2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
21 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/jbd2.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
42 #include "ext4_jbd2.h"
45 #include "ext4_extents.h"
48 #include <trace/events/ext4.h>
50 #define MPAGE_DA_EXTENT_TAIL 0x01
52 static inline int ext4_begin_ordered_truncate(struct inode *inode,
55 trace_ext4_begin_ordered_truncate(inode, new_size);
57 * If jinode is zero, then we never opened the file for
58 * writing, so there's no need to call
59 * jbd2_journal_begin_ordered_truncate() since there's no
60 * outstanding writes we need to flush.
62 if (!EXT4_I(inode)->jinode)
64 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
65 EXT4_I(inode)->jinode,
69 static void ext4_invalidatepage(struct page *page, unsigned long offset);
70 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
71 struct buffer_head *bh_result, int create);
72 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
73 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
74 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
75 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
78 * Test whether an inode is a fast symlink.
80 static int ext4_inode_is_fast_symlink(struct inode *inode)
82 int ea_blocks = EXT4_I(inode)->i_file_acl ?
83 (inode->i_sb->s_blocksize >> 9) : 0;
85 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
89 * Restart the transaction associated with *handle. This does a commit,
90 * so before we call here everything must be consistently dirtied against
93 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
99 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
100 * moment, get_block can be called only for blocks inside i_size since
101 * page cache has been already dropped and writes are blocked by
102 * i_mutex. So we can safely drop the i_data_sem here.
104 BUG_ON(EXT4_JOURNAL(inode) == NULL);
105 jbd_debug(2, "restarting handle %p\n", handle);
106 up_write(&EXT4_I(inode)->i_data_sem);
107 ret = ext4_journal_restart(handle, nblocks);
108 down_write(&EXT4_I(inode)->i_data_sem);
109 ext4_discard_preallocations(inode);
115 * Called at the last iput() if i_nlink is zero.
117 void ext4_evict_inode(struct inode *inode)
122 trace_ext4_evict_inode(inode);
123 if (inode->i_nlink) {
125 * When journalling data dirty buffers are tracked only in the
126 * journal. So although mm thinks everything is clean and
127 * ready for reaping the inode might still have some pages to
128 * write in the running transaction or waiting to be
129 * checkpointed. Thus calling jbd2_journal_invalidatepage()
130 * (via truncate_inode_pages()) to discard these buffers can
131 * cause data loss. Also even if we did not discard these
132 * buffers, we would have no way to find them after the inode
133 * is reaped and thus user could see stale data if he tries to
134 * read them before the transaction is checkpointed. So be
135 * careful and force everything to disk here... We use
136 * ei->i_datasync_tid to store the newest transaction
137 * containing inode's data.
139 * Note that directories do not have this problem because they
140 * don't use page cache.
142 if (ext4_should_journal_data(inode) &&
143 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
144 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
145 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
147 jbd2_log_start_commit(journal, commit_tid);
148 jbd2_log_wait_commit(journal, commit_tid);
149 filemap_write_and_wait(&inode->i_data);
151 truncate_inode_pages(&inode->i_data, 0);
155 if (!is_bad_inode(inode))
156 dquot_initialize(inode);
158 if (ext4_should_order_data(inode))
159 ext4_begin_ordered_truncate(inode, 0);
160 truncate_inode_pages(&inode->i_data, 0);
162 if (is_bad_inode(inode))
165 handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
166 if (IS_ERR(handle)) {
167 ext4_std_error(inode->i_sb, PTR_ERR(handle));
169 * If we're going to skip the normal cleanup, we still need to
170 * make sure that the in-core orphan linked list is properly
173 ext4_orphan_del(NULL, inode);
178 ext4_handle_sync(handle);
180 err = ext4_mark_inode_dirty(handle, inode);
182 ext4_warning(inode->i_sb,
183 "couldn't mark inode dirty (err %d)", err);
187 ext4_truncate(inode);
190 * ext4_ext_truncate() doesn't reserve any slop when it
191 * restarts journal transactions; therefore there may not be
192 * enough credits left in the handle to remove the inode from
193 * the orphan list and set the dtime field.
195 if (!ext4_handle_has_enough_credits(handle, 3)) {
196 err = ext4_journal_extend(handle, 3);
198 err = ext4_journal_restart(handle, 3);
200 ext4_warning(inode->i_sb,
201 "couldn't extend journal (err %d)", err);
203 ext4_journal_stop(handle);
204 ext4_orphan_del(NULL, inode);
210 * Kill off the orphan record which ext4_truncate created.
211 * AKPM: I think this can be inside the above `if'.
212 * Note that ext4_orphan_del() has to be able to cope with the
213 * deletion of a non-existent orphan - this is because we don't
214 * know if ext4_truncate() actually created an orphan record.
215 * (Well, we could do this if we need to, but heck - it works)
217 ext4_orphan_del(handle, inode);
218 EXT4_I(inode)->i_dtime = get_seconds();
221 * One subtle ordering requirement: if anything has gone wrong
222 * (transaction abort, IO errors, whatever), then we can still
223 * do these next steps (the fs will already have been marked as
224 * having errors), but we can't free the inode if the mark_dirty
227 if (ext4_mark_inode_dirty(handle, inode))
228 /* If that failed, just do the required in-core inode clear. */
229 ext4_clear_inode(inode);
231 ext4_free_inode(handle, inode);
232 ext4_journal_stop(handle);
235 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
239 qsize_t *ext4_get_reserved_space(struct inode *inode)
241 return &EXT4_I(inode)->i_reserved_quota;
246 * Calculate the number of metadata blocks need to reserve
247 * to allocate a block located at @lblock
249 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
251 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
252 return ext4_ext_calc_metadata_amount(inode, lblock);
254 return ext4_ind_calc_metadata_amount(inode, lblock);
258 * Called with i_data_sem down, which is important since we can call
259 * ext4_discard_preallocations() from here.
261 void ext4_da_update_reserve_space(struct inode *inode,
262 int used, int quota_claim)
264 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
265 struct ext4_inode_info *ei = EXT4_I(inode);
267 spin_lock(&ei->i_block_reservation_lock);
268 trace_ext4_da_update_reserve_space(inode, used);
269 if (unlikely(used > ei->i_reserved_data_blocks)) {
270 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
271 "with only %d reserved data blocks\n",
272 __func__, inode->i_ino, used,
273 ei->i_reserved_data_blocks);
275 used = ei->i_reserved_data_blocks;
278 /* Update per-inode reservations */
279 ei->i_reserved_data_blocks -= used;
280 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
281 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
282 used + ei->i_allocated_meta_blocks);
283 ei->i_allocated_meta_blocks = 0;
285 if (ei->i_reserved_data_blocks == 0) {
287 * We can release all of the reserved metadata blocks
288 * only when we have written all of the delayed
291 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
292 ei->i_reserved_meta_blocks);
293 ei->i_reserved_meta_blocks = 0;
294 ei->i_da_metadata_calc_len = 0;
296 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
298 /* Update quota subsystem for data blocks */
300 dquot_claim_block(inode, used);
303 * We did fallocate with an offset that is already delayed
304 * allocated. So on delayed allocated writeback we should
305 * not re-claim the quota for fallocated blocks.
307 dquot_release_reservation_block(inode, used);
311 * If we have done all the pending block allocations and if
312 * there aren't any writers on the inode, we can discard the
313 * inode's preallocations.
315 if ((ei->i_reserved_data_blocks == 0) &&
316 (atomic_read(&inode->i_writecount) == 0))
317 ext4_discard_preallocations(inode);
320 static int __check_block_validity(struct inode *inode, const char *func,
322 struct ext4_map_blocks *map)
324 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
326 ext4_error_inode(inode, func, line, map->m_pblk,
327 "lblock %lu mapped to illegal pblock "
328 "(length %d)", (unsigned long) map->m_lblk,
335 #define check_block_validity(inode, map) \
336 __check_block_validity((inode), __func__, __LINE__, (map))
339 * Return the number of contiguous dirty pages in a given inode
340 * starting at page frame idx.
342 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
343 unsigned int max_pages)
345 struct address_space *mapping = inode->i_mapping;
349 int i, nr_pages, done = 0;
353 pagevec_init(&pvec, 0);
356 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
358 (pgoff_t)PAGEVEC_SIZE);
361 for (i = 0; i < nr_pages; i++) {
362 struct page *page = pvec.pages[i];
363 struct buffer_head *bh, *head;
366 if (unlikely(page->mapping != mapping) ||
368 PageWriteback(page) ||
369 page->index != idx) {
374 if (page_has_buffers(page)) {
375 bh = head = page_buffers(page);
377 if (!buffer_delay(bh) &&
378 !buffer_unwritten(bh))
380 bh = bh->b_this_page;
381 } while (!done && (bh != head));
388 if (num >= max_pages) {
393 pagevec_release(&pvec);
399 * The ext4_map_blocks() function tries to look up the requested blocks,
400 * and returns if the blocks are already mapped.
402 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
403 * and store the allocated blocks in the result buffer head and mark it
406 * If file type is extents based, it will call ext4_ext_map_blocks(),
407 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
410 * On success, it returns the number of blocks being mapped or allocate.
411 * if create==0 and the blocks are pre-allocated and uninitialized block,
412 * the result buffer head is unmapped. If the create ==1, it will make sure
413 * the buffer head is mapped.
415 * It returns 0 if plain look up failed (blocks have not been allocated), in
416 * that casem, buffer head is unmapped
418 * It returns the error in case of allocation failure.
420 int ext4_map_blocks(handle_t *handle, struct inode *inode,
421 struct ext4_map_blocks *map, int flags)
426 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
427 "logical block %lu\n", inode->i_ino, flags, map->m_len,
428 (unsigned long) map->m_lblk);
430 * Try to see if we can get the block without requesting a new
433 down_read((&EXT4_I(inode)->i_data_sem));
434 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
435 retval = ext4_ext_map_blocks(handle, inode, map, 0);
437 retval = ext4_ind_map_blocks(handle, inode, map, 0);
439 up_read((&EXT4_I(inode)->i_data_sem));
441 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
442 int ret = check_block_validity(inode, map);
447 /* If it is only a block(s) look up */
448 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
452 * Returns if the blocks have already allocated
454 * Note that if blocks have been preallocated
455 * ext4_ext_get_block() returns th create = 0
456 * with buffer head unmapped.
458 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
462 * When we call get_blocks without the create flag, the
463 * BH_Unwritten flag could have gotten set if the blocks
464 * requested were part of a uninitialized extent. We need to
465 * clear this flag now that we are committed to convert all or
466 * part of the uninitialized extent to be an initialized
467 * extent. This is because we need to avoid the combination
468 * of BH_Unwritten and BH_Mapped flags being simultaneously
469 * set on the buffer_head.
471 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
474 * New blocks allocate and/or writing to uninitialized extent
475 * will possibly result in updating i_data, so we take
476 * the write lock of i_data_sem, and call get_blocks()
477 * with create == 1 flag.
479 down_write((&EXT4_I(inode)->i_data_sem));
482 * if the caller is from delayed allocation writeout path
483 * we have already reserved fs blocks for allocation
484 * let the underlying get_block() function know to
485 * avoid double accounting
487 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
488 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
490 * We need to check for EXT4 here because migrate
491 * could have changed the inode type in between
493 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
494 retval = ext4_ext_map_blocks(handle, inode, map, flags);
496 retval = ext4_ind_map_blocks(handle, inode, map, flags);
498 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
500 * We allocated new blocks which will result in
501 * i_data's format changing. Force the migrate
502 * to fail by clearing migrate flags
504 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
508 * Update reserved blocks/metadata blocks after successful
509 * block allocation which had been deferred till now. We don't
510 * support fallocate for non extent files. So we can update
511 * reserve space here.
514 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
515 ext4_da_update_reserve_space(inode, retval, 1);
517 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
518 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
520 up_write((&EXT4_I(inode)->i_data_sem));
521 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
522 int ret = check_block_validity(inode, map);
529 /* Maximum number of blocks we map for direct IO at once. */
530 #define DIO_MAX_BLOCKS 4096
532 static int _ext4_get_block(struct inode *inode, sector_t iblock,
533 struct buffer_head *bh, int flags)
535 handle_t *handle = ext4_journal_current_handle();
536 struct ext4_map_blocks map;
537 int ret = 0, started = 0;
541 map.m_len = bh->b_size >> inode->i_blkbits;
543 if (flags && !handle) {
544 /* Direct IO write... */
545 if (map.m_len > DIO_MAX_BLOCKS)
546 map.m_len = DIO_MAX_BLOCKS;
547 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
548 handle = ext4_journal_start(inode, dio_credits);
549 if (IS_ERR(handle)) {
550 ret = PTR_ERR(handle);
556 ret = ext4_map_blocks(handle, inode, &map, flags);
558 map_bh(bh, inode->i_sb, map.m_pblk);
559 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
560 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
564 ext4_journal_stop(handle);
568 int ext4_get_block(struct inode *inode, sector_t iblock,
569 struct buffer_head *bh, int create)
571 return _ext4_get_block(inode, iblock, bh,
572 create ? EXT4_GET_BLOCKS_CREATE : 0);
576 * `handle' can be NULL if create is zero
578 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
579 ext4_lblk_t block, int create, int *errp)
581 struct ext4_map_blocks map;
582 struct buffer_head *bh;
585 J_ASSERT(handle != NULL || create == 0);
589 err = ext4_map_blocks(handle, inode, &map,
590 create ? EXT4_GET_BLOCKS_CREATE : 0);
598 bh = sb_getblk(inode->i_sb, map.m_pblk);
603 if (map.m_flags & EXT4_MAP_NEW) {
604 J_ASSERT(create != 0);
605 J_ASSERT(handle != NULL);
608 * Now that we do not always journal data, we should
609 * keep in mind whether this should always journal the
610 * new buffer as metadata. For now, regular file
611 * writes use ext4_get_block instead, so it's not a
615 BUFFER_TRACE(bh, "call get_create_access");
616 fatal = ext4_journal_get_create_access(handle, bh);
617 if (!fatal && !buffer_uptodate(bh)) {
618 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
619 set_buffer_uptodate(bh);
622 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
623 err = ext4_handle_dirty_metadata(handle, inode, bh);
627 BUFFER_TRACE(bh, "not a new buffer");
637 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
638 ext4_lblk_t block, int create, int *err)
640 struct buffer_head *bh;
642 bh = ext4_getblk(handle, inode, block, create, err);
645 if (buffer_uptodate(bh))
647 ll_rw_block(READ_META, 1, &bh);
649 if (buffer_uptodate(bh))
656 static int walk_page_buffers(handle_t *handle,
657 struct buffer_head *head,
661 int (*fn)(handle_t *handle,
662 struct buffer_head *bh))
664 struct buffer_head *bh;
665 unsigned block_start, block_end;
666 unsigned blocksize = head->b_size;
668 struct buffer_head *next;
670 for (bh = head, block_start = 0;
671 ret == 0 && (bh != head || !block_start);
672 block_start = block_end, bh = next) {
673 next = bh->b_this_page;
674 block_end = block_start + blocksize;
675 if (block_end <= from || block_start >= to) {
676 if (partial && !buffer_uptodate(bh))
680 err = (*fn)(handle, bh);
688 * To preserve ordering, it is essential that the hole instantiation and
689 * the data write be encapsulated in a single transaction. We cannot
690 * close off a transaction and start a new one between the ext4_get_block()
691 * and the commit_write(). So doing the jbd2_journal_start at the start of
692 * prepare_write() is the right place.
694 * Also, this function can nest inside ext4_writepage() ->
695 * block_write_full_page(). In that case, we *know* that ext4_writepage()
696 * has generated enough buffer credits to do the whole page. So we won't
697 * block on the journal in that case, which is good, because the caller may
700 * By accident, ext4 can be reentered when a transaction is open via
701 * quota file writes. If we were to commit the transaction while thus
702 * reentered, there can be a deadlock - we would be holding a quota
703 * lock, and the commit would never complete if another thread had a
704 * transaction open and was blocking on the quota lock - a ranking
707 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
708 * will _not_ run commit under these circumstances because handle->h_ref
709 * is elevated. We'll still have enough credits for the tiny quotafile
712 static int do_journal_get_write_access(handle_t *handle,
713 struct buffer_head *bh)
715 int dirty = buffer_dirty(bh);
718 if (!buffer_mapped(bh) || buffer_freed(bh))
721 * __block_write_begin() could have dirtied some buffers. Clean
722 * the dirty bit as jbd2_journal_get_write_access() could complain
723 * otherwise about fs integrity issues. Setting of the dirty bit
724 * by __block_write_begin() isn't a real problem here as we clear
725 * the bit before releasing a page lock and thus writeback cannot
726 * ever write the buffer.
729 clear_buffer_dirty(bh);
730 ret = ext4_journal_get_write_access(handle, bh);
732 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
736 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
737 struct buffer_head *bh_result, int create);
738 static int ext4_write_begin(struct file *file, struct address_space *mapping,
739 loff_t pos, unsigned len, unsigned flags,
740 struct page **pagep, void **fsdata)
742 struct inode *inode = mapping->host;
743 int ret, needed_blocks;
750 trace_ext4_write_begin(inode, pos, len, flags);
752 * Reserve one block more for addition to orphan list in case
753 * we allocate blocks but write fails for some reason
755 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
756 index = pos >> PAGE_CACHE_SHIFT;
757 from = pos & (PAGE_CACHE_SIZE - 1);
761 handle = ext4_journal_start(inode, needed_blocks);
762 if (IS_ERR(handle)) {
763 ret = PTR_ERR(handle);
767 /* We cannot recurse into the filesystem as the transaction is already
769 flags |= AOP_FLAG_NOFS;
771 page = grab_cache_page_write_begin(mapping, index, flags);
773 ext4_journal_stop(handle);
779 if (ext4_should_dioread_nolock(inode))
780 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
782 ret = __block_write_begin(page, pos, len, ext4_get_block);
784 if (!ret && ext4_should_journal_data(inode)) {
785 ret = walk_page_buffers(handle, page_buffers(page),
786 from, to, NULL, do_journal_get_write_access);
791 page_cache_release(page);
793 * __block_write_begin may have instantiated a few blocks
794 * outside i_size. Trim these off again. Don't need
795 * i_size_read because we hold i_mutex.
797 * Add inode to orphan list in case we crash before
800 if (pos + len > inode->i_size && ext4_can_truncate(inode))
801 ext4_orphan_add(handle, inode);
803 ext4_journal_stop(handle);
804 if (pos + len > inode->i_size) {
805 ext4_truncate_failed_write(inode);
807 * If truncate failed early the inode might
808 * still be on the orphan list; we need to
809 * make sure the inode is removed from the
810 * orphan list in that case.
813 ext4_orphan_del(NULL, inode);
817 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
823 /* For write_end() in data=journal mode */
824 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
826 if (!buffer_mapped(bh) || buffer_freed(bh))
828 set_buffer_uptodate(bh);
829 return ext4_handle_dirty_metadata(handle, NULL, bh);
832 static int ext4_generic_write_end(struct file *file,
833 struct address_space *mapping,
834 loff_t pos, unsigned len, unsigned copied,
835 struct page *page, void *fsdata)
837 int i_size_changed = 0;
838 struct inode *inode = mapping->host;
839 handle_t *handle = ext4_journal_current_handle();
841 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
844 * No need to use i_size_read() here, the i_size
845 * cannot change under us because we hold i_mutex.
847 * But it's important to update i_size while still holding page lock:
848 * page writeout could otherwise come in and zero beyond i_size.
850 if (pos + copied > inode->i_size) {
851 i_size_write(inode, pos + copied);
855 if (pos + copied > EXT4_I(inode)->i_disksize) {
856 /* We need to mark inode dirty even if
857 * new_i_size is less that inode->i_size
858 * bu greater than i_disksize.(hint delalloc)
860 ext4_update_i_disksize(inode, (pos + copied));
864 page_cache_release(page);
867 * Don't mark the inode dirty under page lock. First, it unnecessarily
868 * makes the holding time of page lock longer. Second, it forces lock
869 * ordering of page lock and transaction start for journaling
873 ext4_mark_inode_dirty(handle, inode);
879 * We need to pick up the new inode size which generic_commit_write gave us
880 * `file' can be NULL - eg, when called from page_symlink().
882 * ext4 never places buffers on inode->i_mapping->private_list. metadata
883 * buffers are managed internally.
885 static int ext4_ordered_write_end(struct file *file,
886 struct address_space *mapping,
887 loff_t pos, unsigned len, unsigned copied,
888 struct page *page, void *fsdata)
890 handle_t *handle = ext4_journal_current_handle();
891 struct inode *inode = mapping->host;
894 trace_ext4_ordered_write_end(inode, pos, len, copied);
895 ret = ext4_jbd2_file_inode(handle, inode);
898 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
901 if (pos + len > inode->i_size && ext4_can_truncate(inode))
902 /* if we have allocated more blocks and copied
903 * less. We will have blocks allocated outside
904 * inode->i_size. So truncate them
906 ext4_orphan_add(handle, inode);
910 ret2 = ext4_journal_stop(handle);
914 if (pos + len > inode->i_size) {
915 ext4_truncate_failed_write(inode);
917 * If truncate failed early the inode might still be
918 * on the orphan list; we need to make sure the inode
919 * is removed from the orphan list in that case.
922 ext4_orphan_del(NULL, inode);
926 return ret ? ret : copied;
929 static int ext4_writeback_write_end(struct file *file,
930 struct address_space *mapping,
931 loff_t pos, unsigned len, unsigned copied,
932 struct page *page, void *fsdata)
934 handle_t *handle = ext4_journal_current_handle();
935 struct inode *inode = mapping->host;
938 trace_ext4_writeback_write_end(inode, pos, len, copied);
939 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
942 if (pos + len > inode->i_size && ext4_can_truncate(inode))
943 /* if we have allocated more blocks and copied
944 * less. We will have blocks allocated outside
945 * inode->i_size. So truncate them
947 ext4_orphan_add(handle, inode);
952 ret2 = ext4_journal_stop(handle);
956 if (pos + len > inode->i_size) {
957 ext4_truncate_failed_write(inode);
959 * If truncate failed early the inode might still be
960 * on the orphan list; we need to make sure the inode
961 * is removed from the orphan list in that case.
964 ext4_orphan_del(NULL, inode);
967 return ret ? ret : copied;
970 static int ext4_journalled_write_end(struct file *file,
971 struct address_space *mapping,
972 loff_t pos, unsigned len, unsigned copied,
973 struct page *page, void *fsdata)
975 handle_t *handle = ext4_journal_current_handle();
976 struct inode *inode = mapping->host;
982 trace_ext4_journalled_write_end(inode, pos, len, copied);
983 from = pos & (PAGE_CACHE_SIZE - 1);
987 if (!PageUptodate(page))
989 page_zero_new_buffers(page, from+copied, to);
992 ret = walk_page_buffers(handle, page_buffers(page), from,
993 to, &partial, write_end_fn);
995 SetPageUptodate(page);
996 new_i_size = pos + copied;
997 if (new_i_size > inode->i_size)
998 i_size_write(inode, pos+copied);
999 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1000 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1001 if (new_i_size > EXT4_I(inode)->i_disksize) {
1002 ext4_update_i_disksize(inode, new_i_size);
1003 ret2 = ext4_mark_inode_dirty(handle, inode);
1009 page_cache_release(page);
1010 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1011 /* if we have allocated more blocks and copied
1012 * less. We will have blocks allocated outside
1013 * inode->i_size. So truncate them
1015 ext4_orphan_add(handle, inode);
1017 ret2 = ext4_journal_stop(handle);
1020 if (pos + len > inode->i_size) {
1021 ext4_truncate_failed_write(inode);
1023 * If truncate failed early the inode might still be
1024 * on the orphan list; we need to make sure the inode
1025 * is removed from the orphan list in that case.
1028 ext4_orphan_del(NULL, inode);
1031 return ret ? ret : copied;
1035 * Reserve a single block located at lblock
1037 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1040 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1041 struct ext4_inode_info *ei = EXT4_I(inode);
1042 unsigned long md_needed;
1046 * recalculate the amount of metadata blocks to reserve
1047 * in order to allocate nrblocks
1048 * worse case is one extent per block
1051 spin_lock(&ei->i_block_reservation_lock);
1052 md_needed = ext4_calc_metadata_amount(inode, lblock);
1053 trace_ext4_da_reserve_space(inode, md_needed);
1054 spin_unlock(&ei->i_block_reservation_lock);
1057 * We will charge metadata quota at writeout time; this saves
1058 * us from metadata over-estimation, though we may go over by
1059 * a small amount in the end. Here we just reserve for data.
1061 ret = dquot_reserve_block(inode, 1);
1065 * We do still charge estimated metadata to the sb though;
1066 * we cannot afford to run out of free blocks.
1068 if (ext4_claim_free_blocks(sbi, md_needed + 1, 0)) {
1069 dquot_release_reservation_block(inode, 1);
1070 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1076 spin_lock(&ei->i_block_reservation_lock);
1077 ei->i_reserved_data_blocks++;
1078 ei->i_reserved_meta_blocks += md_needed;
1079 spin_unlock(&ei->i_block_reservation_lock);
1081 return 0; /* success */
1084 static void ext4_da_release_space(struct inode *inode, int to_free)
1086 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1087 struct ext4_inode_info *ei = EXT4_I(inode);
1090 return; /* Nothing to release, exit */
1092 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1094 trace_ext4_da_release_space(inode, to_free);
1095 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1097 * if there aren't enough reserved blocks, then the
1098 * counter is messed up somewhere. Since this
1099 * function is called from invalidate page, it's
1100 * harmless to return without any action.
1102 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1103 "ino %lu, to_free %d with only %d reserved "
1104 "data blocks\n", inode->i_ino, to_free,
1105 ei->i_reserved_data_blocks);
1107 to_free = ei->i_reserved_data_blocks;
1109 ei->i_reserved_data_blocks -= to_free;
1111 if (ei->i_reserved_data_blocks == 0) {
1113 * We can release all of the reserved metadata blocks
1114 * only when we have written all of the delayed
1115 * allocation blocks.
1117 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1118 ei->i_reserved_meta_blocks);
1119 ei->i_reserved_meta_blocks = 0;
1120 ei->i_da_metadata_calc_len = 0;
1123 /* update fs dirty data blocks counter */
1124 percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1126 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1128 dquot_release_reservation_block(inode, to_free);
1131 static void ext4_da_page_release_reservation(struct page *page,
1132 unsigned long offset)
1135 struct buffer_head *head, *bh;
1136 unsigned int curr_off = 0;
1138 head = page_buffers(page);
1141 unsigned int next_off = curr_off + bh->b_size;
1143 if ((offset <= curr_off) && (buffer_delay(bh))) {
1145 clear_buffer_delay(bh);
1147 curr_off = next_off;
1148 } while ((bh = bh->b_this_page) != head);
1149 ext4_da_release_space(page->mapping->host, to_release);
1153 * Delayed allocation stuff
1157 * mpage_da_submit_io - walks through extent of pages and try to write
1158 * them with writepage() call back
1160 * @mpd->inode: inode
1161 * @mpd->first_page: first page of the extent
1162 * @mpd->next_page: page after the last page of the extent
1164 * By the time mpage_da_submit_io() is called we expect all blocks
1165 * to be allocated. this may be wrong if allocation failed.
1167 * As pages are already locked by write_cache_pages(), we can't use it
1169 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1170 struct ext4_map_blocks *map)
1172 struct pagevec pvec;
1173 unsigned long index, end;
1174 int ret = 0, err, nr_pages, i;
1175 struct inode *inode = mpd->inode;
1176 struct address_space *mapping = inode->i_mapping;
1177 loff_t size = i_size_read(inode);
1178 unsigned int len, block_start;
1179 struct buffer_head *bh, *page_bufs = NULL;
1180 int journal_data = ext4_should_journal_data(inode);
1181 sector_t pblock = 0, cur_logical = 0;
1182 struct ext4_io_submit io_submit;
1184 BUG_ON(mpd->next_page <= mpd->first_page);
1185 memset(&io_submit, 0, sizeof(io_submit));
1187 * We need to start from the first_page to the next_page - 1
1188 * to make sure we also write the mapped dirty buffer_heads.
1189 * If we look at mpd->b_blocknr we would only be looking
1190 * at the currently mapped buffer_heads.
1192 index = mpd->first_page;
1193 end = mpd->next_page - 1;
1195 pagevec_init(&pvec, 0);
1196 while (index <= end) {
1197 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1200 for (i = 0; i < nr_pages; i++) {
1201 int commit_write = 0, skip_page = 0;
1202 struct page *page = pvec.pages[i];
1204 index = page->index;
1208 if (index == size >> PAGE_CACHE_SHIFT)
1209 len = size & ~PAGE_CACHE_MASK;
1211 len = PAGE_CACHE_SIZE;
1213 cur_logical = index << (PAGE_CACHE_SHIFT -
1215 pblock = map->m_pblk + (cur_logical -
1220 BUG_ON(!PageLocked(page));
1221 BUG_ON(PageWriteback(page));
1224 * If the page does not have buffers (for
1225 * whatever reason), try to create them using
1226 * __block_write_begin. If this fails,
1227 * skip the page and move on.
1229 if (!page_has_buffers(page)) {
1230 if (__block_write_begin(page, 0, len,
1231 noalloc_get_block_write)) {
1239 bh = page_bufs = page_buffers(page);
1244 if (map && (cur_logical >= map->m_lblk) &&
1245 (cur_logical <= (map->m_lblk +
1246 (map->m_len - 1)))) {
1247 if (buffer_delay(bh)) {
1248 clear_buffer_delay(bh);
1249 bh->b_blocknr = pblock;
1251 if (buffer_unwritten(bh) ||
1253 BUG_ON(bh->b_blocknr != pblock);
1254 if (map->m_flags & EXT4_MAP_UNINIT)
1255 set_buffer_uninit(bh);
1256 clear_buffer_unwritten(bh);
1259 /* skip page if block allocation undone */
1260 if (buffer_delay(bh) || buffer_unwritten(bh))
1262 bh = bh->b_this_page;
1263 block_start += bh->b_size;
1266 } while (bh != page_bufs);
1272 /* mark the buffer_heads as dirty & uptodate */
1273 block_commit_write(page, 0, len);
1275 clear_page_dirty_for_io(page);
1277 * Delalloc doesn't support data journalling,
1278 * but eventually maybe we'll lift this
1281 if (unlikely(journal_data && PageChecked(page)))
1282 err = __ext4_journalled_writepage(page, len);
1283 else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1284 err = ext4_bio_write_page(&io_submit, page,
1287 err = block_write_full_page(page,
1288 noalloc_get_block_write, mpd->wbc);
1291 mpd->pages_written++;
1293 * In error case, we have to continue because
1294 * remaining pages are still locked
1299 pagevec_release(&pvec);
1301 ext4_io_submit(&io_submit);
1305 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1309 struct pagevec pvec;
1310 struct inode *inode = mpd->inode;
1311 struct address_space *mapping = inode->i_mapping;
1313 index = mpd->first_page;
1314 end = mpd->next_page - 1;
1315 while (index <= end) {
1316 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1319 for (i = 0; i < nr_pages; i++) {
1320 struct page *page = pvec.pages[i];
1321 if (page->index > end)
1323 BUG_ON(!PageLocked(page));
1324 BUG_ON(PageWriteback(page));
1325 block_invalidatepage(page, 0);
1326 ClearPageUptodate(page);
1329 index = pvec.pages[nr_pages - 1]->index + 1;
1330 pagevec_release(&pvec);
1335 static void ext4_print_free_blocks(struct inode *inode)
1337 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1338 printk(KERN_CRIT "Total free blocks count %lld\n",
1339 ext4_count_free_blocks(inode->i_sb));
1340 printk(KERN_CRIT "Free/Dirty block details\n");
1341 printk(KERN_CRIT "free_blocks=%lld\n",
1342 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
1343 printk(KERN_CRIT "dirty_blocks=%lld\n",
1344 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1345 printk(KERN_CRIT "Block reservation details\n");
1346 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
1347 EXT4_I(inode)->i_reserved_data_blocks);
1348 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
1349 EXT4_I(inode)->i_reserved_meta_blocks);
1354 * mpage_da_map_and_submit - go through given space, map them
1355 * if necessary, and then submit them for I/O
1357 * @mpd - bh describing space
1359 * The function skips space we know is already mapped to disk blocks.
1362 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1364 int err, blks, get_blocks_flags;
1365 struct ext4_map_blocks map, *mapp = NULL;
1366 sector_t next = mpd->b_blocknr;
1367 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1368 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1369 handle_t *handle = NULL;
1372 * If the blocks are mapped already, or we couldn't accumulate
1373 * any blocks, then proceed immediately to the submission stage.
1375 if ((mpd->b_size == 0) ||
1376 ((mpd->b_state & (1 << BH_Mapped)) &&
1377 !(mpd->b_state & (1 << BH_Delay)) &&
1378 !(mpd->b_state & (1 << BH_Unwritten))))
1381 handle = ext4_journal_current_handle();
1385 * Call ext4_map_blocks() to allocate any delayed allocation
1386 * blocks, or to convert an uninitialized extent to be
1387 * initialized (in the case where we have written into
1388 * one or more preallocated blocks).
1390 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1391 * indicate that we are on the delayed allocation path. This
1392 * affects functions in many different parts of the allocation
1393 * call path. This flag exists primarily because we don't
1394 * want to change *many* call functions, so ext4_map_blocks()
1395 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1396 * inode's allocation semaphore is taken.
1398 * If the blocks in questions were delalloc blocks, set
1399 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1400 * variables are updated after the blocks have been allocated.
1403 map.m_len = max_blocks;
1404 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1405 if (ext4_should_dioread_nolock(mpd->inode))
1406 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1407 if (mpd->b_state & (1 << BH_Delay))
1408 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1410 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1412 struct super_block *sb = mpd->inode->i_sb;
1416 * If get block returns EAGAIN or ENOSPC and there
1417 * appears to be free blocks we will just let
1418 * mpage_da_submit_io() unlock all of the pages.
1423 if (err == -ENOSPC &&
1424 ext4_count_free_blocks(sb)) {
1430 * get block failure will cause us to loop in
1431 * writepages, because a_ops->writepage won't be able
1432 * to make progress. The page will be redirtied by
1433 * writepage and writepages will again try to write
1436 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1437 ext4_msg(sb, KERN_CRIT,
1438 "delayed block allocation failed for inode %lu "
1439 "at logical offset %llu with max blocks %zd "
1440 "with error %d", mpd->inode->i_ino,
1441 (unsigned long long) next,
1442 mpd->b_size >> mpd->inode->i_blkbits, err);
1443 ext4_msg(sb, KERN_CRIT,
1444 "This should not happen!! Data will be lost\n");
1446 ext4_print_free_blocks(mpd->inode);
1448 /* invalidate all the pages */
1449 ext4_da_block_invalidatepages(mpd);
1451 /* Mark this page range as having been completed */
1458 if (map.m_flags & EXT4_MAP_NEW) {
1459 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1462 for (i = 0; i < map.m_len; i++)
1463 unmap_underlying_metadata(bdev, map.m_pblk + i);
1466 if (ext4_should_order_data(mpd->inode)) {
1467 err = ext4_jbd2_file_inode(handle, mpd->inode);
1469 /* This only happens if the journal is aborted */
1474 * Update on-disk size along with block allocation.
1476 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1477 if (disksize > i_size_read(mpd->inode))
1478 disksize = i_size_read(mpd->inode);
1479 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1480 ext4_update_i_disksize(mpd->inode, disksize);
1481 err = ext4_mark_inode_dirty(handle, mpd->inode);
1483 ext4_error(mpd->inode->i_sb,
1484 "Failed to mark inode %lu dirty",
1489 mpage_da_submit_io(mpd, mapp);
1493 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1494 (1 << BH_Delay) | (1 << BH_Unwritten))
1497 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1499 * @mpd->lbh - extent of blocks
1500 * @logical - logical number of the block in the file
1501 * @bh - bh of the block (used to access block's state)
1503 * the function is used to collect contig. blocks in same state
1505 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1506 sector_t logical, size_t b_size,
1507 unsigned long b_state)
1510 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1513 * XXX Don't go larger than mballoc is willing to allocate
1514 * This is a stopgap solution. We eventually need to fold
1515 * mpage_da_submit_io() into this function and then call
1516 * ext4_map_blocks() multiple times in a loop
1518 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1521 /* check if thereserved journal credits might overflow */
1522 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1523 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1525 * With non-extent format we are limited by the journal
1526 * credit available. Total credit needed to insert
1527 * nrblocks contiguous blocks is dependent on the
1528 * nrblocks. So limit nrblocks.
1531 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1532 EXT4_MAX_TRANS_DATA) {
1534 * Adding the new buffer_head would make it cross the
1535 * allowed limit for which we have journal credit
1536 * reserved. So limit the new bh->b_size
1538 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1539 mpd->inode->i_blkbits;
1540 /* we will do mpage_da_submit_io in the next loop */
1544 * First block in the extent
1546 if (mpd->b_size == 0) {
1547 mpd->b_blocknr = logical;
1548 mpd->b_size = b_size;
1549 mpd->b_state = b_state & BH_FLAGS;
1553 next = mpd->b_blocknr + nrblocks;
1555 * Can we merge the block to our big extent?
1557 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1558 mpd->b_size += b_size;
1564 * We couldn't merge the block to our extent, so we
1565 * need to flush current extent and start new one
1567 mpage_da_map_and_submit(mpd);
1571 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1573 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1577 * This is a special get_blocks_t callback which is used by
1578 * ext4_da_write_begin(). It will either return mapped block or
1579 * reserve space for a single block.
1581 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1582 * We also have b_blocknr = -1 and b_bdev initialized properly
1584 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1585 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1586 * initialized properly.
1588 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1589 struct buffer_head *bh, int create)
1591 struct ext4_map_blocks map;
1593 sector_t invalid_block = ~((sector_t) 0xffff);
1595 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1598 BUG_ON(create == 0);
1599 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1601 map.m_lblk = iblock;
1605 * first, we need to know whether the block is allocated already
1606 * preallocated blocks are unmapped but should treated
1607 * the same as allocated blocks.
1609 ret = ext4_map_blocks(NULL, inode, &map, 0);
1613 if (buffer_delay(bh))
1614 return 0; /* Not sure this could or should happen */
1616 * XXX: __block_write_begin() unmaps passed block, is it OK?
1618 ret = ext4_da_reserve_space(inode, iblock);
1620 /* not enough space to reserve */
1623 map_bh(bh, inode->i_sb, invalid_block);
1625 set_buffer_delay(bh);
1629 map_bh(bh, inode->i_sb, map.m_pblk);
1630 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1632 if (buffer_unwritten(bh)) {
1633 /* A delayed write to unwritten bh should be marked
1634 * new and mapped. Mapped ensures that we don't do
1635 * get_block multiple times when we write to the same
1636 * offset and new ensures that we do proper zero out
1637 * for partial write.
1640 set_buffer_mapped(bh);
1646 * This function is used as a standard get_block_t calback function
1647 * when there is no desire to allocate any blocks. It is used as a
1648 * callback function for block_write_begin() and block_write_full_page().
1649 * These functions should only try to map a single block at a time.
1651 * Since this function doesn't do block allocations even if the caller
1652 * requests it by passing in create=1, it is critically important that
1653 * any caller checks to make sure that any buffer heads are returned
1654 * by this function are either all already mapped or marked for
1655 * delayed allocation before calling block_write_full_page(). Otherwise,
1656 * b_blocknr could be left unitialized, and the page write functions will
1657 * be taken by surprise.
1659 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1660 struct buffer_head *bh_result, int create)
1662 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1663 return _ext4_get_block(inode, iblock, bh_result, 0);
1666 static int bget_one(handle_t *handle, struct buffer_head *bh)
1672 static int bput_one(handle_t *handle, struct buffer_head *bh)
1678 static int __ext4_journalled_writepage(struct page *page,
1681 struct address_space *mapping = page->mapping;
1682 struct inode *inode = mapping->host;
1683 struct buffer_head *page_bufs;
1684 handle_t *handle = NULL;
1688 ClearPageChecked(page);
1689 page_bufs = page_buffers(page);
1691 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1692 /* As soon as we unlock the page, it can go away, but we have
1693 * references to buffers so we are safe */
1696 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1697 if (IS_ERR(handle)) {
1698 ret = PTR_ERR(handle);
1702 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1703 do_journal_get_write_access);
1705 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1709 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1710 err = ext4_journal_stop(handle);
1714 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1715 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1720 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
1721 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
1724 * Note that we don't need to start a transaction unless we're journaling data
1725 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1726 * need to file the inode to the transaction's list in ordered mode because if
1727 * we are writing back data added by write(), the inode is already there and if
1728 * we are writing back data modified via mmap(), no one guarantees in which
1729 * transaction the data will hit the disk. In case we are journaling data, we
1730 * cannot start transaction directly because transaction start ranks above page
1731 * lock so we have to do some magic.
1733 * This function can get called via...
1734 * - ext4_da_writepages after taking page lock (have journal handle)
1735 * - journal_submit_inode_data_buffers (no journal handle)
1736 * - shrink_page_list via pdflush (no journal handle)
1737 * - grab_page_cache when doing write_begin (have journal handle)
1739 * We don't do any block allocation in this function. If we have page with
1740 * multiple blocks we need to write those buffer_heads that are mapped. This
1741 * is important for mmaped based write. So if we do with blocksize 1K
1742 * truncate(f, 1024);
1743 * a = mmap(f, 0, 4096);
1745 * truncate(f, 4096);
1746 * we have in the page first buffer_head mapped via page_mkwrite call back
1747 * but other bufer_heads would be unmapped but dirty(dirty done via the
1748 * do_wp_page). So writepage should write the first block. If we modify
1749 * the mmap area beyond 1024 we will again get a page_fault and the
1750 * page_mkwrite callback will do the block allocation and mark the
1751 * buffer_heads mapped.
1753 * We redirty the page if we have any buffer_heads that is either delay or
1754 * unwritten in the page.
1756 * We can get recursively called as show below.
1758 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1761 * But since we don't do any block allocation we should not deadlock.
1762 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1764 static int ext4_writepage(struct page *page,
1765 struct writeback_control *wbc)
1767 int ret = 0, commit_write = 0;
1770 struct buffer_head *page_bufs = NULL;
1771 struct inode *inode = page->mapping->host;
1773 trace_ext4_writepage(page);
1774 size = i_size_read(inode);
1775 if (page->index == size >> PAGE_CACHE_SHIFT)
1776 len = size & ~PAGE_CACHE_MASK;
1778 len = PAGE_CACHE_SIZE;
1781 * If the page does not have buffers (for whatever reason),
1782 * try to create them using __block_write_begin. If this
1783 * fails, redirty the page and move on.
1785 if (!page_has_buffers(page)) {
1786 if (__block_write_begin(page, 0, len,
1787 noalloc_get_block_write)) {
1789 redirty_page_for_writepage(wbc, page);
1795 page_bufs = page_buffers(page);
1796 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1797 ext4_bh_delay_or_unwritten)) {
1799 * We don't want to do block allocation, so redirty
1800 * the page and return. We may reach here when we do
1801 * a journal commit via journal_submit_inode_data_buffers.
1802 * We can also reach here via shrink_page_list
1807 /* now mark the buffer_heads as dirty and uptodate */
1808 block_commit_write(page, 0, len);
1810 if (PageChecked(page) && ext4_should_journal_data(inode))
1812 * It's mmapped pagecache. Add buffers and journal it. There
1813 * doesn't seem much point in redirtying the page here.
1815 return __ext4_journalled_writepage(page, len);
1817 if (buffer_uninit(page_bufs)) {
1818 ext4_set_bh_endio(page_bufs, inode);
1819 ret = block_write_full_page_endio(page, noalloc_get_block_write,
1820 wbc, ext4_end_io_buffer_write);
1822 ret = block_write_full_page(page, noalloc_get_block_write,
1829 * This is called via ext4_da_writepages() to
1830 * calculate the total number of credits to reserve to fit
1831 * a single extent allocation into a single transaction,
1832 * ext4_da_writpeages() will loop calling this before
1833 * the block allocation.
1836 static int ext4_da_writepages_trans_blocks(struct inode *inode)
1838 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
1841 * With non-extent format the journal credit needed to
1842 * insert nrblocks contiguous block is dependent on
1843 * number of contiguous block. So we will limit
1844 * number of contiguous block to a sane value
1846 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
1847 (max_blocks > EXT4_MAX_TRANS_DATA))
1848 max_blocks = EXT4_MAX_TRANS_DATA;
1850 return ext4_chunk_trans_blocks(inode, max_blocks);
1854 * write_cache_pages_da - walk the list of dirty pages of the given
1855 * address space and accumulate pages that need writing, and call
1856 * mpage_da_map_and_submit to map a single contiguous memory region
1857 * and then write them.
1859 static int write_cache_pages_da(struct address_space *mapping,
1860 struct writeback_control *wbc,
1861 struct mpage_da_data *mpd,
1862 pgoff_t *done_index)
1864 struct buffer_head *bh, *head;
1865 struct inode *inode = mapping->host;
1866 struct pagevec pvec;
1867 unsigned int nr_pages;
1870 long nr_to_write = wbc->nr_to_write;
1871 int i, tag, ret = 0;
1873 memset(mpd, 0, sizeof(struct mpage_da_data));
1876 pagevec_init(&pvec, 0);
1877 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1878 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1880 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1881 tag = PAGECACHE_TAG_TOWRITE;
1883 tag = PAGECACHE_TAG_DIRTY;
1885 *done_index = index;
1886 while (index <= end) {
1887 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1888 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1892 for (i = 0; i < nr_pages; i++) {
1893 struct page *page = pvec.pages[i];
1896 * At this point, the page may be truncated or
1897 * invalidated (changing page->mapping to NULL), or
1898 * even swizzled back from swapper_space to tmpfs file
1899 * mapping. However, page->index will not change
1900 * because we have a reference on the page.
1902 if (page->index > end)
1905 *done_index = page->index + 1;
1908 * If we can't merge this page, and we have
1909 * accumulated an contiguous region, write it
1911 if ((mpd->next_page != page->index) &&
1912 (mpd->next_page != mpd->first_page)) {
1913 mpage_da_map_and_submit(mpd);
1914 goto ret_extent_tail;
1920 * If the page is no longer dirty, or its
1921 * mapping no longer corresponds to inode we
1922 * are writing (which means it has been
1923 * truncated or invalidated), or the page is
1924 * already under writeback and we are not
1925 * doing a data integrity writeback, skip the page
1927 if (!PageDirty(page) ||
1928 (PageWriteback(page) &&
1929 (wbc->sync_mode == WB_SYNC_NONE)) ||
1930 unlikely(page->mapping != mapping)) {
1935 wait_on_page_writeback(page);
1936 BUG_ON(PageWriteback(page));
1938 if (mpd->next_page != page->index)
1939 mpd->first_page = page->index;
1940 mpd->next_page = page->index + 1;
1941 logical = (sector_t) page->index <<
1942 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1944 if (!page_has_buffers(page)) {
1945 mpage_add_bh_to_extent(mpd, logical,
1947 (1 << BH_Dirty) | (1 << BH_Uptodate));
1949 goto ret_extent_tail;
1952 * Page with regular buffer heads,
1953 * just add all dirty ones
1955 head = page_buffers(page);
1958 BUG_ON(buffer_locked(bh));
1960 * We need to try to allocate
1961 * unmapped blocks in the same page.
1962 * Otherwise we won't make progress
1963 * with the page in ext4_writepage
1965 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
1966 mpage_add_bh_to_extent(mpd, logical,
1970 goto ret_extent_tail;
1971 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
1973 * mapped dirty buffer. We need
1974 * to update the b_state
1975 * because we look at b_state
1976 * in mpage_da_map_blocks. We
1977 * don't update b_size because
1978 * if we find an unmapped
1979 * buffer_head later we need to
1980 * use the b_state flag of that
1983 if (mpd->b_size == 0)
1984 mpd->b_state = bh->b_state & BH_FLAGS;
1987 } while ((bh = bh->b_this_page) != head);
1990 if (nr_to_write > 0) {
1992 if (nr_to_write == 0 &&
1993 wbc->sync_mode == WB_SYNC_NONE)
1995 * We stop writing back only if we are
1996 * not doing integrity sync. In case of
1997 * integrity sync we have to keep going
1998 * because someone may be concurrently
1999 * dirtying pages, and we might have
2000 * synced a lot of newly appeared dirty
2001 * pages, but have not synced all of the
2007 pagevec_release(&pvec);
2012 ret = MPAGE_DA_EXTENT_TAIL;
2014 pagevec_release(&pvec);
2020 static int ext4_da_writepages(struct address_space *mapping,
2021 struct writeback_control *wbc)
2024 int range_whole = 0;
2025 handle_t *handle = NULL;
2026 struct mpage_da_data mpd;
2027 struct inode *inode = mapping->host;
2028 int pages_written = 0;
2029 unsigned int max_pages;
2030 int range_cyclic, cycled = 1, io_done = 0;
2031 int needed_blocks, ret = 0;
2032 long desired_nr_to_write, nr_to_writebump = 0;
2033 loff_t range_start = wbc->range_start;
2034 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2035 pgoff_t done_index = 0;
2038 trace_ext4_da_writepages(inode, wbc);
2041 * No pages to write? This is mainly a kludge to avoid starting
2042 * a transaction for special inodes like journal inode on last iput()
2043 * because that could violate lock ordering on umount
2045 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2049 * If the filesystem has aborted, it is read-only, so return
2050 * right away instead of dumping stack traces later on that
2051 * will obscure the real source of the problem. We test
2052 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2053 * the latter could be true if the filesystem is mounted
2054 * read-only, and in that case, ext4_da_writepages should
2055 * *never* be called, so if that ever happens, we would want
2058 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2061 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2064 range_cyclic = wbc->range_cyclic;
2065 if (wbc->range_cyclic) {
2066 index = mapping->writeback_index;
2069 wbc->range_start = index << PAGE_CACHE_SHIFT;
2070 wbc->range_end = LLONG_MAX;
2071 wbc->range_cyclic = 0;
2074 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2075 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2079 * This works around two forms of stupidity. The first is in
2080 * the writeback code, which caps the maximum number of pages
2081 * written to be 1024 pages. This is wrong on multiple
2082 * levels; different architectues have a different page size,
2083 * which changes the maximum amount of data which gets
2084 * written. Secondly, 4 megabytes is way too small. XFS
2085 * forces this value to be 16 megabytes by multiplying
2086 * nr_to_write parameter by four, and then relies on its
2087 * allocator to allocate larger extents to make them
2088 * contiguous. Unfortunately this brings us to the second
2089 * stupidity, which is that ext4's mballoc code only allocates
2090 * at most 2048 blocks. So we force contiguous writes up to
2091 * the number of dirty blocks in the inode, or
2092 * sbi->max_writeback_mb_bump whichever is smaller.
2094 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2095 if (!range_cyclic && range_whole) {
2096 if (wbc->nr_to_write == LONG_MAX)
2097 desired_nr_to_write = wbc->nr_to_write;
2099 desired_nr_to_write = wbc->nr_to_write * 8;
2101 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2103 if (desired_nr_to_write > max_pages)
2104 desired_nr_to_write = max_pages;
2106 if (wbc->nr_to_write < desired_nr_to_write) {
2107 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2108 wbc->nr_to_write = desired_nr_to_write;
2112 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2113 tag_pages_for_writeback(mapping, index, end);
2115 while (!ret && wbc->nr_to_write > 0) {
2118 * we insert one extent at a time. So we need
2119 * credit needed for single extent allocation.
2120 * journalled mode is currently not supported
2123 BUG_ON(ext4_should_journal_data(inode));
2124 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2126 /* start a new transaction*/
2127 handle = ext4_journal_start(inode, needed_blocks);
2128 if (IS_ERR(handle)) {
2129 ret = PTR_ERR(handle);
2130 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2131 "%ld pages, ino %lu; err %d", __func__,
2132 wbc->nr_to_write, inode->i_ino, ret);
2133 goto out_writepages;
2137 * Now call write_cache_pages_da() to find the next
2138 * contiguous region of logical blocks that need
2139 * blocks to be allocated by ext4 and submit them.
2141 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2143 * If we have a contiguous extent of pages and we
2144 * haven't done the I/O yet, map the blocks and submit
2147 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2148 mpage_da_map_and_submit(&mpd);
2149 ret = MPAGE_DA_EXTENT_TAIL;
2151 trace_ext4_da_write_pages(inode, &mpd);
2152 wbc->nr_to_write -= mpd.pages_written;
2154 ext4_journal_stop(handle);
2156 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2157 /* commit the transaction which would
2158 * free blocks released in the transaction
2161 jbd2_journal_force_commit_nested(sbi->s_journal);
2163 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2165 * got one extent now try with
2168 pages_written += mpd.pages_written;
2171 } else if (wbc->nr_to_write)
2173 * There is no more writeout needed
2174 * or we requested for a noblocking writeout
2175 * and we found the device congested
2179 if (!io_done && !cycled) {
2182 wbc->range_start = index << PAGE_CACHE_SHIFT;
2183 wbc->range_end = mapping->writeback_index - 1;
2188 wbc->range_cyclic = range_cyclic;
2189 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2191 * set the writeback_index so that range_cyclic
2192 * mode will write it back later
2194 mapping->writeback_index = done_index;
2197 wbc->nr_to_write -= nr_to_writebump;
2198 wbc->range_start = range_start;
2199 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2203 #define FALL_BACK_TO_NONDELALLOC 1
2204 static int ext4_nonda_switch(struct super_block *sb)
2206 s64 free_blocks, dirty_blocks;
2207 struct ext4_sb_info *sbi = EXT4_SB(sb);
2210 * switch to non delalloc mode if we are running low
2211 * on free block. The free block accounting via percpu
2212 * counters can get slightly wrong with percpu_counter_batch getting
2213 * accumulated on each CPU without updating global counters
2214 * Delalloc need an accurate free block accounting. So switch
2215 * to non delalloc when we are near to error range.
2217 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2218 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2219 if (2 * free_blocks < 3 * dirty_blocks ||
2220 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2222 * free block count is less than 150% of dirty blocks
2223 * or free blocks is less than watermark
2228 * Even if we don't switch but are nearing capacity,
2229 * start pushing delalloc when 1/2 of free blocks are dirty.
2231 if (free_blocks < 2 * dirty_blocks)
2232 writeback_inodes_sb_if_idle(sb);
2237 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2238 loff_t pos, unsigned len, unsigned flags,
2239 struct page **pagep, void **fsdata)
2241 int ret, retries = 0;
2244 struct inode *inode = mapping->host;
2247 index = pos >> PAGE_CACHE_SHIFT;
2249 if (ext4_nonda_switch(inode->i_sb)) {
2250 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2251 return ext4_write_begin(file, mapping, pos,
2252 len, flags, pagep, fsdata);
2254 *fsdata = (void *)0;
2255 trace_ext4_da_write_begin(inode, pos, len, flags);
2258 * With delayed allocation, we don't log the i_disksize update
2259 * if there is delayed block allocation. But we still need
2260 * to journalling the i_disksize update if writes to the end
2261 * of file which has an already mapped buffer.
2263 handle = ext4_journal_start(inode, 1);
2264 if (IS_ERR(handle)) {
2265 ret = PTR_ERR(handle);
2268 /* We cannot recurse into the filesystem as the transaction is already
2270 flags |= AOP_FLAG_NOFS;
2272 page = grab_cache_page_write_begin(mapping, index, flags);
2274 ext4_journal_stop(handle);
2280 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2283 ext4_journal_stop(handle);
2284 page_cache_release(page);
2286 * block_write_begin may have instantiated a few blocks
2287 * outside i_size. Trim these off again. Don't need
2288 * i_size_read because we hold i_mutex.
2290 if (pos + len > inode->i_size)
2291 ext4_truncate_failed_write(inode);
2294 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2301 * Check if we should update i_disksize
2302 * when write to the end of file but not require block allocation
2304 static int ext4_da_should_update_i_disksize(struct page *page,
2305 unsigned long offset)
2307 struct buffer_head *bh;
2308 struct inode *inode = page->mapping->host;
2312 bh = page_buffers(page);
2313 idx = offset >> inode->i_blkbits;
2315 for (i = 0; i < idx; i++)
2316 bh = bh->b_this_page;
2318 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2323 static int ext4_da_write_end(struct file *file,
2324 struct address_space *mapping,
2325 loff_t pos, unsigned len, unsigned copied,
2326 struct page *page, void *fsdata)
2328 struct inode *inode = mapping->host;
2330 handle_t *handle = ext4_journal_current_handle();
2332 unsigned long start, end;
2333 int write_mode = (int)(unsigned long)fsdata;
2335 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2336 if (ext4_should_order_data(inode)) {
2337 return ext4_ordered_write_end(file, mapping, pos,
2338 len, copied, page, fsdata);
2339 } else if (ext4_should_writeback_data(inode)) {
2340 return ext4_writeback_write_end(file, mapping, pos,
2341 len, copied, page, fsdata);
2347 trace_ext4_da_write_end(inode, pos, len, copied);
2348 start = pos & (PAGE_CACHE_SIZE - 1);
2349 end = start + copied - 1;
2352 * generic_write_end() will run mark_inode_dirty() if i_size
2353 * changes. So let's piggyback the i_disksize mark_inode_dirty
2357 new_i_size = pos + copied;
2358 if (new_i_size > EXT4_I(inode)->i_disksize) {
2359 if (ext4_da_should_update_i_disksize(page, end)) {
2360 down_write(&EXT4_I(inode)->i_data_sem);
2361 if (new_i_size > EXT4_I(inode)->i_disksize) {
2363 * Updating i_disksize when extending file
2364 * without needing block allocation
2366 if (ext4_should_order_data(inode))
2367 ret = ext4_jbd2_file_inode(handle,
2370 EXT4_I(inode)->i_disksize = new_i_size;
2372 up_write(&EXT4_I(inode)->i_data_sem);
2373 /* We need to mark inode dirty even if
2374 * new_i_size is less that inode->i_size
2375 * bu greater than i_disksize.(hint delalloc)
2377 ext4_mark_inode_dirty(handle, inode);
2380 ret2 = generic_write_end(file, mapping, pos, len, copied,
2385 ret2 = ext4_journal_stop(handle);
2389 return ret ? ret : copied;
2392 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2395 * Drop reserved blocks
2397 BUG_ON(!PageLocked(page));
2398 if (!page_has_buffers(page))
2401 ext4_da_page_release_reservation(page, offset);
2404 ext4_invalidatepage(page, offset);
2410 * Force all delayed allocation blocks to be allocated for a given inode.
2412 int ext4_alloc_da_blocks(struct inode *inode)
2414 trace_ext4_alloc_da_blocks(inode);
2416 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2417 !EXT4_I(inode)->i_reserved_meta_blocks)
2421 * We do something simple for now. The filemap_flush() will
2422 * also start triggering a write of the data blocks, which is
2423 * not strictly speaking necessary (and for users of
2424 * laptop_mode, not even desirable). However, to do otherwise
2425 * would require replicating code paths in:
2427 * ext4_da_writepages() ->
2428 * write_cache_pages() ---> (via passed in callback function)
2429 * __mpage_da_writepage() -->
2430 * mpage_add_bh_to_extent()
2431 * mpage_da_map_blocks()
2433 * The problem is that write_cache_pages(), located in
2434 * mm/page-writeback.c, marks pages clean in preparation for
2435 * doing I/O, which is not desirable if we're not planning on
2438 * We could call write_cache_pages(), and then redirty all of
2439 * the pages by calling redirty_page_for_writepage() but that
2440 * would be ugly in the extreme. So instead we would need to
2441 * replicate parts of the code in the above functions,
2442 * simplifying them because we wouldn't actually intend to
2443 * write out the pages, but rather only collect contiguous
2444 * logical block extents, call the multi-block allocator, and
2445 * then update the buffer heads with the block allocations.
2447 * For now, though, we'll cheat by calling filemap_flush(),
2448 * which will map the blocks, and start the I/O, but not
2449 * actually wait for the I/O to complete.
2451 return filemap_flush(inode->i_mapping);
2455 * bmap() is special. It gets used by applications such as lilo and by
2456 * the swapper to find the on-disk block of a specific piece of data.
2458 * Naturally, this is dangerous if the block concerned is still in the
2459 * journal. If somebody makes a swapfile on an ext4 data-journaling
2460 * filesystem and enables swap, then they may get a nasty shock when the
2461 * data getting swapped to that swapfile suddenly gets overwritten by
2462 * the original zero's written out previously to the journal and
2463 * awaiting writeback in the kernel's buffer cache.
2465 * So, if we see any bmap calls here on a modified, data-journaled file,
2466 * take extra steps to flush any blocks which might be in the cache.
2468 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2470 struct inode *inode = mapping->host;
2474 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2475 test_opt(inode->i_sb, DELALLOC)) {
2477 * With delalloc we want to sync the file
2478 * so that we can make sure we allocate
2481 filemap_write_and_wait(mapping);
2484 if (EXT4_JOURNAL(inode) &&
2485 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2487 * This is a REALLY heavyweight approach, but the use of
2488 * bmap on dirty files is expected to be extremely rare:
2489 * only if we run lilo or swapon on a freshly made file
2490 * do we expect this to happen.
2492 * (bmap requires CAP_SYS_RAWIO so this does not
2493 * represent an unprivileged user DOS attack --- we'd be
2494 * in trouble if mortal users could trigger this path at
2497 * NB. EXT4_STATE_JDATA is not set on files other than
2498 * regular files. If somebody wants to bmap a directory
2499 * or symlink and gets confused because the buffer
2500 * hasn't yet been flushed to disk, they deserve
2501 * everything they get.
2504 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2505 journal = EXT4_JOURNAL(inode);
2506 jbd2_journal_lock_updates(journal);
2507 err = jbd2_journal_flush(journal);
2508 jbd2_journal_unlock_updates(journal);
2514 return generic_block_bmap(mapping, block, ext4_get_block);
2517 static int ext4_readpage(struct file *file, struct page *page)
2519 trace_ext4_readpage(page);
2520 return mpage_readpage(page, ext4_get_block);
2524 ext4_readpages(struct file *file, struct address_space *mapping,
2525 struct list_head *pages, unsigned nr_pages)
2527 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2530 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2532 struct buffer_head *head, *bh;
2533 unsigned int curr_off = 0;
2535 if (!page_has_buffers(page))
2537 head = bh = page_buffers(page);
2539 if (offset <= curr_off && test_clear_buffer_uninit(bh)
2541 ext4_free_io_end(bh->b_private);
2542 bh->b_private = NULL;
2543 bh->b_end_io = NULL;
2545 curr_off = curr_off + bh->b_size;
2546 bh = bh->b_this_page;
2547 } while (bh != head);
2550 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2552 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2554 trace_ext4_invalidatepage(page, offset);
2557 * free any io_end structure allocated for buffers to be discarded
2559 if (ext4_should_dioread_nolock(page->mapping->host))
2560 ext4_invalidatepage_free_endio(page, offset);
2562 * If it's a full truncate we just forget about the pending dirtying
2565 ClearPageChecked(page);
2568 jbd2_journal_invalidatepage(journal, page, offset);
2570 block_invalidatepage(page, offset);
2573 static int ext4_releasepage(struct page *page, gfp_t wait)
2575 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2577 trace_ext4_releasepage(page);
2579 WARN_ON(PageChecked(page));
2580 if (!page_has_buffers(page))
2583 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2585 return try_to_free_buffers(page);
2589 * ext4_get_block used when preparing for a DIO write or buffer write.
2590 * We allocate an uinitialized extent if blocks haven't been allocated.
2591 * The extent will be converted to initialized after the IO is complete.
2593 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2594 struct buffer_head *bh_result, int create)
2596 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2597 inode->i_ino, create);
2598 return _ext4_get_block(inode, iblock, bh_result,
2599 EXT4_GET_BLOCKS_IO_CREATE_EXT);
2602 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2603 ssize_t size, void *private, int ret,
2606 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2607 ext4_io_end_t *io_end = iocb->private;
2608 struct workqueue_struct *wq;
2609 unsigned long flags;
2610 struct ext4_inode_info *ei;
2612 /* if not async direct IO or dio with 0 bytes write, just return */
2613 if (!io_end || !size)
2616 ext_debug("ext4_end_io_dio(): io_end 0x%p"
2617 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
2618 iocb->private, io_end->inode->i_ino, iocb, offset,
2621 /* if not aio dio with unwritten extents, just free io and return */
2622 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2623 ext4_free_io_end(io_end);
2624 iocb->private = NULL;
2627 aio_complete(iocb, ret, 0);
2628 inode_dio_done(inode);
2632 io_end->offset = offset;
2633 io_end->size = size;
2635 io_end->iocb = iocb;
2636 io_end->result = ret;
2638 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
2640 /* Add the io_end to per-inode completed aio dio list*/
2641 ei = EXT4_I(io_end->inode);
2642 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
2643 list_add_tail(&io_end->list, &ei->i_completed_io_list);
2644 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
2646 /* queue the work to convert unwritten extents to written */
2647 queue_work(wq, &io_end->work);
2648 iocb->private = NULL;
2650 /* XXX: probably should move into the real I/O completion handler */
2651 inode_dio_done(inode);
2654 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2656 ext4_io_end_t *io_end = bh->b_private;
2657 struct workqueue_struct *wq;
2658 struct inode *inode;
2659 unsigned long flags;
2661 if (!test_clear_buffer_uninit(bh) || !io_end)
2664 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2665 printk("sb umounted, discard end_io request for inode %lu\n",
2666 io_end->inode->i_ino);
2667 ext4_free_io_end(io_end);
2671 io_end->flag = EXT4_IO_END_UNWRITTEN;
2672 inode = io_end->inode;
2674 /* Add the io_end to per-inode completed io list*/
2675 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
2676 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
2677 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
2679 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
2680 /* queue the work to convert unwritten extents to written */
2681 queue_work(wq, &io_end->work);
2683 bh->b_private = NULL;
2684 bh->b_end_io = NULL;
2685 clear_buffer_uninit(bh);
2686 end_buffer_async_write(bh, uptodate);
2689 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2691 ext4_io_end_t *io_end;
2692 struct page *page = bh->b_page;
2693 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2694 size_t size = bh->b_size;
2697 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2699 pr_warn_ratelimited("%s: allocation fail\n", __func__);
2703 io_end->offset = offset;
2704 io_end->size = size;
2706 * We need to hold a reference to the page to make sure it
2707 * doesn't get evicted before ext4_end_io_work() has a chance
2708 * to convert the extent from written to unwritten.
2710 io_end->page = page;
2711 get_page(io_end->page);
2713 bh->b_private = io_end;
2714 bh->b_end_io = ext4_end_io_buffer_write;
2719 * For ext4 extent files, ext4 will do direct-io write to holes,
2720 * preallocated extents, and those write extend the file, no need to
2721 * fall back to buffered IO.
2723 * For holes, we fallocate those blocks, mark them as uninitialized
2724 * If those blocks were preallocated, we mark sure they are splited, but
2725 * still keep the range to write as uninitialized.
2727 * The unwrritten extents will be converted to written when DIO is completed.
2728 * For async direct IO, since the IO may still pending when return, we
2729 * set up an end_io call back function, which will do the conversion
2730 * when async direct IO completed.
2732 * If the O_DIRECT write will extend the file then add this inode to the
2733 * orphan list. So recovery will truncate it back to the original size
2734 * if the machine crashes during the write.
2737 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2738 const struct iovec *iov, loff_t offset,
2739 unsigned long nr_segs)
2741 struct file *file = iocb->ki_filp;
2742 struct inode *inode = file->f_mapping->host;
2744 size_t count = iov_length(iov, nr_segs);
2746 loff_t final_size = offset + count;
2747 if (rw == WRITE && final_size <= inode->i_size) {
2749 * We could direct write to holes and fallocate.
2751 * Allocated blocks to fill the hole are marked as uninitialized
2752 * to prevent parallel buffered read to expose the stale data
2753 * before DIO complete the data IO.
2755 * As to previously fallocated extents, ext4 get_block
2756 * will just simply mark the buffer mapped but still
2757 * keep the extents uninitialized.
2759 * for non AIO case, we will convert those unwritten extents
2760 * to written after return back from blockdev_direct_IO.
2762 * for async DIO, the conversion needs to be defered when
2763 * the IO is completed. The ext4 end_io callback function
2764 * will be called to take care of the conversion work.
2765 * Here for async case, we allocate an io_end structure to
2768 iocb->private = NULL;
2769 EXT4_I(inode)->cur_aio_dio = NULL;
2770 if (!is_sync_kiocb(iocb)) {
2771 iocb->private = ext4_init_io_end(inode, GFP_NOFS);
2775 * we save the io structure for current async
2776 * direct IO, so that later ext4_map_blocks()
2777 * could flag the io structure whether there
2778 * is a unwritten extents needs to be converted
2779 * when IO is completed.
2781 EXT4_I(inode)->cur_aio_dio = iocb->private;
2784 ret = __blockdev_direct_IO(rw, iocb, inode,
2785 inode->i_sb->s_bdev, iov,
2787 ext4_get_block_write,
2790 DIO_LOCKING | DIO_SKIP_HOLES);
2792 EXT4_I(inode)->cur_aio_dio = NULL;
2794 * The io_end structure takes a reference to the inode,
2795 * that structure needs to be destroyed and the
2796 * reference to the inode need to be dropped, when IO is
2797 * complete, even with 0 byte write, or failed.
2799 * In the successful AIO DIO case, the io_end structure will be
2800 * desctroyed and the reference to the inode will be dropped
2801 * after the end_io call back function is called.
2803 * In the case there is 0 byte write, or error case, since
2804 * VFS direct IO won't invoke the end_io call back function,
2805 * we need to free the end_io structure here.
2807 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
2808 ext4_free_io_end(iocb->private);
2809 iocb->private = NULL;
2810 } else if (ret > 0 && ext4_test_inode_state(inode,
2811 EXT4_STATE_DIO_UNWRITTEN)) {
2814 * for non AIO case, since the IO is already
2815 * completed, we could do the conversion right here
2817 err = ext4_convert_unwritten_extents(inode,
2821 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
2826 /* for write the the end of file case, we fall back to old way */
2827 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2830 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2831 const struct iovec *iov, loff_t offset,
2832 unsigned long nr_segs)
2834 struct file *file = iocb->ki_filp;
2835 struct inode *inode = file->f_mapping->host;
2838 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
2839 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
2840 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
2842 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2843 trace_ext4_direct_IO_exit(inode, offset,
2844 iov_length(iov, nr_segs), rw, ret);
2849 * Pages can be marked dirty completely asynchronously from ext4's journalling
2850 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
2851 * much here because ->set_page_dirty is called under VFS locks. The page is
2852 * not necessarily locked.
2854 * We cannot just dirty the page and leave attached buffers clean, because the
2855 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
2856 * or jbddirty because all the journalling code will explode.
2858 * So what we do is to mark the page "pending dirty" and next time writepage
2859 * is called, propagate that into the buffers appropriately.
2861 static int ext4_journalled_set_page_dirty(struct page *page)
2863 SetPageChecked(page);
2864 return __set_page_dirty_nobuffers(page);
2867 static const struct address_space_operations ext4_ordered_aops = {
2868 .readpage = ext4_readpage,
2869 .readpages = ext4_readpages,
2870 .writepage = ext4_writepage,
2871 .write_begin = ext4_write_begin,
2872 .write_end = ext4_ordered_write_end,
2874 .invalidatepage = ext4_invalidatepage,
2875 .releasepage = ext4_releasepage,
2876 .direct_IO = ext4_direct_IO,
2877 .migratepage = buffer_migrate_page,
2878 .is_partially_uptodate = block_is_partially_uptodate,
2879 .error_remove_page = generic_error_remove_page,
2882 static const struct address_space_operations ext4_writeback_aops = {
2883 .readpage = ext4_readpage,
2884 .readpages = ext4_readpages,
2885 .writepage = ext4_writepage,
2886 .write_begin = ext4_write_begin,
2887 .write_end = ext4_writeback_write_end,
2889 .invalidatepage = ext4_invalidatepage,
2890 .releasepage = ext4_releasepage,
2891 .direct_IO = ext4_direct_IO,
2892 .migratepage = buffer_migrate_page,
2893 .is_partially_uptodate = block_is_partially_uptodate,
2894 .error_remove_page = generic_error_remove_page,
2897 static const struct address_space_operations ext4_journalled_aops = {
2898 .readpage = ext4_readpage,
2899 .readpages = ext4_readpages,
2900 .writepage = ext4_writepage,
2901 .write_begin = ext4_write_begin,
2902 .write_end = ext4_journalled_write_end,
2903 .set_page_dirty = ext4_journalled_set_page_dirty,
2905 .invalidatepage = ext4_invalidatepage,
2906 .releasepage = ext4_releasepage,
2907 .is_partially_uptodate = block_is_partially_uptodate,
2908 .error_remove_page = generic_error_remove_page,
2911 static const struct address_space_operations ext4_da_aops = {
2912 .readpage = ext4_readpage,
2913 .readpages = ext4_readpages,
2914 .writepage = ext4_writepage,
2915 .writepages = ext4_da_writepages,
2916 .write_begin = ext4_da_write_begin,
2917 .write_end = ext4_da_write_end,
2919 .invalidatepage = ext4_da_invalidatepage,
2920 .releasepage = ext4_releasepage,
2921 .direct_IO = ext4_direct_IO,
2922 .migratepage = buffer_migrate_page,
2923 .is_partially_uptodate = block_is_partially_uptodate,
2924 .error_remove_page = generic_error_remove_page,
2927 void ext4_set_aops(struct inode *inode)
2929 if (ext4_should_order_data(inode) &&
2930 test_opt(inode->i_sb, DELALLOC))
2931 inode->i_mapping->a_ops = &ext4_da_aops;
2932 else if (ext4_should_order_data(inode))
2933 inode->i_mapping->a_ops = &ext4_ordered_aops;
2934 else if (ext4_should_writeback_data(inode) &&
2935 test_opt(inode->i_sb, DELALLOC))
2936 inode->i_mapping->a_ops = &ext4_da_aops;
2937 else if (ext4_should_writeback_data(inode))
2938 inode->i_mapping->a_ops = &ext4_writeback_aops;
2940 inode->i_mapping->a_ops = &ext4_journalled_aops;
2944 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
2945 * up to the end of the block which corresponds to `from'.
2946 * This required during truncate. We need to physically zero the tail end
2947 * of that block so it doesn't yield old data if the file is later grown.
2949 int ext4_block_truncate_page(handle_t *handle,
2950 struct address_space *mapping, loff_t from)
2952 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2955 struct inode *inode = mapping->host;
2957 blocksize = inode->i_sb->s_blocksize;
2958 length = blocksize - (offset & (blocksize - 1));
2960 return ext4_block_zero_page_range(handle, mapping, from, length);
2964 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
2965 * starting from file offset 'from'. The range to be zero'd must
2966 * be contained with in one block. If the specified range exceeds
2967 * the end of the block it will be shortened to end of the block
2968 * that cooresponds to 'from'
2970 int ext4_block_zero_page_range(handle_t *handle,
2971 struct address_space *mapping, loff_t from, loff_t length)
2973 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
2974 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2975 unsigned blocksize, max, pos;
2977 struct inode *inode = mapping->host;
2978 struct buffer_head *bh;
2982 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
2983 mapping_gfp_mask(mapping) & ~__GFP_FS);
2987 blocksize = inode->i_sb->s_blocksize;
2988 max = blocksize - (offset & (blocksize - 1));
2991 * correct length if it does not fall between
2992 * 'from' and the end of the block
2994 if (length > max || length < 0)
2997 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2999 if (!page_has_buffers(page))
3000 create_empty_buffers(page, blocksize, 0);
3002 /* Find the buffer that contains "offset" */
3003 bh = page_buffers(page);
3005 while (offset >= pos) {
3006 bh = bh->b_this_page;
3012 if (buffer_freed(bh)) {
3013 BUFFER_TRACE(bh, "freed: skip");
3017 if (!buffer_mapped(bh)) {
3018 BUFFER_TRACE(bh, "unmapped");
3019 ext4_get_block(inode, iblock, bh, 0);
3020 /* unmapped? It's a hole - nothing to do */
3021 if (!buffer_mapped(bh)) {
3022 BUFFER_TRACE(bh, "still unmapped");
3027 /* Ok, it's mapped. Make sure it's up-to-date */
3028 if (PageUptodate(page))
3029 set_buffer_uptodate(bh);
3031 if (!buffer_uptodate(bh)) {
3033 ll_rw_block(READ, 1, &bh);
3035 /* Uhhuh. Read error. Complain and punt. */
3036 if (!buffer_uptodate(bh))
3040 if (ext4_should_journal_data(inode)) {
3041 BUFFER_TRACE(bh, "get write access");
3042 err = ext4_journal_get_write_access(handle, bh);
3047 zero_user(page, offset, length);
3049 BUFFER_TRACE(bh, "zeroed end of block");
3052 if (ext4_should_journal_data(inode)) {
3053 err = ext4_handle_dirty_metadata(handle, inode, bh);
3055 if (ext4_should_order_data(inode) && EXT4_I(inode)->jinode)
3056 err = ext4_jbd2_file_inode(handle, inode);
3057 mark_buffer_dirty(bh);
3062 page_cache_release(page);
3066 int ext4_can_truncate(struct inode *inode)
3068 if (S_ISREG(inode->i_mode))
3070 if (S_ISDIR(inode->i_mode))
3072 if (S_ISLNK(inode->i_mode))
3073 return !ext4_inode_is_fast_symlink(inode);
3078 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3079 * associated with the given offset and length
3081 * @inode: File inode
3082 * @offset: The offset where the hole will begin
3083 * @len: The length of the hole
3085 * Returns: 0 on sucess or negative on failure
3088 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3090 struct inode *inode = file->f_path.dentry->d_inode;
3091 if (!S_ISREG(inode->i_mode))
3094 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3095 /* TODO: Add support for non extent hole punching */
3099 return ext4_ext_punch_hole(file, offset, length);
3105 * We block out ext4_get_block() block instantiations across the entire
3106 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3107 * simultaneously on behalf of the same inode.
3109 * As we work through the truncate and commmit bits of it to the journal there
3110 * is one core, guiding principle: the file's tree must always be consistent on
3111 * disk. We must be able to restart the truncate after a crash.
3113 * The file's tree may be transiently inconsistent in memory (although it
3114 * probably isn't), but whenever we close off and commit a journal transaction,
3115 * the contents of (the filesystem + the journal) must be consistent and
3116 * restartable. It's pretty simple, really: bottom up, right to left (although
3117 * left-to-right works OK too).
3119 * Note that at recovery time, journal replay occurs *before* the restart of
3120 * truncate against the orphan inode list.
3122 * The committed inode has the new, desired i_size (which is the same as
3123 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3124 * that this inode's truncate did not complete and it will again call
3125 * ext4_truncate() to have another go. So there will be instantiated blocks
3126 * to the right of the truncation point in a crashed ext4 filesystem. But
3127 * that's fine - as long as they are linked from the inode, the post-crash
3128 * ext4_truncate() run will find them and release them.
3130 void ext4_truncate(struct inode *inode)
3132 trace_ext4_truncate_enter(inode);
3134 if (!ext4_can_truncate(inode))
3137 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3139 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3140 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3142 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3143 ext4_ext_truncate(inode);
3145 ext4_ind_truncate(inode);
3147 trace_ext4_truncate_exit(inode);
3151 * ext4_get_inode_loc returns with an extra refcount against the inode's
3152 * underlying buffer_head on success. If 'in_mem' is true, we have all
3153 * data in memory that is needed to recreate the on-disk version of this
3156 static int __ext4_get_inode_loc(struct inode *inode,
3157 struct ext4_iloc *iloc, int in_mem)
3159 struct ext4_group_desc *gdp;
3160 struct buffer_head *bh;
3161 struct super_block *sb = inode->i_sb;
3163 int inodes_per_block, inode_offset;
3166 if (!ext4_valid_inum(sb, inode->i_ino))
3169 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3170 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3175 * Figure out the offset within the block group inode table
3177 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3178 inode_offset = ((inode->i_ino - 1) %
3179 EXT4_INODES_PER_GROUP(sb));
3180 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3181 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3183 bh = sb_getblk(sb, block);
3185 EXT4_ERROR_INODE_BLOCK(inode, block,
3186 "unable to read itable block");
3189 if (!buffer_uptodate(bh)) {
3193 * If the buffer has the write error flag, we have failed
3194 * to write out another inode in the same block. In this
3195 * case, we don't have to read the block because we may
3196 * read the old inode data successfully.
3198 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3199 set_buffer_uptodate(bh);
3201 if (buffer_uptodate(bh)) {
3202 /* someone brought it uptodate while we waited */
3208 * If we have all information of the inode in memory and this
3209 * is the only valid inode in the block, we need not read the
3213 struct buffer_head *bitmap_bh;
3216 start = inode_offset & ~(inodes_per_block - 1);
3218 /* Is the inode bitmap in cache? */
3219 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));