduled now'.
1195  *
1196  * On UP this means the setting of the need_resched flag, on SMP it
1197  * might also involve a cross-CPU call to trigger the scheduler on
1198  * the target CPU.
1199  */
1200 #ifdef CONFIG_SMP
1201
1202 #ifndef tsk_is_polling
1203 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1204 #endif
1205
1206 static void resched_task(struct task_struct *p)
1207 {
1208         int cpu;
1209
1210         assert_spin_locked(&task_rq(p)->lock);
1211
1212         if (test_tsk_need_resched(p))
1213                 return;
1214
1215         set_tsk_need_resched(p);
1216
1217         cpu = task_cpu(p);
1218         if (cpu == smp_processor_id())
1219                 return;
1220
1221         /* NEED_RESCHED must be visible before we test polling */
1222         smp_mb();
1223         if (!tsk_is_polling(p))
1224                 smp_send_reschedule(cpu);
1225 }
1226
1227 static void resched_cpu(int cpu)
1228 {
1229         struct rq *rq = cpu_rq(cpu);
1230         unsigned long flags;
1231
1232         if (!spin_trylock_irqsave(&rq->lock, flags))
1233                 return;
1234         resched_task(cpu_curr(cpu));
1235         spin_unlock_irqrestore(&rq->lock, flags);
1236 }
1237
1238 #ifdef CONFIG_NO_HZ
1239 /*
1240  * When add_timer_on() enqueues a timer into the timer wheel of an
1241  * idle CPU then this timer might expire before the next timer event
1242  * which is scheduled to wake up that CPU. In case of a completely
1243  * idle system the next event might even be infinite time into the
1244  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1245  * leaves the inner idle loop so the newly added timer is taken into
1246  * account when the CPU goes back to idle and evaluates the timer
1247  * wheel for the next timer event.
1248  */
1249 void wake_up_idle_cpu(int cpu)
1250 {
1251         struct rq *rq = cpu_rq(cpu);
1252
1253         if (cpu == smp_processor_id())
1254                 return;
1255
1256         /*
1257          * This is safe, as this function is called with the timer
1258          * wheel base lock of (cpu) held. When the CPU is on the way
1259          * to idle and has not yet set rq->curr to idle then it will
1260          * be serialized on the timer wheel base lock and take the new
1261          * timer into account automatically.
1262          */
1263         if (rq->curr != rq->idle)
1264                 return;
1265
1266         /*
1267          * We can set TIF_RESCHED on the idle task of the other CPU
1268          * lockless. The worst case is that the other CPU runs the
1269          * idle task through an additional NOOP schedule()
1270          */
1271         set_tsk_need_resched(rq->idle);
1272
1273         /* NEED_RESCHED must be visible before we test polling */
1274         smp_mb();
1275         if (!tsk_is_polling(rq->idle))
1276                 smp_send_reschedule(cpu);
1277 }
1278 #endif /* CONFIG_NO_HZ */
1279
1280 #else /* !CONFIG_SMP */
1281 static void resched_task(struct task_struct *p)
1282 {
1283         assert_spin_locked(&task_rq(p)->lock);
1284         set_tsk_need_resched(p);
1285 }
1286 #endif /* CONFIG_SMP */
1287
1288 #if BITS_PER_LONG == 32
1289 # define WMULT_CONST    (~0UL)
1290 #else
1291 # define WMULT_CONST    (1UL << 32)
1292 #endif
1293
1294 #define WMULT_SHIFT     32
1295
1296 /*
1297  * Shift right and round:
1298  */
1299 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1300
1301 /*
1302  * delta *= weight / lw
1303  */
1304 static unsigned long
1305 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1306                 struct load_weight *lw)
1307 {
1308         u64 tmp;
1309
1310         if (!lw->inv_weight) {
1311                 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1312                         lw->inv_weight = 1;
1313                 else
1314                         lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1315                                 / (lw->weight+1);
1316         }
1317
1318         tmp = (u64)delta_exec * weight;
1319         /*
1320          * Check whether we'd overflow the 64-bit multiplication:
1321          */
1322         if (unlikely(tmp > WMULT_CONST))
1323                 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1324                         WMULT_SHIFT/2);
1325         else
1326                 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1327
1328         return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1329 }
1330
1331 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1332 {
1333         lw->weight += inc;
1334         lw->inv_weight = 0;
1335 }
1336
1337 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1338 {
1339         lw->weight -= dec;
1340         lw->inv_weight = 0;
1341 }
1342
1343 /*
1344  * To aid in avoiding the subversion of "niceness" due to uneven distribution
1345  * of tasks with abnormal "nice" values across CPUs the contribution that
1346  * each task makes to its run queue's load is weighted according to its
1347  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1348  * scaled version of the new time slice allocation that they receive on time
1349  * slice expiry etc.
1350  */
1351
1352 #define WEIGHT_IDLEPRIO                3
1353 #define WMULT_IDLEPRIO         1431655765
1354
1355 /*
1356  * Nice levels are multiplicative, with a gentle 10% change for every
1357  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1358  * nice 1, it will get ~10% less CPU time than another CPU-bound task
1359  * that remained on nice 0.
1360  *
1361  * The "10% effect" is relative and cumulative: from _any_ nice level,
1362  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1363  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1364  * If a task goes up by ~10% and another task goes down by ~10% then
1365  * the relative distance between them is ~25%.)
1366  */
1367 static const int prio_to_weight[40] = {
1368  /* -20 */     88761,     71755,     56483,     46273,     36291,
1369  /* -15 */     29154,     23254,     18705,     14949,     11916,
1370  /* -10 */      9548,      7620,      6100,      4904,      3906,
1371  /*  -5 */      3121,      2501,      1991,      1586,      1277,
1372  /*   0 */      1024,       820,       655,       526,       423,
1373  /*   5 */       335,       272,       215,       172,       137,
1374  /*  10 */       110,        87,        70,        56,        45,
1375  /*  15 */        36,        29,        23,        18,        15,
1376 };
1377
1378 /*
1379  * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1380  *
1381  * In cases where the weight does not change often, we can use the
1382  * precalculated inverse to speed up arithmetics by turning divisions
1383  * into multiplications:
1384  */
1385 static const u32 prio_to_wmult[40] = {
1386  /* -20 */     48388,     59856,     76040,     92818,    118348,
1387  /* -15 */    147320,    184698,    229616,    287308,    360437,
1388  /* -10 */    449829,    563644,    704093,    875809,   1099582,
1389  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
1390  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
1391  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
1392  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
1393  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1394 };
1395
1396 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1397
1398 /*
1399  * runqueue iterator, to support SMP load-balancing between different
1400  * scheduling classes, without having to expose their internal data
1401  * structures to the load-balancing proper:
1402  */
1403 struct rq_iterator {
1404         void *arg;
1405         struct task_struct *(*start)(void *);
1406         struct task_struct *(*next)(void *);
1407 };
1408
1409 #ifdef CONFIG_SMP
1410 static unsigned long
1411 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1412               unsigned long max_load_move, struct sched_domain *sd,
1413               enum cpu_idle_type idle, int *all_pinned,
1414               int *this_best_prio, struct rq_iterator *iterator);
1415
1416 static int
1417 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1418                    struct sched_domain *sd, enum cpu_idle_type idle,
1419                    struct rq_iterator *iterator);
1420 #endif
1421
1422 /* Time spent by the tasks of the cpu accounting group executing in ... */
1423 enum cpuacct_stat_index {
1424         CPUACCT_STAT_USER,      /* ... user mode */
1425         CPUACCT_STAT_SYSTEM,    /* ... kernel mode */
1426
1427         CPUACCT_STAT_NSTATS,
1428 };
1429
1430 #ifdef CONFIG_CGROUP_CPUACCT
1431 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1432 static void cpuacct_update_stats(struct task_struct *tsk,
1433                 enum cpuacct_stat_index idx, cputime_t val);
1434 #else
1435 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1436 static inline void cpuacct_update_stats(struct task_struct *tsk,
1437                 enum cpuacct_stat_index idx, cputime_t val) {}
1438 #endif
1439
1440 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1441 {
1442         update_load_add(&rq->load, load);
1443 }
1444
1445 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1446 {
1447         update_load_sub(&rq->load, load);
1448 }
1449
1450 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1451 typedef int (*tg_visitor)(struct task_group *, void *);
1452
1453 /*
1454  * Iterate the full tree, calling @down when first entering a node and @up when
1455  * leaving it for the final time.
1456  */
1457 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1458 {
1459         struct task_group *parent, *child;
1460         int ret;
1461
1462         rcu_read_lock();
1463         parent = &root_task_group;
1464 down:
1465         ret = (*down)(parent, data);
1466         if (ret)
1467                 goto out_unlock;
1468         list_for_each_entry_rcu(child, &parent->children, siblings) {
1469                 parent = child;
1470                 goto down;
1471
1472 up:
1473                 continue;
1474         }
1475         ret = (*up)(parent, data);
1476         if (ret)
1477                 goto out_unlock;
1478
1479         child = parent;
1480         parent = parent->parent;
1481         if (parent)
1482                 goto up;
1483 out_unlock:
1484         rcu_read_unlock();
1485
1486         return ret;
1487 }
1488
1489 static int tg_nop(struct task_group *tg, void *data)
1490 {
1491         return 0;
1492 }
1493 #endif
1494
1495 #ifdef CONFIG_SMP
1496 static unsigned long source_load(int cpu, int type);
1497 static unsigned long target_load(int cpu, int type);
1498 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1499
1500 static unsigned long cpu_avg_load_per_task(int cpu)
1501 {
1502         struct rq *rq = cpu_rq(cpu);
1503         unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1504
1505         if (nr_running)
1506                 rq->avg_load_per_task = rq->load.weight / nr_running;
1507         else
1508                 rq->avg_load_per_task = 0;
1509
1510         return rq->avg_load_per_task;
1511 }
1512
1513 #ifdef CONFIG_FAIR_GROUP_SCHED
1514
1515 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1516
1517 /*
1518  * Calculate and set the cpu's group shares.
1519  */
1520 static void
1521 update_group_shares_cpu(struct task_group *tg, int cpu,
1522                         unsigned long sd_shares, unsigned long sd_rq_weight)
1523 {
1524         unsigned long shares;
1525         unsigned long rq_weight;
1526
1527         if (!tg->se[cpu])
1528                 return;
1529
1530         rq_weight = tg->cfs_rq[cpu]->rq_weight;
1531
1532         /*
1533          *           \Sum shares * rq_weight
1534          * shares =  -----------------------
1535          *               \Sum rq_weight
1536          *
1537          */
1538         shares = (sd_shares * rq_weight) / sd_rq_weight;
1539         shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1540
1541         if (abs(shares - tg->se[cpu]->load.weight) >
1542                         sysctl_sched_shares_thresh) {
1543                 struct rq *rq = cpu_rq(cpu);
1544                 unsigned long flags;
1545
1546                 spin_lock_irqsave(&rq->lock, flags);
1547                 tg->cfs_rq[cpu]->shares = shares;
1548
1549                 __set_se_shares(tg->se[cpu], shares);
1550                 spin_unlock_irqrestore(&rq->lock, flags);
1551         }
1552 }
1553
1554 /*
1555  * Re-compute the task group their per cpu shares over the given domain.
1556  * This needs to be done in a bottom-up fashion because the rq weight of a
1557  * parent group depends on the shares of its child groups.
1558  */
1559 static int tg_shares_up(struct task_group *tg, void *data)
1560 {
1561         unsigned long weight, rq_weight = 0;
1562         unsigned long shares = 0;
1563         struct sched_domain *sd = data;
1564         int i;
1565
1566         for_each_cpu(i, sched_domain_span(sd)) {
1567                 /*
1568                  * If there are currently no tasks on the cpu pretend there
1569                  * is one of average load so that when a new task gets to
1570                  * run here it will not get delayed by group starvation.
1571                  */
1572                 weight = tg->cfs_rq[i]->load.weight;
1573                 if (!weight)
1574                         weight = NICE_0_LOAD;
1575
1576                 tg->cfs_rq[i]->rq_weight = weight;
1577                 rq_weight += weight;
1578                 shares += tg->cfs_rq[i]->shares;
1579         }
1580
1581         if ((!shares && rq_weight) || shares > tg->shares)
1582                 shares = tg->shares;
1583
1584         if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1585                 shares = tg->shares;
1586
1587         for_each_cpu(i, sched_domain_span(sd))
1588                 update_group_shares_cpu(tg, i, shares, rq_weight);
1589
1590         return 0;
1591 }
1592
1593 /*
1594  * Compute the cpu's hierarchical load factor for each task group.
1595  * This needs to be done in a top-down fashion because the load of a child
1596  * group is a fraction of its parents load.
1597  */
1598 static int tg_load_down(struct task_group *tg, void *data)
1599 {
1600         unsigned long load;
1601         long cpu = (long)data;
1602
1603         if (!tg->parent) {
1604                 load = cpu_rq(cpu)->load.weight;
1605         } else {
1606                 load = tg->parent->cfs_rq[cpu]->h_load;
1607                 load *= tg->cfs_rq[cpu]->shares;
1608                 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1609         }
1610
1611         tg->cfs_rq[cpu]->h_load = load;
1612
1613         return 0;
1614 }
1615
1616 static void update_shares(struct sched_domain *sd)
1617 {
1618         u64 now = cpu_clock(raw_smp_processor_id());
1619         s64 elapsed = now - sd->last_update;
1620
1621         if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1622                 sd->last_update = now;
1623                 walk_tg_tree(tg_nop, tg_shares_up, sd);
1624         }
1625 }
1626
1627 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1628 {
1629         spin_unlock(&rq->lock);
1630         update_shares(sd);
1631         spin_lock(&rq->lock);
1632 }
1633
1634 static void update_h_load(long cpu)
1635 {
1636         walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1637 }
1638
1639 #else
1640
1641 static inline void update_shares(struct sched_domain *sd)
1642 {
1643 }
1644
1645 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1646 {
1647 }
1648
1649 #endif
1650
1651 #ifdef CONFIG_PREEMPT
1652
1653 /*
1654  * fair double_lock_balance: Safely acquires both rq->locks in a fair
1655  * way at the expense of forcing extra atomic operations in all
1656  * invocations.  This assures that the double_lock is acquired using the
1657  * same underlying policy as the spinlock_t on this architecture, which
1658  * reduces latency compared to the unfair variant below.  However, it
1659  * also adds more overhead and therefore may reduce throughput.
1660  */
1661 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1662         __releases(this_rq->lock)
1663         __acquires(busiest->lock)
1664         __acquires(this_rq->lock)
1665 {
1666         spin_unlock(&this_rq->lock);
1667         double_rq_lock(this_rq, busiest);
1668
1669         return 1;
1670 }
1671
1672 #else
1673 /*
1674  * Unfair double_lock_balance: Optimizes throughput at the expense of
1675  * latency by eliminating extra atomic operations when the locks are
1676  * already in proper order on entry.  This favors lower cpu-ids and will
1677  * grant the double lock to lower cpus over higher ids under contention,
1678  * regardless of entry order into the function.
1679  */
1680 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1681         __releases(this_rq->lock)
1682         __acquires(busiest->lock)
1683         __acquires(this_rq->lock)
1684 {
1685         int ret = 0;
1686
1687         if (unlikely(!spin_trylock(&busiest->lock))) {
1688                 if (busiest < this_rq) {
1689                         spin_unlock(&this_rq->lock);
1690                         spin_lock(&busiest->lock);
1691                         spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1692                         ret = 1;
1693                 } else
1694                         spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1695         }
1696         return ret;
1697 }
1698
1699 #endif /* CONFIG_PREEMPT */
1700
1701 /*
1702  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1703  */
1704 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1705 {
1706         if (unlikely(!irqs_disabled())) {
1707                 /* printk() doesn't work good under rq->lock */
1708                 spin_unlock(&this_rq->lock);
1709                 BUG_ON(1);
1710         }
1711
1712         return _double_lock_balance(this_rq, busiest);
1713 }
1714
1715 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1716         __releases(busiest->lock)
1717 {
1718         spin_unlock(&busiest->lock);
1719         lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1720 }
1721 #endif
1722
1723 #ifdef CONFIG_FAIR_GROUP_SCHED
1724 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1725 {
1726 #ifdef CONFIG_SMP
1727         cfs_rq->shares = shares;
1728 #endif
1729 }
1730 #endif
1731
1732 static void calc_load_account_active(struct rq *this_rq);
1733
1734 #include "sched_stats.h"
1735 #include "sched_idletask.c"
1736 #include "sched_fair.c"
1737 #include "sched_rt.c"
1738 #ifdef CONFIG_SCHED_DEBUG
1739 # include "sched_debug.c"
1740 #endif
1741
1742 #define sched_class_highest (&rt_sched_class)
1743 #define for_each_class(class) \
1744    for (class = sched_class_highest; class; class = class->next)
1745
1746 static void inc_nr_running(struct rq *rq)
1747 {
1748         rq->nr_running++;
1749 }
1750
1751 static void dec_nr_running(struct rq *rq)
1752 {
1753         rq->nr_running--;
1754 }
1755
1756 static void set_load_weight(struct task_struct *p)
1757 {
1758         if (task_has_rt_policy(p)) {
1759                 p->se.load.weight = prio_to_weight[0] * 2;
1760                 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1761                 return;
1762         }
1763
1764         /*
1765          * SCHED_IDLE tasks get minimal weight:
1766          */
1767         if (p->policy == SCHED_IDLE) {
1768                 p->se.load.weight = WEIGHT_IDLEPRIO;
1769                 p->se.load.inv_weight = WMULT_IDLEPRIO;
1770                 return;
1771         }
1772
1773         p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1774         p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1775 }
1776
1777 static void update_avg(u64 *avg, u64 sample)
1778 {
1779         s64 diff = sample - *avg;
1780         *avg += diff >> 3;
1781 }
1782
1783 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1784 {
1785         if (wakeup)
1786                 p->se.start_runtime = p->se.sum_exec_runtime;
1787
1788         sched_info_queued(p);
1789         p->sched_class->enqueue_task(rq, p, wakeup);
1790         p->se.on_rq = 1;
1791 }
1792
1793 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1794 {
1795         if (sleep) {
1796                 if (p->se.last_wakeup) {
1797                         update_avg(&p->se.avg_overlap,
1798                                 p->se.sum_exec_runtime - p->se.last_wakeup);
1799                         p->se.last_wakeup = 0;
1800                 } else {
1801                         update_avg(&p->se.avg_wakeup,
1802                                 sysctl_sched_wakeup_granularity);
1803                 }
1804         }
1805
1806         sched_info_dequeued(p);
1807         p->sched_class->dequeue_task(rq, p, sleep);
1808         p->se.on_rq = 0;
1809 }
1810
1811 /*
1812  * __normal_prio - return the priority that is based on the static prio
1813  */
1814 static inline int __normal_prio(struct task_struct *p)
1815 {
1816         return p->static_prio;
1817 }
1818
1819 /*
1820  * Calculate the expected normal priority: i.e. priority
1821  * without taking RT-inheritance into account. Might be
1822  * boosted by interactivity modifiers. Changes upon fork,
1823  * setprio syscalls, and whenever the interactivity
1824  * estimator recalculates.
1825  */
1826 static inline int normal_prio(struct task_struct *p)
1827 {
1828         int prio;
1829
1830         if (task_has_rt_policy(p))
1831                 prio = MAX_RT_PRIO-1 - p->rt_priority;
1832         else
1833                 prio = __normal_prio(p);
1834         return prio;
1835 }
1836
1837 /*
1838  * Calculate the current priority, i.e. the priority
1839  * taken into account by the scheduler. This value might
1840  * be boosted by RT tasks, or might be boosted by
1841  * interactivity modifiers. Will be RT if the task got
1842  * RT-boosted. If not then it returns p->normal_prio.
1843  */
1844 static int effective_prio(struct task_struct *p)
1845 {
1846         p->normal_prio = normal_prio(p);
1847         /*
1848          * If we are RT tasks or we were boosted to RT priority,
1849          * keep the priority unchanged. Otherwise, update priority
1850          * to the normal priority:
1851          */
1852         if (!rt_prio(p->prio))
1853                 return p->normal_prio;
1854         return p->prio;
1855 }
1856
1857 /*
1858  * activate_task - move a task to the runqueue.
1859  */
1860 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1861 {
1862         if (task_contributes_to_load(p))
1863                 rq->nr_uninterruptible--;
1864
1865         enqueue_task(rq, p, wakeup);
1866         inc_nr_running(rq);
1867 }
1868
1869 /*
1870  * deactivate_task - remove a task from the runqueue.
1871  */
1872 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1873 {
1874         if (task_contributes_to_load(p))
1875                 rq->nr_uninterruptible++;
1876
1877         dequeue_task(rq, p, sleep);
1878         dec_nr_running(rq);
1879 }
1880
1881 /**
1882  * task_curr - is this task currently executing on a CPU?
1883  * @p: the task in question.
1884  */
1885 inline int task_curr(const struct task_struct *p)
1886 {
1887         return cpu_curr(task_cpu(p)) == p;
1888 }
1889
1890 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1891 {
1892         set_task_rq(p, cpu);
1893 #ifdef CONFIG_SMP
1894         /*
1895          * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1896          * successfuly executed on another CPU. We must ensure that updates of
1897          * per-task data have been completed by this moment.
1898          */
1899         smp_wmb();
1900         task_thread_info(p)->cpu = cpu;
1901 #endif
1902 }
1903
1904 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1905                                        const struct sched_class *prev_class,
1906                                        int oldprio, int running)
1907 {
1908         if (prev_class != p->sched_class) {
1909                 if (prev_class->switched_from)
1910                         prev_class->switched_from(rq, p, running);
1911                 p->sched_class->switched_to(rq, p, running);
1912         } else
1913                 p->sched_class->prio_changed(rq, p, oldprio, running);
1914 }
1915
1916 #ifdef CONFIG_SMP
1917
1918 /* Used instead of source_load when we know the type == 0 */
1919 static unsigned long weighted_cpuload(const int cpu)
1920 {
1921         return cpu_rq(cpu)->load.weight;
1922 }
1923
1924 /*
1925  * Is this task likely cache-hot:
1926  */
1927 static int
1928 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1929 {
1930         s64 delta;
1931
1932         /*
1933          * Buddy candidates are cache hot:
1934          */
1935         if (sched_feat(CACHE_HOT_BUDDY) &&
1936                         (&p->se == cfs_rq_of(&p->se)->next ||
1937                          &p->se == cfs_rq_of(&p->se)->last))
1938                 return 1;
1939
1940         if (p->sched_class != &fair_sched_class)
1941                 return 0;
1942
1943         if (sysctl_sched_migration_cost == -1)
1944                 return 1;
1945         if (sysctl_sched_migration_cost == 0)
1946                 return 0;
1947
1948         delta = now - p->se.exec_start;
1949
1950         return delta < (s64)sysctl_sched_migration_cost;
1951 }
1952
1953
1954 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1955 {
1956         int old_cpu = task_cpu(p);
1957         struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1958         struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1959                       *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1960         u64 clock_offset;
1961
1962         clock_offset = old_rq->clock - new_rq->clock;
1963
1964         trace_sched_migrate_task(p, new_cpu);
1965
1966 #ifdef CONFIG_SCHEDSTATS
1967         if (p->se.wait_start)
1968                 p->se.wait_start -= clock_offset;
1969         if (p->se.sleep_start)
1970                 p->se.sleep_start -= clock_offset;
1971         if (p->se.block_start)
1972                 p->se.block_start -= clock_offset;
1973 #endif
1974         if (old_cpu != new_cpu) {
1975                 p->se.nr_migrations++;
1976                 new_rq->nr_migrations_in++;
1977 #ifdef CONFIG_SCHEDSTATS
1978                 if (task_hot(p, old_rq->clock, NULL))
1979                         schedstat_inc(p, se.nr_forced2_migrations);
1980 #endif
1981                 perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS,
1982                                      1, 1, NULL, 0);
1983         }
1984         p->se.vruntime -= old_cfsrq->min_vruntime -
1985                                          new_cfsrq->min_vruntime;
1986
1987         __set_task_cpu(p, new_cpu);
1988 }
1989
1990 struct migration_req {
1991         struct list_head list;
1992
1993         struct task_struct *task;
1994         int dest_cpu;
1995
1996         struct completion done;
1997 };
1998
1999 /*
2000  * The task's runqueue lock must be held.
2001  * Returns true if you have to wait for migration thread.
2002  */
2003 static int
2004 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2005 {
2006         struct rq *rq = task_rq(p);
2007
2008         /*
2009          * If the task is not on a runqueue (and not running), then
2010          * it is sufficient to simply update the task's cpu field.
2011          */
2012         if (!p->se.on_rq && !task_running(rq, p)) {
2013                 set_task_cpu(p, dest_cpu);
2014                 return 0;
2015         }
2016
2017         init_completion(&req->done);
2018         req->task = p;
2019         req->dest_cpu = dest_cpu;
2020         list_add(&req->list, &rq->migration_queue);
2021
2022         return 1;
2023 }
2024
2025 /*
2026  * wait_task_context_switch -   wait for a thread to complete at least one
2027  *                              context switch.
2028  *
2029  * @p must not be current.
2030  */
2031 void wait_task_context_switch(struct task_struct *p)
2032 {
2033         unsigned long nvcsw, nivcsw, flags;
2034         int running;
2035         struct rq *rq;
2036
2037         nvcsw   = p->nvcsw;
2038         nivcsw  = p->nivcsw;
2039         for (;;) {
2040                 /*
2041                  * The runqueue is assigned before the actual context
2042                  * switch. We need to take the runqueue lock.
2043                  *
2044                  * We could check initially without the lock but it is
2045                  * very likely that we need to take the lock in every
2046                  * iteration.
2047                  */
2048                 rq = task_rq_lock(p, &flags);
2049                 running = task_running(rq, p);
2050                 task_rq_unlock(rq, &flags);
2051
2052                 if (likely(!running))
2053                         break;
2054                 /*
2055                  * The switch count is incremented before the actual
2056                  * context switch. We thus wait for two switches to be
2057                  * sure at least one completed.
2058                  */
2059                 if ((p->nvcsw - nvcsw) > 1)
2060                         break;
2061                 if ((p->nivcsw - nivcsw) > 1)
2062                         break;
2063
2064                 cpu_relax();
2065         }
2066 }
2067
2068 /*
2069  * wait_task_inactive - wait for a thread to unschedule.
2070  *
2071  * If @match_state is nonzero, it's the @p->state value just checked and
2072  * not expected to change.  If it changes, i.e. @p might have woken up,
2073  * then return zero.  When we succeed in waiting for @p to be off its CPU,
2074  * we return a positive number (its total switch count).  If a second call
2075  * a short while later returns the same number, the caller can be sure that
2076  * @p has remained unscheduled the whole time.
2077  *
2078  * The caller must ensure that the task *will* unschedule sometime soon,
2079  * else this function might spin for a *long* time. This function can't
2080  * be called with interrupts off, or it may introduce deadlock with
2081  * smp_call_function() if an IPI is sent by the same process we are
2082  * waiting to become inactive.
2083  */
2084 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2085 {
2086         unsigned long flags;
2087         int running, on_rq;
2088         unsigned long ncsw;
2089         struct rq *rq;
2090
2091         for (;;) {
2092                 /*
2093                  * We do the initial early heuristics without holding
2094                  * any task-queue locks at all. We'll only try to get
2095                  * the runqueue lock when things look like they will
2096                  * work out!
2097                  */
2098                 rq = task_rq(p);
2099
2100                 /*
2101                  * If the task is actively running on another CPU
2102                  * still, just relax and busy-wait without holding
2103                  * any locks.
2104                  *
2105                  * NOTE! Since we don't hold any locks, it's not
2106                  * even sure that "rq" stays as the right runqueue!
2107                  * But we don't care, since "task_running()" will
2108                  * return false if the runqueue has changed and p
2109                  * is actually now running somewhere else!
2110                  */
2111                 while (task_running(rq, p)) {
2112                         if (match_state && unlikely(p->state != match_state))
2113                                 return 0;
2114                         cpu_relax();
2115                 }
2116
2117                 /*
2118                  * Ok, time to look more closely! We need the rq
2119                  * lock now, to be *sure*. If we're wrong, we'll
2120                  * just go back and repeat.
2121                  */
2122                 rq = task_rq_lock(p, &flags);
2123                 trace_sched_wait_task(rq, p);
2124                 running = task_running(rq, p);
2125                 on_rq = p->se.on_rq;
2126                 ncsw = 0;
2127                 if (!match_state || p->state == match_state)
2128                         ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2129                 task_rq_unlock(rq, &flags);
2130
2131                 /*
2132                  * If it changed from the expected state, bail out now.
2133                  */
2134                 if (unlikely(!ncsw))
2135                         break;
2136
2137                 /*
2138                  * Was it really running after all now that we
2139                  * checked with the proper locks actually held?
2140                  *
2141                  * Oops. Go back and try again..
2142                  */
2143                 if (unlikely(running)) {
2144                         cpu_relax();
2145                         continue;
2146                 }
2147
2148                 /*
2149                  * It's not enough that it's not actively running,
2150                  * it must be off the runqueue _entirely_, and not
2151                  * preempted!
2152                  *
2153                  * So if it was still runnable (but just not actively
2154                  * running right now), it's preempted, and we should
2155                  * yield - it could be a while.
2156                  */
2157                 if (unlikely(on_rq)) {
2158                         schedule_timeout_uninterruptible(1);
2159                         continue;
2160                 }
2161
2162                 /*
2163                  * Ahh, all good. It wasn't running, and it wasn't
2164                  * runnable, which means that it will never become
2165                  * running in the future either. We're all done!
2166                  */
2167                 break;
2168         }
2169
2170         return ncsw;
2171 }
2172
2173 /***
2174  * kick_process - kick a running thread to enter/exit the kernel
2175  * @p: the to-be-kicked thread
2176  *
2177  * Cause a process which is running on another CPU to enter
2178  * kernel-mode, without any delay. (to get signals handled.)
2179  *
2180  * NOTE: this function doesnt have to take the runqueue lock,
2181  * because all it wants to ensure is that the remote task enters
2182  * the kernel. If the IPI races and the task has been migrated
2183  * to another CPU then no harm is done and the purpose has been
2184  * achieved as well.
2185  */
2186 void kick_process(struct task_struct *p)
2187 {
2188         int cpu;
2189
2190         preempt_disable();
2191         cpu = task_cpu(p);
2192         if ((cpu != smp_processor_id()) && task_curr(p))
2193                 smp_send_reschedule(cpu);
2194         preempt_enable();
2195 }
2196 EXPORT_SYMBOL_GPL(kick_process);
2197
2198 /*
2199  * Return a low guess at the load of a migration-source cpu weighted
2200  * according to the scheduling class and "nice" value.
2201  *
2202  * We want to under-estimate the load of migration sources, to
2203  * balance conservatively.
2204  */
2205 static unsigned long source_load(int cpu, int type)
2206 {
2207         struct rq *rq = cpu_rq(cpu);
2208         unsigned long total = weighted_cpuload(cpu);
2209
2210         if (type == 0 || !sched_feat(LB_BIAS))
2211                 return total;
2212
2213         return min(rq->cpu_load[type-1], total);
2214 }
2215
2216 /*
2217  * Return a high guess at the load of a migration-target cpu weighted
2218  * according to the scheduling class and "nice" value.
2219  */
2220 static unsigned long target_load(int cpu, int type)
2221 {
2222         struct rq *rq = cpu_rq(cpu);
2223         unsigned long total = weighted_cpuload(cpu);
2224
2225         if (type == 0 || !sched_feat(LB_BIAS))
2226                 return total;
2227
2228         return max(rq->cpu_load[type-1], total);
2229 }
2230
2231 /*
2232  * find_idlest_group finds and returns the least busy CPU group within the
2233  * domain.
2234  */
2235 static struct sched_group *
2236 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2237 {
2238         struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2239         unsigned long min_load = ULONG_MAX, this_load = 0;
2240         int load_idx = sd->forkexec_idx;
2241         int imbalance = 100 + (sd->imbalance_pct-100)/2;
2242
2243         do {
2244                 unsigned long load, avg_load;
2245                 int local_group;
2246                 int i;
2247
2248                 /* Skip over this group if it has no CPUs allowed */
2249                 if (!cpumask_intersects(sched_group_cpus(group),
2250                                         &p->cpus_allowed))
2251                         continue;
2252
2253                 local_group = cpumask_test_cpu(this_cpu,
2254                                                sched_group_cpus(group));
2255
2256                 /* Tally up the load of all CPUs in the group */
2257                 avg_load = 0;
2258
2259                 for_each_cpu(i, sched_group_cpus(group)) {
2260                         /* Bias balancing toward cpus of our domain */
2261                         if (local_group)
2262                                 load = source_load(i, load_idx);
2263                         else
2264                                 load = target_load(i, load_idx);
2265
2266                         avg_load += load;
2267                 }
2268
2269                 /* Adjust by relative CPU power of the group */
2270                 avg_load = sg_div_cpu_power(group,
2271                                 avg_load * SCHED_LOAD_SCALE);
2272
2273                 if (local_group) {
2274                         this_load = avg_load;
2275                         this = group;
2276                 } else if (avg_load < min_load) {
2277                         min_load = avg_load;
2278                         idlest = group;
2279                 }
2280         } while (group = group->next, group != sd->groups);
2281
2282         if (!idlest || 100*this_load < imbalance*min_load)
2283                 return NULL;
2284         return idlest;
2285 }
2286
2287 /*
2288  * find_idlest_cpu - find the idlest cpu among the cpus in group.
2289  */
2290 static int
2291 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2292 {
2293         unsigned long load, min_load = ULONG_MAX;
2294         int idlest = -1;
2295         int i;
2296
2297         /* Traverse only the allowed CPUs */
2298         for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2299                 load = weighted_cpuload(i);
2300
2301                 if (load < min_load || (load == min_load && i == this_cpu)) {
2302                         min_load = load;
2303                         idlest = i;
2304                 }
2305         }
2306
2307         return idlest;
2308 }
2309
2310 /*
2311  * sched_balance_self: balance the current task (running on cpu) in domains
2312  * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2313  * SD_BALANCE_EXEC.
2314  *
2315  * Balance, ie. select the least loaded group.
2316  *
2317  * Returns the target CPU number, or the same CPU if no balancing is needed.
2318  *
2319  * preempt must be disabled.
2320  */
2321 static int sched_balance_self(int cpu, int flag)
2322 {
2323         struct task_struct *t = current;
2324         struct sched_domain *tmp, *sd = NULL;
2325
2326         for_each_domain(cpu, tmp) {
2327                 /*
2328                  * If power savings logic is enabled for a domain, stop there.
2329                  */
2330                 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2331                         break;
2332                 if (tmp->flags & flag)
2333                         sd = tmp;
2334         }
2335
2336         if (sd)
2337                 update_shares(sd);
2338
2339         while (sd) {
2340                 struct sched_group *group;
2341                 int new_cpu, weight;
2342
2343                 if (!(sd->flags & flag)) {
2344                         sd = sd->child;
2345                         continue;
2346                 }
2347
2348                 group = find_idlest_group(sd, t, cpu);
2349                 if (!group) {
2350                         sd = sd->child;
2351                         continue;
2352                 }
2353
2354                 new_cpu = find_idlest_cpu(group, t, cpu);
2355                 if (new_cpu == -1 || new_cpu == cpu) {
2356                         /* Now try balancing at a lower domain level of cpu */
2357                         sd = sd->child;
2358                         continue;
2359                 }
2360
2361                 /* Now try balancing at a lower domain level of new_cpu */
2362                 cpu = new_cpu;
2363                 weight = cpumask_weight(sched_domain_span(sd));
2364                 sd = NULL;
2365                 for_each_domain(cpu, tmp) {
2366                         if (weight <= cpumask_weight(sched_domain_span(tmp)))
2367                                 break;
2368                         if (tmp->flags & flag)
2369                                 sd = tmp;
2370                 }
2371                 /* while loop will break here if sd == NULL */
2372         }
2373
2374         return cpu;
2375 }
2376
2377 #endif /* CONFIG_SMP */
2378
2379 /**
2380  * task_oncpu_function_call - call a function on the cpu on which a task runs
2381  * @p:          the task to evaluate
2382  * @func:       the function to be called
2383  * @info:       the function call argument
2384  *
2385  * Calls the function @func when the task is currently running. This might
2386  * be on the current CPU, which just calls the function directly
2387  */
2388 void task_oncpu_function_call(struct task_struct *p,
2389                               void (*func) (void *info), void *info)
2390 {
2391         int cpu;
2392
2393         preempt_disable();
2394         cpu = task_cpu(p);
2395         if (task_curr(p))
2396                 smp_call_function_single(cpu, func, info, 1);
2397         preempt_enable();
2398 }
2399
2400 /***
2401  * try_to_wake_up - wake up a thread
2402  * @p: the to-be-woken-up thread
2403  * @state: the mask of task states that can be woken
2404  * @sync: do a synchronous wakeup?
2405  *
2406  * Put it on the run-queue if it's not already there. The "current"
2407  * thread is always on the run-queue (except when the actual
2408  * re-schedule is in progress), and as such you're allowed to do
2409  * the simpler "current->state = TASK_RUNNING" to mark yourself
2410  * runnable without the overhead of this.
2411  *
2412  * returns failure only if the task is already active.
2413  */
2414 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2415 {
2416         int cpu, orig_cpu, this_cpu, success = 0;
2417         unsigned long flags;
2418         long old_state;
2419         struct rq *rq;
2420
2421         if (!sched_feat(SYNC_WAKEUPS))
2422                 sync = 0;
2423
2424 #ifdef CONFIG_SMP
2425         if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2426                 struct sched_domain *sd;
2427
2428                 this_cpu = raw_smp_processor_id();
2429                 cpu = task_cpu(p);
2430
2431                 for_each_domain(this_cpu, sd) {
2432                         if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2433                                 update_shares(sd);
2434                                 break;
2435                         }
2436                 }
2437         }
2438 #endif
2439
2440         smp_wmb();
2441         rq = task_rq_lock(p, &flags);
2442         update_rq_clock(rq);
2443         old_state = p->state;
2444         if (!(old_state & state))
2445                 goto out;
2446
2447         if (p->se.on_rq)
2448                 goto out_running;
2449
2450         cpu = task_cpu(p);
2451         orig_cpu = cpu;
2452         this_cpu = smp_processor_id();
2453
2454 #ifdef CONFIG_SMP
2455         if (unlikely(task_running(rq, p)))
2456                 goto out_activate;
2457
2458         cpu = p->sched_class->select_task_rq(p, sync);
2459         if (cpu != orig_cpu) {
2460                 set_task_cpu(p, cpu);
2461                 task_rq_unlock(rq, &flags);
2462                 /* might preempt at this point */
2463                 rq = task_rq_lock(p, &flags);
2464                 old_state = p->state;
2465                 if (!(old_state & state))
2466                         goto out;
2467                 if (p->se.on_rq)
2468                         goto out_running;
2469
2470                 this_cpu = smp_processor_id();
2471                 cpu = task_cpu(p);
2472         }
2473
2474 #ifdef CONFIG_SCHEDSTATS
2475         schedstat_inc(rq, ttwu_count);
2476         if (cpu == this_cpu)
2477                 schedstat_inc(rq, ttwu_local);
2478         else {
2479                 struct sched_domain *sd;
2480                 for_each_domain(this_cpu, sd) {
2481                         if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2482                                 schedstat_inc(sd, ttwu_wake_remote);
2483                                 break;
2484                         }
2485                 }
2486         }
2487 #endif /* CONFIG_SCHEDSTATS */
2488
2489 out_activate:
2490 #endif /* CONFIG_SMP */
2491         schedstat_inc(p, se.nr_wakeups);
2492         if (sync)
2493                 schedstat_inc(p, se.nr_wakeups_sync);
2494         if (orig_cpu != cpu)
2495                 schedstat_inc(p, se.nr_wakeups_migrate);
2496         if (cpu == this_cpu)
2497                 schedstat_inc(p, se.nr_wakeups_local);
2498         else
2499                 schedstat_inc(p, se.nr_wakeups_remote);
2500         activate_task(rq, p, 1);
2501         success = 1;
2502
2503         /*
2504          * Only attribute actual wakeups done by this task.
2505          */
2506         if (!in_interrupt()) {
2507                 struct sched_entity *se = &current->se;
2508                 u64 sample = se->sum_exec_runtime;
2509
2510                 if (se->last_wakeup)
2511                         sample -= se->last_wakeup;
2512                 else
2513                         sample -= se->start_runtime;
2514                 update_avg(&se->avg_wakeup, sample);
2515
2516                 se->last_wakeup = se->sum_exec_runtime;
2517         }
2518
2519 out_running:
2520         trace_sched_wakeup(rq, p, success);
2521         check_preempt_curr(rq, p, sync);
2522
2523         p->state = TASK_RUNNING;
2524 #ifdef CONFIG_SMP
2525         if (p->sched_class->task_wake_up)
2526                 p->sched_class->task_wake_up(rq, p);
2527 #endif
2528 out:
2529         task_rq_unlock(rq, &flags);
2530
2531         return success;
2532 }
2533
2534 /**
2535  * wake_up_process - Wake up a specific process
2536  * @p: The process to be woken up.
2537  *
2538  * Attempt to wake up the nominated process and move it to the set of runnable
2539  * processes.  Returns 1 if the process was woken up, 0 if it was already
2540  * running.
2541  *
2542  * It may be assumed that this function implies a write memory barrier before
2543  * changing the task state if and only if any tasks are woken up.
2544  */
2545 int wake_up_process(struct task_struct *p)
2546 {
2547         return try_to_wake_up(p, TASK_ALL, 0);
2548 }
2549 EXPORT_SYMBOL(wake_up_process);
2550
2551 int wake_up_state(struct task_struct *p, unsigned int state)
2552 {
2553         return try_to_wake_up(p, state, 0);
2554 }
2555
2556 /*
2557  * Perform scheduler related setup for a newly forked process p.
2558  * p is forked by current.
2559  *
2560  * __sched_fork() is basic setup used by init_idle() too:
2561  */
2562 static void __sched_fork(struct task_struct *p)
2563 {
2564         p->se.exec_start                = 0;
2565         p->se.sum_exec_runtime          = 0;
2566         p->se.prev_sum_exec_runtime     = 0;
2567         p->se.nr_migrations             = 0;
2568         p->se.last_wakeup               = 0;
2569         p->se.avg_overlap               = 0;
2570         p->se.start_runtime             = 0;
2571         p->se.avg_wakeup                = sysctl_sched_wakeup_granularity;
2572
2573 #ifdef CONFIG_SCHEDSTATS
2574         p->se.wait_start                = 0;
2575         p->se.sum_sleep_runtime         = 0;
2576         p->se.sleep_start               = 0;
2577         p->se.block_start               = 0;
2578         p->se.sleep_max                 = 0;
2579         p->se.block_max                 = 0;
2580         p->se.exec_max                  = 0;
2581         p->se.slice_max                 = 0;
2582         p->se.wait_max                  = 0;
2583 #endif
2584
2585         INIT_LIST_HEAD(&p->rt.run_list);
2586         p->se.on_rq = 0;
2587         INIT_LIST_HEAD(&p->se.group_node);
2588
2589 #ifdef CONFIG_PREEMPT_NOTIFIERS
2590         INIT_HLIST_HEAD(&p->preempt_notifiers);
2591 #endif
2592
2593         /*
2594          * We mark the process as running here, but have not actually
2595          * inserted it onto the runqueue yet. This guarantees that
2596          * nobody will actually run it, and a signal or other external
2597          * event cannot wake it up and insert it on the runqueue either.
2598          */
2599         p->state = TASK_RUNNING;
2600 }
2601
2602 /*
2603  * fork()/clone()-time setup:
2604  */
2605 void sched_fork(struct task_struct *p, int clone_flags)
2606 {
2607         int cpu = get_cpu();
2608
2609         __sched_fork(p);
2610
2611 #ifdef CONFIG_SMP
2612         cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2613 #endif
2614         set_task_cpu(p, cpu);
2615
2616         /*
2617          * Make sure we do not leak PI boosting priority to the child.
2618          */
2619         p->prio = current->normal_prio;
2620
2621         /*
2622          * Revert to default priority/policy on fork if requested.
2623          */
2624         if (unlikely(p->sched_reset_on_fork)) {
2625                 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR)
2626                         p->policy = SCHED_NORMAL;
2627
2628                 if (p->normal_prio < DEFAULT_PRIO)
2629                         p->prio = DEFAULT_PRIO;
2630
2631                 if (PRIO_TO_NICE(p->static_prio) < 0) {
2632                         p->static_prio = NICE_TO_PRIO(0);
2633                         set_load_weight(p);
2634                 }
2635
2636                 /*
2637                  * We don't need the reset flag anymore after the fork. It has
2638                  * fulfilled its duty:
2639                  */
2640                 p->sched_reset_on_fork = 0;
2641         }
2642
2643         if (!rt_prio(p->prio))
2644                 p->sched_class = &fair_sched_class;
2645
2646 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2647         if (likely(sched_info_on()))
2648                 memset(&p->sched_info, 0, sizeof(p->sched_info));
2649 #endif
2650 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2651         p->oncpu = 0;
2652 #endif
2653 #ifdef CONFIG_PREEMPT
2654         /* Want to start with kernel preemption disabled. */
2655         task_thread_info(p)->preempt_count = 1;
2656 #endif
2657         plist_node_init(&p->pushable_tasks, MAX_PRIO);
2658
2659         put_cpu();
2660 }
2661
2662 /*
2663  * wake_up_new_task - wake up a newly created task for the first time.
2664  *
2665  * This function will do some initial scheduler statistics housekeeping
2666  * that must be done for every newly created context, then puts the task
2667  * on the runqueue and wakes it.
2668  */
2669 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2670 {
2671         unsigned long flags;
2672         struct rq *rq;
2673
2674         rq = task_rq_lock(p, &flags);
2675         BUG_ON(p->state != TASK_RUNNING);
2676         update_rq_clock(rq);
2677
2678         p->prio = effective_prio(p);
2679
2680         if (!p->sched_class->task_new || !current->se.on_rq) {
2681                 activate_task(rq, p, 0);
2682         } else {
2683                 /*
2684                  * Let the scheduling class do new task startup
2685                  * management (if any):
2686                  */
2687                 p->sched_class->task_new(rq, p);
2688                 inc_nr_running(rq);
2689         }
2690         trace_sched_wakeup_new(rq, p, 1);
2691         check_preempt_curr(rq, p, 0);
2692 #ifdef CONFIG_SMP
2693         if (p->sched_class->task_wake_up)
2694                 p->sched_class->task_wake_up(rq, p);
2695 #endif
2696         task_rq_unlock(rq, &flags);
2697 }
2698
2699 #ifdef CONFIG_PREEMPT_NOTIFIERS
2700
2701 /**
2702  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2703  * @notifier: notifier struct to register
2704  */
2705 void preempt_notifier_register(struct preempt_notifier *notifier)
2706 {
2707         hlist_add_head(&notifier->link, &current->preempt_notifiers);
2708 }
2709 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2710
2711 /**
2712  * preempt_notifier_unregister - no longer interested in preemption notifications
2713  * @notifier: notifier struct to unregister
2714  *
2715  * This is safe to call from within a preemption notifier.
2716  */
2717 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2718 {
2719         hlist_del(&notifier->link);
2720 }
2721 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2722
2723 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2724 {
2725         struct preempt_notifier *notifier;
2726         struct hlist_node *node;
2727
2728         hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2729                 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2730 }
2731
2732 static void
2733 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2734                                  struct task_struct *next)
2735 {
2736         struct preempt_notifier *notifier;
2737         struct hlist_node *node;
2738
2739         hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2740                 notifier->ops->sched_out(notifier, next);
2741 }
2742
2743 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2744
2745 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2746 {
2747 }
2748
2749 static void
2750 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2751                                  struct task_struct *next)
2752 {
2753 }
2754
2755 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2756
2757 /**
2758  * prepare_task_switch - prepare to switch tasks
2759  * @rq: the runqueue preparing to switch
2760  * @prev: the current task that is being switched out
2761  * @next: the task we are going to switch to.
2762  *
2763  * This is called with the rq lock held and interrupts off. It must
2764  * be paired with a subsequent finish_task_switch after the context
2765  * switch.
2766  *
2767  * prepare_task_switch sets up locking and calls architecture specific
2768  * hooks.
2769  */
2770 static inline void
2771 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2772                     struct task_struct *next)
2773 {
2774         fire_sched_out_preempt_notifiers(prev, next);
2775         prepare_lock_switch(rq, next);
2776         prepare_arch_switch(next);
2777 }
2778
2779 /**
2780  * finish_task_switch - clean up after a task-switch
2781  * @rq: runqueue associated with task-switch
2782  * @prev: the thread we just switched away from.
2783  *
2784  * finish_task_switch must be called after the context switch, paired
2785  * with a prepare_task_switch call before the context switch.
2786  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2787  * and do any other architecture-specific cleanup actions.
2788  *
2789  * Note that we may have delayed dropping an mm in context_switch(). If
2790  * so, we finish that here outside of the runqueue lock. (Doing it
2791  * with the lock held can cause deadlocks; see schedule() for
2792  * details.)
2793  */
2794 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2795         __releases(rq->lock)
2796 {
2797         struct mm_struct *mm = rq->prev_mm;
2798         long prev_state;
2799 #ifdef CONFIG_SMP
2800         int post_schedule = 0;
2801
2802         if (current->sched_class->needs_post_schedule)
2803                 post_schedule = current->sched_class->needs_post_schedule(rq);
2804 #endif
2805
2806         rq->prev_mm = NULL;
2807
2808         /*
2809          * A task struct has one reference for the use as "current".
2810          * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2811          * schedule one last time. The schedule call will never return, and
2812          * the scheduled task must drop that reference.
2813          * The test for TASK_DEAD must occur while the runqueue locks are
2814          * still held, otherwise prev could be scheduled on another cpu, die
2815          * there before we look at prev->state, and then the reference would
2816          * be dropped twice.
2817          *              Manfred Spraul <manfred@colorfullife.com>
2818          */
2819         prev_state = prev->state;
2820         finish_arch_switch(prev);
2821         perf_counter_task_sched_in(current, cpu_of(rq));
2822         finish_lock_switch(rq, prev);
2823 #ifdef CONFIG_SMP
2824         if (post_schedule)
2825                 current->sched_class->post_schedule(rq);
2826 #endif
2827
2828         fire_sched_in_preempt_notifiers(current);
2829         if (mm)
2830                 mmdrop(mm);
2831         if (unlikely(prev_state == TASK_DEAD)) {
2832                 /*
2833                  * Remove function-return probe instances associated with this
2834                  * task and put them back on the free list.
2835                  */
2836                 kprobe_flush_task(prev);
2837                 put_task_struct(prev);
2838         }
2839 }
2840
2841 /**
2842  * schedule_tail - first thing a freshly forked thread must call.
2843  * @prev: the thread we just switched away from.
2844  */
2845 asmlinkage void schedule_tail(struct task_struct *prev)
2846         __releases(rq->lock)
2847 {
2848         struct rq *rq = this_rq();
2849
2850         finish_task_switch(rq, prev);
2851 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2852         /* In this case, finish_task_switch does not reenable preemption */
2853         preempt_enable();
2854 #endif
2855         if (current->set_child_tid)
2856                 put_user(task_pid_vnr(current), current->set_child_tid);
2857 }
2858
2859 /*
2860  * context_switch - switch to the new MM and the new
2861  * thread's register state.
2862  */
2863 static inline void
2864 context_switch(struct rq *rq, struct task_struct *prev,
2865                struct task_struct *next)
2866 {
2867         struct mm_struct *mm, *oldmm;
2868
2869         prepare_task_switch(rq, prev, next);
2870         trace_sched_switch(rq, prev, next);
2871         mm = next->mm;
2872         oldmm = prev->active_mm;
2873         /*
2874          * For paravirt, this is coupled with an exit in switch_to to
2875          * combine the page table reload and the switch backend into
2876          * one hypercall.
2877          */
2878         arch_start_context_switch(prev);
2879
2880         if (unlikely(!mm)) {
2881                 next->active_mm = oldmm;
2882                 atomic_inc(&oldmm->mm_count);
2883                 enter_lazy_tlb(oldmm, next);
2884         } else
2885                 switch_mm(oldmm, mm, next);
2886
2887         if (unlikely(!prev->mm)) {
2888                 prev->active_mm = NULL;
2889                 rq->prev_mm = oldmm;
2890         }
2891         /*
2892          * Since the runqueue lock will be released by the next
2893          * task (which is an invalid locking op but in the case
2894          * of the scheduler it's an obvious special-case), so we
2895          * do an early lockdep release here:
2896          */
2897 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2898         spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2899 #endif
2900
2901         /* Here we just switch the register state and the stack. */
2902         switch_to(prev, next, prev);
2903
2904         barrier();
2905         /*
2906          * this_rq must be evaluated again because prev may have moved
2907          * CPUs since it called schedule(), thus the 'rq' on its stack
2908          * frame will be invalid.
2909          */
2910         finish_task_switch(this_rq(), prev);
2911 }
2912
2913 /*
2914  * nr_running, nr_uninterruptible and nr_context_switches:
2915  *
2916  * externally visible scheduler statistics: current number of runnable
2917  * threads, current number of uninterruptible-sleeping threads, total
2918  * number of context switches performed since bootup.
2919  */
2920 unsigned long nr_running(void)
2921 {
2922         unsigned long i, sum = 0;
2923
2924         for_each_online_cpu(i)
2925                 sum += cpu_rq(i)->nr_running;
2926
2927         return sum;
2928 }
2929
2930 unsigned long nr_uninterruptible(void)
2931 {
2932         unsigned long i, sum = 0;
2933
2934         for_each_possible_cpu(i)
2935                 sum += cpu_rq(i)->nr_uninterruptible;
2936
2937         /*
2938          * Since we read the counters lockless, it might be slightly
2939          * inaccurate. Do not allow it to go below zero though:
2940          */
2941         if (unlikely((long)sum < 0))
2942                 sum = 0;
2943
2944         return sum;
2945 }
2946
2947 unsigned long long nr_context_switches(void)
2948 {
2949         int i;
2950         unsigned long long sum = 0;
2951
2952         for_each_possible_cpu(i)
2953                 sum += cpu_rq(i)->nr_switches;
2954
2955         return sum;
2956 }
2957
2958 unsigned long nr_iowait(void)
2959 {
2960         unsigned long i, sum = 0;
2961
2962         for_each_possible_cpu(i)
2963                 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2964
2965         return sum;
2966 }
2967
2968 /* Variables and functions for calc_load */
2969 static atomic_long_t calc_load_tasks;
2970 static unsigned long calc_load_update;
2971 unsigned long avenrun[3];
2972 EXPORT_SYMBOL(avenrun);
2973
2974 /**
2975  * get_avenrun - get the load average array
2976  * @loads:      pointer to dest load array
2977  * @offset:     offset to add
2978  * @shift:      shift count to shift the result left
2979  *
2980  * These values are estimates at best, so no need for locking.
2981  */
2982 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2983 {
2984         loads[0] = (avenrun[0] + offset) << shift;
2985         loads[1] = (avenrun[1] + offset) << shift;
2986         loads[2] = (avenrun[2] + offset) << shift;
2987 }
2988
2989 static unsigned long
2990 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2991 {
2992         load *= exp;
2993         load += active * (FIXED_1 - exp);
2994         return load >> FSHIFT;
2995 }
2996
2997 /*
2998  * calc_load - update the avenrun load estimates 10 ticks after the
2999  * CPUs have updated calc_load_tasks.
3000  */
3001 void calc_global_load(void)
3002 {
3003         unsigned long upd = calc_load_update + 10;
3004         long active;
3005
3006         if (time_before(jiffies, upd))
3007                 return;
3008
3009         active = atomic_long_read(&calc_load_tasks);
3010         active = active > 0 ? active * FIXED_1 : 0;
3011
3012         avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3013         avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3014         avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3015
3016         calc_load_update += LOAD_FREQ;
3017 }
3018
3019 /*
3020  * Either called from update_cpu_load() or from a cpu going idle
3021  */
3022 static void calc_load_account_active(struct rq *this_rq)
3023 {
3024         long nr_active, delta;
3025
3026         nr_active = this_rq->nr_running;
3027         nr_active += (long) this_rq->nr_uninterruptible;
3028
3029         if (nr_active != this_rq->calc_load_active) {
3030                 delta = nr_active - this_rq->calc_load_active;
3031                 this_rq->calc_load_active = nr_active;
3032                 atomic_long_add(delta, &calc_load_tasks);
3033         }
3034 }
3035
3036 /*
3037  * Externally visible per-cpu scheduler statistics:
3038  * cpu_nr_migrations(cpu) - number of migrations into that cpu
3039  */
3040 u64 cpu_nr_migrations(int cpu)
3041 {
3042         return cpu_rq(cpu)->nr_migrations_in;
3043 }
3044
3045 /*
3046  * Update rq->cpu_load[] statistics. This function is usually called every
3047  * scheduler tick (TICK_NSEC).
3048  */
3049 static void update_cpu_load(struct rq *this_rq)
3050 {
3051         unsigned long this_load = this_rq->load.weight;
3052         int i, scale;
3053
3054         this_rq->nr_load_updates++;
3055
3056         /* Update our load: */
3057         for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3058                 unsigned long old_load, new_load;
3059
3060                 /* scale is effectively 1 << i now, and >> i divides by scale */
3061
3062                 old_load = this_rq->cpu_load[i];
3063                 new_load = this_load;
3064                 /*
3065                  * Round up the averaging division if load is increasing. This
3066                  * prevents us from getting stuck on 9 if the load is 10, for
3067                  * example.
3068                  */
3069                 if (new_load > old_load)
3070                         new_load += scale-1;
3071                 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3072         }
3073
3074         if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3075                 this_rq->calc_load_update += LOAD_FREQ;
3076                 calc_load_account_active(this_rq);
3077         }
3078 }
3079
3080 #ifdef CONFIG_SMP
3081
3082 /*
3083  * double_rq_lock - safely lock two runqueues
3084  *
3085  * Note this does not disable interrupts like task_rq_lock,
3086  * you need to do so manually before calling.
3087  */
3088 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
3089         __acquires(rq1->lock)
3090         __acquires(rq2->lock)
3091 {
3092         BUG_ON(!irqs_disabled());
3093         if (rq1 == rq2) {
3094                 spin_lock(&rq1->lock);
3095                 __acquire(rq2->lock);   /* Fake it out ;) */
3096         } else {
3097                 if (rq1 < rq2) {
3098                         spin_lock(&rq1->lock);
3099                         spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
3100                 } else {
3101                         spin_lock(&rq2->lock);
3102                         spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
3103                 }
3104         }
3105         update_rq_clock(rq1);
3106         update_rq_clock(rq2);
3107 }
3108
3109 /*
3110  * double_rq_unlock - safely unlock two runqueues
3111  *
3112  * Note this does not restore interrupts like task_rq_unlock,
3113  * you need to do so manually after calling.
3114  */
3115 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3116         __releases(rq1->lock)
3117         __releases(rq2->lock)
3118 {
3119         spin_unlock(&rq1->lock);
3120         if (rq1 != rq2)
3121                 spin_unlock(&rq2->lock);
3122         else
3123                 __release(rq2->lock);
3124 }
3125
3126 /*
3127  * If dest_cpu is allowed for this process, migrate the task to it.
3128  * This is accomplished by forcing the cpu_allowed mask to only
3129  * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3130  * the cpu_allowed mask is restored.
3131  */
3132 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
3133 {
3134         struct migration_req req;
3135         unsigned long flags;
3136         struct rq *rq;
3137
3138         rq = task_rq_lock(p, &flags);
3139         if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3140             || unlikely(!cpu_active(dest_cpu)))
3141                 goto out;
3142
3143         /* force the process onto the specified CPU */
3144         if (migrate_task(p, dest_cpu, &req)) {
3145                 /* Need to wait for migration thread (might exit: take ref). */
3146                 struct task_struct *mt = rq->migration_thread;
3147
3148                 get_task_struct(mt);
3149                 task_rq_unlock(rq, &flags);
3150                 wake_up_process(mt);
3151                 put_task_struct(mt);
3152                 wait_for_completion(&req.done);
3153
3154                 return;
3155         }
3156 out:
3157         task_rq_unlock(rq, &flags);
3158 }
3159
3160 /*
3161  * sched_exec - execve() is a valuable balancing opportunity, because at
3162  * this point the task has the smallest effective memory and cache footprint.
3163  */
3164 void sched_exec(void)
3165 {
3166         int new_cpu, this_cpu = get_cpu();
3167         new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
3168         put_cpu();
3169         if (new_cpu != this_cpu)
3170                 sched_migrate_task(current, new_cpu);
3171 }
3172
3173 /*
3174  * pull_task - move a task from a remote runqueue to the local runqueue.
3175  * Both runqueues must be locked.
3176  */
3177 static void pull_task(struct rq *src_rq, struct task_struct *p,
3178                       struct rq *this_rq, int this_cpu)
3179 {
3180         deactivate_task(src_rq, p, 0);
3181         set_task_cpu(p, this_cpu);
3182         activate_task(this_rq, p, 0);
3183         /*
3184          * Note that idle threads have a prio of MAX_PRIO, for this test
3185          * to be always true for them.
3186          */
3187         check_preempt_curr(this_rq, p, 0);
3188 }
3189
3190 /*
3191  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3192  */
3193 static
3194 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3195                      struct sched_domain *sd, enum cpu_idle_type idle,
3196                      int *all_pinned)
3197 {
3198         int tsk_cache_hot = 0;
3199         /*
3200          * We do not migrate tasks that are:
3201          * 1) running (obviously), or
3202          * 2) cannot be migrated to this CPU due to cpus_allowed, or
3203          * 3) are cache-hot on their current CPU.
3204          */
3205         if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3206                 schedstat_inc(p, se.nr_failed_migrations_affine);
3207                 return 0;
3208         }
3209         *all_pinned = 0;
3210
3211         if (task_running(rq, p)) {
3212                 schedstat_inc(p, se.nr_failed_migrations_running);
3213                 return 0;
3214         }
3215
3216         /*
3217          * Aggressive migration if:
3218          * 1) task is cache cold, or
3219          * 2) too many balance attempts have failed.
3220          */
3221
3222         tsk_cache_hot = task_hot(p, rq->clock, sd);
3223         if (!tsk_cache_hot ||
3224                 sd->nr_balance_failed > sd->cache_nice_tries) {
3225 #ifdef CONFIG_SCHEDSTATS
3226                 if (tsk_cache_hot) {
3227                         schedstat_inc(sd, lb_hot_gained[idle]);
3228                         schedstat_inc(p, se.nr_forced_migrations);
3229                 }
3230 #endif
3231                 return 1;
3232         }
3233
3234         if (tsk_cache_hot) {
3235                 schedstat_inc(p, se.nr_failed_migrations_hot);
3236                 return 0;
3237         }
3238         return 1;
3239 }
3240
3241 static unsigned long
3242 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3243               unsigned long max_load_move, struct sched_domain *sd,
3244               enum cpu_idle_type idle, int *all_pinned,
3245               int *this_best_prio, struct rq_iterator *iterator)
3246 {
3247         int loops = 0, pulled = 0, pinned = 0;
3248         struct task_struct *p;
3249         long rem_load_move = max_load_move;
3250
3251         if (max_load_move == 0)
3252                 goto out;
3253
3254         pinned = 1;
3255
3256         /*
3257          * Start the load-balancing iterator:
3258          */
3259         p = iterator->start(iterator->arg);
3260 next:
3261         if (!p || loops++ > sysctl_sched_nr_migrate)
3262                 goto out;
3263
3264         if ((p->se.load.weight >> 1) > rem_load_move ||
3265             !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3266                 p = iterator->next(iterator->arg);
3267                 goto next;
3268         }
3269
3270         pull_task(busiest, p, this_rq, this_cpu);
3271         pulled++;
3272         rem_load_move -= p->se.load.weight;
3273
3274 #ifdef CONFIG_PREEMPT
3275         /*
3276          * NEWIDLE balancing is a source of latency, so preemptible kernels
3277          * will stop after the first task is pulled to minimize the critical
3278          * section.
3279          */
3280         if (idle == CPU_NEWLY_IDLE)
3281                 goto out;
3282 #endif
3283
3284         /*
3285          * We only want to steal up to the prescribed amount of weighted load.
3286          */
3287         if (rem_load_move > 0) {
3288                 if (p->prio < *this_best_prio)
3289                         *this_best_prio = p->prio;
3290                 p = iterator->next(iterator->arg);
3291                 goto next;
3292         }
3293 out:
3294         /*
3295          * Right now, this is one of only two places pull_task() is called,
3296          * so we can safely collect pull_task() stats here rather than
3297          * inside pull_task().
3298          */
3299         schedstat_add(sd, lb_gained[idle], pulled);
3300
3301         if (all_pinned)
3302                 *all_pinned = pinned;
3303
3304         return max_load_move - rem_load_move;
3305 }
3306
3307 /*
3308  * move_tasks tries to move up to max_load_move weighted load from busiest to
3309  * this_rq, as part of a balancing operation within domain "sd".
3310  * Returns 1 if successful and 0 otherwise.
3311  *
3312  * Called with both runqueues locked.
3313  */
3314 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3315                       unsigned long max_load_move,
3316                       struct sched_domain *sd, enum cpu_idle_type idle,
3317                       int *all_pinned)
3318 {
3319         const struct sched_class *class = sched_class_highest;
3320         unsigned long total_load_moved = 0;
3321         int this_best_prio = this_rq->curr->prio;
3322
3323         do {
3324                 total_load_moved +=
3325                         class->load_balance(this_rq, this_cpu, busiest,
3326                                 max_load_move - total_load_moved,
3327                                 sd, idle, all_pinned, &this_best_prio);
3328                 class = class->next;
3329
3330 #ifdef CONFIG_PREEMPT
3331                 /*
3332                  * NEWIDLE balancing is a source of latency, so preemptible
3333                  * kernels will stop after the first task is pulled to minimize
3334                  * the critical section.
3335                  */
3336                 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3337                         break;
3338 #endif
3339         } while (class && max_load_move > total_load_moved);
3340
3341         return total_load_moved > 0;
3342 }
3343
3344 static int
3345 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3346                    struct sched_domain *sd, enum cpu_idle_type idle,
3347                    struct rq_iterator *iterator)
3348 {
3349         struct task_struct *p = iterator->start(iterator->arg);
3350         int pinned = 0;
3351
3352         while (p) {
3353                 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3354                         pull_task(busiest, p, this_rq, this_cpu);
3355                         /*
3356                          * Right now, this is only the second place pull_task()
3357                          * is called, so we can safely collect pull_task()
3358                          * stats here rather than inside pull_task().
3359                          */
3360                         schedstat_inc(sd, lb_gained[idle]);
3361
3362                         return 1;
3363                 }
3364                 p = iterator->next(iterator->arg);
3365         }
3366
3367         return 0;
3368 }
3369
3370 /*
3371  * move_one_task tries to move exactly one task from busiest to this_rq, as
3372  * part of active balancing operations within "domain".
3373  * Returns 1 if successful and 0 otherwise.
3374  *
3375  * Called with both runqueues locked.
3376  */
3377 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3378                          struct sched_domain *sd, enum cpu_idle_type idle)
3379 {
3380         const struct sched_class *class;
3381
3382         for (class = sched_class_highest; class; class = class->next)
3383                 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3384                         return 1;
3385
3386         return 0;
3387 }
3388 /********** Helpers for find_busiest_group ************************/
3389 /*
3390  * sd_lb_stats - Structure to store the statistics of a sched_domain
3391  *              during load balancing.
3392  */
3393 struct sd_lb_stats {
3394         struct sched_group *busiest; /* Busiest group in this sd */
3395         struct sched_group *this;  /* Local group in this sd */
3396         unsigned long total_load;  /* Total load of all groups in sd */
3397         unsigned long total_pwr;   /*   Total power of all groups in sd */
3398         unsigned long avg_load;    /* Average load across all groups in sd */
3399
3400         /** Statistics of this group */
3401         unsigned long this_load;
3402         unsigned long this_load_per_task;
3403         unsigned long this_nr_running;
3404
3405         /* Statistics of the busiest group */
3406         unsigned long max_load;
3407         unsigned long busiest_load_per_task;
3408         unsigned long busiest_nr_running;
3409
3410         int group_imb; /* Is there imbalance in this sd */
3411 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3412         int power_savings_balance; /* Is powersave balance needed for this sd */
3413         struct sched_group *group_min; /* Least loaded group in sd */
3414         struct sched_group *group_leader; /* Group which relieves group_min */
3415         unsigned long min_load_per_task; /* load_per_task in group_min */
3416         unsigned long leader_nr_running; /* Nr running of group_leader */
3417         unsigned long min_nr_running; /* Nr running of group_min */
3418 #endif
3419 };
3420
3421 /*
3422  * sg_lb_stats - stats of a sched_group required for load_balancing
3423  */
3424 struct sg_lb_stats {
3425         unsigned long avg_load; /*Avg load across the CPUs of the group */
3426         unsigned long group_load; /* Total load over the CPUs of the group */
3427         unsigned long sum_nr_running; /* Nr tasks running in the group */
3428         unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3429         unsigned long group_capacity;
3430         int group_imb; /* Is there an imbalance in the group ? */
3431 };
3432
3433 /**
3434  * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3435  * @group: The group whose first cpu is to be returned.
3436  */
3437 static inline unsigned int group_first_cpu(struct sched_group *group)
3438 {
3439         return cpumask_first(sched_group_cpus(group));
3440 }
3441
3442 /**
3443  * get_sd_load_idx - Obtain the load index for a given sched domain.
3444  * @sd: The sched_domain whose load_idx is to be obtained.
3445  * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3446  */
3447 static inline int get_sd_load_idx(struct sched_domain *sd,
3448                                         enum cpu_idle_type idle)
3449 {
3450         int load_idx;
3451
3452         switch (idle) {
3453         case CPU_NOT_IDLE:
3454                 load_idx = sd->busy_idx;
3455                 break;
3456
3457         case CPU_NEWLY_IDLE:
3458                 load_idx = sd->newidle_idx;
3459                 break;
3460         default:
3461                 load_idx = sd->idle_idx;
3462                 break;
3463         }
3464
3465         return load_idx;
3466 }
3467
3468
3469 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3470 /**
3471  * init_sd_power_savings_stats - Initialize power savings statistics for
3472  * the given sched_domain, during load balancing.
3473  *
3474  * @sd: Sched domain whose power-savings statistics are to be initialized.
3475  * @sds: Variable containing the statistics for sd.
3476  * @idle: Idle status of the CPU at which we're performing load-balancing.
3477  */
3478 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3479         struct sd_lb_stats *sds, enum cpu_idle_type idle)
3480 {
3481         /*
3482          * Busy processors will not participate in power savings
3483          * balance.
3484          */
3485         if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3486                 sds->power_savings_balance = 0;
3487         else {
3488                 sds->power_savings_balance = 1;
3489                 sds->min_nr_running = ULONG_MAX;
3490                 sds->leader_nr_running = 0;
3491         }
3492 }
3493
3494 /**
3495  * update_sd_power_savings_stats - Update the power saving stats for a
3496  * sched_domain while performing load balancing.
3497  *
3498  * @group: sched_group belonging to the sched_domain under consideration.
3499  * @sds: Variable containing the statistics of the sched_domain
3500  * @local_group: Does group contain the CPU for which we're performing
3501  *              load balancing ?
3502  * @sgs: Variable containing the statistics of the group.
3503  */
3504 static inline void update_sd_power_savings_stats(struct sched_group *group,
3505         struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3506 {
3507
3508         if (!sds->power_savings_balance)
3509                 return;
3510
3511         /*
3512          * If the local group is idle or completely loaded
3513          * no need to do power savings balance at this domain
3514          */
3515         if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3516                                 !sds->this_nr_running))
3517                 sds->power_savings_balance = 0;
3518
3519         /*
3520          * If a group is already running at full capacity or idle,
3521          * don't include that group in power savings calculations
3522          */
3523         if (!sds->power_savings_balance ||
3524                 sgs->sum_nr_running >= sgs->group_capacity ||
3525                 !sgs->sum_nr_running)
3526                 return;
3527
3528         /*
3529          * Calculate the group which has the least non-idle load.
3530          * This is the group from where we need to pick up the load
3531          * for saving power
3532          */
3533         if ((sgs->sum_nr_running < sds->min_nr_running) ||
3534             (sgs->sum_nr_running == sds->min_nr_running &&
3535              group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3536                 sds->group_min = group;
3537                 sds->min_nr_running = sgs->sum_nr_running;
3538                 sds->min_load_per_task = sgs->sum_weighted_load /
3539                                                 sgs->sum_nr_running;
3540         }
3541
3542         /*
3543          * Calculate the group which is almost near its
3544          * capacity but still has some space to pick up some load
3545          * from other group and save more power
3546          */
3547         if (sgs->sum_nr_running > sgs->group_capacity - 1)
3548                 return;
3549
3550         if (sgs->sum_nr_running > sds->leader_nr_running ||
3551             (sgs->sum_nr_running == sds->leader_nr_running &&
3552              group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3553                 sds->group_leader = group;
3554                 sds->leader_nr_running = sgs->sum_nr_running;
3555         }
3556 }
3557
3558 /**
3559  * check_power_save_busiest_group - see if there is potential for some power-savings balance
3560  * @sds: Variable containing the statistics of the sched_domain
3561  *      under consideration.
3562  * @this_cpu: Cpu at which we're currently performing load-balancing.
3563  * @imbalance: Variable to store the imbalance.
3564  *
3565  * Description:
3566  * Check if we have potential to perform some power-savings balance.
3567  * If yes, set the busiest group to be the least loaded group in the
3568  * sched_domain, so that it's CPUs can be put to idle.
3569  *
3570  * Returns 1 if there is potential to perform power-savings balance.
3571  * Else returns 0.
3572  */
3573 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3574                                         int this_cpu, unsigned long *imbalance)
3575 {
3576         if (!sds->power_savings_balance)
3577                 return 0;
3578
3579         if (sds->this != sds->group_leader ||
3580                         sds->group_leader == sds->group_min)
3581                 return 0;
3582
3583         *imbalance = sds->min_load_per_task;
3584         sds->busiest = sds->group_min;
3585
3586         if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3587                 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3588                         group_first_cpu(sds->group_leader);
3589         }
3590
3591         return 1;
3592
3593 }
3594 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3595 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3596         struct sd_lb_stats *sds, enum cpu_idle_type idle)
3597 {
3598         return;
3599 }
3600
3601 static inline void update_sd_power_savings_stats(struct sched_group *group,
3602         struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3603 {
3604         return;
3605 }
3606
3607 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3608                                         int this_cpu, unsigned long *imbalance)
3609 {
3610         return 0;
3611 }
3612 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3613
3614
3615 /**
3616  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3617  * @group: sched_group whose statistics are to be updated.
3618  * @this_cpu: Cpu for which load balance is currently performed.
3619  * @idle: Idle status of this_cpu
3620  * @load_idx: Load index of sched_domain of this_cpu for load calc.
3621  * @sd_idle: Idle status of the sched_domain containing group.
3622  * @local_group: Does group contain this_cpu.
3623  * @cpus: Set of cpus considered for load balancing.
3624  * @balance: Should we balance.
3625  * @sgs: variable to hold the statistics for this group.
3626  */
3627 static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
3628                         enum cpu_idle_type idle, int load_idx, int *sd_idle,
3629                         int local_group, const struct cpumask *cpus,
3630                         int *balance, struct sg_lb_stats *sgs)
3631 {
3632         unsigned long load, max_cpu_load, min_cpu_load;
3633         int i;
3634         unsigned int balance_cpu = -1, first_idle_cpu = 0;
3635         unsigned long sum_avg_load_per_task;
3636         unsigned long avg_load_per_task;
3637
3638         if (local_group)
3639                 balance_cpu = group_first_cpu(group);
3640
3641         /* Tally up the load of all CPUs in the group */
3642         sum_avg_load_per_task = avg_load_per_task = 0;
3643         max_cpu_load = 0;
3644         min_cpu_load = ~0UL;
3645
3646         for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3647                 struct rq *rq = cpu_rq(i);
3648
3649                 if (*sd_idle && rq->nr_running)
3650                         *sd_idle = 0;
3651
3652                 /* Bias balancing toward cpus of our domain */
3653                 if (local_group) {
3654                         if (idle_cpu(i) && !first_idle_cpu) {
3655                                 first_idle_cpu = 1;
3656                                 balance_cpu = i;
3657                         }
3658
3659                         load = target_load(i, load_idx);
3660                 } else {
3661                         load = source_load(i, load_idx);
3662                         if (load > max_cpu_load)
3663                                 max_cpu_load = load;
3664                         if (min_cpu_load > load)
3665                                 min_cpu_load = load;
3666                 }
3667
3668                 sgs->group_load += load;
3669                 sgs->sum_nr_running += rq->nr_running;
3670                 sgs->sum_weighted_load += weighted_cpuload(i);
3671
3672                 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3673         }
3674
3675         /*
3676          * First idle cpu or the first cpu(busiest) in this sched group
3677          * is eligible for doing load balancing at this and above
3678          * domains. In the newly idle case, we will allow all the cpu's
3679          * to do the newly idle load balance.
3680          */
3681         if (idle != CPU_NEWLY_IDLE && local_group &&
3682             balance_cpu != this_cpu && balance) {
3683                 *balance = 0;
3684                 return;
3685         }
3686
3687         /* Adjust by relative CPU power of the group */
3688         sgs->avg_load = sg_div_cpu_power(group,
3689                         sgs->group_load * SCHED_LOAD_SCALE);
3690
3691
3692         /*
3693          * Consider the group unbalanced when the imbalance is larger
3694   &nbs