]> nv-tegra.nvidia Code Review - linux-2.6.git/blob - fs/btrfs/disk-io.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[linux-2.6.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
34 #include "compat.h"
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46
47 static struct extent_io_ops btree_extent_io_ops;
48 static void end_workqueue_fn(struct btrfs_work *work);
49 static void free_fs_root(struct btrfs_root *root);
50 static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
51                                     int read_only);
52 static int btrfs_destroy_ordered_operations(struct btrfs_root *root);
53 static int btrfs_destroy_ordered_extents(struct btrfs_root *root);
54 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
55                                       struct btrfs_root *root);
56 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
57 static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
58 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
59                                         struct extent_io_tree *dirty_pages,
60                                         int mark);
61 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
62                                        struct extent_io_tree *pinned_extents);
63 static int btrfs_cleanup_transaction(struct btrfs_root *root);
64
65 /*
66  * end_io_wq structs are used to do processing in task context when an IO is
67  * complete.  This is used during reads to verify checksums, and it is used
68  * by writes to insert metadata for new file extents after IO is complete.
69  */
70 struct end_io_wq {
71         struct bio *bio;
72         bio_end_io_t *end_io;
73         void *private;
74         struct btrfs_fs_info *info;
75         int error;
76         int metadata;
77         struct list_head list;
78         struct btrfs_work work;
79 };
80
81 /*
82  * async submit bios are used to offload expensive checksumming
83  * onto the worker threads.  They checksum file and metadata bios
84  * just before they are sent down the IO stack.
85  */
86 struct async_submit_bio {
87         struct inode *inode;
88         struct bio *bio;
89         struct list_head list;
90         extent_submit_bio_hook_t *submit_bio_start;
91         extent_submit_bio_hook_t *submit_bio_done;
92         int rw;
93         int mirror_num;
94         unsigned long bio_flags;
95         /*
96          * bio_offset is optional, can be used if the pages in the bio
97          * can't tell us where in the file the bio should go
98          */
99         u64 bio_offset;
100         struct btrfs_work work;
101 };
102
103 /* These are used to set the lockdep class on the extent buffer locks.
104  * The class is set by the readpage_end_io_hook after the buffer has
105  * passed csum validation but before the pages are unlocked.
106  *
107  * The lockdep class is also set by btrfs_init_new_buffer on freshly
108  * allocated blocks.
109  *
110  * The class is based on the level in the tree block, which allows lockdep
111  * to know that lower nodes nest inside the locks of higher nodes.
112  *
113  * We also add a check to make sure the highest level of the tree is
114  * the same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this
115  * code needs update as well.
116  */
117 #ifdef CONFIG_DEBUG_LOCK_ALLOC
118 # if BTRFS_MAX_LEVEL != 8
119 #  error
120 # endif
121 static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1];
122 static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = {
123         /* leaf */
124         "btrfs-extent-00",
125         "btrfs-extent-01",
126         "btrfs-extent-02",
127         "btrfs-extent-03",
128         "btrfs-extent-04",
129         "btrfs-extent-05",
130         "btrfs-extent-06",
131         "btrfs-extent-07",
132         /* highest possible level */
133         "btrfs-extent-08",
134 };
135 #endif
136
137 /*
138  * extents on the btree inode are pretty simple, there's one extent
139  * that covers the entire device
140  */
141 static struct extent_map *btree_get_extent(struct inode *inode,
142                 struct page *page, size_t pg_offset, u64 start, u64 len,
143                 int create)
144 {
145         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
146         struct extent_map *em;
147         int ret;
148
149         read_lock(&em_tree->lock);
150         em = lookup_extent_mapping(em_tree, start, len);
151         if (em) {
152                 em->bdev =
153                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
154                 read_unlock(&em_tree->lock);
155                 goto out;
156         }
157         read_unlock(&em_tree->lock);
158
159         em = alloc_extent_map();
160         if (!em) {
161                 em = ERR_PTR(-ENOMEM);
162                 goto out;
163         }
164         em->start = 0;
165         em->len = (u64)-1;
166         em->block_len = (u64)-1;
167         em->block_start = 0;
168         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
169
170         write_lock(&em_tree->lock);
171         ret = add_extent_mapping(em_tree, em);
172         if (ret == -EEXIST) {
173                 u64 failed_start = em->start;
174                 u64 failed_len = em->len;
175
176                 free_extent_map(em);
177                 em = lookup_extent_mapping(em_tree, start, len);
178                 if (em) {
179                         ret = 0;
180                 } else {
181                         em = lookup_extent_mapping(em_tree, failed_start,
182                                                    failed_len);
183                         ret = -EIO;
184                 }
185         } else if (ret) {
186                 free_extent_map(em);
187                 em = NULL;
188         }
189         write_unlock(&em_tree->lock);
190
191         if (ret)
192                 em = ERR_PTR(ret);
193 out:
194         return em;
195 }
196
197 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
198 {
199         return crc32c(seed, data, len);
200 }
201
202 void btrfs_csum_final(u32 crc, char *result)
203 {
204         put_unaligned_le32(~crc, result);
205 }
206
207 /*
208  * compute the csum for a btree block, and either verify it or write it
209  * into the csum field of the block.
210  */
211 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
212                            int verify)
213 {
214         u16 csum_size =
215                 btrfs_super_csum_size(&root->fs_info->super_copy);
216         char *result = NULL;
217         unsigned long len;
218         unsigned long cur_len;
219         unsigned long offset = BTRFS_CSUM_SIZE;
220         char *map_token = NULL;
221         char *kaddr;
222         unsigned long map_start;
223         unsigned long map_len;
224         int err;
225         u32 crc = ~(u32)0;
226         unsigned long inline_result;
227
228         len = buf->len - offset;
229         while (len > 0) {
230                 err = map_private_extent_buffer(buf, offset, 32,
231                                         &map_token, &kaddr,
232                                         &map_start, &map_len, KM_USER0);
233                 if (err)
234                         return 1;
235                 cur_len = min(len, map_len - (offset - map_start));
236                 crc = btrfs_csum_data(root, kaddr + offset - map_start,
237                                       crc, cur_len);
238                 len -= cur_len;
239                 offset += cur_len;
240                 unmap_extent_buffer(buf, map_token, KM_USER0);
241         }
242         if (csum_size > sizeof(inline_result)) {
243                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
244                 if (!result)
245                         return 1;
246         } else {
247                 result = (char *)&inline_result;
248         }
249
250         btrfs_csum_final(crc, result);
251
252         if (verify) {
253                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
254                         u32 val;
255                         u32 found = 0;
256                         memcpy(&found, result, csum_size);
257
258                         read_extent_buffer(buf, &val, 0, csum_size);
259                         printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
260                                        "failed on %llu wanted %X found %X "
261                                        "level %d\n",
262                                        root->fs_info->sb->s_id,
263                                        (unsigned long long)buf->start, val, found,
264                                        btrfs_header_level(buf));
265                         if (result != (char *)&inline_result)
266                                 kfree(result);
267                         return 1;
268                 }
269         } else {
270                 write_extent_buffer(buf, result, 0, csum_size);
271         }
272         if (result != (char *)&inline_result)
273                 kfree(result);
274         return 0;
275 }
276
277 /*
278  * we can't consider a given block up to date unless the transid of the
279  * block matches the transid in the parent node's pointer.  This is how we
280  * detect blocks that either didn't get written at all or got written
281  * in the wrong place.
282  */
283 static int verify_parent_transid(struct extent_io_tree *io_tree,
284                                  struct extent_buffer *eb, u64 parent_transid)
285 {
286         struct extent_state *cached_state = NULL;
287         int ret;
288
289         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
290                 return 0;
291
292         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
293                          0, &cached_state, GFP_NOFS);
294         if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
295             btrfs_header_generation(eb) == parent_transid) {
296                 ret = 0;
297                 goto out;
298         }
299         printk_ratelimited("parent transid verify failed on %llu wanted %llu "
300                        "found %llu\n",
301                        (unsigned long long)eb->start,
302                        (unsigned long long)parent_transid,
303                        (unsigned long long)btrfs_header_generation(eb));
304         ret = 1;
305         clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
306 out:
307         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
308                              &cached_state, GFP_NOFS);
309         return ret;
310 }
311
312 /*
313  * helper to read a given tree block, doing retries as required when
314  * the checksums don't match and we have alternate mirrors to try.
315  */
316 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
317                                           struct extent_buffer *eb,
318                                           u64 start, u64 parent_transid)
319 {
320         struct extent_io_tree *io_tree;
321         int ret;
322         int num_copies = 0;
323         int mirror_num = 0;
324
325         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
326         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
327         while (1) {
328                 ret = read_extent_buffer_pages(io_tree, eb, start, 1,
329                                                btree_get_extent, mirror_num);
330                 if (!ret &&
331                     !verify_parent_transid(io_tree, eb, parent_transid))
332                         return ret;
333
334                 /*
335                  * This buffer's crc is fine, but its contents are corrupted, so
336                  * there is no reason to read the other copies, they won't be
337                  * any less wrong.
338                  */
339                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
340                         return ret;
341
342                 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
343                                               eb->start, eb->len);
344                 if (num_copies == 1)
345                         return ret;
346
347                 mirror_num++;
348                 if (mirror_num > num_copies)
349                         return ret;
350         }
351         return -EIO;
352 }
353
354 /*
355  * checksum a dirty tree block before IO.  This has extra checks to make sure
356  * we only fill in the checksum field in the first page of a multi-page block
357  */
358
359 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
360 {
361         struct extent_io_tree *tree;
362         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
363         u64 found_start;
364         unsigned long len;
365         struct extent_buffer *eb;
366         int ret;
367
368         tree = &BTRFS_I(page->mapping->host)->io_tree;
369
370         if (page->private == EXTENT_PAGE_PRIVATE) {
371                 WARN_ON(1);
372                 goto out;
373         }
374         if (!page->private) {
375                 WARN_ON(1);
376                 goto out;
377         }
378         len = page->private >> 2;
379         WARN_ON(len == 0);
380
381         eb = alloc_extent_buffer(tree, start, len, page);
382         if (eb == NULL) {
383                 WARN_ON(1);
384                 goto out;
385         }
386         ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
387                                              btrfs_header_generation(eb));
388         BUG_ON(ret);
389         WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN));
390
391         found_start = btrfs_header_bytenr(eb);
392         if (found_start != start) {
393                 WARN_ON(1);
394                 goto err;
395         }
396         if (eb->first_page != page) {
397                 WARN_ON(1);
398                 goto err;
399         }
400         if (!PageUptodate(page)) {
401                 WARN_ON(1);
402                 goto err;
403         }
404         csum_tree_block(root, eb, 0);
405 err:
406         free_extent_buffer(eb);
407 out:
408         return 0;
409 }
410
411 static int check_tree_block_fsid(struct btrfs_root *root,
412                                  struct extent_buffer *eb)
413 {
414         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
415         u8 fsid[BTRFS_UUID_SIZE];
416         int ret = 1;
417
418         read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
419                            BTRFS_FSID_SIZE);
420         while (fs_devices) {
421                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
422                         ret = 0;
423                         break;
424                 }
425                 fs_devices = fs_devices->seed;
426         }
427         return ret;
428 }
429
430 #define CORRUPT(reason, eb, root, slot)                         \
431         printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
432                "root=%llu, slot=%d\n", reason,                  \
433                (unsigned long long)btrfs_header_bytenr(eb),     \
434                (unsigned long long)root->objectid, slot)
435
436 static noinline int check_leaf(struct btrfs_root *root,
437                                struct extent_buffer *leaf)
438 {
439         struct btrfs_key key;
440         struct btrfs_key leaf_key;
441         u32 nritems = btrfs_header_nritems(leaf);
442         int slot;
443
444         if (nritems == 0)
445                 return 0;
446
447         /* Check the 0 item */
448         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
449             BTRFS_LEAF_DATA_SIZE(root)) {
450                 CORRUPT("invalid item offset size pair", leaf, root, 0);
451                 return -EIO;
452         }
453
454         /*
455          * Check to make sure each items keys are in the correct order and their
456          * offsets make sense.  We only have to loop through nritems-1 because
457          * we check the current slot against the next slot, which verifies the
458          * next slot's offset+size makes sense and that the current's slot
459          * offset is correct.
460          */
461         for (slot = 0; slot < nritems - 1; slot++) {
462                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
463                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
464
465                 /* Make sure the keys are in the right order */
466                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
467                         CORRUPT("bad key order", leaf, root, slot);
468                         return -EIO;
469                 }
470
471                 /*
472                  * Make sure the offset and ends are right, remember that the
473                  * item data starts at the end of the leaf and grows towards the
474                  * front.
475                  */
476                 if (btrfs_item_offset_nr(leaf, slot) !=
477                         btrfs_item_end_nr(leaf, slot + 1)) {
478                         CORRUPT("slot offset bad", leaf, root, slot);
479                         return -EIO;
480                 }
481
482                 /*
483                  * Check to make sure that we don't point outside of the leaf,
484                  * just incase all the items are consistent to eachother, but
485                  * all point outside of the leaf.
486                  */
487                 if (btrfs_item_end_nr(leaf, slot) >
488                     BTRFS_LEAF_DATA_SIZE(root)) {
489                         CORRUPT("slot end outside of leaf", leaf, root, slot);
490                         return -EIO;
491                 }
492         }
493
494         return 0;
495 }
496
497 #ifdef CONFIG_DEBUG_LOCK_ALLOC
498 void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level)
499 {
500         lockdep_set_class_and_name(&eb->lock,
501                            &btrfs_eb_class[level],
502                            btrfs_eb_name[level]);
503 }
504 #endif
505
506 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
507                                struct extent_state *state)
508 {
509         struct extent_io_tree *tree;
510         u64 found_start;
511         int found_level;
512         unsigned long len;
513         struct extent_buffer *eb;
514         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
515         int ret = 0;
516
517         tree = &BTRFS_I(page->mapping->host)->io_tree;
518         if (page->private == EXTENT_PAGE_PRIVATE)
519                 goto out;
520         if (!page->private)
521                 goto out;
522
523         len = page->private >> 2;
524         WARN_ON(len == 0);
525
526         eb = alloc_extent_buffer(tree, start, len, page);
527         if (eb == NULL) {
528                 ret = -EIO;
529                 goto out;
530         }
531
532         found_start = btrfs_header_bytenr(eb);
533         if (found_start != start) {
534                 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
535                                "%llu %llu\n",
536                                (unsigned long long)found_start,
537                                (unsigned long long)eb->start);
538                 ret = -EIO;
539                 goto err;
540         }
541         if (eb->first_page != page) {
542                 printk(KERN_INFO "btrfs bad first page %lu %lu\n",
543                        eb->first_page->index, page->index);
544                 WARN_ON(1);
545                 ret = -EIO;
546                 goto err;
547         }
548         if (check_tree_block_fsid(root, eb)) {
549                 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
550                                (unsigned long long)eb->start);
551                 ret = -EIO;
552                 goto err;
553         }
554         found_level = btrfs_header_level(eb);
555
556         btrfs_set_buffer_lockdep_class(eb, found_level);
557
558         ret = csum_tree_block(root, eb, 1);
559         if (ret) {
560                 ret = -EIO;
561                 goto err;
562         }
563
564         /*
565          * If this is a leaf block and it is corrupt, set the corrupt bit so
566          * that we don't try and read the other copies of this block, just
567          * return -EIO.
568          */
569         if (found_level == 0 && check_leaf(root, eb)) {
570                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
571                 ret = -EIO;
572         }
573
574         end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
575         end = eb->start + end - 1;
576 err:
577         free_extent_buffer(eb);
578 out:
579         return ret;
580 }
581
582 static void end_workqueue_bio(struct bio *bio, int err)
583 {
584         struct end_io_wq *end_io_wq = bio->bi_private;
585         struct btrfs_fs_info *fs_info;
586
587         fs_info = end_io_wq->info;
588         end_io_wq->error = err;
589         end_io_wq->work.func = end_workqueue_fn;
590         end_io_wq->work.flags = 0;
591
592         if (bio->bi_rw & REQ_WRITE) {
593                 if (end_io_wq->metadata == 1)
594                         btrfs_queue_worker(&fs_info->endio_meta_write_workers,
595                                            &end_io_wq->work);
596                 else if (end_io_wq->metadata == 2)
597                         btrfs_queue_worker(&fs_info->endio_freespace_worker,
598                                            &end_io_wq->work);
599                 else
600                         btrfs_queue_worker(&fs_info->endio_write_workers,
601                                            &end_io_wq->work);
602         } else {
603                 if (end_io_wq->metadata)
604                         btrfs_queue_worker(&fs_info->endio_meta_workers,
605                                            &end_io_wq->work);
606                 else
607                         btrfs_queue_worker(&fs_info->endio_workers,
608                                            &end_io_wq->work);
609         }
610 }
611
612 /*
613  * For the metadata arg you want
614  *
615  * 0 - if data
616  * 1 - if normal metadta
617  * 2 - if writing to the free space cache area
618  */
619 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
620                         int metadata)
621 {
622         struct end_io_wq *end_io_wq;
623         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
624         if (!end_io_wq)
625                 return -ENOMEM;
626
627         end_io_wq->private = bio->bi_private;
628         end_io_wq->end_io = bio->bi_end_io;
629         end_io_wq->info = info;
630         end_io_wq->error = 0;
631         end_io_wq->bio = bio;
632         end_io_wq->metadata = metadata;
633
634         bio->bi_private = end_io_wq;
635         bio->bi_end_io = end_workqueue_bio;
636         return 0;
637 }
638
639 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
640 {
641         unsigned long limit = min_t(unsigned long,
642                                     info->workers.max_workers,
643                                     info->fs_devices->open_devices);
644         return 256 * limit;
645 }
646
647 static void run_one_async_start(struct btrfs_work *work)
648 {
649         struct async_submit_bio *async;
650
651         async = container_of(work, struct  async_submit_bio, work);
652         async->submit_bio_start(async->inode, async->rw, async->bio,
653                                async->mirror_num, async->bio_flags,
654                                async->bio_offset);
655 }
656
657 static void run_one_async_done(struct btrfs_work *work)
658 {
659         struct btrfs_fs_info *fs_info;
660         struct async_submit_bio *async;
661         int limit;
662
663         async = container_of(work, struct  async_submit_bio, work);
664         fs_info = BTRFS_I(async->inode)->root->fs_info;
665
666         limit = btrfs_async_submit_limit(fs_info);
667         limit = limit * 2 / 3;
668
669         atomic_dec(&fs_info->nr_async_submits);
670
671         if (atomic_read(&fs_info->nr_async_submits) < limit &&
672             waitqueue_active(&fs_info->async_submit_wait))
673                 wake_up(&fs_info->async_submit_wait);
674
675         async->submit_bio_done(async->inode, async->rw, async->bio,
676                                async->mirror_num, async->bio_flags,
677                                async->bio_offset);
678 }
679
680 static void run_one_async_free(struct btrfs_work *work)
681 {
682         struct async_submit_bio *async;
683
684         async = container_of(work, struct  async_submit_bio, work);
685         kfree(async);
686 }
687
688 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
689                         int rw, struct bio *bio, int mirror_num,
690                         unsigned long bio_flags,
691                         u64 bio_offset,
692                         extent_submit_bio_hook_t *submit_bio_start,
693                         extent_submit_bio_hook_t *submit_bio_done)
694 {
695         struct async_submit_bio *async;
696
697         async = kmalloc(sizeof(*async), GFP_NOFS);
698         if (!async)
699                 return -ENOMEM;
700
701         async->inode = inode;
702         async->rw = rw;
703         async->bio = bio;
704         async->mirror_num = mirror_num;
705         async->submit_bio_start = submit_bio_start;
706         async->submit_bio_done = submit_bio_done;
707
708         async->work.func = run_one_async_start;
709         async->work.ordered_func = run_one_async_done;
710         async->work.ordered_free = run_one_async_free;
711
712         async->work.flags = 0;
713         async->bio_flags = bio_flags;
714         async->bio_offset = bio_offset;
715
716         atomic_inc(&fs_info->nr_async_submits);
717
718         if (rw & REQ_SYNC)
719                 btrfs_set_work_high_prio(&async->work);
720
721         btrfs_queue_worker(&fs_info->workers, &async->work);
722
723         while (atomic_read(&fs_info->async_submit_draining) &&
724               atomic_read(&fs_info->nr_async_submits)) {
725                 wait_event(fs_info->async_submit_wait,
726                            (atomic_read(&fs_info->nr_async_submits) == 0));
727         }
728
729         return 0;
730 }
731
732 static int btree_csum_one_bio(struct bio *bio)
733 {
734         struct bio_vec *bvec = bio->bi_io_vec;
735         int bio_index = 0;
736         struct btrfs_root *root;
737
738         WARN_ON(bio->bi_vcnt <= 0);
739         while (bio_index < bio->bi_vcnt) {
740                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
741                 csum_dirty_buffer(root, bvec->bv_page);
742                 bio_index++;
743                 bvec++;
744         }
745         return 0;
746 }
747
748 static int __btree_submit_bio_start(struct inode *inode, int rw,
749                                     struct bio *bio, int mirror_num,
750                                     unsigned long bio_flags,
751                                     u64 bio_offset)
752 {
753         /*
754          * when we're called for a write, we're already in the async
755          * submission context.  Just jump into btrfs_map_bio
756          */
757         btree_csum_one_bio(bio);
758         return 0;
759 }
760
761 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
762                                  int mirror_num, unsigned long bio_flags,
763                                  u64 bio_offset)
764 {
765         /*
766          * when we're called for a write, we're already in the async
767          * submission context.  Just jump into btrfs_map_bio
768          */
769         return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
770 }
771
772 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
773                                  int mirror_num, unsigned long bio_flags,
774                                  u64 bio_offset)
775 {
776         int ret;
777
778         ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
779                                           bio, 1);
780         BUG_ON(ret);
781
782         if (!(rw & REQ_WRITE)) {
783                 /*
784                  * called for a read, do the setup so that checksum validation
785                  * can happen in the async kernel threads
786                  */
787                 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
788                                      mirror_num, 0);
789         }
790
791         /*
792          * kthread helpers are used to submit writes so that checksumming
793          * can happen in parallel across all CPUs
794          */
795         return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
796                                    inode, rw, bio, mirror_num, 0,
797                                    bio_offset,
798                                    __btree_submit_bio_start,
799                                    __btree_submit_bio_done);
800 }
801
802 #ifdef CONFIG_MIGRATION
803 static int btree_migratepage(struct address_space *mapping,
804                         struct page *newpage, struct page *page)
805 {
806         /*
807          * we can't safely write a btree page from here,
808          * we haven't done the locking hook
809          */
810         if (PageDirty(page))
811                 return -EAGAIN;
812         /*
813          * Buffers may be managed in a filesystem specific way.
814          * We must have no buffers or drop them.
815          */
816         if (page_has_private(page) &&
817             !try_to_release_page(page, GFP_KERNEL))
818                 return -EAGAIN;
819         return migrate_page(mapping, newpage, page);
820 }
821 #endif
822
823 static int btree_writepage(struct page *page, struct writeback_control *wbc)
824 {
825         struct extent_io_tree *tree;
826         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
827         struct extent_buffer *eb;
828         int was_dirty;
829
830         tree = &BTRFS_I(page->mapping->host)->io_tree;
831         if (!(current->flags & PF_MEMALLOC)) {
832                 return extent_write_full_page(tree, page,
833                                               btree_get_extent, wbc);
834         }
835
836         redirty_page_for_writepage(wbc, page);
837         eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE);
838         WARN_ON(!eb);
839
840         was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
841         if (!was_dirty) {
842                 spin_lock(&root->fs_info->delalloc_lock);
843                 root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
844                 spin_unlock(&root->fs_info->delalloc_lock);
845         }
846         free_extent_buffer(eb);
847
848         unlock_page(page);
849         return 0;
850 }
851
852 static int btree_writepages(struct address_space *mapping,
853                             struct writeback_control *wbc)
854 {
855         struct extent_io_tree *tree;
856         tree = &BTRFS_I(mapping->host)->io_tree;
857         if (wbc->sync_mode == WB_SYNC_NONE) {
858                 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
859                 u64 num_dirty;
860                 unsigned long thresh = 32 * 1024 * 1024;
861
862                 if (wbc->for_kupdate)
863                         return 0;
864
865                 /* this is a bit racy, but that's ok */
866                 num_dirty = root->fs_info->dirty_metadata_bytes;
867                 if (num_dirty < thresh)
868                         return 0;
869         }
870         return extent_writepages(tree, mapping, btree_get_extent, wbc);
871 }
872
873 static int btree_readpage(struct file *file, struct page *page)
874 {
875         struct extent_io_tree *tree;
876         tree = &BTRFS_I(page->mapping->host)->io_tree;
877         return extent_read_full_page(tree, page, btree_get_extent);
878 }
879
880 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
881 {
882         struct extent_io_tree *tree;
883         struct extent_map_tree *map;
884         int ret;
885
886         if (PageWriteback(page) || PageDirty(page))
887                 return 0;
888
889         tree = &BTRFS_I(page->mapping->host)->io_tree;
890         map = &BTRFS_I(page->mapping->host)->extent_tree;
891
892         ret = try_release_extent_state(map, tree, page, gfp_flags);
893         if (!ret)
894                 return 0;
895
896         ret = try_release_extent_buffer(tree, page);
897         if (ret == 1) {
898                 ClearPagePrivate(page);
899                 set_page_private(page, 0);
900                 page_cache_release(page);
901         }
902
903         return ret;
904 }
905
906 static void btree_invalidatepage(struct page *page, unsigned long offset)
907 {
908         struct extent_io_tree *tree;
909         tree = &BTRFS_I(page->mapping->host)->io_tree;
910         extent_invalidatepage(tree, page, offset);
911         btree_releasepage(page, GFP_NOFS);
912         if (PagePrivate(page)) {
913                 printk(KERN_WARNING "btrfs warning page private not zero "
914                        "on page %llu\n", (unsigned long long)page_offset(page));
915                 ClearPagePrivate(page);
916                 set_page_private(page, 0);
917                 page_cache_release(page);
918         }
919 }
920
921 static const struct address_space_operations btree_aops = {
922         .readpage       = btree_readpage,
923         .writepage      = btree_writepage,
924         .writepages     = btree_writepages,
925         .releasepage    = btree_releasepage,
926         .invalidatepage = btree_invalidatepage,
927 #ifdef CONFIG_MIGRATION
928         .migratepage    = btree_migratepage,
929 #endif
930 };
931
932 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
933                          u64 parent_transid)
934 {
935         struct extent_buffer *buf = NULL;
936         struct inode *btree_inode = root->fs_info->btree_inode;
937         int ret = 0;
938
939         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
940         if (!buf)
941                 return 0;
942         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
943                                  buf, 0, 0, btree_get_extent, 0);
944         free_extent_buffer(buf);
945         return ret;
946 }
947
948 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
949                                             u64 bytenr, u32 blocksize)
950 {
951         struct inode *btree_inode = root->fs_info->btree_inode;
952         struct extent_buffer *eb;
953         eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
954                                 bytenr, blocksize);
955         return eb;
956 }
957
958 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
959                                                  u64 bytenr, u32 blocksize)
960 {
961         struct inode *btree_inode = root->fs_info->btree_inode;
962         struct extent_buffer *eb;
963
964         eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
965                                  bytenr, blocksize, NULL);
966         return eb;
967 }
968
969
970 int btrfs_write_tree_block(struct extent_buffer *buf)
971 {
972         return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
973                                         buf->start + buf->len - 1);
974 }
975
976 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
977 {
978         return filemap_fdatawait_range(buf->first_page->mapping,
979                                        buf->start, buf->start + buf->len - 1);
980 }
981
982 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
983                                       u32 blocksize, u64 parent_transid)
984 {
985         struct extent_buffer *buf = NULL;
986         int ret;
987
988         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
989         if (!buf)
990                 return NULL;
991
992         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
993
994         if (ret == 0)
995                 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
996         return buf;
997
998 }
999
1000 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1001                      struct extent_buffer *buf)
1002 {
1003         struct inode *btree_inode = root->fs_info->btree_inode;
1004         if (btrfs_header_generation(buf) ==
1005             root->fs_info->running_transaction->transid) {
1006                 btrfs_assert_tree_locked(buf);
1007
1008                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1009                         spin_lock(&root->fs_info->delalloc_lock);
1010                         if (root->fs_info->dirty_metadata_bytes >= buf->len)
1011                                 root->fs_info->dirty_metadata_bytes -= buf->len;
1012                         else
1013                                 WARN_ON(1);
1014                         spin_unlock(&root->fs_info->delalloc_lock);
1015                 }
1016
1017                 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1018                 btrfs_set_lock_blocking(buf);
1019                 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
1020                                           buf);
1021         }
1022         return 0;
1023 }
1024
1025 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1026                         u32 stripesize, struct btrfs_root *root,
1027                         struct btrfs_fs_info *fs_info,
1028                         u64 objectid)
1029 {
1030         root->node = NULL;
1031         root->commit_root = NULL;
1032         root->sectorsize = sectorsize;
1033         root->nodesize = nodesize;
1034         root->leafsize = leafsize;
1035         root->stripesize = stripesize;
1036         root->ref_cows = 0;
1037         root->track_dirty = 0;
1038         root->in_radix = 0;
1039         root->orphan_item_inserted = 0;
1040         root->orphan_cleanup_state = 0;
1041
1042         root->fs_info = fs_info;
1043         root->objectid = objectid;
1044         root->last_trans = 0;
1045         root->highest_objectid = 0;
1046         root->name = NULL;
1047         root->inode_tree = RB_ROOT;
1048         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1049         root->block_rsv = NULL;
1050         root->orphan_block_rsv = NULL;
1051
1052         INIT_LIST_HEAD(&root->dirty_list);
1053         INIT_LIST_HEAD(&root->orphan_list);
1054         INIT_LIST_HEAD(&root->root_list);
1055         spin_lock_init(&root->orphan_lock);
1056         spin_lock_init(&root->inode_lock);
1057         spin_lock_init(&root->accounting_lock);
1058         mutex_init(&root->objectid_mutex);
1059         mutex_init(&root->log_mutex);
1060         init_waitqueue_head(&root->log_writer_wait);
1061         init_waitqueue_head(&root->log_commit_wait[0]);
1062         init_waitqueue_head(&root->log_commit_wait[1]);
1063         atomic_set(&root->log_commit[0], 0);
1064         atomic_set(&root->log_commit[1], 0);
1065         atomic_set(&root->log_writers, 0);
1066         root->log_batch = 0;
1067         root->log_transid = 0;
1068         root->last_log_commit = 0;
1069         extent_io_tree_init(&root->dirty_log_pages,
1070                              fs_info->btree_inode->i_mapping);
1071
1072         memset(&root->root_key, 0, sizeof(root->root_key));
1073         memset(&root->root_item, 0, sizeof(root->root_item));
1074         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1075         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1076         root->defrag_trans_start = fs_info->generation;
1077         init_completion(&root->kobj_unregister);
1078         root->defrag_running = 0;
1079         root->root_key.objectid = objectid;
1080         root->anon_dev = 0;
1081         return 0;
1082 }
1083
1084 static int find_and_setup_root(struct btrfs_root *tree_root,
1085                                struct btrfs_fs_info *fs_info,
1086                                u64 objectid,
1087                                struct btrfs_root *root)
1088 {
1089         int ret;
1090         u32 blocksize;
1091         u64 generation;
1092
1093         __setup_root(tree_root->nodesize, tree_root->leafsize,
1094                      tree_root->sectorsize, tree_root->stripesize,
1095                      root, fs_info, objectid);
1096         ret = btrfs_find_last_root(tree_root, objectid,
1097                                    &root->root_item, &root->root_key);
1098         if (ret > 0)
1099                 return -ENOENT;
1100         BUG_ON(ret);
1101
1102         generation = btrfs_root_generation(&root->root_item);
1103         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1104         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1105                                      blocksize, generation);
1106         if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) {
1107                 free_extent_buffer(root->node);
1108                 return -EIO;
1109         }
1110         root->commit_root = btrfs_root_node(root);
1111         return 0;
1112 }
1113
1114 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1115                                          struct btrfs_fs_info *fs_info)
1116 {
1117         struct btrfs_root *root;
1118         struct btrfs_root *tree_root = fs_info->tree_root;
1119         struct extent_buffer *leaf;
1120
1121         root = kzalloc(sizeof(*root), GFP_NOFS);
1122         if (!root)
1123                 return ERR_PTR(-ENOMEM);
1124
1125         __setup_root(tree_root->nodesize, tree_root->leafsize,
1126                      tree_root->sectorsize, tree_root->stripesize,
1127                      root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1128
1129         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1130         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1131         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1132         /*
1133          * log trees do not get reference counted because they go away
1134          * before a real commit is actually done.  They do store pointers
1135          * to file data extents, and those reference counts still get
1136          * updated (along with back refs to the log tree).
1137          */
1138         root->ref_cows = 0;
1139
1140         leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1141                                       BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
1142         if (IS_ERR(leaf)) {
1143                 kfree(root);
1144                 return ERR_CAST(leaf);
1145         }
1146
1147         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1148         btrfs_set_header_bytenr(leaf, leaf->start);
1149         btrfs_set_header_generation(leaf, trans->transid);
1150         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1151         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1152         root->node = leaf;
1153
1154         write_extent_buffer(root->node, root->fs_info->fsid,
1155                             (unsigned long)btrfs_header_fsid(root->node),
1156                             BTRFS_FSID_SIZE);
1157         btrfs_mark_buffer_dirty(root->node);
1158         btrfs_tree_unlock(root->node);
1159         return root;
1160 }
1161
1162 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1163                              struct btrfs_fs_info *fs_info)
1164 {
1165         struct btrfs_root *log_root;
1166
1167         log_root = alloc_log_tree(trans, fs_info);
1168         if (IS_ERR(log_root))
1169                 return PTR_ERR(log_root);
1170         WARN_ON(fs_info->log_root_tree);
1171         fs_info->log_root_tree = log_root;
1172         return 0;
1173 }
1174
1175 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1176                        struct btrfs_root *root)
1177 {
1178         struct btrfs_root *log_root;
1179         struct btrfs_inode_item *inode_item;
1180
1181         log_root = alloc_log_tree(trans, root->fs_info);
1182         if (IS_ERR(log_root))
1183                 return PTR_ERR(log_root);
1184
1185         log_root->last_trans = trans->transid;
1186         log_root->root_key.offset = root->root_key.objectid;
1187
1188         inode_item = &log_root->root_item.inode;
1189         inode_item->generation = cpu_to_le64(1);
1190         inode_item->size = cpu_to_le64(3);
1191         inode_item->nlink = cpu_to_le32(1);
1192         inode_item->nbytes = cpu_to_le64(root->leafsize);
1193         inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1194
1195         btrfs_set_root_node(&log_root->root_item, log_root->node);
1196
1197         WARN_ON(root->log_root);
1198         root->log_root = log_root;
1199         root->log_transid = 0;
1200         root->last_log_commit = 0;
1201         return 0;
1202 }
1203
1204 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1205                                                struct btrfs_key *location)
1206 {
1207         struct btrfs_root *root;
1208         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1209         struct btrfs_path *path;
1210         struct extent_buffer *l;
1211         u64 generation;
1212         u32 blocksize;
1213         int ret = 0;
1214
1215         root = kzalloc(sizeof(*root), GFP_NOFS);
1216         if (!root)
1217                 return ERR_PTR(-ENOMEM);
1218         if (location->offset == (u64)-1) {
1219                 ret = find_and_setup_root(tree_root, fs_info,
1220                                           location->objectid, root);
1221                 if (ret) {
1222                         kfree(root);
1223                         return ERR_PTR(ret);
1224                 }
1225                 goto out;
1226         }
1227
1228         __setup_root(tree_root->nodesize, tree_root->leafsize,
1229                      tree_root->sectorsize, tree_root->stripesize,
1230                      root, fs_info, location->objectid);
1231
1232         path = btrfs_alloc_path();
1233         if (!path) {
1234                 kfree(root);
1235                 return ERR_PTR(-ENOMEM);
1236         }
1237         ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1238         if (ret == 0) {
1239                 l = path->nodes[0];
1240                 read_extent_buffer(l, &root->root_item,
1241                                 btrfs_item_ptr_offset(l, path->slots[0]),
1242                                 sizeof(root->root_item));
1243                 memcpy(&root->root_key, location, sizeof(*location));
1244         }
1245         btrfs_free_path(path);
1246         if (ret) {
1247                 kfree(root);
1248                 if (ret > 0)
1249                         ret = -ENOENT;
1250                 return ERR_PTR(ret);
1251         }
1252
1253         generation = btrfs_root_generation(&root->root_item);
1254         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1255         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1256                                      blocksize, generation);
1257         root->commit_root = btrfs_root_node(root);
1258         BUG_ON(!root->node);
1259 out:
1260         if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1261                 root->ref_cows = 1;
1262                 btrfs_check_and_init_root_item(&root->root_item);
1263         }
1264
1265         return root;
1266 }
1267
1268 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1269                                               struct btrfs_key *location)
1270 {
1271         struct btrfs_root *root;
1272         int ret;
1273
1274         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1275                 return fs_info->tree_root;
1276         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1277                 return fs_info->extent_root;
1278         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1279                 return fs_info->chunk_root;
1280         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1281                 return fs_info->dev_root;
1282         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1283                 return fs_info->csum_root;
1284 again:
1285         spin_lock(&fs_info->fs_roots_radix_lock);
1286         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1287                                  (unsigned long)location->objectid);
1288         spin_unlock(&fs_info->fs_roots_radix_lock);
1289         if (root)
1290                 return root;
1291
1292         root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1293         if (IS_ERR(root))
1294                 return root;
1295
1296         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1297         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1298                                         GFP_NOFS);
1299         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1300                 ret = -ENOMEM;
1301                 goto fail;
1302         }
1303
1304         btrfs_init_free_ino_ctl(root);
1305         mutex_init(&root->fs_commit_mutex);
1306         spin_lock_init(&root->cache_lock);
1307         init_waitqueue_head(&root->cache_wait);
1308
1309         ret = get_anon_bdev(&root->anon_dev);
1310         if (ret)
1311                 goto fail;
1312
1313         if (btrfs_root_refs(&root->root_item) == 0) {
1314                 ret = -ENOENT;
1315                 goto fail;
1316         }
1317
1318         ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1319         if (ret < 0)
1320                 goto fail;
1321         if (ret == 0)
1322                 root->orphan_item_inserted = 1;
1323
1324         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1325         if (ret)
1326                 goto fail;
1327
1328         spin_lock(&fs_info->fs_roots_radix_lock);
1329         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1330                                 (unsigned long)root->root_key.objectid,
1331                                 root);
1332         if (ret == 0)
1333                 root->in_radix = 1;
1334
1335         spin_unlock(&fs_info->fs_roots_radix_lock);
1336         radix_tree_preload_end();
1337         if (ret) {
1338                 if (ret == -EEXIST) {
1339                         free_fs_root(root);
1340                         goto again;
1341                 }
1342                 goto fail;
1343         }
1344
1345         ret = btrfs_find_dead_roots(fs_info->tree_root,
1346                                     root->root_key.objectid);
1347         WARN_ON(ret);
1348         return root;
1349 fail:
1350         free_fs_root(root);
1351         return ERR_PTR(ret);
1352 }
1353
1354 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1355 {
1356         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1357         int ret = 0;
1358         struct btrfs_device *device;
1359         struct backing_dev_info *bdi;
1360
1361         rcu_read_lock();
1362         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1363                 if (!device->bdev)
1364                         continue;
1365                 bdi = blk_get_backing_dev_info(device->bdev);
1366                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1367                         ret = 1;
1368                         break;
1369                 }
1370         }
1371         rcu_read_unlock();
1372         return ret;
1373 }
1374
1375 /*
1376  * If this fails, caller must call bdi_destroy() to get rid of the
1377  * bdi again.
1378  */
1379 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1380 {
1381         int err;
1382
1383         bdi->capabilities = BDI_CAP_MAP_COPY;
1384         err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1385         if (err)
1386                 return err;
1387
1388         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1389         bdi->congested_fn       = btrfs_congested_fn;
1390         bdi->congested_data     = info;
1391         return 0;
1392 }
1393
1394 static int bio_ready_for_csum(struct bio *bio)
1395 {
1396         u64 length = 0;
1397         u64 buf_len = 0;
1398         u64 start = 0;
1399         struct page *page;
1400         struct extent_io_tree *io_tree = NULL;
1401         struct bio_vec *bvec;
1402         int i;
1403         int ret;
1404
1405         bio_for_each_segment(bvec, bio, i) {
1406                 page = bvec->bv_page;
1407                 if (page->private == EXTENT_PAGE_PRIVATE) {
1408                         length += bvec->bv_len;
1409                         continue;
1410                 }
1411                 if (!page->private) {
1412                         length += bvec->bv_len;
1413                         continue;
1414                 }
1415                 length = bvec->bv_len;
1416                 buf_len = page->private >> 2;
1417                 start = page_offset(page) + bvec->bv_offset;
1418                 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1419         }
1420         /* are we fully contained in this bio? */
1421         if (buf_len <= length)
1422                 return 1;
1423
1424         ret = extent_range_uptodate(io_tree, start + length,
1425                                     start + buf_len - 1);
1426         return ret;
1427 }
1428
1429 /*
1430  * called by the kthread helper functions to finally call the bio end_io
1431  * functions.  This is where read checksum verification actually happens
1432  */
1433 static void end_workqueue_fn(struct btrfs_work *work)
1434 {
1435         struct bio *bio;
1436         struct end_io_wq *end_io_wq;
1437         struct btrfs_fs_info *fs_info;
1438         int error;
1439
1440         end_io_wq = container_of(work, struct end_io_wq, work);
1441         bio = end_io_wq->bio;
1442         fs_info = end_io_wq->info;
1443
1444         /* metadata bio reads are special because the whole tree block must
1445          * be checksummed at once.  This makes sure the entire block is in
1446          * ram and up to date before trying to verify things.  For
1447          * blocksize <= pagesize, it is basically a noop
1448          */
1449         if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata &&
1450             !bio_ready_for_csum(bio)) {
1451                 btrfs_queue_worker(&fs_info->endio_meta_workers,
1452                                    &end_io_wq->work);
1453                 return;
1454         }
1455         error = end_io_wq->error;
1456         bio->bi_private = end_io_wq->private;
1457         bio->bi_end_io = end_io_wq->end_io;
1458         kfree(end_io_wq);
1459         bio_endio(bio, error);
1460 }
1461
1462 static int cleaner_kthread(void *arg)
1463 {
1464         struct btrfs_root *root = arg;
1465
1466         do {
1467                 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1468
1469                 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1470                     mutex_trylock(&root->fs_info->cleaner_mutex)) {
1471                         btrfs_run_delayed_iputs(root);
1472                         btrfs_clean_old_snapshots(root);
1473                         mutex_unlock(&root->fs_info->cleaner_mutex);
1474                         btrfs_run_defrag_inodes(root->fs_info);
1475                 }
1476
1477                 if (freezing(current)) {
1478                         refrigerator();
1479                 } else {
1480                         set_current_state(TASK_INTERRUPTIBLE);
1481                         if (!kthread_should_stop())
1482                                 schedule();
1483                         __set_current_state(TASK_RUNNING);
1484                 }
1485         } while (!kthread_should_stop());
1486         return 0;
1487 }
1488
1489 static int transaction_kthread(void *arg)
1490 {
1491         struct btrfs_root *root = arg;
1492         struct btrfs_trans_handle *trans;
1493         struct btrfs_transaction *cur;
1494         u64 transid;
1495         unsigned long now;
1496         unsigned long delay;
1497         int ret;
1498
1499         do {
1500                 delay = HZ * 30;
1501                 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1502                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1503
1504                 spin_lock(&root->fs_info->trans_lock);
1505                 cur = root->fs_info->running_transaction;
1506                 if (!cur) {
1507                         spin_unlock(&root->fs_info->trans_lock);
1508                         goto sleep;
1509                 }
1510
1511                 now = get_seconds();
1512                 if (!cur->blocked &&
1513                     (now < cur->start_time || now - cur->start_time < 30)) {
1514                         spin_unlock(&root->fs_info->trans_lock);
1515                         delay = HZ * 5;
1516                         goto sleep;
1517                 }
1518                 transid = cur->transid;
1519                 spin_unlock(&root->fs_info->trans_lock);
1520
1521                 trans = btrfs_join_transaction(root);
1522                 BUG_ON(IS_ERR(trans));
1523                 if (transid == trans->transid) {
1524                         ret = btrfs_commit_transaction(trans, root);
1525                         BUG_ON(ret);
1526                 } else {
1527                         btrfs_end_transaction(trans, root);
1528                 }
1529 sleep:
1530                 wake_up_process(root->fs_info->cleaner_kthread);
1531                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1532
1533                 if (freezing(current)) {
1534                         refrigerator();
1535                 } else {
1536                         set_current_state(TASK_INTERRUPTIBLE);
1537                         if (!kthread_should_stop() &&
1538                             !btrfs_transaction_blocked(root->fs_info))
1539                                 schedule_timeout(delay);
1540                         __set_current_state(TASK_RUNNING);
1541                 }
1542         } while (!kthread_should_stop());
1543         return 0;
1544 }
1545
1546 struct btrfs_root *open_ctree(struct super_block *sb,
1547                               struct btrfs_fs_devices *fs_devices,
1548                               char *options)
1549 {
1550         u32 sectorsize;
1551         u32 nodesize;
1552         u32 leafsize;
1553         u32 blocksize;
1554         u32 stripesize;
1555         u64 generation;
1556         u64 features;
1557         struct btrfs_key location;
1558         struct buffer_head *bh;
1559         struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
1560                                                  GFP_NOFS);
1561         struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
1562                                                  GFP_NOFS);
1563         struct btrfs_root *tree_root = btrfs_sb(sb);
1564         struct btrfs_fs_info *fs_info = NULL;
1565         struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
1566                                                 GFP_NOFS);
1567         struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
1568                                               GFP_NOFS);
1569         struct btrfs_root *log_tree_root;
1570
1571         int ret;
1572         int err = -EINVAL;
1573
1574         struct btrfs_super_block *disk_super;
1575
1576         if (!extent_root || !tree_root || !tree_root->fs_info ||
1577             !chunk_root || !dev_root || !csum_root) {
1578                 err = -ENOMEM;
1579                 goto fail;
1580         }
1581         fs_info = tree_root->fs_info;
1582
1583         ret = init_srcu_struct(&fs_info->subvol_srcu);
1584         if (ret) {
1585                 err = ret;
1586                 goto fail;
1587         }
1588
1589         ret = setup_bdi(fs_info, &fs_info->bdi);
1590         if (ret) {
1591                 err = ret;
1592                 goto fail_srcu;
1593         }
1594
1595         fs_info->btree_inode = new_inode(sb);
1596         if (!fs_info->btree_inode) {
1597                 err = -ENOMEM;
1598                 goto fail_bdi;
1599         }
1600
1601         fs_info->btree_inode->i_mapping->flags &= ~__GFP_FS;
1602
1603         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
1604         INIT_LIST_HEAD(&fs_info->trans_list);
1605         INIT_LIST_HEAD(&fs_info->dead_roots);
1606         INIT_LIST_HEAD(&fs_info->delayed_iputs);
1607         INIT_LIST_HEAD(&fs_info->hashers);
1608         INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1609         INIT_LIST_HEAD(&fs_info->ordered_operations);
1610         INIT_LIST_HEAD(&fs_info->caching_block_groups);
1611         spin_lock_init(&fs_info->delalloc_lock);
1612         spin_lock_init(&fs_info->trans_lock);
1613         spin_lock_init(&fs_info->ref_cache_lock);
1614         spin_lock_init(&fs_info->fs_roots_radix_lock);
1615         spin_lock_init(&fs_info->delayed_iput_lock);
1616         spin_lock_init(&fs_info->defrag_inodes_lock);
1617         mutex_init(&fs_info->reloc_mutex);
1618
1619         init_completion(&fs_info->kobj_unregister);
1620         fs_info->tree_root = tree_root;
1621         fs_info->extent_root = extent_root;
1622         fs_info->csum_root = csum_root;
1623         fs_info->chunk_root = chunk_root;
1624         fs_info->dev_root = dev_root;
1625         fs_info->fs_devices = fs_devices;
1626         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1627         INIT_LIST_HEAD(&fs_info->space_info);
1628         btrfs_mapping_init(&fs_info->mapping_tree);
1629         btrfs_init_block_rsv(&fs_info->global_block_rsv);
1630         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
1631         btrfs_init_block_rsv(&fs_info->trans_block_rsv);
1632         btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
1633         btrfs_init_block_rsv(&fs_info->empty_block_rsv);
1634         INIT_LIST_HEAD(&fs_info->durable_block_rsv_list);
1635         mutex_init(&fs_info->durable_block_rsv_mutex);
1636         atomic_set(&fs_info->nr_async_submits, 0);
1637         atomic_set(&fs_info->async_delalloc_pages, 0);
1638         atomic_set(&fs_info->async_submit_draining, 0);
1639         atomic_set(&fs_info->nr_async_bios, 0);
1640         atomic_set(&fs_info->defrag_running, 0);
1641         fs_info->sb = sb;
1642         fs_info->max_inline = 8192 * 1024;
1643         fs_info->metadata_ratio = 0;
1644         fs_info->defrag_inodes = RB_ROOT;
1645         fs_info->trans_no_join = 0;
1646
1647         fs_info->thread_pool_size = min_t(unsigned long,
1648                                           num_online_cpus() + 2, 8);
1649
1650         INIT_LIST_HEAD(&fs_info->ordered_extents);
1651         spin_lock_init(&fs_info->ordered_extent_lock);
1652         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
1653                                         GFP_NOFS);
1654         if (!fs_info->delayed_root) {
1655                 err = -ENOMEM;
1656                 goto fail_iput;
1657         }
1658         btrfs_init_delayed_root(fs_info->delayed_root);
1659
1660         mutex_init(&fs_info->scrub_lock);
1661         atomic_set(&fs_info->scrubs_running, 0);
1662         atomic_set(&fs_info->scrub_pause_req, 0);
1663         atomic_set(&fs_info->scrubs_paused, 0);
1664         atomic_set(&fs_info->scrub_cancel_req, 0);
1665         init_waitqueue_head(&fs_info->scrub_pause_wait);
1666         init_rwsem(&fs_info->scrub_super_lock);
1667         fs_info->scrub_workers_refcnt = 0;
1668
1669         sb->s_blocksize = 4096;
1670         sb->s_blocksize_bits = blksize_bits(4096);
1671         sb->s_bdi = &fs_info->bdi;
1672
1673         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1674         fs_info->btree_inode->i_nlink = 1;
1675         /*
1676          * we set the i_size on the btree inode to the max possible int.
1677          * the real end of the address space is determined by all of
1678          * the devices in the system
1679          */
1680         fs_info->btree_inode->i_size = OFFSET_MAX;
1681         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1682         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1683
1684         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
1685         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1686                              fs_info->btree_inode->i_mapping);
1687         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
1688
1689         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1690
1691         BTRFS_I(fs_info->btree_inode)->root = tree_root;
1692         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1693                sizeof(struct btrfs_key));
1694         BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
1695         insert_inode_hash(fs_info->btree_inode);
1696
1697         spin_lock_init(&fs_info->block_group_cache_lock);
1698         fs_info->block_group_cache_tree = RB_ROOT;
1699
1700         extent_io_tree_init(&fs_info->freed_extents[0],
1701                              fs_info->btree_inode->i_mapping);
1702         extent_io_tree_init(&fs_info->freed_extents[1],
1703                              fs_info->btree_inode->i_mapping);
1704         fs_info->pinned_extents = &fs_info->freed_extents[0];
1705         fs_info->do_barriers = 1;
1706
1707
1708         mutex_init(&fs_info->ordered_operations_mutex);
1709         mutex_init(&fs_info->tree_log_mutex);
1710         mutex_init(&fs_info->chunk_mutex);
1711         mutex_init(&fs_info->transaction_kthread_mutex);
1712         mutex_init(&fs_info->cleaner_mutex);
1713         mutex_init(&fs_info->volume_mutex);
1714         init_rwsem(&fs_info->extent_commit_sem);
1715         init_rwsem(&fs_info->cleanup_work_sem);
1716         init_rwsem(&fs_info->subvol_sem);
1717
1718         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
1719         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
1720
1721         init_waitqueue_head(&fs_info->transaction_throttle);
1722         init_waitqueue_head(&fs_info->transaction_wait);
1723         init_waitqueue_head(&fs_info->transaction_blocked_wait);
1724         init_waitqueue_head(&fs_info->async_submit_wait);
1725
1726         __setup_root(4096, 4096, 4096, 4096, tree_root,
1727                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
1728
1729         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
1730         if (!bh) {
1731                 err = -EINVAL;
1732                 goto fail_alloc;
1733         }
1734
1735         memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
1736         memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
1737                sizeof(fs_info->super_for_commit));
1738         brelse(bh);
1739
1740         memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
1741
1742         disk_super = &fs_info->super_copy;
1743         if (!btrfs_super_root(disk_super))
1744                 goto fail_alloc;
1745
1746         /* check FS state, whether FS is broken. */
1747         fs_info->fs_state |= btrfs_super_flags(disk_super);
1748
1749         btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
1750
1751         /*
1752          * In the long term, we'll store the compression type in the super
1753          * block, and it'll be used for per file compression control.
1754          */
1755         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
1756
1757         ret = btrfs_parse_options(tree_root, options);
1758         if (ret) {
1759                 err = ret;
1760                 goto fail_alloc;
1761         }
1762
1763         features = btrfs_super_incompat_flags(disk_super) &
1764                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
1765         if (features) {
1766                 printk(KERN_ERR "BTRFS: couldn't mount because of "
1767                        "unsupported optional features (%Lx).\n",
1768                        (unsigned long long)features);
1769                 err = -EINVAL;
1770                 goto fail_alloc;
1771         }
1772
1773         features = btrfs_super_incompat_flags(disk_super);
1774         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
1775         if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
1776                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
1777         btrfs_set_super_incompat_flags(disk_super, features);
1778
1779         features = btrfs_super_compat_ro_flags(disk_super) &
1780                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
1781         if (!(sb->s_flags & MS_RDONLY) && features) {
1782                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
1783                        "unsupported option features (%Lx).\n",
1784                        (unsigned long long)features);
1785                 err = -EINVAL;
1786                 goto fail_alloc;
1787         }
1788
1789         btrfs_init_workers(&fs_info->generic_worker,
1790                            "genwork", 1, NULL);
1791
1792         btrfs_init_workers(&fs_info->workers, "worker",
1793                            fs_info->thread_pool_size,
1794                            &fs_info->generic_worker);
1795
1796         btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
1797                            fs_info->thread_pool_size,
1798                            &fs_info->generic_worker);
1799
1800         btrfs_init_workers(&fs_info->submit_workers, "submit",
1801                            min_t(u64, fs_devices->num_devices,
1802                            fs_info->thread_pool_size),
1803                            &fs_info->generic_worker);
1804
1805         /* a higher idle thresh on the submit workers makes it much more
1806          * likely that bios will be send down in a sane order to the
1807          * devices
1808          */
1809         fs_info->submit_workers.idle_thresh = 64;
1810
1811         fs_info->workers.idle_thresh = 16;
1812         fs_info->workers.ordered = 1;
1813
1814         fs_info->delalloc_workers.idle_thresh = 2;
1815         fs_info->delalloc_workers.ordered = 1;
1816
1817         btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
1818                            &fs_info->generic_worker);
1819         btrfs_init_workers(&fs_info->endio_workers, "endio",
1820                            fs_info->thread_pool_size,
1821                            &fs_info->generic_worker);
1822         btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
1823                            fs_info->thread_pool_size,
1824                            &fs_info->generic_worker);
1825         btrfs_init_workers(&fs_info->endio_meta_write_workers,
1826                            "endio-meta-write", fs_info->thread_pool_size,
1827                            &fs_info->generic_worker);
1828         btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
1829                            fs_info->thread_pool_size,
1830                            &fs_info->generic_worker);
1831         btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
1832                            1, &fs_info->generic_worker);
1833         btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
1834                            fs_info->thread_pool_size,
1835                            &fs_info->generic_worker);
1836
1837         /*
1838          * endios are largely parallel and should have a very
1839          * low idle thresh
1840          */
1841         fs_info->endio_workers.idle_thresh = 4;
1842         fs_info->endio_meta_workers.idle_thresh = 4;
1843
1844         fs_info->endio_write_workers.idle_thresh = 2;
1845         fs_info->endio_meta_write_workers.idle_thresh = 2;
1846
1847         btrfs_start_workers(&fs_info->workers, 1);
1848         btrfs_start_workers(&fs_info->generic_worker, 1);
1849         btrfs_start_workers(&fs_info->submit_workers, 1);
1850         btrfs_start_workers(&fs_info->delalloc_workers, 1);
1851         btrfs_start_workers(&fs_info->fixup_workers, 1);
1852         btrfs_start_workers(&fs_info->endio_workers, 1);
1853         btrfs_start_workers(&fs_info->endio_meta_workers, 1);
1854         btrfs_start_workers(&fs_info->endio_meta_write_workers, 1);
1855         btrfs_start_workers(&fs_info->endio_write_workers, 1);
1856         btrfs_start_workers(&fs_info->endio_freespace_worker, 1);
1857         btrfs_start_workers(&fs_info->delayed_workers, 1);
1858
1859         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1860         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
1861                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
1862
1863         nodesize = btrfs_super_nodesize(disk_super);
1864         leafsize = btrfs_super_leafsize(disk_super);
1865         sectorsize = btrfs_super_sectorsize(disk_super);
1866         stripesize = btrfs_super_stripesize(disk_super);
1867         tree_root->nodesize = nodesize;
1868         tree_root->leafsize = leafsize;
1869         tree_root->sectorsize = sectorsize;
1870         tree_root->stripesize = stripesize;
1871
1872         sb->s_blocksize = sectorsize;
1873         sb->s_blocksize_bits = blksize_bits(sectorsize);
1874
1875         if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1876                     sizeof(disk_super->magic))) {
1877                 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
1878                 goto fail_sb_buffer;
1879         }
1880
1881         mutex_lock(&fs_info->chunk_mutex);
1882         ret = btrfs_read_sys_array(tree_root);
1883         mutex_unlock(&fs_info->chunk_mutex);
1884         if (ret) {
1885                 printk(KERN_WARNING "btrfs: failed to read the system "
1886                        "array on %s\n", sb->s_id);
1887                 goto fail_sb_buffer;
1888         }
1889
1890         blocksize = btrfs_level_size(tree_root,
1891                                      btrfs_super_chunk_root_level(disk_super));
1892         generation = btrfs_super_chunk_root_generation(disk_super);
1893
1894         __setup_root(nodesize, leafsize, sectorsize, stripesize,
1895                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1896
1897         chunk_root->node = read_tree_block(chunk_root,
1898                                            btrfs_super_chunk_root(disk_super),
1899                                            blocksize, generation);
1900         BUG_ON(!chunk_root->node);
1901         if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
1902                 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
1903                        sb->s_id);
1904                 goto fail_chunk_root;
1905         }
1906         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
1907         chunk_root->commit_root = btrfs_root_node(chunk_root);
1908
1909         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1910            (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1911            BTRFS_UUID_SIZE);
1912
1913         mutex_lock(&fs_info->chunk_mutex);
1914         ret = btrfs_read_chunk_tree(chunk_root);
1915         mutex_unlock(&fs_info->chunk_mutex);
1916         if (ret) {
1917                 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
1918                        sb->s_id);
1919                 goto fail_chunk_root;
1920         }
1921
1922         btrfs_close_extra_devices(fs_devices);
1923
1924         blocksize = btrfs_level_size(tree_root,
1925                                      btrfs_super_root_level(disk_super));
1926         generation = btrfs_super_generation(disk_super);
1927
1928         tree_root->node = read_tree_block(tree_root,
1929                                           btrfs_super_root(disk_super),
1930                                           blocksize, generation);
1931         if (!tree_root->node)
1932                 goto fail_chunk_root;
1933         if (!test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
1934                 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
1935                        sb->s_id);
1936                 goto fail_tree_root;
1937         }
1938         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
1939         tree_root->commit_root = btrfs_root_node(tree_root);
1940
1941         ret = find_and_setup_root(tree_root, fs_info,
1942                                   BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1943         if (ret)
1944                 goto fail_tree_root;
1945         extent_root->track_dirty = 1;
1946
1947         ret = find_and_setup_root(tree_root, fs_info,
1948                                   BTRFS_DEV_TREE_OBJECTID, dev_root);
1949         if (ret)
1950                 goto fail_extent_root;
1951         dev_root->track_dirty = 1;
1952
1953         ret = find_and_setup_root(tree_root, fs_info,
1954                                   BTRFS_CSUM_TREE_OBJECTID, csum_root);
1955         if (ret)
1956                 goto fail_dev_root;
1957
1958         csum_root->track_dirty = 1;
1959
1960         fs_info->generation = generation;
1961         fs_info->last_trans_committed = generation;
1962         fs_info->data_alloc_profile = (u64)-1;
1963         fs_info->metadata_alloc_profile = (u64)-1;
1964         fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1965
1966         ret = btrfs_init_space_info(fs_info);
1967         if (ret) {
1968                 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
1969                 goto fail_block_groups;
1970         }
1971
1972         ret = btrfs_read_block_groups(extent_root);
1973         if (ret) {
1974                 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
1975                 goto fail_block_groups;
1976         }
1977
1978         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
1979                                                "btrfs-cleaner");
1980         if (IS_ERR(fs_info->cleaner_kthread))
1981                 goto fail_block_groups;
1982
1983         fs_info->transaction_kthread = kthread_run(transaction_kthread,
1984                                                    tree_root,
1985                                                    "btrfs-transaction");
1986         if (IS_ERR(fs_info->transaction_kthread))
1987                 goto fail_cleaner;
1988
1989         if (!btrfs_test_opt(tree_root, SSD) &&
1990             !btrfs_test_opt(tree_root, NOSSD) &&
1991             !fs_info->fs_devices->rotating) {
1992                 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
1993                        "mode\n");
1994                 btrfs_set_opt(fs_info->mount_opt, SSD);
1995         }
1996
1997         /* do not make disk changes in broken FS */
1998         if (btrfs_super_log_root(disk_super) != 0 &&
1999             !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
2000                 u64 bytenr = btrfs_super_log_root(disk_super);
2001
2002                 if (fs_devices->rw_devices == 0) {
2003                         printk(KERN_WARNING "Btrfs log replay required "
2004                                "on RO media\n");
2005                         err = -EIO;
2006                         goto fail_trans_kthread;
2007                 }
2008                 blocksize =
2009                      btrfs_level_size(tree_root,
2010                                       btrfs_super_log_root_level(disk_super));
2011
2012                 log_tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
2013                 if (!log_tree_root) {
2014                         err = -ENOMEM;
2015                         goto fail_trans_kthread;
2016                 }
2017
2018                 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2019                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2020
2021                 log_tree_root->node = read_tree_block(tree_root, bytenr,
2022                                                       blocksize,
2023                                                       generation + 1);
2024                 ret = btrfs_recover_log_trees(log_tree_root);
2025                 BUG_ON(ret);
2026
2027                 if (sb->s_flags & MS_RDONLY) {
2028                         ret =  btrfs_commit_super(tree_root);
2029                         BUG_ON(ret);
2030                 }
2031         }
2032
2033         ret = btrfs_find_orphan_roots(tree_root);
2034         BUG_ON(ret);
2035
2036         if (!(sb->s_flags & MS_RDONLY)) {
2037                 ret = btrfs_cleanup_fs_roots(fs_info);
2038                 BUG_ON(ret);
2039
2040                 ret = btrfs_recover_relocation(tree_root);
2041                 if (ret < 0) {
2042                         printk(KERN_WARNING
2043                                "btrfs: failed to recover relocation\n");
2044                         err = -EINVAL;
2045                         goto fail_trans_kthread;
2046                 }
2047         }
2048
2049         location.objectid = BTRFS_FS_TREE_OBJECTID;
2050         location.type = BTRFS_ROOT_ITEM_KEY;
2051         location.offset = (u64)-1;
2052
2053         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2054         if (!fs_info->fs_root)
2055                 goto fail_trans_kthread;
2056         if (IS_ERR(fs_info->fs_root)) {
2057                 err = PTR_ERR(fs_info->fs_root);
2058                 goto fail_trans_kthread;
2059         }
2060
2061         if (!(sb->s_flags & MS_RDONLY)) {
2062                 down_read(&fs_info->cleanup_work_sem);
2063                 err = btrfs_orphan_cleanup(fs_info->fs_root);
2064                 if (!err)
2065                         err = btrfs_orphan_cleanup(fs_info->tree_root);
2066                 up_read(&fs_info->cleanup_work_sem);
2067                 if (err) {
2068                         close_ctree(tree_root);
2069                         return ERR_PTR(err);
2070                 }
2071         }
2072
2073         return tree_root;
2074
2075 fail_trans_kthread:
2076         kthread_stop(fs_info->transaction_kthread);
2077 fail_cleaner:
2078         kthread_stop(fs_info->cleaner_kthread);
2079
2080         /*
2081          * make sure we're done with the btree inode before we stop our
2082          * kthreads
2083          */
2084         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2085         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2086
2087 fail_block_groups:
2088         btrfs_free_block_groups(fs_info);
2089         free_extent_buffer(csum_root->node);
2090         free_extent_buffer(csum_root->commit_root);
2091 fail_dev_root:
2092         free_extent_buffer(dev_root->node);
2093         free_extent_buffer(dev_root->commit_root);
2094 fail_extent_root:
2095         free_extent_buffer(extent_root->node);
2096         free_extent_buffer(extent_root->commit_root);
2097 fail_tree_root:
2098         free_extent_buffer(tree_root->node);
2099         free_extent_buffer(tree_root->commit_root);
2100 fail_chunk_root:
2101         free_extent_buffer(chunk_root->node);
2102         free_extent_buffer(chunk_root->commit_root);
2103 fail_sb_buffer:
2104         btrfs_stop_workers(&fs_info->generic_worker);
2105         btrfs_stop_workers(&fs_info->fixup_workers);
2106         btrfs_stop_workers(&fs_info->delalloc_workers);
2107         btrfs_stop_workers(&fs_info->workers);
2108         btrfs_stop_workers(&fs_info->endio_workers);
2109         btrfs_stop_workers(&fs_info->endio_meta_workers);
2110         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2111         btrfs_stop_workers(&fs_info->endio_write_workers);
2112         btrfs_stop_workers(&fs_info->endio_freespace_worker);
2113         btrfs_stop_workers(&fs_info->submit_workers);
2114         btrfs_stop_workers(&fs_info->delayed_workers);
2115 fail_alloc:
2116         kfree(fs_info->delayed_root);
2117 fail_iput:
2118         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2119         iput(fs_info->btree_inode);
2120
2121         btrfs_close_devices(fs_info->fs_devices);
2122         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2123 fail_bdi:
2124         bdi_destroy(&fs_info->bdi);
2125 fail_srcu:
2126         cleanup_srcu_struct(&fs_info->subvol_srcu);
2127 fail:
2128         kfree(extent_root);
2129         kfree(tree_root);
2130         kfree(fs_info);
2131         kfree(chunk_root);
2132         kfree(dev_root);
2133         kfree(csum_root);
2134         return ERR_PTR(err);
2135 }
2136
2137 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2138 {
2139         char b[BDEVNAME_SIZE];
2140
2141         if (uptodate) {
2142                 set_buffer_uptodate(bh);
2143         } else {
2144                 printk_ratelimited(KERN_WARNING "lost page write due to "
2145                                         "I/O error on %s\n",
2146                                        bdevname(bh->b_bdev, b));
2147                 /* note, we dont' set_buffer_write_io_error because we have
2148                  * our own ways of dealing with the IO errors
2149                  */
2150                 clear_buffer_uptodate(bh);
2151         }
2152         unlock_buffer(bh);
2153         put_bh(bh);
2154 }
2155
2156 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2157 {
2158         struct buffer_head *bh;
2159         struct buffer_head *latest = NULL;
2160         struct btrfs_super_block *super;
2161         int i;
2162         u64 transid = 0;
2163         u64 bytenr;
2164
2165         /* we would like to check all the supers, but that would make
2166          * a btrfs mount succeed after a mkfs from a different FS.
2167          * So, we need to add a special mount option to scan for
2168          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2169          */
2170         for (i = 0; i < 1; i++) {
2171                 bytenr = btrfs_sb_offset(i);
2172                 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2173                         break;
2174                 bh = __bread(bdev, bytenr / 4096, 4096);
2175                 if (!bh)
2176                         continue;
2177
2178                 super = (struct btrfs_super_block *)bh->b_data;
2179                 if (btrfs_super_bytenr(super) != bytenr ||
2180                     strncmp((char *)(&super->magic), BTRFS_MAGIC,
2181                             sizeof(super->magic))) {
2182                         brelse(bh);
2183                         continue;
2184                 }
2185
2186                 if (!latest || btrfs_super_generation(super) > transid) {
2187                         brelse(latest);
2188                         latest = bh;
2189                         transid = btrfs_super_generation(super);
2190                 } else {
2191                         brelse(bh);
2192                 }
2193         }
2194         return latest;
2195 }
2196
2197 /*
2198  * this should be called twice, once with wait == 0 and
2199  * once with wait == 1.  When wait == 0 is done, all the buffer heads
2200  * we write are pinned.
2201  *
2202  * They are released when wait == 1 is done.
2203  * max_mirrors must be the same for both runs, and it indicates how
2204  * many supers on this one device should be written.
2205  *
2206  * max_mirrors == 0 means to write them all.
2207  */
2208 static int write_dev_supers(struct btrfs_device *device,
2209                             struct btrfs_super_block *sb,
2210                             int do_barriers, int wait, int max_mirrors)
2211 {
2212         struct buffer_head *bh;
2213         int i;
2214         int ret;
2215         int errors = 0;
2216         u32 crc;
2217         u64 bytenr;
2218         int last_barrier = 0;
2219
2220         if (max_mirrors == 0)
2221                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2222
2223         /* make sure only the last submit_bh does a barrier */
2224         if (do_barriers) {
2225                 for (i = 0; i < max_mirrors; i++) {
2226                         bytenr = btrfs_sb_offset(i);
2227                         if (bytenr + BTRFS_SUPER_INFO_SIZE >=
2228                             device->total_bytes)
2229                                 break;
2230                         last_barrier = i;
2231                 }
2232         }
2233
2234         for (i = 0; i < max_mirrors; i++) {
2235                 bytenr = btrfs_sb_offset(i);
2236                 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2237                         break;
2238
2239                 if (wait) {
2240                         bh = __find_get_block(device->bdev, bytenr / 4096,
2241                                               BTRFS_SUPER_INFO_SIZE);
2242                         BUG_ON(!bh);
2243                         wait_on_buffer(bh);
2244                         if (!buffer_uptodate(bh))
2245                                 errors++;
2246
2247                         /* drop our reference */
2248                         brelse(bh);
2249
2250                         /* drop the reference from the wait == 0 run */
2251                         brelse(bh);
2252                         continue;
2253                 } else {
2254                         btrfs_set_super_bytenr(sb, bytenr);
2255
2256                         crc = ~(u32)0;
2257                         crc = btrfs_csum_data(NULL, (char *)sb +
2258                                               BTRFS_CSUM_SIZE, crc,
2259                                               BTRFS_SUPER_INFO_SIZE -
2260                                               BTRFS_CSUM_SIZE);
2261                         btrfs_csum_final(crc, sb->csum);
2262
2263                         /*
2264                          * one reference for us, and we leave it for the
2265                          * caller
2266                          */
2267                         bh = __getblk(device->bdev, bytenr / 4096,
2268                                       BTRFS_SUPER_INFO_SIZE);
2269                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2270
2271                         /* one reference for submit_bh */
2272                         get_bh(bh);
2273
2274                         set_buffer_uptodate(bh);
2275                         lock_buffer(bh);
2276                         bh->b_end_io = btrfs_end_buffer_write_sync;
2277                 }
2278
2279                 if (i == last_barrier && do_barriers)
2280                         ret = submit_bh(WRITE_FLUSH_FUA, bh);
2281                 else
2282                         ret = submit_bh(WRITE_SYNC, bh);
2283
2284                 if (ret)
2285                         errors++;
2286         }
2287         return errors < i ? 0 : -1;
2288 }
2289
2290 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2291 {
2292         struct list_head *head;
2293         struct btrfs_device *dev;
2294         struct btrfs_super_block *sb;
2295         struct btrfs_dev_item *dev_item;
2296         int ret;
2297         int do_barriers;
2298         int max_errors;
2299         int total_errors = 0;
2300         u64 flags;
2301
2302         max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
2303         do_barriers = !btrfs_test_opt(root, NOBARRIER);
2304
2305         sb = &root->fs_info->super_for_commit;
2306         dev_item = &sb->dev_item;
2307
2308         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2309         head = &root->fs_info->fs_devices->devices;
2310         list_for_each_entry_rcu(dev, head, dev_list) {
2311                 if (!dev->bdev) {
2312                         total_errors++;
2313                         continue;
2314                 }
2315                 if (!dev->in_fs_metadata || !dev->writeable)
2316                         continue;
2317
2318                 btrfs_set_stack_device_generation(dev_item, 0);
2319                 btrfs_set_stack_device_type(dev_item, dev->type);
2320                 btrfs_set_stack_device_id(dev_item, dev->devid);
2321                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2322                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2323                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2324                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2325                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2326                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2327                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2328
2329                 flags = btrfs_super_flags(sb);
2330                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2331
2332                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2333                 if (ret)
2334                         total_errors++;
2335         }
2336         if (total_errors > max_errors) {
2337                 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2338                        total_errors);
2339                 BUG();
2340         }
2341
2342         total_errors = 0;
2343         list_for_each_entry_rcu(dev, head, dev_list) {
2344                 if (!dev->bdev)
2345                         continue;
2346                 if (!dev->in_fs_metadata || !dev->writeable)
2347                         continue;
2348
2349                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2350                 if (ret)
2351                         total_errors++;
2352         }
2353         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2354         if (total_errors > max_errors) {
2355                 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2356                        total_errors);
2357                 BUG();
2358         }
2359         return 0;
2360 }
2361
2362 int write_ctree_super(struct btrfs_trans_handle *trans,
2363                       struct btrfs_root *root, int max_mirrors)
2364 {
2365         int ret;
2366
2367         ret = write_all_supers(root, max_mirrors);
2368         return ret;
2369 }
2370
2371 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2372 {
2373         spin_lock(&fs_info->fs_roots_radix_lock);
2374         radix_tree_delete(&fs_info->fs_roots_radix,
2375                           (unsigned long)root->root_key.objectid);
2376         spin_unlock(&fs_info->fs_roots_radix_lock);
2377
2378         if (btrfs_root_refs(&root->root_item) == 0)
2379                 synchronize_srcu(&fs_info->subvol_srcu);
2380
2381         __btrfs_remove_free_space_cache(root->free_ino_pinned);
2382         __btrfs_remove_free_space_cache(root->free_ino_ctl);
2383         free_fs_root(root);
2384         return 0;
2385 }
2386
2387 static void free_fs_root(struct btrfs_root *root)
2388 {
2389         iput(root->cache_inode);
2390         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2391         if (root->anon_dev)
2392                 free_anon_bdev(root->anon_dev);
2393         free_extent_buffer(root->node);
2394         free_extent_buffer(root->commit_root);
2395         kfree(root->free_ino_ctl);
2396         kfree(root->free_ino_pinned);
2397         kfree(root->name);
2398         kfree(root);
2399 }
2400
2401 static int del_fs_roots(struct btrfs_fs_info *fs_info)
2402 {
2403         int ret;
2404         struct btrfs_root *gang[8];
2405         int i;
2406
2407         while (!list_empty(&fs_info->dead_roots)) {
2408                 gang[0] = list_entry(fs_info->dead_roots.next,
2409                                      struct btrfs_root, root_list);
2410                 list_del(&gang[0]->root_list);
2411
2412                 if (gang[0]->in_radix) {
2413                         btrfs_free_fs_root(fs_info, gang[0]);
2414                 } else {
2415                         free_extent_buffer(gang[0]->node);
2416                         free_extent_buffer(gang[0]->commit_root);
2417                         kfree(gang[0]);
2418                 }
2419         }
2420
2421         while (1) {
2422                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2423                                              (void **)gang, 0,
2424                                              ARRAY_SIZE(gang));
2425                 if (!ret)
2426                         break;
2427                 for (i = 0; i < ret; i++)
2428                         btrfs_free_fs_root(fs_info, gang[i]);
2429         }
2430         return 0;
2431 }
2432
2433 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2434 {
2435         u64 root_objectid = 0;
2436         struct btrfs_root *gang[8];
2437         int i;
2438         int ret;
2439
2440         while (1) {
2441                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2442                                              (void **)gang, root_objectid,
2443                                              ARRAY_SIZE(gang));
2444                 if (!ret)
2445                         break;
2446
2447                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
2448                 for (i = 0; i < ret; i++) {
2449                         int err;
2450
2451                         root_objectid = gang[i]->root_key.objectid;
2452                         err = btrfs_orphan_cleanup(gang[i]);
2453                         if (err)
2454                                 return err;
2455                 }
2456                 root_objectid++;
2457         }
2458         return 0;
2459 }
2460
2461 int btrfs_commit_super(struct btrfs_root *root)
2462 {
2463         struct btrfs_trans_handle *trans;
2464         int ret;
2465
2466         mutex_lock(&root->fs_info->cleaner_mutex);
2467         btrfs_run_delayed_iputs(root);
2468         btrfs_clean_old_snapshots(root);
2469         mutex_unlock(&root->fs_info->cleaner_mutex);
2470
2471         /* wait until ongoing cleanup work done */
2472         down_write(&root->fs_info->cleanup_work_sem);
2473         up_write(&root->fs_info->cleanup_work_sem);
2474
2475         trans = btrfs_join_transaction(root);
2476         if (IS_ERR(trans))
2477                 return PTR_ERR(trans);
2478         ret = btrfs_commit_transaction(trans, root);
2479         BUG_ON(ret);
2480         /* run commit again to drop the original snapshot */
2481         trans = btrfs_join_transaction(root);
2482         if (IS_ERR(trans))
2483                 return PTR_ERR(trans);
2484         btrfs_commit_transaction(trans, root);
2485         ret = btrfs_write_and_wait_transaction(NULL, root);
2486         BUG_ON(ret);
2487
2488         ret = write_ctree_super(NULL, root, 0);
2489         return ret;
2490 }
2491
2492 int close_ctree(struct btrfs_root *root)
2493 {
2494         struct btrfs_fs_info *fs_info = root->fs_info;
2495         int ret;
2496
2497         fs_info->closing = 1;
2498         smp_mb();
2499
2500         btrfs_scrub_cancel(root);
2501
2502         /* wait for any defraggers to finish */
2503         wait_event(fs_info->transaction_wait,
2504                    (atomic_read(&fs_info->defrag_running) == 0));
2505
2506         /* clear out the rbtree of defraggable inodes */
2507         btrfs_run_defrag_inodes(root->fs_info);
2508
2509         btrfs_put_block_group_cache(fs_info);
2510
2511         /*
2512          * Here come 2 situations when btrfs is broken to flip readonly:
2513          *
2514          * 1. when btrfs flips readonly somewhere else before
2515          * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
2516          * and btrfs will skip to write sb directly to keep
2517          * ERROR state on disk.
2518          *
2519          * 2. when btrfs flips readonly just in btrfs_commit_super,
2520          * and in such case, btrfs cannot write sb via btrfs_commit_super,
2521          * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
2522          * btrfs will cleanup all FS resources first and write sb then.
2523          */
2524         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
2525                 ret = btrfs_commit_super(root);
2526                 if (ret)
2527                         printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2528         }
2529
2530         if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
2531                 ret = btrfs_error_commit_super(root);
2532                 if (ret)
2533                         printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2534         }
2535
2536         kthread_stop(root->fs_info->transaction_kthread);
2537         kthread_stop(root->fs_info->cleaner_kthread);
2538
2539         fs_info->closing = 2;
2540         smp_mb();
2541
2542         if (fs_info->delalloc_bytes) {
2543                 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
2544                        (unsigned long long)fs_info->delalloc_bytes);
2545         }
2546         if (fs_info->total_ref_cache_size) {
2547                 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
2548                        (unsigned long long)fs_info->total_ref_cache_size);
2549         }
2550
2551         free_extent_buffer(fs_info->extent_root->node);
2552         free_extent_buffer(fs_info->extent_root->commit_root);
2553         free_extent_buffer(fs_info->tree_root->node);
2554         free_extent_buffer(fs_info->tree_root->commit_root);
2555         free_extent_buffer(root->fs_info->chunk_root->node);
2556         free_extent_buffer(root->fs_info->chunk_root->commit_root);
2557         free_extent_buffer(root->fs_info->dev_root->node);
2558         free_extent_buffer(root->fs_info->dev_root->commit_root);
2559         free_extent_buffer(root->fs_info->csum_root->node);
2560         free_extent_buffer(root->fs_info->csum_root->commit_root);
2561
2562         btrfs_free_block_groups(root->fs_info);
2563
2564         del_fs_roots(fs_info);
2565
2566         iput(fs_info->btree_inode);
2567         kfree(fs_info->delayed_root);
2568
2569         btrfs_stop_workers(&fs_info->generic_worker);
2570         btrfs_stop_workers(&fs_info->fixup_workers);
2571         btrfs_stop_workers(&fs_info->delalloc_workers);
2572         btrfs_stop_workers(&fs_info->workers);
2573         btrfs_stop_workers(&fs_info->endio_workers);
2574         btrfs_stop_workers(&fs_info->endio_meta_workers);
2575         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2576         btrfs_stop_workers(&fs_info->endio_write_workers);
2577         btrfs_stop_workers(&fs_info->endio_freespace_worker);
2578         btrfs_stop_workers(&fs_info->submit_workers);
2579         btrfs_stop_workers(&fs_info->delayed_workers);
2580
2581         btrfs_close_devices(fs_info->fs_devices);
2582         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2583
2584         bdi_destroy(&fs_info->bdi);
2585         cleanup_srcu_struct(&fs_info->subvol_srcu);
2586
2587         kfree(fs_info->extent_root);
2588         kfree(fs_info->tree_root);
2589         kfree(fs_info->chunk_root);
2590         kfree(fs_info->dev_root);
2591         kfree(fs_info->csum_root);
2592         kfree(fs_info);
2593
2594         return 0;
2595 }
2596
2597 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
2598 {
2599         int ret;
2600         struct inode *btree_inode = buf->first_page->mapping->host;
2601
2602         ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
2603                                      NULL);
2604         if (!ret)
2605                 return ret;
2606
2607         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
2608                                     parent_transid);
2609         return !ret;
2610 }
2611
2612 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
2613 {
2614         struct inode *btree_inode = buf->first_page->mapping->host;
2615         return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
2616                                           buf);
2617 }
2618
2619 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
2620 {
2621         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2622         u64 transid = btrfs_header_generation(buf);
2623         struct inode *btree_inode = root->fs_info->btree_inode;
2624         int was_dirty;
2625
2626         btrfs_assert_tree_locked(buf);
2627         if (transid != root->fs_info->generation) {
2628                 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
2629                        "found %llu running %llu\n",
2630                         (unsigned long long)buf->start,
2631                         (unsigned long long)transid,
2632                         (unsigned long long)root->fs_info->generation);
2633                 WARN_ON(1);
2634         }
2635         was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
2636                                             buf);
2637         if (!was_dirty) {
2638                 spin_lock(&root->fs_info->delalloc_lock);
2639                 root->fs_info->dirty_metadata_bytes += buf->len;
2640                 spin_unlock(&root->fs_info->delalloc_lock);
2641         }
2642 }
2643
2644 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
2645 {
2646         /*
2647          * looks as though older kernels can get into trouble with
2648          * this code, they end up stuck in balance_dirty_pages forever
2649          */
2650         u64 num_dirty;
2651         unsigned long thresh = 32 * 1024 * 1024;
2652
2653         if (current->flags & PF_MEMALLOC)
2654                 return;
2655
2656         btrfs_balance_delayed_items(root);
2657
2658         num_dirty = root->fs_info->dirty_metadata_bytes;
2659
2660         if (num_dirty > thresh) {
2661                 balance_dirty_pages_ratelimited_nr(
2662                                    root->fs_info->btree_inode->i_mapping, 1);
2663         }
2664         return;
2665 }
2666
2667 void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
2668 {
2669         /*
2670          * looks as though older kernels can get into trouble with
2671          * this code, they end up stuck in balance_dirty_pages forever
2672          */
2673         u64 num_dirty;
2674         unsigned long thresh = 32 * 1024 * 1024;
2675
2676         if (current->flags & PF_MEMALLOC)
2677                 return;
2678
2679         num_dirty = root->fs_info->dirty_metadata_bytes;
2680
2681         if (num_dirty > thresh) {
2682                 balance_dirty_pages_ratelimited_nr(
2683                                    root->fs_info->btree_inode->i_mapping, 1);
2684         }
2685         return;
2686 }
2687
2688 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
2689 {
2690         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2691         int ret;
2692         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
2693         if (ret == 0)
2694                 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
2695         return ret;
2696 }
2697
2698 int btree_lock_page_hook(struct page *page)
2699 {
2700         struct inode *inode = page->mapping->host;
2701         struct btrfs_root *root = BTRFS_I(inode)->root;
2702         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2703         struct extent_buffer *eb;
2704         unsigned long len;
2705         u64 bytenr = page_offset(page);
2706
2707         if (page->private == EXTENT_PAGE_PRIVATE)
2708                 goto out;
2709
2710         len = page->private >> 2;
2711         eb = find_extent_buffer(io_tree, bytenr, len);
2712         if (!eb)
2713                 goto out;
2714
2715         btrfs_tree_lock(eb);
2716         btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
2717
2718         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
2719                 spin_lock(&root->fs_info->delalloc_lock);
2720                 if (root->fs_info->dirty_metadata_bytes >= eb->len)
2721                         root->fs_info->dirty_metadata_bytes -= eb->len;
2722                 else
2723                         WARN_ON(1);
2724                 spin_unlock(&root->fs_info->delalloc_lock);
2725         }
2726
2727         btrfs_tree_unlock(eb);
2728         free_extent_buffer(eb);
2729 out:
2730         lock_page(page);
2731         return 0;
2732 }
2733
2734 static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
2735                               int read_only)
2736 {
2737         if (read_only)
2738                 return;
2739
2740         if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
2741                 printk(KERN_WARNING "warning: mount fs with errors, "
2742                        "running btrfsck is recommended\n");
2743 }
2744
2745 int btrfs_error_commit_super(struct btrfs_root *root)
2746 {
2747         int ret;
2748
2749         mutex_lock(&root->fs_info->cleaner_mutex);
2750         btrfs_run_delayed_iputs(root);
2751         mutex_unlock(&root->fs_info->cleaner_mutex);
2752
2753         down_write(&root->fs_info->cleanup_work_sem);
2754         up_write(&root->fs_info->cleanup_work_sem);
2755
2756         /* cleanup FS via transaction */
2757         btrfs_cleanup_transaction(root);
2758
2759         ret = write_ctree_super(NULL, root, 0);
2760
2761         return ret;
2762 }
2763
2764 static int btrfs_destroy_ordered_operations(struct btrfs_root *root)
2765 {
2766         struct btrfs_inode *btrfs_inode;
2767         struct list_head splice;
2768
2769         INIT_LIST_HEAD(&splice);
2770
2771         mutex_lock(&root->fs_info->ordered_operations_mutex);
2772         spin_lock(&root->fs_info->ordered_extent_lock);
2773
2774         list_splice_init(&root->fs_info->ordered_operations, &splice);
2775         while (!list_empty(&splice)) {
2776                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
2777                                          ordered_operations);
2778
2779                 list_del_init(&btrfs_inode->ordered_operations);
2780
2781                 btrfs_invalidate_inodes(btrfs_inode->root);
2782         }
2783
2784         spin_unlock(&root->fs_info->ordered_extent_lock);
2785         mutex_unlock(&root->fs_info->ordered_operations_mutex);
2786
2787         return 0;
2788 }
2789
2790 static int btrfs_destroy_ordered_extents(struct btrfs_root *root)
2791 {
2792         struct list_head splice;
2793         struct btrfs_ordered_extent *ordered;
2794         struct inode *inode;
2795
2796         INIT_LIST_HEAD(&splice);
2797
2798         spin_lock(&root->fs_info->ordered_extent_lock);
2799
2800         list_splice_init(&root->fs_info->ordered_extents, &splice);
2801         while (!list_empty(&splice)) {
2802                 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
2803                                      root_extent_list);
2804
2805                 list_del_init(&ordered->root_extent_list);
2806                 atomic_inc(&ordered->refs);
2807
2808                 /* the inode may be getting freed (in sys_unlink path). */
2809                 inode = igrab(ordered->inode);
2810
2811                 spin_unlock(&root->fs_info->ordered_extent_lock);
2812                 if (inode)
2813                         iput(inode);
2814
2815                 atomic_set(&ordered->refs, 1);
2816                 btrfs_put_ordered_extent(ordered);
2817
2818                 spin_lock(&root->fs_info->ordered_extent_lock);
2819         }
2820
2821         spin_unlock(&root->fs_info->ordered_extent_lock);
2822
2823         return 0;
2824 }
2825
2826 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2827                                       struct btrfs_root *root)
2828 {
2829         struct rb_node *node;
2830         struct btrfs_delayed_ref_root *delayed_refs;
2831         struct btrfs_delayed_ref_node *ref;
2832         int ret = 0;
2833
2834         delayed_refs = &trans->delayed_refs;
2835
2836         spin_lock(&delayed_refs->lock);
2837         if (delayed_refs->num_entries == 0) {
2838                 spin_unlock(&delayed_refs->lock);
2839                 printk(KERN_INFO "delayed_refs has NO entry\n");
2840                 return ret;
2841         }
2842
2843         node = rb_first(&delayed_refs->root);
2844         while (node) {
2845                 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2846                 node = rb_next(node);
2847
2848                 ref->in_tree = 0;
2849                 rb_erase(&ref->rb_node, &delayed_refs->root);
2850                 delayed_refs->num_entries--;
2851
2852                 atomic_set(&ref->refs, 1);
2853                 if (btrfs_delayed_ref_is_head(ref)) {
2854                         struct btrfs_delayed_ref_head *head;
2855
2856                         head = btrfs_delayed_node_to_head(ref);
2857                         mutex_lock(&head->mutex);
2858                         kfree(head->extent_op);
2859                         delayed_refs->num_heads--;
2860                         if (list_empty(&head->cluster))
2861                                 delayed_refs->num_heads_ready--;
2862                         list_del_init(&head->cluster);
2863                         mutex_unlock(&head->mutex);
2864                 }
2865
2866                 spin_unlock(&delayed_refs->lock);
2867                 btrfs_put_delayed_ref(ref);
2868
2869                 cond_resched();
2870                 spin_lock(&delayed_refs->lock);
2871         }
2872
2873         spin_unlock(&delayed_refs->lock);
2874
2875         return ret;
2876 }
2877
2878 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
2879 {
2880         struct btrfs_pending_snapshot *snapshot;
2881         struct list_head splice;
2882
2883         INIT_LIST_HEAD(&splice);
2884
2885         list_splice_init(&t->pending_snapshots, &splice);
2886
2887         while (!list_empty(&splice)) {
2888                 snapshot = list_entry(splice.next,
2889                                       struct btrfs_pending_snapshot,
2890                                       list);
2891
2892                 list_del_init(&snapshot->list);
2893
2894                 kfree(snapshot);
2895         }
2896
2897         return 0;
2898 }
2899
2900 static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
2901 {
2902         struct btrfs_inode *btrfs_inode;
2903         struct list_head splice;
2904
2905         INIT_LIST_HEAD(&splice);
2906
2907         spin_lock(&root->fs_info->delalloc_lock);
2908         list_splice_init(&root->fs_info->delalloc_inodes, &splice);
2909
2910         while (!list_empty(&splice)) {
2911                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
2912                                     delalloc_inodes);
2913
2914                 list_del_init(&btrfs_inode->delalloc_inodes);
2915
2916                 btrfs_invalidate_inodes(btrfs_inode->root);
2917         }
2918
2919         spin_unlock(&root->fs_info->delalloc_lock);
2920
2921         return 0;
2922 }
2923
2924 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
2925                                         struct extent_io_tree *dirty_pages,
2926                                         int mark)
2927 {
2928         int ret;
2929         struct page *page;
2930         struct inode *btree_inode = root->fs_info->btree_inode;
2931         struct extent_buffer *eb;
2932         u64 start = 0;
2933         u64 end;
2934         u64 offset;
2935         unsigned long index;
2936
2937         while (1) {
2938                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
2939                                             mark);
2940                 if (ret)
2941                         break;
2942
2943                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
2944                 while (start <= end) {
2945                         index = start >> PAGE_CACHE_SHIFT;
2946                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
2947                         page = find_get_page(btree_inode->i_mapping, index);
2948                         if (!page)
2949                                 continue;
2950                         offset = page_offset(page);
2951
2952                         spin_lock(&dirty_pages->buffer_lock);
2953                         eb = radix_tree_lookup(
2954                              &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
2955                                                offset >> PAGE_CACHE_SHIFT);
2956                         spin_unlock(&dirty_pages->buffer_lock);
2957                         if (eb) {
2958                                 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
2959                                                          &eb->bflags);
2960                                 atomic_set(&eb->refs, 1);
2961                         }
2962                         if (PageWriteback(page))
2963                                 end_page_writeback(page);
2964
2965                         lock_page(page);
2966                         if (PageDirty(page)) {
2967                                 clear_page_dirty_for_io(page);
2968                                 spin_lock_irq(&page->mapping->tree_lock);
2969                                 radix_tree_tag_clear(&page->mapping->page_tree,
2970                                                         page_index(page),
2971                                                         PAGECACHE_TAG_DIRTY);
2972                                 spin_unlock_irq(&page->mapping->tree_lock);
2973                         }
2974
2975                         page->mapping->a_ops->invalidatepage(page, 0);
2976                         unlock_page(page);
2977                 }
2978         }
2979
2980         return ret;
2981 }
2982
2983 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
2984                                        struct extent_io_tree *pinned_extents)
2985 {
2986         struct extent_io_tree *unpin;
2987         u64 start;
2988         u64 end;
2989         int ret;
2990
2991         unpin = pinned_extents;
2992         while (1) {
2993                 ret = find_first_extent_bit(unpin, 0, &start, &end,
2994                                             EXTENT_DIRTY);
2995                 if (ret)
2996                         break;
2997
2998                 /* opt_discard */
2999                 if (btrfs_test_opt(root, DISCARD))
3000                         ret = btrfs_error_discard_extent(root, start,
3001                                                          end + 1 - start,
3002                                                          NULL);
3003
3004                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3005                 btrfs_error_unpin_extent_range(root, start, end);
3006                 cond_resched();
3007         }
3008
3009         return 0;
3010 }
3011
3012 static int btrfs_cleanup_transaction(struct btrfs_root *root)
3013 {
3014         struct btrfs_transaction *t;
3015         LIST_HEAD(list);
3016
3017         WARN_ON(1);
3018
3019         mutex_lock(&root->fs_info->transaction_kthread_mutex);
3020
3021         spin_lock(&root->fs_info->trans_lock);
3022         list_splice_init(&root->fs_info->trans_list, &list);
3023         root->fs_info->trans_no_join = 1;
3024         spin_unlock(&root->fs_info->trans_lock);
3025
3026         while (!list_empty(&list)) {
3027                 t = list_entry(list.next, struct btrfs_transaction, list);
3028                 if (!t)
3029                         break;
3030
3031                 btrfs_destroy_ordered_operations(root);
3032
3033                 btrfs_destroy_ordered_extents(root);
3034
3035                 btrfs_destroy_delayed_refs(t, root);
3036
3037                 btrfs_block_rsv_release(root,
3038                                         &root->fs_info->trans_block_rsv,
3039                                         t->dirty_pages.dirty_bytes);
3040
3041                 /* FIXME: cleanup wait for commit */
3042                 t->in_commit = 1;
3043                 t->blocked = 1;
3044                 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3045                         wake_up(&root->fs_info->transaction_blocked_wait);
3046
3047                 t->blocked = 0;
3048                 if (waitqueue_active(&root->fs_info->transaction_wait))
3049                         wake_up(&root->fs_info->transaction_wait);
3050
3051                 t->commit_done = 1;
3052                 if (waitqueue_active(&t->commit_wait))
3053                         wake_up(&t->commit_wait);
3054
3055                 btrfs_destroy_pending_snapshots(t);
3056
3057                 btrfs_destroy_delalloc_inodes(root);
3058
3059                 spin_lock(&root->fs_info->trans_lock);
3060                 root->fs_info->running_transaction = NULL;
3061                 spin_unlock(&root->fs_info->trans_lock);
3062
3063                 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3064                                              EXTENT_DIRTY);
3065
3066                 btrfs_destroy_pinned_extent(root,
3067                                             root->fs_info->pinned_extents);
3068
3069                 atomic_set(&t->use_count, 0);
3070                 list_del_init(&t->list);
3071                 memset(t, 0, sizeof(*t));
3072                 kmem_cache_free(btrfs_transaction_cachep, t);
3073         }
3074
3075         spin_lock(&root->fs_info->trans_lock);
3076         root->fs_info->trans_no_join = 0;
3077         spin_unlock(&root->fs_info->trans_lock);
3078         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3079
3080         return 0;
3081 }
3082
3083 static struct extent_io_ops btree_extent_io_ops = {
3084         .write_cache_pages_lock_hook = btree_lock_page_hook,
3085         .readpage_end_io_hook = btree_readpage_end_io_hook,
3086         .submit_bio_hook = btree_submit_bio_hook,
3087         /* note we're sharing with inode.c for the merge bio hook */
3088         .merge_bio_hook = btrfs_merge_bio_hook,
3089 };