2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
42 #include "transaction.h"
43 #include "btrfs_inode.h"
45 #include "print-tree.h"
47 #include "ordered-data.h"
50 #include "compression.h"
53 struct btrfs_iget_args {
55 struct btrfs_root *root;
58 static const struct inode_operations btrfs_dir_inode_operations;
59 static const struct inode_operations btrfs_symlink_inode_operations;
60 static const struct inode_operations btrfs_dir_ro_inode_operations;
61 static const struct inode_operations btrfs_special_inode_operations;
62 static const struct inode_operations btrfs_file_inode_operations;
63 static const struct address_space_operations btrfs_aops;
64 static const struct address_space_operations btrfs_symlink_aops;
65 static const struct file_operations btrfs_dir_file_operations;
66 static struct extent_io_ops btrfs_extent_io_ops;
68 static struct kmem_cache *btrfs_inode_cachep;
69 struct kmem_cache *btrfs_trans_handle_cachep;
70 struct kmem_cache *btrfs_transaction_cachep;
71 struct kmem_cache *btrfs_path_cachep;
74 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
75 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
76 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
77 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
78 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
79 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
80 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
81 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
84 static void btrfs_truncate(struct inode *inode);
85 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
86 static noinline int cow_file_range(struct inode *inode,
87 struct page *locked_page,
88 u64 start, u64 end, int *page_started,
89 unsigned long *nr_written, int unlock);
91 static int btrfs_init_inode_security(struct inode *inode, struct inode *dir)
95 err = btrfs_init_acl(inode, dir);
97 err = btrfs_xattr_security_init(inode, dir);
102 * this does all the hard work for inserting an inline extent into
103 * the btree. The caller should have done a btrfs_drop_extents so that
104 * no overlapping inline items exist in the btree
106 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
107 struct btrfs_root *root, struct inode *inode,
108 u64 start, size_t size, size_t compressed_size,
109 struct page **compressed_pages)
111 struct btrfs_key key;
112 struct btrfs_path *path;
113 struct extent_buffer *leaf;
114 struct page *page = NULL;
117 struct btrfs_file_extent_item *ei;
120 size_t cur_size = size;
122 unsigned long offset;
123 int use_compress = 0;
125 if (compressed_size && compressed_pages) {
127 cur_size = compressed_size;
130 path = btrfs_alloc_path();
134 path->leave_spinning = 1;
135 btrfs_set_trans_block_group(trans, inode);
137 key.objectid = inode->i_ino;
139 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
140 datasize = btrfs_file_extent_calc_inline_size(cur_size);
142 inode_add_bytes(inode, size);
143 ret = btrfs_insert_empty_item(trans, root, path, &key,
150 leaf = path->nodes[0];
151 ei = btrfs_item_ptr(leaf, path->slots[0],
152 struct btrfs_file_extent_item);
153 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
154 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
155 btrfs_set_file_extent_encryption(leaf, ei, 0);
156 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
157 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
158 ptr = btrfs_file_extent_inline_start(ei);
163 while (compressed_size > 0) {
164 cpage = compressed_pages[i];
165 cur_size = min_t(unsigned long, compressed_size,
168 kaddr = kmap_atomic(cpage, KM_USER0);
169 write_extent_buffer(leaf, kaddr, ptr, cur_size);
170 kunmap_atomic(kaddr, KM_USER0);
174 compressed_size -= cur_size;
176 btrfs_set_file_extent_compression(leaf, ei,
177 BTRFS_COMPRESS_ZLIB);
179 page = find_get_page(inode->i_mapping,
180 start >> PAGE_CACHE_SHIFT);
181 btrfs_set_file_extent_compression(leaf, ei, 0);
182 kaddr = kmap_atomic(page, KM_USER0);
183 offset = start & (PAGE_CACHE_SIZE - 1);
184 write_extent_buffer(leaf, kaddr + offset, ptr, size);
185 kunmap_atomic(kaddr, KM_USER0);
186 page_cache_release(page);
188 btrfs_mark_buffer_dirty(leaf);
189 btrfs_free_path(path);
191 BTRFS_I(inode)->disk_i_size = inode->i_size;
192 btrfs_update_inode(trans, root, inode);
195 btrfs_free_path(path);
201 * conditionally insert an inline extent into the file. This
202 * does the checks required to make sure the data is small enough
203 * to fit as an inline extent.
205 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
206 struct btrfs_root *root,
207 struct inode *inode, u64 start, u64 end,
208 size_t compressed_size,
209 struct page **compressed_pages)
211 u64 isize = i_size_read(inode);
212 u64 actual_end = min(end + 1, isize);
213 u64 inline_len = actual_end - start;
214 u64 aligned_end = (end + root->sectorsize - 1) &
215 ~((u64)root->sectorsize - 1);
217 u64 data_len = inline_len;
221 data_len = compressed_size;
224 actual_end >= PAGE_CACHE_SIZE ||
225 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
227 (actual_end & (root->sectorsize - 1)) == 0) ||
229 data_len > root->fs_info->max_inline) {
233 ret = btrfs_drop_extents(trans, root, inode, start,
234 aligned_end, aligned_end, start,
238 if (isize > actual_end)
239 inline_len = min_t(u64, isize, actual_end);
240 ret = insert_inline_extent(trans, root, inode, start,
241 inline_len, compressed_size,
244 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
248 struct async_extent {
253 unsigned long nr_pages;
254 struct list_head list;
259 struct btrfs_root *root;
260 struct page *locked_page;
263 struct list_head extents;
264 struct btrfs_work work;
267 static noinline int add_async_extent(struct async_cow *cow,
268 u64 start, u64 ram_size,
271 unsigned long nr_pages)
273 struct async_extent *async_extent;
275 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
276 async_extent->start = start;
277 async_extent->ram_size = ram_size;
278 async_extent->compressed_size = compressed_size;
279 async_extent->pages = pages;
280 async_extent->nr_pages = nr_pages;
281 list_add_tail(&async_extent->list, &cow->extents);
286 * we create compressed extents in two phases. The first
287 * phase compresses a range of pages that have already been
288 * locked (both pages and state bits are locked).
290 * This is done inside an ordered work queue, and the compression
291 * is spread across many cpus. The actual IO submission is step
292 * two, and the ordered work queue takes care of making sure that
293 * happens in the same order things were put onto the queue by
294 * writepages and friends.
296 * If this code finds it can't get good compression, it puts an
297 * entry onto the work queue to write the uncompressed bytes. This
298 * makes sure that both compressed inodes and uncompressed inodes
299 * are written in the same order that pdflush sent them down.
301 static noinline int compress_file_range(struct inode *inode,
302 struct page *locked_page,
304 struct async_cow *async_cow,
307 struct btrfs_root *root = BTRFS_I(inode)->root;
308 struct btrfs_trans_handle *trans;
312 u64 blocksize = root->sectorsize;
314 u64 isize = i_size_read(inode);
316 struct page **pages = NULL;
317 unsigned long nr_pages;
318 unsigned long nr_pages_ret = 0;
319 unsigned long total_compressed = 0;
320 unsigned long total_in = 0;
321 unsigned long max_compressed = 128 * 1024;
322 unsigned long max_uncompressed = 128 * 1024;
328 actual_end = min_t(u64, isize, end + 1);
331 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
332 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
335 * we don't want to send crud past the end of i_size through
336 * compression, that's just a waste of CPU time. So, if the
337 * end of the file is before the start of our current
338 * requested range of bytes, we bail out to the uncompressed
339 * cleanup code that can deal with all of this.
341 * It isn't really the fastest way to fix things, but this is a
342 * very uncommon corner.
344 if (actual_end <= start)
345 goto cleanup_and_bail_uncompressed;
347 total_compressed = actual_end - start;
349 /* we want to make sure that amount of ram required to uncompress
350 * an extent is reasonable, so we limit the total size in ram
351 * of a compressed extent to 128k. This is a crucial number
352 * because it also controls how easily we can spread reads across
353 * cpus for decompression.
355 * We also want to make sure the amount of IO required to do
356 * a random read is reasonably small, so we limit the size of
357 * a compressed extent to 128k.
359 total_compressed = min(total_compressed, max_uncompressed);
360 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
361 num_bytes = max(blocksize, num_bytes);
362 disk_num_bytes = num_bytes;
367 * we do compression for mount -o compress and when the
368 * inode has not been flagged as nocompress. This flag can
369 * change at any time if we discover bad compression ratios.
371 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
372 btrfs_test_opt(root, COMPRESS)) {
374 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
376 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
377 total_compressed, pages,
378 nr_pages, &nr_pages_ret,
384 unsigned long offset = total_compressed &
385 (PAGE_CACHE_SIZE - 1);
386 struct page *page = pages[nr_pages_ret - 1];
389 /* zero the tail end of the last page, we might be
390 * sending it down to disk
393 kaddr = kmap_atomic(page, KM_USER0);
394 memset(kaddr + offset, 0,
395 PAGE_CACHE_SIZE - offset);
396 kunmap_atomic(kaddr, KM_USER0);
402 trans = btrfs_join_transaction(root, 1);
404 btrfs_set_trans_block_group(trans, inode);
406 /* lets try to make an inline extent */
407 if (ret || total_in < (actual_end - start)) {
408 /* we didn't compress the entire range, try
409 * to make an uncompressed inline extent.
411 ret = cow_file_range_inline(trans, root, inode,
412 start, end, 0, NULL);
414 /* try making a compressed inline extent */
415 ret = cow_file_range_inline(trans, root, inode,
417 total_compressed, pages);
419 btrfs_end_transaction(trans, root);
422 * inline extent creation worked, we don't need
423 * to create any more async work items. Unlock
424 * and free up our temp pages.
426 extent_clear_unlock_delalloc(inode,
427 &BTRFS_I(inode)->io_tree,
429 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
430 EXTENT_CLEAR_DELALLOC |
431 EXTENT_CLEAR_ACCOUNTING |
432 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
440 * we aren't doing an inline extent round the compressed size
441 * up to a block size boundary so the allocator does sane
444 total_compressed = (total_compressed + blocksize - 1) &
448 * one last check to make sure the compression is really a
449 * win, compare the page count read with the blocks on disk
451 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
452 ~(PAGE_CACHE_SIZE - 1);
453 if (total_compressed >= total_in) {
456 disk_num_bytes = total_compressed;
457 num_bytes = total_in;
460 if (!will_compress && pages) {
462 * the compression code ran but failed to make things smaller,
463 * free any pages it allocated and our page pointer array
465 for (i = 0; i < nr_pages_ret; i++) {
466 WARN_ON(pages[i]->mapping);
467 page_cache_release(pages[i]);
471 total_compressed = 0;
474 /* flag the file so we don't compress in the future */
475 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
480 /* the async work queues will take care of doing actual
481 * allocation on disk for these compressed pages,
482 * and will submit them to the elevator.
484 add_async_extent(async_cow, start, num_bytes,
485 total_compressed, pages, nr_pages_ret);
487 if (start + num_bytes < end && start + num_bytes < actual_end) {
494 cleanup_and_bail_uncompressed:
496 * No compression, but we still need to write the pages in
497 * the file we've been given so far. redirty the locked
498 * page if it corresponds to our extent and set things up
499 * for the async work queue to run cow_file_range to do
500 * the normal delalloc dance
502 if (page_offset(locked_page) >= start &&
503 page_offset(locked_page) <= end) {
504 __set_page_dirty_nobuffers(locked_page);
505 /* unlocked later on in the async handlers */
507 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
515 for (i = 0; i < nr_pages_ret; i++) {
516 WARN_ON(pages[i]->mapping);
517 page_cache_release(pages[i]);
525 * phase two of compressed writeback. This is the ordered portion
526 * of the code, which only gets called in the order the work was
527 * queued. We walk all the async extents created by compress_file_range
528 * and send them down to the disk.
530 static noinline int submit_compressed_extents(struct inode *inode,
531 struct async_cow *async_cow)
533 struct async_extent *async_extent;
535 struct btrfs_trans_handle *trans;
536 struct btrfs_key ins;
537 struct extent_map *em;
538 struct btrfs_root *root = BTRFS_I(inode)->root;
539 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
540 struct extent_io_tree *io_tree;
543 if (list_empty(&async_cow->extents))
546 trans = btrfs_join_transaction(root, 1);
548 while (!list_empty(&async_cow->extents)) {
549 async_extent = list_entry(async_cow->extents.next,
550 struct async_extent, list);
551 list_del(&async_extent->list);
553 io_tree = &BTRFS_I(inode)->io_tree;
556 /* did the compression code fall back to uncompressed IO? */
557 if (!async_extent->pages) {
558 int page_started = 0;
559 unsigned long nr_written = 0;
561 lock_extent(io_tree, async_extent->start,
562 async_extent->start +
563 async_extent->ram_size - 1, GFP_NOFS);
565 /* allocate blocks */
566 ret = cow_file_range(inode, async_cow->locked_page,
568 async_extent->start +
569 async_extent->ram_size - 1,
570 &page_started, &nr_written, 0);
573 * if page_started, cow_file_range inserted an
574 * inline extent and took care of all the unlocking
575 * and IO for us. Otherwise, we need to submit
576 * all those pages down to the drive.
578 if (!page_started && !ret)
579 extent_write_locked_range(io_tree,
580 inode, async_extent->start,
581 async_extent->start +
582 async_extent->ram_size - 1,
590 lock_extent(io_tree, async_extent->start,
591 async_extent->start + async_extent->ram_size - 1,
594 * here we're doing allocation and writeback of the
597 btrfs_drop_extent_cache(inode, async_extent->start,
598 async_extent->start +
599 async_extent->ram_size - 1, 0);
601 ret = btrfs_reserve_extent(trans, root,
602 async_extent->compressed_size,
603 async_extent->compressed_size,
608 for (i = 0; i < async_extent->nr_pages; i++) {
609 WARN_ON(async_extent->pages[i]->mapping);
610 page_cache_release(async_extent->pages[i]);
612 kfree(async_extent->pages);
613 async_extent->nr_pages = 0;
614 async_extent->pages = NULL;
615 unlock_extent(io_tree, async_extent->start,
616 async_extent->start +
617 async_extent->ram_size - 1, GFP_NOFS);
621 em = alloc_extent_map(GFP_NOFS);
622 em->start = async_extent->start;
623 em->len = async_extent->ram_size;
624 em->orig_start = em->start;
626 em->block_start = ins.objectid;
627 em->block_len = ins.offset;
628 em->bdev = root->fs_info->fs_devices->latest_bdev;
629 set_bit(EXTENT_FLAG_PINNED, &em->flags);
630 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
633 write_lock(&em_tree->lock);
634 ret = add_extent_mapping(em_tree, em);
635 write_unlock(&em_tree->lock);
636 if (ret != -EEXIST) {
640 btrfs_drop_extent_cache(inode, async_extent->start,
641 async_extent->start +
642 async_extent->ram_size - 1, 0);
645 ret = btrfs_add_ordered_extent(inode, async_extent->start,
647 async_extent->ram_size,
649 BTRFS_ORDERED_COMPRESSED);
652 btrfs_end_transaction(trans, root);
655 * clear dirty, set writeback and unlock the pages.
657 extent_clear_unlock_delalloc(inode,
658 &BTRFS_I(inode)->io_tree,
660 async_extent->start +
661 async_extent->ram_size - 1,
662 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
663 EXTENT_CLEAR_UNLOCK |
664 EXTENT_CLEAR_DELALLOC |
665 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
667 ret = btrfs_submit_compressed_write(inode,
669 async_extent->ram_size,
671 ins.offset, async_extent->pages,
672 async_extent->nr_pages);
675 trans = btrfs_join_transaction(root, 1);
676 alloc_hint = ins.objectid + ins.offset;
681 btrfs_end_transaction(trans, root);
686 * when extent_io.c finds a delayed allocation range in the file,
687 * the call backs end up in this code. The basic idea is to
688 * allocate extents on disk for the range, and create ordered data structs
689 * in ram to track those extents.
691 * locked_page is the page that writepage had locked already. We use
692 * it to make sure we don't do extra locks or unlocks.
694 * *page_started is set to one if we unlock locked_page and do everything
695 * required to start IO on it. It may be clean and already done with
698 static noinline int cow_file_range(struct inode *inode,
699 struct page *locked_page,
700 u64 start, u64 end, int *page_started,
701 unsigned long *nr_written,
704 struct btrfs_root *root = BTRFS_I(inode)->root;
705 struct btrfs_trans_handle *trans;
708 unsigned long ram_size;
711 u64 blocksize = root->sectorsize;
713 u64 isize = i_size_read(inode);
714 struct btrfs_key ins;
715 struct extent_map *em;
716 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
719 trans = btrfs_join_transaction(root, 1);
721 btrfs_set_trans_block_group(trans, inode);
723 actual_end = min_t(u64, isize, end + 1);
725 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
726 num_bytes = max(blocksize, num_bytes);
727 disk_num_bytes = num_bytes;
731 /* lets try to make an inline extent */
732 ret = cow_file_range_inline(trans, root, inode,
733 start, end, 0, NULL);
735 extent_clear_unlock_delalloc(inode,
736 &BTRFS_I(inode)->io_tree,
738 EXTENT_CLEAR_UNLOCK_PAGE |
739 EXTENT_CLEAR_UNLOCK |
740 EXTENT_CLEAR_DELALLOC |
741 EXTENT_CLEAR_ACCOUNTING |
743 EXTENT_SET_WRITEBACK |
744 EXTENT_END_WRITEBACK);
745 *nr_written = *nr_written +
746 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
753 BUG_ON(disk_num_bytes >
754 btrfs_super_total_bytes(&root->fs_info->super_copy));
757 read_lock(&BTRFS_I(inode)->extent_tree.lock);
758 em = search_extent_mapping(&BTRFS_I(inode)->extent_tree,
762 * if block start isn't an actual block number then find the
763 * first block in this inode and use that as a hint. If that
764 * block is also bogus then just don't worry about it.
766 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
768 em = search_extent_mapping(em_tree, 0, 0);
769 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
770 alloc_hint = em->block_start;
774 alloc_hint = em->block_start;
778 read_unlock(&BTRFS_I(inode)->extent_tree.lock);
779 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
781 while (disk_num_bytes > 0) {
784 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
785 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
786 root->sectorsize, 0, alloc_hint,
790 em = alloc_extent_map(GFP_NOFS);
792 em->orig_start = em->start;
793 ram_size = ins.offset;
794 em->len = ins.offset;
796 em->block_start = ins.objectid;
797 em->block_len = ins.offset;
798 em->bdev = root->fs_info->fs_devices->latest_bdev;
799 set_bit(EXTENT_FLAG_PINNED, &em->flags);
802 write_lock(&em_tree->lock);
803 ret = add_extent_mapping(em_tree, em);
804 write_unlock(&em_tree->lock);
805 if (ret != -EEXIST) {
809 btrfs_drop_extent_cache(inode, start,
810 start + ram_size - 1, 0);
813 cur_alloc_size = ins.offset;
814 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
815 ram_size, cur_alloc_size, 0);
818 if (root->root_key.objectid ==
819 BTRFS_DATA_RELOC_TREE_OBJECTID) {
820 ret = btrfs_reloc_clone_csums(inode, start,
825 if (disk_num_bytes < cur_alloc_size)
828 /* we're not doing compressed IO, don't unlock the first
829 * page (which the caller expects to stay locked), don't
830 * clear any dirty bits and don't set any writeback bits
832 * Do set the Private2 bit so we know this page was properly
833 * setup for writepage
835 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
836 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
839 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
840 start, start + ram_size - 1,
842 disk_num_bytes -= cur_alloc_size;
843 num_bytes -= cur_alloc_size;
844 alloc_hint = ins.objectid + ins.offset;
845 start += cur_alloc_size;
849 btrfs_end_transaction(trans, root);
855 * work queue call back to started compression on a file and pages
857 static noinline void async_cow_start(struct btrfs_work *work)
859 struct async_cow *async_cow;
861 async_cow = container_of(work, struct async_cow, work);
863 compress_file_range(async_cow->inode, async_cow->locked_page,
864 async_cow->start, async_cow->end, async_cow,
867 async_cow->inode = NULL;
871 * work queue call back to submit previously compressed pages
873 static noinline void async_cow_submit(struct btrfs_work *work)
875 struct async_cow *async_cow;
876 struct btrfs_root *root;
877 unsigned long nr_pages;
879 async_cow = container_of(work, struct async_cow, work);
881 root = async_cow->root;
882 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
885 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
887 if (atomic_read(&root->fs_info->async_delalloc_pages) <
889 waitqueue_active(&root->fs_info->async_submit_wait))
890 wake_up(&root->fs_info->async_submit_wait);
892 if (async_cow->inode)
893 submit_compressed_extents(async_cow->inode, async_cow);
896 static noinline void async_cow_free(struct btrfs_work *work)
898 struct async_cow *async_cow;
899 async_cow = container_of(work, struct async_cow, work);
903 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
904 u64 start, u64 end, int *page_started,
905 unsigned long *nr_written)
907 struct async_cow *async_cow;
908 struct btrfs_root *root = BTRFS_I(inode)->root;
909 unsigned long nr_pages;
911 int limit = 10 * 1024 * 1042;
913 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
914 1, 0, NULL, GFP_NOFS);
915 while (start < end) {
916 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
917 async_cow->inode = inode;
918 async_cow->root = root;
919 async_cow->locked_page = locked_page;
920 async_cow->start = start;
922 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
925 cur_end = min(end, start + 512 * 1024 - 1);
927 async_cow->end = cur_end;
928 INIT_LIST_HEAD(&async_cow->extents);
930 async_cow->work.func = async_cow_start;
931 async_cow->work.ordered_func = async_cow_submit;
932 async_cow->work.ordered_free = async_cow_free;
933 async_cow->work.flags = 0;
935 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
937 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
939 btrfs_queue_worker(&root->fs_info->delalloc_workers,
942 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
943 wait_event(root->fs_info->async_submit_wait,
944 (atomic_read(&root->fs_info->async_delalloc_pages) <
948 while (atomic_read(&root->fs_info->async_submit_draining) &&
949 atomic_read(&root->fs_info->async_delalloc_pages)) {
950 wait_event(root->fs_info->async_submit_wait,
951 (atomic_read(&root->fs_info->async_delalloc_pages) ==
955 *nr_written += nr_pages;
962 static noinline int csum_exist_in_range(struct btrfs_root *root,
963 u64 bytenr, u64 num_bytes)
966 struct btrfs_ordered_sum *sums;
969 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
970 bytenr + num_bytes - 1, &list);
971 if (ret == 0 && list_empty(&list))
974 while (!list_empty(&list)) {
975 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
976 list_del(&sums->list);
983 * when nowcow writeback call back. This checks for snapshots or COW copies
984 * of the extents that exist in the file, and COWs the file as required.
986 * If no cow copies or snapshots exist, we write directly to the existing
989 static noinline int run_delalloc_nocow(struct inode *inode,
990 struct page *locked_page,
991 u64 start, u64 end, int *page_started, int force,
992 unsigned long *nr_written)
994 struct btrfs_root *root = BTRFS_I(inode)->root;
995 struct btrfs_trans_handle *trans;
996 struct extent_buffer *leaf;
997 struct btrfs_path *path;
998 struct btrfs_file_extent_item *fi;
999 struct btrfs_key found_key;
1012 path = btrfs_alloc_path();
1014 trans = btrfs_join_transaction(root, 1);
1017 cow_start = (u64)-1;
1020 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1023 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1024 leaf = path->nodes[0];
1025 btrfs_item_key_to_cpu(leaf, &found_key,
1026 path->slots[0] - 1);
1027 if (found_key.objectid == inode->i_ino &&
1028 found_key.type == BTRFS_EXTENT_DATA_KEY)
1033 leaf = path->nodes[0];
1034 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1035 ret = btrfs_next_leaf(root, path);
1040 leaf = path->nodes[0];
1046 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1048 if (found_key.objectid > inode->i_ino ||
1049 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1050 found_key.offset > end)
1053 if (found_key.offset > cur_offset) {
1054 extent_end = found_key.offset;
1059 fi = btrfs_item_ptr(leaf, path->slots[0],
1060 struct btrfs_file_extent_item);
1061 extent_type = btrfs_file_extent_type(leaf, fi);
1063 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1064 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1065 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1066 extent_offset = btrfs_file_extent_offset(leaf, fi);
1067 extent_end = found_key.offset +
1068 btrfs_file_extent_num_bytes(leaf, fi);
1069 if (extent_end <= start) {
1073 if (disk_bytenr == 0)
1075 if (btrfs_file_extent_compression(leaf, fi) ||
1076 btrfs_file_extent_encryption(leaf, fi) ||
1077 btrfs_file_extent_other_encoding(leaf, fi))
1079 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1081 if (btrfs_extent_readonly(root, disk_bytenr))
1083 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1085 extent_offset, disk_bytenr))
1087 disk_bytenr += extent_offset;
1088 disk_bytenr += cur_offset - found_key.offset;
1089 num_bytes = min(end + 1, extent_end) - cur_offset;
1091 * force cow if csum exists in the range.
1092 * this ensure that csum for a given extent are
1093 * either valid or do not exist.
1095 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1098 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1099 extent_end = found_key.offset +
1100 btrfs_file_extent_inline_len(leaf, fi);
1101 extent_end = ALIGN(extent_end, root->sectorsize);
1106 if (extent_end <= start) {
1111 if (cow_start == (u64)-1)
1112 cow_start = cur_offset;
1113 cur_offset = extent_end;
1114 if (cur_offset > end)
1120 btrfs_release_path(root, path);
1121 if (cow_start != (u64)-1) {
1122 ret = cow_file_range(inode, locked_page, cow_start,
1123 found_key.offset - 1, page_started,
1126 cow_start = (u64)-1;
1129 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1130 struct extent_map *em;
1131 struct extent_map_tree *em_tree;
1132 em_tree = &BTRFS_I(inode)->extent_tree;
1133 em = alloc_extent_map(GFP_NOFS);
1134 em->start = cur_offset;
1135 em->orig_start = em->start;
1136 em->len = num_bytes;
1137 em->block_len = num_bytes;
1138 em->block_start = disk_bytenr;
1139 em->bdev = root->fs_info->fs_devices->latest_bdev;
1140 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1142 write_lock(&em_tree->lock);
1143 ret = add_extent_mapping(em_tree, em);
1144 write_unlock(&em_tree->lock);
1145 if (ret != -EEXIST) {
1146 free_extent_map(em);
1149 btrfs_drop_extent_cache(inode, em->start,
1150 em->start + em->len - 1, 0);
1152 type = BTRFS_ORDERED_PREALLOC;
1154 type = BTRFS_ORDERED_NOCOW;
1157 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1158 num_bytes, num_bytes, type);
1161 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1162 cur_offset, cur_offset + num_bytes - 1,
1163 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1164 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1165 EXTENT_SET_PRIVATE2);
1166 cur_offset = extent_end;
1167 if (cur_offset > end)
1170 btrfs_release_path(root, path);
1172 if (cur_offset <= end && cow_start == (u64)-1)
1173 cow_start = cur_offset;
1174 if (cow_start != (u64)-1) {
1175 ret = cow_file_range(inode, locked_page, cow_start, end,
1176 page_started, nr_written, 1);
1180 ret = btrfs_end_transaction(trans, root);
1182 btrfs_free_path(path);
1187 * extent_io.c call back to do delayed allocation processing
1189 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1190 u64 start, u64 end, int *page_started,
1191 unsigned long *nr_written)
1194 struct btrfs_root *root = BTRFS_I(inode)->root;
1196 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1197 ret = run_delalloc_nocow(inode, locked_page, start, end,
1198 page_started, 1, nr_written);
1199 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1200 ret = run_delalloc_nocow(inode, locked_page, start, end,
1201 page_started, 0, nr_written);
1202 else if (!btrfs_test_opt(root, COMPRESS))
1203 ret = cow_file_range(inode, locked_page, start, end,
1204 page_started, nr_written, 1);
1206 ret = cow_file_range_async(inode, locked_page, start, end,
1207 page_started, nr_written);
1211 static int btrfs_split_extent_hook(struct inode *inode,
1212 struct extent_state *orig, u64 split)
1214 struct btrfs_root *root = BTRFS_I(inode)->root;
1217 if (!(orig->state & EXTENT_DELALLOC))
1220 size = orig->end - orig->start + 1;
1221 if (size > root->fs_info->max_extent) {
1225 new_size = orig->end - split + 1;
1226 num_extents = div64_u64(size + root->fs_info->max_extent - 1,
1227 root->fs_info->max_extent);
1230 * if we break a large extent up then leave oustanding_extents
1231 * be, since we've already accounted for the large extent.
1233 if (div64_u64(new_size + root->fs_info->max_extent - 1,
1234 root->fs_info->max_extent) < num_extents)
1238 spin_lock(&BTRFS_I(inode)->accounting_lock);
1239 BTRFS_I(inode)->outstanding_extents++;
1240 spin_unlock(&BTRFS_I(inode)->accounting_lock);
1246 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1247 * extents so we can keep track of new extents that are just merged onto old
1248 * extents, such as when we are doing sequential writes, so we can properly
1249 * account for the metadata space we'll need.
1251 static int btrfs_merge_extent_hook(struct inode *inode,
1252 struct extent_state *new,
1253 struct extent_state *other)
1255 struct btrfs_root *root = BTRFS_I(inode)->root;
1256 u64 new_size, old_size;
1259 /* not delalloc, ignore it */
1260 if (!(other->state & EXTENT_DELALLOC))
1263 old_size = other->end - other->start + 1;
1264 if (new->start < other->start)
1265 new_size = other->end - new->start + 1;
1267 new_size = new->end - other->start + 1;
1269 /* we're not bigger than the max, unreserve the space and go */
1270 if (new_size <= root->fs_info->max_extent) {
1271 spin_lock(&BTRFS_I(inode)->accounting_lock);
1272 BTRFS_I(inode)->outstanding_extents--;
1273 spin_unlock(&BTRFS_I(inode)->accounting_lock);
1278 * If we grew by another max_extent, just return, we want to keep that
1281 num_extents = div64_u64(old_size + root->fs_info->max_extent - 1,
1282 root->fs_info->max_extent);
1283 if (div64_u64(new_size + root->fs_info->max_extent - 1,
1284 root->fs_info->max_extent) > num_extents)
1287 spin_lock(&BTRFS_I(inode)->accounting_lock);
1288 BTRFS_I(inode)->outstanding_extents--;
1289 spin_unlock(&BTRFS_I(inode)->accounting_lock);
1295 * extent_io.c set_bit_hook, used to track delayed allocation
1296 * bytes in this file, and to maintain the list of inodes that
1297 * have pending delalloc work to be done.
1299 static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
1300 unsigned long old, unsigned long bits)
1304 * set_bit and clear bit hooks normally require _irqsave/restore
1305 * but in this case, we are only testeing for the DELALLOC
1306 * bit, which is only set or cleared with irqs on
1308 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1309 struct btrfs_root *root = BTRFS_I(inode)->root;
1311 spin_lock(&BTRFS_I(inode)->accounting_lock);
1312 BTRFS_I(inode)->outstanding_extents++;
1313 spin_unlock(&BTRFS_I(inode)->accounting_lock);
1314 btrfs_delalloc_reserve_space(root, inode, end - start + 1);
1315 spin_lock(&root->fs_info->delalloc_lock);
1316 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
1317 root->fs_info->delalloc_bytes += end - start + 1;
1318 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1319 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1320 &root->fs_info->delalloc_inodes);
1322 spin_unlock(&root->fs_info->delalloc_lock);
1328 * extent_io.c clear_bit_hook, see set_bit_hook for why
1330 static int btrfs_clear_bit_hook(struct inode *inode,
1331 struct extent_state *state, unsigned long bits)
1334 * set_bit and clear bit hooks normally require _irqsave/restore
1335 * but in this case, we are only testeing for the DELALLOC
1336 * bit, which is only set or cleared with irqs on
1338 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1339 struct btrfs_root *root = BTRFS_I(inode)->root;
1341 if (bits & EXTENT_DO_ACCOUNTING) {
1342 spin_lock(&BTRFS_I(inode)->accounting_lock);
1343 BTRFS_I(inode)->outstanding_extents--;
1344 spin_unlock(&BTRFS_I(inode)->accounting_lock);
1345 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
1348 spin_lock(&root->fs_info->delalloc_lock);
1349 if (state->end - state->start + 1 >
1350 root->fs_info->delalloc_bytes) {
1351 printk(KERN_INFO "btrfs warning: delalloc account "
1353 (unsigned long long)
1354 state->end - state->start + 1,
1355 (unsigned long long)
1356 root->fs_info->delalloc_bytes);
1357 btrfs_delalloc_free_space(root, inode, (u64)-1);
1358 root->fs_info->delalloc_bytes = 0;
1359 BTRFS_I(inode)->delalloc_bytes = 0;
1361 btrfs_delalloc_free_space(root, inode,
1364 root->fs_info->delalloc_bytes -= state->end -
1366 BTRFS_I(inode)->delalloc_bytes -= state->end -
1369 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1370 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1371 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1373 spin_unlock(&root->fs_info->delalloc_lock);
1379 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1380 * we don't create bios that span stripes or chunks
1382 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1383 size_t size, struct bio *bio,
1384 unsigned long bio_flags)
1386 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1387 struct btrfs_mapping_tree *map_tree;
1388 u64 logical = (u64)bio->bi_sector << 9;
1393 if (bio_flags & EXTENT_BIO_COMPRESSED)
1396 length = bio->bi_size;
1397 map_tree = &root->fs_info->mapping_tree;
1398 map_length = length;
1399 ret = btrfs_map_block(map_tree, READ, logical,
1400 &map_length, NULL, 0);
1402 if (map_length < length + size)
1408 * in order to insert checksums into the metadata in large chunks,
1409 * we wait until bio submission time. All the pages in the bio are
1410 * checksummed and sums are attached onto the ordered extent record.
1412 * At IO completion time the cums attached on the ordered extent record
1413 * are inserted into the btree
1415 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1416 struct bio *bio, int mirror_num,
1417 unsigned long bio_flags)
1419 struct btrfs_root *root = BTRFS_I(inode)->root;
1422 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1428 * in order to insert checksums into the metadata in large chunks,
1429 * we wait until bio submission time. All the pages in the bio are
1430 * checksummed and sums are attached onto the ordered extent record.
1432 * At IO completion time the cums attached on the ordered extent record
1433 * are inserted into the btree
1435 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1436 int mirror_num, unsigned long bio_flags)
1438 struct btrfs_root *root = BTRFS_I(inode)->root;
1439 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1443 * extent_io.c submission hook. This does the right thing for csum calculation
1444 * on write, or reading the csums from the tree before a read
1446 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1447 int mirror_num, unsigned long bio_flags)
1449 struct btrfs_root *root = BTRFS_I(inode)->root;
1453 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1455 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1458 if (!(rw & (1 << BIO_RW))) {
1459 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1460 return btrfs_submit_compressed_read(inode, bio,
1461 mirror_num, bio_flags);
1462 } else if (!skip_sum)
1463 btrfs_lookup_bio_sums(root, inode, bio, NULL);
1465 } else if (!skip_sum) {
1466 /* csum items have already been cloned */
1467 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1469 /* we're doing a write, do the async checksumming */
1470 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1471 inode, rw, bio, mirror_num,
1472 bio_flags, __btrfs_submit_bio_start,
1473 __btrfs_submit_bio_done);
1477 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1481 * given a list of ordered sums record them in the inode. This happens
1482 * at IO completion time based on sums calculated at bio submission time.
1484 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1485 struct inode *inode, u64 file_offset,
1486 struct list_head *list)
1488 struct btrfs_ordered_sum *sum;
1490 btrfs_set_trans_block_group(trans, inode);
1492 list_for_each_entry(sum, list, list) {
1493 btrfs_csum_file_blocks(trans,
1494 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1499 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1501 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1503 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1507 /* see btrfs_writepage_start_hook for details on why this is required */
1508 struct btrfs_writepage_fixup {
1510 struct btrfs_work work;
1513 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1515 struct btrfs_writepage_fixup *fixup;
1516 struct btrfs_ordered_extent *ordered;
1518 struct inode *inode;
1522 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1526 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1527 ClearPageChecked(page);
1531 inode = page->mapping->host;
1532 page_start = page_offset(page);
1533 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1535 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1537 /* already ordered? We're done */
1538 if (PagePrivate2(page))
1541 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1543 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1544 page_end, GFP_NOFS);
1546 btrfs_start_ordered_extent(inode, ordered, 1);
1550 btrfs_set_extent_delalloc(inode, page_start, page_end);
1551 ClearPageChecked(page);
1553 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1556 page_cache_release(page);
1560 * There are a few paths in the higher layers of the kernel that directly
1561 * set the page dirty bit without asking the filesystem if it is a
1562 * good idea. This causes problems because we want to make sure COW
1563 * properly happens and the data=ordered rules are followed.
1565 * In our case any range that doesn't have the ORDERED bit set
1566 * hasn't been properly setup for IO. We kick off an async process
1567 * to fix it up. The async helper will wait for ordered extents, set
1568 * the delalloc bit and make it safe to write the page.
1570 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1572 struct inode *inode = page->mapping->host;
1573 struct btrfs_writepage_fixup *fixup;
1574 struct btrfs_root *root = BTRFS_I(inode)->root;
1576 /* this page is properly in the ordered list */
1577 if (TestClearPagePrivate2(page))
1580 if (PageChecked(page))
1583 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1587 SetPageChecked(page);
1588 page_cache_get(page);
1589 fixup->work.func = btrfs_writepage_fixup_worker;
1591 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1595 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1596 struct inode *inode, u64 file_pos,
1597 u64 disk_bytenr, u64 disk_num_bytes,
1598 u64 num_bytes, u64 ram_bytes,
1600 u8 compression, u8 encryption,
1601 u16 other_encoding, int extent_type)
1603 struct btrfs_root *root = BTRFS_I(inode)->root;
1604 struct btrfs_file_extent_item *fi;
1605 struct btrfs_path *path;
1606 struct extent_buffer *leaf;
1607 struct btrfs_key ins;
1611 path = btrfs_alloc_path();
1614 path->leave_spinning = 1;
1617 * we may be replacing one extent in the tree with another.
1618 * The new extent is pinned in the extent map, and we don't want
1619 * to drop it from the cache until it is completely in the btree.
1621 * So, tell btrfs_drop_extents to leave this extent in the cache.
1622 * the caller is expected to unpin it and allow it to be merged
1625 ret = btrfs_drop_extents(trans, root, inode, file_pos,
1626 file_pos + num_bytes, locked_end,
1627 file_pos, &hint, 0);
1630 ins.objectid = inode->i_ino;
1631 ins.offset = file_pos;
1632 ins.type = BTRFS_EXTENT_DATA_KEY;
1633 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1635 leaf = path->nodes[0];
1636 fi = btrfs_item_ptr(leaf, path->slots[0],
1637 struct btrfs_file_extent_item);
1638 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1639 btrfs_set_file_extent_type(leaf, fi, extent_type);
1640 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1641 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1642 btrfs_set_file_extent_offset(leaf, fi, 0);
1643 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1644 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1645 btrfs_set_file_extent_compression(leaf, fi, compression);
1646 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1647 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1649 btrfs_unlock_up_safe(path, 1);
1650 btrfs_set_lock_blocking(leaf);
1652 btrfs_mark_buffer_dirty(leaf);
1654 inode_add_bytes(inode, num_bytes);
1656 ins.objectid = disk_bytenr;
1657 ins.offset = disk_num_bytes;
1658 ins.type = BTRFS_EXTENT_ITEM_KEY;
1659 ret = btrfs_alloc_reserved_file_extent(trans, root,
1660 root->root_key.objectid,
1661 inode->i_ino, file_pos, &ins);
1663 btrfs_free_path(path);
1669 * helper function for btrfs_finish_ordered_io, this
1670 * just reads in some of the csum leaves to prime them into ram
1671 * before we start the transaction. It limits the amount of btree
1672 * reads required while inside the transaction.
1674 static noinline void reada_csum(struct btrfs_root *root,
1675 struct btrfs_path *path,
1676 struct btrfs_ordered_extent *ordered_extent)
1678 struct btrfs_ordered_sum *sum;
1681 sum = list_entry(ordered_extent->list.next, struct btrfs_ordered_sum,
1683 bytenr = sum->sums[0].bytenr;
1686 * we don't care about the results, the point of this search is
1687 * just to get the btree leaves into ram
1689 btrfs_lookup_csum(NULL, root->fs_info->csum_root, path, bytenr, 0);
1692 /* as ordered data IO finishes, this gets called so we can finish
1693 * an ordered extent if the range of bytes in the file it covers are
1696 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1698 struct btrfs_root *root = BTRFS_I(inode)->root;
1699 struct btrfs_trans_handle *trans;
1700 struct btrfs_ordered_extent *ordered_extent = NULL;
1701 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1702 struct btrfs_path *path;
1706 ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
1711 * before we join the transaction, try to do some of our IO.
1712 * This will limit the amount of IO that we have to do with
1713 * the transaction running. We're unlikely to need to do any
1714 * IO if the file extents are new, the disk_i_size checks
1715 * covers the most common case.
1717 if (start < BTRFS_I(inode)->disk_i_size) {
1718 path = btrfs_alloc_path();
1720 ret = btrfs_lookup_file_extent(NULL, root, path,
1723 ordered_extent = btrfs_lookup_ordered_extent(inode,
1725 if (!list_empty(&ordered_extent->list)) {
1726 btrfs_release_path(root, path);
1727 reada_csum(root, path, ordered_extent);
1729 btrfs_free_path(path);
1733 trans = btrfs_join_transaction(root, 1);
1735 if (!ordered_extent)
1736 ordered_extent = btrfs_lookup_ordered_extent(inode, start);
1737 BUG_ON(!ordered_extent);
1738 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
1741 lock_extent(io_tree, ordered_extent->file_offset,
1742 ordered_extent->file_offset + ordered_extent->len - 1,
1745 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1747 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1749 ret = btrfs_mark_extent_written(trans, root, inode,
1750 ordered_extent->file_offset,
1751 ordered_extent->file_offset +
1752 ordered_extent->len);
1755 ret = insert_reserved_file_extent(trans, inode,
1756 ordered_extent->file_offset,
1757 ordered_extent->start,
1758 ordered_extent->disk_len,
1759 ordered_extent->len,
1760 ordered_extent->len,
1761 ordered_extent->file_offset +
1762 ordered_extent->len,
1764 BTRFS_FILE_EXTENT_REG);
1765 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1766 ordered_extent->file_offset,
1767 ordered_extent->len);
1770 unlock_extent(io_tree, ordered_extent->file_offset,
1771 ordered_extent->file_offset + ordered_extent->len - 1,
1774 add_pending_csums(trans, inode, ordered_extent->file_offset,
1775 &ordered_extent->list);
1777 mutex_lock(&BTRFS_I(inode)->extent_mutex);
1778 btrfs_ordered_update_i_size(inode, ordered_extent);
1779 btrfs_update_inode(trans, root, inode);
1780 btrfs_remove_ordered_extent(inode, ordered_extent);
1781 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1784 btrfs_put_ordered_extent(ordered_extent);
1785 /* once for the tree */
1786 btrfs_put_ordered_extent(ordered_extent);
1788 btrfs_end_transaction(trans, root);
1792 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1793 struct extent_state *state, int uptodate)
1795 ClearPagePrivate2(page);
1796 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1800 * When IO fails, either with EIO or csum verification fails, we
1801 * try other mirrors that might have a good copy of the data. This
1802 * io_failure_record is used to record state as we go through all the
1803 * mirrors. If another mirror has good data, the page is set up to date
1804 * and things continue. If a good mirror can't be found, the original
1805 * bio end_io callback is called to indicate things have failed.
1807 struct io_failure_record {
1812 unsigned long bio_flags;
1816 static int btrfs_io_failed_hook(struct bio *failed_bio,
1817 struct page *page, u64 start, u64 end,
1818 struct extent_state *state)
1820 struct io_failure_record *failrec = NULL;
1822 struct extent_map *em;
1823 struct inode *inode = page->mapping->host;
1824 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1825 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1832 ret = get_state_private(failure_tree, start, &private);
1834 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1837 failrec->start = start;
1838 failrec->len = end - start + 1;
1839 failrec->last_mirror = 0;
1840 failrec->bio_flags = 0;
1842 read_lock(&em_tree->lock);
1843 em = lookup_extent_mapping(em_tree, start, failrec->len);
1844 if (em->start > start || em->start + em->len < start) {
1845 free_extent_map(em);
1848 read_unlock(&em_tree->lock);
1850 if (!em || IS_ERR(em)) {
1854 logical = start - em->start;
1855 logical = em->block_start + logical;
1856 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1857 logical = em->block_start;
1858 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1860 failrec->logical = logical;
1861 free_extent_map(em);
1862 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1863 EXTENT_DIRTY, GFP_NOFS);
1864 set_state_private(failure_tree, start,
1865 (u64)(unsigned long)failrec);
1867 failrec = (struct io_failure_record *)(unsigned long)private;
1869 num_copies = btrfs_num_copies(
1870 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1871 failrec->logical, failrec->len);
1872 failrec->last_mirror++;
1874 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1875 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1878 if (state && state->start != failrec->start)
1880 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1882 if (!state || failrec->last_mirror > num_copies) {
1883 set_state_private(failure_tree, failrec->start, 0);
1884 clear_extent_bits(failure_tree, failrec->start,
1885 failrec->start + failrec->len - 1,
1886 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1890 bio = bio_alloc(GFP_NOFS, 1);
1891 bio->bi_private = state;
1892 bio->bi_end_io = failed_bio->bi_end_io;
1893 bio->bi_sector = failrec->logical >> 9;
1894 bio->bi_bdev = failed_bio->bi_bdev;
1897 bio_add_page(bio, page, failrec->len, start - page_offset(page));
1898 if (failed_bio->bi_rw & (1 << BIO_RW))
1903 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1904 failrec->last_mirror,
1905 failrec->bio_flags);
1910 * each time an IO finishes, we do a fast check in the IO failure tree
1911 * to see if we need to process or clean up an io_failure_record
1913 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1916 u64 private_failure;
1917 struct io_failure_record *failure;
1921 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1922 (u64)-1, 1, EXTENT_DIRTY)) {
1923 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1924 start, &private_failure);
1926 failure = (struct io_failure_record *)(unsigned long)
1928 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1930 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1932 failure->start + failure->len - 1,
1933 EXTENT_DIRTY | EXTENT_LOCKED,
1942 * when reads are done, we need to check csums to verify the data is correct
1943 * if there's a match, we allow the bio to finish. If not, we go through
1944 * the io_failure_record routines to find good copies
1946 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1947 struct extent_state *state)
1949 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1950 struct inode *inode = page->mapping->host;
1951 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1953 u64 private = ~(u32)0;
1955 struct btrfs_root *root = BTRFS_I(inode)->root;
1958 if (PageChecked(page)) {
1959 ClearPageChecked(page);
1963 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1966 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1967 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1968 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1973 if (state && state->start == start) {
1974 private = state->private;
1977 ret = get_state_private(io_tree, start, &private);
1979 kaddr = kmap_atomic(page, KM_USER0);
1983 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1984 btrfs_csum_final(csum, (char *)&csum);
1985 if (csum != private)
1988 kunmap_atomic(kaddr, KM_USER0);
1990 /* if the io failure tree for this inode is non-empty,
1991 * check to see if we've recovered from a failed IO
1993 btrfs_clean_io_failures(inode, start);
1997 if (printk_ratelimit()) {
1998 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1999 "private %llu\n", page->mapping->host->i_ino,
2000 (unsigned long long)start, csum,
2001 (unsigned long long)private);
2003 memset(kaddr + offset, 1, end - start + 1);
2004 flush_dcache_page(page);
2005 kunmap_atomic(kaddr, KM_USER0);
2012 * This creates an orphan entry for the given inode in case something goes
2013 * wrong in the middle of an unlink/truncate.
2015 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2017 struct btrfs_root *root = BTRFS_I(inode)->root;
2020 spin_lock(&root->list_lock);
2022 /* already on the orphan list, we're good */
2023 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2024 spin_unlock(&root->list_lock);
2028 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2030 spin_unlock(&root->list_lock);
2033 * insert an orphan item to track this unlinked/truncated file
2035 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2041 * We have done the truncate/delete so we can go ahead and remove the orphan
2042 * item for this particular inode.
2044 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2046 struct btrfs_root *root = BTRFS_I(inode)->root;
2049 spin_lock(&root->list_lock);
2051 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2052 spin_unlock(&root->list_lock);
2056 list_del_init(&BTRFS_I(inode)->i_orphan);
2058 spin_unlock(&root->list_lock);
2062 spin_unlock(&root->list_lock);
2064 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2070 * this cleans up any orphans that may be left on the list from the last use
2073 void btrfs_orphan_cleanup(struct btrfs_root *root)
2075 struct btrfs_path *path;
2076 struct extent_buffer *leaf;
2077 struct btrfs_item *item;
2078 struct btrfs_key key, found_key;
2079 struct btrfs_trans_handle *trans;
2080 struct inode *inode;
2081 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2083 path = btrfs_alloc_path();
2088 key.objectid = BTRFS_ORPHAN_OBJECTID;
2089 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2090 key.offset = (u64)-1;
2094 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2096 printk(KERN_ERR "Error searching slot for orphan: %d"
2102 * if ret == 0 means we found what we were searching for, which
2103 * is weird, but possible, so only screw with path if we didnt
2104 * find the key and see if we have stuff that matches
2107 if (path->slots[0] == 0)
2112 /* pull out the item */
2113 leaf = path->nodes[0];
2114 item = btrfs_item_nr(leaf, path->slots[0]);
2115 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2117 /* make sure the item matches what we want */
2118 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2120 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2123 /* release the path since we're done with it */
2124 btrfs_release_path(root, path);
2127 * this is where we are basically btrfs_lookup, without the
2128 * crossing root thing. we store the inode number in the
2129 * offset of the orphan item.
2131 found_key.objectid = found_key.offset;
2132 found_key.type = BTRFS_INODE_ITEM_KEY;
2133 found_key.offset = 0;
2134 inode = btrfs_iget(root->fs_info->sb, &found_key, root);
2139 * add this inode to the orphan list so btrfs_orphan_del does
2140 * the proper thing when we hit it
2142 spin_lock(&root->list_lock);
2143 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2144 spin_unlock(&root->list_lock);
2147 * if this is a bad inode, means we actually succeeded in
2148 * removing the inode, but not the orphan record, which means
2149 * we need to manually delete the orphan since iput will just
2150 * do a destroy_inode
2152 if (is_bad_inode(inode)) {
2153 trans = btrfs_start_transaction(root, 1);
2154 btrfs_orphan_del(trans, inode);
2155 btrfs_end_transaction(trans, root);
2160 /* if we have links, this was a truncate, lets do that */
2161 if (inode->i_nlink) {
2163 btrfs_truncate(inode);
2168 /* this will do delete_inode and everything for us */
2173 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2175 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2177 btrfs_free_path(path);
2181 * very simple check to peek ahead in the leaf looking for xattrs. If we
2182 * don't find any xattrs, we know there can't be any acls.
2184 * slot is the slot the inode is in, objectid is the objectid of the inode
2186 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2187 int slot, u64 objectid)
2189 u32 nritems = btrfs_header_nritems(leaf);
2190 struct btrfs_key found_key;
2194 while (slot < nritems) {
2195 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2197 /* we found a different objectid, there must not be acls */
2198 if (found_key.objectid != objectid)
2201 /* we found an xattr, assume we've got an acl */
2202 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2206 * we found a key greater than an xattr key, there can't
2207 * be any acls later on
2209 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2216 * it goes inode, inode backrefs, xattrs, extents,
2217 * so if there are a ton of hard links to an inode there can
2218 * be a lot of backrefs. Don't waste time searching too hard,
2219 * this is just an optimization
2224 /* we hit the end of the leaf before we found an xattr or
2225 * something larger than an xattr. We have to assume the inode
2232 * read an inode from the btree into the in-memory inode
2234 static void btrfs_read_locked_inode(struct inode *inode)
2236 struct btrfs_path *path;
2237 struct extent_buffer *leaf;
2238 struct btrfs_inode_item *inode_item;
2239 struct btrfs_timespec *tspec;
2240 struct btrfs_root *root = BTRFS_I(inode)->root;
2241 struct btrfs_key location;
2243 u64 alloc_group_block;
2247 path = btrfs_alloc_path();
2249 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2251 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2255 leaf = path->nodes[0];
2256 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2257 struct btrfs_inode_item);
2259 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2260 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2261 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2262 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2263 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2265 tspec = btrfs_inode_atime(inode_item);
2266 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2267 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2269 tspec = btrfs_inode_mtime(inode_item);
2270 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2271 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2273 tspec = btrfs_inode_ctime(inode_item);
2274 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2275 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2277 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2278 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2279 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2280 inode->i_generation = BTRFS_I(inode)->generation;
2282 rdev = btrfs_inode_rdev(leaf, inode_item);
2284 BTRFS_I(inode)->index_cnt = (u64)-1;
2285 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2287 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2290 * try to precache a NULL acl entry for files that don't have
2291 * any xattrs or acls
2293 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2295 cache_no_acl(inode);
2297 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2298 alloc_group_block, 0);
2299 btrfs_free_path(path);
2302 switch (inode->i_mode & S_IFMT) {
2304 inode->i_mapping->a_ops = &btrfs_aops;
2305 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2306 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2307 inode->i_fop = &btrfs_file_operations;
2308 inode->i_op = &btrfs_file_inode_operations;
2311 inode->i_fop = &btrfs_dir_file_operations;
2312 if (root == root->fs_info->tree_root)
2313 inode->i_op = &btrfs_dir_ro_inode_operations;
2315 inode->i_op = &btrfs_dir_inode_operations;
2318 inode->i_op = &btrfs_symlink_inode_operations;
2319 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2320 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2323 inode->i_op = &btrfs_special_inode_operations;
2324 init_special_inode(inode, inode->i_mode, rdev);
2328 btrfs_update_iflags(inode);
2332 btrfs_free_path(path);
2333 make_bad_inode(inode);
2337 * given a leaf and an inode, copy the inode fields into the leaf
2339 static void fill_inode_item(struct btrfs_trans_handle *trans,
2340 struct extent_buffer *leaf,
2341 struct btrfs_inode_item *item,
2342 struct inode *inode)
2344 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2345 btrfs_set_inode_gid(leaf, item, inode->i_gid);
2346 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2347 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2348 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2350 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2351 inode->i_atime.tv_sec);
2352 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2353 inode->i_atime.tv_nsec);
2355 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2356 inode->i_mtime.tv_sec);
2357 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2358 inode->i_mtime.tv_nsec);
2360 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2361 inode->i_ctime.tv_sec);
2362 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2363 inode->i_ctime.tv_nsec);
2365 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2366 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2367 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2368 btrfs_set_inode_transid(leaf, item, trans->transid);
2369 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2370 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2371 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2375 * copy everything in the in-memory inode into the btree.
2377 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2378 struct btrfs_root *root, struct inode *inode)
2380 struct btrfs_inode_item *inode_item;
2381 struct btrfs_path *path;
2382 struct extent_buffer *leaf;
2385 path = btrfs_alloc_path();
2387 path->leave_spinning = 1;
2388 ret = btrfs_lookup_inode(trans, root, path,
2389 &BTRFS_I(inode)->location, 1);
2396 btrfs_unlock_up_safe(path, 1);
2397 leaf = path->nodes[0];
2398 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2399 struct btrfs_inode_item);
2401 fill_inode_item(trans, leaf, inode_item, inode);
2402 btrfs_mark_buffer_dirty(leaf);
2403 btrfs_set_inode_last_trans(trans, inode);
2406 btrfs_free_path(path);
2412 * unlink helper that gets used here in inode.c and in the tree logging
2413 * recovery code. It remove a link in a directory with a given name, and
2414 * also drops the back refs in the inode to the directory
2416 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2417 struct btrfs_root *root,
2418 struct inode *dir, struct inode *inode,
2419 const char *name, int name_len)
2421 struct btrfs_path *path;
2423 struct extent_buffer *leaf;
2424 struct btrfs_dir_item *di;
2425 struct btrfs_key key;
2428 path = btrfs_alloc_path();
2434 path->leave_spinning = 1;
2435 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2436 name, name_len, -1);
2445 leaf = path->nodes[0];
2446 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2447 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2450 btrfs_release_path(root, path);
2452 ret = btrfs_del_inode_ref(trans, root, name, name_len,
2454 dir->i_ino, &index);
2456 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2457 "inode %lu parent %lu\n", name_len, name,
2458 inode->i_ino, dir->i_ino);
2462 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2463 index, name, name_len, -1);
2472 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2473 btrfs_release_path(root, path);
2475 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2477 BUG_ON(ret != 0 && ret != -ENOENT);
2479 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2483 btrfs_free_path(path);
2487 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2488 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2489 btrfs_update_inode(trans, root, dir);
2490 btrfs_drop_nlink(inode);
2491 ret = btrfs_update_inode(trans, root, inode);
2496 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2498 struct btrfs_root *root;
2499 struct btrfs_trans_handle *trans;
2500 struct inode *inode = dentry->d_inode;
2502 unsigned long nr = 0;
2504 root = BTRFS_I(dir)->root;
2507 * 5 items for unlink inode
2510 ret = btrfs_reserve_metadata_space(root, 6);
2514 trans = btrfs_start_transaction(root, 1);
2515 if (IS_ERR(trans)) {
2516 btrfs_unreserve_metadata_space(root, 6);
2517 return PTR_ERR(trans);
2520 btrfs_set_trans_block_group(trans, dir);
2522 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2524 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2525 dentry->d_name.name, dentry->d_name.len);
2527 if (inode->i_nlink == 0)
2528 ret = btrfs_orphan_add(trans, inode);
2530 nr = trans->blocks_used;
2532 btrfs_end_transaction_throttle(trans, root);
2533 btrfs_unreserve_metadata_space(root, 6);
2534 btrfs_btree_balance_dirty(root, nr);
2538 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2539 struct btrfs_root *root,
2540 struct inode *dir, u64 objectid,
2541 const char *name, int name_len)
2543 struct btrfs_path *path;
2544 struct extent_buffer *leaf;
2545 struct btrfs_dir_item *di;
2546 struct btrfs_key key;
2550 path = btrfs_alloc_path();
2554 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2555 name, name_len, -1);
2556 BUG_ON(!di || IS_ERR(di));
2558 leaf = path->nodes[0];
2559 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2560 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2561 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2563 btrfs_release_path(root, path);
2565 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2566 objectid, root->root_key.objectid,
2567 dir->i_ino, &index, name, name_len);
2569 BUG_ON(ret != -ENOENT);
2570 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2572 BUG_ON(!di || IS_ERR(di));
2574 leaf = path->nodes[0];
2575 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2576 btrfs_release_path(root, path);
2580 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2581 index, name, name_len, -1);
2582 BUG_ON(!di || IS_ERR(di));
2584 leaf = path->nodes[0];
2585 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2586 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2587 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2589 btrfs_release_path(root, path);
2591 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2592 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2593 ret = btrfs_update_inode(trans, root, dir);
2595 dir->i_sb->s_dirt = 1;
2597 btrfs_free_path(path);
2601 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2603 struct inode *inode = dentry->d_inode;
2606 struct btrfs_root *root = BTRFS_I(dir)->root;
2607 struct btrfs_trans_handle *trans;
2608 unsigned long nr = 0;
2610 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2611 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
2614 ret = btrfs_reserve_metadata_space(root, 5);
2618 trans = btrfs_start_transaction(root, 1);
2619 if (IS_ERR(trans)) {
2620 btrfs_unreserve_metadata_space(root, 5);
2621 return PTR_ERR(trans);
2624 btrfs_set_trans_block_group(trans, dir);
2626 if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
2627 err = btrfs_unlink_subvol(trans, root, dir,
2628 BTRFS_I(inode)->location.objectid,
2629 dentry->d_name.name,
2630 dentry->d_name.len);
2634 err = btrfs_orphan_add(trans, inode);
2638 /* now the directory is empty */
2639 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2640 dentry->d_name.name, dentry->d_name.len);
2642 btrfs_i_size_write(inode, 0);
2644 nr = trans->blocks_used;
2645 ret = btrfs_end_transaction_throttle(trans, root);
2646 btrfs_unreserve_metadata_space(root, 5);
2647 btrfs_btree_balance_dirty(root, nr);
2656 * when truncating bytes in a file, it is possible to avoid reading
2657 * the leaves that contain only checksum items. This can be the
2658 * majority of the IO required to delete a large file, but it must
2659 * be done carefully.
2661 * The keys in the level just above the leaves are checked to make sure
2662 * the lowest key in a given leaf is a csum key, and starts at an offset
2663 * after the new size.
2665 * Then the key for the next leaf is checked to make sure it also has
2666 * a checksum item for the same file. If it does, we know our target leaf
2667 * contains only checksum items, and it can be safely freed without reading
2670 * This is just an optimization targeted at large files. It may do
2671 * nothing. It will return 0 unless things went badly.
2673 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2674 struct btrfs_root *root,
2675 struct btrfs_path *path,
2676 struct inode *inode, u64 new_size)
2678 struct btrfs_key key;
2681 struct btrfs_key found_key;
2682 struct btrfs_key other_key;
2683 struct btrfs_leaf_ref *ref;
2687 path->lowest_level = 1;
2688 key.objectid = inode->i_ino;
2689 key.type = BTRFS_CSUM_ITEM_KEY;
2690 key.offset = new_size;
2692 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2696 if (path->nodes[1] == NULL) {
2701 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2702 nritems = btrfs_header_nritems(path->nodes[1]);
2707 if (path->slots[1] >= nritems)
2710 /* did we find a key greater than anything we want to delete? */
2711 if (found_key.objectid > inode->i_ino ||
2712 (found_key.objectid == inode->i_ino && found_key.type > key.type))
2715 /* we check the next key in the node to make sure the leave contains
2716 * only checksum items. This comparison doesn't work if our
2717 * leaf is the last one in the node
2719 if (path->slots[1] + 1 >= nritems) {
2721 /* search forward from the last key in the node, this
2722 * will bring us into the next node in the tree
2724 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2726 /* unlikely, but we inc below, so check to be safe */
2727 if (found_key.offset == (u64)-1)
2730 /* search_forward needs a path with locks held, do the
2731 * search again for the original key. It is possible
2732 * this will race with a balance and return a path that
2733 * we could modify, but this drop is just an optimization
2734 * and is allowed to miss some leaves.
2736 btrfs_release_path(root, path);
2739 /* setup a max key for search_forward */
2740 other_key.offset = (u64)-1;
2741 other_key.type = key.type;
2742 other_key.objectid = key.objectid;
2744 path->keep_locks = 1;
2745 ret = btrfs_search_forward(root, &found_key, &other_key,
2747 path->keep_locks = 0;
2748 if (ret || found_key.objectid != key.objectid ||
2749 found_key.type != key.type) {
2754 key.offset = found_key.offset;
2755 btrfs_release_path(root, path);
2760 /* we know there's one more slot after us in the tree,
2761 * read that key so we can verify it is also a checksum item
2763 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2765 if (found_key.objectid < inode->i_ino)
2768 if (found_key.type != key.type || found_key.offset < new_size)
2772 * if the key for the next leaf isn't a csum key from this objectid,
2773 * we can't be sure there aren't good items inside this leaf.
2776 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2779 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2780 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
2782 * it is safe to delete this leaf, it contains only
2783 * csum items from this inode at an offset >= new_size
2785 ret = btrfs_del_leaf(trans, root, path, leaf_start);
2788 if (root->ref_cows && leaf_gen < trans->transid) {
2789 ref = btrfs_alloc_leaf_ref(root, 0);
2791 ref->root_gen = root->root_key.offset;
2792 ref->bytenr = leaf_start;
2794 ref->generation = leaf_gen;
2797 btrfs_sort_leaf_ref(ref);
2799 ret = btrfs_add_leaf_ref(root, ref, 0);
2801 btrfs_free_leaf_ref(root, ref);
2807 btrfs_release_path(root, path);
2809 if (other_key.objectid == inode->i_ino &&
2810 other_key.type == key.type && other_key.offset > key.offset) {
2811 key.offset = other_key.offset;
2817 /* fixup any changes we've made to the path */
2818 path->lowest_level = 0;
2819 path->keep_locks = 0;
2820 btrfs_release_path(root, path);
2827 * this can truncate away extent items, csum items and directory items.
2828 * It starts at a high offset and removes keys until it can't find
2829 * any higher than new_size
2831 * csum items that cross the new i_size are truncated to the new size
2834 * min_type is the minimum key type to truncate down to. If set to 0, this
2835 * will kill all the items on this inode, including the INODE_ITEM_KEY.
2837 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2838 struct btrfs_root *root,
2839 struct inode *inode,
2840 u64 new_size, u32 min_type)
2843 struct btrfs_path *path;
2844 struct btrfs_key key;
2845 struct btrfs_key found_key;
2846 u32 found_type = (u8)-1;
2847 struct extent_buffer *leaf;
2848 struct btrfs_file_extent_item *fi;
2849 u64 extent_start = 0;
2850 u64 extent_num_bytes = 0;
2851 u64 extent_offset = 0;
2855 int pending_del_nr = 0;
2856 int pending_del_slot = 0;
2857 int extent_type = -1;
2859 u64 mask = root->sectorsize - 1;
2862 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
2863 path = btrfs_alloc_path();
2867 /* FIXME, add redo link to tree so we don't leak on crash */
2868 key.objectid = inode->i_ino;
2869 key.offset = (u64)-1;
2873 path->leave_spinning = 1;
2874 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2879 /* there are no items in the tree for us to truncate, we're
2882 if (path->slots[0] == 0) {
2891 leaf = path->nodes[0];
2892 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2893 found_type = btrfs_key_type(&found_key);
2896 if (found_key.objectid != inode->i_ino)
2899 if (found_type < min_type)
2902 item_end = found_key.offset;
2903 if (found_type == BTRFS_EXTENT_DATA_KEY) {
2904 fi = btrfs_item_ptr(leaf, path->slots[0],
2905 struct btrfs_file_extent_item);
2906 extent_type = btrfs_file_extent_type(leaf, fi);
2907 encoding = btrfs_file_extent_compression(leaf, fi);
2908 encoding |= btrfs_file_extent_encryption(leaf, fi);
2909 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2911 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2913 btrfs_file_extent_num_bytes(leaf, fi);
2914 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2915 item_end += btrfs_file_extent_inline_len(leaf,
2920 if (item_end < new_size) {
2921 if (found_type == BTRFS_DIR_ITEM_KEY)
2922 found_type = BTRFS_INODE_ITEM_KEY;
2923 else if (found_type == BTRFS_EXTENT_ITEM_KEY)
2924 found_type = BTRFS_EXTENT_DATA_KEY;
2925 else if (found_type == BTRFS_EXTENT_DATA_KEY)
2926 found_type = BTRFS_XATTR_ITEM_KEY;
2927 else if (found_type == BTRFS_XATTR_ITEM_KEY)
2928 found_type = BTRFS_INODE_REF_KEY;
2929 else if (found_type)
2933 btrfs_set_key_type(&key, found_type);
2936 if (found_key.offset >= new_size)
2942 /* FIXME, shrink the extent if the ref count is only 1 */
2943 if (found_type != BTRFS_EXTENT_DATA_KEY)
2946 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2948 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
2949 if (!del_item && !encoding) {
2950 u64 orig_num_bytes =
2951 btrfs_file_extent_num_bytes(leaf, fi);
2952 extent_num_bytes = new_size -
2953 found_key.offset + root->sectorsize - 1;
2954 extent_num_bytes = extent_num_bytes &
2955 ~((u64)root->sectorsize - 1);
2956 btrfs_set_file_extent_num_bytes(leaf, fi,
2958 num_dec = (orig_num_bytes -
2960 if (root->ref_cows && extent_start != 0)
2961 inode_sub_bytes(inode, num_dec);
2962 btrfs_mark_buffer_dirty(leaf);
2965 btrfs_file_extent_disk_num_bytes(leaf,
2967 extent_offset = found_key.offset -
2968 btrfs_file_extent_offset(leaf, fi);
2970 /* FIXME blocksize != 4096 */
2971 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
2972 if (extent_start != 0) {
2975 inode_sub_bytes(inode, num_dec);
2978 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2980 * we can't truncate inline items that have had
2984 btrfs_file_extent_compression(leaf, fi) == 0 &&
2985 btrfs_file_extent_encryption(leaf, fi) == 0 &&
2986 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
2987 u32 size = new_size - found_key.offset;
2989 if (root->ref_cows) {
2990 inode_sub_bytes(inode, item_end + 1 -
2994 btrfs_file_extent_calc_inline_size(size);
2995 ret = btrfs_truncate_item(trans, root, path,
2998 } else if (root->ref_cows) {
2999 inode_sub_bytes(inode, item_end + 1 -
3005 if (!pending_del_nr) {
3006 /* no pending yet, add ourselves */
3007 pending_del_slot = path->slots[0];
3009 } else if (pending_del_nr &&
3010 path->slots[0] + 1 == pending_del_slot) {
3011 /* hop on the pending chunk */
3013 pending_del_slot = path->slots[0];
3020 if (found_extent && root->ref_cows) {
3021 btrfs_set_path_blocking(path);
3022 ret = btrfs_free_extent(trans, root, extent_start,
3023 extent_num_bytes, 0,
3024 btrfs_header_owner(leaf),
3025 inode->i_ino, extent_offset);
3029 if (path->slots[0] == 0) {
3032 btrfs_release_path(root, path);
3033 if (found_type == BTRFS_INODE_ITEM_KEY)
3039 if (pending_del_nr &&
3040 path->slots[0] + 1 != pending_del_slot) {
3041 struct btrfs_key debug;
3043 btrfs_item_key_to_cpu(path->nodes[0], &debug,
3045 ret = btrfs_del_items(trans, root, path,
3050 btrfs_release_path(root, path);
3051 if (found_type == BTRFS_INODE_ITEM_KEY)
3058 if (pending_del_nr) {
3059 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3062 btrfs_free_path(path);
3067 * taken from block_truncate_page, but does cow as it zeros out
3068 * any bytes left in the last page in the file.
3070 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3072 struct inode *inode = mapping->host;
3073 struct btrfs_root *root = BTRFS_I(inode)->root;
3074 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3075 struct btrfs_ordered_extent *ordered;
3077 u32 blocksize = root->sectorsize;
3078 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3079 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3085 if ((offset & (blocksize - 1)) == 0)
3087 ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
3091 ret = btrfs_reserve_metadata_for_delalloc(root, inode, 1);
3097 page = grab_cache_page(mapping, index);
3099 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
3100 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
3104 page_start = page_offset(page);
3105 page_end = page_start + PAGE_CACHE_SIZE - 1;
3107 if (!PageUptodate(page)) {
3108 ret = btrfs_readpage(NULL, page);
3110 if (page->mapping != mapping) {
3112 page_cache_release(page);
3115 if (!PageUptodate(page)) {
3120 wait_on_page_writeback(page);
3122 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
3123 set_page_extent_mapped(page);
3125 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3127 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3129 page_cache_release(page);
3130 btrfs_start_ordered_extent(inode, ordered, 1);
3131 btrfs_put_ordered_extent(ordered);
3135 clear_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
3136 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3139 ret = btrfs_set_extent_delalloc(inode, page_start, page_end);
3141 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3146 if (offset != PAGE_CACHE_SIZE) {
3148 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3149 flush_dcache_page(page);
3152 ClearPageChecked(page);
3153 set_page_dirty(page);
3154 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3158 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
3159 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
3161 page_cache_release(page);
3166 int btrfs_cont_expand(struct inode *inode, loff_t size)
3168 struct btrfs_trans_handle *trans;
3169 struct btrfs_root *root = BTRFS_I(inode)->root;
3170 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3171 struct extent_map *em;
3172 u64 mask = root->sectorsize - 1;
3173 u64 hole_start = (inode->i_size + mask) & ~mask;
3174 u64 block_end = (size + mask) & ~mask;
3180 if (size <= hole_start)
3183 err = btrfs_truncate_page(inode->i_mapping, inode->i_size);
3188 struct btrfs_ordered_extent *ordered;
3189 btrfs_wait_ordered_range(inode, hole_start,