scsi: megaraid: trivial drop duplicate mutex.h include
[linux-2.6.git] / drivers / scsi / megaraid / megaraid_sas.c
1 /*
2  *
3  *              Linux MegaRAID driver for SAS based RAID controllers
4  *
5  * Copyright (c) 2003-2005  LSI Corporation.
6  *
7  *         This program is free software; you can redistribute it and/or
8  *         modify it under the terms of the GNU General Public License
9  *         as published by the Free Software Foundation; either version
10  *         2 of the License, or (at your option) any later version.
11  *
12  * FILE         : megaraid_sas.c
13  * Version      : v00.00.03.16-rc1
14  *
15  * Authors:
16  *      (email-id : megaraidlinux@lsi.com)
17  *      Sreenivas Bagalkote
18  *      Sumant Patro
19  *      Bo Yang
20  *
21  * List of supported controllers
22  *
23  * OEM  Product Name                    VID     DID     SSVID   SSID
24  * ---  ------------                    ---     ---     ----    ----
25  */
26
27 #include <linux/kernel.h>
28 #include <linux/types.h>
29 #include <linux/pci.h>
30 #include <linux/list.h>
31 #include <linux/moduleparam.h>
32 #include <linux/module.h>
33 #include <linux/spinlock.h>
34 #include <linux/interrupt.h>
35 #include <linux/delay.h>
36 #include <linux/uio.h>
37 #include <asm/uaccess.h>
38 #include <linux/fs.h>
39 #include <linux/compat.h>
40 #include <linux/blkdev.h>
41 #include <linux/mutex.h>
42
43 #include <scsi/scsi.h>
44 #include <scsi/scsi_cmnd.h>
45 #include <scsi/scsi_device.h>
46 #include <scsi/scsi_host.h>
47 #include "megaraid_sas.h"
48
49 /*
50  * poll_mode_io:1- schedule complete completion from q cmd
51  */
52 static unsigned int poll_mode_io;
53 module_param_named(poll_mode_io, poll_mode_io, int, 0);
54 MODULE_PARM_DESC(poll_mode_io,
55         "Complete cmds from IO path, (default=0)");
56
57 MODULE_LICENSE("GPL");
58 MODULE_VERSION(MEGASAS_VERSION);
59 MODULE_AUTHOR("megaraidlinux@lsi.com");
60 MODULE_DESCRIPTION("LSI MegaRAID SAS Driver");
61
62 /*
63  * PCI ID table for all supported controllers
64  */
65 static struct pci_device_id megasas_pci_table[] = {
66
67         {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1064R)},
68         /* xscale IOP */
69         {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078R)},
70         /* ppc IOP */
71         {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_VERDE_ZCR)},
72         /* xscale IOP, vega */
73         {PCI_DEVICE(PCI_VENDOR_ID_DELL, PCI_DEVICE_ID_DELL_PERC5)},
74         /* xscale IOP */
75         {}
76 };
77
78 MODULE_DEVICE_TABLE(pci, megasas_pci_table);
79
80 static int megasas_mgmt_majorno;
81 static struct megasas_mgmt_info megasas_mgmt_info;
82 static struct fasync_struct *megasas_async_queue;
83 static DEFINE_MUTEX(megasas_async_queue_mutex);
84
85 static u32 megasas_dbg_lvl;
86
87 static void
88 megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd,
89                      u8 alt_status);
90
91 /**
92  * megasas_get_cmd -    Get a command from the free pool
93  * @instance:           Adapter soft state
94  *
95  * Returns a free command from the pool
96  */
97 static struct megasas_cmd *megasas_get_cmd(struct megasas_instance
98                                                   *instance)
99 {
100         unsigned long flags;
101         struct megasas_cmd *cmd = NULL;
102
103         spin_lock_irqsave(&instance->cmd_pool_lock, flags);
104
105         if (!list_empty(&instance->cmd_pool)) {
106                 cmd = list_entry((&instance->cmd_pool)->next,
107                                  struct megasas_cmd, list);
108                 list_del_init(&cmd->list);
109         } else {
110                 printk(KERN_ERR "megasas: Command pool empty!\n");
111         }
112
113         spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
114         return cmd;
115 }
116
117 /**
118  * megasas_return_cmd - Return a cmd to free command pool
119  * @instance:           Adapter soft state
120  * @cmd:                Command packet to be returned to free command pool
121  */
122 static inline void
123 megasas_return_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd)
124 {
125         unsigned long flags;
126
127         spin_lock_irqsave(&instance->cmd_pool_lock, flags);
128
129         cmd->scmd = NULL;
130         list_add_tail(&cmd->list, &instance->cmd_pool);
131
132         spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
133 }
134
135
136 /**
137 *       The following functions are defined for xscale 
138 *       (deviceid : 1064R, PERC5) controllers
139 */
140
141 /**
142  * megasas_enable_intr_xscale - Enables interrupts
143  * @regs:                       MFI register set
144  */
145 static inline void
146 megasas_enable_intr_xscale(struct megasas_register_set __iomem * regs)
147 {
148         writel(1, &(regs)->outbound_intr_mask);
149
150         /* Dummy readl to force pci flush */
151         readl(&regs->outbound_intr_mask);
152 }
153
154 /**
155  * megasas_disable_intr_xscale -Disables interrupt
156  * @regs:                       MFI register set
157  */
158 static inline void
159 megasas_disable_intr_xscale(struct megasas_register_set __iomem * regs)
160 {
161         u32 mask = 0x1f;
162         writel(mask, &regs->outbound_intr_mask);
163         /* Dummy readl to force pci flush */
164         readl(&regs->outbound_intr_mask);
165 }
166
167 /**
168  * megasas_read_fw_status_reg_xscale - returns the current FW status value
169  * @regs:                       MFI register set
170  */
171 static u32
172 megasas_read_fw_status_reg_xscale(struct megasas_register_set __iomem * regs)
173 {
174         return readl(&(regs)->outbound_msg_0);
175 }
176 /**
177  * megasas_clear_interrupt_xscale -     Check & clear interrupt
178  * @regs:                               MFI register set
179  */
180 static int 
181 megasas_clear_intr_xscale(struct megasas_register_set __iomem * regs)
182 {
183         u32 status;
184         /*
185          * Check if it is our interrupt
186          */
187         status = readl(&regs->outbound_intr_status);
188
189         if (!(status & MFI_OB_INTR_STATUS_MASK)) {
190                 return 1;
191         }
192
193         /*
194          * Clear the interrupt by writing back the same value
195          */
196         writel(status, &regs->outbound_intr_status);
197
198         return 0;
199 }
200
201 /**
202  * megasas_fire_cmd_xscale -    Sends command to the FW
203  * @frame_phys_addr :           Physical address of cmd
204  * @frame_count :               Number of frames for the command
205  * @regs :                      MFI register set
206  */
207 static inline void 
208 megasas_fire_cmd_xscale(dma_addr_t frame_phys_addr,u32 frame_count, struct megasas_register_set __iomem *regs)
209 {
210         writel((frame_phys_addr >> 3)|(frame_count),
211                &(regs)->inbound_queue_port);
212 }
213
214 static struct megasas_instance_template megasas_instance_template_xscale = {
215
216         .fire_cmd = megasas_fire_cmd_xscale,
217         .enable_intr = megasas_enable_intr_xscale,
218         .disable_intr = megasas_disable_intr_xscale,
219         .clear_intr = megasas_clear_intr_xscale,
220         .read_fw_status_reg = megasas_read_fw_status_reg_xscale,
221 };
222
223 /**
224 *       This is the end of set of functions & definitions specific 
225 *       to xscale (deviceid : 1064R, PERC5) controllers
226 */
227
228 /**
229 *       The following functions are defined for ppc (deviceid : 0x60) 
230 *       controllers
231 */
232
233 /**
234  * megasas_enable_intr_ppc -    Enables interrupts
235  * @regs:                       MFI register set
236  */
237 static inline void
238 megasas_enable_intr_ppc(struct megasas_register_set __iomem * regs)
239 {
240         writel(0xFFFFFFFF, &(regs)->outbound_doorbell_clear);
241     
242         writel(~0x80000004, &(regs)->outbound_intr_mask);
243
244         /* Dummy readl to force pci flush */
245         readl(&regs->outbound_intr_mask);
246 }
247
248 /**
249  * megasas_disable_intr_ppc -   Disable interrupt
250  * @regs:                       MFI register set
251  */
252 static inline void
253 megasas_disable_intr_ppc(struct megasas_register_set __iomem * regs)
254 {
255         u32 mask = 0xFFFFFFFF;
256         writel(mask, &regs->outbound_intr_mask);
257         /* Dummy readl to force pci flush */
258         readl(&regs->outbound_intr_mask);
259 }
260
261 /**
262  * megasas_read_fw_status_reg_ppc - returns the current FW status value
263  * @regs:                       MFI register set
264  */
265 static u32
266 megasas_read_fw_status_reg_ppc(struct megasas_register_set __iomem * regs)
267 {
268         return readl(&(regs)->outbound_scratch_pad);
269 }
270
271 /**
272  * megasas_clear_interrupt_ppc -        Check & clear interrupt
273  * @regs:                               MFI register set
274  */
275 static int 
276 megasas_clear_intr_ppc(struct megasas_register_set __iomem * regs)
277 {
278         u32 status;
279         /*
280          * Check if it is our interrupt
281          */
282         status = readl(&regs->outbound_intr_status);
283
284         if (!(status & MFI_REPLY_1078_MESSAGE_INTERRUPT)) {
285                 return 1;
286         }
287
288         /*
289          * Clear the interrupt by writing back the same value
290          */
291         writel(status, &regs->outbound_doorbell_clear);
292
293         return 0;
294 }
295 /**
296  * megasas_fire_cmd_ppc -       Sends command to the FW
297  * @frame_phys_addr :           Physical address of cmd
298  * @frame_count :               Number of frames for the command
299  * @regs :                      MFI register set
300  */
301 static inline void 
302 megasas_fire_cmd_ppc(dma_addr_t frame_phys_addr, u32 frame_count, struct megasas_register_set __iomem *regs)
303 {
304         writel((frame_phys_addr | (frame_count<<1))|1, 
305                         &(regs)->inbound_queue_port);
306 }
307
308 static struct megasas_instance_template megasas_instance_template_ppc = {
309         
310         .fire_cmd = megasas_fire_cmd_ppc,
311         .enable_intr = megasas_enable_intr_ppc,
312         .disable_intr = megasas_disable_intr_ppc,
313         .clear_intr = megasas_clear_intr_ppc,
314         .read_fw_status_reg = megasas_read_fw_status_reg_ppc,
315 };
316
317 /**
318 *       This is the end of set of functions & definitions
319 *       specific to ppc (deviceid : 0x60) controllers
320 */
321
322 /**
323  * megasas_issue_polled -       Issues a polling command
324  * @instance:                   Adapter soft state
325  * @cmd:                        Command packet to be issued 
326  *
327  * For polling, MFI requires the cmd_status to be set to 0xFF before posting.
328  */
329 static int
330 megasas_issue_polled(struct megasas_instance *instance, struct megasas_cmd *cmd)
331 {
332         int i;
333         u32 msecs = MFI_POLL_TIMEOUT_SECS * 1000;
334
335         struct megasas_header *frame_hdr = &cmd->frame->hdr;
336
337         frame_hdr->cmd_status = 0xFF;
338         frame_hdr->flags |= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE;
339
340         /*
341          * Issue the frame using inbound queue port
342          */
343         instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
344
345         /*
346          * Wait for cmd_status to change
347          */
348         for (i = 0; (i < msecs) && (frame_hdr->cmd_status == 0xff); i++) {
349                 rmb();
350                 msleep(1);
351         }
352
353         if (frame_hdr->cmd_status == 0xff)
354                 return -ETIME;
355
356         return 0;
357 }
358
359 /**
360  * megasas_issue_blocked_cmd -  Synchronous wrapper around regular FW cmds
361  * @instance:                   Adapter soft state
362  * @cmd:                        Command to be issued
363  *
364  * This function waits on an event for the command to be returned from ISR.
365  * Max wait time is MEGASAS_INTERNAL_CMD_WAIT_TIME secs
366  * Used to issue ioctl commands.
367  */
368 static int
369 megasas_issue_blocked_cmd(struct megasas_instance *instance,
370                           struct megasas_cmd *cmd)
371 {
372         cmd->cmd_status = ENODATA;
373
374         instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
375
376         wait_event_timeout(instance->int_cmd_wait_q, (cmd->cmd_status != ENODATA),
377                 MEGASAS_INTERNAL_CMD_WAIT_TIME*HZ);
378
379         return 0;
380 }
381
382 /**
383  * megasas_issue_blocked_abort_cmd -    Aborts previously issued cmd
384  * @instance:                           Adapter soft state
385  * @cmd_to_abort:                       Previously issued cmd to be aborted
386  *
387  * MFI firmware can abort previously issued AEN comamnd (automatic event
388  * notification). The megasas_issue_blocked_abort_cmd() issues such abort
389  * cmd and waits for return status.
390  * Max wait time is MEGASAS_INTERNAL_CMD_WAIT_TIME secs
391  */
392 static int
393 megasas_issue_blocked_abort_cmd(struct megasas_instance *instance,
394                                 struct megasas_cmd *cmd_to_abort)
395 {
396         struct megasas_cmd *cmd;
397         struct megasas_abort_frame *abort_fr;
398
399         cmd = megasas_get_cmd(instance);
400
401         if (!cmd)
402                 return -1;
403
404         abort_fr = &cmd->frame->abort;
405
406         /*
407          * Prepare and issue the abort frame
408          */
409         abort_fr->cmd = MFI_CMD_ABORT;
410         abort_fr->cmd_status = 0xFF;
411         abort_fr->flags = 0;
412         abort_fr->abort_context = cmd_to_abort->index;
413         abort_fr->abort_mfi_phys_addr_lo = cmd_to_abort->frame_phys_addr;
414         abort_fr->abort_mfi_phys_addr_hi = 0;
415
416         cmd->sync_cmd = 1;
417         cmd->cmd_status = 0xFF;
418
419         instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
420
421         /*
422          * Wait for this cmd to complete
423          */
424         wait_event_timeout(instance->abort_cmd_wait_q, (cmd->cmd_status != 0xFF),
425                 MEGASAS_INTERNAL_CMD_WAIT_TIME*HZ);
426
427         megasas_return_cmd(instance, cmd);
428         return 0;
429 }
430
431 /**
432  * megasas_make_sgl32 - Prepares 32-bit SGL
433  * @instance:           Adapter soft state
434  * @scp:                SCSI command from the mid-layer
435  * @mfi_sgl:            SGL to be filled in
436  *
437  * If successful, this function returns the number of SG elements. Otherwise,
438  * it returnes -1.
439  */
440 static int
441 megasas_make_sgl32(struct megasas_instance *instance, struct scsi_cmnd *scp,
442                    union megasas_sgl *mfi_sgl)
443 {
444         int i;
445         int sge_count;
446         struct scatterlist *os_sgl;
447
448         sge_count = scsi_dma_map(scp);
449         BUG_ON(sge_count < 0);
450
451         if (sge_count) {
452                 scsi_for_each_sg(scp, os_sgl, sge_count, i) {
453                         mfi_sgl->sge32[i].length = sg_dma_len(os_sgl);
454                         mfi_sgl->sge32[i].phys_addr = sg_dma_address(os_sgl);
455                 }
456         }
457         return sge_count;
458 }
459
460 /**
461  * megasas_make_sgl64 - Prepares 64-bit SGL
462  * @instance:           Adapter soft state
463  * @scp:                SCSI command from the mid-layer
464  * @mfi_sgl:            SGL to be filled in
465  *
466  * If successful, this function returns the number of SG elements. Otherwise,
467  * it returnes -1.
468  */
469 static int
470 megasas_make_sgl64(struct megasas_instance *instance, struct scsi_cmnd *scp,
471                    union megasas_sgl *mfi_sgl)
472 {
473         int i;
474         int sge_count;
475         struct scatterlist *os_sgl;
476
477         sge_count = scsi_dma_map(scp);
478         BUG_ON(sge_count < 0);
479
480         if (sge_count) {
481                 scsi_for_each_sg(scp, os_sgl, sge_count, i) {
482                         mfi_sgl->sge64[i].length = sg_dma_len(os_sgl);
483                         mfi_sgl->sge64[i].phys_addr = sg_dma_address(os_sgl);
484                 }
485         }
486         return sge_count;
487 }
488
489  /**
490  * megasas_get_frame_count - Computes the number of frames
491  * @sge_count           : number of sg elements
492  *
493  * Returns the number of frames required for numnber of sge's (sge_count)
494  */
495
496 static u32 megasas_get_frame_count(u8 sge_count)
497 {
498         int num_cnt;
499         int sge_bytes;
500         u32 sge_sz;
501         u32 frame_count=0;
502
503         sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
504             sizeof(struct megasas_sge32);
505
506         /*
507         * Main frame can contain 2 SGEs for 64-bit SGLs and
508         * 3 SGEs for 32-bit SGLs
509         */
510         if (IS_DMA64)
511                 num_cnt = sge_count - 2;
512         else
513                 num_cnt = sge_count - 3;
514
515         if(num_cnt>0){
516                 sge_bytes = sge_sz * num_cnt;
517
518                 frame_count = (sge_bytes / MEGAMFI_FRAME_SIZE) +
519                     ((sge_bytes % MEGAMFI_FRAME_SIZE) ? 1 : 0) ;
520         }
521         /* Main frame */
522         frame_count +=1;
523
524         if (frame_count > 7)
525                 frame_count = 8;
526         return frame_count;
527 }
528
529 /**
530  * megasas_build_dcdb - Prepares a direct cdb (DCDB) command
531  * @instance:           Adapter soft state
532  * @scp:                SCSI command
533  * @cmd:                Command to be prepared in
534  *
535  * This function prepares CDB commands. These are typcially pass-through
536  * commands to the devices.
537  */
538 static int
539 megasas_build_dcdb(struct megasas_instance *instance, struct scsi_cmnd *scp,
540                    struct megasas_cmd *cmd)
541 {
542         u32 is_logical;
543         u32 device_id;
544         u16 flags = 0;
545         struct megasas_pthru_frame *pthru;
546
547         is_logical = MEGASAS_IS_LOGICAL(scp);
548         device_id = MEGASAS_DEV_INDEX(instance, scp);
549         pthru = (struct megasas_pthru_frame *)cmd->frame;
550
551         if (scp->sc_data_direction == PCI_DMA_TODEVICE)
552                 flags = MFI_FRAME_DIR_WRITE;
553         else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
554                 flags = MFI_FRAME_DIR_READ;
555         else if (scp->sc_data_direction == PCI_DMA_NONE)
556                 flags = MFI_FRAME_DIR_NONE;
557
558         /*
559          * Prepare the DCDB frame
560          */
561         pthru->cmd = (is_logical) ? MFI_CMD_LD_SCSI_IO : MFI_CMD_PD_SCSI_IO;
562         pthru->cmd_status = 0x0;
563         pthru->scsi_status = 0x0;
564         pthru->target_id = device_id;
565         pthru->lun = scp->device->lun;
566         pthru->cdb_len = scp->cmd_len;
567         pthru->timeout = 0;
568         pthru->flags = flags;
569         pthru->data_xfer_len = scsi_bufflen(scp);
570
571         memcpy(pthru->cdb, scp->cmnd, scp->cmd_len);
572
573         /*
574          * Construct SGL
575          */
576         if (IS_DMA64) {
577                 pthru->flags |= MFI_FRAME_SGL64;
578                 pthru->sge_count = megasas_make_sgl64(instance, scp,
579                                                       &pthru->sgl);
580         } else
581                 pthru->sge_count = megasas_make_sgl32(instance, scp,
582                                                       &pthru->sgl);
583
584         /*
585          * Sense info specific
586          */
587         pthru->sense_len = SCSI_SENSE_BUFFERSIZE;
588         pthru->sense_buf_phys_addr_hi = 0;
589         pthru->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
590
591         /*
592          * Compute the total number of frames this command consumes. FW uses
593          * this number to pull sufficient number of frames from host memory.
594          */
595         cmd->frame_count = megasas_get_frame_count(pthru->sge_count);
596
597         return cmd->frame_count;
598 }
599
600 /**
601  * megasas_build_ldio - Prepares IOs to logical devices
602  * @instance:           Adapter soft state
603  * @scp:                SCSI command
604  * @cmd:                Command to to be prepared
605  *
606  * Frames (and accompanying SGLs) for regular SCSI IOs use this function.
607  */
608 static int
609 megasas_build_ldio(struct megasas_instance *instance, struct scsi_cmnd *scp,
610                    struct megasas_cmd *cmd)
611 {
612         u32 device_id;
613         u8 sc = scp->cmnd[0];
614         u16 flags = 0;
615         struct megasas_io_frame *ldio;
616
617         device_id = MEGASAS_DEV_INDEX(instance, scp);
618         ldio = (struct megasas_io_frame *)cmd->frame;
619
620         if (scp->sc_data_direction == PCI_DMA_TODEVICE)
621                 flags = MFI_FRAME_DIR_WRITE;
622         else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
623                 flags = MFI_FRAME_DIR_READ;
624
625         /*
626          * Prepare the Logical IO frame: 2nd bit is zero for all read cmds
627          */
628         ldio->cmd = (sc & 0x02) ? MFI_CMD_LD_WRITE : MFI_CMD_LD_READ;
629         ldio->cmd_status = 0x0;
630         ldio->scsi_status = 0x0;
631         ldio->target_id = device_id;
632         ldio->timeout = 0;
633         ldio->reserved_0 = 0;
634         ldio->pad_0 = 0;
635         ldio->flags = flags;
636         ldio->start_lba_hi = 0;
637         ldio->access_byte = (scp->cmd_len != 6) ? scp->cmnd[1] : 0;
638
639         /*
640          * 6-byte READ(0x08) or WRITE(0x0A) cdb
641          */
642         if (scp->cmd_len == 6) {
643                 ldio->lba_count = (u32) scp->cmnd[4];
644                 ldio->start_lba_lo = ((u32) scp->cmnd[1] << 16) |
645                     ((u32) scp->cmnd[2] << 8) | (u32) scp->cmnd[3];
646
647                 ldio->start_lba_lo &= 0x1FFFFF;
648         }
649
650         /*
651          * 10-byte READ(0x28) or WRITE(0x2A) cdb
652          */
653         else if (scp->cmd_len == 10) {
654                 ldio->lba_count = (u32) scp->cmnd[8] |
655                     ((u32) scp->cmnd[7] << 8);
656                 ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) |
657                     ((u32) scp->cmnd[3] << 16) |
658                     ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
659         }
660
661         /*
662          * 12-byte READ(0xA8) or WRITE(0xAA) cdb
663          */
664         else if (scp->cmd_len == 12) {
665                 ldio->lba_count = ((u32) scp->cmnd[6] << 24) |
666                     ((u32) scp->cmnd[7] << 16) |
667                     ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9];
668
669                 ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) |
670                     ((u32) scp->cmnd[3] << 16) |
671                     ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
672         }
673
674         /*
675          * 16-byte READ(0x88) or WRITE(0x8A) cdb
676          */
677         else if (scp->cmd_len == 16) {
678                 ldio->lba_count = ((u32) scp->cmnd[10] << 24) |
679                     ((u32) scp->cmnd[11] << 16) |
680                     ((u32) scp->cmnd[12] << 8) | (u32) scp->cmnd[13];
681
682                 ldio->start_lba_lo = ((u32) scp->cmnd[6] << 24) |
683                     ((u32) scp->cmnd[7] << 16) |
684                     ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9];
685
686                 ldio->start_lba_hi = ((u32) scp->cmnd[2] << 24) |
687                     ((u32) scp->cmnd[3] << 16) |
688                     ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
689
690         }
691
692         /*
693          * Construct SGL
694          */
695         if (IS_DMA64) {
696                 ldio->flags |= MFI_FRAME_SGL64;
697                 ldio->sge_count = megasas_make_sgl64(instance, scp, &ldio->sgl);
698         } else
699                 ldio->sge_count = megasas_make_sgl32(instance, scp, &ldio->sgl);
700
701         /*
702          * Sense info specific
703          */
704         ldio->sense_len = SCSI_SENSE_BUFFERSIZE;
705         ldio->sense_buf_phys_addr_hi = 0;
706         ldio->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
707
708         /*
709          * Compute the total number of frames this command consumes. FW uses
710          * this number to pull sufficient number of frames from host memory.
711          */
712         cmd->frame_count = megasas_get_frame_count(ldio->sge_count);
713
714         return cmd->frame_count;
715 }
716
717 /**
718  * megasas_is_ldio -            Checks if the cmd is for logical drive
719  * @scmd:                       SCSI command
720  *      
721  * Called by megasas_queue_command to find out if the command to be queued
722  * is a logical drive command   
723  */
724 static inline int megasas_is_ldio(struct scsi_cmnd *cmd)
725 {
726         if (!MEGASAS_IS_LOGICAL(cmd))
727                 return 0;
728         switch (cmd->cmnd[0]) {
729         case READ_10:
730         case WRITE_10:
731         case READ_12:
732         case WRITE_12:
733         case READ_6:
734         case WRITE_6:
735         case READ_16:
736         case WRITE_16:
737                 return 1;
738         default:
739                 return 0;
740         }
741 }
742
743  /**
744  * megasas_dump_pending_frames -        Dumps the frame address of all pending cmds
745  *                                      in FW
746  * @instance:                           Adapter soft state
747  */
748 static inline void
749 megasas_dump_pending_frames(struct megasas_instance *instance)
750 {
751         struct megasas_cmd *cmd;
752         int i,n;
753         union megasas_sgl *mfi_sgl;
754         struct megasas_io_frame *ldio;
755         struct megasas_pthru_frame *pthru;
756         u32 sgcount;
757         u32 max_cmd = instance->max_fw_cmds;
758
759         printk(KERN_ERR "\nmegasas[%d]: Dumping Frame Phys Address of all pending cmds in FW\n",instance->host->host_no);
760         printk(KERN_ERR "megasas[%d]: Total OS Pending cmds : %d\n",instance->host->host_no,atomic_read(&instance->fw_outstanding));
761         if (IS_DMA64)
762                 printk(KERN_ERR "\nmegasas[%d]: 64 bit SGLs were sent to FW\n",instance->host->host_no);
763         else
764                 printk(KERN_ERR "\nmegasas[%d]: 32 bit SGLs were sent to FW\n",instance->host->host_no);
765
766         printk(KERN_ERR "megasas[%d]: Pending OS cmds in FW : \n",instance->host->host_no);
767         for (i = 0; i < max_cmd; i++) {
768                 cmd = instance->cmd_list[i];
769                 if(!cmd->scmd)
770                         continue;
771                 printk(KERN_ERR "megasas[%d]: Frame addr :0x%08lx : ",instance->host->host_no,(unsigned long)cmd->frame_phys_addr);
772                 if (megasas_is_ldio(cmd->scmd)){
773                         ldio = (struct megasas_io_frame *)cmd->frame;
774                         mfi_sgl = &ldio->sgl;
775                         sgcount = ldio->sge_count;
776                         printk(KERN_ERR "megasas[%d]: frame count : 0x%x, Cmd : 0x%x, Tgt id : 0x%x, lba lo : 0x%x, lba_hi : 0x%x, sense_buf addr : 0x%x,sge count : 0x%x\n",instance->host->host_no, cmd->frame_count,ldio->cmd,ldio->target_id, ldio->start_lba_lo,ldio->start_lba_hi,ldio->sense_buf_phys_addr_lo,sgcount);
777                 }
778                 else {
779                         pthru = (struct megasas_pthru_frame *) cmd->frame;
780                         mfi_sgl = &pthru->sgl;
781                         sgcount = pthru->sge_count;
782                         printk(KERN_ERR "megasas[%d]: frame count : 0x%x, Cmd : 0x%x, Tgt id : 0x%x, lun : 0x%x, cdb_len : 0x%x, data xfer len : 0x%x, sense_buf addr : 0x%x,sge count : 0x%x\n",instance->host->host_no,cmd->frame_count,pthru->cmd,pthru->target_id,pthru->lun,pthru->cdb_len , pthru->data_xfer_len,pthru->sense_buf_phys_addr_lo,sgcount);
783                 }
784         if(megasas_dbg_lvl & MEGASAS_DBG_LVL){
785                 for (n = 0; n < sgcount; n++){
786                         if (IS_DMA64)
787                                 printk(KERN_ERR "megasas: sgl len : 0x%x, sgl addr : 0x%08lx ",mfi_sgl->sge64[n].length , (unsigned long)mfi_sgl->sge64[n].phys_addr) ;
788                         else
789                                 printk(KERN_ERR "megasas: sgl len : 0x%x, sgl addr : 0x%x ",mfi_sgl->sge32[n].length , mfi_sgl->sge32[n].phys_addr) ;
790                         }
791                 }
792                 printk(KERN_ERR "\n");
793         } /*for max_cmd*/
794         printk(KERN_ERR "\nmegasas[%d]: Pending Internal cmds in FW : \n",instance->host->host_no);
795         for (i = 0; i < max_cmd; i++) {
796
797                 cmd = instance->cmd_list[i];
798
799                 if(cmd->sync_cmd == 1){
800                         printk(KERN_ERR "0x%08lx : ", (unsigned long)cmd->frame_phys_addr);
801                 }
802         }
803         printk(KERN_ERR "megasas[%d]: Dumping Done.\n\n",instance->host->host_no);
804 }
805
806 /**
807  * megasas_queue_command -      Queue entry point
808  * @scmd:                       SCSI command to be queued
809  * @done:                       Callback entry point
810  */
811 static int
812 megasas_queue_command(struct scsi_cmnd *scmd, void (*done) (struct scsi_cmnd *))
813 {
814         u32 frame_count;
815         struct megasas_cmd *cmd;
816         struct megasas_instance *instance;
817
818         instance = (struct megasas_instance *)
819             scmd->device->host->hostdata;
820
821         /* Don't process if we have already declared adapter dead */
822         if (instance->hw_crit_error)
823                 return SCSI_MLQUEUE_HOST_BUSY;
824
825         scmd->scsi_done = done;
826         scmd->result = 0;
827
828         if (MEGASAS_IS_LOGICAL(scmd) &&
829             (scmd->device->id >= MEGASAS_MAX_LD || scmd->device->lun)) {
830                 scmd->result = DID_BAD_TARGET << 16;
831                 goto out_done;
832         }
833
834         switch (scmd->cmnd[0]) {
835         case SYNCHRONIZE_CACHE:
836                 /*
837                  * FW takes care of flush cache on its own
838                  * No need to send it down
839                  */
840                 scmd->result = DID_OK << 16;
841                 goto out_done;
842         default:
843                 break;
844         }
845
846         cmd = megasas_get_cmd(instance);
847         if (!cmd)
848                 return SCSI_MLQUEUE_HOST_BUSY;
849
850         /*
851          * Logical drive command
852          */
853         if (megasas_is_ldio(scmd))
854                 frame_count = megasas_build_ldio(instance, scmd, cmd);
855         else
856                 frame_count = megasas_build_dcdb(instance, scmd, cmd);
857
858         if (!frame_count)
859                 goto out_return_cmd;
860
861         cmd->scmd = scmd;
862         scmd->SCp.ptr = (char *)cmd;
863
864         /*
865          * Issue the command to the FW
866          */
867         atomic_inc(&instance->fw_outstanding);
868
869         instance->instancet->fire_cmd(cmd->frame_phys_addr ,cmd->frame_count-1,instance->reg_set);
870         /*
871          * Check if we have pend cmds to be completed
872          */
873         if (poll_mode_io && atomic_read(&instance->fw_outstanding))
874                 tasklet_schedule(&instance->isr_tasklet);
875
876
877         return 0;
878
879  out_return_cmd:
880         megasas_return_cmd(instance, cmd);
881  out_done:
882         done(scmd);
883         return 0;
884 }
885
886 static int megasas_slave_configure(struct scsi_device *sdev)
887 {
888         /*
889          * Don't export physical disk devices to the disk driver.
890          *
891          * FIXME: Currently we don't export them to the midlayer at all.
892          *        That will be fixed once LSI engineers have audited the
893          *        firmware for possible issues.
894          */
895         if (sdev->channel < MEGASAS_MAX_PD_CHANNELS && sdev->type == TYPE_DISK)
896                 return -ENXIO;
897
898         /*
899          * The RAID firmware may require extended timeouts.
900          */
901         if (sdev->channel >= MEGASAS_MAX_PD_CHANNELS)
902                 sdev->timeout = MEGASAS_DEFAULT_CMD_TIMEOUT * HZ;
903         return 0;
904 }
905
906 /**
907  * megasas_complete_cmd_dpc      -      Returns FW's controller structure
908  * @instance_addr:                      Address of adapter soft state
909  *
910  * Tasklet to complete cmds
911  */
912 static void megasas_complete_cmd_dpc(unsigned long instance_addr)
913 {
914         u32 producer;
915         u32 consumer;
916         u32 context;
917         struct megasas_cmd *cmd;
918         struct megasas_instance *instance =
919                                 (struct megasas_instance *)instance_addr;
920         unsigned long flags;
921
922         /* If we have already declared adapter dead, donot complete cmds */
923         if (instance->hw_crit_error)
924                 return;
925
926         spin_lock_irqsave(&instance->completion_lock, flags);
927
928         producer = *instance->producer;
929         consumer = *instance->consumer;
930
931         while (consumer != producer) {
932                 context = instance->reply_queue[consumer];
933
934                 cmd = instance->cmd_list[context];
935
936                 megasas_complete_cmd(instance, cmd, DID_OK);
937
938                 consumer++;
939                 if (consumer == (instance->max_fw_cmds + 1)) {
940                         consumer = 0;
941                 }
942         }
943
944         *instance->consumer = producer;
945
946         spin_unlock_irqrestore(&instance->completion_lock, flags);
947
948         /*
949          * Check if we can restore can_queue
950          */
951         if (instance->flag & MEGASAS_FW_BUSY
952                 && time_after(jiffies, instance->last_time + 5 * HZ)
953                 && atomic_read(&instance->fw_outstanding) < 17) {
954
955                 spin_lock_irqsave(instance->host->host_lock, flags);
956                 instance->flag &= ~MEGASAS_FW_BUSY;
957                 instance->host->can_queue =
958                                 instance->max_fw_cmds - MEGASAS_INT_CMDS;
959
960                 spin_unlock_irqrestore(instance->host->host_lock, flags);
961         }
962 }
963
964 /**
965  * megasas_wait_for_outstanding -       Wait for all outstanding cmds
966  * @instance:                           Adapter soft state
967  *
968  * This function waits for upto MEGASAS_RESET_WAIT_TIME seconds for FW to
969  * complete all its outstanding commands. Returns error if one or more IOs
970  * are pending after this time period. It also marks the controller dead.
971  */
972 static int megasas_wait_for_outstanding(struct megasas_instance *instance)
973 {
974         int i;
975         u32 wait_time = MEGASAS_RESET_WAIT_TIME;
976
977         for (i = 0; i < wait_time; i++) {
978
979                 int outstanding = atomic_read(&instance->fw_outstanding);
980
981                 if (!outstanding)
982                         break;
983
984                 if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) {
985                         printk(KERN_NOTICE "megasas: [%2d]waiting for %d "
986                                "commands to complete\n",i,outstanding);
987                         /*
988                          * Call cmd completion routine. Cmd to be
989                          * be completed directly without depending on isr.
990                          */
991                         megasas_complete_cmd_dpc((unsigned long)instance);
992                 }
993
994                 msleep(1000);
995         }
996
997         if (atomic_read(&instance->fw_outstanding)) {
998                 /*
999                 * Send signal to FW to stop processing any pending cmds.
1000                 * The controller will be taken offline by the OS now.
1001                 */
1002                 writel(MFI_STOP_ADP,
1003                                 &instance->reg_set->inbound_doorbell);
1004                 megasas_dump_pending_frames(instance);
1005                 instance->hw_crit_error = 1;
1006                 return FAILED;
1007         }
1008
1009         return SUCCESS;
1010 }
1011
1012 /**
1013  * megasas_generic_reset -      Generic reset routine
1014  * @scmd:                       Mid-layer SCSI command
1015  *
1016  * This routine implements a generic reset handler for device, bus and host
1017  * reset requests. Device, bus and host specific reset handlers can use this
1018  * function after they do their specific tasks.
1019  */
1020 static int megasas_generic_reset(struct scsi_cmnd *scmd)
1021 {
1022         int ret_val;
1023         struct megasas_instance *instance;
1024
1025         instance = (struct megasas_instance *)scmd->device->host->hostdata;
1026
1027         scmd_printk(KERN_NOTICE, scmd, "megasas: RESET -%ld cmd=%x retries=%x\n",
1028                  scmd->serial_number, scmd->cmnd[0], scmd->retries);
1029
1030         if (instance->hw_crit_error) {
1031                 printk(KERN_ERR "megasas: cannot recover from previous reset "
1032                        "failures\n");
1033                 return FAILED;
1034         }
1035
1036         ret_val = megasas_wait_for_outstanding(instance);
1037         if (ret_val == SUCCESS)
1038                 printk(KERN_NOTICE "megasas: reset successful \n");
1039         else
1040                 printk(KERN_ERR "megasas: failed to do reset\n");
1041
1042         return ret_val;
1043 }
1044
1045 /**
1046  * megasas_reset_timer - quiesce the adapter if required
1047  * @scmd:               scsi cmnd
1048  *
1049  * Sets the FW busy flag and reduces the host->can_queue if the
1050  * cmd has not been completed within the timeout period.
1051  */
1052 static enum
1053 scsi_eh_timer_return megasas_reset_timer(struct scsi_cmnd *scmd)
1054 {
1055         struct megasas_cmd *cmd = (struct megasas_cmd *)scmd->SCp.ptr;
1056         struct megasas_instance *instance;
1057         unsigned long flags;
1058
1059         if (time_after(jiffies, scmd->jiffies_at_alloc +
1060                                 (MEGASAS_DEFAULT_CMD_TIMEOUT * 2) * HZ)) {
1061                 return EH_NOT_HANDLED;
1062         }
1063
1064         instance = cmd->instance;
1065         if (!(instance->flag & MEGASAS_FW_BUSY)) {
1066                 /* FW is busy, throttle IO */
1067                 spin_lock_irqsave(instance->host->host_lock, flags);
1068
1069                 instance->host->can_queue = 16;
1070                 instance->last_time = jiffies;
1071                 instance->flag |= MEGASAS_FW_BUSY;
1072
1073                 spin_unlock_irqrestore(instance->host->host_lock, flags);
1074         }
1075         return EH_RESET_TIMER;
1076 }
1077
1078 /**
1079  * megasas_reset_device -       Device reset handler entry point
1080  */
1081 static int megasas_reset_device(struct scsi_cmnd *scmd)
1082 {
1083         int ret;
1084
1085         /*
1086          * First wait for all commands to complete
1087          */
1088         ret = megasas_generic_reset(scmd);
1089
1090         return ret;
1091 }
1092
1093 /**
1094  * megasas_reset_bus_host -     Bus & host reset handler entry point
1095  */
1096 static int megasas_reset_bus_host(struct scsi_cmnd *scmd)
1097 {
1098         int ret;
1099
1100         /*
1101          * First wait for all commands to complete
1102          */
1103         ret = megasas_generic_reset(scmd);
1104
1105         return ret;
1106 }
1107
1108 /**
1109  * megasas_bios_param - Returns disk geometry for a disk
1110  * @sdev:               device handle
1111  * @bdev:               block device
1112  * @capacity:           drive capacity
1113  * @geom:               geometry parameters
1114  */
1115 static int
1116 megasas_bios_param(struct scsi_device *sdev, struct block_device *bdev,
1117                  sector_t capacity, int geom[])
1118 {
1119         int heads;
1120         int sectors;
1121         sector_t cylinders;
1122         unsigned long tmp;
1123         /* Default heads (64) & sectors (32) */
1124         heads = 64;
1125         sectors = 32;
1126
1127         tmp = heads * sectors;
1128         cylinders = capacity;
1129
1130         sector_div(cylinders, tmp);
1131
1132         /*
1133          * Handle extended translation size for logical drives > 1Gb
1134          */
1135
1136         if (capacity >= 0x200000) {
1137                 heads = 255;
1138                 sectors = 63;
1139                 tmp = heads*sectors;
1140                 cylinders = capacity;
1141                 sector_div(cylinders, tmp);
1142         }
1143
1144         geom[0] = heads;
1145         geom[1] = sectors;
1146         geom[2] = cylinders;
1147
1148         return 0;
1149 }
1150
1151 /**
1152  * megasas_service_aen -        Processes an event notification
1153  * @instance:                   Adapter soft state
1154  * @cmd:                        AEN command completed by the ISR
1155  *
1156  * For AEN, driver sends a command down to FW that is held by the FW till an
1157  * event occurs. When an event of interest occurs, FW completes the command
1158  * that it was previously holding.
1159  *
1160  * This routines sends SIGIO signal to processes that have registered with the
1161  * driver for AEN.
1162  */
1163 static void
1164 megasas_service_aen(struct megasas_instance *instance, struct megasas_cmd *cmd)
1165 {
1166         /*
1167          * Don't signal app if it is just an aborted previously registered aen
1168          */
1169         if (!cmd->abort_aen)
1170                 kill_fasync(&megasas_async_queue, SIGIO, POLL_IN);
1171         else
1172                 cmd->abort_aen = 0;
1173
1174         instance->aen_cmd = NULL;
1175         megasas_return_cmd(instance, cmd);
1176 }
1177
1178 /*
1179  * Scsi host template for megaraid_sas driver
1180  */
1181 static struct scsi_host_template megasas_template = {
1182
1183         .module = THIS_MODULE,
1184         .name = "LSI SAS based MegaRAID driver",
1185         .proc_name = "megaraid_sas",
1186         .slave_configure = megasas_slave_configure,
1187         .queuecommand = megasas_queue_command,
1188         .eh_device_reset_handler = megasas_reset_device,
1189         .eh_bus_reset_handler = megasas_reset_bus_host,
1190         .eh_host_reset_handler = megasas_reset_bus_host,
1191         .eh_timed_out = megasas_reset_timer,
1192         .bios_param = megasas_bios_param,
1193         .use_clustering = ENABLE_CLUSTERING,
1194 };
1195
1196 /**
1197  * megasas_complete_int_cmd -   Completes an internal command
1198  * @instance:                   Adapter soft state
1199  * @cmd:                        Command to be completed
1200  *
1201  * The megasas_issue_blocked_cmd() function waits for a command to complete
1202  * after it issues a command. This function wakes up that waiting routine by
1203  * calling wake_up() on the wait queue.
1204  */
1205 static void
1206 megasas_complete_int_cmd(struct megasas_instance *instance,
1207                          struct megasas_cmd *cmd)
1208 {
1209         cmd->cmd_status = cmd->frame->io.cmd_status;
1210
1211         if (cmd->cmd_status == ENODATA) {
1212                 cmd->cmd_status = 0;
1213         }
1214         wake_up(&instance->int_cmd_wait_q);
1215 }
1216
1217 /**
1218  * megasas_complete_abort -     Completes aborting a command
1219  * @instance:                   Adapter soft state
1220  * @cmd:                        Cmd that was issued to abort another cmd
1221  *
1222  * The megasas_issue_blocked_abort_cmd() function waits on abort_cmd_wait_q 
1223  * after it issues an abort on a previously issued command. This function 
1224  * wakes up all functions waiting on the same wait queue.
1225  */
1226 static void
1227 megasas_complete_abort(struct megasas_instance *instance,
1228                        struct megasas_cmd *cmd)
1229 {
1230         if (cmd->sync_cmd) {
1231                 cmd->sync_cmd = 0;
1232                 cmd->cmd_status = 0;
1233                 wake_up(&instance->abort_cmd_wait_q);
1234         }
1235
1236         return;
1237 }
1238
1239 /**
1240  * megasas_complete_cmd -       Completes a command
1241  * @instance:                   Adapter soft state
1242  * @cmd:                        Command to be completed
1243  * @alt_status:                 If non-zero, use this value as status to 
1244  *                              SCSI mid-layer instead of the value returned
1245  *                              by the FW. This should be used if caller wants
1246  *                              an alternate status (as in the case of aborted
1247  *                              commands)
1248  */
1249 static void
1250 megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd,
1251                      u8 alt_status)
1252 {
1253         int exception = 0;
1254         struct megasas_header *hdr = &cmd->frame->hdr;
1255
1256         if (cmd->scmd)
1257                 cmd->scmd->SCp.ptr = NULL;
1258
1259         switch (hdr->cmd) {
1260
1261         case MFI_CMD_PD_SCSI_IO:
1262         case MFI_CMD_LD_SCSI_IO:
1263
1264                 /*
1265                  * MFI_CMD_PD_SCSI_IO and MFI_CMD_LD_SCSI_IO could have been
1266                  * issued either through an IO path or an IOCTL path. If it
1267                  * was via IOCTL, we will send it to internal completion.
1268                  */
1269                 if (cmd->sync_cmd) {
1270                         cmd->sync_cmd = 0;
1271                         megasas_complete_int_cmd(instance, cmd);
1272                         break;
1273                 }
1274
1275         case MFI_CMD_LD_READ:
1276         case MFI_CMD_LD_WRITE:
1277
1278                 if (alt_status) {
1279                         cmd->scmd->result = alt_status << 16;
1280                         exception = 1;
1281                 }
1282
1283                 if (exception) {
1284
1285                         atomic_dec(&instance->fw_outstanding);
1286
1287                         scsi_dma_unmap(cmd->scmd);
1288                         cmd->scmd->scsi_done(cmd->scmd);
1289                         megasas_return_cmd(instance, cmd);
1290
1291                         break;
1292                 }
1293
1294                 switch (hdr->cmd_status) {
1295
1296                 case MFI_STAT_OK:
1297                         cmd->scmd->result = DID_OK << 16;
1298                         break;
1299
1300                 case MFI_STAT_SCSI_IO_FAILED:
1301                 case MFI_STAT_LD_INIT_IN_PROGRESS:
1302                         cmd->scmd->result =
1303                             (DID_ERROR << 16) | hdr->scsi_status;
1304                         break;
1305
1306                 case MFI_STAT_SCSI_DONE_WITH_ERROR:
1307
1308                         cmd->scmd->result = (DID_OK << 16) | hdr->scsi_status;
1309
1310                         if (hdr->scsi_status == SAM_STAT_CHECK_CONDITION) {
1311                                 memset(cmd->scmd->sense_buffer, 0,
1312                                        SCSI_SENSE_BUFFERSIZE);
1313                                 memcpy(cmd->scmd->sense_buffer, cmd->sense,
1314                                        hdr->sense_len);
1315
1316                                 cmd->scmd->result |= DRIVER_SENSE << 24;
1317                         }
1318
1319                         break;
1320
1321                 case MFI_STAT_LD_OFFLINE:
1322                 case MFI_STAT_DEVICE_NOT_FOUND:
1323                         cmd->scmd->result = DID_BAD_TARGET << 16;
1324                         break;
1325
1326                 default:
1327                         printk(KERN_DEBUG "megasas: MFI FW status %#x\n",
1328                                hdr->cmd_status);
1329                         cmd->scmd->result = DID_ERROR << 16;
1330                         break;
1331                 }
1332
1333                 atomic_dec(&instance->fw_outstanding);
1334
1335                 scsi_dma_unmap(cmd->scmd);
1336                 cmd->scmd->scsi_done(cmd->scmd);
1337                 megasas_return_cmd(instance, cmd);
1338
1339                 break;
1340
1341         case MFI_CMD_SMP:
1342         case MFI_CMD_STP:
1343         case MFI_CMD_DCMD:
1344
1345                 /*
1346                  * See if got an event notification
1347                  */
1348                 if (cmd->frame->dcmd.opcode == MR_DCMD_CTRL_EVENT_WAIT)
1349                         megasas_service_aen(instance, cmd);
1350                 else
1351                         megasas_complete_int_cmd(instance, cmd);
1352
1353                 break;
1354
1355         case MFI_CMD_ABORT:
1356                 /*
1357                  * Cmd issued to abort another cmd returned
1358                  */
1359                 megasas_complete_abort(instance, cmd);
1360                 break;
1361
1362         default:
1363                 printk("megasas: Unknown command completed! [0x%X]\n",
1364                        hdr->cmd);
1365                 break;
1366         }
1367 }
1368
1369 /**
1370  * megasas_deplete_reply_queue -        Processes all completed commands
1371  * @instance:                           Adapter soft state
1372  * @alt_status:                         Alternate status to be returned to
1373  *                                      SCSI mid-layer instead of the status
1374  *                                      returned by the FW
1375  */
1376 static int
1377 megasas_deplete_reply_queue(struct megasas_instance *instance, u8 alt_status)
1378 {
1379         /*
1380          * Check if it is our interrupt
1381          * Clear the interrupt 
1382          */
1383         if(instance->instancet->clear_intr(instance->reg_set))
1384                 return IRQ_NONE;
1385
1386         if (instance->hw_crit_error)
1387                 goto out_done;
1388         /*
1389          * Schedule the tasklet for cmd completion
1390          */
1391         tasklet_schedule(&instance->isr_tasklet);
1392 out_done:
1393         return IRQ_HANDLED;
1394 }
1395
1396 /**
1397  * megasas_isr - isr entry point
1398  */
1399 static irqreturn_t megasas_isr(int irq, void *devp)
1400 {
1401         return megasas_deplete_reply_queue((struct megasas_instance *)devp,
1402                                            DID_OK);
1403 }
1404
1405 /**
1406  * megasas_transition_to_ready -        Move the FW to READY state
1407  * @instance:                           Adapter soft state
1408  *
1409  * During the initialization, FW passes can potentially be in any one of
1410  * several possible states. If the FW in operational, waiting-for-handshake
1411  * states, driver must take steps to bring it to ready state. Otherwise, it
1412  * has to wait for the ready state.
1413  */
1414 static int
1415 megasas_transition_to_ready(struct megasas_instance* instance)
1416 {
1417         int i;
1418         u8 max_wait;
1419         u32 fw_state;
1420         u32 cur_state;
1421
1422         fw_state = instance->instancet->read_fw_status_reg(instance->reg_set) & MFI_STATE_MASK;
1423
1424         if (fw_state != MFI_STATE_READY)
1425                 printk(KERN_INFO "megasas: Waiting for FW to come to ready"
1426                        " state\n");
1427
1428         while (fw_state != MFI_STATE_READY) {
1429
1430                 switch (fw_state) {
1431
1432                 case MFI_STATE_FAULT:
1433
1434                         printk(KERN_DEBUG "megasas: FW in FAULT state!!\n");
1435                         return -ENODEV;
1436
1437                 case MFI_STATE_WAIT_HANDSHAKE:
1438                         /*
1439                          * Set the CLR bit in inbound doorbell
1440                          */
1441                         writel(MFI_INIT_CLEAR_HANDSHAKE|MFI_INIT_HOTPLUG,
1442                                 &instance->reg_set->inbound_doorbell);
1443
1444                         max_wait = 2;
1445                         cur_state = MFI_STATE_WAIT_HANDSHAKE;
1446                         break;
1447
1448                 case MFI_STATE_BOOT_MESSAGE_PENDING:
1449                         writel(MFI_INIT_HOTPLUG,
1450                                 &instance->reg_set->inbound_doorbell);
1451
1452                         max_wait = 10;
1453                         cur_state = MFI_STATE_BOOT_MESSAGE_PENDING;
1454                         break;
1455
1456                 case MFI_STATE_OPERATIONAL:
1457                         /*
1458                          * Bring it to READY state; assuming max wait 10 secs
1459                          */
1460                         instance->instancet->disable_intr(instance->reg_set);
1461                         writel(MFI_RESET_FLAGS, &instance->reg_set->inbound_doorbell);
1462
1463                         max_wait = 10;
1464                         cur_state = MFI_STATE_OPERATIONAL;
1465                         break;
1466
1467                 case MFI_STATE_UNDEFINED:
1468                         /*
1469                          * This state should not last for more than 2 seconds
1470                          */
1471                         max_wait = 2;
1472                         cur_state = MFI_STATE_UNDEFINED;
1473                         break;
1474
1475                 case MFI_STATE_BB_INIT:
1476                         max_wait = 2;
1477                         cur_state = MFI_STATE_BB_INIT;
1478                         break;
1479
1480                 case MFI_STATE_FW_INIT:
1481                         max_wait = 20;
1482                         cur_state = MFI_STATE_FW_INIT;
1483                         break;
1484
1485                 case MFI_STATE_FW_INIT_2:
1486                         max_wait = 20;
1487                         cur_state = MFI_STATE_FW_INIT_2;
1488                         break;
1489
1490                 case MFI_STATE_DEVICE_SCAN:
1491                         max_wait = 20;
1492                         cur_state = MFI_STATE_DEVICE_SCAN;
1493                         break;
1494
1495                 case MFI_STATE_FLUSH_CACHE:
1496                         max_wait = 20;
1497                         cur_state = MFI_STATE_FLUSH_CACHE;
1498                         break;
1499
1500                 default:
1501                         printk(KERN_DEBUG "megasas: Unknown state 0x%x\n",
1502                                fw_state);
1503                         return -ENODEV;
1504                 }
1505
1506                 /*
1507                  * The cur_state should not last for more than max_wait secs
1508                  */
1509                 for (i = 0; i < (max_wait * 1000); i++) {
1510                         fw_state = instance->instancet->read_fw_status_reg(instance->reg_set) &  
1511                                         MFI_STATE_MASK ;
1512
1513                         if (fw_state == cur_state) {
1514                                 msleep(1);
1515                         } else
1516                                 break;
1517                 }
1518
1519                 /*
1520                  * Return error if fw_state hasn't changed after max_wait
1521                  */
1522                 if (fw_state == cur_state) {
1523                         printk(KERN_DEBUG "FW state [%d] hasn't changed "
1524                                "in %d secs\n", fw_state, max_wait);
1525                         return -ENODEV;
1526                 }
1527         };
1528         printk(KERN_INFO "megasas: FW now in Ready state\n");
1529
1530         return 0;
1531 }
1532
1533 /**
1534  * megasas_teardown_frame_pool -        Destroy the cmd frame DMA pool
1535  * @instance:                           Adapter soft state
1536  */
1537 static void megasas_teardown_frame_pool(struct megasas_instance *instance)
1538 {
1539         int i;
1540         u32 max_cmd = instance->max_fw_cmds;
1541         struct megasas_cmd *cmd;
1542
1543         if (!instance->frame_dma_pool)
1544                 return;
1545
1546         /*
1547          * Return all frames to pool
1548          */
1549         for (i = 0; i < max_cmd; i++) {
1550
1551                 cmd = instance->cmd_list[i];
1552
1553                 if (cmd->frame)
1554                         pci_pool_free(instance->frame_dma_pool, cmd->frame,
1555                                       cmd->frame_phys_addr);
1556
1557                 if (cmd->sense)
1558                         pci_pool_free(instance->sense_dma_pool, cmd->sense,
1559                                       cmd->sense_phys_addr);
1560         }
1561
1562         /*
1563          * Now destroy the pool itself
1564          */
1565         pci_pool_destroy(instance->frame_dma_pool);
1566         pci_pool_destroy(instance->sense_dma_pool);
1567
1568         instance->frame_dma_pool = NULL;
1569         instance->sense_dma_pool = NULL;
1570 }
1571
1572 /**
1573  * megasas_create_frame_pool -  Creates DMA pool for cmd frames
1574  * @instance:                   Adapter soft state
1575  *
1576  * Each command packet has an embedded DMA memory buffer that is used for
1577  * filling MFI frame and the SG list that immediately follows the frame. This
1578  * function creates those DMA memory buffers for each command packet by using
1579  * PCI pool facility.
1580  */
1581 static int megasas_create_frame_pool(struct megasas_instance *instance)
1582 {
1583         int i;
1584         u32 max_cmd;
1585         u32 sge_sz;
1586         u32 sgl_sz;
1587         u32 total_sz;
1588         u32 frame_count;
1589         struct megasas_cmd *cmd;
1590
1591         max_cmd = instance->max_fw_cmds;
1592
1593         /*
1594          * Size of our frame is 64 bytes for MFI frame, followed by max SG
1595          * elements and finally SCSI_SENSE_BUFFERSIZE bytes for sense buffer
1596          */
1597         sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
1598             sizeof(struct megasas_sge32);
1599
1600         /*
1601          * Calculated the number of 64byte frames required for SGL
1602          */
1603         sgl_sz = sge_sz * instance->max_num_sge;
1604         frame_count = (sgl_sz + MEGAMFI_FRAME_SIZE - 1) / MEGAMFI_FRAME_SIZE;
1605
1606         /*
1607          * We need one extra frame for the MFI command
1608          */
1609         frame_count++;
1610
1611         total_sz = MEGAMFI_FRAME_SIZE * frame_count;
1612         /*
1613          * Use DMA pool facility provided by PCI layer
1614          */
1615         instance->frame_dma_pool = pci_pool_create("megasas frame pool",
1616                                                    instance->pdev, total_sz, 64,
1617                                                    0);
1618
1619         if (!instance->frame_dma_pool) {
1620                 printk(KERN_DEBUG "megasas: failed to setup frame pool\n");
1621                 return -ENOMEM;
1622         }
1623
1624         instance->sense_dma_pool = pci_pool_create("megasas sense pool",
1625                                                    instance->pdev, 128, 4, 0);
1626
1627         if (!instance->sense_dma_pool) {
1628                 printk(KERN_DEBUG "megasas: failed to setup sense pool\n");
1629
1630                 pci_pool_destroy(instance->frame_dma_pool);
1631                 instance->frame_dma_pool = NULL;
1632
1633                 return -ENOMEM;
1634         }
1635
1636         /*
1637          * Allocate and attach a frame to each of the commands in cmd_list.
1638          * By making cmd->index as the context instead of the &cmd, we can
1639          * always use 32bit context regardless of the architecture
1640          */
1641         for (i = 0; i < max_cmd; i++) {
1642
1643                 cmd = instance->cmd_list[i];
1644
1645                 cmd->frame = pci_pool_alloc(instance->frame_dma_pool,
1646                                             GFP_KERNEL, &cmd->frame_phys_addr);
1647
1648                 cmd->sense = pci_pool_alloc(instance->sense_dma_pool,
1649                                             GFP_KERNEL, &cmd->sense_phys_addr);
1650
1651                 /*
1652                  * megasas_teardown_frame_pool() takes care of freeing
1653                  * whatever has been allocated
1654                  */
1655                 if (!cmd->frame || !cmd->sense) {
1656                         printk(KERN_DEBUG "megasas: pci_pool_alloc failed \n");
1657                         megasas_teardown_frame_pool(instance);
1658                         return -ENOMEM;
1659                 }
1660
1661                 cmd->frame->io.context = cmd->index;
1662         }
1663
1664         return 0;
1665 }
1666
1667 /**
1668  * megasas_free_cmds -  Free all the cmds in the free cmd pool
1669  * @instance:           Adapter soft state
1670  */
1671 static void megasas_free_cmds(struct megasas_instance *instance)
1672 {
1673         int i;
1674         /* First free the MFI frame pool */
1675         megasas_teardown_frame_pool(instance);
1676
1677         /* Free all the commands in the cmd_list */
1678         for (i = 0; i < instance->max_fw_cmds; i++)
1679                 kfree(instance->cmd_list[i]);
1680
1681         /* Free the cmd_list buffer itself */
1682         kfree(instance->cmd_list);
1683         instance->cmd_list = NULL;
1684
1685         INIT_LIST_HEAD(&instance->cmd_pool);
1686 }
1687
1688 /**
1689  * megasas_alloc_cmds - Allocates the command packets
1690  * @instance:           Adapter soft state
1691  *
1692  * Each command that is issued to the FW, whether IO commands from the OS or
1693  * internal commands like IOCTLs, are wrapped in local data structure called
1694  * megasas_cmd. The frame embedded in this megasas_cmd is actually issued to
1695  * the FW.
1696  *
1697  * Each frame has a 32-bit field called context (tag). This context is used
1698  * to get back the megasas_cmd from the frame when a frame gets completed in
1699  * the ISR. Typically the address of the megasas_cmd itself would be used as
1700  * the context. But we wanted to keep the differences between 32 and 64 bit
1701  * systems to the mininum. We always use 32 bit integers for the context. In
1702  * this driver, the 32 bit values are the indices into an array cmd_list.
1703  * This array is used only to look up the megasas_cmd given the context. The
1704  * free commands themselves are maintained in a linked list called cmd_pool.
1705  */
1706 static int megasas_alloc_cmds(struct megasas_instance *instance)
1707 {
1708         int i;
1709         int j;
1710         u32 max_cmd;
1711         struct megasas_cmd *cmd;
1712
1713         max_cmd = instance->max_fw_cmds;
1714
1715         /*
1716          * instance->cmd_list is an array of struct megasas_cmd pointers.
1717          * Allocate the dynamic array first and then allocate individual
1718          * commands.
1719          */
1720         instance->cmd_list = kcalloc(max_cmd, sizeof(struct megasas_cmd*), GFP_KERNEL);
1721
1722         if (!instance->cmd_list) {
1723                 printk(KERN_DEBUG "megasas: out of memory\n");
1724                 return -ENOMEM;
1725         }
1726
1727
1728         for (i = 0; i < max_cmd; i++) {
1729                 instance->cmd_list[i] = kmalloc(sizeof(struct megasas_cmd),
1730                                                 GFP_KERNEL);
1731
1732                 if (!instance->cmd_list[i]) {
1733
1734                         for (j = 0; j < i; j++)
1735                                 kfree(instance->cmd_list[j]);
1736
1737                         kfree(instance->cmd_list);
1738                         instance->cmd_list = NULL;
1739
1740                         return -ENOMEM;
1741                 }
1742         }
1743
1744         /*
1745          * Add all the commands to command pool (instance->cmd_pool)
1746          */
1747         for (i = 0; i < max_cmd; i++) {
1748                 cmd = instance->cmd_list[i];
1749                 memset(cmd, 0, sizeof(struct megasas_cmd));
1750                 cmd->index = i;
1751                 cmd->instance = instance;
1752
1753                 list_add_tail(&cmd->list, &instance->cmd_pool);
1754         }
1755
1756         /*
1757          * Create a frame pool and assign one frame to each cmd
1758          */
1759         if (megasas_create_frame_pool(instance)) {
1760                 printk(KERN_DEBUG "megasas: Error creating frame DMA pool\n");
1761                 megasas_free_cmds(instance);
1762         }
1763
1764         return 0;
1765 }
1766
1767 /**
1768  * megasas_get_controller_info -        Returns FW's controller structure
1769  * @instance:                           Adapter soft state
1770  * @ctrl_info:                          Controller information structure
1771  *
1772  * Issues an internal command (DCMD) to get the FW's controller structure.
1773  * This information is mainly used to find out the maximum IO transfer per
1774  * command supported by the FW.
1775  */
1776 static int
1777 megasas_get_ctrl_info(struct megasas_instance *instance,
1778                       struct megasas_ctrl_info *ctrl_info)
1779 {
1780         int ret = 0;
1781         struct megasas_cmd *cmd;
1782         struct megasas_dcmd_frame *dcmd;
1783         struct megasas_ctrl_info *ci;
1784         dma_addr_t ci_h = 0;
1785
1786         cmd = megasas_get_cmd(instance);
1787
1788         if (!cmd) {
1789                 printk(KERN_DEBUG "megasas: Failed to get a free cmd\n");
1790                 return -ENOMEM;
1791         }
1792
1793         dcmd = &cmd->frame->dcmd;
1794
1795         ci = pci_alloc_consistent(instance->pdev,
1796                                   sizeof(struct megasas_ctrl_info), &ci_h);
1797
1798         if (!ci) {
1799                 printk(KERN_DEBUG "Failed to alloc mem for ctrl info\n");
1800                 megasas_return_cmd(instance, cmd);
1801                 return -ENOMEM;
1802         }
1803
1804         memset(ci, 0, sizeof(*ci));
1805         memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
1806
1807         dcmd->cmd = MFI_CMD_DCMD;
1808         dcmd->cmd_status = 0xFF;
1809         dcmd->sge_count = 1;
1810         dcmd->flags = MFI_FRAME_DIR_READ;
1811         dcmd->timeout = 0;
1812         dcmd->data_xfer_len = sizeof(struct megasas_ctrl_info);
1813         dcmd->opcode = MR_DCMD_CTRL_GET_INFO;
1814         dcmd->sgl.sge32[0].phys_addr = ci_h;
1815         dcmd->sgl.sge32[0].length = sizeof(struct megasas_ctrl_info);
1816
1817         if (!megasas_issue_polled(instance, cmd)) {
1818                 ret = 0;
1819                 memcpy(ctrl_info, ci, sizeof(struct megasas_ctrl_info));
1820         } else {
1821                 ret = -1;
1822         }
1823
1824         pci_free_consistent(instance->pdev, sizeof(struct megasas_ctrl_info),
1825                             ci, ci_h);
1826
1827         megasas_return_cmd(instance, cmd);
1828         return ret;
1829 }
1830
1831 /**
1832  * megasas_issue_init_mfi -     Initializes the FW
1833  * @instance:           Adapter soft state
1834  *
1835  * Issues the INIT MFI cmd
1836  */
1837 static int
1838 megasas_issue_init_mfi(struct megasas_instance *instance)
1839 {
1840         u32 context;
1841
1842         struct megasas_cmd *cmd;
1843
1844         struct megasas_init_frame *init_frame;
1845         struct megasas_init_queue_info *initq_info;
1846         dma_addr_t init_frame_h;
1847         dma_addr_t initq_info_h;
1848
1849         /*
1850          * Prepare a init frame. Note the init frame points to queue info
1851          * structure. Each frame has SGL allocated after first 64 bytes. For
1852          * this frame - since we don't need any SGL - we use SGL's space as
1853          * queue info structure
1854          *
1855          * We will not get a NULL command below. We just created the pool.
1856          */
1857         cmd = megasas_get_cmd(instance);
1858
1859         init_frame = (struct megasas_init_frame *)cmd->frame;
1860         initq_info = (struct megasas_init_queue_info *)
1861                 ((unsigned long)init_frame + 64);
1862
1863         init_frame_h = cmd->frame_phys_addr;
1864         initq_info_h = init_frame_h + 64;
1865
1866         context = init_frame->context;
1867         memset(init_frame, 0, MEGAMFI_FRAME_SIZE);
1868         memset(initq_info, 0, sizeof(struct megasas_init_queue_info));
1869         init_frame->context = context;
1870
1871         initq_info->reply_queue_entries = instance->max_fw_cmds + 1;
1872         initq_info->reply_queue_start_phys_addr_lo = instance->reply_queue_h;
1873
1874         initq_info->producer_index_phys_addr_lo = instance->producer_h;
1875         initq_info->consumer_index_phys_addr_lo = instance->consumer_h;
1876
1877         init_frame->cmd = MFI_CMD_INIT;
1878         init_frame->cmd_status = 0xFF;
1879         init_frame->queue_info_new_phys_addr_lo = initq_info_h;
1880
1881         init_frame->data_xfer_len = sizeof(struct megasas_init_queue_info);
1882
1883         /*
1884          * disable the intr before firing the init frame to FW
1885          */
1886         instance->instancet->disable_intr(instance->reg_set);
1887
1888         /*
1889          * Issue the init frame in polled mode
1890          */
1891
1892         if (megasas_issue_polled(instance, cmd)) {
1893                 printk(KERN_ERR "megasas: Failed to init firmware\n");
1894                 megasas_return_cmd(instance, cmd);
1895                 goto fail_fw_init;
1896         }
1897
1898         megasas_return_cmd(instance, cmd);
1899
1900         return 0;
1901
1902 fail_fw_init:
1903         return -EINVAL;
1904 }
1905
1906 /**
1907  * megasas_start_timer - Initializes a timer object
1908  * @instance:           Adapter soft state
1909  * @timer:              timer object to be initialized
1910  * @fn:                 timer function
1911  * @interval:           time interval between timer function call
1912  */
1913 static inline void
1914 megasas_start_timer(struct megasas_instance *instance,
1915                         struct timer_list *timer,
1916                         void *fn, unsigned long interval)
1917 {
1918         init_timer(timer);
1919         timer->expires = jiffies + interval;
1920         timer->data = (unsigned long)instance;
1921         timer->function = fn;
1922         add_timer(timer);
1923 }
1924
1925 /**
1926  * megasas_io_completion_timer - Timer fn
1927  * @instance_addr:      Address of adapter soft state
1928  *
1929  * Schedules tasklet for cmd completion
1930  * if poll_mode_io is set
1931  */
1932 static void
1933 megasas_io_completion_timer(unsigned long instance_addr)
1934 {
1935         struct megasas_instance *instance =
1936                         (struct megasas_instance *)instance_addr;
1937
1938         if (atomic_read(&instance->fw_outstanding))
1939                 tasklet_schedule(&instance->isr_tasklet);
1940
1941         /* Restart timer */
1942         if (poll_mode_io)
1943                 mod_timer(&instance->io_completion_timer,
1944                         jiffies + MEGASAS_COMPLETION_TIMER_INTERVAL);
1945 }
1946
1947 /**
1948  * megasas_init_mfi -   Initializes the FW
1949  * @instance:           Adapter soft state
1950  *
1951  * This is the main function for initializing MFI firmware.
1952  */
1953 static int megasas_init_mfi(struct megasas_instance *instance)
1954 {
1955         u32 context_sz;
1956         u32 reply_q_sz;
1957         u32 max_sectors_1;
1958         u32 max_sectors_2;
1959         u32 tmp_sectors;
1960         struct megasas_register_set __iomem *reg_set;
1961         struct megasas_ctrl_info *ctrl_info;
1962         /*
1963          * Map the message registers
1964          */
1965         instance->base_addr = pci_resource_start(instance->pdev, 0);
1966
1967         if (pci_request_regions(instance->pdev, "megasas: LSI")) {
1968                 printk(KERN_DEBUG "megasas: IO memory region busy!\n");
1969                 return -EBUSY;
1970         }
1971
1972         instance->reg_set = ioremap_nocache(instance->base_addr, 8192);
1973
1974         if (!instance->reg_set) {
1975                 printk(KERN_DEBUG "megasas: Failed to map IO mem\n");
1976                 goto fail_ioremap;
1977         }
1978
1979         reg_set = instance->reg_set;
1980
1981         switch(instance->pdev->device)
1982         {
1983                 case PCI_DEVICE_ID_LSI_SAS1078R:        
1984                         instance->instancet = &megasas_instance_template_ppc;
1985                         break;
1986                 case PCI_DEVICE_ID_LSI_SAS1064R:
1987                 case PCI_DEVICE_ID_DELL_PERC5:
1988                 default:
1989                         instance->instancet = &megasas_instance_template_xscale;
1990                         break;
1991         }
1992
1993         /*
1994          * We expect the FW state to be READY
1995          */
1996         if (megasas_transition_to_ready(instance))
1997                 goto fail_ready_state;
1998
1999         /*
2000          * Get various operational parameters from status register
2001          */
2002         instance->max_fw_cmds = instance->instancet->read_fw_status_reg(reg_set) & 0x00FFFF;
2003         /*
2004          * Reduce the max supported cmds by 1. This is to ensure that the
2005          * reply_q_sz (1 more than the max cmd that driver may send)
2006          * does not exceed max cmds that the FW can support
2007          */
2008         instance->max_fw_cmds = instance->max_fw_cmds-1;
2009         instance->max_num_sge = (instance->instancet->read_fw_status_reg(reg_set) & 0xFF0000) >> 
2010                                         0x10;
2011         /*
2012          * Create a pool of commands
2013          */
2014         if (megasas_alloc_cmds(instance))
2015                 goto fail_alloc_cmds;
2016
2017         /*
2018          * Allocate memory for reply queue. Length of reply queue should
2019          * be _one_ more than the maximum commands handled by the firmware.
2020          *
2021          * Note: When FW completes commands, it places corresponding contex
2022          * values in this circular reply queue. This circular queue is a fairly
2023          * typical producer-consumer queue. FW is the producer (of completed
2024          * commands) and the driver is the consumer.
2025          */
2026         context_sz = sizeof(u32);
2027         reply_q_sz = context_sz * (instance->max_fw_cmds + 1);
2028
2029         instance->reply_queue = pci_alloc_consistent(instance->pdev,
2030                                                      reply_q_sz,
2031                                                      &instance->reply_queue_h);
2032
2033         if (!instance->reply_queue) {
2034                 printk(KERN_DEBUG "megasas: Out of DMA mem for reply queue\n");
2035                 goto fail_reply_queue;
2036         }
2037
2038         if (megasas_issue_init_mfi(instance))
2039                 goto fail_fw_init;
2040
2041         ctrl_info = kmalloc(sizeof(struct megasas_ctrl_info), GFP_KERNEL);
2042
2043         /*
2044          * Compute the max allowed sectors per IO: The controller info has two
2045          * limits on max sectors. Driver should use the minimum of these two.
2046          *
2047          * 1 << stripe_sz_ops.min = max sectors per strip
2048          *
2049          * Note that older firmwares ( < FW ver 30) didn't report information
2050          * to calculate max_sectors_1. So the number ended up as zero always.
2051          */
2052         tmp_sectors = 0;
2053         if (ctrl_info && !megasas_get_ctrl_info(instance, ctrl_info)) {
2054
2055                 max_sectors_1 = (1 << ctrl_info->stripe_sz_ops.min) *
2056                     ctrl_info->max_strips_per_io;
2057                 max_sectors_2 = ctrl_info->max_request_size;
2058
2059                 tmp_sectors = min_t(u32, max_sectors_1 , max_sectors_2);
2060         }
2061
2062         instance->max_sectors_per_req = instance->max_num_sge *
2063                                                 PAGE_SIZE / 512;
2064         if (tmp_sectors && (instance->max_sectors_per_req > tmp_sectors))
2065                 instance->max_sectors_per_req = tmp_sectors;
2066
2067         kfree(ctrl_info);
2068
2069         /*
2070         * Setup tasklet for cmd completion
2071         */
2072
2073         tasklet_init(&instance->isr_tasklet, megasas_complete_cmd_dpc,
2074                 (unsigned long)instance);
2075
2076         /* Initialize the cmd completion timer */
2077         if (poll_mode_io)
2078                 megasas_start_timer(instance, &instance->io_completion_timer,
2079                                 megasas_io_completion_timer,
2080                                 MEGASAS_COMPLETION_TIMER_INTERVAL);
2081         return 0;
2082
2083       fail_fw_init:
2084
2085         pci_free_consistent(instance->pdev, reply_q_sz,
2086                             instance->reply_queue, instance->reply_queue_h);
2087       fail_reply_queue:
2088         megasas_free_cmds(instance);
2089
2090       fail_alloc_cmds:
2091       fail_ready_state:
2092         iounmap(instance->reg_set);
2093
2094       fail_ioremap:
2095         pci_release_regions(instance->pdev);
2096
2097         return -EINVAL;
2098 }
2099
2100 /**
2101  * megasas_release_mfi -        Reverses the FW initialization
2102  * @intance:                    Adapter soft state
2103  */
2104 static void megasas_release_mfi(struct megasas_instance *instance)
2105 {
2106         u32 reply_q_sz = sizeof(u32) * (instance->max_fw_cmds + 1);
2107
2108         pci_free_consistent(instance->pdev, reply_q_sz,
2109                             instance->reply_queue, instance->reply_queue_h);
2110
2111         megasas_free_cmds(instance);
2112
2113         iounmap(instance->reg_set);
2114
2115         pci_release_regions(instance->pdev);
2116 }
2117
2118 /**
2119  * megasas_get_seq_num -        Gets latest event sequence numbers
2120  * @instance:                   Adapter soft state
2121  * @eli:                        FW event log sequence numbers information
2122  *
2123  * FW maintains a log of all events in a non-volatile area. Upper layers would
2124  * usually find out the latest sequence number of the events, the seq number at
2125  * the boot etc. They would "read" all the events below the latest seq number
2126  * by issuing a direct fw cmd (DCMD). For the future events (beyond latest seq
2127  * number), they would subsribe to AEN (asynchronous event notification) and
2128  * wait for the events to happen.
2129  */
2130 static int
2131 megasas_get_seq_num(struct megasas_instance *instance,
2132                     struct megasas_evt_log_info *eli)
2133 {
2134         struct megasas_cmd *cmd;
2135         struct megasas_dcmd_frame *dcmd;
2136         struct megasas_evt_log_info *el_info;
2137         dma_addr_t el_info_h = 0;
2138
2139         cmd = megasas_get_cmd(instance);
2140
2141         if (!cmd) {
2142                 return -ENOMEM;
2143         }
2144
2145         dcmd = &cmd->frame->dcmd;
2146         el_info = pci_alloc_consistent(instance->pdev,
2147                                        sizeof(struct megasas_evt_log_info),
2148                                        &el_info_h);
2149
2150         if (!el_info) {
2151                 megasas_return_cmd(instance, cmd);
2152                 return -ENOMEM;
2153         }
2154
2155         memset(el_info, 0, sizeof(*el_info));
2156         memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2157
2158         dcmd->cmd = MFI_CMD_DCMD;
2159         dcmd->cmd_status = 0x0;
2160         dcmd->sge_count = 1;
2161         dcmd->flags = MFI_FRAME_DIR_READ;
2162         dcmd->timeout = 0;
2163         dcmd->data_xfer_len = sizeof(struct megasas_evt_log_info);
2164         dcmd->opcode = MR_DCMD_CTRL_EVENT_GET_INFO;
2165         dcmd->sgl.sge32[0].phys_addr = el_info_h;
2166         dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_log_info);
2167
2168         megasas_issue_blocked_cmd(instance, cmd);
2169
2170         /*
2171          * Copy the data back into callers buffer
2172          */
2173         memcpy(eli, el_info, sizeof(struct megasas_evt_log_info));
2174
2175         pci_free_consistent(instance->pdev, sizeof(struct megasas_evt_log_info),
2176                             el_info, el_info_h);
2177
2178         megasas_return_cmd(instance, cmd);
2179
2180         return 0;
2181 }
2182
2183 /**
2184  * megasas_register_aen -       Registers for asynchronous event notification
2185  * @instance:                   Adapter soft state
2186  * @seq_num:                    The starting sequence number
2187  * @class_locale:               Class of the event
2188  *
2189  * This function subscribes for AEN for events beyond the @seq_num. It requests
2190  * to be notified if and only if the event is of type @class_locale
2191  */
2192 static int
2193 megasas_register_aen(struct megasas_instance *instance, u32 seq_num,
2194                      u32 class_locale_word)
2195 {
2196         int ret_val;
2197         struct megasas_cmd *cmd;
2198         struct megasas_dcmd_frame *dcmd;
2199         union megasas_evt_class_locale curr_aen;
2200         union megasas_evt_class_locale prev_aen;
2201
2202         /*
2203          * If there an AEN pending already (aen_cmd), check if the
2204          * class_locale of that pending AEN is inclusive of the new
2205          * AEN request we currently have. If it is, then we don't have
2206          * to do anything. In other words, whichever events the current
2207          * AEN request is subscribing to, have already been subscribed
2208          * to.
2209          *
2210          * If the old_cmd is _not_ inclusive, then we have to abort
2211          * that command, form a class_locale that is superset of both
2212          * old and current and re-issue to the FW
2213          */
2214
2215         curr_aen.word = class_locale_word;
2216
2217         if (instance->aen_cmd) {
2218
2219                 prev_aen.word = instance->aen_cmd->frame->dcmd.mbox.w[1];
2220
2221                 /*
2222                  * A class whose enum value is smaller is inclusive of all
2223                  * higher values. If a PROGRESS (= -1) was previously
2224                  * registered, then a new registration requests for higher
2225                  * classes need not be sent to FW. They are automatically
2226                  * included.
2227                  *
2228                  * Locale numbers don't have such hierarchy. They are bitmap
2229                  * values
2230                  */
2231                 if ((prev_aen.members.class <= curr_aen.members.class) &&
2232                     !((prev_aen.members.locale & curr_aen.members.locale) ^
2233                       curr_aen.members.locale)) {
2234                         /*
2235                          * Previously issued event registration includes
2236                          * current request. Nothing to do.
2237                          */
2238                         return 0;
2239                 } else {
2240                         curr_aen.members.locale |= prev_aen.members.locale;
2241
2242                         if (prev_aen.members.class < curr_aen.members.class)
2243                                 curr_aen.members.class = prev_aen.members.class;
2244
2245                         instance->aen_cmd->abort_aen = 1;
2246                         ret_val = megasas_issue_blocked_abort_cmd(instance,
2247                                                                   instance->
2248                                                                   aen_cmd);
2249
2250                         if (ret_val) {
2251                                 printk(KERN_DEBUG "megasas: Failed to abort "
2252                                        "previous AEN command\n");
2253                                 return ret_val;
2254                         }
2255                 }
2256         }
2257
2258         cmd = megasas_get_cmd(instance);
2259
2260         if (!cmd)
2261                 return -ENOMEM;
2262
2263         dcmd = &cmd->frame->dcmd;
2264
2265         memset(instance->evt_detail, 0, sizeof(struct megasas_evt_detail));
2266
2267         /*
2268          * Prepare DCMD for aen registration
2269          */
2270         memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2271
2272         dcmd->cmd = MFI_CMD_DCMD;
2273         dcmd->cmd_status = 0x0;
2274         dcmd->sge_count = 1;
2275         dcmd->flags = MFI_FRAME_DIR_READ;
2276         dcmd->timeout = 0;
2277         dcmd->data_xfer_len = sizeof(struct megasas_evt_detail);
2278         dcmd->opcode = MR_DCMD_CTRL_EVENT_WAIT;
2279         dcmd->mbox.w[0] = seq_num;
2280         dcmd->mbox.w[1] = curr_aen.word;
2281         dcmd->sgl.sge32[0].phys_addr = (u32) instance->evt_detail_h;
2282         dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_detail);
2283
2284         /*
2285          * Store reference to the cmd used to register for AEN. When an
2286          * application wants us to register for AEN, we have to abort this
2287          * cmd and re-register with a new EVENT LOCALE supplied by that app
2288          */
2289         instance->aen_cmd = cmd;
2290
2291         /*
2292          * Issue the aen registration frame
2293          */
2294         instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
2295
2296         return 0;
2297 }
2298
2299 /**
2300  * megasas_start_aen -  Subscribes to AEN during driver load time
2301  * @instance:           Adapter soft state
2302  */
2303 static int megasas_start_aen(struct megasas_instance *instance)
2304 {
2305         struct megasas_evt_log_info eli;
2306         union megasas_evt_class_locale class_locale;
2307
2308         /*
2309          * Get the latest sequence number from FW
2310          */
2311         memset(&eli, 0, sizeof(eli));
2312
2313         if (megasas_get_seq_num(instance, &eli))
2314                 return -1;
2315
2316         /*
2317          * Register AEN with FW for latest sequence number plus 1
2318          */
2319         class_locale.members.reserved = 0;
2320         class_locale.members.locale = MR_EVT_LOCALE_ALL;
2321         class_locale.members.class = MR_EVT_CLASS_DEBUG;
2322
2323         return megasas_register_aen(instance, eli.newest_seq_num + 1,
2324                                     class_locale.word);
2325 }
2326
2327 /**
2328  * megasas_io_attach -  Attaches this driver to SCSI mid-layer
2329  * @instance:           Adapter soft state
2330  */
2331 static int megasas_io_attach(struct megasas_instance *instance)
2332 {
2333         struct Scsi_Host *host = instance->host;
2334
2335         /*
2336          * Export parameters required by SCSI mid-layer
2337          */
2338         host->irq = instance->pdev->irq;
2339         host->unique_id = instance->unique_id;
2340         host->can_queue = instance->max_fw_cmds - MEGASAS_INT_CMDS;
2341         host->this_id = instance->init_id;
2342         host->sg_tablesize = instance->max_num_sge;
2343         host->max_sectors = instance->max_sectors_per_req;
2344         host->cmd_per_lun = 128;
2345         host->max_channel = MEGASAS_MAX_CHANNELS - 1;
2346         host->max_id = MEGASAS_MAX_DEV_PER_CHANNEL;
2347         host->max_lun = MEGASAS_MAX_LUN;
2348         host->max_cmd_len = 16;
2349
2350         /*
2351          * Notify the mid-layer about the new controller
2352          */
2353         if (scsi_add_host(host, &instance->pdev->dev)) {
2354                 printk(KERN_DEBUG "megasas: scsi_add_host failed\n");
2355                 return -ENODEV;
2356         }
2357
2358         /*
2359          * Trigger SCSI to scan our drives
2360          */
2361         scsi_scan_host(host);
2362         return 0;
2363 }
2364
2365 static int
2366 megasas_set_dma_mask(struct pci_dev *pdev)
2367 {
2368         /*
2369          * All our contollers are capable of performing 64-bit DMA
2370          */
2371         if (IS_DMA64) {
2372                 if (pci_set_dma_mask(pdev, DMA_64BIT_MASK) != 0) {
2373
2374                         if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0)
2375                                 goto fail_set_dma_mask;
2376                 }
2377         } else {
2378                 if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0)
2379                         goto fail_set_dma_mask;
2380         }
2381         return 0;
2382
2383 fail_set_dma_mask:
2384         return 1;
2385 }
2386
2387 /**
2388  * megasas_probe_one -  PCI hotplug entry point
2389  * @pdev:               PCI device structure
2390  * @id:                 PCI ids of supported hotplugged adapter 
2391  */
2392 static int __devinit
2393 megasas_probe_one(struct pci_dev *pdev, const struct pci_device_id *id)
2394 {
2395         int rval;
2396         struct Scsi_Host *host;
2397         struct megasas_instance *instance;
2398
2399         /*
2400          * Announce PCI information
2401          */
2402         printk(KERN_INFO "megasas: %#4.04x:%#4.04x:%#4.04x:%#4.04x: ",
2403                pdev->vendor, pdev->device, pdev->subsystem_vendor,
2404                pdev->subsystem_device);
2405
2406         printk("bus %d:slot %d:func %d\n",
2407                pdev->bus->number, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2408
2409         /*
2410          * PCI prepping: enable device set bus mastering and dma mask
2411          */
2412         rval = pci_enable_device(pdev);
2413
2414         if (rval) {
2415                 return rval;
2416         }
2417
2418         pci_set_master(pdev);
2419
2420         if (megasas_set_dma_mask(pdev))
2421                 goto fail_set_dma_mask;
2422
2423         host = scsi_host_alloc(&megasas_template,
2424                                sizeof(struct megasas_instance));
2425
2426         if (!host) {
2427                 printk(KERN_DEBUG "megasas: scsi_host_alloc failed\n");
2428                 goto fail_alloc_instance;
2429         }
2430
2431         instance = (struct megasas_instance *)host->hostdata;
2432         memset(instance, 0, sizeof(*instance));
2433
2434         instance->producer = pci_alloc_consistent(pdev, sizeof(u32),
2435                                                   &instance->producer_h);
2436         instance->consumer = pci_alloc_consistent(pdev, sizeof(u32),
2437                                                   &instance->consumer_h);
2438
2439         if (!instance->producer || !instance->consumer) {
2440                 printk(KERN_DEBUG "megasas: Failed to allocate memory for "
2441                        "producer, consumer\n");
2442                 goto fail_alloc_dma_buf;
2443         }
2444
2445         *instance->producer = 0;
2446         *instance->consumer = 0;
2447
2448         instance->evt_detail = pci_alloc_consistent(pdev,
2449                                                     sizeof(struct
2450                                                            megasas_evt_detail),
2451                                                     &instance->evt_detail_h);
2452
2453         if (!instance->evt_detail) {
2454                 printk(KERN_DEBUG "megasas: Failed to allocate memory for "
2455                        "event detail structure\n");
2456                 goto fail_alloc_dma_buf;
2457         }
2458
2459         /*
2460          * Initialize locks and queues
2461          */
2462         INIT_LIST_HEAD(&instance->cmd_pool);
2463
2464         atomic_set(&instance->fw_outstanding,0);
2465
2466         init_waitqueue_head(&instance->int_cmd_wait_q);
2467         init_waitqueue_head(&instance->abort_cmd_wait_q);
2468
2469         spin_lock_init(&instance->cmd_pool_lock);
2470         spin_lock_init(&instance->completion_lock);
2471
2472         mutex_init(&instance->aen_mutex);
2473         sema_init(&instance->ioctl_sem, MEGASAS_INT_CMDS);
2474
2475         /*
2476          * Initialize PCI related and misc parameters
2477          */
2478         instance->pdev = pdev;
2479         instance->host = host;
2480         instance->unique_id = pdev->bus->number << 8 | pdev->devfn;
2481         instance->init_id = MEGASAS_DEFAULT_INIT_ID;
2482
2483         megasas_dbg_lvl = 0;
2484         instance->flag = 0;
2485         instance->last_time = 0;
2486
2487         /*
2488          * Initialize MFI Firmware
2489          */
2490         if (megasas_init_mfi(instance))
2491                 goto fail_init_mfi;
2492
2493         /*
2494          * Register IRQ
2495          */
2496         if (request_irq(pdev->irq, megasas_isr, IRQF_SHARED, "megasas", instance)) {
2497                 printk(KERN_DEBUG "megasas: Failed to register IRQ\n");
2498                 goto fail_irq;
2499         }
2500
2501         instance->instancet->enable_intr(instance->reg_set);
2502
2503         /*
2504          * Store instance in PCI softstate
2505          */
2506         pci_set_drvdata(pdev, instance);
2507
2508         /*
2509          * Add this controller to megasas_mgmt_info structure so that it
2510          * can be exported to management applications
2511          */
2512         megasas_mgmt_info.count++;
2513         megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = instance;
2514         megasas_mgmt_info.max_index++;
2515
2516         /*
2517          * Initiate AEN (Asynchronous Event Notification)
2518          */
2519         if (megasas_start_aen(instance)) {
2520                 printk(KERN_DEBUG "megasas: start aen failed\n");
2521                 goto fail_start_aen;
2522         }
2523
2524         /*
2525          * Register with SCSI mid-layer
2526          */
2527         if (megasas_io_attach(instance))
2528                 goto fail_io_attach;
2529
2530         return 0;
2531
2532       fail_start_aen:
2533       fail_io_attach:
2534         megasas_mgmt_info.count--;
2535         megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = NULL;
2536         megasas_mgmt_info.max_index--;
2537
2538         pci_set_drvdata(pdev, NULL);
2539         instance->instancet->disable_intr(instance->reg_set);
2540         free_irq(instance->pdev->irq, instance);
2541
2542         megasas_release_mfi(instance);
2543
2544       fail_irq:
2545       fail_init_mfi:
2546       fail_alloc_dma_buf:
2547         if (instance->evt_detail)
2548                 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
2549                                     instance->evt_detail,
2550                                     instance->evt_detail_h);
2551
2552         if (instance->producer)
2553                 pci_free_consistent(pdev, sizeof(u32), instance->producer,
2554                                     instance->producer_h);
2555         if (instance->consumer)
2556                 pci_free_consistent(pdev, sizeof(u32), instance->consumer,
2557                                     instance->consumer_h);
2558         scsi_host_put(host);
2559
2560       fail_alloc_instance:
2561       fail_set_dma_mask:
2562         pci_disable_device(pdev);
2563
2564         return -ENODEV;
2565 }
2566
2567 /**
2568  * megasas_flush_cache -        Requests FW to flush all its caches
2569  * @instance:                   Adapter soft state
2570  */
2571 static void megasas_flush_cache(struct megasas_instance *instance)
2572 {
2573         struct megasas_cmd *cmd;
2574         struct megasas_dcmd_frame *dcmd;
2575
2576         cmd = megasas_get_cmd(instance);
2577
2578         if (!cmd)
2579                 return;
2580
2581         dcmd = &cmd->frame->dcmd;
2582
2583         memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2584
2585         dcmd->cmd = MFI_CMD_DCMD;
2586         dcmd->cmd_status = 0x0;
2587         dcmd->sge_count = 0;
2588         dcmd->flags = MFI_FRAME_DIR_NONE;
2589         dcmd->timeout = 0;
2590         dcmd->data_xfer_len = 0;
2591         dcmd->opcode = MR_DCMD_CTRL_CACHE_FLUSH;
2592         dcmd->mbox.b[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE;
2593
2594         megasas_issue_blocked_cmd(instance, cmd);
2595
2596         megasas_return_cmd(instance, cmd);
2597
2598         return;
2599 }
2600
2601 /**
2602  * megasas_shutdown_controller -        Instructs FW to shutdown the controller
2603  * @instance:                           Adapter soft state
2604  * @opcode:                             Shutdown/Hibernate
2605  */
2606 static void megasas_shutdown_controller(struct megasas_instance *instance,
2607                                         u32 opcode)
2608 {
2609         struct megasas_cmd *cmd;
2610         struct megasas_dcmd_frame *dcmd;
2611
2612         cmd = megasas_get_cmd(instance);
2613
2614         if (!cmd)
2615                 return;
2616
2617         if (instance->aen_cmd)
2618                 megasas_issue_blocked_abort_cmd(instance, instance->aen_cmd);
2619
2620         dcmd = &cmd->frame->dcmd;
2621
2622         memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2623
2624         dcmd->cmd = MFI_CMD_DCMD;
2625         dcmd->cmd_status = 0x0;
2626         dcmd->sge_count = 0;
2627         dcmd->flags = MFI_FRAME_DIR_NONE;
2628         dcmd->timeout = 0;
2629         dcmd->data_xfer_len = 0;
2630         dcmd->opcode = opcode;
2631
2632         megasas_issue_blocked_cmd(instance, cmd);
2633
2634         megasas_return_cmd(instance, cmd);
2635
2636         return;
2637 }
2638
2639 /**
2640  * megasas_suspend -    driver suspend entry point
2641  * @pdev:               PCI device structure
2642  * @state:              PCI power state to suspend routine
2643  */
2644 static int __devinit
2645 megasas_suspend(struct pci_dev *pdev, pm_message_t state)
2646 {
2647         struct Scsi_Host *host;
2648         struct megasas_instance *instance;
2649
2650         instance = pci_get_drvdata(pdev);
2651         host = instance->host;
2652
2653         if (poll_mode_io)
2654                 del_timer_sync(&instance->io_completion_timer);
2655
2656         megasas_flush_cache(instance);
2657         megasas_shutdown_controller(instance, MR_DCMD_HIBERNATE_SHUTDOWN);
2658         tasklet_kill(&instance->isr_tasklet);
2659
2660         pci_set_drvdata(instance->pdev, instance);
2661         instance->instancet->disable_intr(instance->reg_set);
2662         free_irq(instance->pdev->irq, instance);
2663
2664         pci_save_state(pdev);
2665         pci_disable_device(pdev);
2666
2667         pci_set_power_state(pdev, pci_choose_state(pdev, state));
2668
2669         return 0;
2670 }
2671
2672 /**
2673  * megasas_resume-      driver resume entry point
2674  * @pdev:               PCI device structure
2675  */
2676 static int __devinit
2677 megasas_resume(struct pci_dev *pdev)
2678 {
2679         int rval;
2680         struct Scsi_Host *host;
2681         struct megasas_instance *instance;
2682
2683         instance = pci_get_drvdata(pdev);
2684         host = instance->host;
2685         pci_set_power_state(pdev, PCI_D0);
2686         pci_enable_wake(pdev, PCI_D0, 0);
2687         pci_restore_state(pdev);
2688
2689         /*
2690          * PCI prepping: enable device set bus mastering and dma mask
2691          */
2692         rval = pci_enable_device(pdev);
2693
2694         if (rval) {
2695                 printk(KERN_ERR "megasas: Enable device failed\n");
2696                 return rval;
2697         }
2698
2699         pci_set_master(pdev);
2700
2701         if (megasas_set_dma_mask(pdev))
2702                 goto fail_set_dma_mask;
2703
2704         /*
2705          * Initialize MFI Firmware
2706          */
2707
2708         *instance->producer = 0;
2709         *instance->consumer = 0;
2710
2711         atomic_set(&instance->fw_outstanding, 0);
2712
2713         /*
2714          * We expect the FW state to be READY
2715          */
2716         if (megasas_transition_to_ready(instance))
2717                 goto fail_ready_state;
2718
2719         if (megasas_issue_init_mfi(instance))
2720                 goto fail_init_mfi;
2721
2722         tasklet_init(&instance->isr_tasklet, megasas_complete_cmd_dpc,
2723                         (unsigned long)instance);
2724
2725         /*
2726          * Register IRQ
2727          */
2728         if (request_irq(pdev->irq, megasas_isr, IRQF_SHARED,
2729                 "megasas", instance)) {
2730                 printk(KERN_ERR "megasas: Failed to register IRQ\n");
2731                 goto fail_irq;
2732         }
2733
2734         instance->instancet->enable_intr(instance->reg_set);
2735
2736         /*
2737          * Initiate AEN (Asynchronous Event Notification)
2738          */
2739         if (megasas_start_aen(instance))
2740                 printk(KERN_ERR "megasas: Start AEN failed\n");
2741
2742         /* Initialize the cmd completion timer */
2743         if (poll_mode_io)
2744                 megasas_start_timer(instance, &instance->io_completion_timer,
2745                                 megasas_io_completion_timer,
2746                                 MEGASAS_COMPLETION_TIMER_INTERVAL);
2747         return 0;
2748
2749 fail_irq:
2750 fail_init_mfi:
2751         if (instance->evt_detail)
2752                 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
2753                                 instance->evt_detail,
2754                                 instance->evt_detail_h);
2755
2756         if (instance->producer)
2757                 pci_free_consistent(pdev, sizeof(u32), instance->producer,
2758                                 instance->producer_h);
2759         if (instance->consumer)
2760                 pci_free_consistent(pdev, sizeof(u32), instance->consumer,
2761                                 instance->consumer_h);
2762         scsi_host_put(host);
2763
2764 fail_set_dma_mask:
2765 fail_ready_state:
2766
2767         pci_disable_device(pdev);
2768
2769         return -ENODEV;
2770 }
2771
2772 /**
2773  * megasas_detach_one - PCI hot"un"plug entry point
2774  * @pdev:               PCI device structure
2775  */
2776 static void megasas_detach_one(struct pci_dev *pdev)
2777 {
2778         int i;
2779         struct Scsi_Host *host;
2780         struct megasas_instance *instance;
2781
2782         instance = pci_get_drvdata(pdev);
2783         host = instance->host;
2784
2785         if (poll_mode_io)
2786                 del_timer_sync(&instance->io_completion_timer);
2787
2788         scsi_remove_host(instance->host);
2789         megasas_flush_cache(instance);
2790         megasas_shutdown_controller(instance, MR_DCMD_CTRL_SHUTDOWN);
2791         tasklet_kill(&instance->isr_tasklet);
2792
2793         /*
2794          * Take the instance off the instance array. Note that we will not
2795          * decrement the max_index. We let this array be sparse array
2796          */
2797         for (i = 0; i < megasas_mgmt_info.max_index; i++) {
2798                 if (megasas_mgmt_info.instance[i] == instance) {
2799                         megasas_mgmt_info.count--;
2800                         megasas_mgmt_info.instance[i] = NULL;
2801
2802                         break;
2803                 }
2804         }
2805
2806         pci_set_drvdata(instance->pdev, NULL);
2807
2808         instance->instancet->disable_intr(instance->reg_set);
2809
2810         free_irq(instance->pdev->irq, instance);
2811
2812         megasas_release_mfi(instance);
2813
2814         pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
2815                             instance->evt_detail, instance->evt_detail_h);
2816
2817         pci_free_consistent(pdev, sizeof(u32), instance->producer,
2818                             instance->producer_h);
2819
2820         pci_free_consistent(pdev, sizeof(u32), instance->consumer,
2821                             instance->consumer_h);
2822
2823         scsi_host_put(host);
2824
2825         pci_set_drvdata(pdev, NULL);
2826
2827         pci_disable_device(pdev);
2828
2829         return;
2830 }
2831
2832 /**
2833  * megasas_shutdown -   Shutdown entry point
2834  * @device:             Generic device structure
2835  */
2836 static void megasas_shutdown(struct pci_dev *pdev)
2837 {
2838         struct megasas_instance *instance = pci_get_drvdata(pdev);
2839         megasas_flush_cache(instance);
2840 }
2841
2842 /**
2843  * megasas_mgmt_open -  char node "open" entry point
2844  */
2845 static int megasas_mgmt_open(struct inode *inode, struct file *filep)
2846 {
2847         /*
2848          * Allow only those users with admin rights
2849          */
2850         if (!capable(CAP_SYS_ADMIN))
2851                 return -EACCES;
2852
2853         return 0;
2854 }
2855
2856 /**
2857  * megasas_mgmt_release - char node "release" entry point
2858  */
2859 static int megasas_mgmt_release(struct inode *inode, struct file *filep)
2860 {
2861         filep->private_data = NULL;
2862         fasync_helper(-1, filep, 0, &megasas_async_queue);
2863
2864         return 0;
2865 }
2866
2867 /**
2868  * megasas_mgmt_fasync -        Async notifier registration from applications
2869  *
2870  * This function adds the calling process to a driver global queue. When an
2871  * event occurs, SIGIO will be sent to all processes in this queue.
2872  */
2873 static int megasas_mgmt_fasync(int fd, struct file *filep, int mode)
2874 {
2875         int rc;
2876
2877         mutex_lock(&megasas_async_queue_mutex);
2878
2879         rc = fasync_helper(fd, filep, mode, &megasas_async_queue);
2880
2881         mutex_unlock(&megasas_async_queue_mutex);
2882
2883         if (rc >= 0) {
2884                 /* For sanity check when we get ioctl */
2885                 filep->private_data = filep;
2886                 return 0;
2887         }
2888
2889         printk(KERN_DEBUG "megasas: fasync_helper failed [%d]\n", rc);
2890
2891         return rc;
2892 }
2893
2894 /**
2895  * megasas_mgmt_fw_ioctl -      Issues management ioctls to FW
2896  * @instance:                   Adapter soft state
2897  * @argp:                       User's ioctl packet
2898  */
2899 static int
2900 megasas_mgmt_fw_ioctl(struct megasas_instance *instance,
2901                       struct megasas_iocpacket __user * user_ioc,
2902                       struct megasas_iocpacket *ioc)
2903 {
2904         struct megasas_sge32 *kern_sge32;
2905         struct megasas_cmd *cmd;
2906         void *kbuff_arr[MAX_IOCTL_SGE];
2907         dma_addr_t buf_handle = 0;
2908         int error = 0, i;
2909         void *sense = NULL;
2910         dma_addr_t sense_handle;
2911         u32 *sense_ptr;
2912         unsigned long *sense_buff;
2913
2914         memset(kbuff_arr, 0, sizeof(kbuff_arr));
2915
2916         if (ioc->sge_count > MAX_IOCTL_SGE) {
2917                 printk(KERN_DEBUG "megasas: SGE count [%d] >  max limit [%d]\n",
2918                        ioc->sge_count, MAX_IOCTL_SGE);
2919                 return -EINVAL;
2920         }
2921
2922         cmd = megasas_get_cmd(instance);
2923         if (!cmd) {
2924                 printk(KERN_DEBUG "megasas: Failed to get a cmd packet\n");
2925                 return -ENOMEM;
2926         }
2927
2928         /*
2929          * User's IOCTL packet has 2 frames (maximum). Copy those two
2930          * frames into our cmd's frames. cmd->frame's context will get
2931          * overwritten when we copy from user's frames. So set that value
2932          * alone separately
2933          */
2934         memcpy(cmd->frame, ioc->frame.raw, 2 * MEGAMFI_FRAME_SIZE);
2935         cmd->frame->hdr.context = cmd->index;
2936
2937         /*
2938          * The management interface between applications and the fw uses
2939          * MFI frames. E.g, RAID configuration changes, LD property changes
2940          * etc are accomplishes through different kinds of MFI frames. The
2941          * driver needs to care only about substituting user buffers with
2942          * kernel buffers in SGLs. The location of SGL is embedded in the
2943          * struct iocpacket itself.
2944          */
2945         kern_sge32 = (struct megasas_sge32 *)
2946             ((unsigned long)cmd->frame + ioc->sgl_off);
2947
2948         /*
2949          * For each user buffer, create a mirror buffer and copy in
2950          */
2951         for (i = 0; i < ioc->sge_count; i++) {
2952                 kbuff_arr[i] = dma_alloc_coherent(&instance->pdev->dev,
2953                                                     ioc->sgl[i].iov_len,
2954                                                     &buf_handle, GFP_KERNEL);
2955                 if (!kbuff_arr[i]) {
2956                         printk(KERN_DEBUG "megasas: Failed to alloc "
2957                                "kernel SGL buffer for IOCTL \n");
2958                         error = -ENOMEM;
2959                         goto out;
2960                 }
2961
2962                 /*
2963                  * We don't change the dma_coherent_mask, so
2964                  * pci_alloc_consistent only returns 32bit addresses
2965                  */
2966                 kern_sge32[i].phys_addr = (u32) buf_handle;
2967                 kern_sge32[i].length = ioc->sgl[i].iov_len;
2968
2969                 /*
2970                  * We created a kernel buffer corresponding to the
2971                  * user buffer. Now copy in from the user buffer
2972                  */
2973                 if (copy_from_user(kbuff_arr[i], ioc->sgl[i].iov_base,
2974                                    (u32) (ioc->sgl[i].iov_len))) {
2975                         error = -EFAULT;
2976                         goto out;
2977                 }
2978         }
2979
2980         if (ioc->sense_len) {
2981                 sense = dma_alloc_coherent(&instance->pdev->dev, ioc->sense_len,
2982                                              &sense_handle, GFP_KERNEL);
2983                 if (!sense) {
2984                         error = -ENOMEM;
2985                         goto out;
2986                 }
2987
2988                 sense_ptr =
2989                     (u32 *) ((unsigned long)cmd->frame + ioc->sense_off);
2990                 *sense_ptr = sense_handle;
2991         }
2992
2993         /*
2994          * Set the sync_cmd flag so that the ISR knows not to complete this
2995          * cmd to the SCSI mid-layer
2996          */
2997         cmd->sync_cmd = 1;
2998         megasas_issue_blocked_cmd(instance, cmd);
2999         cmd->sync_cmd = 0;
3000
3001         /*
3002          * copy out the kernel buffers to user buffers
3003          */
3004         for (i = 0; i < ioc->sge_count; i++) {
3005                 if (copy_to_user(ioc->sgl[i].iov_base, kbuff_arr[i],
3006                                  ioc->sgl[i].iov_len)) {
3007                         error = -EFAULT;
3008                         goto out;
3009                 }
3010         }
3011
3012         /*
3013          * copy out the sense
3014          */
3015         if (ioc->sense_len) {
3016                 /*
3017                  * sense_buff points to the location that has the user
3018                  * sense buffer address
3019                  */
3020                 sense_buff = (unsigned long *) ((unsigned long)ioc->frame.raw +
3021                                                                 ioc->sense_off);
3022
3023                 if (copy_to_user((void __user *)(unsigned long)(*sense_buff),
3024                                 sense, ioc->sense_len)) {
3025                         printk(KERN_ERR "megasas: Failed to copy out to user "
3026                                         "sense data\n");
3027                         error = -EFAULT;
3028                         goto out;
3029                 }
3030         }
3031
3032         /*
3033          * copy the status codes returned by the fw
3034          */
3035         if (copy_to_user(&user_ioc->frame.hdr.cmd_status,
3036                          &cmd->frame->hdr.cmd_status, sizeof(u8))) {
3037                 printk(KERN_DEBUG "megasas: Error copying out cmd_status\n");
3038                 error = -EFAULT;
3039         }
3040
3041       out:
3042         if (sense) {
3043                 dma_free_coherent(&instance->pdev->dev, ioc->sense_len,
3044                                     sense, sense_handle);
3045         }
3046
3047         for (i = 0; i < ioc->sge_count && kbuff_arr[i]; i++) {
3048                 dma_free_coherent(&instance->pdev->dev,
3049                                     kern_sge32[i].length,
3050                                     kbuff_arr[i], kern_sge32[i].phys_addr);
3051         }
3052
3053         megasas_return_cmd(instance, cmd);
3054         return error;
3055 }
3056
3057 static struct megasas_instance *megasas_lookup_instance(u16 host_no)
3058 {
3059         int i;
3060
3061         for (i = 0; i < megasas_mgmt_info.max_index; i++) {
3062
3063                 if ((megasas_mgmt_info.instance[i]) &&
3064                     (megasas_mgmt_info.instance[i]->host->host_no == host_no))
3065                         return megasas_mgmt_info.instance[i];
3066         }
3067
3068         return NULL;
3069 }
3070
3071 static int megasas_mgmt_ioctl_fw(struct file *file, unsigned long arg)
3072 {
3073         struct megasas_iocpacket __user *user_ioc =
3074             (struct megasas_iocpacket __user *)arg;
3075         struct megasas_iocpacket *ioc;
3076         struct megasas_instance *instance;
3077         int error;
3078
3079         ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
3080         if (!ioc)
3081                 return -ENOMEM;
3082
3083         if (copy_from_user(ioc, user_ioc, sizeof(*ioc))) {
3084                 error = -EFAULT;
3085                 goto out_kfree_ioc;
3086         }
3087
3088         instance = megasas_lookup_instance(ioc->host_no);
3089         if (!instance) {
3090                 error = -ENODEV;
3091                 goto out_kfree_ioc;
3092         }
3093
3094         /*
3095          * We will allow only MEGASAS_INT_CMDS number of parallel ioctl cmds
3096          */
3097         if (down_interruptible(&instance->ioctl_sem)) {
3098                 error = -ERESTARTSYS;
3099                 goto out_kfree_ioc;
3100         }
3101         error = megasas_mgmt_fw_ioctl(instance, user_ioc, ioc);
3102         up(&instance->ioctl_sem);
3103
3104       out_kfree_ioc:
3105         kfree(ioc);
3106         return error;
3107 }
3108
3109 static int megasas_mgmt_ioctl_aen(struct file *file, unsigned long arg)
3110 {
3111         struct megasas_instance *instance;
3112         struct megasas_aen aen;
3113         int error;
3114
3115         if (file->private_data != file) {
3116                 printk(KERN_DEBUG "megasas: fasync_helper was not "
3117                        "called first\n");
3118                 return -EINVAL;
3119         }
3120
3121         if (copy_from_user(&aen, (void __user *)arg, sizeof(aen)))
3122                 return -EFAULT;
3123
3124         instance = megasas_lookup_instance(aen.host_no);
3125
3126         if (!instance)
3127                 return -ENODEV;
3128
3129         mutex_lock(&instance->aen_mutex);
3130         error = megasas_register_aen(instance, aen.seq_num,
3131                                      aen.class_locale_word);
3132         mutex_unlock(&instance->aen_mutex);
3133         return error;
3134 }
3135
3136 /**
3137  * megasas_mgmt_ioctl - char node ioctl entry point
3138  */
3139 static long
3140 megasas_mgmt_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3141 {
3142         switch (cmd) {
3143         case MEGASAS_IOC_FIRMWARE:
3144                 return megasas_mgmt_ioctl_fw(file, arg);
3145
3146         case MEGASAS_IOC_GET_AEN:
3147                 return megasas_mgmt_ioctl_aen(file, arg);
3148         }
3149
3150         return -ENOTTY;
3151 }
3152
3153 #ifdef CONFIG_COMPAT
3154 static int megasas_mgmt_compat_ioctl_fw(struct file *file, unsigned long arg)
3155 {
3156         struct compat_megasas_iocpacket __user *cioc =
3157             (struct compat_megasas_iocpacket __user *)arg;
3158         struct megasas_iocpacket __user *ioc =
3159             compat_alloc_user_space(sizeof(struct megasas_iocpacket));
3160         int i;
3161         int error = 0;
3162
3163         if (clear_user(ioc, sizeof(*ioc)))
3164                 return -EFAULT;
3165
3166         if (copy_in_user(&ioc->host_no, &cioc->host_no, sizeof(u16)) ||
3167             copy_in_user(&ioc->sgl_off, &cioc->sgl_off, sizeof(u32)) ||
3168             copy_in_user(&ioc->sense_off, &cioc->sense_off, sizeof(u32)) ||
3169             copy_in_user(&ioc->sense_len, &cioc->sense_len, sizeof(u32)) ||
3170             copy_in_user(ioc->frame.raw, cioc->frame.raw, 128) ||
3171             copy_in_user(&ioc->sge_count, &cioc->sge_count, sizeof(u32)))
3172                 return -EFAULT;
3173
3174         for (i = 0; i < MAX_IOCTL_SGE; i++) {
3175                 compat_uptr_t ptr;
3176
3177                 if (get_user(ptr, &cioc->sgl[i].iov_base) ||
3178                     put_user(compat_ptr(ptr), &ioc->sgl[i].iov_base) ||
3179                     copy_in_user(&ioc->sgl[i].iov_len,
3180                                  &cioc->sgl[i].iov_len, sizeof(compat_size_t)))
3181                         return -EFAULT;
3182         }
3183
3184         error = megasas_mgmt_ioctl_fw(file, (unsigned long)ioc);
3185
3186         if (copy_in_user(&cioc->frame.hdr.cmd_status,
3187                          &ioc->frame.hdr.cmd_status, sizeof(u8))) {
3188                 printk(KERN_DEBUG "megasas: error copy_in_user cmd_status\n");
3189                 return -EFAULT;
3190         }
3191         return error;
3192 }
3193
3194 static long
3195 megasas_mgmt_compat_ioctl(struct file *file, unsigned int cmd,
3196                           unsigned long arg)
3197 {
3198         switch (cmd) {
3199         case MEGASAS_IOC_FIRMWARE32:
3200                 return megasas_mgmt_compat_ioctl_fw(file, arg);
3201         case MEGASAS_IOC_GET_AEN:
3202                 return megasas_mgmt_ioctl_aen(file, arg);
3203         }
3204
3205         return -ENOTTY;
3206 }
3207 #endif
3208
3209 /*
3210  * File operations structure for management interface
3211  */
3212 static const struct file_operations megasas_mgmt_fops = {
3213         .owner = THIS_MODULE,
3214         .open = megasas_mgmt_open,
3215         .release = megasas_mgmt_release,
3216         .fasync = megasas_mgmt_fasync,
3217         .unlocked_ioctl = megasas_mgmt_ioctl,
3218 #ifdef CONFIG_COMPAT
3219         .compat_ioctl = megasas_mgmt_compat_ioctl,
3220 #endif
3221 };
3222
3223 /*
3224  * PCI hotplug support registration structure
3225  */
3226 static struct pci_driver megasas_pci_driver = {
3227
3228         .name = "megaraid_sas",
3229         .id_table = megasas_pci_table,
3230         .probe = megasas_probe_one,
3231         .remove = __devexit_p(megasas_detach_one),
3232         .suspend = megasas_suspend,
3233         .resume = megasas_resume,
3234         .shutdown = megasas_shutdown,
3235 };
3236
3237 /*
3238  * Sysfs driver attributes
3239  */
3240 static ssize_t megasas_sysfs_show_version(struct device_driver *dd, char *buf)
3241 {
3242         return snprintf(buf, strlen(MEGASAS_VERSION) + 2, "%s\n",
3243                         MEGASAS_VERSION);
3244 }
3245
3246 static DRIVER_ATTR(version, S_IRUGO, megasas_sysfs_show_version, NULL);
3247
3248 static ssize_t
3249 megasas_sysfs_show_release_date(struct device_driver *dd, char *buf)
3250 {
3251         return snprintf(buf, strlen(MEGASAS_RELDATE) + 2, "%s\n",
3252                         MEGASAS_RELDATE);
3253 }
3254
3255 static DRIVER_ATTR(release_date, S_IRUGO, megasas_sysfs_show_release_date,
3256                    NULL);
3257
3258 static ssize_t
3259 megasas_sysfs_show_dbg_lvl(struct device_driver *dd, char *buf)
3260 {
3261         return sprintf(buf, "%u\n", megasas_dbg_lvl);
3262 }
3263
3264 static ssize_t
3265 megasas_sysfs_set_dbg_lvl(struct device_driver *dd, const char *buf, size_t count)
3266 {
3267         int retval = count;
3268         if(sscanf(buf,"%u",&megasas_dbg_lvl)<1){
3269                 printk(KERN_ERR "megasas: could not set dbg_lvl\n");
3270                 retval = -EINVAL;
3271         }
3272         return retval;
3273 }
3274
3275 static DRIVER_ATTR(dbg_lvl, S_IRUGO|S_IWUGO, megasas_sysfs_show_dbg_lvl,
3276                 megasas_sysfs_set_dbg_lvl);
3277
3278 static ssize_t
3279 megasas_sysfs_show_poll_mode_io(struct device_driver *dd, char *buf)
3280 {
3281         return sprintf(buf, "%u\n", poll_mode_io);
3282 }
3283
3284 static ssize_t
3285 megasas_sysfs_set_poll_mode_io(struct device_driver *dd,
3286                                 const char *buf, size_t count)