2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/config.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/init.h>
40 #include <linux/list.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/blkdev.h>
45 #include <linux/delay.h>
46 #include <linux/timer.h>
47 #include <linux/interrupt.h>
48 #include <linux/completion.h>
49 #include <linux/suspend.h>
50 #include <linux/workqueue.h>
51 #include <linux/jiffies.h>
52 #include <linux/scatterlist.h>
53 #include <scsi/scsi.h>
54 #include "scsi_priv.h"
55 #include <scsi/scsi_cmnd.h>
56 #include <scsi/scsi_host.h>
57 #include <linux/libata.h>
59 #include <asm/semaphore.h>
60 #include <asm/byteorder.h>
64 static unsigned int ata_busy_sleep (struct ata_port *ap,
65 unsigned long tmout_pat,
67 static void ata_dev_reread_id(struct ata_port *ap, struct ata_device *dev);
68 static void ata_dev_init_params(struct ata_port *ap, struct ata_device *dev);
69 static void ata_set_mode(struct ata_port *ap);
70 static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev);
71 static unsigned int ata_get_mode_mask(const struct ata_port *ap, int shift);
72 static int fgb(u32 bitmap);
73 static int ata_choose_xfer_mode(const struct ata_port *ap,
75 unsigned int *xfer_shift_out);
76 static void __ata_qc_complete(struct ata_queued_cmd *qc);
78 static unsigned int ata_unique_id = 1;
79 static struct workqueue_struct *ata_wq;
81 int atapi_enabled = 0;
82 module_param(atapi_enabled, int, 0444);
83 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
85 MODULE_AUTHOR("Jeff Garzik");
86 MODULE_DESCRIPTION("Library module for ATA devices");
87 MODULE_LICENSE("GPL");
88 MODULE_VERSION(DRV_VERSION);
91 * ata_tf_load_pio - send taskfile registers to host controller
92 * @ap: Port to which output is sent
93 * @tf: ATA taskfile register set
95 * Outputs ATA taskfile to standard ATA host controller.
98 * Inherited from caller.
101 static void ata_tf_load_pio(struct ata_port *ap, const struct ata_taskfile *tf)
103 struct ata_ioports *ioaddr = &ap->ioaddr;
104 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
106 if (tf->ctl != ap->last_ctl) {
107 outb(tf->ctl, ioaddr->ctl_addr);
108 ap->last_ctl = tf->ctl;
112 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
113 outb(tf->hob_feature, ioaddr->feature_addr);
114 outb(tf->hob_nsect, ioaddr->nsect_addr);
115 outb(tf->hob_lbal, ioaddr->lbal_addr);
116 outb(tf->hob_lbam, ioaddr->lbam_addr);
117 outb(tf->hob_lbah, ioaddr->lbah_addr);
118 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
127 outb(tf->feature, ioaddr->feature_addr);
128 outb(tf->nsect, ioaddr->nsect_addr);
129 outb(tf->lbal, ioaddr->lbal_addr);
130 outb(tf->lbam, ioaddr->lbam_addr);
131 outb(tf->lbah, ioaddr->lbah_addr);
132 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
140 if (tf->flags & ATA_TFLAG_DEVICE) {
141 outb(tf->device, ioaddr->device_addr);
142 VPRINTK("device 0x%X\n", tf->device);
149 * ata_tf_load_mmio - send taskfile registers to host controller
150 * @ap: Port to which output is sent
151 * @tf: ATA taskfile register set
153 * Outputs ATA taskfile to standard ATA host controller using MMIO.
156 * Inherited from caller.
159 static void ata_tf_load_mmio(struct ata_port *ap, const struct ata_taskfile *tf)
161 struct ata_ioports *ioaddr = &ap->ioaddr;
162 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
164 if (tf->ctl != ap->last_ctl) {
165 writeb(tf->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
166 ap->last_ctl = tf->ctl;
170 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
171 writeb(tf->hob_feature, (void __iomem *) ioaddr->feature_addr);
172 writeb(tf->hob_nsect, (void __iomem *) ioaddr->nsect_addr);
173 writeb(tf->hob_lbal, (void __iomem *) ioaddr->lbal_addr);
174 writeb(tf->hob_lbam, (void __iomem *) ioaddr->lbam_addr);
175 writeb(tf->hob_lbah, (void __iomem *) ioaddr->lbah_addr);
176 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
185 writeb(tf->feature, (void __iomem *) ioaddr->feature_addr);
186 writeb(tf->nsect, (void __iomem *) ioaddr->nsect_addr);
187 writeb(tf->lbal, (void __iomem *) ioaddr->lbal_addr);
188 writeb(tf->lbam, (void __iomem *) ioaddr->lbam_addr);
189 writeb(tf->lbah, (void __iomem *) ioaddr->lbah_addr);
190 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
198 if (tf->flags & ATA_TFLAG_DEVICE) {
199 writeb(tf->device, (void __iomem *) ioaddr->device_addr);
200 VPRINTK("device 0x%X\n", tf->device);
208 * ata_tf_load - send taskfile registers to host controller
209 * @ap: Port to which output is sent
210 * @tf: ATA taskfile register set
212 * Outputs ATA taskfile to standard ATA host controller using MMIO
213 * or PIO as indicated by the ATA_FLAG_MMIO flag.
214 * Writes the control, feature, nsect, lbal, lbam, and lbah registers.
215 * Optionally (ATA_TFLAG_LBA48) writes hob_feature, hob_nsect,
216 * hob_lbal, hob_lbam, and hob_lbah.
218 * This function waits for idle (!BUSY and !DRQ) after writing
219 * registers. If the control register has a new value, this
220 * function also waits for idle after writing control and before
221 * writing the remaining registers.
223 * May be used as the tf_load() entry in ata_port_operations.
226 * Inherited from caller.
228 void ata_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
230 if (ap->flags & ATA_FLAG_MMIO)
231 ata_tf_load_mmio(ap, tf);
233 ata_tf_load_pio(ap, tf);
237 * ata_exec_command_pio - issue ATA command to host controller
238 * @ap: port to which command is being issued
239 * @tf: ATA taskfile register set
241 * Issues PIO write to ATA command register, with proper
242 * synchronization with interrupt handler / other threads.
245 * spin_lock_irqsave(host_set lock)
248 static void ata_exec_command_pio(struct ata_port *ap, const struct ata_taskfile *tf)
250 DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command);
252 outb(tf->command, ap->ioaddr.command_addr);
258 * ata_exec_command_mmio - issue ATA command to host controller
259 * @ap: port to which command is being issued
260 * @tf: ATA taskfile register set
262 * Issues MMIO write to ATA command register, with proper
263 * synchronization with interrupt handler / other threads.
266 * spin_lock_irqsave(host_set lock)
269 static void ata_exec_command_mmio(struct ata_port *ap, const struct ata_taskfile *tf)
271 DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command);
273 writeb(tf->command, (void __iomem *) ap->ioaddr.command_addr);
279 * ata_exec_command - issue ATA command to host controller
280 * @ap: port to which command is being issued
281 * @tf: ATA taskfile register set
283 * Issues PIO/MMIO write to ATA command register, with proper
284 * synchronization with interrupt handler / other threads.
287 * spin_lock_irqsave(host_set lock)
289 void ata_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
291 if (ap->flags & ATA_FLAG_MMIO)
292 ata_exec_command_mmio(ap, tf);
294 ata_exec_command_pio(ap, tf);
298 * ata_tf_to_host - issue ATA taskfile to host controller
299 * @ap: port to which command is being issued
300 * @tf: ATA taskfile register set
302 * Issues ATA taskfile register set to ATA host controller,
303 * with proper synchronization with interrupt handler and
307 * spin_lock_irqsave(host_set lock)
310 static inline void ata_tf_to_host(struct ata_port *ap,
311 const struct ata_taskfile *tf)
313 ap->ops->tf_load(ap, tf);
314 ap->ops->exec_command(ap, tf);
318 * ata_tf_read_pio - input device's ATA taskfile shadow registers
319 * @ap: Port from which input is read
320 * @tf: ATA taskfile register set for storing input
322 * Reads ATA taskfile registers for currently-selected device
326 * Inherited from caller.
329 static void ata_tf_read_pio(struct ata_port *ap, struct ata_taskfile *tf)
331 struct ata_ioports *ioaddr = &ap->ioaddr;
333 tf->command = ata_check_status(ap);
334 tf->feature = inb(ioaddr->error_addr);
335 tf->nsect = inb(ioaddr->nsect_addr);
336 tf->lbal = inb(ioaddr->lbal_addr);
337 tf->lbam = inb(ioaddr->lbam_addr);
338 tf->lbah = inb(ioaddr->lbah_addr);
339 tf->device = inb(ioaddr->device_addr);
341 if (tf->flags & ATA_TFLAG_LBA48) {
342 outb(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
343 tf->hob_feature = inb(ioaddr->error_addr);
344 tf->hob_nsect = inb(ioaddr->nsect_addr);
345 tf->hob_lbal = inb(ioaddr->lbal_addr);
346 tf->hob_lbam = inb(ioaddr->lbam_addr);
347 tf->hob_lbah = inb(ioaddr->lbah_addr);
352 * ata_tf_read_mmio - input device's ATA taskfile shadow registers
353 * @ap: Port from which input is read
354 * @tf: ATA taskfile register set for storing input
356 * Reads ATA taskfile registers for currently-selected device
360 * Inherited from caller.
363 static void ata_tf_read_mmio(struct ata_port *ap, struct ata_taskfile *tf)
365 struct ata_ioports *ioaddr = &ap->ioaddr;
367 tf->command = ata_check_status(ap);
368 tf->feature = readb((void __iomem *)ioaddr->error_addr);
369 tf->nsect = readb((void __iomem *)ioaddr->nsect_addr);
370 tf->lbal = readb((void __iomem *)ioaddr->lbal_addr);
371 tf->lbam = readb((void __iomem *)ioaddr->lbam_addr);
372 tf->lbah = readb((void __iomem *)ioaddr->lbah_addr);
373 tf->device = readb((void __iomem *)ioaddr->device_addr);
375 if (tf->flags & ATA_TFLAG_LBA48) {
376 writeb(tf->ctl | ATA_HOB, (void __iomem *) ap->ioaddr.ctl_addr);
377 tf->hob_feature = readb((void __iomem *)ioaddr->error_addr);
378 tf->hob_nsect = readb((void __iomem *)ioaddr->nsect_addr);
379 tf->hob_lbal = readb((void __iomem *)ioaddr->lbal_addr);
380 tf->hob_lbam = readb((void __iomem *)ioaddr->lbam_addr);
381 tf->hob_lbah = readb((void __iomem *)ioaddr->lbah_addr);
387 * ata_tf_read - input device's ATA taskfile shadow registers
388 * @ap: Port from which input is read
389 * @tf: ATA taskfile register set for storing input
391 * Reads ATA taskfile registers for currently-selected device
394 * Reads nsect, lbal, lbam, lbah, and device. If ATA_TFLAG_LBA48
395 * is set, also reads the hob registers.
397 * May be used as the tf_read() entry in ata_port_operations.
400 * Inherited from caller.
402 void ata_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
404 if (ap->flags & ATA_FLAG_MMIO)
405 ata_tf_read_mmio(ap, tf);
407 ata_tf_read_pio(ap, tf);
411 * ata_check_status_pio - Read device status reg & clear interrupt
412 * @ap: port where the device is
414 * Reads ATA taskfile status register for currently-selected device
415 * and return its value. This also clears pending interrupts
419 * Inherited from caller.
421 static u8 ata_check_status_pio(struct ata_port *ap)
423 return inb(ap->ioaddr.status_addr);
427 * ata_check_status_mmio - Read device status reg & clear interrupt
428 * @ap: port where the device is
430 * Reads ATA taskfile status register for currently-selected device
431 * via MMIO and return its value. This also clears pending interrupts
435 * Inherited from caller.
437 static u8 ata_check_status_mmio(struct ata_port *ap)
439 return readb((void __iomem *) ap->ioaddr.status_addr);
444 * ata_check_status - Read device status reg & clear interrupt
445 * @ap: port where the device is
447 * Reads ATA taskfile status register for currently-selected device
448 * and return its value. This also clears pending interrupts
451 * May be used as the check_status() entry in ata_port_operations.
454 * Inherited from caller.
456 u8 ata_check_status(struct ata_port *ap)
458 if (ap->flags & ATA_FLAG_MMIO)
459 return ata_check_status_mmio(ap);
460 return ata_check_status_pio(ap);
465 * ata_altstatus - Read device alternate status reg
466 * @ap: port where the device is
468 * Reads ATA taskfile alternate status register for
469 * currently-selected device and return its value.
471 * Note: may NOT be used as the check_altstatus() entry in
472 * ata_port_operations.
475 * Inherited from caller.
477 u8 ata_altstatus(struct ata_port *ap)
479 if (ap->ops->check_altstatus)
480 return ap->ops->check_altstatus(ap);
482 if (ap->flags & ATA_FLAG_MMIO)
483 return readb((void __iomem *)ap->ioaddr.altstatus_addr);
484 return inb(ap->ioaddr.altstatus_addr);
489 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
490 * @tf: Taskfile to convert
491 * @fis: Buffer into which data will output
492 * @pmp: Port multiplier port
494 * Converts a standard ATA taskfile to a Serial ATA
495 * FIS structure (Register - Host to Device).
498 * Inherited from caller.
501 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
503 fis[0] = 0x27; /* Register - Host to Device FIS */
504 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
505 bit 7 indicates Command FIS */
506 fis[2] = tf->command;
507 fis[3] = tf->feature;
514 fis[8] = tf->hob_lbal;
515 fis[9] = tf->hob_lbam;
516 fis[10] = tf->hob_lbah;
517 fis[11] = tf->hob_feature;
520 fis[13] = tf->hob_nsect;
531 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
532 * @fis: Buffer from which data will be input
533 * @tf: Taskfile to output
535 * Converts a standard ATA taskfile to a Serial ATA
536 * FIS structure (Register - Host to Device).
539 * Inherited from caller.
542 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
544 tf->command = fis[2]; /* status */
545 tf->feature = fis[3]; /* error */
552 tf->hob_lbal = fis[8];
553 tf->hob_lbam = fis[9];
554 tf->hob_lbah = fis[10];
557 tf->hob_nsect = fis[13];
560 static const u8 ata_rw_cmds[] = {
564 ATA_CMD_READ_MULTI_EXT,
565 ATA_CMD_WRITE_MULTI_EXT,
569 ATA_CMD_PIO_READ_EXT,
570 ATA_CMD_PIO_WRITE_EXT,
579 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
580 * @qc: command to examine and configure
582 * Examine the device configuration and tf->flags to calculate
583 * the proper read/write commands and protocol to use.
588 void ata_rwcmd_protocol(struct ata_queued_cmd *qc)
590 struct ata_taskfile *tf = &qc->tf;
591 struct ata_device *dev = qc->dev;
593 int index, lba48, write;
595 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
596 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
598 if (dev->flags & ATA_DFLAG_PIO) {
599 tf->protocol = ATA_PROT_PIO;
600 index = dev->multi_count ? 0 : 4;
602 tf->protocol = ATA_PROT_DMA;
606 tf->command = ata_rw_cmds[index + lba48 + write];
609 static const char * xfer_mode_str[] = {
629 * ata_udma_string - convert UDMA bit offset to string
630 * @mask: mask of bits supported; only highest bit counts.
632 * Determine string which represents the highest speed
633 * (highest bit in @udma_mask).
639 * Constant C string representing highest speed listed in
640 * @udma_mask, or the constant C string "<n/a>".
643 static const char *ata_mode_string(unsigned int mask)
647 for (i = 7; i >= 0; i--)
650 for (i = ATA_SHIFT_MWDMA + 2; i >= ATA_SHIFT_MWDMA; i--)
653 for (i = ATA_SHIFT_PIO + 4; i >= ATA_SHIFT_PIO; i--)
660 return xfer_mode_str[i];
664 * ata_pio_devchk - PATA device presence detection
665 * @ap: ATA channel to examine
666 * @device: Device to examine (starting at zero)
668 * This technique was originally described in
669 * Hale Landis's ATADRVR (www.ata-atapi.com), and
670 * later found its way into the ATA/ATAPI spec.
672 * Write a pattern to the ATA shadow registers,
673 * and if a device is present, it will respond by
674 * correctly storing and echoing back the
675 * ATA shadow register contents.
681 static unsigned int ata_pio_devchk(struct ata_port *ap,
684 struct ata_ioports *ioaddr = &ap->ioaddr;
687 ap->ops->dev_select(ap, device);
689 outb(0x55, ioaddr->nsect_addr);
690 outb(0xaa, ioaddr->lbal_addr);
692 outb(0xaa, ioaddr->nsect_addr);
693 outb(0x55, ioaddr->lbal_addr);
695 outb(0x55, ioaddr->nsect_addr);
696 outb(0xaa, ioaddr->lbal_addr);
698 nsect = inb(ioaddr->nsect_addr);
699 lbal = inb(ioaddr->lbal_addr);
701 if ((nsect == 0x55) && (lbal == 0xaa))
702 return 1; /* we found a device */
704 return 0; /* nothing found */
708 * ata_mmio_devchk - PATA device presence detection
709 * @ap: ATA channel to examine
710 * @device: Device to examine (starting at zero)
712 * This technique was originally described in
713 * Hale Landis's ATADRVR (www.ata-atapi.com), and
714 * later found its way into the ATA/ATAPI spec.
716 * Write a pattern to the ATA shadow registers,
717 * and if a device is present, it will respond by
718 * correctly storing and echoing back the
719 * ATA shadow register contents.
725 static unsigned int ata_mmio_devchk(struct ata_port *ap,
728 struct ata_ioports *ioaddr = &ap->ioaddr;
731 ap->ops->dev_select(ap, device);
733 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
734 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
736 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
737 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
739 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
740 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
742 nsect = readb((void __iomem *) ioaddr->nsect_addr);
743 lbal = readb((void __iomem *) ioaddr->lbal_addr);
745 if ((nsect == 0x55) && (lbal == 0xaa))
746 return 1; /* we found a device */
748 return 0; /* nothing found */
752 * ata_devchk - PATA device presence detection
753 * @ap: ATA channel to examine
754 * @device: Device to examine (starting at zero)
756 * Dispatch ATA device presence detection, depending
757 * on whether we are using PIO or MMIO to talk to the
758 * ATA shadow registers.
764 static unsigned int ata_devchk(struct ata_port *ap,
767 if (ap->flags & ATA_FLAG_MMIO)
768 return ata_mmio_devchk(ap, device);
769 return ata_pio_devchk(ap, device);
773 * ata_dev_classify - determine device type based on ATA-spec signature
774 * @tf: ATA taskfile register set for device to be identified
776 * Determine from taskfile register contents whether a device is
777 * ATA or ATAPI, as per "Signature and persistence" section
778 * of ATA/PI spec (volume 1, sect 5.14).
784 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
785 * the event of failure.
788 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
790 /* Apple's open source Darwin code hints that some devices only
791 * put a proper signature into the LBA mid/high registers,
792 * So, we only check those. It's sufficient for uniqueness.
795 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
796 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
797 DPRINTK("found ATA device by sig\n");
801 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
802 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
803 DPRINTK("found ATAPI device by sig\n");
804 return ATA_DEV_ATAPI;
807 DPRINTK("unknown device\n");
808 return ATA_DEV_UNKNOWN;
812 * ata_dev_try_classify - Parse returned ATA device signature
813 * @ap: ATA channel to examine
814 * @device: Device to examine (starting at zero)
816 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
817 * an ATA/ATAPI-defined set of values is placed in the ATA
818 * shadow registers, indicating the results of device detection
821 * Select the ATA device, and read the values from the ATA shadow
822 * registers. Then parse according to the Error register value,
823 * and the spec-defined values examined by ata_dev_classify().
829 static u8 ata_dev_try_classify(struct ata_port *ap, unsigned int device)
831 struct ata_device *dev = &ap->device[device];
832 struct ata_taskfile tf;
836 ap->ops->dev_select(ap, device);
838 memset(&tf, 0, sizeof(tf));
840 ap->ops->tf_read(ap, &tf);
843 dev->class = ATA_DEV_NONE;
845 /* see if device passed diags */
848 else if ((device == 0) && (err == 0x81))
853 /* determine if device if ATA or ATAPI */
854 class = ata_dev_classify(&tf);
855 if (class == ATA_DEV_UNKNOWN)
857 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
866 * ata_dev_id_string - Convert IDENTIFY DEVICE page into string
867 * @id: IDENTIFY DEVICE results we will examine
868 * @s: string into which data is output
869 * @ofs: offset into identify device page
870 * @len: length of string to return. must be an even number.
872 * The strings in the IDENTIFY DEVICE page are broken up into
873 * 16-bit chunks. Run through the string, and output each
874 * 8-bit chunk linearly, regardless of platform.
880 void ata_dev_id_string(const u16 *id, unsigned char *s,
881 unsigned int ofs, unsigned int len)
901 * ata_noop_dev_select - Select device 0/1 on ATA bus
902 * @ap: ATA channel to manipulate
903 * @device: ATA device (numbered from zero) to select
905 * This function performs no actual function.
907 * May be used as the dev_select() entry in ata_port_operations.
912 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
918 * ata_std_dev_select - Select device 0/1 on ATA bus
919 * @ap: ATA channel to manipulate
920 * @device: ATA device (numbered from zero) to select
922 * Use the method defined in the ATA specification to
923 * make either device 0, or device 1, active on the
924 * ATA channel. Works with both PIO and MMIO.
926 * May be used as the dev_select() entry in ata_port_operations.
932 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
937 tmp = ATA_DEVICE_OBS;
939 tmp = ATA_DEVICE_OBS | ATA_DEV1;
941 if (ap->flags & ATA_FLAG_MMIO) {
942 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
944 outb(tmp, ap->ioaddr.device_addr);
946 ata_pause(ap); /* needed; also flushes, for mmio */
950 * ata_dev_select - Select device 0/1 on ATA bus
951 * @ap: ATA channel to manipulate
952 * @device: ATA device (numbered from zero) to select
953 * @wait: non-zero to wait for Status register BSY bit to clear
954 * @can_sleep: non-zero if context allows sleeping
956 * Use the method defined in the ATA specification to
957 * make either device 0, or device 1, active on the
960 * This is a high-level version of ata_std_dev_select(),
961 * which additionally provides the services of inserting
962 * the proper pauses and status polling, where needed.
968 void ata_dev_select(struct ata_port *ap, unsigned int device,
969 unsigned int wait, unsigned int can_sleep)
971 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
972 ap->id, device, wait);
977 ap->ops->dev_select(ap, device);
980 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
987 * ata_dump_id - IDENTIFY DEVICE info debugging output
988 * @dev: Device whose IDENTIFY DEVICE page we will dump
990 * Dump selected 16-bit words from a detected device's
991 * IDENTIFY PAGE page.
997 static inline void ata_dump_id(const struct ata_device *dev)
999 DPRINTK("49==0x%04x "
1009 DPRINTK("80==0x%04x "
1019 DPRINTK("88==0x%04x "
1026 * Compute the PIO modes available for this device. This is not as
1027 * trivial as it seems if we must consider early devices correctly.
1029 * FIXME: pre IDE drive timing (do we care ?).
1032 static unsigned int ata_pio_modes(const struct ata_device *adev)
1036 /* Usual case. Word 53 indicates word 88 is valid */
1037 if (adev->id[ATA_ID_FIELD_VALID] & (1 << 2)) {
1038 modes = adev->id[ATA_ID_PIO_MODES] & 0x03;
1044 /* If word 88 isn't valid then Word 51 holds the PIO timing number
1045 for the maximum. Turn it into a mask and return it */
1046 modes = (2 << (adev->id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
1051 * ata_dev_identify - obtain IDENTIFY x DEVICE page
1052 * @ap: port on which device we wish to probe resides
1053 * @device: device bus address, starting at zero
1055 * Following bus reset, we issue the IDENTIFY [PACKET] DEVICE
1056 * command, and read back the 512-byte device information page.
1057 * The device information page is fed to us via the standard
1058 * PIO-IN protocol, but we hand-code it here. (TODO: investigate
1059 * using standard PIO-IN paths)
1061 * After reading the device information page, we use several
1062 * bits of information from it to initialize data structures
1063 * that will be used during the lifetime of the ata_device.
1064 * Other data from the info page is used to disqualify certain
1065 * older ATA devices we do not wish to support.
1068 * Inherited from caller. Some functions called by this function
1069 * obtain the host_set lock.
1072 static void ata_dev_identify(struct ata_port *ap, unsigned int device)
1074 struct ata_device *dev = &ap->device[device];
1075 unsigned int major_version;
1077 unsigned long xfer_modes;
1078 unsigned int using_edd;
1079 DECLARE_COMPLETION(wait);
1080 struct ata_queued_cmd *qc;
1081 unsigned long flags;
1084 if (!ata_dev_present(dev)) {
1085 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
1090 if (ap->flags & (ATA_FLAG_SRST | ATA_FLAG_SATA_RESET))
1095 DPRINTK("ENTER, host %u, dev %u\n", ap->id, device);
1097 assert (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ATAPI ||
1098 dev->class == ATA_DEV_NONE);
1100 ata_dev_select(ap, device, 1, 1); /* select device 0/1 */
1102 qc = ata_qc_new_init(ap, dev);
1105 ata_sg_init_one(qc, dev->id, sizeof(dev->id));
1106 qc->dma_dir = DMA_FROM_DEVICE;
1107 qc->tf.protocol = ATA_PROT_PIO;
1111 if (dev->class == ATA_DEV_ATA) {
1112 qc->tf.command = ATA_CMD_ID_ATA;
1113 DPRINTK("do ATA identify\n");
1115 qc->tf.command = ATA_CMD_ID_ATAPI;
1116 DPRINTK("do ATAPI identify\n");
1119 qc->waiting = &wait;
1120 qc->complete_fn = ata_qc_complete_noop;
1122 spin_lock_irqsave(&ap->host_set->lock, flags);
1123 rc = ata_qc_issue(qc);
1124 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1129 wait_for_completion(&wait);
1131 spin_lock_irqsave(&ap->host_set->lock, flags);
1132 ap->ops->tf_read(ap, &qc->tf);
1133 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1135 if (qc->tf.command & ATA_ERR) {
1137 * arg! EDD works for all test cases, but seems to return
1138 * the ATA signature for some ATAPI devices. Until the
1139 * reason for this is found and fixed, we fix up the mess
1140 * here. If IDENTIFY DEVICE returns command aborted
1141 * (as ATAPI devices do), then we issue an
1142 * IDENTIFY PACKET DEVICE.
1144 * ATA software reset (SRST, the default) does not appear
1145 * to have this problem.
1147 if ((using_edd) && (qc->tf.command == ATA_CMD_ID_ATA)) {
1148 u8 err = qc->tf.feature;
1149 if (err & ATA_ABORTED) {
1150 dev->class = ATA_DEV_ATAPI;
1161 swap_buf_le16(dev->id, ATA_ID_WORDS);
1163 /* print device capabilities */
1164 printk(KERN_DEBUG "ata%u: dev %u cfg "
1165 "49:%04x 82:%04x 83:%04x 84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1166 ap->id, device, dev->id[49],
1167 dev->id[82], dev->id[83], dev->id[84],
1168 dev->id[85], dev->id[86], dev->id[87],
1172 * common ATA, ATAPI feature tests
1175 /* we require DMA support (bits 8 of word 49) */
1176 if (!ata_id_has_dma(dev->id)) {
1177 printk(KERN_DEBUG "ata%u: no dma\n", ap->id);
1181 /* quick-n-dirty find max transfer mode; for printk only */
1182 xfer_modes = dev->id[ATA_ID_UDMA_MODES];
1184 xfer_modes = (dev->id[ATA_ID_MWDMA_MODES]) << ATA_SHIFT_MWDMA;
1186 xfer_modes = ata_pio_modes(dev);
1190 /* ATA-specific feature tests */
1191 if (dev->class == ATA_DEV_ATA) {
1192 if (!ata_id_is_ata(dev->id)) /* sanity check */
1195 /* get major version */
1196 tmp = dev->id[ATA_ID_MAJOR_VER];
1197 for (major_version = 14; major_version >= 1; major_version--)
1198 if (tmp & (1 << major_version))
1202 * The exact sequence expected by certain pre-ATA4 drives is:
1205 * INITIALIZE DEVICE PARAMETERS
1207 * Some drives were very specific about that exact sequence.
1209 if (major_version < 4 || (!ata_id_has_lba(dev->id))) {
1210 ata_dev_init_params(ap, dev);
1212 /* current CHS translation info (id[53-58]) might be
1213 * changed. reread the identify device info.
1215 ata_dev_reread_id(ap, dev);
1218 if (ata_id_has_lba(dev->id)) {
1219 dev->flags |= ATA_DFLAG_LBA;
1221 if (ata_id_has_lba48(dev->id)) {
1222 dev->flags |= ATA_DFLAG_LBA48;
1223 dev->n_sectors = ata_id_u64(dev->id, 100);
1225 dev->n_sectors = ata_id_u32(dev->id, 60);
1228 /* print device info to dmesg */
1229 printk(KERN_INFO "ata%u: dev %u ATA-%d, max %s, %Lu sectors:%s\n",
1232 ata_mode_string(xfer_modes),
1233 (unsigned long long)dev->n_sectors,
1234 dev->flags & ATA_DFLAG_LBA48 ? " LBA48" : " LBA");
1238 /* Default translation */
1239 dev->cylinders = dev->id[1];
1240 dev->heads = dev->id[3];
1241 dev->sectors = dev->id[6];
1242 dev->n_sectors = dev->cylinders * dev->heads * dev->sectors;
1244 if (ata_id_current_chs_valid(dev->id)) {
1245 /* Current CHS translation is valid. */
1246 dev->cylinders = dev->id[54];
1247 dev->heads = dev->id[55];
1248 dev->sectors = dev->id[56];
1250 dev->n_sectors = ata_id_u32(dev->id, 57);
1253 /* print device info to dmesg */
1254 printk(KERN_INFO "ata%u: dev %u ATA-%d, max %s, %Lu sectors: CHS %d/%d/%d\n",
1257 ata_mode_string(xfer_modes),
1258 (unsigned long long)dev->n_sectors,
1259 (int)dev->cylinders, (int)dev->heads, (int)dev->sectors);
1263 ap->host->max_cmd_len = 16;
1266 /* ATAPI-specific feature tests */
1268 if (ata_id_is_ata(dev->id)) /* sanity check */
1271 rc = atapi_cdb_len(dev->id);
1272 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1273 printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
1276 ap->cdb_len = (unsigned int) rc;
1277 ap->host->max_cmd_len = (unsigned char) ap->cdb_len;
1279 /* print device info to dmesg */
1280 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
1282 ata_mode_string(xfer_modes));
1285 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
1289 printk(KERN_WARNING "ata%u: dev %u not supported, ignoring\n",
1292 dev->class++; /* converts ATA_DEV_xxx into ATA_DEV_xxx_UNSUP */
1293 DPRINTK("EXIT, err\n");
1297 static inline u8 ata_dev_knobble(const struct ata_port *ap)
1299 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(ap->device->id)));
1303 * ata_dev_config - Run device specific handlers and check for
1304 * SATA->PATA bridges
1311 void ata_dev_config(struct ata_port *ap, unsigned int i)
1313 /* limit bridge transfers to udma5, 200 sectors */
1314 if (ata_dev_knobble(ap)) {
1315 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1316 ap->id, ap->device->devno);
1317 ap->udma_mask &= ATA_UDMA5;
1318 ap->host->max_sectors = ATA_MAX_SECTORS;
1319 ap->host->hostt->max_sectors = ATA_MAX_SECTORS;
1320 ap->device->flags |= ATA_DFLAG_LOCK_SECTORS;
1323 if (ap->ops->dev_config)
1324 ap->ops->dev_config(ap, &ap->device[i]);
1328 * ata_bus_probe - Reset and probe ATA bus
1331 * Master ATA bus probing function. Initiates a hardware-dependent
1332 * bus reset, then attempts to identify any devices found on
1336 * PCI/etc. bus probe sem.
1339 * Zero on success, non-zero on error.
1342 static int ata_bus_probe(struct ata_port *ap)
1344 unsigned int i, found = 0;
1346 ap->ops->phy_reset(ap);
1347 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1350 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1351 ata_dev_identify(ap, i);
1352 if (ata_dev_present(&ap->device[i])) {
1354 ata_dev_config(ap,i);
1358 if ((!found) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1359 goto err_out_disable;
1362 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1363 goto err_out_disable;
1368 ap->ops->port_disable(ap);
1374 * ata_port_probe - Mark port as enabled
1375 * @ap: Port for which we indicate enablement
1377 * Modify @ap data structure such that the system
1378 * thinks that the entire port is enabled.
1380 * LOCKING: host_set lock, or some other form of
1384 void ata_port_probe(struct ata_port *ap)
1386 ap->flags &= ~ATA_FLAG_PORT_DISABLED;
1390 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1391 * @ap: SATA port associated with target SATA PHY.
1393 * This function issues commands to standard SATA Sxxx
1394 * PHY registers, to wake up the phy (and device), and
1395 * clear any reset condition.
1398 * PCI/etc. bus probe sem.
1401 void __sata_phy_reset(struct ata_port *ap)
1404 unsigned long timeout = jiffies + (HZ * 5);
1406 if (ap->flags & ATA_FLAG_SATA_RESET) {
1407 /* issue phy wake/reset */
1408 scr_write_flush(ap, SCR_CONTROL, 0x301);
1409 /* Couldn't find anything in SATA I/II specs, but
1410 * AHCI-1.1 10.4.2 says at least 1 ms. */
1413 scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
1415 /* wait for phy to become ready, if necessary */
1418 sstatus = scr_read(ap, SCR_STATUS);
1419 if ((sstatus & 0xf) != 1)
1421 } while (time_before(jiffies, timeout));
1423 /* TODO: phy layer with polling, timeouts, etc. */
1424 if (sata_dev_present(ap))
1427 sstatus = scr_read(ap, SCR_STATUS);
1428 printk(KERN_INFO "ata%u: no device found (phy stat %08x)\n",
1430 ata_port_disable(ap);
1433 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1436 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1437 ata_port_disable(ap);
1441 ap->cbl = ATA_CBL_SATA;
1445 * sata_phy_reset - Reset SATA bus.
1446 * @ap: SATA port associated with target SATA PHY.
1448 * This function resets the SATA bus, and then probes
1449 * the bus for devices.
1452 * PCI/etc. bus probe sem.
1455 void sata_phy_reset(struct ata_port *ap)
1457 __sata_phy_reset(ap);
1458 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1464 * ata_port_disable - Disable port.
1465 * @ap: Port to be disabled.
1467 * Modify @ap data structure such that the system
1468 * thinks that the entire port is disabled, and should
1469 * never attempt to probe or communicate with devices
1472 * LOCKING: host_set lock, or some other form of
1476 void ata_port_disable(struct ata_port *ap)
1478 ap->device[0].class = ATA_DEV_NONE;
1479 ap->device[1].class = ATA_DEV_NONE;
1480 ap->flags |= ATA_FLAG_PORT_DISABLED;
1484 * This mode timing computation functionality is ported over from
1485 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1488 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1489 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1490 * for PIO 5, which is a nonstandard extension and UDMA6, which
1491 * is currently supported only by Maxtor drives.
1494 static const struct ata_timing ata_timing[] = {
1496 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1497 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1498 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1499 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1501 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1502 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1503 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1505 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1507 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1508 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1509 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1511 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1512 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1513 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1515 /* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1516 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1517 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1519 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1520 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1521 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1523 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1528 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1529 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1531 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1533 q->setup = EZ(t->setup * 1000, T);
1534 q->act8b = EZ(t->act8b * 1000, T);
1535 q->rec8b = EZ(t->rec8b * 1000, T);
1536 q->cyc8b = EZ(t->cyc8b * 1000, T);
1537 q->active = EZ(t->active * 1000, T);
1538 q->recover = EZ(t->recover * 1000, T);
1539 q->cycle = EZ(t->cycle * 1000, T);
1540 q->udma = EZ(t->udma * 1000, UT);
1543 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1544 struct ata_timing *m, unsigned int what)
1546 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1547 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1548 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1549 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1550 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1551 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1552 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1553 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1556 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1558 const struct ata_timing *t;
1560 for (t = ata_timing; t->mode != speed; t++)
1561 if (t->mode == 0xFF)
1566 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1567 struct ata_timing *t, int T, int UT)
1569 const struct ata_timing *s;
1570 struct ata_timing p;
1576 if (!(s = ata_timing_find_mode(speed)))
1580 * If the drive is an EIDE drive, it can tell us it needs extended
1581 * PIO/MW_DMA cycle timing.
1584 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1585 memset(&p, 0, sizeof(p));
1586 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1587 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1588 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1589 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1590 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1592 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1596 * Convert the timing to bus clock counts.
1599 ata_timing_quantize(s, t, T, UT);
1602 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, S.M.A.R.T
1603 * and some other commands. We have to ensure that the DMA cycle timing is
1604 * slower/equal than the fastest PIO timing.
1607 if (speed > XFER_PIO_4) {
1608 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1609 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1613 * Lenghten active & recovery time so that cycle time is correct.
1616 if (t->act8b + t->rec8b < t->cyc8b) {
1617 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1618 t->rec8b = t->cyc8b - t->act8b;
1621 if (t->active + t->recover < t->cycle) {
1622 t->active += (t->cycle - (t->active + t->recover)) / 2;
1623 t->recover = t->cycle - t->active;
1629 static const struct {
1632 } xfer_mode_classes[] = {
1633 { ATA_SHIFT_UDMA, XFER_UDMA_0 },
1634 { ATA_SHIFT_MWDMA, XFER_MW_DMA_0 },
1635 { ATA_SHIFT_PIO, XFER_PIO_0 },
1638 static inline u8 base_from_shift(unsigned int shift)
1642 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++)
1643 if (xfer_mode_classes[i].shift == shift)
1644 return xfer_mode_classes[i].base;
1649 static void ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
1654 if (!ata_dev_present(dev) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1657 if (dev->xfer_shift == ATA_SHIFT_PIO)
1658 dev->flags |= ATA_DFLAG_PIO;
1660 ata_dev_set_xfermode(ap, dev);
1662 base = base_from_shift(dev->xfer_shift);
1663 ofs = dev->xfer_mode - base;
1664 idx = ofs + dev->xfer_shift;
1665 WARN_ON(idx >= ARRAY_SIZE(xfer_mode_str));
1667 DPRINTK("idx=%d xfer_shift=%u, xfer_mode=0x%x, base=0x%x, offset=%d\n",
1668 idx, dev->xfer_shift, (int)dev->xfer_mode, (int)base, ofs);
1670 printk(KERN_INFO "ata%u: dev %u configured for %s\n",
1671 ap->id, dev->devno, xfer_mode_str[idx]);
1674 static int ata_host_set_pio(struct ata_port *ap)
1680 mask = ata_get_mode_mask(ap, ATA_SHIFT_PIO);
1683 printk(KERN_WARNING "ata%u: no PIO support\n", ap->id);
1687 base = base_from_shift(ATA_SHIFT_PIO);
1688 xfer_mode = base + x;
1690 DPRINTK("base 0x%x xfer_mode 0x%x mask 0x%x x %d\n",
1691 (int)base, (int)xfer_mode, mask, x);
1693 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1694 struct ata_device *dev = &ap->device[i];
1695 if (ata_dev_present(dev)) {
1696 dev->pio_mode = xfer_mode;
1697 dev->xfer_mode = xfer_mode;
1698 dev->xfer_shift = ATA_SHIFT_PIO;
1699 if (ap->ops->set_piomode)
1700 ap->ops->set_piomode(ap, dev);
1707 static void ata_host_set_dma(struct ata_port *ap, u8 xfer_mode,
1708 unsigned int xfer_shift)
1712 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1713 struct ata_device *dev = &ap->device[i];
1714 if (ata_dev_present(dev)) {
1715 dev->dma_mode = xfer_mode;
1716 dev->xfer_mode = xfer_mode;
1717 dev->xfer_shift = xfer_shift;
1718 if (ap->ops->set_dmamode)
1719 ap->ops->set_dmamode(ap, dev);
1725 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1726 * @ap: port on which timings will be programmed
1728 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.).
1731 * PCI/etc. bus probe sem.
1734 static void ata_set_mode(struct ata_port *ap)
1736 unsigned int xfer_shift;
1740 /* step 1: always set host PIO timings */
1741 rc = ata_host_set_pio(ap);
1745 /* step 2: choose the best data xfer mode */
1746 xfer_mode = xfer_shift = 0;
1747 rc = ata_choose_xfer_mode(ap, &xfer_mode, &xfer_shift);
1751 /* step 3: if that xfer mode isn't PIO, set host DMA timings */
1752 if (xfer_shift != ATA_SHIFT_PIO)
1753 ata_host_set_dma(ap, xfer_mode, xfer_shift);
1755 /* step 4: update devices' xfer mode */
1756 ata_dev_set_mode(ap, &ap->device[0]);
1757 ata_dev_set_mode(ap, &ap->device[1]);
1759 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1762 if (ap->ops->post_set_mode)
1763 ap->ops->post_set_mode(ap);
1768 ata_port_disable(ap);
1772 * ata_busy_sleep - sleep until BSY clears, or timeout
1773 * @ap: port containing status register to be polled
1774 * @tmout_pat: impatience timeout
1775 * @tmout: overall timeout
1777 * Sleep until ATA Status register bit BSY clears,
1778 * or a timeout occurs.
1784 static unsigned int ata_busy_sleep (struct ata_port *ap,
1785 unsigned long tmout_pat,
1786 unsigned long tmout)
1788 unsigned long timer_start, timeout;
1791 status = ata_busy_wait(ap, ATA_BUSY, 300);
1792 timer_start = jiffies;
1793 timeout = timer_start + tmout_pat;
1794 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1796 status = ata_busy_wait(ap, ATA_BUSY, 3);
1799 if (status & ATA_BUSY)
1800 printk(KERN_WARNING "ata%u is slow to respond, "
1801 "please be patient\n", ap->id);
1803 timeout = timer_start + tmout;
1804 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1806 status = ata_chk_status(ap);
1809 if (status & ATA_BUSY) {
1810 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
1811 ap->id, tmout / HZ);
1818 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
1820 struct ata_ioports *ioaddr = &ap->ioaddr;
1821 unsigned int dev0 = devmask & (1 << 0);
1822 unsigned int dev1 = devmask & (1 << 1);
1823 unsigned long timeout;
1825 /* if device 0 was found in ata_devchk, wait for its
1829 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1831 /* if device 1 was found in ata_devchk, wait for
1832 * register access, then wait for BSY to clear
1834 timeout = jiffies + ATA_TMOUT_BOOT;
1838 ap->ops->dev_select(ap, 1);
1839 if (ap->flags & ATA_FLAG_MMIO) {
1840 nsect = readb((void __iomem *) ioaddr->nsect_addr);
1841 lbal = readb((void __iomem *) ioaddr->lbal_addr);
1843 nsect = inb(ioaddr->nsect_addr);
1844 lbal = inb(ioaddr->lbal_addr);
1846 if ((nsect == 1) && (lbal == 1))
1848 if (time_after(jiffies, timeout)) {
1852 msleep(50); /* give drive a breather */
1855 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1857 /* is all this really necessary? */
1858 ap->ops->dev_select(ap, 0);
1860 ap->ops->dev_select(ap, 1);
1862 ap->ops->dev_select(ap, 0);
1866 * ata_bus_edd - Issue EXECUTE DEVICE DIAGNOSTIC command.
1867 * @ap: Port to reset and probe
1869 * Use the EXECUTE DEVICE DIAGNOSTIC command to reset and
1870 * probe the bus. Not often used these days.
1873 * PCI/etc. bus probe sem.
1874 * Obtains host_set lock.
1878 static unsigned int ata_bus_edd(struct ata_port *ap)
1880 struct ata_taskfile tf;
1881 unsigned long flags;
1883 /* set up execute-device-diag (bus reset) taskfile */
1884 /* also, take interrupts to a known state (disabled) */
1885 DPRINTK("execute-device-diag\n");
1886 ata_tf_init(ap, &tf, 0);
1888 tf.command = ATA_CMD_EDD;
1889 tf.protocol = ATA_PROT_NODATA;
1892 spin_lock_irqsave(&ap->host_set->lock, flags);
1893 ata_tf_to_host(ap, &tf);
1894 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1896 /* spec says at least 2ms. but who knows with those
1897 * crazy ATAPI devices...
1901 return ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1904 static unsigned int ata_bus_softreset(struct ata_port *ap,
1905 unsigned int devmask)
1907 struct ata_ioports *ioaddr = &ap->ioaddr;
1909 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
1911 /* software reset. causes dev0 to be selected */
1912 if (ap->flags & ATA_FLAG_MMIO) {
1913 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1914 udelay(20); /* FIXME: flush */
1915 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
1916 udelay(20); /* FIXME: flush */
1917 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1919 outb(ap->ctl, ioaddr->ctl_addr);
1921 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1923 outb(ap->ctl, ioaddr->ctl_addr);
1926 /* spec mandates ">= 2ms" before checking status.
1927 * We wait 150ms, because that was the magic delay used for
1928 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
1929 * between when the ATA command register is written, and then
1930 * status is checked. Because waiting for "a while" before
1931 * checking status is fine, post SRST, we perform this magic
1932 * delay here as well.
1936 ata_bus_post_reset(ap, devmask);
1942 * ata_bus_reset - reset host port and associated ATA channel
1943 * @ap: port to reset
1945 * This is typically the first time we actually start issuing
1946 * commands to the ATA channel. We wait for BSY to clear, then
1947 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
1948 * result. Determine what devices, if any, are on the channel
1949 * by looking at the device 0/1 error register. Look at the signature
1950 * stored in each device's taskfile registers, to determine if
1951 * the device is ATA or ATAPI.
1954 * PCI/etc. bus probe sem.
1955 * Obtains host_set lock.
1958 * Sets ATA_FLAG_PORT_DISABLED if bus reset fails.
1961 void ata_bus_reset(struct ata_port *ap)
1963 struct ata_ioports *ioaddr = &ap->ioaddr;
1964 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
1966 unsigned int dev0, dev1 = 0, rc = 0, devmask = 0;
1968 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
1970 /* determine if device 0/1 are present */
1971 if (ap->flags & ATA_FLAG_SATA_RESET)
1974 dev0 = ata_devchk(ap, 0);
1976 dev1 = ata_devchk(ap, 1);
1980 devmask |= (1 << 0);
1982 devmask |= (1 << 1);
1984 /* select device 0 again */
1985 ap->ops->dev_select(ap, 0);
1987 /* issue bus reset */
1988 if (ap->flags & ATA_FLAG_SRST)
1989 rc = ata_bus_softreset(ap, devmask);
1990 else if ((ap->flags & ATA_FLAG_SATA_RESET) == 0) {
1991 /* set up device control */
1992 if (ap->flags & ATA_FLAG_MMIO)
1993 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1995 outb(ap->ctl, ioaddr->ctl_addr);
1996 rc = ata_bus_edd(ap);
2003 * determine by signature whether we have ATA or ATAPI devices
2005 err = ata_dev_try_classify(ap, 0);
2006 if ((slave_possible) && (err != 0x81))
2007 ata_dev_try_classify(ap, 1);
2009 /* re-enable interrupts */
2010 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2013 /* is double-select really necessary? */
2014 if (ap->device[1].class != ATA_DEV_NONE)
2015 ap->ops->dev_select(ap, 1);
2016 if (ap->device[0].class != ATA_DEV_NONE)
2017 ap->ops->dev_select(ap, 0);
2019 /* if no devices were detected, disable this port */
2020 if ((ap->device[0].class == ATA_DEV_NONE) &&
2021 (ap->device[1].class == ATA_DEV_NONE))
2024 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2025 /* set up device control for ATA_FLAG_SATA_RESET */
2026 if (ap->flags & ATA_FLAG_MMIO)
2027 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2029 outb(ap->ctl, ioaddr->ctl_addr);
2036 printk(KERN_ERR "ata%u: disabling port\n", ap->id);
2037 ap->ops->port_disable(ap);
2042 static void ata_pr_blacklisted(const struct ata_port *ap,
2043 const struct ata_device *dev)
2045 printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, disabling DMA\n",
2046 ap->id, dev->devno);
2049 static const char * ata_dma_blacklist [] = {
2068 "Toshiba CD-ROM XM-6202B",
2069 "TOSHIBA CD-ROM XM-1702BC",
2071 "E-IDE CD-ROM CR-840",
2074 "SAMSUNG CD-ROM SC-148C",
2075 "SAMSUNG CD-ROM SC",
2077 "ATAPI CD-ROM DRIVE 40X MAXIMUM",
2081 static int ata_dma_blacklisted(const struct ata_device *dev)
2083 unsigned char model_num[40];
2088 ata_dev_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2091 len = strnlen(s, sizeof(model_num));
2093 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2094 while ((len > 0) && (s[len - 1] == ' ')) {
2099 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i++)
2100 if (!strncmp(ata_dma_blacklist[i], s, len))
2106 static unsigned int ata_get_mode_mask(const struct ata_port *ap, int shift)
2108 const struct ata_device *master, *slave;
2111 master = &ap->device[0];
2112 slave = &ap->device[1];
2114 assert (ata_dev_present(master) || ata_dev_present(slave));
2116 if (shift == ATA_SHIFT_UDMA) {
2117 mask = ap->udma_mask;
2118 if (ata_dev_present(master)) {
2119 mask &= (master->id[ATA_ID_UDMA_MODES] & 0xff);
2120 if (ata_dma_blacklisted(master)) {
2122 ata_pr_blacklisted(ap, master);
2125 if (ata_dev_present(slave)) {
2126 mask &= (slave->id[ATA_ID_UDMA_MODES] & 0xff);
2127 if (ata_dma_blacklisted(slave)) {
2129 ata_pr_blacklisted(ap, slave);
2133 else if (shift == ATA_SHIFT_MWDMA) {
2134 mask = ap->mwdma_mask;
2135 if (ata_dev_present(master)) {
2136 mask &= (master->id[ATA_ID_MWDMA_MODES] & 0x07);
2137 if (ata_dma_blacklisted(master)) {
2139 ata_pr_blacklisted(ap, master);
2142 if (ata_dev_present(slave)) {
2143 mask &= (slave->id[ATA_ID_MWDMA_MODES] & 0x07);
2144 if (ata_dma_blacklisted(slave)) {
2146 ata_pr_blacklisted(ap, slave);
2150 else if (shift == ATA_SHIFT_PIO) {
2151 mask = ap->pio_mask;
2152 if (ata_dev_present(master)) {
2153 /* spec doesn't return explicit support for
2154 * PIO0-2, so we fake it
2156 u16 tmp_mode = master->id[ATA_ID_PIO_MODES] & 0x03;
2161 if (ata_dev_present(slave)) {
2162 /* spec doesn't return explicit support for
2163 * PIO0-2, so we fake it
2165 u16 tmp_mode = slave->id[ATA_ID_PIO_MODES] & 0x03;
2172 mask = 0xffffffff; /* shut up compiler warning */
2179 /* find greatest bit */
2180 static int fgb(u32 bitmap)
2185 for (i = 0; i < 32; i++)
2186 if (bitmap & (1 << i))
2193 * ata_choose_xfer_mode - attempt to find best transfer mode
2194 * @ap: Port for which an xfer mode will be selected
2195 * @xfer_mode_out: (output) SET FEATURES - XFER MODE code
2196 * @xfer_shift_out: (output) bit shift that selects this mode
2198 * Based on host and device capabilities, determine the
2199 * maximum transfer mode that is amenable to all.
2202 * PCI/etc. bus probe sem.
2205 * Zero on success, negative on error.
2208 static int ata_choose_xfer_mode(const struct ata_port *ap,
2210 unsigned int *xfer_shift_out)
2212 unsigned int mask, shift;
2215 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++) {
2216 shift = xfer_mode_classes[i].shift;
2217 mask = ata_get_mode_mask(ap, shift);
2221 *xfer_mode_out = xfer_mode_classes[i].base + x;
2222 *xfer_shift_out = shift;
2231 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2232 * @ap: Port associated with device @dev
2233 * @dev: Device to which command will be sent
2235 * Issue SET FEATURES - XFER MODE command to device @dev
2239 * PCI/etc. bus probe sem.
2242 static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev)
2244 DECLARE_COMPLETION(wait);
2245 struct ata_queued_cmd *qc;
2247 unsigned long flags;
2249 /* set up set-features taskfile */
2250 DPRINTK("set features - xfer mode\n");
2252 qc = ata_qc_new_init(ap, dev);
2255 qc->tf.command = ATA_CMD_SET_FEATURES;
2256 qc->tf.feature = SETFEATURES_XFER;
2257 qc->tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2258 qc->tf.protocol = ATA_PROT_NODATA;
2259 qc->tf.nsect = dev->xfer_mode;
2261 qc->waiting = &wait;
2262 qc->complete_fn = ata_qc_complete_noop;
2264 spin_lock_irqsave(&ap->host_set->lock, flags);
2265 rc = ata_qc_issue(qc);
2266 spin_unlock_irqrestore(&ap->host_set->lock, flags);
2269 ata_port_disable(ap);
2271 wait_for_completion(&wait);
2277 * ata_dev_reread_id - Reread the device identify device info
2278 * @ap: port where the device is
2279 * @dev: device to reread the identify device info
2284 static void ata_dev_reread_id(struct ata_port *ap, struct ata_device *dev)
2286 DECLARE_COMPLETION(wait);
2287 struct ata_queued_cmd *qc;
2288 unsigned long flags;
2291 qc = ata_qc_new_init(ap, dev);
2294 ata_sg_init_one(qc, dev->id, sizeof(dev->id));
2295 qc->dma_dir = DMA_FROM_DEVICE;
2297 if (dev->class == ATA_DEV_ATA) {
2298 qc->tf.command = ATA_CMD_ID_ATA;
2299 DPRINTK("do ATA identify\n");
2301 qc->tf.command = ATA_CMD_ID_ATAPI;
2302 DPRINTK("do ATAPI identify\n");
2305 qc->tf.flags |= ATA_TFLAG_DEVICE;
2306 qc->tf.protocol = ATA_PROT_PIO;
2309 qc->waiting = &wait;
2310 qc->complete_fn = ata_qc_complete_noop;
2312 spin_lock_irqsave(&ap->host_set->lock, flags);
2313 rc = ata_qc_issue(qc);
2314 spin_unlock_irqrestore(&ap->host_set->lock, flags);
2319 wait_for_completion(&wait);
2321 swap_buf_le16(dev->id, ATA_ID_WORDS);
2329 ata_port_disable(ap);
2333 * ata_dev_init_params - Issue INIT DEV PARAMS command
2334 * @ap: Port associated with device @dev
2335 * @dev: Device to which command will be sent
2340 static void ata_dev_init_params(struct ata_port *ap, struct ata_device *dev)
2342 DECLARE_COMPLETION(wait);
2343 struct ata_queued_cmd *qc;
2345 unsigned long flags;
2346 u16 sectors = dev->id[6];
2347 u16 heads = dev->id[3];
2349 /* Number of sectors per track 1-255. Number of heads 1-16 */
2350 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
2353 /* set up init dev params taskfile */
2354 DPRINTK("init dev params \n");
2356 qc = ata_qc_new_init(ap, dev);
2359 qc->tf.command = ATA_CMD_INIT_DEV_PARAMS;
2360 qc->tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2361 qc->tf.protocol = ATA_PROT_NODATA;
2362 qc->tf.nsect = sectors;
2363 qc->tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
2365 qc->waiting = &wait;
2366 qc->complete_fn = ata_qc_complete_noop;
2368 spin_lock_irqsave(&ap->host_set->lock, flags);
2369 rc = ata_qc_issue(qc);
2370 spin_unlock_irqrestore(&ap->host_set->lock, flags);
2373 ata_port_disable(ap);
2375 wait_for_completion(&wait);
2381 * ata_sg_clean - Unmap DMA memory associated with command
2382 * @qc: Command containing DMA memory to be released
2384 * Unmap all mapped DMA memory associated with this command.
2387 * spin_lock_irqsave(host_set lock)
2390 static void ata_sg_clean(struct ata_queued_cmd *qc)
2392 struct ata_port *ap = qc->ap;
2393 struct scatterlist *sg = qc->__sg;
2394 int dir = qc->dma_dir;
2395 void *pad_buf = NULL;
2397 assert(qc->flags & ATA_QCFLAG_DMAMAP);
2400 if (qc->flags & ATA_QCFLAG_SINGLE)
2401 assert(qc->n_elem == 1);
2403 DPRINTK("unmapping %u sg elements\n", qc->n_elem);
2405 /* if we padded the buffer out to 32-bit bound, and data
2406 * xfer direction is from-device, we must copy from the
2407 * pad buffer back into the supplied buffer
2409 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
2410 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2412 if (qc->flags & ATA_QCFLAG_SG) {
2413 dma_unmap_sg(ap->host_set->dev, sg, qc->n_elem, dir);
2414 /* restore last sg */
2415 sg[qc->orig_n_elem - 1].length += qc->pad_len;
2417 struct scatterlist *psg = &qc->pad_sgent;
2418 void *addr = kmap_atomic(psg->page, KM_IRQ0);
2419 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
2420 kunmap_atomic(psg->page, KM_IRQ0);
2423 dma_unmap_single(ap->host_set->dev, sg_dma_address(&sg[0]),
2424 sg_dma_len(&sg[0]), dir);
2426 sg->length += qc->pad_len;
2428 memcpy(qc->buf_virt + sg->length - qc->pad_len,
2429 pad_buf, qc->pad_len);
2432 qc->flags &= ~ATA_QCFLAG_DMAMAP;
2437 * ata_fill_sg - Fill PCI IDE PRD table
2438 * @qc: Metadata associated with taskfile to be transferred
2440 * Fill PCI IDE PRD (scatter-gather) table with segments
2441 * associated with the current disk command.
2444 * spin_lock_irqsave(host_set lock)
2447 static void ata_fill_sg(struct ata_queued_cmd *qc)
2449 struct ata_port *ap = qc->ap;
2450 struct scatterlist *sg;
2453 assert(qc->__sg != NULL);
2454 assert(qc->n_elem > 0);
2457 ata_for_each_sg(sg, qc) {
2461 /* determine if physical DMA addr spans 64K boundary.
2462 * Note h/w doesn't support 64-bit, so we unconditionally
2463 * truncate dma_addr_t to u32.
2465 addr = (u32) sg_dma_address(sg);
2466 sg_len = sg_dma_len(sg);
2469 offset = addr & 0xffff;
2471 if ((offset + sg_len) > 0x10000)
2472 len = 0x10000 - offset;
2474 ap->prd[idx].addr = cpu_to_le32(addr);
2475 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
2476 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
2485 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2488 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
2489 * @qc: Metadata associated with taskfile to check
2491 * Allow low-level driver to filter ATA PACKET commands, returning
2492 * a status indicating whether or not it is OK to use DMA for the
2493 * supplied PACKET command.
2496 * spin_lock_irqsave(host_set lock)
2498 * RETURNS: 0 when ATAPI DMA can be used
2501 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
2503 struct ata_port *ap = qc->ap;
2504 int rc = 0; /* Assume ATAPI DMA is OK by default */
2506 if (ap->ops->check_atapi_dma)
2507 rc = ap->ops->check_atapi_dma(qc);
2512 * ata_qc_prep - Prepare taskfile for submission
2513 * @qc: Metadata associated with taskfile to be prepared
2515 * Prepare ATA taskfile for submission.
2518 * spin_lock_irqsave(host_set lock)
2520 void ata_qc_prep(struct ata_queued_cmd *qc)
2522 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2529 * ata_sg_init_one - Associate command with memory buffer
2530 * @qc: Command to be associated
2531 * @buf: Memory buffer
2532 * @buflen: Length of memory buffer, in bytes.
2534 * Initialize the data-related elements of queued_cmd @qc
2535 * to point to a single memory buffer, @buf of byte length @buflen.
2538 * spin_lock_irqsave(host_set lock)
2541 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
2543 struct scatterlist *sg;
2545 qc->flags |= ATA_QCFLAG_SINGLE;
2547 memset(&qc->sgent, 0, sizeof(qc->sgent));
2548 qc->__sg = &qc->sgent;
2550 qc->orig_n_elem = 1;
2554 sg_init_one(sg, buf, buflen);
2558 * ata_sg_init - Associate command with scatter-gather table.
2559 * @qc: Command to be associated
2560 * @sg: Scatter-gather table.
2561 * @n_elem: Number of elements in s/g table.
2563 * Initialize the data-related elements of queued_cmd @qc
2564 * to point to a scatter-gather table @sg, containing @n_elem
2568 * spin_lock_irqsave(host_set lock)
2571 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
2572 unsigned int n_elem)
2574 qc->flags |= ATA_QCFLAG_SG;
2576 qc->n_elem = n_elem;
2577 qc->orig_n_elem = n_elem;
2581 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
2582 * @qc: Command with memory buffer to be mapped.
2584 * DMA-map the memory buffer associated with queued_cmd @qc.
2587 * spin_lock_irqsave(host_set lock)
2590 * Zero on success, negative on error.
2593 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
2595 struct ata_port *ap = qc->ap;
2596 int dir = qc->dma_dir;
2597 struct scatterlist *sg = qc->__sg;
2598 dma_addr_t dma_address;
2600 /* we must lengthen transfers to end on a 32-bit boundary */
2601 qc->pad_len = sg->length & 3;
2603 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2604 struct scatterlist *psg = &qc->pad_sgent;
2606 assert(qc->dev->class == ATA_DEV_ATAPI);
2608 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
2610 if (qc->tf.flags & ATA_TFLAG_WRITE)
2611 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
2614 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
2615 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
2617 sg->length -= qc->pad_len;
2619 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
2620 sg->length, qc->pad_len);
2623 dma_address = dma_map_single(ap->host_set->dev, qc->buf_virt,
2625 if (dma_mapping_error(dma_address)) {
2627 sg->length += qc->pad_len;
2631 sg_dma_address(sg) = dma_address;
2632 sg_dma_len(sg) = sg->length;
2634 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
2635 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
2641 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
2642 * @qc: Command with scatter-gather table to be mapped.
2644 * DMA-map the scatter-gather table associated with queued_cmd @qc.
2647 * spin_lock_irqsave(host_set lock)
2650 * Zero on success, negative on error.
2654 static int ata_sg_setup(struct ata_queued_cmd *qc)
2656 struct ata_port *ap = qc->ap;
2657 struct scatterlist *sg = qc->__sg;
2658 struct scatterlist *lsg = &sg[qc->n_elem - 1];
2661 VPRINTK("ENTER, ata%u\n", ap->id);
2662 assert(qc->flags & ATA_QCFLAG_SG);
2664 /* we must lengthen transfers to end on a 32-bit boundary */
2665 qc->pad_len = lsg->length & 3;
2667 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2668 struct scatterlist *psg = &qc->pad_sgent;
2669 unsigned int offset;
2671 assert(qc->dev->class == ATA_DEV_ATAPI);
2673 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
2676 * psg->page/offset are used to copy to-be-written
2677 * data in this function or read data in ata_sg_clean.
2679 offset = lsg->offset + lsg->length - qc->pad_len;
2680 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
2681 psg->offset = offset_in_page(offset);
2683 if (qc->tf.flags & ATA_TFLAG_WRITE) {
2684 void *addr = kmap_atomic(psg->page, KM_IRQ0);
2685 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
2686 kunmap_atomic(psg->page, KM_IRQ0);
2689 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
2690 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
2692 lsg->length -= qc->pad_len;
2694 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
2695 qc->n_elem - 1, lsg->length, qc->pad_len);
2699 n_elem = dma_map_sg(ap->host_set->dev, sg, qc->n_elem, dir);
2701 /* restore last sg */
2702 lsg->length += qc->pad_len;
2706 DPRINTK("%d sg elements mapped\n", n_elem);
2708 qc->n_elem = n_elem;
2714 * ata_poll_qc_complete - turn irq back on and finish qc
2715 * @qc: Command to complete
2716 * @err_mask: ATA status register content
2719 * None. (grabs host lock)
2722 void ata_poll_qc_complete(struct ata_queued_cmd *qc, unsigned int err_mask)
2724 struct ata_port *ap = qc->ap;
2725 unsigned long flags;
2727 spin_lock_irqsave(&ap->host_set->lock, flags);
2728 ap->flags &= ~ATA_FLAG_NOINTR;
2730 ata_qc_complete(qc, err_mask);
2731 spin_unlock_irqrestore(&ap->host_set->lock, flags);
2736 * @ap: the target ata_port
2739 * None. (executing in kernel thread context)
2742 * timeout value to use
2745 static unsigned long ata_pio_poll(struct ata_port *ap)
2748 unsigned int poll_state = HSM_ST_UNKNOWN;
2749 unsigned int reg_state = HSM_ST_UNKNOWN;
2750 const unsigned int tmout_state = HSM_ST_TMOUT;
2752 switch (ap->hsm_task_state) {
2755 poll_state = HSM_ST_POLL;
2759 case HSM_ST_LAST_POLL:
2760 poll_state = HSM_ST_LAST_POLL;
2761 reg_state = HSM_ST_LAST;
2768 status = ata_chk_status(ap);
2769 if (status & ATA_BUSY) {
2770 if (time_after(jiffies, ap->pio_task_timeout)) {
2771 ap->hsm_task_state = tmout_state;
2774 ap->hsm_task_state = poll_state;
2775 return ATA_SHORT_PAUSE;
2778 ap->hsm_task_state = reg_state;
2783 * ata_pio_complete - check if drive is busy or idle
2784 * @ap: the target ata_port
2787 * None. (executing in kernel thread context)
2790 * Non-zero if qc completed, zero otherwise.
2793 static int ata_pio_complete (struct ata_port *ap)
2795 struct ata_queued_cmd *qc;
2799 * This is purely heuristic. This is a fast path. Sometimes when
2800 * we enter, BSY will be cleared in a chk-status or two. If not,
2801 * the drive is probably seeking or something. Snooze for a couple
2802 * msecs, then chk-status again. If still busy, fall back to
2803 * HSM_ST_POLL state.
2805 drv_stat = ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 10);
2806 if (drv_stat & (ATA_BUSY | ATA_DRQ)) {
2808 drv_stat = ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 10);
2809 if (drv_stat & (ATA_BUSY | ATA_DRQ)) {
2810 ap->hsm_task_state = HSM_ST_LAST_POLL;
2811 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
2816 drv_stat = ata_wait_idle(ap);
2817 if (!ata_ok(drv_stat)) {
2818 ap->hsm_task_state = HSM_ST_ERR;
2822 qc = ata_qc_from_tag(ap, ap->active_tag);
2825 ap->hsm_task_state = HSM_ST_IDLE;
2827 ata_poll_qc_complete(qc, 0);
2829 /* another command may start at this point */
2836 * swap_buf_le16 - swap halves of 16-words in place
2837 * @buf: Buffer to swap
2838 * @buf_words: Number of 16-bit words in buffer.
2840 * Swap halves of 16-bit words if needed to convert from
2841 * little-endian byte order to native cpu byte order, or
2845 * Inherited from caller.
2847 void swap_buf_le16(u16 *buf, unsigned int buf_words)
2852 for (i = 0; i < buf_words; i++)
2853 buf[i] = le16_to_cpu(buf[i]);
2854 #endif /* __BIG_ENDIAN */
2858 * ata_mmio_data_xfer - Transfer data by MMIO
2859 * @ap: port to read/write
2861 * @buflen: buffer length
2862 * @write_data: read/write
2864 * Transfer data from/to the device data register by MMIO.
2867 * Inherited from caller.
2870 static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
2871 unsigned int buflen, int write_data)
2874 unsigned int words = buflen >> 1;
2875 u16 *buf16 = (u16 *) buf;
2876 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
2878 /* Transfer multiple of 2 bytes */
2880 for (i = 0; i < words; i++)
2881 writew(le16_to_cpu(buf16[i]), mmio);
2883 for (i = 0; i < words; i++)
2884 buf16[i] = cpu_to_le16(readw(mmio));
2887 /* Transfer trailing 1 byte, if any. */
2888 if (unlikely(buflen & 0x01)) {
2889 u16 align_buf[1] = { 0 };
2890 unsigned char *trailing_buf = buf + buflen - 1;
2893 memcpy(align_buf, trailing_buf, 1);
2894 writew(le16_to_cpu(align_buf[0]), mmio);
2896 align_buf[0] = cpu_to_le16(readw(mmio));
2897 memcpy(trailing_buf, align_buf, 1);
2903 * ata_pio_data_xfer - Transfer data by PIO
2904 * @ap: port to read/write
2906 * @buflen: buffer length
2907 * @write_data: read/write
2909 * Transfer data from/to the device data register by PIO.
2912 * Inherited from caller.
2915 static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
2916 unsigned int buflen, int write_data)
2918 unsigned int words = buflen >> 1;
2920 /* Transfer multiple of 2 bytes */
2922 outsw(ap->ioaddr.data_addr, buf, words);
2924 insw(ap->ioaddr.data_addr, buf, words);
2926 /* Transfer trailing 1 byte, if any. */
2927 if (unlikely(buflen & 0x01)) {
2928 u16 align_buf[1] = { 0 };
2929 unsigned char *trailing_buf = buf + buflen - 1;
2932 memcpy(align_buf, trailing_buf, 1);
2933 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
2935 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
2936 memcpy(trailing_buf, align_buf, 1);
2942 * ata_data_xfer - Transfer data from/to the data register.
2943 * @ap: port to read/write
2945 * @buflen: buffer length
2946 * @do_write: read/write
2948 * Transfer data from/to the device data register.
2951 * Inherited from caller.
2954 static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
2955 unsigned int buflen, int do_write)
2957 if (ap->flags & ATA_FLAG_MMIO)
2958 ata_mmio_data_xfer(ap, buf, buflen, do_write);
2960 ata_pio_data_xfer(ap, buf, buflen, do_write);
2964 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
2965 * @qc: Command on going
2967 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
2970 * Inherited from caller.
2973 static void ata_pio_sector(struct ata_queued_cmd *qc)
2975 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
2976 struct scatterlist *sg = qc->__sg;
2977 struct ata_port *ap = qc->ap;
2979 unsigned int offset;
2982 if (qc->cursect == (qc->nsect - 1))
2983 ap->hsm_task_state = HSM_ST_LAST;
2985 page = sg[qc->cursg].page;
2986 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
2988 /* get the current page and offset */
2989 page = nth_page(page, (offset >> PAGE_SHIFT));
2990 offset %= PAGE_SIZE;
2992 buf = kmap(page) + offset;
2997 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3002 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3004 /* do the actual data transfer */
3005 do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3006 ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write);
3012 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3013 * @qc: Command on going
3014 * @bytes: number of bytes
3016 * Transfer Transfer data from/to the ATAPI device.
3019 * Inherited from caller.
3023 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3025 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3026 struct scatterlist *sg = qc->__sg;
3027 struct ata_port *ap = qc->ap;
3030 unsigned int offset, count;
3032 if (qc->curbytes + bytes >= qc->nbytes)
3033 ap->hsm_task_state = HSM_ST_LAST;
3036 if (unlikely(qc->cursg >= qc->n_elem)) {
3038 * The end of qc->sg is reached and the device expects
3039 * more data to transfer. In order not to overrun qc->sg
3040 * and fulfill length specified in the byte count register,
3041 * - for read case, discard trailing data from the device
3042 * - for write case, padding zero data to the device
3044 u16 pad_buf[1] = { 0 };
3045 unsigned int words = bytes >> 1;
3048 if (words) /* warning if bytes > 1 */
3049 printk(KERN_WARNING "ata%u: %u bytes trailing data\n",
3052 for (i = 0; i < words; i++)
3053 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
3055 ap->hsm_task_state = HSM_ST_LAST;
3059 sg = &qc->__sg[qc->cursg];
3062 offset = sg->offset + qc->cursg_ofs;
3064 /* get the current page and offset */
3065 page = nth_page(page, (offset >> PAGE_SHIFT));
3066 offset %= PAGE_SIZE;
3068 /* don't overrun current sg */
3069 count = min(sg->length - qc->cursg_ofs, bytes);
3071 /* don't cross page boundaries */
3072 count = min(count, (unsigned int)PAGE_SIZE - offset);
3074 buf = kmap(page) + offset;
3077 qc->curbytes += count;
3078 qc->cursg_ofs += count;
3080 if (qc->cursg_ofs == sg->length) {
3085 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3087 /* do the actual data transfer */
3088 ata_data_xfer(ap, buf, count, do_write);
3097 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3098 * @qc: Command on going
3100 * Transfer Transfer data from/to the ATAPI device.
3103 * Inherited from caller.
3106 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3108 struct ata_port *ap = qc->ap;
3109 struct ata_device *dev = qc->dev;
3110 unsigned int ireason, bc_lo, bc_hi, bytes;
3111 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3113 ap->ops->tf_read(ap, &qc->tf);
3114 ireason = qc->tf.nsect;
3115 bc_lo = qc->tf.lbam;
3116 bc_hi = qc->tf.lbah;
3117 bytes = (bc_hi << 8) | bc_lo;
3119 /* shall be cleared to zero, indicating xfer of data */
3120 if (ireason & (1 << 0))
3123 /* make sure transfer direction matches expected */
3124 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3125 if (do_write != i_write)
3128 __atapi_pio_bytes(qc, bytes);
3133 printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
3134 ap->id, dev->devno);
3135 ap->hsm_task_state = HSM_ST_ERR;
3139 * ata_pio_block - start PIO on a block
3140 * @ap: the target ata_port
3143 * None. (executing in kernel thread context)
3146 static void ata_pio_block(struct ata_port *ap)
3148 struct ata_queued_cmd *qc;
3152 * This is purely heuristic. This is a fast path.
3153 * Sometimes when we enter, BSY will be cleared in
3154 * a chk-status or two. If not, the drive is probably seeking
3155 * or something. Snooze for a couple msecs, then
3156 * chk-status again. If still busy, fall back to
3157 * HSM_ST_POLL state.
3159 status = ata_busy_wait(ap, ATA_BUSY, 5);
3160 if (status & ATA_BUSY) {
3162 status = ata_busy_wait(ap, ATA_BUSY, 10);
3163 if (status & ATA_BUSY) {
3164 ap->hsm_task_state = HSM_ST_POLL;
3165 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3170 qc = ata_qc_from_tag(ap, ap->active_tag);
3173 if (is_atapi_taskfile(&qc->tf)) {
3174 /* no more data to transfer or unsupported ATAPI command */
3175 if ((status & ATA_DRQ) == 0) {
3176 ap->hsm_task_state = HSM_ST_LAST;
3180 atapi_pio_bytes(qc);
3182 /* handle BSY=0, DRQ=0 as error */
3183 if ((status & ATA_DRQ) == 0) {
3184 ap->hsm_task_state = HSM_ST_ERR;
3192 static void ata_pio_error(struct ata_port *ap)
3194 struct ata_queued_cmd *qc;
3196 printk(KERN_WARNING "ata%u: PIO error\n", ap->id);
3198 qc = ata_qc_from_tag(ap, ap->active_tag);
3201 ap->hsm_task_state = HSM_ST_IDLE;
3203 ata_poll_qc_complete(qc, AC_ERR_ATA_BUS);
3206 static void ata_pio_task(void *_data)
3208 struct ata_port *ap = _data;
3209 unsigned long timeout;
3216 switch (ap->hsm_task_state) {
3225 qc_completed = ata_pio_complete(ap);
3229 case HSM_ST_LAST_POLL:
3230 timeout = ata_pio_poll(ap);
3240 queue_delayed_work(ata_wq, &ap->pio_task, timeout);
3241 else if (!qc_completed)
3246 * ata_qc_timeout - Handle timeout of queued command
3247 * @qc: Command that timed out
3249 * Some part of the kernel (currently, only the SCSI layer)
3250 * has noticed that the active command on port @ap has not
3251 * completed after a specified length of time. Handle this
3252 * condition by disabling DMA (if necessary) and completing
3253 * transactions, with error if necessary.
3255 * This also handles the case of the "lost interrupt", where
3256 * for some reason (possibly hardware bug, possibly driver bug)
3257 * an interrupt was not delivered to the driver, even though the
3258 * transaction completed successfully.
3261 * Inherited from SCSI layer (none, can sleep)
3264 static void ata_qc_timeout(struct ata_queued_cmd *qc)
3266 struct ata_port *ap = qc->ap;
3267 struct ata_host_set *host_set = ap->host_set;
3268 struct ata_device *dev = qc->dev;
3269 u8 host_stat = 0, drv_stat;
3270 unsigned long flags;
3274 /* FIXME: doesn't this conflict with timeout handling? */
3275 if (qc->dev->class == ATA_DEV_ATAPI && qc->scsicmd) {
3276 struct scsi_cmnd *cmd = qc->scsicmd;
3278 if (!(cmd->eh_eflags & SCSI_EH_CANCEL_CMD)) {
3280 /* finish completing original command */
3281 spin_lock_irqsave(&host_set->lock, flags);
3282 __ata_qc_complete(qc);
3283 spin_unlock_irqrestore(&host_set->lock, flags);
3285 atapi_request_sense(ap, dev, cmd);
3287 cmd->result = (CHECK_CONDITION << 1) | (DID_OK << 16);
3288 scsi_finish_command(cmd);
3294 spin_lock_irqsave(&host_set->lock, flags);
3296 /* hack alert! We cannot use the supplied completion
3297 * function from inside the ->eh_strategy_handler() thread.
3298 * libata is the only user of ->eh_strategy_handler() in
3299 * any kernel, so the default scsi_done() assumes it is
3300 * not being called from the SCSI EH.
3302 qc->scsidone = scsi_finish_command;
3304 switch (qc->tf.protocol) {
3307 case ATA_PROT_ATAPI_DMA:
3308 host_stat = ap->ops->bmdma_status(ap);
3310 /* before we do anything else, clear DMA-Start bit */
3311 ap->ops->bmdma_stop(qc);
3317 drv_stat = ata_chk_status(ap);
3319 /* ack bmdma irq events */
3320 ap->ops->irq_clear(ap);
3322 printk(KERN_ERR "ata%u: command 0x%x timeout, stat 0x%x host_stat 0x%x\n",
3323 ap->id, qc->tf.command, drv_stat, host_stat);
3325 /* complete taskfile transaction */
3326 ata_qc_complete(qc, ac_err_mask(drv_stat));
3330 spin_unlock_irqrestore(&host_set->lock, flags);
3337 * ata_eng_timeout - Handle timeout of queued command
3338 * @ap: Port on which timed-out command is active
3340 * Some part of the kernel (currently, only the SCSI layer)
3341 * has noticed that the active command on port @ap has not
3342 * completed after a specified length of time. Handle this
3343 * condition by disabling DMA (if necessary) and completing
3344 * transactions, with error if necessary.
3346 * This also handles the case of the "lost interrupt", where
3347 * for some reason (possibly hardware bug, possibly driver bug)
3348 * an interrupt was not delivered to the driver, even though the
3349 * transaction completed successfully.
3352 * Inherited from SCSI layer (none, can sleep)
3355 void ata_eng_timeout(struct ata_port *ap)
3357 struct ata_queued_cmd *qc;
3361 qc = ata_qc_from_tag(ap, ap->active_tag);
3365 printk(KERN_ERR "ata%u: BUG: timeout without command\n",
3375 * ata_qc_new - Request an available ATA command, for queueing
3376 * @ap: Port associated with device @dev
3377 * @dev: Device from whom we request an available command structure
3383 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
3385 struct ata_queued_cmd *qc = NULL;
3388 for (i = 0; i < ATA_MAX_QUEUE; i++)
3389 if (!test_and_set_bit(i, &ap->qactive)) {
3390 qc = ata_qc_from_tag(ap, i);
3401 * ata_qc_new_init - Request an available ATA command, and initialize it
3402 * @ap: Port associated with device @dev
3403 * @dev: Device from whom we request an available command structure
3409 struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
3410 struct ata_device *dev)
3412 struct ata_queued_cmd *qc;
3414 qc = ata_qc_new(ap);