Merge master.kernel.org:/pub/scm/linux/kernel/git/davej/agpgart
[linux-2.6.git] / fs / nfs / nfs4proc.c
1 /*
2  *  fs/nfs/nfs4proc.c
3  *
4  *  Client-side procedure declarations for NFSv4.
5  *
6  *  Copyright (c) 2002 The Regents of the University of Michigan.
7  *  All rights reserved.
8  *
9  *  Kendrick Smith <kmsmith@umich.edu>
10  *  Andy Adamson   <andros@umich.edu>
11  *
12  *  Redistribution and use in source and binary forms, with or without
13  *  modification, are permitted provided that the following conditions
14  *  are met:
15  *
16  *  1. Redistributions of source code must retain the above copyright
17  *     notice, this list of conditions and the following disclaimer.
18  *  2. Redistributions in binary form must reproduce the above copyright
19  *     notice, this list of conditions and the following disclaimer in the
20  *     documentation and/or other materials provided with the distribution.
21  *  3. Neither the name of the University nor the names of its
22  *     contributors may be used to endorse or promote products derived
23  *     from this software without specific prior written permission.
24  *
25  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
26  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
27  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
28  *  DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  *  FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
32  *  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33  *  LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34  *  NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35  *  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36  */
37
38 #include <linux/mm.h>
39 #include <linux/utsname.h>
40 #include <linux/delay.h>
41 #include <linux/errno.h>
42 #include <linux/string.h>
43 #include <linux/sunrpc/clnt.h>
44 #include <linux/nfs.h>
45 #include <linux/nfs4.h>
46 #include <linux/nfs_fs.h>
47 #include <linux/nfs_page.h>
48 #include <linux/smp_lock.h>
49 #include <linux/namei.h>
50 #include <linux/mount.h>
51
52 #include "nfs4_fs.h"
53 #include "delegation.h"
54
55 #define NFSDBG_FACILITY         NFSDBG_PROC
56
57 #define NFS4_POLL_RETRY_MIN     (1*HZ)
58 #define NFS4_POLL_RETRY_MAX     (15*HZ)
59
60 struct nfs4_opendata;
61 static int _nfs4_proc_open(struct nfs4_opendata *data);
62 static int nfs4_do_fsinfo(struct nfs_server *, struct nfs_fh *, struct nfs_fsinfo *);
63 static int nfs4_async_handle_error(struct rpc_task *, const struct nfs_server *);
64 static int _nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry);
65 static int nfs4_handle_exception(const struct nfs_server *server, int errorcode, struct nfs4_exception *exception);
66 static int nfs4_wait_clnt_recover(struct rpc_clnt *clnt, struct nfs4_client *clp);
67 extern u32 *nfs4_decode_dirent(u32 *p, struct nfs_entry *entry, int plus);
68 extern struct rpc_procinfo nfs4_procedures[];
69
70 /* Prevent leaks of NFSv4 errors into userland */
71 int nfs4_map_errors(int err)
72 {
73         if (err < -1000) {
74                 dprintk("%s could not handle NFSv4 error %d\n",
75                                 __FUNCTION__, -err);
76                 return -EIO;
77         }
78         return err;
79 }
80
81 /*
82  * This is our standard bitmap for GETATTR requests.
83  */
84 const u32 nfs4_fattr_bitmap[2] = {
85         FATTR4_WORD0_TYPE
86         | FATTR4_WORD0_CHANGE
87         | FATTR4_WORD0_SIZE
88         | FATTR4_WORD0_FSID
89         | FATTR4_WORD0_FILEID,
90         FATTR4_WORD1_MODE
91         | FATTR4_WORD1_NUMLINKS
92         | FATTR4_WORD1_OWNER
93         | FATTR4_WORD1_OWNER_GROUP
94         | FATTR4_WORD1_RAWDEV
95         | FATTR4_WORD1_SPACE_USED
96         | FATTR4_WORD1_TIME_ACCESS
97         | FATTR4_WORD1_TIME_METADATA
98         | FATTR4_WORD1_TIME_MODIFY
99 };
100
101 const u32 nfs4_statfs_bitmap[2] = {
102         FATTR4_WORD0_FILES_AVAIL
103         | FATTR4_WORD0_FILES_FREE
104         | FATTR4_WORD0_FILES_TOTAL,
105         FATTR4_WORD1_SPACE_AVAIL
106         | FATTR4_WORD1_SPACE_FREE
107         | FATTR4_WORD1_SPACE_TOTAL
108 };
109
110 const u32 nfs4_pathconf_bitmap[2] = {
111         FATTR4_WORD0_MAXLINK
112         | FATTR4_WORD0_MAXNAME,
113         0
114 };
115
116 const u32 nfs4_fsinfo_bitmap[2] = { FATTR4_WORD0_MAXFILESIZE
117                         | FATTR4_WORD0_MAXREAD
118                         | FATTR4_WORD0_MAXWRITE
119                         | FATTR4_WORD0_LEASE_TIME,
120                         0
121 };
122
123 static void nfs4_setup_readdir(u64 cookie, u32 *verifier, struct dentry *dentry,
124                 struct nfs4_readdir_arg *readdir)
125 {
126         u32 *start, *p;
127
128         BUG_ON(readdir->count < 80);
129         if (cookie > 2) {
130                 readdir->cookie = cookie;
131                 memcpy(&readdir->verifier, verifier, sizeof(readdir->verifier));
132                 return;
133         }
134
135         readdir->cookie = 0;
136         memset(&readdir->verifier, 0, sizeof(readdir->verifier));
137         if (cookie == 2)
138                 return;
139         
140         /*
141          * NFSv4 servers do not return entries for '.' and '..'
142          * Therefore, we fake these entries here.  We let '.'
143          * have cookie 0 and '..' have cookie 1.  Note that
144          * when talking to the server, we always send cookie 0
145          * instead of 1 or 2.
146          */
147         start = p = (u32 *)kmap_atomic(*readdir->pages, KM_USER0);
148         
149         if (cookie == 0) {
150                 *p++ = xdr_one;                                  /* next */
151                 *p++ = xdr_zero;                   /* cookie, first word */
152                 *p++ = xdr_one;                   /* cookie, second word */
153                 *p++ = xdr_one;                             /* entry len */
154                 memcpy(p, ".\0\0\0", 4);                        /* entry */
155                 p++;
156                 *p++ = xdr_one;                         /* bitmap length */
157                 *p++ = htonl(FATTR4_WORD0_FILEID);             /* bitmap */
158                 *p++ = htonl(8);              /* attribute buffer length */
159                 p = xdr_encode_hyper(p, dentry->d_inode->i_ino);
160         }
161         
162         *p++ = xdr_one;                                  /* next */
163         *p++ = xdr_zero;                   /* cookie, first word */
164         *p++ = xdr_two;                   /* cookie, second word */
165         *p++ = xdr_two;                             /* entry len */
166         memcpy(p, "..\0\0", 4);                         /* entry */
167         p++;
168         *p++ = xdr_one;                         /* bitmap length */
169         *p++ = htonl(FATTR4_WORD0_FILEID);             /* bitmap */
170         *p++ = htonl(8);              /* attribute buffer length */
171         p = xdr_encode_hyper(p, dentry->d_parent->d_inode->i_ino);
172
173         readdir->pgbase = (char *)p - (char *)start;
174         readdir->count -= readdir->pgbase;
175         kunmap_atomic(start, KM_USER0);
176 }
177
178 static void renew_lease(const struct nfs_server *server, unsigned long timestamp)
179 {
180         struct nfs4_client *clp = server->nfs4_state;
181         spin_lock(&clp->cl_lock);
182         if (time_before(clp->cl_last_renewal,timestamp))
183                 clp->cl_last_renewal = timestamp;
184         spin_unlock(&clp->cl_lock);
185 }
186
187 static void update_changeattr(struct inode *inode, struct nfs4_change_info *cinfo)
188 {
189         struct nfs_inode *nfsi = NFS_I(inode);
190
191         spin_lock(&inode->i_lock);
192         nfsi->cache_validity |= NFS_INO_INVALID_ATTR;
193         if (cinfo->before == nfsi->change_attr && cinfo->atomic)
194                 nfsi->change_attr = cinfo->after;
195         spin_unlock(&inode->i_lock);
196 }
197
198 struct nfs4_opendata {
199         atomic_t count;
200         struct nfs_openargs o_arg;
201         struct nfs_openres o_res;
202         struct nfs_open_confirmargs c_arg;
203         struct nfs_open_confirmres c_res;
204         struct nfs_fattr f_attr;
205         struct nfs_fattr dir_attr;
206         struct dentry *dentry;
207         struct dentry *dir;
208         struct nfs4_state_owner *owner;
209         struct iattr attrs;
210         unsigned long timestamp;
211         int rpc_status;
212         int cancelled;
213 };
214
215 static struct nfs4_opendata *nfs4_opendata_alloc(struct dentry *dentry,
216                 struct nfs4_state_owner *sp, int flags,
217                 const struct iattr *attrs)
218 {
219         struct dentry *parent = dget_parent(dentry);
220         struct inode *dir = parent->d_inode;
221         struct nfs_server *server = NFS_SERVER(dir);
222         struct nfs4_opendata *p;
223
224         p = kzalloc(sizeof(*p), GFP_KERNEL);
225         if (p == NULL)
226                 goto err;
227         p->o_arg.seqid = nfs_alloc_seqid(&sp->so_seqid);
228         if (p->o_arg.seqid == NULL)
229                 goto err_free;
230         atomic_set(&p->count, 1);
231         p->dentry = dget(dentry);
232         p->dir = parent;
233         p->owner = sp;
234         atomic_inc(&sp->so_count);
235         p->o_arg.fh = NFS_FH(dir);
236         p->o_arg.open_flags = flags,
237         p->o_arg.clientid = server->nfs4_state->cl_clientid;
238         p->o_arg.id = sp->so_id;
239         p->o_arg.name = &dentry->d_name;
240         p->o_arg.server = server;
241         p->o_arg.bitmask = server->attr_bitmask;
242         p->o_arg.claim = NFS4_OPEN_CLAIM_NULL;
243         p->o_res.f_attr = &p->f_attr;
244         p->o_res.dir_attr = &p->dir_attr;
245         p->o_res.server = server;
246         nfs_fattr_init(&p->f_attr);
247         nfs_fattr_init(&p->dir_attr);
248         if (flags & O_EXCL) {
249                 u32 *s = (u32 *) p->o_arg.u.verifier.data;
250                 s[0] = jiffies;
251                 s[1] = current->pid;
252         } else if (flags & O_CREAT) {
253                 p->o_arg.u.attrs = &p->attrs;
254                 memcpy(&p->attrs, attrs, sizeof(p->attrs));
255         }
256         p->c_arg.fh = &p->o_res.fh;
257         p->c_arg.stateid = &p->o_res.stateid;
258         p->c_arg.seqid = p->o_arg.seqid;
259         return p;
260 err_free:
261         kfree(p);
262 err:
263         dput(parent);
264         return NULL;
265 }
266
267 static void nfs4_opendata_free(struct nfs4_opendata *p)
268 {
269         if (p != NULL && atomic_dec_and_test(&p->count)) {
270                 nfs_free_seqid(p->o_arg.seqid);
271                 nfs4_put_state_owner(p->owner);
272                 dput(p->dir);
273                 dput(p->dentry);
274                 kfree(p);
275         }
276 }
277
278 /* Helper for asynchronous RPC calls */
279 static int nfs4_call_async(struct rpc_clnt *clnt,
280                 const struct rpc_call_ops *tk_ops, void *calldata)
281 {
282         struct rpc_task *task;
283
284         if (!(task = rpc_new_task(clnt, RPC_TASK_ASYNC, tk_ops, calldata)))
285                 return -ENOMEM;
286         rpc_execute(task);
287         return 0;
288 }
289
290 static int nfs4_wait_for_completion_rpc_task(struct rpc_task *task)
291 {
292         sigset_t oldset;
293         int ret;
294
295         rpc_clnt_sigmask(task->tk_client, &oldset);
296         ret = rpc_wait_for_completion_task(task);
297         rpc_clnt_sigunmask(task->tk_client, &oldset);
298         return ret;
299 }
300
301 static inline void update_open_stateflags(struct nfs4_state *state, mode_t open_flags)
302 {
303         switch (open_flags) {
304                 case FMODE_WRITE:
305                         state->n_wronly++;
306                         break;
307                 case FMODE_READ:
308                         state->n_rdonly++;
309                         break;
310                 case FMODE_READ|FMODE_WRITE:
311                         state->n_rdwr++;
312         }
313 }
314
315 static void update_open_stateid(struct nfs4_state *state, nfs4_stateid *stateid, int open_flags)
316 {
317         struct inode *inode = state->inode;
318
319         open_flags &= (FMODE_READ|FMODE_WRITE);
320         /* Protect against nfs4_find_state_byowner() */
321         spin_lock(&state->owner->so_lock);
322         spin_lock(&inode->i_lock);
323         memcpy(&state->stateid, stateid, sizeof(state->stateid));
324         update_open_stateflags(state, open_flags);
325         nfs4_state_set_mode_locked(state, state->state | open_flags);
326         spin_unlock(&inode->i_lock);
327         spin_unlock(&state->owner->so_lock);
328 }
329
330 static struct nfs4_state *nfs4_opendata_to_nfs4_state(struct nfs4_opendata *data)
331 {
332         struct inode *inode;
333         struct nfs4_state *state = NULL;
334
335         if (!(data->f_attr.valid & NFS_ATTR_FATTR))
336                 goto out;
337         inode = nfs_fhget(data->dir->d_sb, &data->o_res.fh, &data->f_attr);
338         if (inode == NULL)
339                 goto out;
340         state = nfs4_get_open_state(inode, data->owner);
341         if (state == NULL)
342                 goto put_inode;
343         update_open_stateid(state, &data->o_res.stateid, data->o_arg.open_flags);
344 put_inode:
345         iput(inode);
346 out:
347         return state;
348 }
349
350 static struct nfs_open_context *nfs4_state_find_open_context(struct nfs4_state *state)
351 {
352         struct nfs_inode *nfsi = NFS_I(state->inode);
353         struct nfs_open_context *ctx;
354
355         spin_lock(&state->inode->i_lock);
356         list_for_each_entry(ctx, &nfsi->open_files, list) {
357                 if (ctx->state != state)
358                         continue;
359                 get_nfs_open_context(ctx);
360                 spin_unlock(&state->inode->i_lock);
361                 return ctx;
362         }
363         spin_unlock(&state->inode->i_lock);
364         return ERR_PTR(-ENOENT);
365 }
366
367 static int nfs4_open_recover_helper(struct nfs4_opendata *opendata, mode_t openflags, nfs4_stateid *stateid)
368 {
369         int ret;
370
371         opendata->o_arg.open_flags = openflags;
372         ret = _nfs4_proc_open(opendata);
373         if (ret != 0)
374                 return ret; 
375         memcpy(stateid->data, opendata->o_res.stateid.data,
376                         sizeof(stateid->data));
377         return 0;
378 }
379
380 static int nfs4_open_recover(struct nfs4_opendata *opendata, struct nfs4_state *state)
381 {
382         nfs4_stateid stateid;
383         struct nfs4_state *newstate;
384         int mode = 0;
385         int delegation = 0;
386         int ret;
387
388         /* memory barrier prior to reading state->n_* */
389         smp_rmb();
390         if (state->n_rdwr != 0) {
391                 ret = nfs4_open_recover_helper(opendata, FMODE_READ|FMODE_WRITE, &stateid);
392                 if (ret != 0)
393                         return ret;
394                 mode |= FMODE_READ|FMODE_WRITE;
395                 if (opendata->o_res.delegation_type != 0)
396                         delegation = opendata->o_res.delegation_type;
397                 smp_rmb();
398         }
399         if (state->n_wronly != 0) {
400                 ret = nfs4_open_recover_helper(opendata, FMODE_WRITE, &stateid);
401                 if (ret != 0)
402                         return ret;
403                 mode |= FMODE_WRITE;
404                 if (opendata->o_res.delegation_type != 0)
405                         delegation = opendata->o_res.delegation_type;
406                 smp_rmb();
407         }
408         if (state->n_rdonly != 0) {
409                 ret = nfs4_open_recover_helper(opendata, FMODE_READ, &stateid);
410                 if (ret != 0)
411                         return ret;
412                 mode |= FMODE_READ;
413         }
414         clear_bit(NFS_DELEGATED_STATE, &state->flags);
415         if (mode == 0)
416                 return 0;
417         if (opendata->o_res.delegation_type == 0)
418                 opendata->o_res.delegation_type = delegation;
419         opendata->o_arg.open_flags |= mode;
420         newstate = nfs4_opendata_to_nfs4_state(opendata);
421         if (newstate != NULL) {
422                 if (opendata->o_res.delegation_type != 0) {
423                         struct nfs_inode *nfsi = NFS_I(newstate->inode);
424                         int delegation_flags = 0;
425                         if (nfsi->delegation)
426                                 delegation_flags = nfsi->delegation->flags;
427                         if (!(delegation_flags & NFS_DELEGATION_NEED_RECLAIM))
428                                 nfs_inode_set_delegation(newstate->inode,
429                                                 opendata->owner->so_cred,
430                                                 &opendata->o_res);
431                         else
432                                 nfs_inode_reclaim_delegation(newstate->inode,
433                                                 opendata->owner->so_cred,
434                                                 &opendata->o_res);
435                 }
436                 nfs4_close_state(newstate, opendata->o_arg.open_flags);
437         }
438         if (newstate != state)
439                 return -ESTALE;
440         return 0;
441 }
442
443 /*
444  * OPEN_RECLAIM:
445  *      reclaim state on the server after a reboot.
446  */
447 static int _nfs4_do_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
448 {
449         struct nfs_delegation *delegation = NFS_I(state->inode)->delegation;
450         struct nfs4_opendata *opendata;
451         int delegation_type = 0;
452         int status;
453
454         if (delegation != NULL) {
455                 if (!(delegation->flags & NFS_DELEGATION_NEED_RECLAIM)) {
456                         memcpy(&state->stateid, &delegation->stateid,
457                                         sizeof(state->stateid));
458                         set_bit(NFS_DELEGATED_STATE, &state->flags);
459                         return 0;
460                 }
461                 delegation_type = delegation->type;
462         }
463         opendata = nfs4_opendata_alloc(dentry, sp, 0, NULL);
464         if (opendata == NULL)
465                 return -ENOMEM;
466         opendata->o_arg.claim = NFS4_OPEN_CLAIM_PREVIOUS;
467         opendata->o_arg.fh = NFS_FH(state->inode);
468         nfs_copy_fh(&opendata->o_res.fh, opendata->o_arg.fh);
469         opendata->o_arg.u.delegation_type = delegation_type;
470         status = nfs4_open_recover(opendata, state);
471         nfs4_opendata_free(opendata);
472         return status;
473 }
474
475 static int nfs4_do_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
476 {
477         struct nfs_server *server = NFS_SERVER(state->inode);
478         struct nfs4_exception exception = { };
479         int err;
480         do {
481                 err = _nfs4_do_open_reclaim(sp, state, dentry);
482                 if (err != -NFS4ERR_DELAY)
483                         break;
484                 nfs4_handle_exception(server, err, &exception);
485         } while (exception.retry);
486         return err;
487 }
488
489 static int nfs4_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state)
490 {
491         struct nfs_open_context *ctx;
492         int ret;
493
494         ctx = nfs4_state_find_open_context(state);
495         if (IS_ERR(ctx))
496                 return PTR_ERR(ctx);
497         ret = nfs4_do_open_reclaim(sp, state, ctx->dentry);
498         put_nfs_open_context(ctx);
499         return ret;
500 }
501
502 static int _nfs4_open_delegation_recall(struct dentry *dentry, struct nfs4_state *state)
503 {
504         struct nfs4_state_owner  *sp  = state->owner;
505         struct nfs4_opendata *opendata;
506         int ret;
507
508         if (!test_bit(NFS_DELEGATED_STATE, &state->flags))
509                 return 0;
510         opendata = nfs4_opendata_alloc(dentry, sp, 0, NULL);
511         if (opendata == NULL)
512                 return -ENOMEM;
513         opendata->o_arg.claim = NFS4_OPEN_CLAIM_DELEGATE_CUR;
514         memcpy(opendata->o_arg.u.delegation.data, state->stateid.data,
515                         sizeof(opendata->o_arg.u.delegation.data));
516         ret = nfs4_open_recover(opendata, state);
517         nfs4_opendata_free(opendata);
518         return ret;
519 }
520
521 int nfs4_open_delegation_recall(struct dentry *dentry, struct nfs4_state *state)
522 {
523         struct nfs4_exception exception = { };
524         struct nfs_server *server = NFS_SERVER(dentry->d_inode);
525         int err;
526         do {
527                 err = _nfs4_open_delegation_recall(dentry, state);
528                 switch (err) {
529                         case 0:
530                                 return err;
531                         case -NFS4ERR_STALE_CLIENTID:
532                         case -NFS4ERR_STALE_STATEID:
533                         case -NFS4ERR_EXPIRED:
534                                 /* Don't recall a delegation if it was lost */
535                                 nfs4_schedule_state_recovery(server->nfs4_state);
536                                 return err;
537                 }
538                 err = nfs4_handle_exception(server, err, &exception);
539         } while (exception.retry);
540         return err;
541 }
542
543 static void nfs4_open_confirm_prepare(struct rpc_task *task, void *calldata)
544 {
545         struct nfs4_opendata *data = calldata;
546         struct  rpc_message msg = {
547                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_CONFIRM],
548                 .rpc_argp = &data->c_arg,
549                 .rpc_resp = &data->c_res,
550                 .rpc_cred = data->owner->so_cred,
551         };
552         data->timestamp = jiffies;
553         rpc_call_setup(task, &msg, 0);
554 }
555
556 static void nfs4_open_confirm_done(struct rpc_task *task, void *calldata)
557 {
558         struct nfs4_opendata *data = calldata;
559
560         data->rpc_status = task->tk_status;
561         if (RPC_ASSASSINATED(task))
562                 return;
563         if (data->rpc_status == 0) {
564                 memcpy(data->o_res.stateid.data, data->c_res.stateid.data,
565                                 sizeof(data->o_res.stateid.data));
566                 renew_lease(data->o_res.server, data->timestamp);
567         }
568         nfs_increment_open_seqid(data->rpc_status, data->c_arg.seqid);
569         nfs_confirm_seqid(&data->owner->so_seqid, data->rpc_status);
570 }
571
572 static void nfs4_open_confirm_release(void *calldata)
573 {
574         struct nfs4_opendata *data = calldata;
575         struct nfs4_state *state = NULL;
576
577         /* If this request hasn't been cancelled, do nothing */
578         if (data->cancelled == 0)
579                 goto out_free;
580         /* In case of error, no cleanup! */
581         if (data->rpc_status != 0)
582                 goto out_free;
583         nfs_confirm_seqid(&data->owner->so_seqid, 0);
584         state = nfs4_opendata_to_nfs4_state(data);
585         if (state != NULL)
586                 nfs4_close_state(state, data->o_arg.open_flags);
587 out_free:
588         nfs4_opendata_free(data);
589 }
590
591 static const struct rpc_call_ops nfs4_open_confirm_ops = {
592         .rpc_call_prepare = nfs4_open_confirm_prepare,
593         .rpc_call_done = nfs4_open_confirm_done,
594         .rpc_release = nfs4_open_confirm_release,
595 };
596
597 /*
598  * Note: On error, nfs4_proc_open_confirm will free the struct nfs4_opendata
599  */
600 static int _nfs4_proc_open_confirm(struct nfs4_opendata *data)
601 {
602         struct nfs_server *server = NFS_SERVER(data->dir->d_inode);
603         struct rpc_task *task;
604         int status;
605
606         atomic_inc(&data->count);
607         task = rpc_run_task(server->client, RPC_TASK_ASYNC, &nfs4_open_confirm_ops, data);
608         if (IS_ERR(task)) {
609                 nfs4_opendata_free(data);
610                 return PTR_ERR(task);
611         }
612         status = nfs4_wait_for_completion_rpc_task(task);
613         if (status != 0) {
614                 data->cancelled = 1;
615                 smp_wmb();
616         } else
617                 status = data->rpc_status;
618         rpc_release_task(task);
619         return status;
620 }
621
622 static void nfs4_open_prepare(struct rpc_task *task, void *calldata)
623 {
624         struct nfs4_opendata *data = calldata;
625         struct nfs4_state_owner *sp = data->owner;
626         struct rpc_message msg = {
627                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN],
628                 .rpc_argp = &data->o_arg,
629                 .rpc_resp = &data->o_res,
630                 .rpc_cred = sp->so_cred,
631         };
632         
633         if (nfs_wait_on_sequence(data->o_arg.seqid, task) != 0)
634                 return;
635         /* Update sequence id. */
636         data->o_arg.id = sp->so_id;
637         data->o_arg.clientid = sp->so_client->cl_clientid;
638         if (data->o_arg.claim == NFS4_OPEN_CLAIM_PREVIOUS)
639                 msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_NOATTR];
640         data->timestamp = jiffies;
641         rpc_call_setup(task, &msg, 0);
642 }
643
644 static void nfs4_open_done(struct rpc_task *task, void *calldata)
645 {
646         struct nfs4_opendata *data = calldata;
647
648         data->rpc_status = task->tk_status;
649         if (RPC_ASSASSINATED(task))
650                 return;
651         if (task->tk_status == 0) {
652                 switch (data->o_res.f_attr->mode & S_IFMT) {
653                         case S_IFREG:
654                                 break;
655                         case S_IFLNK:
656                                 data->rpc_status = -ELOOP;
657                                 break;
658                         case S_IFDIR:
659                                 data->rpc_status = -EISDIR;
660                                 break;
661                         default:
662                                 data->rpc_status = -ENOTDIR;
663                 }
664                 renew_lease(data->o_res.server, data->timestamp);
665         }
666         nfs_increment_open_seqid(data->rpc_status, data->o_arg.seqid);
667 }
668
669 static void nfs4_open_release(void *calldata)
670 {
671         struct nfs4_opendata *data = calldata;
672         struct nfs4_state *state = NULL;
673
674         /* If this request hasn't been cancelled, do nothing */
675         if (data->cancelled == 0)
676                 goto out_free;
677         /* In case of error, no cleanup! */
678         if (data->rpc_status != 0)
679                 goto out_free;
680         /* In case we need an open_confirm, no cleanup! */
681         if (data->o_res.rflags & NFS4_OPEN_RESULT_CONFIRM)
682                 goto out_free;
683         nfs_confirm_seqid(&data->owner->so_seqid, 0);
684         state = nfs4_opendata_to_nfs4_state(data);
685         if (state != NULL)
686                 nfs4_close_state(state, data->o_arg.open_flags);
687 out_free:
688         nfs4_opendata_free(data);
689 }
690
691 static const struct rpc_call_ops nfs4_open_ops = {
692         .rpc_call_prepare = nfs4_open_prepare,
693         .rpc_call_done = nfs4_open_done,
694         .rpc_release = nfs4_open_release,
695 };
696
697 /*
698  * Note: On error, nfs4_proc_open will free the struct nfs4_opendata
699  */
700 static int _nfs4_proc_open(struct nfs4_opendata *data)
701 {
702         struct inode *dir = data->dir->d_inode;
703         struct nfs_server *server = NFS_SERVER(dir);
704         struct nfs_openargs *o_arg = &data->o_arg;
705         struct nfs_openres *o_res = &data->o_res;
706         struct rpc_task *task;
707         int status;
708
709         atomic_inc(&data->count);
710         task = rpc_run_task(server->client, RPC_TASK_ASYNC, &nfs4_open_ops, data);
711         if (IS_ERR(task)) {
712                 nfs4_opendata_free(data);
713                 return PTR_ERR(task);
714         }
715         status = nfs4_wait_for_completion_rpc_task(task);
716         if (status != 0) {
717                 data->cancelled = 1;
718                 smp_wmb();
719         } else
720                 status = data->rpc_status;
721         rpc_release_task(task);
722         if (status != 0)
723                 return status;
724
725         if (o_arg->open_flags & O_CREAT) {
726                 update_changeattr(dir, &o_res->cinfo);
727                 nfs_post_op_update_inode(dir, o_res->dir_attr);
728         } else
729                 nfs_refresh_inode(dir, o_res->dir_attr);
730         if(o_res->rflags & NFS4_OPEN_RESULT_CONFIRM) {
731                 status = _nfs4_proc_open_confirm(data);
732                 if (status != 0)
733                         return status;
734         }
735         nfs_confirm_seqid(&data->owner->so_seqid, 0);
736         if (!(o_res->f_attr->valid & NFS_ATTR_FATTR))
737                 return server->rpc_ops->getattr(server, &o_res->fh, o_res->f_attr);
738         return 0;
739 }
740
741 static int _nfs4_do_access(struct inode *inode, struct rpc_cred *cred, int openflags)
742 {
743         struct nfs_access_entry cache;
744         int mask = 0;
745         int status;
746
747         if (openflags & FMODE_READ)
748                 mask |= MAY_READ;
749         if (openflags & FMODE_WRITE)
750                 mask |= MAY_WRITE;
751         status = nfs_access_get_cached(inode, cred, &cache);
752         if (status == 0)
753                 goto out;
754
755         /* Be clever: ask server to check for all possible rights */
756         cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
757         cache.cred = cred;
758         cache.jiffies = jiffies;
759         status = _nfs4_proc_access(inode, &cache);
760         if (status != 0)
761                 return status;
762         nfs_access_add_cache(inode, &cache);
763 out:
764         if ((cache.mask & mask) == mask)
765                 return 0;
766         return -EACCES;
767 }
768
769 int nfs4_recover_expired_lease(struct nfs_server *server)
770 {
771         struct nfs4_client *clp = server->nfs4_state;
772
773         if (test_and_clear_bit(NFS4CLNT_LEASE_EXPIRED, &clp->cl_state))
774                 nfs4_schedule_state_recovery(clp);
775         return nfs4_wait_clnt_recover(server->client, clp);
776 }
777
778 /*
779  * OPEN_EXPIRED:
780  *      reclaim state on the server after a network partition.
781  *      Assumes caller holds the appropriate lock
782  */
783 static int _nfs4_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
784 {
785         struct inode *inode = state->inode;
786         struct nfs_delegation *delegation = NFS_I(inode)->delegation;
787         struct nfs4_opendata *opendata;
788         int openflags = state->state & (FMODE_READ|FMODE_WRITE);
789         int ret;
790
791         if (delegation != NULL && !(delegation->flags & NFS_DELEGATION_NEED_RECLAIM)) {
792                 ret = _nfs4_do_access(inode, sp->so_cred, openflags);
793                 if (ret < 0)
794                         return ret;
795                 memcpy(&state->stateid, &delegation->stateid, sizeof(state->stateid));
796                 set_bit(NFS_DELEGATED_STATE, &state->flags);
797                 return 0;
798         }
799         opendata = nfs4_opendata_alloc(dentry, sp, openflags, NULL);
800         if (opendata == NULL)
801                 return -ENOMEM;
802         ret = nfs4_open_recover(opendata, state);
803         if (ret == -ESTALE) {
804                 /* Invalidate the state owner so we don't ever use it again */
805                 nfs4_drop_state_owner(sp);
806                 d_drop(dentry);
807         }
808         nfs4_opendata_free(opendata);
809         return ret;
810 }
811
812 static inline int nfs4_do_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
813 {
814         struct nfs_server *server = NFS_SERVER(dentry->d_inode);
815         struct nfs4_exception exception = { };
816         int err;
817
818         do {
819                 err = _nfs4_open_expired(sp, state, dentry);
820                 if (err == -NFS4ERR_DELAY)
821                         nfs4_handle_exception(server, err, &exception);
822         } while (exception.retry);
823         return err;
824 }
825
826 static int nfs4_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state)
827 {
828         struct nfs_open_context *ctx;
829         int ret;
830
831         ctx = nfs4_state_find_open_context(state);
832         if (IS_ERR(ctx))
833                 return PTR_ERR(ctx);
834         ret = nfs4_do_open_expired(sp, state, ctx->dentry);
835         put_nfs_open_context(ctx);
836         return ret;
837 }
838
839 /*
840  * Returns a referenced nfs4_state if there is an open delegation on the file
841  */
842 static int _nfs4_open_delegated(struct inode *inode, int flags, struct rpc_cred *cred, struct nfs4_state **res)
843 {
844         struct nfs_delegation *delegation;
845         struct nfs_server *server = NFS_SERVER(inode);
846         struct nfs4_client *clp = server->nfs4_state;
847         struct nfs_inode *nfsi = NFS_I(inode);
848         struct nfs4_state_owner *sp = NULL;
849         struct nfs4_state *state = NULL;
850         int open_flags = flags & (FMODE_READ|FMODE_WRITE);
851         int err;
852
853         err = -ENOMEM;
854         if (!(sp = nfs4_get_state_owner(server, cred))) {
855                 dprintk("%s: nfs4_get_state_owner failed!\n", __FUNCTION__);
856                 return err;
857         }
858         err = nfs4_recover_expired_lease(server);
859         if (err != 0)
860                 goto out_put_state_owner;
861         /* Protect against reboot recovery - NOTE ORDER! */
862         down_read(&clp->cl_sem);
863         /* Protect against delegation recall */
864         down_read(&nfsi->rwsem);
865         delegation = NFS_I(inode)->delegation;
866         err = -ENOENT;
867         if (delegation == NULL || (delegation->type & open_flags) != open_flags)
868                 goto out_err;
869         err = -ENOMEM;
870         state = nfs4_get_open_state(inode, sp);
871         if (state == NULL)
872                 goto out_err;
873
874         err = -ENOENT;
875         if ((state->state & open_flags) == open_flags) {
876                 spin_lock(&inode->i_lock);
877                 update_open_stateflags(state, open_flags);
878                 spin_unlock(&inode->i_lock);
879                 goto out_ok;
880         } else if (state->state != 0)
881                 goto out_put_open_state;
882
883         lock_kernel();
884         err = _nfs4_do_access(inode, cred, open_flags);
885         unlock_kernel();
886         if (err != 0)
887                 goto out_put_open_state;
888         set_bit(NFS_DELEGATED_STATE, &state->flags);
889         update_open_stateid(state, &delegation->stateid, open_flags);
890 out_ok:
891         nfs4_put_state_owner(sp);
892         up_read(&nfsi->rwsem);
893         up_read(&clp->cl_sem);
894         *res = state;
895         return 0;
896 out_put_open_state:
897         nfs4_put_open_state(state);
898 out_err:
899         up_read(&nfsi->rwsem);
900         up_read(&clp->cl_sem);
901         if (err != -EACCES)
902                 nfs_inode_return_delegation(inode);
903 out_put_state_owner:
904         nfs4_put_state_owner(sp);
905         return err;
906 }
907
908 static struct nfs4_state *nfs4_open_delegated(struct inode *inode, int flags, struct rpc_cred *cred)
909 {
910         struct nfs4_exception exception = { };
911         struct nfs4_state *res;
912         int err;
913
914         do {
915                 err = _nfs4_open_delegated(inode, flags, cred, &res);
916                 if (err == 0)
917                         break;
918                 res = ERR_PTR(nfs4_handle_exception(NFS_SERVER(inode),
919                                         err, &exception));
920         } while (exception.retry);
921         return res;
922 }
923
924 /*
925  * Returns a referenced nfs4_state
926  */
927 static int _nfs4_do_open(struct inode *dir, struct dentry *dentry, int flags, struct iattr *sattr, struct rpc_cred *cred, struct nfs4_state **res)
928 {
929         struct nfs4_state_owner  *sp;
930         struct nfs4_state     *state = NULL;
931         struct nfs_server       *server = NFS_SERVER(dir);
932         struct nfs4_client *clp = server->nfs4_state;
933         struct nfs4_opendata *opendata;
934         int                     status;
935
936         /* Protect against reboot recovery conflicts */
937         status = -ENOMEM;
938         if (!(sp = nfs4_get_state_owner(server, cred))) {
939                 dprintk("nfs4_do_open: nfs4_get_state_owner failed!\n");
940                 goto out_err;
941         }
942         status = nfs4_recover_expired_lease(server);
943         if (status != 0)
944                 goto err_put_state_owner;
945         down_read(&clp->cl_sem);
946         status = -ENOMEM;
947         opendata = nfs4_opendata_alloc(dentry, sp, flags, sattr);
948         if (opendata == NULL)
949                 goto err_put_state_owner;
950
951         status = _nfs4_proc_open(opendata);
952         if (status != 0)
953                 goto err_opendata_free;
954
955         status = -ENOMEM;
956         state = nfs4_opendata_to_nfs4_state(opendata);
957         if (state == NULL)
958                 goto err_opendata_free;
959         if (opendata->o_res.delegation_type != 0)
960                 nfs_inode_set_delegation(state->inode, cred, &opendata->o_res);
961         nfs4_opendata_free(opendata);
962         nfs4_put_state_owner(sp);
963         up_read(&clp->cl_sem);
964         *res = state;
965         return 0;
966 err_opendata_free:
967         nfs4_opendata_free(opendata);
968 err_put_state_owner:
969         nfs4_put_state_owner(sp);
970 out_err:
971         /* Note: clp->cl_sem must be released before nfs4_put_open_state()! */
972         up_read(&clp->cl_sem);
973         *res = NULL;
974         return status;
975 }
976
977
978 static struct nfs4_state *nfs4_do_open(struct inode *dir, struct dentry *dentry, int flags, struct iattr *sattr, struct rpc_cred *cred)
979 {
980         struct nfs4_exception exception = { };
981         struct nfs4_state *res;
982         int status;
983
984         do {
985                 status = _nfs4_do_open(dir, dentry, flags, sattr, cred, &res);
986                 if (status == 0)
987                         break;
988                 /* NOTE: BAD_SEQID means the server and client disagree about the
989                  * book-keeping w.r.t. state-changing operations
990                  * (OPEN/CLOSE/LOCK/LOCKU...)
991                  * It is actually a sign of a bug on the client or on the server.
992                  *
993                  * If we receive a BAD_SEQID error in the particular case of
994                  * doing an OPEN, we assume that nfs_increment_open_seqid() will
995                  * have unhashed the old state_owner for us, and that we can
996                  * therefore safely retry using a new one. We should still warn
997                  * the user though...
998                  */
999                 if (status == -NFS4ERR_BAD_SEQID) {
1000                         printk(KERN_WARNING "NFS: v4 server returned a bad sequence-id error!\n");
1001                         exception.retry = 1;
1002                         continue;
1003                 }
1004                 /*
1005                  * BAD_STATEID on OPEN means that the server cancelled our
1006                  * state before it received the OPEN_CONFIRM.
1007                  * Recover by retrying the request as per the discussion
1008                  * on Page 181 of RFC3530.
1009                  */
1010                 if (status == -NFS4ERR_BAD_STATEID) {
1011                         exception.retry = 1;
1012                         continue;
1013                 }
1014                 res = ERR_PTR(nfs4_handle_exception(NFS_SERVER(dir),
1015                                         status, &exception));
1016         } while (exception.retry);
1017         return res;
1018 }
1019
1020 static int _nfs4_do_setattr(struct nfs_server *server, struct nfs_fattr *fattr,
1021                 struct nfs_fh *fhandle, struct iattr *sattr,
1022                 struct nfs4_state *state)
1023 {
1024         struct nfs_setattrargs  arg = {
1025                 .fh             = fhandle,
1026                 .iap            = sattr,
1027                 .server         = server,
1028                 .bitmask = server->attr_bitmask,
1029         };
1030         struct nfs_setattrres  res = {
1031                 .fattr          = fattr,
1032                 .server         = server,
1033         };
1034         struct rpc_message msg = {
1035                 .rpc_proc       = &nfs4_procedures[NFSPROC4_CLNT_SETATTR],
1036                 .rpc_argp       = &arg,
1037                 .rpc_resp       = &res,
1038         };
1039         unsigned long timestamp = jiffies;
1040         int status;
1041
1042         nfs_fattr_init(fattr);
1043
1044         if (state != NULL) {
1045                 msg.rpc_cred = state->owner->so_cred;
1046                 nfs4_copy_stateid(&arg.stateid, state, current->files);
1047         } else
1048                 memcpy(&arg.stateid, &zero_stateid, sizeof(arg.stateid));
1049
1050         status = rpc_call_sync(server->client, &msg, 0);
1051         if (status == 0 && state != NULL)
1052                 renew_lease(server, timestamp);
1053         return status;
1054 }
1055
1056 static int nfs4_do_setattr(struct nfs_server *server, struct nfs_fattr *fattr,
1057                 struct nfs_fh *fhandle, struct iattr *sattr,
1058                 struct nfs4_state *state)
1059 {
1060         struct nfs4_exception exception = { };
1061         int err;
1062         do {
1063                 err = nfs4_handle_exception(server,
1064                                 _nfs4_do_setattr(server, fattr, fhandle, sattr,
1065                                         state),
1066                                 &exception);
1067         } while (exception.retry);
1068         return err;
1069 }
1070
1071 struct nfs4_closedata {
1072         struct inode *inode;
1073         struct nfs4_state *state;
1074         struct nfs_closeargs arg;
1075         struct nfs_closeres res;
1076         struct nfs_fattr fattr;
1077         unsigned long timestamp;
1078 };
1079
1080 static void nfs4_free_closedata(void *data)
1081 {
1082         struct nfs4_closedata *calldata = data;
1083         struct nfs4_state_owner *sp = calldata->state->owner;
1084
1085         nfs4_put_open_state(calldata->state);
1086         nfs_free_seqid(calldata->arg.seqid);
1087         nfs4_put_state_owner(sp);
1088         kfree(calldata);
1089 }
1090
1091 static void nfs4_close_done(struct rpc_task *task, void *data)
1092 {
1093         struct nfs4_closedata *calldata = data;
1094         struct nfs4_state *state = calldata->state;
1095         struct nfs_server *server = NFS_SERVER(calldata->inode);
1096
1097         if (RPC_ASSASSINATED(task))
1098                 return;
1099         /* hmm. we are done with the inode, and in the process of freeing
1100          * the state_owner. we keep this around to process errors
1101          */
1102         nfs_increment_open_seqid(task->tk_status, calldata->arg.seqid);
1103         switch (task->tk_status) {
1104                 case 0:
1105                         memcpy(&state->stateid, &calldata->res.stateid,
1106                                         sizeof(state->stateid));
1107                         renew_lease(server, calldata->timestamp);
1108                         break;
1109                 case -NFS4ERR_STALE_STATEID:
1110                 case -NFS4ERR_EXPIRED:
1111                         nfs4_schedule_state_recovery(server->nfs4_state);
1112                         break;
1113                 default:
1114                         if (nfs4_async_handle_error(task, server) == -EAGAIN) {
1115                                 rpc_restart_call(task);
1116                                 return;
1117                         }
1118         }
1119         nfs_refresh_inode(calldata->inode, calldata->res.fattr);
1120 }
1121
1122 static void nfs4_close_prepare(struct rpc_task *task, void *data)
1123 {
1124         struct nfs4_closedata *calldata = data;
1125         struct nfs4_state *state = calldata->state;
1126         struct rpc_message msg = {
1127                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CLOSE],
1128                 .rpc_argp = &calldata->arg,
1129                 .rpc_resp = &calldata->res,
1130                 .rpc_cred = state->owner->so_cred,
1131         };
1132         int mode = 0, old_mode;
1133
1134         if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0)
1135                 return;
1136         /* Recalculate the new open mode in case someone reopened the file
1137          * while we were waiting in line to be scheduled.
1138          */
1139         spin_lock(&state->owner->so_lock);
1140         spin_lock(&calldata->inode->i_lock);
1141         mode = old_mode = state->state;
1142         if (state->n_rdwr == 0) {
1143                 if (state->n_rdonly == 0)
1144                         mode &= ~FMODE_READ;
1145                 if (state->n_wronly == 0)
1146                         mode &= ~FMODE_WRITE;
1147         }
1148         nfs4_state_set_mode_locked(state, mode);
1149         spin_unlock(&calldata->inode->i_lock);
1150         spin_unlock(&state->owner->so_lock);
1151         if (mode == old_mode || test_bit(NFS_DELEGATED_STATE, &state->flags)) {
1152                 /* Note: exit _without_ calling nfs4_close_done */
1153                 task->tk_action = NULL;
1154                 return;
1155         }
1156         nfs_fattr_init(calldata->res.fattr);
1157         if (mode != 0)
1158                 msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_DOWNGRADE];
1159         calldata->arg.open_flags = mode;
1160         calldata->timestamp = jiffies;
1161         rpc_call_setup(task, &msg, 0);
1162 }
1163
1164 static const struct rpc_call_ops nfs4_close_ops = {
1165         .rpc_call_prepare = nfs4_close_prepare,
1166         .rpc_call_done = nfs4_close_done,
1167         .rpc_release = nfs4_free_closedata,
1168 };
1169
1170 /* 
1171  * It is possible for data to be read/written from a mem-mapped file 
1172  * after the sys_close call (which hits the vfs layer as a flush).
1173  * This means that we can't safely call nfsv4 close on a file until 
1174  * the inode is cleared. This in turn means that we are not good
1175  * NFSv4 citizens - we do not indicate to the server to update the file's 
1176  * share state even when we are done with one of the three share 
1177  * stateid's in the inode.
1178  *
1179  * NOTE: Caller must be holding the sp->so_owner semaphore!
1180  */
1181 int nfs4_do_close(struct inode *inode, struct nfs4_state *state) 
1182 {
1183         struct nfs_server *server = NFS_SERVER(inode);
1184         struct nfs4_closedata *calldata;
1185         int status = -ENOMEM;
1186
1187         calldata = kmalloc(sizeof(*calldata), GFP_KERNEL);
1188         if (calldata == NULL)
1189                 goto out;
1190         calldata->inode = inode;
1191         calldata->state = state;
1192         calldata->arg.fh = NFS_FH(inode);
1193         calldata->arg.stateid = &state->stateid;
1194         /* Serialization for the sequence id */
1195         calldata->arg.seqid = nfs_alloc_seqid(&state->owner->so_seqid);
1196         if (calldata->arg.seqid == NULL)
1197                 goto out_free_calldata;
1198         calldata->arg.bitmask = server->attr_bitmask;
1199         calldata->res.fattr = &calldata->fattr;
1200         calldata->res.server = server;
1201
1202         status = nfs4_call_async(server->client, &nfs4_close_ops, calldata);
1203         if (status == 0)
1204                 goto out;
1205
1206         nfs_free_seqid(calldata->arg.seqid);
1207 out_free_calldata:
1208         kfree(calldata);
1209 out:
1210         return status;
1211 }
1212
1213 static void nfs4_intent_set_file(struct nameidata *nd, struct dentry *dentry, struct nfs4_state *state)
1214 {
1215         struct file *filp;
1216
1217         filp = lookup_instantiate_filp(nd, dentry, NULL);
1218         if (!IS_ERR(filp)) {
1219                 struct nfs_open_context *ctx;
1220                 ctx = (struct nfs_open_context *)filp->private_data;
1221                 ctx->state = state;
1222         } else
1223                 nfs4_close_state(state, nd->intent.open.flags);
1224 }
1225
1226 struct dentry *
1227 nfs4_atomic_open(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
1228 {
1229         struct iattr attr;
1230         struct rpc_cred *cred;
1231         struct nfs4_state *state;
1232         struct dentry *res;
1233
1234         if (nd->flags & LOOKUP_CREATE) {
1235                 attr.ia_mode = nd->intent.open.create_mode;
1236                 attr.ia_valid = ATTR_MODE;
1237                 if (!IS_POSIXACL(dir))
1238                         attr.ia_mode &= ~current->fs->umask;
1239         } else {
1240                 attr.ia_valid = 0;
1241                 BUG_ON(nd->intent.open.flags & O_CREAT);
1242         }
1243
1244         cred = rpcauth_lookupcred(NFS_SERVER(dir)->client->cl_auth, 0);
1245         if (IS_ERR(cred))
1246                 return (struct dentry *)cred;
1247         state = nfs4_do_open(dir, dentry, nd->intent.open.flags, &attr, cred);
1248         put_rpccred(cred);
1249         if (IS_ERR(state)) {
1250                 if (PTR_ERR(state) == -ENOENT)
1251                         d_add(dentry, NULL);
1252                 return (struct dentry *)state;
1253         }
1254         res = d_add_unique(dentry, igrab(state->inode));
1255         if (res != NULL)
1256                 dentry = res;
1257         nfs4_intent_set_file(nd, dentry, state);
1258         return res;
1259 }
1260
1261 int
1262 nfs4_open_revalidate(struct inode *dir, struct dentry *dentry, int openflags, struct nameidata *nd)
1263 {
1264         struct rpc_cred *cred;
1265         struct nfs4_state *state;
1266
1267         cred = rpcauth_lookupcred(NFS_SERVER(dir)->client->cl_auth, 0);
1268         if (IS_ERR(cred))
1269                 return PTR_ERR(cred);
1270         state = nfs4_open_delegated(dentry->d_inode, openflags, cred);
1271         if (IS_ERR(state))
1272                 state = nfs4_do_open(dir, dentry, openflags, NULL, cred);
1273         put_rpccred(cred);
1274         if (IS_ERR(state)) {
1275                 switch (PTR_ERR(state)) {
1276                         case -EPERM:
1277                         case -EACCES:
1278                         case -EDQUOT:
1279                         case -ENOSPC:
1280                         case -EROFS:
1281                                 lookup_instantiate_filp(nd, (struct dentry *)state, NULL);
1282                                 return 1;
1283                         case -ENOENT:
1284                                 if (dentry->d_inode == NULL)
1285                                         return 1;
1286                 }
1287                 goto out_drop;
1288         }
1289         if (state->inode == dentry->d_inode) {
1290                 nfs4_intent_set_file(nd, dentry, state);
1291                 return 1;
1292         }
1293         nfs4_close_state(state, openflags);
1294 out_drop:
1295         d_drop(dentry);
1296         return 0;
1297 }
1298
1299
1300 static int _nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle)
1301 {
1302         struct nfs4_server_caps_res res = {};
1303         struct rpc_message msg = {
1304                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SERVER_CAPS],
1305                 .rpc_argp = fhandle,
1306                 .rpc_resp = &res,
1307         };
1308         int status;
1309
1310         status = rpc_call_sync(server->client, &msg, 0);
1311         if (status == 0) {
1312                 memcpy(server->attr_bitmask, res.attr_bitmask, sizeof(server->attr_bitmask));
1313                 if (res.attr_bitmask[0] & FATTR4_WORD0_ACL)
1314                         server->caps |= NFS_CAP_ACLS;
1315                 if (res.has_links != 0)
1316                         server->caps |= NFS_CAP_HARDLINKS;
1317                 if (res.has_symlinks != 0)
1318                         server->caps |= NFS_CAP_SYMLINKS;
1319                 server->acl_bitmask = res.acl_bitmask;
1320         }
1321         return status;
1322 }
1323
1324 static int nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle)
1325 {
1326         struct nfs4_exception exception = { };
1327         int err;
1328         do {
1329                 err = nfs4_handle_exception(server,
1330                                 _nfs4_server_capabilities(server, fhandle),
1331                                 &exception);
1332         } while (exception.retry);
1333         return err;
1334 }
1335
1336 static int _nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle,
1337                 struct nfs_fsinfo *info)
1338 {
1339         struct nfs4_lookup_root_arg args = {
1340                 .bitmask = nfs4_fattr_bitmap,
1341         };
1342         struct nfs4_lookup_res res = {
1343                 .server = server,
1344                 .fattr = info->fattr,
1345                 .fh = fhandle,
1346         };
1347         struct rpc_message msg = {
1348                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP_ROOT],
1349                 .rpc_argp = &args,
1350                 .rpc_resp = &res,
1351         };
1352         nfs_fattr_init(info->fattr);
1353         return rpc_call_sync(server->client, &msg, 0);
1354 }
1355
1356 static int nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle,
1357                 struct nfs_fsinfo *info)
1358 {
1359         struct nfs4_exception exception = { };
1360         int err;
1361         do {
1362                 err = nfs4_handle_exception(server,
1363                                 _nfs4_lookup_root(server, fhandle, info),
1364                                 &exception);
1365         } while (exception.retry);
1366         return err;
1367 }
1368
1369 static int nfs4_proc_get_root(struct nfs_server *server, struct nfs_fh *fhandle,
1370                 struct nfs_fsinfo *info)
1371 {
1372         struct nfs_fattr *      fattr = info->fattr;
1373         unsigned char *         p;
1374         struct qstr             q;
1375         struct nfs4_lookup_arg args = {
1376                 .dir_fh = fhandle,
1377                 .name = &q,
1378                 .bitmask = nfs4_fattr_bitmap,
1379         };
1380         struct nfs4_lookup_res res = {
1381                 .server = server,
1382                 .fattr = fattr,
1383                 .fh = fhandle,
1384         };
1385         struct rpc_message msg = {
1386                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP],
1387                 .rpc_argp = &args,
1388                 .rpc_resp = &res,
1389         };
1390         int status;
1391
1392         /*
1393          * Now we do a separate LOOKUP for each component of the mount path.
1394          * The LOOKUPs are done separately so that we can conveniently
1395          * catch an ERR_WRONGSEC if it occurs along the way...
1396          */
1397         status = nfs4_lookup_root(server, fhandle, info);
1398         if (status)
1399                 goto out;
1400
1401         p = server->mnt_path;
1402         for (;;) {
1403                 struct nfs4_exception exception = { };
1404
1405                 while (*p == '/')
1406                         p++;
1407                 if (!*p)
1408                         break;
1409                 q.name = p;
1410                 while (*p && (*p != '/'))
1411                         p++;
1412                 q.len = p - q.name;
1413
1414                 do {
1415                         nfs_fattr_init(fattr);
1416                         status = nfs4_handle_exception(server,
1417                                         rpc_call_sync(server->client, &msg, 0),
1418                                         &exception);
1419                 } while (exception.retry);
1420                 if (status == 0)
1421                         continue;
1422                 if (status == -ENOENT) {
1423                         printk(KERN_NOTICE "NFS: mount path %s does not exist!\n", server->mnt_path);
1424                         printk(KERN_NOTICE "NFS: suggestion: try mounting '/' instead.\n");
1425                 }
1426                 break;
1427         }
1428         if (status == 0)
1429                 status = nfs4_server_capabilities(server, fhandle);
1430         if (status == 0)
1431                 status = nfs4_do_fsinfo(server, fhandle, info);
1432 out:
1433         return nfs4_map_errors(status);
1434 }
1435
1436 static int _nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1437 {
1438         struct nfs4_getattr_arg args = {
1439                 .fh = fhandle,
1440                 .bitmask = server->attr_bitmask,
1441         };
1442         struct nfs4_getattr_res res = {
1443                 .fattr = fattr,
1444                 .server = server,
1445         };
1446         struct rpc_message msg = {
1447                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETATTR],
1448                 .rpc_argp = &args,
1449                 .rpc_resp = &res,
1450         };
1451         
1452         nfs_fattr_init(fattr);
1453         return rpc_call_sync(server->client, &msg, 0);
1454 }
1455
1456 static int nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1457 {
1458         struct nfs4_exception exception = { };
1459         int err;
1460         do {
1461                 err = nfs4_handle_exception(server,
1462                                 _nfs4_proc_getattr(server, fhandle, fattr),
1463                                 &exception);
1464         } while (exception.retry);
1465         return err;
1466 }
1467
1468 /* 
1469  * The file is not closed if it is opened due to the a request to change
1470  * the size of the file. The open call will not be needed once the
1471  * VFS layer lookup-intents are implemented.
1472  *
1473  * Close is called when the inode is destroyed.
1474  * If we haven't opened the file for O_WRONLY, we
1475  * need to in the size_change case to obtain a stateid.
1476  *
1477  * Got race?
1478  * Because OPEN is always done by name in nfsv4, it is
1479  * possible that we opened a different file by the same
1480  * name.  We can recognize this race condition, but we
1481  * can't do anything about it besides returning an error.
1482  *
1483  * This will be fixed with VFS changes (lookup-intent).
1484  */
1485 static int
1486 nfs4_proc_setattr(struct dentry *dentry, struct nfs_fattr *fattr,
1487                   struct iattr *sattr)
1488 {
1489         struct rpc_cred *cred;
1490         struct inode *inode = dentry->d_inode;
1491         struct nfs_open_context *ctx;
1492         struct nfs4_state *state = NULL;
1493         int status;
1494
1495         nfs_fattr_init(fattr);
1496         
1497         cred = rpcauth_lookupcred(NFS_SERVER(inode)->client->cl_auth, 0);
1498         if (IS_ERR(cred))
1499                 return PTR_ERR(cred);
1500
1501         /* Search for an existing open(O_WRITE) file */
1502         ctx = nfs_find_open_context(inode, cred, FMODE_WRITE);
1503         if (ctx != NULL)
1504                 state = ctx->state;
1505
1506         status = nfs4_do_setattr(NFS_SERVER(inode), fattr,
1507                         NFS_FH(inode), sattr, state);
1508         if (status == 0)
1509                 nfs_setattr_update_inode(inode, sattr);
1510         if (ctx != NULL)
1511                 put_nfs_open_context(ctx);
1512         put_rpccred(cred);
1513         return status;
1514 }
1515
1516 static int _nfs4_proc_lookup(struct inode *dir, struct qstr *name,
1517                 struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1518 {
1519         int                    status;
1520         struct nfs_server *server = NFS_SERVER(dir);
1521         struct nfs4_lookup_arg args = {
1522                 .bitmask = server->attr_bitmask,
1523                 .dir_fh = NFS_FH(dir),
1524                 .name = name,
1525         };
1526         struct nfs4_lookup_res res = {
1527                 .server = server,
1528                 .fattr = fattr,
1529                 .fh = fhandle,
1530         };
1531         struct rpc_message msg = {
1532                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP],
1533                 .rpc_argp = &args,
1534                 .rpc_resp = &res,
1535         };
1536         
1537         nfs_fattr_init(fattr);
1538         
1539         dprintk("NFS call  lookup %s\n", name->name);
1540         status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
1541         dprintk("NFS reply lookup: %d\n", status);
1542         return status;
1543 }
1544
1545 static int nfs4_proc_lookup(struct inode *dir, struct qstr *name, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1546 {
1547         struct nfs4_exception exception = { };
1548         int err;
1549         do {
1550                 err = nfs4_handle_exception(NFS_SERVER(dir),
1551                                 _nfs4_proc_lookup(dir, name, fhandle, fattr),
1552                                 &exception);
1553         } while (exception.retry);
1554         return err;
1555 }
1556
1557 static int _nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry)
1558 {
1559         struct nfs4_accessargs args = {
1560                 .fh = NFS_FH(inode),
1561         };
1562         struct nfs4_accessres res = { 0 };
1563         struct rpc_message msg = {
1564                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_ACCESS],
1565                 .rpc_argp = &args,
1566                 .rpc_resp = &res,
1567                 .rpc_cred = entry->cred,
1568         };
1569         int mode = entry->mask;
1570         int status;
1571
1572         /*
1573          * Determine which access bits we want to ask for...
1574          */
1575         if (mode & MAY_READ)
1576                 args.access |= NFS4_ACCESS_READ;
1577         if (S_ISDIR(inode->i_mode)) {
1578                 if (mode & MAY_WRITE)
1579                         args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE;
1580                 if (mode & MAY_EXEC)
1581                         args.access |= NFS4_ACCESS_LOOKUP;
1582         } else {
1583                 if (mode & MAY_WRITE)
1584                         args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND;
1585                 if (mode & MAY_EXEC)
1586                         args.access |= NFS4_ACCESS_EXECUTE;
1587         }
1588         status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
1589         if (!status) {
1590                 entry->mask = 0;
1591                 if (res.access & NFS4_ACCESS_READ)
1592                         entry->mask |= MAY_READ;
1593                 if (res.access & (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
1594                         entry->mask |= MAY_WRITE;
1595                 if (res.access & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
1596                         entry->mask |= MAY_EXEC;
1597         }
1598         return status;
1599 }
1600
1601 static int nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry)
1602 {
1603         struct nfs4_exception exception = { };
1604         int err;
1605         do {
1606                 err = nfs4_handle_exception(NFS_SERVER(inode),
1607                                 _nfs4_proc_access(inode, entry),
1608                                 &exception);
1609         } while (exception.retry);
1610         return err;
1611 }
1612
1613 /*
1614  * TODO: For the time being, we don't try to get any attributes
1615  * along with any of the zero-copy operations READ, READDIR,
1616  * READLINK, WRITE.
1617  *
1618  * In the case of the first three, we want to put the GETATTR
1619  * after the read-type operation -- this is because it is hard
1620  * to predict the length of a GETATTR response in v4, and thus
1621  * align the READ data correctly.  This means that the GETATTR
1622  * may end up partially falling into the page cache, and we should
1623  * shift it into the 'tail' of the xdr_buf before processing.
1624  * To do this efficiently, we need to know the total length
1625  * of data received, which doesn't seem to be available outside
1626  * of the RPC layer.
1627  *
1628  * In the case of WRITE, we also want to put the GETATTR after
1629  * the operation -- in this case because we want to make sure
1630  * we get the post-operation mtime and size.  This means that
1631  * we can't use xdr_encode_pages() as written: we need a variant
1632  * of it which would leave room in the 'tail' iovec.
1633  *
1634  * Both of these changes to the XDR layer would in fact be quite
1635  * minor, but I decided to leave them for a subsequent patch.
1636  */
1637 static int _nfs4_proc_readlink(struct inode *inode, struct page *page,
1638                 unsigned int pgbase, unsigned int pglen)
1639 {
1640         struct nfs4_readlink args = {
1641                 .fh       = NFS_FH(inode),
1642                 .pgbase   = pgbase,
1643                 .pglen    = pglen,
1644                 .pages    = &page,
1645         };
1646         struct rpc_message msg = {
1647                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READLINK],
1648                 .rpc_argp = &args,
1649                 .rpc_resp = NULL,
1650         };
1651
1652         return rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
1653 }
1654
1655 static int nfs4_proc_readlink(struct inode *inode, struct page *page,
1656                 unsigned int pgbase, unsigned int pglen)
1657 {
1658         struct nfs4_exception exception = { };
1659         int err;
1660         do {
1661                 err = nfs4_handle_exception(NFS_SERVER(inode),
1662                                 _nfs4_proc_readlink(inode, page, pgbase, pglen),
1663                                 &exception);
1664         } while (exception.retry);
1665         return err;
1666 }
1667
1668 static int _nfs4_proc_read(struct nfs_read_data *rdata)
1669 {
1670         int flags = rdata->flags;
1671         struct inode *inode = rdata->inode;
1672         struct nfs_fattr *fattr = rdata->res.fattr;
1673         struct nfs_server *server = NFS_SERVER(inode);
1674         struct rpc_message msg = {
1675                 .rpc_proc       = &nfs4_procedures[NFSPROC4_CLNT_READ],
1676                 .rpc_argp       = &rdata->args,
1677                 .rpc_resp       = &rdata->res,
1678                 .rpc_cred       = rdata->cred,
1679         };
1680         unsigned long timestamp = jiffies;
1681         int status;
1682
1683         dprintk("NFS call  read %d @ %Ld\n", rdata->args.count,
1684                         (long long) rdata->args.offset);
1685
1686         nfs_fattr_init(fattr);
1687         status = rpc_call_sync(server->client, &msg, flags);
1688         if (!status)
1689                 renew_lease(server, timestamp);
1690         dprintk("NFS reply read: %d\n", status);
1691         return status;
1692 }
1693
1694 static int nfs4_proc_read(struct nfs_read_data *rdata)
1695 {
1696         struct nfs4_exception exception = { };
1697         int err;
1698         do {
1699                 err = nfs4_handle_exception(NFS_SERVER(rdata->inode),
1700                                 _nfs4_proc_read(rdata),
1701                                 &exception);
1702         } while (exception.retry);
1703         return err;
1704 }
1705
1706 static int _nfs4_proc_write(struct nfs_write_data *wdata)
1707 {
1708         int rpcflags = wdata->flags;
1709         struct inode *inode = wdata->inode;
1710         struct nfs_fattr *fattr = wdata->res.fattr;
1711         struct nfs_server *server = NFS_SERVER(inode);
1712         struct rpc_message msg = {
1713                 .rpc_proc       = &nfs4_procedures[NFSPROC4_CLNT_WRITE],
1714                 .rpc_argp       = &wdata->args,
1715                 .rpc_resp       = &wdata->res,
1716                 .rpc_cred       = wdata->cred,
1717         };
1718         int status;
1719
1720         dprintk("NFS call  write %d @ %Ld\n", wdata->args.count,
1721                         (long long) wdata->args.offset);
1722
1723         wdata->args.bitmask = server->attr_bitmask;
1724         wdata->res.server = server;
1725         wdata->timestamp = jiffies;
1726         nfs_fattr_init(fattr);
1727         status = rpc_call_sync(server->client, &msg, rpcflags);
1728         dprintk("NFS reply write: %d\n", status);
1729         if (status < 0)
1730                 return status;
1731         renew_lease(server, wdata->timestamp);
1732         nfs_post_op_update_inode(inode, fattr);
1733         return wdata->res.count;
1734 }
1735
1736 static int nfs4_proc_write(struct nfs_write_data *wdata)
1737 {
1738         struct nfs4_exception exception = { };
1739         int err;
1740         do {
1741                 err = nfs4_handle_exception(NFS_SERVER(wdata->inode),
1742                                 _nfs4_proc_write(wdata),
1743                                 &exception);
1744         } while (exception.retry);
1745         return err;
1746 }
1747
1748 static int _nfs4_proc_commit(struct nfs_write_data *cdata)
1749 {
1750         struct inode *inode = cdata->inode;
1751         struct nfs_fattr *fattr = cdata->res.fattr;
1752         struct nfs_server *server = NFS_SERVER(inode);
1753         struct rpc_message msg = {
1754                 .rpc_proc       = &nfs4_procedures[NFSPROC4_CLNT_COMMIT],
1755                 .rpc_argp       = &cdata->args,
1756                 .rpc_resp       = &cdata->res,
1757                 .rpc_cred       = cdata->cred,
1758         };
1759         int status;
1760
1761         dprintk("NFS call  commit %d @ %Ld\n", cdata->args.count,
1762                         (long long) cdata->args.offset);
1763
1764         cdata->args.bitmask = server->attr_bitmask;
1765         cdata->res.server = server;
1766         cdata->timestamp = jiffies;
1767         nfs_fattr_init(fattr);
1768         status = rpc_call_sync(server->client, &msg, 0);
1769         if (status >= 0)
1770                 renew_lease(server, cdata->timestamp);
1771         dprintk("NFS reply commit: %d\n", status);
1772         if (status >= 0)
1773                 nfs_post_op_update_inode(inode, fattr);
1774         return status;
1775 }
1776
1777 static int nfs4_proc_commit(struct nfs_write_data *cdata)
1778 {
1779         struct nfs4_exception exception = { };
1780         int err;
1781         do {
1782                 err = nfs4_handle_exception(NFS_SERVER(cdata->inode),
1783                                 _nfs4_proc_commit(cdata),
1784                                 &exception);
1785         } while (exception.retry);
1786         return err;
1787 }
1788
1789 /*
1790  * Got race?
1791  * We will need to arrange for the VFS layer to provide an atomic open.
1792  * Until then, this create/open method is prone to inefficiency and race
1793  * conditions due to the lookup, create, and open VFS calls from sys_open()
1794  * placed on the wire.
1795  *
1796  * Given the above sorry state of affairs, I'm simply sending an OPEN.
1797  * The file will be opened again in the subsequent VFS open call
1798  * (nfs4_proc_file_open).
1799  *
1800  * The open for read will just hang around to be used by any process that
1801  * opens the file O_RDONLY. This will all be resolved with the VFS changes.
1802  */
1803
1804 static int
1805 nfs4_proc_create(struct inode *dir, struct dentry *dentry, struct iattr *sattr,
1806                  int flags, struct nameidata *nd)
1807 {
1808         struct nfs4_state *state;
1809         struct rpc_cred *cred;
1810         int status = 0;
1811
1812         cred = rpcauth_lookupcred(NFS_SERVER(dir)->client->cl_auth, 0);
1813         if (IS_ERR(cred)) {
1814                 status = PTR_ERR(cred);
1815                 goto out;
1816         }
1817         state = nfs4_do_open(dir, dentry, flags, sattr, cred);
1818         put_rpccred(cred);
1819         if (IS_ERR(state)) {
1820                 status = PTR_ERR(state);
1821                 goto out;
1822         }
1823         d_instantiate(dentry, igrab(state->inode));
1824         if (flags & O_EXCL) {
1825                 struct nfs_fattr fattr;
1826                 status = nfs4_do_setattr(NFS_SERVER(dir), &fattr,
1827                                      NFS_FH(state->inode), sattr, state);
1828                 if (status == 0)
1829                         nfs_setattr_update_inode(state->inode, sattr);
1830         }
1831         if (status == 0 && nd != NULL && (nd->flags & LOOKUP_OPEN))
1832                 nfs4_intent_set_file(nd, dentry, state);
1833         else
1834                 nfs4_close_state(state, flags);
1835 out:
1836         return status;
1837 }
1838
1839 static int _nfs4_proc_remove(struct inode *dir, struct qstr *name)
1840 {
1841         struct nfs_server *server = NFS_SERVER(dir);
1842         struct nfs4_remove_arg args = {
1843                 .fh = NFS_FH(dir),
1844                 .name = name,
1845                 .bitmask = server->attr_bitmask,
1846         };
1847         struct nfs_fattr dir_attr;
1848         struct nfs4_remove_res  res = {
1849                 .server = server,
1850                 .dir_attr = &dir_attr,
1851         };
1852         struct rpc_message msg = {
1853                 .rpc_proc       = &nfs4_procedures[NFSPROC4_CLNT_REMOVE],
1854                 .rpc_argp       = &args,
1855                 .rpc_resp       = &res,
1856         };
1857         int                     status;
1858
1859         nfs_fattr_init(res.dir_attr);
1860         status = rpc_call_sync(server->client, &msg, 0);
1861         if (status == 0) {
1862                 update_changeattr(dir, &res.cinfo);
1863                 nfs_post_op_update_inode(dir, res.dir_attr);
1864         }
1865         return status;
1866 }
1867
1868 static int nfs4_proc_remove(struct inode *dir, struct qstr *name)
1869 {
1870         struct nfs4_exception exception = { };
1871         int err;
1872         do {
1873                 err = nfs4_handle_exception(NFS_SERVER(dir),
1874                                 _nfs4_proc_remove(dir, name),
1875                                 &exception);
1876         } while (exception.retry);
1877         return err;
1878 }
1879
1880 struct unlink_desc {
1881         struct nfs4_remove_arg  args;
1882         struct nfs4_remove_res  res;
1883         struct nfs_fattr dir_attr;
1884 };
1885
1886 static int nfs4_proc_unlink_setup(struct rpc_message *msg, struct dentry *dir,
1887                 struct qstr *name)
1888 {
1889         struct nfs_server *server = NFS_SERVER(dir->d_inode);
1890         struct unlink_desc *up;
1891
1892         up = (struct unlink_desc *) kmalloc(sizeof(*up), GFP_KERNEL);
1893         if (!up)
1894                 return -ENOMEM;
1895         
1896         up->args.fh = NFS_FH(dir->d_inode);
1897         up->args.name = name;
1898         up->args.bitmask = server->attr_bitmask;
1899         up->res.server = server;
1900         up->res.dir_attr = &up->dir_attr;
1901         
1902         msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_REMOVE];
1903         msg->rpc_argp = &up->args;
1904         msg->rpc_resp = &up->res;
1905         return 0;
1906 }
1907
1908 static int nfs4_proc_unlink_done(struct dentry *dir, struct rpc_task *task)
1909 {
1910         struct rpc_message *msg = &task->tk_msg;
1911         struct unlink_desc *up;
1912         
1913         if (msg->rpc_resp != NULL) {
1914                 up = container_of(msg->rpc_resp, struct unlink_desc, res);
1915                 update_changeattr(dir->d_inode, &up->res.cinfo);
1916                 nfs_post_op_update_inode(dir->d_inode, up->res.dir_attr);
1917                 kfree(up);
1918                 msg->rpc_resp = NULL;
1919                 msg->rpc_argp = NULL;
1920         }
1921         return 0;
1922 }
1923
1924 static int _nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name,
1925                 struct inode *new_dir, struct qstr *new_name)
1926 {
1927         struct nfs_server *server = NFS_SERVER(old_dir);
1928         struct nfs4_rename_arg arg = {
1929                 .old_dir = NFS_FH(old_dir),
1930                 .new_dir = NFS_FH(new_dir),
1931                 .old_name = old_name,
1932                 .new_name = new_name,
1933                 .bitmask = server->attr_bitmask,
1934         };
1935         struct nfs_fattr old_fattr, new_fattr;
1936         struct nfs4_rename_res res = {
1937                 .server = server,
1938                 .old_fattr = &old_fattr,
1939                 .new_fattr = &new_fattr,
1940         };
1941         struct rpc_message msg = {
1942                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENAME],
1943                 .rpc_argp = &arg,
1944                 .rpc_resp = &res,
1945         };
1946         int                     status;
1947         
1948         nfs_fattr_init(res.old_fattr);
1949         nfs_fattr_init(res.new_fattr);
1950         status = rpc_call_sync(server->client, &msg, 0);
1951
1952         if (!status) {
1953                 update_changeattr(old_dir, &res.old_cinfo);
1954                 nfs_post_op_update_inode(old_dir, res.old_fattr);
1955                 update_changeattr(new_dir, &res.new_cinfo);
1956                 nfs_post_op_update_inode(new_dir, res.new_fattr);
1957         }
1958         return status;
1959 }
1960
1961 static int nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name,
1962                 struct inode *new_dir, struct qstr *new_name)
1963 {
1964         struct nfs4_exception exception = { };
1965         int err;
1966         do {
1967                 err = nfs4_handle_exception(NFS_SERVER(old_dir),
1968                                 _nfs4_proc_rename(old_dir, old_name,
1969                                         new_dir, new_name),
1970                                 &exception);
1971         } while (exception.retry);
1972         return err;
1973 }
1974
1975 static int _nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name)
1976 {
1977         struct nfs_server *server = NFS_SERVER(inode);
1978         struct nfs4_link_arg arg = {
1979                 .fh     = NFS_FH(inode),
1980                 .dir_fh = NFS_FH(dir),
1981                 .name   = name,
1982                 .bitmask = server->attr_bitmask,
1983         };
1984         struct nfs_fattr fattr, dir_attr;
1985         struct nfs4_link_res res = {
1986                 .server = server,
1987                 .fattr = &fattr,
1988                 .dir_attr = &dir_attr,
1989         };
1990         struct rpc_message msg = {
1991                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LINK],
1992                 .rpc_argp = &arg,
1993                 .rpc_resp = &res,
1994         };
1995         int                     status;
1996
1997         nfs_fattr_init(res.fattr);
1998         nfs_fattr_init(res.dir_attr);
1999         status = rpc_call_sync(server->client, &msg, 0);
2000         if (!status) {
2001                 update_changeattr(dir, &res.cinfo);
2002                 nfs_post_op_update_inode(dir, res.dir_attr);
2003                 nfs_refresh_inode(inode, res.fattr);
2004         }
2005
2006         return status;
2007 }
2008
2009 static int nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name)
2010 {
2011         struct nfs4_exception exception = { };
2012         int err;
2013         do {
2014                 err = nfs4_handle_exception(NFS_SERVER(inode),
2015                                 _nfs4_proc_link(inode, dir, name),
2016                                 &exception);
2017         } while (exception.retry);
2018         return err;
2019 }
2020
2021 static int _nfs4_proc_symlink(struct inode *dir, struct qstr *name,
2022                 struct qstr *path, struct iattr *sattr, struct nfs_fh *fhandle,
2023                 struct nfs_fattr *fattr)
2024 {
2025         struct nfs_server *server = NFS_SERVER(dir);
2026         struct nfs_fattr dir_fattr;
2027         struct nfs4_create_arg arg = {
2028                 .dir_fh = NFS_FH(dir),
2029                 .server = server,
2030                 .name = name,
2031                 .attrs = sattr,
2032                 .ftype = NF4LNK,
2033                 .bitmask = server->attr_bitmask,
2034         };
2035         struct nfs4_create_res res = {
2036                 .server = server,
2037                 .fh = fhandle,
2038                 .fattr = fattr,
2039                 .dir_fattr = &dir_fattr,
2040         };
2041         struct rpc_message msg = {
2042                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SYMLINK],
2043                 .rpc_argp = &arg,
2044                 .rpc_resp = &res,
2045         };
2046         int                     status;
2047
2048         if (path->len > NFS4_MAXPATHLEN)
2049                 return -ENAMETOOLONG;
2050         arg.u.symlink = path;
2051         nfs_fattr_init(fattr);
2052         nfs_fattr_init(&dir_fattr);
2053         
2054         status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2055         if (!status)
2056                 update_changeattr(dir, &res.dir_cinfo);
2057         nfs_post_op_update_inode(dir, res.dir_fattr);
2058         return status;
2059 }
2060
2061 static int nfs4_proc_symlink(struct inode *dir, struct qstr *name,
2062                 struct qstr *path, struct iattr *sattr, struct nfs_fh *fhandle,
2063                 struct nfs_fattr *fattr)
2064 {
2065         struct nfs4_exception exception = { };
2066         int err;
2067         do {
2068                 err = nfs4_handle_exception(NFS_SERVER(dir),
2069                                 _nfs4_proc_symlink(dir, name, path, sattr,
2070                                         fhandle, fattr),
2071                                 &exception);
2072         } while (exception.retry);
2073         return err;
2074 }
2075
2076 static int _nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry,
2077                 struct iattr *sattr)
2078 {
2079         struct nfs_server *server = NFS_SERVER(dir);
2080         struct nfs_fh fhandle;
2081         struct nfs_fattr fattr, dir_fattr;
2082         struct nfs4_create_arg arg = {
2083                 .dir_fh = NFS_FH(dir),
2084                 .server = server,
2085                 .name = &dentry->d_name,
2086                 .attrs = sattr,
2087                 .ftype = NF4DIR,
2088                 .bitmask = server->attr_bitmask,
2089         };
2090         struct nfs4_create_res res = {
2091                 .server = server,
2092                 .fh = &fhandle,
2093                 .fattr = &fattr,
2094                 .dir_fattr = &dir_fattr,
2095         };
2096         struct rpc_message msg = {
2097                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE],
2098                 .rpc_argp = &arg,
2099                 .rpc_resp = &res,
2100         };
2101         int                     status;
2102
2103         nfs_fattr_init(&fattr);
2104         nfs_fattr_init(&dir_fattr);
2105         
2106         status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2107         if (!status) {
2108                 update_changeattr(dir, &res.dir_cinfo);
2109                 nfs_post_op_update_inode(dir, res.dir_fattr);
2110                 status = nfs_instantiate(dentry, &fhandle, &fattr);
2111         }
2112         return status;
2113 }
2114
2115 static int nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry,
2116                 struct iattr *sattr)
2117 {
2118         struct nfs4_exception exception = { };
2119         int err;
2120         do {
2121                 err = nfs4_handle_exception(NFS_SERVER(dir),
2122                                 _nfs4_proc_mkdir(dir, dentry, sattr),
2123                                 &exception);
2124         } while (exception.retry);
2125         return err;
2126 }
2127
2128 static int _nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred,
2129                   u64 cookie, struct page *page, unsigned int count, int plus)
2130 {
2131         struct inode            *dir = dentry->d_inode;
2132         struct nfs4_readdir_arg args = {
2133                 .fh = NFS_FH(dir),
2134                 .pages = &page,
2135                 .pgbase = 0,
2136                 .count = count,
2137                 .bitmask = NFS_SERVER(dentry->d_inode)->attr_bitmask,
2138         };
2139         struct nfs4_readdir_res res;
2140         struct rpc_message msg = {
2141                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READDIR],
2142                 .rpc_argp = &args,
2143                 .rpc_resp = &res,
2144                 .rpc_cred = cred,
2145         };
2146         int                     status;
2147
2148         dprintk("%s: dentry = %s/%s, cookie = %Lu\n", __FUNCTION__,
2149                         dentry->d_parent->d_name.name,
2150                         dentry->d_name.name,
2151                         (unsigned long long)cookie);
2152         lock_kernel();
2153         nfs4_setup_readdir(cookie, NFS_COOKIEVERF(dir), dentry, &args);
2154         res.pgbase = args.pgbase;
2155         status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2156         if (status == 0)
2157                 memcpy(NFS_COOKIEVERF(dir), res.verifier.data, NFS4_VERIFIER_SIZE);
2158         unlock_kernel();
2159         dprintk("%s: returns %d\n", __FUNCTION__, status);
2160         return status;
2161 }
2162
2163 static int nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred,
2164                   u64 cookie, struct page *page, unsigned int count, int plus)
2165 {
2166         struct nfs4_exception exception = { };
2167         int err;
2168         do {
2169                 err = nfs4_handle_exception(NFS_SERVER(dentry->d_inode),
2170                                 _nfs4_proc_readdir(dentry, cred, cookie,
2171                                         page, count, plus),
2172                                 &exception);
2173         } while (exception.retry);
2174         return err;
2175 }
2176
2177 static int _nfs4_proc_mknod(struct inode *dir, struct dentry *dentry,
2178                 struct iattr *sattr, dev_t rdev)
2179 {
2180         struct nfs_server *server = NFS_SERVER(dir);
2181         struct nfs_fh fh;
2182         struct nfs_fattr fattr, dir_fattr;
2183         struct nfs4_create_arg arg = {
2184                 .dir_fh = NFS_FH(dir),
2185                 .server = server,
2186                 .name = &dentry->d_name,
2187                 .attrs = sattr,
2188                 .bitmask = server->attr_bitmask,
2189         };
2190         struct nfs4_create_res res = {
2191                 .server = server,
2192                 .fh = &fh,
2193                 .fattr = &fattr,
2194                 .dir_fattr = &dir_fattr,
2195         };
2196         struct rpc_message msg = {
2197                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE],
2198                 .rpc_argp = &arg,
2199                 .rpc_resp = &res,
2200         };
2201         int                     status;
2202         int                     mode = sattr->ia_mode;
2203
2204         nfs_fattr_init(&fattr);
2205         nfs_fattr_init(&dir_fattr);
2206
2207         BUG_ON(!(sattr->ia_valid & ATTR_MODE));
2208         BUG_ON(!S_ISFIFO(mode) && !S_ISBLK(mode) && !S_ISCHR(mode) && !S_ISSOCK(mode));
2209         if (S_ISFIFO(mode))
2210                 arg.ftype = NF4FIFO;
2211         else if (S_ISBLK(mode)) {
2212                 arg.ftype = NF4BLK;
2213                 arg.u.device.specdata1 = MAJOR(rdev);
2214                 arg.u.device.specdata2 = MINOR(rdev);
2215         }
2216         else if (S_ISCHR(mode)) {
2217                 arg.ftype = NF4CHR;
2218                 arg.u.device.specdata1 = MAJOR(rdev);
2219                 arg.u.device.specdata2 = MINOR(rdev);
2220         }
2221         else
2222                 arg.ftype = NF4SOCK;
2223         
2224         status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2225         if (status == 0) {
2226                 update_changeattr(dir, &res.dir_cinfo);
2227                 nfs_post_op_update_inode(dir, res.dir_fattr);
2228                 status = nfs_instantiate(dentry, &fh, &fattr);
2229         }
2230         return status;
2231 }
2232
2233 static int nfs4_proc_mknod(struct inode *dir, struct dentry *dentry,
2234                 struct iattr *sattr, dev_t rdev)
2235 {
2236         struct nfs4_exception exception = { };
2237         int err;
2238         do {
2239                 err = nfs4_handle_exception(NFS_SERVER(dir),
2240                                 _nfs4_proc_mknod(dir, dentry, sattr, rdev),
2241                                 &exception);
2242         } while (exception.retry);
2243         return err;
2244 }
2245
2246 static int _nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle,
2247                  struct nfs_fsstat *fsstat)
2248 {
2249         struct nfs4_statfs_arg args = {
2250                 .fh = fhandle,
2251                 .bitmask = server->attr_bitmask,
2252         };
2253         struct rpc_message msg = {
2254                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_STATFS],
2255                 .rpc_argp = &args,
2256                 .rpc_resp = fsstat,
2257         };
2258
2259         nfs_fattr_init(fsstat->fattr);
2260         return rpc_call_sync(server->client, &msg, 0);
2261 }
2262
2263 static int nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsstat *fsstat)
2264 {
2265         struct nfs4_exception exception = { };
2266         int err;
2267         do {
2268                 err = nfs4_handle_exception(server,
2269                                 _nfs4_proc_statfs(server, fhandle, fsstat),
2270                                 &exception);
2271         } while (exception.retry);
2272         return err;
2273 }
2274
2275 static int _nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle,
2276                 struct nfs_fsinfo *fsinfo)
2277 {
2278         struct nfs4_fsinfo_arg args = {
2279                 .fh = fhandle,
2280                 .bitmask = server->attr_bitmask,
2281         };
2282         struct rpc_message msg = {
2283                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FSINFO],
2284                 .rpc_argp = &args,
2285                 .rpc_resp = fsinfo,
2286         };
2287
2288         return rpc_call_sync(server->client, &msg, 0);
2289 }
2290
2291 static int nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo)
2292 {
2293         struct nfs4_exception exception = { };
2294         int err;
2295
2296         do {
2297                 err = nfs4_handle_exception(server,
2298                                 _nfs4_do_fsinfo(server, fhandle, fsinfo),
2299                                 &exception);
2300         } while (exception.retry);
2301         return err;
2302 }
2303
2304 static int nfs4_proc_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo)
2305 {
2306         nfs_fattr_init(fsinfo->fattr);
2307         return nfs4_do_fsinfo(server, fhandle, fsinfo);
2308 }
2309
2310 static int _nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
2311                 struct nfs_pathconf *pathconf)
2312 {
2313         struct nfs4_pathconf_arg args = {
2314                 .fh = fhandle,
2315                 .bitmask = server->attr_bitmask,
2316         };
2317         struct rpc_message msg = {
2318                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_PATHCONF],
2319                 .rpc_argp = &args,
2320                 .rpc_resp = pathconf,
2321         };
2322
2323         /* None of the pathconf attributes are mandatory to implement */
2324         if ((args.bitmask[0] & nfs4_pathconf_bitmap[0]) == 0) {
2325                 memset(pathconf, 0, sizeof(*pathconf));
2326                 return 0;
2327         }
2328
2329         nfs_fattr_init(pathconf->fattr);
2330         return rpc_call_sync(server->client, &msg, 0);
2331 }
2332
2333 static int nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
2334                 struct nfs_pathconf *pathconf)
2335 {
2336         struct nfs4_exception exception = { };
2337         int err;
2338
2339         do {
2340                 err = nfs4_handle_exception(server,
2341                                 _nfs4_proc_pathconf(server, fhandle, pathconf),
2342                                 &exception);
2343         } while (exception.retry);
2344         return err;
2345 }
2346
2347 static void nfs4_read_done(struct rpc_task *task, void *calldata)
2348 {
2349         struct nfs_read_data *data = calldata;
2350         struct inode *inode = data->inode;
2351
2352         if (nfs4_async_handle_error(task, NFS_SERVER(inode)) == -EAGAIN) {
2353                 rpc_restart_call(task);
2354                 return;
2355         }
2356         if (task->tk_status > 0)
2357                 renew_lease(NFS_SERVER(inode), data->timestamp);
2358         /* Call back common NFS readpage processing */
2359         nfs_readpage_result(task, calldata);
2360 }
2361
2362 static const struct rpc_call_ops nfs4_read_ops = {
2363         .rpc_call_done = nfs4_read_done,
2364         .rpc_release = nfs_readdata_release,
2365 };
2366
2367 static void
2368 nfs4_proc_read_setup(struct nfs_read_data *data)
2369 {
2370         struct rpc_task *task = &data->task;
2371         struct rpc_message msg = {
2372                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READ],
2373                 .rpc_argp = &data->args,
2374                 .rpc_resp = &data->res,
2375                 .rpc_cred = data->cred,
2376         };
2377         struct inode *inode = data->inode;
2378         int flags;
2379
2380         data->timestamp   = jiffies;
2381
2382         /* N.B. Do we need to test? Never called for swapfile inode */
2383         flags = RPC_TASK_ASYNC | (IS_SWAPFILE(inode)? NFS_RPC_SWAPFLAGS : 0);
2384
2385         /* Finalize the task. */
2386         rpc_init_task(task, NFS_CLIENT(inode), flags, &nfs4_read_ops, data);
2387         rpc_call_setup(task, &msg, 0);
2388 }
2389
2390 static void nfs4_write_done(struct rpc_task *task, void *calldata)
2391 {
2392         struct nfs_write_data *data = calldata;
2393         struct inode *inode = data->inode;
2394         
2395         if (nfs4_async_handle_error(task, NFS_SERVER(inode)) == -EAGAIN) {
2396                 rpc_restart_call(task);
2397                 return;
2398         }
2399         if (task->tk_status >= 0) {
2400                 renew_lease(NFS_SERVER(inode), data->timestamp);
2401                 nfs_post_op_update_inode(inode, data->res.fattr);
2402         }
2403         /* Call back common NFS writeback processing */
2404         nfs_writeback_done(task, calldata);
2405 }
2406
2407 static const struct rpc_call_ops nfs4_write_ops = {
2408         .rpc_call_done = nfs4_write_done,
2409         .rpc_release = nfs_writedata_release,
2410 };
2411
2412 static void
2413 nfs4_proc_write_setup(struct nfs_write_data *data, int how)
2414 {
2415         struct rpc_task *task = &data->task;
2416         struct rpc_message msg = {
2417                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_WRITE],
2418                 .rpc_argp = &data->args,
2419                 .rpc_resp = &data->res,
2420                 .rpc_cred = data->cred,
2421         };
2422         struct inode *inode = data->inode;
2423         struct nfs_server *server = NFS_SERVER(inode);
2424         int stable;
2425         int flags;
2426         
2427         if (how & FLUSH_STABLE) {
2428                 if (!NFS_I(inode)->ncommit)
2429                         stable = NFS_FILE_SYNC;
2430                 else
2431                         stable = NFS_DATA_SYNC;
2432         } else
2433                 stable = NFS_UNSTABLE;
2434         data->args.stable = stable;
2435         data->args.bitmask = server->attr_bitmask;
2436         data->res.server = server;
2437
2438         data->timestamp   = jiffies;
2439
2440         /* Set the initial flags for the task.  */
2441         flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC;
2442
2443         /* Finalize the task. */
2444         rpc_init_task(task, NFS_CLIENT(inode), flags, &nfs4_write_ops, data);
2445         rpc_call_setup(task, &msg, 0);
2446 }
2447
2448 static void nfs4_commit_done(struct rpc_task *task, void *calldata)
2449 {
2450         struct nfs_write_data *data = calldata;
2451         struct inode *inode = data->inode;
2452         
2453         if (nfs4_async_handle_error(task, NFS_SERVER(inode)) == -EAGAIN) {
2454                 rpc_restart_call(task);
2455                 return;
2456         }
2457         if (task->tk_status >= 0)
2458                 nfs_post_op_update_inode(inode, data->res.fattr);
2459         /* Call back common NFS writeback processing */
2460         nfs_commit_done(task, calldata);
2461 }
2462
2463 static const struct rpc_call_ops nfs4_commit_ops = {
2464         .rpc_call_done = nfs4_commit_done,
2465         .rpc_release = nfs_commit_release,
2466 };
2467
2468 static void
2469 nfs4_proc_commit_setup(struct nfs_write_data *data, int how)
2470 {
2471         struct rpc_task *task = &data->task;
2472         struct rpc_message msg = {
2473                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_COMMIT],
2474                 .rpc_argp = &data->args,
2475                 .rpc_resp = &data->res,
2476                 .rpc_cred = data->cred,
2477         };      
2478         struct inode *inode = data->inode;
2479         struct nfs_server *server = NFS_SERVER(inode);
2480         int flags;
2481         
2482         data->args.bitmask = server->attr_bitmask;
2483         data->res.server = server;
2484
2485         /* Set the initial flags for the task.  */
2486         flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC;
2487
2488         /* Finalize the task. */
2489         rpc_init_task(task, NFS_CLIENT(inode), flags, &nfs4_commit_ops, data);
2490         rpc_call_setup(task, &msg, 0);  
2491 }
2492
2493 /*
2494  * nfs4_proc_async_renew(): This is not one of the nfs_rpc_ops; it is a special
2495  * standalone procedure for queueing an asynchronous RENEW.
2496  */
2497 static void nfs4_renew_done(struct rpc_task *task, void *data)
2498 {
2499         struct nfs4_client *clp = (struct nfs4_client *)task->tk_msg.rpc_argp;
2500         unsigned long timestamp = (unsigned long)data;
2501
2502         if (task->tk_status < 0) {
2503                 switch (task->tk_status) {
2504                         case -NFS4ERR_STALE_CLIENTID:
2505                         case -NFS4ERR_EXPIRED:
2506                         case -NFS4ERR_CB_PATH_DOWN:
2507                                 nfs4_schedule_state_recovery(clp);
2508                 }
2509                 return;
2510         }
2511         spin_lock(&clp->cl_lock);
2512         if (time_before(clp->cl_last_renewal,timestamp))
2513                 clp->cl_last_renewal = timestamp;
2514         spin_unlock(&clp->cl_lock);
2515 }
2516
2517 static const struct rpc_call_ops nfs4_renew_ops = {
2518         .rpc_call_done = nfs4_renew_done,
2519 };
2520
2521 int nfs4_proc_async_renew(struct nfs4_client *clp, struct rpc_cred *cred)
2522 {
2523         struct rpc_message msg = {
2524                 .rpc_proc       = &nfs4_procedures[NFSPROC4_CLNT_RENEW],
2525                 .rpc_argp       = clp,
2526                 .rpc_cred       = cred,
2527         };
2528
2529         return rpc_call_async(clp->cl_rpcclient, &msg, RPC_TASK_SOFT,
2530                         &nfs4_renew_ops, (void *)jiffies);
2531 }
2532
2533 int nfs4_proc_renew(struct nfs4_client *clp, struct rpc_cred *cred)
2534 {
2535         struct rpc_message msg = {
2536                 .rpc_proc       = &nfs4_procedures[NFSPROC4_CLNT_RENEW],
2537                 .rpc_argp       = clp,
2538                 .rpc_cred       = cred,
2539         };
2540         unsigned long now = jiffies;
2541         int status;
2542
2543         status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2544         if (status < 0)
2545                 return status;
2546         spin_lock(&clp->cl_lock);
2547         if (time_before(clp->cl_last_renewal,now))
2548                 clp->cl_last_renewal = now;
2549         spin_unlock(&clp->cl_lock);
2550         return 0;
2551 }
2552
2553 static inline int nfs4_server_supports_acls(struct nfs_server *server)
2554 {
2555         return (server->caps & NFS_CAP_ACLS)
2556                 && (server->acl_bitmask & ACL4_SUPPORT_ALLOW_ACL)
2557                 && (server->acl_bitmask & ACL4_SUPPORT_DENY_ACL);
2558 }
2559
2560 /* Assuming that XATTR_SIZE_MAX is a multiple of PAGE_CACHE_SIZE, and that
2561  * it's OK to put sizeof(void) * (XATTR_SIZE_MAX/PAGE_CACHE_SIZE) bytes on
2562  * the stack.
2563  */
2564 #define NFS4ACL_MAXPAGES (XATTR_SIZE_MAX >> PAGE_CACHE_SHIFT)
2565
2566 static void buf_to_pages(const void *buf, size_t buflen,
2567                 struct page **pages, unsigned int *pgbase)
2568 {
2569         const void *p = buf;
2570
2571         *pgbase = offset_in_page(buf);
2572         p -= *pgbase;
2573         while (p < buf + buflen) {
2574                 *(pages++) = virt_to_page(p);
2575                 p += PAGE_CACHE_SIZE;
2576         }
2577 }
2578
2579 struct nfs4_cached_acl {
2580         int cached;
2581         size_t len;
2582         char data[0];
2583 };
2584
2585 static void nfs4_set_cached_acl(struct inode *inode, struct nfs4_cached_acl *acl)
2586 {
2587         struct nfs_inode *nfsi = NFS_I(inode);
2588
2589         spin_lock(&inode->i_lock);
2590         kfree(nfsi->nfs4_acl);
2591         nfsi->nfs4_acl = acl;
2592         spin_unlock(&inode->i_lock);
2593 }
2594
2595 static void nfs4_zap_acl_attr(struct inode *inode)
2596 {
2597         nfs4_set_cached_acl(inode, NULL);
2598 }
2599
2600 static inline ssize_t nfs4_read_cached_acl(struct inode *inode, char *buf, size_t buflen)
2601 {
2602         struct nfs_inode *nfsi = NFS_I(inode);
2603         struct nfs4_cached_acl *acl;
2604         int ret = -ENOENT;
2605
2606         spin_lock(&inode->i_lock);
2607         acl = nfsi->nfs4_acl;
2608         if (acl == NULL)
2609                 goto out;
2610         if (buf == NULL) /* user is just asking for length */
2611                 goto out_len;
2612         if (acl->cached == 0)
2613                 goto out;
2614         ret = -ERANGE; /* see getxattr(2) man page */
2615         if (acl->len > buflen)
2616                 goto out;
2617         memcpy(buf, acl->data, acl->len);
2618 out_len:
2619         ret = acl->len;
2620 out:
2621         spin_unlock(&inode->i_lock);
2622         return ret;
2623 }
2624
2625 static void nfs4_write_cached_acl(struct inode *inode, const char *buf, size_t acl_len)
2626 {
2627         struct nfs4_cached_acl *acl;
2628
2629         if (buf && acl_len <= PAGE_SIZE) {
2630                 acl = kmalloc(sizeof(*acl) + acl_len, GFP_KERNEL);
2631                 if (acl == NULL)
2632                         goto out;
2633                 acl->cached = 1;
2634                 memcpy(acl->data, buf, acl_len);
2635         } else {
2636                 acl = kmalloc(sizeof(*acl), GFP_KERNEL);
2637                 if (acl == NULL)
2638                         goto out;
2639                 acl->cached = 0;
2640         }
2641         acl->len = acl_len;
2642 out:
2643         nfs4_set_cached_acl(inode, acl);
2644 }
2645
2646 static inline ssize_t nfs4_get_acl_uncached(struct inode *inode, void *buf, size_t buflen)
2647 {
2648         struct page *pages[NFS4ACL_MAXPAGES];
2649         struct nfs_getaclargs args = {
2650                 .fh = NFS_FH(inode),
2651                 .acl_pages = pages,
2652                 .acl_len = buflen,
2653         };
2654         size_t resp_len = buflen;
2655         void *resp_buf;
2656         struct rpc_message msg = {
2657                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETACL],
2658                 .rpc_argp = &args,
2659                 .rpc_resp = &resp_len,
2660         };
2661         struct page *localpage = NULL;
2662         int ret;
2663
2664         if (buflen < PAGE_SIZE) {
2665                 /* As long as we're doing a round trip to the server anyway,
2666                  * let's be prepared for a page of acl data. */
2667                 localpage = alloc_page(GFP_KERNEL);
2668                 resp_buf = page_address(localpage);
2669                 if (localpage == NULL)
2670                         return -ENOMEM;
2671                 args.acl_pages[0] = localpage;
2672                 args.acl_pgbase = 0;
2673                 resp_len = args.acl_len = PAGE_SIZE;
2674         } else {
2675                 resp_buf = buf;
2676                 buf_to_pages(buf, buflen, args.acl_pages, &args.acl_pgbase);
2677         }
2678         ret = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
2679         if (ret)
2680                 goto out_free;
2681         if (resp_len > args.acl_len)
2682                 nfs4_write_cached_acl(inode, NULL, resp_len);
2683         else
2684                 nfs4_write_cached_acl(inode, resp_buf, resp_len);
2685         if (buf) {
2686                 ret = -ERANGE;
2687                 if (resp_len > buflen)
2688                         goto out_free;
2689                 if (localpage)
2690                         memcpy(buf, resp_buf, resp_len);
2691         }
2692         ret = resp_len;
2693 out_free:
2694         if (localpage)
2695                 __free_page(localpage);
2696         return ret;
2697 }
2698
2699 static ssize_t nfs4_proc_get_acl(struct inode *inode, void *buf, size_t buflen)
2700 {
2701         struct nfs_server *server = NFS_SERVER(inode);
2702         int ret;
2703
2704         if (!nfs4_server_supports_acls(server))
2705                 return -EOPNOTSUPP;
2706         ret = nfs_revalidate_inode(server, inode);
2707         if (ret < 0)
2708                 return ret;
2709         ret = nfs4_read_cached_acl(inode, buf, buflen);
2710         if (ret != -ENOENT)
2711                 return ret;
2712         return nfs4_get_acl_uncached(inode, buf, buflen);
2713 }
2714
2715 static int nfs4_proc_set_acl(struct inode *inode, const void *buf, size_t buflen)
2716 {
2717         struct nfs_server *server = NFS_SERVER(inode);
2718         struct page *pages[NFS4ACL_MAXPAGES];
2719         struct nfs_setaclargs arg = {
2720                 .fh             = NFS_FH(inode),
2721                 .acl_pages      = pages,
2722                 .acl_len        = buflen,
2723         };
2724         struct rpc_message msg = {
2725                 .rpc_proc       = &nfs4_procedures[NFSPROC4_CLNT_SETACL],
2726                 .rpc_argp       = &arg,
2727                 .rpc_resp       = NULL,
2728         };
2729         int ret;
2730
2731         if (!nfs4_server_supports_acls(server))
2732                 return -EOPNOTSUPP;
2733         nfs_inode_return_delegation(inode);
2734         buf_to_pages(buf, buflen, arg.acl_pages, &arg.acl_pgbase);
2735         ret = rpc_call_sync(NFS_SERVER(inode)->client, &msg, 0);
2736         if (ret == 0)
2737                 nfs4_write_cached_acl(inode, buf, buflen);
2738         return ret;
2739 }
2740
2741 static int
2742 nfs4_async_handle_error(struct rpc_task *task, const struct nfs_server *server)
2743 {
2744         struct nfs4_client *clp = server->nfs4_state;
2745
2746         if (!clp || task->tk_status >= 0)
2747                 return 0;
2748         switch(task->tk_status) {
2749                 case -NFS4ERR_STALE_CLIENTID:
2750                 case -NFS4ERR_STALE_STATEID:
2751                 case -NFS4ERR_EXPIRED:
2752                         rpc_sleep_on(&clp->cl_rpcwaitq, task, NULL, NULL);
2753                         nfs4_schedule_state_recovery(clp);
2754                         if (test_bit(NFS4CLNT_STATE_RECOVER, &clp->cl_state) == 0)
2755                                 rpc_wake_up_task(task);
2756                         task->tk_status = 0;
2757                         return -EAGAIN;
2758                 case -NFS4ERR_GRACE:
2759                 case -NFS4ERR_DELAY:
2760                         rpc_delay(task, NFS4_POLL_RETRY_MAX);
2761                         task->tk_status = 0;
2762                         return -EAGAIN;
2763                 case -NFS4ERR_OLD_STATEID:
2764                         task->tk_status = 0;
2765                         return -EAGAIN;
2766         }
2767         task->tk_status = nfs4_map_errors(task->tk_status);
2768         return 0;
2769 }
2770
2771 static int nfs4_wait_bit_interruptible(void *word)
2772 {
2773         if (signal_pending(current))
2774                 return -ERESTARTSYS;
2775         schedule();
2776         return 0;
2777 }
2778
2779 static int nfs4_wait_clnt_recover(struct rpc_clnt *clnt, struct nfs4_client *clp)
2780 {
2781         sigset_t oldset;
2782         int res;
2783
2784         might_sleep();
2785
2786         rpc_clnt_sigmask(clnt, &oldset);
2787         res = wait_on_bit(&clp->cl_state, NFS4CLNT_STATE_RECOVER,
2788                         nfs4_wait_bit_interruptible,
2789                         TASK_INTERRUPTIBLE);
2790         rpc_clnt_sigunmask(clnt, &oldset);
2791         return res;
2792 }
2793
2794 static int nfs4_delay(struct rpc_clnt *clnt, long *timeout)
2795 {
2796         sigset_t oldset;
2797         int res = 0;
2798
2799         might_sleep();
2800
2801         if (*timeout <= 0)
2802                 *timeout = NFS4_POLL_RETRY_MIN;
2803         if (*timeout > NFS4_POLL_RETRY_MAX)
2804                 *timeout = NFS4_POLL_RETRY_MAX;
2805         rpc_clnt_sigmask(clnt, &oldset);
2806         if (clnt->cl_intr) {
2807                 schedule_timeout_interruptible(*timeout);
2808                 if (signalled())
2809                         res = -ERESTARTSYS;
2810         } else
2811                 schedule_timeout_uninterruptible(*timeout);
2812         rpc_clnt_sigunmask(clnt, &oldset);
2813         *timeout <<= 1;
2814         return res;
2815 }
2816
2817 /* This is the error handling routine for processes that are allowed
2818  * to sleep.
2819  */
2820 int nfs4_handle_exception(const struct nfs_server *server, int errorcode, struct nfs4_exception *exception)
2821 {
2822         struct nfs4_client *clp = server->nfs4_state;
2823         int ret = errorcode;
2824
2825         exception->retry = 0;
2826         switch(errorcode) {
2827                 case 0:
2828                         return 0;
2829                 case -NFS4ERR_STALE_CLIENTID:
2830                 case -NFS4ERR_STALE_STATEID:
2831                 case -NFS4ERR_EXPIRED:
2832                         nfs4_schedule_state_recovery(clp);
2833                         ret = nfs4_wait_clnt_recover(server->client, clp);
2834                         if (ret == 0)
2835                                 exception->retry = 1;
2836                         break;
2837                 case -NFS4ERR_GRACE:
2838                 case -NFS4ERR_DELAY:
2839                         ret = nfs4_delay(server->client, &exception->timeout);
2840                         if (ret != 0)
2841                                 break;
2842                 case -NFS4ERR_OLD_STATEID:
2843                         exception->retry = 1;
2844         }
2845         /* We failed to handle the error */
2846         return nfs4_map_errors(ret);
2847 }
2848
2849 int nfs4_proc_setclientid(struct nfs4_client *clp, u32 program, unsigned short port, struct rpc_cred *cred)
2850 {
2851         nfs4_verifier sc_verifier;
2852         struct nfs4_setclientid setclientid = {
2853                 .sc_verifier = &sc_verifier,
2854                 .sc_prog = program,
2855         };
2856         struct rpc_message msg = {
2857                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID],
2858                 .rpc_argp = &setclientid,
2859                 .rpc_resp = clp,
2860                 .rpc_cred = cred,
2861         };
2862         u32 *p;
2863         int loop = 0;
2864         int status;
2865
2866         p = (u32*)sc_verifier.data;
2867         *p++ = htonl((u32)clp->cl_boot_time.tv_sec);
2868         *p = htonl((u32)clp->cl_boot_time.tv_nsec);
2869
2870         for(;;) {
2871                 setclientid.sc_name_len = scnprintf(setclientid.sc_name,
2872                                 sizeof(setclientid.sc_name), "%s/%u.%u.%u.%u %s %u",
2873                                 clp->cl_ipaddr, NIPQUAD(clp->cl_addr.s_addr),
2874                                 cred->cr_ops->cr_name,
2875                                 clp->cl_id_uniquifier);
2876                 setclientid.sc_netid_len = scnprintf(setclientid.sc_netid,
2877                                 sizeof(setclientid.sc_netid), "tcp");
2878                 setclientid.sc_uaddr_len = scnprintf(setclientid.sc_uaddr,
2879                                 sizeof(setclientid.sc_uaddr), "%s.%d.%d",
2880                                 clp->cl_ipaddr, port >> 8, port & 255);
2881
2882                 status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2883                 if (status != -NFS4ERR_CLID_INUSE)
2884                         break;
2885                 if (signalled())
2886                         break;
2887                 if (loop++ & 1)
2888                         ssleep(clp->cl_lease_time + 1);
2889                 else
2890                         if (++clp->cl_id_uniquifier == 0)
2891                                 break;
2892         }
2893         return status;
2894 }
2895
2896 int
2897 nfs4_proc_setclientid_confirm(struct nfs4_client *clp, struct rpc_cred *cred)
2898 {
2899         struct nfs_fsinfo fsinfo;
2900         struct rpc_message msg = {
2901                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID_CONFIRM],
2902                 .rpc_argp = clp,
2903                 .rpc_resp = &fsinfo,
2904                 .rpc_cred = cred,
2905         };
2906         unsigned long now;
2907         int status;
2908
2909         now = jiffies;
2910         status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2911         if (status == 0) {
2912                 spin_lock(&clp->cl_lock);
2913                 clp->cl_lease_time = fsinfo.lease_time * HZ;
2914                 clp->cl_last_renewal = now;
2915                 clear_bit(NFS4CLNT_LEASE_EXPIRED, &clp->cl_state);
2916                 spin_unlock(&clp->cl_lock);
2917         }
2918         return status;
2919 }
2920
2921 struct nfs4_delegreturndata {
2922         struct nfs4_delegreturnargs args;
2923         struct nfs4_delegreturnres res;
2924         struct nfs_fh fh;
2925         nfs4_stateid stateid;
2926         struct rpc_cred *cred;
2927         unsigned long timestamp;
2928         struct nfs_fattr fattr;
2929         int rpc_status;
2930 };
2931
2932 static void nfs4_delegreturn_prepare(struct rpc_task *task, void *calldata)
2933 {
2934         struct nfs4_delegreturndata *data = calldata;
2935         struct rpc_message msg = {
2936                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_DELEGRETURN],
2937                 .rpc_argp = &data->args,
2938                 .rpc_resp = &data->res,
2939                 .rpc_cred = data->cred,
2940         };
2941         nfs_fattr_init(data->res.fattr);
2942         rpc_call_setup(task, &msg, 0);
2943 }
2944
2945 static void nfs4_delegreturn_done(struct rpc_task *task, void *calldata)
2946 {
2947         struct nfs4_delegreturndata *data = calldata;
2948         data->rpc_status = task->tk_status;
2949         if (data->rpc_status == 0)
2950                 renew_lease(data->res.server, data->timestamp);
2951 }
2952
2953 static void nfs4_delegreturn_release(void *calldata)
2954 {
2955         struct nfs4_delegreturndata *data = calldata;
2956
2957         put_rpccred(data->cred);
2958         kfree(calldata);
2959 }
2960
2961 const static struct rpc_call_ops nfs4_delegreturn_ops = {
2962         .rpc_call_prepare = nfs4_delegreturn_prepare,
2963         .rpc_call_done = nfs4_delegreturn_done,
2964         .rpc_release = nfs4_delegreturn_release,
2965 };
2966
2967 static int _nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid)
2968 {
2969         struct nfs4_delegreturndata *data;
2970         struct nfs_server *server = NFS_SERVER(inode);
2971         struct rpc_task *task;
2972         int status;
2973
2974         data = kmalloc(sizeof(*data), GFP_KERNEL);
2975         if (data == NULL)
2976                 return -ENOMEM;
2977         data->args.fhandle = &data->fh;
2978         data->args.stateid = &data->stateid;
2979         data->args.bitmask = server->attr_bitmask;
2980         nfs_copy_fh(&data->fh, NFS_FH(inode));
2981         memcpy(&data->stateid, stateid, sizeof(data->stateid));
2982         data->res.fattr = &data->fattr;
2983         data->res.server = server;
2984         data->cred = get_rpccred(cred);
2985         data->timestamp = jiffies;
2986         data->rpc_status = 0;
2987
2988         task = rpc_run_task(NFS_CLIENT(inode), RPC_TASK_ASYNC, &nfs4_delegreturn_ops, data);
2989         if (IS_ERR(task)) {
2990                 nfs4_delegreturn_release(data);
2991                 return PTR_ERR(task);
2992         }
2993         status = nfs4_wait_for_completion_rpc_task(task);
2994         if (status == 0) {
2995                 status = data->rpc_status;
2996                 if (status == 0)
2997                         nfs_post_op_update_inode(inode, &data->fattr);
2998         }
2999         rpc_release_task(task);
3000         return status;
3001 }
3002
3003 int nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid)
3004 {
3005         struct nfs_server *server = NFS_SERVER(inode);
3006         struct nfs4_exception exception = { };
3007         int err;
3008         do {
3009                 err = _nfs4_proc_delegreturn(inode, cred, stateid);
3010                 switch (err) {
3011                         case -NFS4ERR_STALE_STATEID:
3012                         case -NFS4ERR_EXPIRED:
3013                                 nfs4_schedule_state_recovery(server->nfs4_state);
3014                         case 0:
3015                                 return 0;
3016                 }
3017                 err = nfs4_handle_exception(server, err, &exception);
3018         } while (exception.retry);
3019         return err;
3020 }
3021
3022 #define NFS4_LOCK_MINTIMEOUT (1 * HZ)
3023 #define NFS4_LOCK_MAXTIMEOUT (30 * HZ)
3024
3025 /* 
3026  * sleep, with exponential backoff, and retry the LOCK operation. 
3027  */
3028 static unsigned long
3029 nfs4_set_lock_task_retry(unsigned long timeout)
3030 {
3031         schedule_timeout_interruptible(timeout);
3032         timeout <<= 1;
3033         if (timeout > NFS4_LOCK_MAXTIMEOUT)
3034                 return NFS4_LOCK_MAXTIMEOUT;
3035         return timeout;
3036 }
3037
3038 static int _nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3039 {
3040         struct inode *inode = state->inode;
3041         struct nfs_server *server = NFS_SERVER(inode);
3042         struct nfs4_client *clp = server->nfs4_state;
3043         struct nfs_lockt_args arg = {
3044                 .fh = NFS_FH(inode),
3045                 .fl = request,
3046         };
3047         struct nfs_lockt_res res = {
3048                 .denied = request,
3049         };
3050         struct rpc_message msg = {
3051                 .rpc_proc       = &nfs4_procedures[NFSPROC4_CLNT_LOCKT],
3052                 .rpc_argp       = &arg,
3053                 .rpc_resp       = &res,
3054                 .rpc_cred       = state->owner->so_cred,
3055         };
3056         struct nfs4_lock_state *lsp;
3057         int status;
3058
3059         down_read(&clp->cl_sem);
3060         arg.lock_owner.clientid = clp->cl_clientid;
3061         status = nfs4_set_lock_state(state, request);
3062         if (status != 0)
3063                 goto out;
3064         lsp = request->fl_u.nfs4_fl.owner;
3065         arg.lock_owner.id = lsp->ls_id; 
3066         status = rpc_call_sync(server->client, &msg, 0);
3067         switch (status) {
3068                 case 0:
3069                         request->fl_type = F_UNLCK;
3070                         break;
3071                 case -NFS4ERR_DENIED:
3072                         status = 0;
3073         }
3074 out:
3075         up_read(&clp->cl_sem);
3076         return status;
3077 }
3078
3079 static int nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3080 {
3081         struct nfs4_exception exception = { };
3082         int err;
3083
3084         do {
3085                 err = nfs4_handle_exception(NFS_SERVER(state->inode),
3086                                 _nfs4_proc_getlk(state, cmd, request),
3087                                 &exception);
3088         } while (exception.retry);
3089         return err;
3090 }
3091
3092 static int do_vfs_lock(struct file *file, struct file_lock *fl)
3093 {
3094         int res = 0;
3095         switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
3096                 case FL_POSIX:
3097                         res = posix_lock_file_wait(file, fl);
3098                         break;
3099                 case FL_FLOCK:
3100                         res = flock_lock_file_wait(file, fl);
3101                         break;
3102                 default:
3103                         BUG();
3104         }
3105         if (res < 0)
3106                 printk(KERN_WARNING "%s: VFS is out of sync with lock manager!\n",
3107                                 __FUNCTION__);
3108         return res;
3109 }
3110
3111 struct nfs4_unlockdata {
3112         struct nfs_locku_args arg;
3113         struct nfs_locku_res res;
3114         struct nfs4_lock_state *lsp;
3115         struct nfs_open_context *ctx;
3116         struct file_lock fl;
3117         const struct nfs_server *server;
3118         unsigned long timestamp;
3119 };
3120
3121 static struct nfs4_unlockdata *nfs4_alloc_unlockdata(struct file_lock *fl,
3122                 struct nfs_open_context *ctx,
3123                 struct nfs4_lock_state *lsp,
3124                 struct nfs_seqid *seqid)
3125 {
3126         struct nfs4_unlockdata *p;
3127         struct inode *inode = lsp->ls_state->inode;
3128
3129         p = kmalloc(sizeof(*p), GFP_KERNEL);
3130         if (p == NULL)
3131                 return NULL;
3132         p->arg.fh = NFS_FH(inode);
3133         p->arg.fl = &p->fl;
3134         p->arg.seqid = seqid;
3135         p->arg.stateid = &lsp->ls_stateid;
3136         p->lsp = lsp;
3137         atomic_inc(&lsp->ls_count);
3138         /* Ensure we don't close file until we're done freeing locks! */
3139         p->ctx = get_nfs_open_context(ctx);
3140         memcpy(&p->fl, fl, sizeof(p->fl));
3141         p->server = NFS_SERVER(inode);
3142         return p;
3143 }
3144
3145 static void nfs4_locku_release_calldata(void *data)
3146 {
3147         struct nfs4_unlockdata *calldata = data;
3148         nfs_free_seqid(calldata->arg.seqid);
3149         nfs4_put_lock_state(calldata->lsp);
3150         put_nfs_open_context(calldata->ctx);
3151         kfree(calldata);
3152 }
3153
3154 static void nfs4_locku_done(struct rpc_task *task, void *data)
3155 {
3156         struct nfs4_unlockdata *calldata = data;
3157
3158         if (RPC_ASSASSINATED(task))
3159                 return;
3160         nfs_increment_lock_seqid(task->tk_status, calldata->arg.seqid);
3161         switch (task->tk_status) {
3162                 case 0:
3163                         memcpy(calldata->lsp->ls_stateid.data,
3164                                         calldata->res.stateid.data,
3165                                         sizeof(calldata->lsp->ls_stateid.data));
3166                         renew_lease(calldata->server, calldata->timestamp);
3167                         break;
3168                 case -NFS4ERR_STALE_STATEID:
3169                 case -NFS4ERR_EXPIRED:
3170                         nfs4_schedule_state_recovery(calldata->server->nfs4_state);
3171                         break;
3172                 default:
3173                         if (nfs4_async_handle_error(task, calldata->server) == -EAGAIN) {
3174                                 rpc_restart_call(task);
3175                         }
3176         }
3177 }
3178
3179 static void nfs4_locku_prepare(struct rpc_task *task, void *data)
3180 {
3181         struct nfs4_unlockdata *calldata = data;
3182         struct rpc_message msg = {
3183                 .rpc_proc       = &nfs4_procedures[NFSPROC4_CLNT_LOCKU],
3184                 .rpc_argp       = &calldata->arg,
3185                 .rpc_resp       = &calldata->res,
3186                 .rpc_cred       = calldata->lsp->ls_state->owner->so_cred,
3187         };
3188
3189         if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0)
3190                 return;
3191         if ((calldata->lsp->ls_flags & NFS_LOCK_INITIALIZED) == 0) {
3192                 /* Note: exit _without_ running nfs4_locku_done */
3193                 task->tk_action = NULL;
3194                 return;
3195         }
3196         calldata->timestamp = jiffies;
3197         rpc_call_setup(task, &msg, 0);
3198 }
3199
3200 static const struct rpc_call_ops nfs4_locku_ops = {
3201         .rpc_call_prepare = nfs4_locku_prepare,
3202         .rpc_call_done = nfs4_locku_done,
3203         .rpc_release = nfs4_locku_release_calldata,
3204 };
3205
3206 static struct rpc_task *nfs4_do_unlck(struct file_lock *fl,
3207                 struct nfs_open_context *ctx,
3208                 struct nfs4_lock_state *lsp,
3209                 struct nfs_seqid *seqid)
3210 {
3211         struct nfs4_unlockdata *data;
3212         struct rpc_task *task;
3213
3214         data = nfs4_alloc_unlockdata(fl, ctx, lsp, seqid);
3215         if (data == NULL) {
3216                 nfs_free_seqid(seqid);
3217                 return ERR_PTR(-ENOMEM);
3218         }
3219
3220         /* Unlock _before_ we do the RPC call */
3221         do_vfs_lock(fl->fl_file, fl);
3222         task = rpc_run_task(NFS_CLIENT(lsp->ls_state->inode), RPC_TASK_ASYNC, &nfs4_locku_ops, data);
3223         if (IS_ERR(task))
3224                 nfs4_locku_release_calldata(data);
3225         return task;
3226 }
3227
3228 static int nfs4_proc_unlck(struct nfs4_state *state, int cmd, struct file_lock *request)
3229 {
3230         struct nfs_seqid *seqid;
3231         struct nfs4_lock_state *lsp;
3232         struct rpc_task *task;
3233         int status = 0;
3234
3235         /* Is this a delegated lock? */
3236         if (test_bit(NFS_DELEGATED_STATE, &state->flags))
3237                 goto out_unlock;
3238         /* Is this open_owner holding any locks on the server? */
3239         if (test_bit(LK_STATE_IN_USE, &state->flags) == 0)
3240                 goto out_unlock;
3241
3242         status = nfs4_set_lock_state(state, request);
3243         if (status != 0)
3244                 goto out_unlock;
3245         lsp = request->fl_u.nfs4_fl.owner;
3246         status = -ENOMEM;
3247         seqid = nfs_alloc_seqid(&lsp->ls_seqid);
3248         if (seqid == NULL)
3249                 goto out_unlock;
3250         task = nfs4_do_unlck(request, request->fl_file->private_data, lsp, seqid);
3251         status = PTR_ERR(task);
3252         if (IS_ERR(task))
3253                 goto out_unlock;
3254         status = nfs4_wait_for_completion_rpc_task(task);
3255         rpc_release_task(task);
3256         return status;
3257 out_unlock:
3258         do_vfs_lock(request->fl_file, request);
3259         return status;
3260 }
3261
3262 struct nfs4_lockdata {
3263         struct nfs_lock_args arg;
3264         struct nfs_lock_res res;
3265         struct nfs4_lock_state *lsp;
3266         struct nfs_open_context *ctx;
3267         struct file_lock fl;
3268         unsigned long timestamp;
3269         int rpc_status;
3270         int cancelled;
3271 };
3272
3273 static struct nfs4_lockdata *nfs4_alloc_lockdata(struct file_lock *fl,
3274                 struct nfs_open_context *ctx, struct nfs4_lock_state *lsp)
3275 {
3276         struct nfs4_lockdata *p;
3277         struct inode *inode = lsp->ls_state->inode;
3278         struct nfs_server *server = NFS_SERVER(inode);
3279
3280         p = kzalloc(sizeof(*p), GFP_KERNEL);
3281         if (p == NULL)
3282                 return NULL;
3283
3284         p->arg.fh = NFS_FH(inode);
3285         p->arg.fl = &p->fl;
3286         p->arg.lock_seqid = nfs_alloc_seqid(&lsp->ls_seqid);
3287         if (p->arg.lock_seqid == NULL)
3288                 goto out_free;
3289         p->arg.lock_stateid = &lsp->ls_stateid;
3290         p->arg.lock_owner.clientid = server->nfs4_state->cl_clientid;
3291         p->arg.lock_owner.id = lsp->ls_id;
3292         p->lsp = lsp;
3293         atomic_inc(&lsp->ls_count);
3294         p->ctx = get_nfs_open_context(ctx);
3295         memcpy(&p->fl, fl, sizeof(p->fl));
3296         return p;
3297 out_free:
3298         kfree(p);
3299         return NULL;
3300 }
3301
3302 static void nfs4_lock_prepare(struct rpc_task *task, void *calldata)
3303 {
3304         struct nfs4_lockdata *data = calldata;
3305         struct nfs4_state *state = data->lsp->ls_state;
3306         struct nfs4_state_owner *sp = state->owner;
3307         struct rpc_message msg = {
3308                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCK],
3309                 .rpc_argp = &data->arg,
3310                 .rpc_resp = &data->res,
3311                 .rpc_cred = sp->so_cred,
3312         };
3313
3314         if (nfs_wait_on_sequence(data->arg.lock_seqid, task) != 0)
3315                 return;
3316         dprintk("%s: begin!\n", __FUNCTION__);
3317         /* Do we need to do an open_to_lock_owner? */
3318         if (!(data->arg.lock_seqid->sequence->flags & NFS_SEQID_CONFIRMED)) {
3319                 data->arg.open_seqid = nfs_alloc_seqid(&sp->so_seqid);
3320                 if (data->arg.open_seqid == NULL) {
3321                         data->rpc_status = -ENOMEM;
3322                         task->tk_action = NULL;
3323                         goto out;
3324                 }
3325                 data->arg.open_stateid = &state->stateid;
3326                 data->arg.new_lock_owner = 1;
3327         }
3328         data->timestamp = jiffies;
3329         rpc_call_setup(task, &msg, 0);
3330 out:
3331         dprintk("%s: done!, ret = %d\n", __FUNCTION__, data->rpc_status);
3332 }
3333
3334 static void nfs4_lock_done(struct rpc_task *task, void *calldata)
3335 {
3336         struct nfs4_lockdata *data = calldata;
3337
3338         dprintk("%s: begin!\n", __FUNCTION__);
3339
3340         data->rpc_status = task->tk_status;
3341         if (RPC_ASSASSINATED(task))
3342                 goto out;
3343         if (data->arg.new_lock_owner != 0) {
3344                 nfs_increment_open_seqid(data->rpc_status, data->arg.open_seqid);
3345                 if (data->rpc_status == 0)
3346                         nfs_confirm_seqid(&data->lsp->ls_seqid, 0);
3347                 else
3348                         goto out;
3349         }
3350         if (data->rpc_status == 0) {
3351                 memcpy(data->lsp->ls_stateid.data, data->res.stateid.data,
3352                                         sizeof(data->lsp->ls_stateid.data));
3353                 data->lsp->ls_flags |= NFS_LOCK_INITIALIZED;
3354                 renew_lease(NFS_SERVER(data->ctx->dentry->d_inode), data->timestamp);
3355         }
3356         nfs_increment_lock_seqid(data->rpc_status, data->arg.lock_seqid);
3357 out:
3358         dprintk("%s: done, ret = %d!\n", __FUNCTION__, data->rpc_status);
3359 }
3360
3361 static void nfs4_lock_release(void *calldata)
3362 {
3363         struct nfs4_lockdata *data = calldata;
3364
3365         dprintk("%s: begin!\n", __FUNCTION__);
3366         if (data->arg.open_seqid != NULL)
3367                 nfs_free_seqid(data->arg.open_seqid);
3368         if (data->cancelled != 0) {
3369                 struct rpc_task *task;
3370                 task = nfs4_do_unlck(&data->fl, data->ctx, data->lsp,
3371                                 data->arg.lock_seqid);
3372                 if (!IS_ERR(task))
3373                         rpc_release_task(task);
3374                 dprintk("%s: cancelling lock!\n", __FUNCTION__);
3375         } else
3376                 nfs_free_seqid(data->arg.lock_seqid);
3377         nfs4_put_lock_state(data->lsp);
3378         put_nfs_open_context(data->ctx);
3379         kfree(data);
3380         dprintk("%s: done!\n", __FUNCTION__);
3381 }
3382
3383 static const struct rpc_call_ops nfs4_lock_ops = {
3384         .rpc_call_prepare = nfs4_lock_prepare,
3385         .rpc_call_done = nfs4_lock_done,
3386         .rpc_release = nfs4_lock_release,
3387 };
3388
3389 static int _nfs4_do_setlk(struct nfs4_state *state, int cmd, struct file_lock *fl, int reclaim)
3390 {
3391         struct nfs4_lockdata *data;
3392         struct rpc_task *task;
3393         int ret;
3394
3395         dprintk("%s: begin!\n", __FUNCTION__);
3396         data = nfs4_alloc_lockdata(fl, fl->fl_file->private_data,
3397                         fl->fl_u.nfs4_fl.owner);
3398         if (data == NULL)
3399                 return -ENOMEM;
3400         if (IS_SETLKW(cmd))
3401                 data->arg.block = 1;
3402         if (reclaim != 0)
3403                 data->arg.reclaim = 1;
3404         task = rpc_run_task(NFS_CLIENT(state->inode), RPC_TASK_ASYNC,
3405                         &nfs4_lock_ops, data);
3406        &n