2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/config.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/init.h>
40 #include <linux/list.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/blkdev.h>
45 #include <linux/delay.h>
46 #include <linux/timer.h>
47 #include <linux/interrupt.h>
48 #include <linux/completion.h>
49 #include <linux/suspend.h>
50 #include <linux/workqueue.h>
51 #include <linux/jiffies.h>
52 #include <linux/scatterlist.h>
53 #include <scsi/scsi.h>
54 #include "scsi_priv.h"
55 #include <scsi/scsi_cmnd.h>
56 #include <scsi/scsi_host.h>
57 #include <linux/libata.h>
59 #include <asm/semaphore.h>
60 #include <asm/byteorder.h>
64 static unsigned int ata_dev_init_params(struct ata_port *ap,
65 struct ata_device *dev);
66 static void ata_set_mode(struct ata_port *ap);
67 static unsigned int ata_dev_set_xfermode(struct ata_port *ap,
68 struct ata_device *dev);
69 static void ata_dev_xfermask(struct ata_port *ap, struct ata_device *dev);
71 static unsigned int ata_unique_id = 1;
72 static struct workqueue_struct *ata_wq;
74 int atapi_enabled = 1;
75 module_param(atapi_enabled, int, 0444);
76 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
79 module_param_named(fua, libata_fua, int, 0444);
80 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
82 MODULE_AUTHOR("Jeff Garzik");
83 MODULE_DESCRIPTION("Library module for ATA devices");
84 MODULE_LICENSE("GPL");
85 MODULE_VERSION(DRV_VERSION);
89 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
90 * @tf: Taskfile to convert
91 * @fis: Buffer into which data will output
92 * @pmp: Port multiplier port
94 * Converts a standard ATA taskfile to a Serial ATA
95 * FIS structure (Register - Host to Device).
98 * Inherited from caller.
101 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
103 fis[0] = 0x27; /* Register - Host to Device FIS */
104 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
105 bit 7 indicates Command FIS */
106 fis[2] = tf->command;
107 fis[3] = tf->feature;
114 fis[8] = tf->hob_lbal;
115 fis[9] = tf->hob_lbam;
116 fis[10] = tf->hob_lbah;
117 fis[11] = tf->hob_feature;
120 fis[13] = tf->hob_nsect;
131 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
132 * @fis: Buffer from which data will be input
133 * @tf: Taskfile to output
135 * Converts a serial ATA FIS structure to a standard ATA taskfile.
138 * Inherited from caller.
141 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
143 tf->command = fis[2]; /* status */
144 tf->feature = fis[3]; /* error */
151 tf->hob_lbal = fis[8];
152 tf->hob_lbam = fis[9];
153 tf->hob_lbah = fis[10];
156 tf->hob_nsect = fis[13];
159 static const u8 ata_rw_cmds[] = {
163 ATA_CMD_READ_MULTI_EXT,
164 ATA_CMD_WRITE_MULTI_EXT,
168 ATA_CMD_WRITE_MULTI_FUA_EXT,
172 ATA_CMD_PIO_READ_EXT,
173 ATA_CMD_PIO_WRITE_EXT,
186 ATA_CMD_WRITE_FUA_EXT
190 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
191 * @qc: command to examine and configure
193 * Examine the device configuration and tf->flags to calculate
194 * the proper read/write commands and protocol to use.
199 int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
201 struct ata_taskfile *tf = &qc->tf;
202 struct ata_device *dev = qc->dev;
205 int index, fua, lba48, write;
207 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
208 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
209 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
211 if (dev->flags & ATA_DFLAG_PIO) {
212 tf->protocol = ATA_PROT_PIO;
213 index = dev->multi_count ? 0 : 8;
214 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
215 /* Unable to use DMA due to host limitation */
216 tf->protocol = ATA_PROT_PIO;
217 index = dev->multi_count ? 0 : 8;
219 tf->protocol = ATA_PROT_DMA;
223 cmd = ata_rw_cmds[index + fua + lba48 + write];
232 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
233 * @pio_mask: pio_mask
234 * @mwdma_mask: mwdma_mask
235 * @udma_mask: udma_mask
237 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
238 * unsigned int xfer_mask.
246 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
247 unsigned int mwdma_mask,
248 unsigned int udma_mask)
250 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
251 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
252 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
256 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
257 * @xfer_mask: xfer_mask to unpack
258 * @pio_mask: resulting pio_mask
259 * @mwdma_mask: resulting mwdma_mask
260 * @udma_mask: resulting udma_mask
262 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
263 * Any NULL distination masks will be ignored.
265 static void ata_unpack_xfermask(unsigned int xfer_mask,
266 unsigned int *pio_mask,
267 unsigned int *mwdma_mask,
268 unsigned int *udma_mask)
271 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
273 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
275 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
278 static const struct ata_xfer_ent {
279 unsigned int shift, bits;
282 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
283 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
284 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
289 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
290 * @xfer_mask: xfer_mask of interest
292 * Return matching XFER_* value for @xfer_mask. Only the highest
293 * bit of @xfer_mask is considered.
299 * Matching XFER_* value, 0 if no match found.
301 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
303 int highbit = fls(xfer_mask) - 1;
304 const struct ata_xfer_ent *ent;
306 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
307 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
308 return ent->base + highbit - ent->shift;
313 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
314 * @xfer_mode: XFER_* of interest
316 * Return matching xfer_mask for @xfer_mode.
322 * Matching xfer_mask, 0 if no match found.
324 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
326 const struct ata_xfer_ent *ent;
328 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
329 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
330 return 1 << (ent->shift + xfer_mode - ent->base);
335 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
336 * @xfer_mode: XFER_* of interest
338 * Return matching xfer_shift for @xfer_mode.
344 * Matching xfer_shift, -1 if no match found.
346 static int ata_xfer_mode2shift(unsigned int xfer_mode)
348 const struct ata_xfer_ent *ent;
350 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
351 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
357 * ata_mode_string - convert xfer_mask to string
358 * @xfer_mask: mask of bits supported; only highest bit counts.
360 * Determine string which represents the highest speed
361 * (highest bit in @modemask).
367 * Constant C string representing highest speed listed in
368 * @mode_mask, or the constant C string "<n/a>".
370 static const char *ata_mode_string(unsigned int xfer_mask)
372 static const char * const xfer_mode_str[] = {
392 highbit = fls(xfer_mask) - 1;
393 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
394 return xfer_mode_str[highbit];
398 static void ata_dev_disable(struct ata_port *ap, struct ata_device *dev)
400 if (ata_dev_present(dev)) {
401 printk(KERN_WARNING "ata%u: dev %u disabled\n",
408 * ata_pio_devchk - PATA device presence detection
409 * @ap: ATA channel to examine
410 * @device: Device to examine (starting at zero)
412 * This technique was originally described in
413 * Hale Landis's ATADRVR (www.ata-atapi.com), and
414 * later found its way into the ATA/ATAPI spec.
416 * Write a pattern to the ATA shadow registers,
417 * and if a device is present, it will respond by
418 * correctly storing and echoing back the
419 * ATA shadow register contents.
425 static unsigned int ata_pio_devchk(struct ata_port *ap,
428 struct ata_ioports *ioaddr = &ap->ioaddr;
431 ap->ops->dev_select(ap, device);
433 outb(0x55, ioaddr->nsect_addr);
434 outb(0xaa, ioaddr->lbal_addr);
436 outb(0xaa, ioaddr->nsect_addr);
437 outb(0x55, ioaddr->lbal_addr);
439 outb(0x55, ioaddr->nsect_addr);
440 outb(0xaa, ioaddr->lbal_addr);
442 nsect = inb(ioaddr->nsect_addr);
443 lbal = inb(ioaddr->lbal_addr);
445 if ((nsect == 0x55) && (lbal == 0xaa))
446 return 1; /* we found a device */
448 return 0; /* nothing found */
452 * ata_mmio_devchk - PATA device presence detection
453 * @ap: ATA channel to examine
454 * @device: Device to examine (starting at zero)
456 * This technique was originally described in
457 * Hale Landis's ATADRVR (www.ata-atapi.com), and
458 * later found its way into the ATA/ATAPI spec.
460 * Write a pattern to the ATA shadow registers,
461 * and if a device is present, it will respond by
462 * correctly storing and echoing back the
463 * ATA shadow register contents.
469 static unsigned int ata_mmio_devchk(struct ata_port *ap,
472 struct ata_ioports *ioaddr = &ap->ioaddr;
475 ap->ops->dev_select(ap, device);
477 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
478 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
480 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
481 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
483 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
484 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
486 nsect = readb((void __iomem *) ioaddr->nsect_addr);
487 lbal = readb((void __iomem *) ioaddr->lbal_addr);
489 if ((nsect == 0x55) && (lbal == 0xaa))
490 return 1; /* we found a device */
492 return 0; /* nothing found */
496 * ata_devchk - PATA device presence detection
497 * @ap: ATA channel to examine
498 * @device: Device to examine (starting at zero)
500 * Dispatch ATA device presence detection, depending
501 * on whether we are using PIO or MMIO to talk to the
502 * ATA shadow registers.
508 static unsigned int ata_devchk(struct ata_port *ap,
511 if (ap->flags & ATA_FLAG_MMIO)
512 return ata_mmio_devchk(ap, device);
513 return ata_pio_devchk(ap, device);
517 * ata_dev_classify - determine device type based on ATA-spec signature
518 * @tf: ATA taskfile register set for device to be identified
520 * Determine from taskfile register contents whether a device is
521 * ATA or ATAPI, as per "Signature and persistence" section
522 * of ATA/PI spec (volume 1, sect 5.14).
528 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
529 * the event of failure.
532 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
534 /* Apple's open source Darwin code hints that some devices only
535 * put a proper signature into the LBA mid/high registers,
536 * So, we only check those. It's sufficient for uniqueness.
539 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
540 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
541 DPRINTK("found ATA device by sig\n");
545 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
546 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
547 DPRINTK("found ATAPI device by sig\n");
548 return ATA_DEV_ATAPI;
551 DPRINTK("unknown device\n");
552 return ATA_DEV_UNKNOWN;
556 * ata_dev_try_classify - Parse returned ATA device signature
557 * @ap: ATA channel to examine
558 * @device: Device to examine (starting at zero)
559 * @r_err: Value of error register on completion
561 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
562 * an ATA/ATAPI-defined set of values is placed in the ATA
563 * shadow registers, indicating the results of device detection
566 * Select the ATA device, and read the values from the ATA shadow
567 * registers. Then parse according to the Error register value,
568 * and the spec-defined values examined by ata_dev_classify().
574 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
578 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
580 struct ata_taskfile tf;
584 ap->ops->dev_select(ap, device);
586 memset(&tf, 0, sizeof(tf));
588 ap->ops->tf_read(ap, &tf);
593 /* see if device passed diags */
596 else if ((device == 0) && (err == 0x81))
601 /* determine if device is ATA or ATAPI */
602 class = ata_dev_classify(&tf);
604 if (class == ATA_DEV_UNKNOWN)
606 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
612 * ata_id_string - Convert IDENTIFY DEVICE page into string
613 * @id: IDENTIFY DEVICE results we will examine
614 * @s: string into which data is output
615 * @ofs: offset into identify device page
616 * @len: length of string to return. must be an even number.
618 * The strings in the IDENTIFY DEVICE page are broken up into
619 * 16-bit chunks. Run through the string, and output each
620 * 8-bit chunk linearly, regardless of platform.
626 void ata_id_string(const u16 *id, unsigned char *s,
627 unsigned int ofs, unsigned int len)
646 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
647 * @id: IDENTIFY DEVICE results we will examine
648 * @s: string into which data is output
649 * @ofs: offset into identify device page
650 * @len: length of string to return. must be an odd number.
652 * This function is identical to ata_id_string except that it
653 * trims trailing spaces and terminates the resulting string with
654 * null. @len must be actual maximum length (even number) + 1.
659 void ata_id_c_string(const u16 *id, unsigned char *s,
660 unsigned int ofs, unsigned int len)
666 ata_id_string(id, s, ofs, len - 1);
668 p = s + strnlen(s, len - 1);
669 while (p > s && p[-1] == ' ')
674 static u64 ata_id_n_sectors(const u16 *id)
676 if (ata_id_has_lba(id)) {
677 if (ata_id_has_lba48(id))
678 return ata_id_u64(id, 100);
680 return ata_id_u32(id, 60);
682 if (ata_id_current_chs_valid(id))
683 return ata_id_u32(id, 57);
685 return id[1] * id[3] * id[6];
690 * ata_noop_dev_select - Select device 0/1 on ATA bus
691 * @ap: ATA channel to manipulate
692 * @device: ATA device (numbered from zero) to select
694 * This function performs no actual function.
696 * May be used as the dev_select() entry in ata_port_operations.
701 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
707 * ata_std_dev_select - Select device 0/1 on ATA bus
708 * @ap: ATA channel to manipulate
709 * @device: ATA device (numbered from zero) to select
711 * Use the method defined in the ATA specification to
712 * make either device 0, or device 1, active on the
713 * ATA channel. Works with both PIO and MMIO.
715 * May be used as the dev_select() entry in ata_port_operations.
721 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
726 tmp = ATA_DEVICE_OBS;
728 tmp = ATA_DEVICE_OBS | ATA_DEV1;
730 if (ap->flags & ATA_FLAG_MMIO) {
731 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
733 outb(tmp, ap->ioaddr.device_addr);
735 ata_pause(ap); /* needed; also flushes, for mmio */
739 * ata_dev_select - Select device 0/1 on ATA bus
740 * @ap: ATA channel to manipulate
741 * @device: ATA device (numbered from zero) to select
742 * @wait: non-zero to wait for Status register BSY bit to clear
743 * @can_sleep: non-zero if context allows sleeping
745 * Use the method defined in the ATA specification to
746 * make either device 0, or device 1, active on the
749 * This is a high-level version of ata_std_dev_select(),
750 * which additionally provides the services of inserting
751 * the proper pauses and status polling, where needed.
757 void ata_dev_select(struct ata_port *ap, unsigned int device,
758 unsigned int wait, unsigned int can_sleep)
760 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
761 ap->id, device, wait);
766 ap->ops->dev_select(ap, device);
769 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
776 * ata_dump_id - IDENTIFY DEVICE info debugging output
777 * @id: IDENTIFY DEVICE page to dump
779 * Dump selected 16-bit words from the given IDENTIFY DEVICE
786 static inline void ata_dump_id(const u16 *id)
788 DPRINTK("49==0x%04x "
798 DPRINTK("80==0x%04x "
808 DPRINTK("88==0x%04x "
815 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
816 * @id: IDENTIFY data to compute xfer mask from
818 * Compute the xfermask for this device. This is not as trivial
819 * as it seems if we must consider early devices correctly.
821 * FIXME: pre IDE drive timing (do we care ?).
829 static unsigned int ata_id_xfermask(const u16 *id)
831 unsigned int pio_mask, mwdma_mask, udma_mask;
833 /* Usual case. Word 53 indicates word 64 is valid */
834 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
835 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
839 /* If word 64 isn't valid then Word 51 high byte holds
840 * the PIO timing number for the maximum. Turn it into
843 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
845 /* But wait.. there's more. Design your standards by
846 * committee and you too can get a free iordy field to
847 * process. However its the speeds not the modes that
848 * are supported... Note drivers using the timing API
849 * will get this right anyway
853 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
856 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
857 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
859 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
863 * ata_port_queue_task - Queue port_task
864 * @ap: The ata_port to queue port_task for
866 * Schedule @fn(@data) for execution after @delay jiffies using
867 * port_task. There is one port_task per port and it's the
868 * user(low level driver)'s responsibility to make sure that only
869 * one task is active at any given time.
871 * libata core layer takes care of synchronization between
872 * port_task and EH. ata_port_queue_task() may be ignored for EH
876 * Inherited from caller.
878 void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
883 if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK)
886 PREPARE_WORK(&ap->port_task, fn, data);
889 rc = queue_work(ata_wq, &ap->port_task);
891 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
893 /* rc == 0 means that another user is using port task */
898 * ata_port_flush_task - Flush port_task
899 * @ap: The ata_port to flush port_task for
901 * After this function completes, port_task is guranteed not to
902 * be running or scheduled.
905 * Kernel thread context (may sleep)
907 void ata_port_flush_task(struct ata_port *ap)
913 spin_lock_irqsave(&ap->host_set->lock, flags);
914 ap->flags |= ATA_FLAG_FLUSH_PORT_TASK;
915 spin_unlock_irqrestore(&ap->host_set->lock, flags);
917 DPRINTK("flush #1\n");
918 flush_workqueue(ata_wq);
921 * At this point, if a task is running, it's guaranteed to see
922 * the FLUSH flag; thus, it will never queue pio tasks again.
925 if (!cancel_delayed_work(&ap->port_task)) {
926 DPRINTK("flush #2\n");
927 flush_workqueue(ata_wq);
930 spin_lock_irqsave(&ap->host_set->lock, flags);
931 ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK;
932 spin_unlock_irqrestore(&ap->host_set->lock, flags);
937 void ata_qc_complete_internal(struct ata_queued_cmd *qc)
939 struct completion *waiting = qc->private_data;
941 qc->ap->ops->tf_read(qc->ap, &qc->tf);
946 * ata_exec_internal - execute libata internal command
947 * @ap: Port to which the command is sent
948 * @dev: Device to which the command is sent
949 * @tf: Taskfile registers for the command and the result
950 * @dma_dir: Data tranfer direction of the command
951 * @buf: Data buffer of the command
952 * @buflen: Length of data buffer
954 * Executes libata internal command with timeout. @tf contains
955 * command on entry and result on return. Timeout and error
956 * conditions are reported via return value. No recovery action
957 * is taken after a command times out. It's caller's duty to
958 * clean up after timeout.
961 * None. Should be called with kernel context, might sleep.
965 ata_exec_internal(struct ata_port *ap, struct ata_device *dev,
966 struct ata_taskfile *tf,
967 int dma_dir, void *buf, unsigned int buflen)
969 u8 command = tf->command;
970 struct ata_queued_cmd *qc;
971 DECLARE_COMPLETION(wait);
973 unsigned int err_mask;
975 spin_lock_irqsave(&ap->host_set->lock, flags);
977 qc = ata_qc_new_init(ap, dev);
981 qc->dma_dir = dma_dir;
982 if (dma_dir != DMA_NONE) {
983 ata_sg_init_one(qc, buf, buflen);
984 qc->nsect = buflen / ATA_SECT_SIZE;
987 qc->private_data = &wait;
988 qc->complete_fn = ata_qc_complete_internal;
990 qc->err_mask = ata_qc_issue(qc);
994 spin_unlock_irqrestore(&ap->host_set->lock, flags);
996 if (!wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL)) {
997 ata_port_flush_task(ap);
999 spin_lock_irqsave(&ap->host_set->lock, flags);
1001 /* We're racing with irq here. If we lose, the
1002 * following test prevents us from completing the qc
1003 * again. If completion irq occurs after here but
1004 * before the caller cleans up, it will result in a
1005 * spurious interrupt. We can live with that.
1007 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1008 qc->err_mask = AC_ERR_TIMEOUT;
1009 ata_qc_complete(qc);
1010 printk(KERN_WARNING "ata%u: qc timeout (cmd 0x%x)\n",
1014 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1018 err_mask = qc->err_mask;
1022 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1023 * Until those drivers are fixed, we detect the condition
1024 * here, fail the command with AC_ERR_SYSTEM and reenable the
1027 * Note that this doesn't change any behavior as internal
1028 * command failure results in disabling the device in the
1029 * higher layer for LLDDs without new reset/EH callbacks.
1031 * Kill the following code as soon as those drivers are fixed.
1033 if (ap->flags & ATA_FLAG_PORT_DISABLED) {
1034 err_mask |= AC_ERR_SYSTEM;
1042 * ata_pio_need_iordy - check if iordy needed
1045 * Check if the current speed of the device requires IORDY. Used
1046 * by various controllers for chip configuration.
1049 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1052 int speed = adev->pio_mode - XFER_PIO_0;
1059 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1061 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1062 pio = adev->id[ATA_ID_EIDE_PIO];
1063 /* Is the speed faster than the drive allows non IORDY ? */
1065 /* This is cycle times not frequency - watch the logic! */
1066 if (pio > 240) /* PIO2 is 240nS per cycle */
1075 * ata_dev_read_id - Read ID data from the specified device
1076 * @ap: port on which target device resides
1077 * @dev: target device
1078 * @p_class: pointer to class of the target device (may be changed)
1079 * @post_reset: is this read ID post-reset?
1080 * @p_id: read IDENTIFY page (newly allocated)
1082 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1083 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1084 * devices. This function also takes care of EDD signature
1085 * misreporting (to be removed once EDD support is gone) and
1086 * issues ATA_CMD_INIT_DEV_PARAMS for pre-ATA4 drives.
1089 * Kernel thread context (may sleep)
1092 * 0 on success, -errno otherwise.
1094 static int ata_dev_read_id(struct ata_port *ap, struct ata_device *dev,
1095 unsigned int *p_class, int post_reset, u16 **p_id)
1097 unsigned int class = *p_class;
1098 unsigned int using_edd;
1099 struct ata_taskfile tf;
1100 unsigned int err_mask = 0;
1105 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1107 if (ap->ops->probe_reset ||
1108 ap->flags & (ATA_FLAG_SRST | ATA_FLAG_SATA_RESET))
1113 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1115 id = kmalloc(sizeof(id[0]) * ATA_ID_WORDS, GFP_KERNEL);
1118 reason = "out of memory";
1123 ata_tf_init(ap, &tf, dev->devno);
1127 tf.command = ATA_CMD_ID_ATA;
1130 tf.command = ATA_CMD_ID_ATAPI;
1134 reason = "unsupported class";
1138 tf.protocol = ATA_PROT_PIO;
1140 err_mask = ata_exec_internal(ap, dev, &tf, DMA_FROM_DEVICE,
1141 id, sizeof(id[0]) * ATA_ID_WORDS);
1145 reason = "I/O error";
1147 if (err_mask & ~AC_ERR_DEV)
1151 * arg! EDD works for all test cases, but seems to return
1152 * the ATA signature for some ATAPI devices. Until the
1153 * reason for this is found and fixed, we fix up the mess
1154 * here. If IDENTIFY DEVICE returns command aborted
1155 * (as ATAPI devices do), then we issue an
1156 * IDENTIFY PACKET DEVICE.
1158 * ATA software reset (SRST, the default) does not appear
1159 * to have this problem.
1161 if ((using_edd) && (class == ATA_DEV_ATA)) {
1162 u8 err = tf.feature;
1163 if (err & ATA_ABORTED) {
1164 class = ATA_DEV_ATAPI;
1171 swap_buf_le16(id, ATA_ID_WORDS);
1174 if ((class == ATA_DEV_ATA) != ata_id_is_ata(id)) {
1176 reason = "device reports illegal type";
1180 if (post_reset && class == ATA_DEV_ATA) {
1182 * The exact sequence expected by certain pre-ATA4 drives is:
1185 * INITIALIZE DEVICE PARAMETERS
1187 * Some drives were very specific about that exact sequence.
1189 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1190 err_mask = ata_dev_init_params(ap, dev);
1193 reason = "INIT_DEV_PARAMS failed";
1197 /* current CHS translation info (id[53-58]) might be
1198 * changed. reread the identify device info.
1210 printk(KERN_WARNING "ata%u: dev %u failed to IDENTIFY (%s)\n",
1211 ap->id, dev->devno, reason);
1216 static inline u8 ata_dev_knobble(const struct ata_port *ap,
1217 struct ata_device *dev)
1219 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1223 * ata_dev_configure - Configure the specified ATA/ATAPI device
1224 * @ap: Port on which target device resides
1225 * @dev: Target device to configure
1226 * @print_info: Enable device info printout
1228 * Configure @dev according to @dev->id. Generic and low-level
1229 * driver specific fixups are also applied.
1232 * Kernel thread context (may sleep)
1235 * 0 on success, -errno otherwise
1237 static int ata_dev_configure(struct ata_port *ap, struct ata_device *dev,
1240 const u16 *id = dev->id;
1241 unsigned int xfer_mask;
1244 if (!ata_dev_present(dev)) {
1245 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
1246 ap->id, dev->devno);
1250 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1252 /* print device capabilities */
1254 printk(KERN_DEBUG "ata%u: dev %u cfg 49:%04x 82:%04x 83:%04x "
1255 "84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1256 ap->id, dev->devno, id[49], id[82], id[83],
1257 id[84], id[85], id[86], id[87], id[88]);
1259 /* initialize to-be-configured parameters */
1261 dev->max_sectors = 0;
1269 * common ATA, ATAPI feature tests
1272 /* find max transfer mode; for printk only */
1273 xfer_mask = ata_id_xfermask(id);
1277 /* ATA-specific feature tests */
1278 if (dev->class == ATA_DEV_ATA) {
1279 dev->n_sectors = ata_id_n_sectors(id);
1281 if (ata_id_has_lba(id)) {
1282 const char *lba_desc;
1285 dev->flags |= ATA_DFLAG_LBA;
1286 if (ata_id_has_lba48(id)) {
1287 dev->flags |= ATA_DFLAG_LBA48;
1291 /* print device info to dmesg */
1293 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1294 "max %s, %Lu sectors: %s\n",
1296 ata_id_major_version(id),
1297 ata_mode_string(xfer_mask),
1298 (unsigned long long)dev->n_sectors,
1303 /* Default translation */
1304 dev->cylinders = id[1];
1306 dev->sectors = id[6];
1308 if (ata_id_current_chs_valid(id)) {
1309 /* Current CHS translation is valid. */
1310 dev->cylinders = id[54];
1311 dev->heads = id[55];
1312 dev->sectors = id[56];
1315 /* print device info to dmesg */
1317 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1318 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1320 ata_id_major_version(id),
1321 ata_mode_string(xfer_mask),
1322 (unsigned long long)dev->n_sectors,
1323 dev->cylinders, dev->heads, dev->sectors);
1329 /* ATAPI-specific feature tests */
1330 else if (dev->class == ATA_DEV_ATAPI) {
1331 rc = atapi_cdb_len(id);
1332 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1333 printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
1337 dev->cdb_len = (unsigned int) rc;
1339 /* print device info to dmesg */
1341 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
1342 ap->id, dev->devno, ata_mode_string(xfer_mask));
1345 ap->host->max_cmd_len = 0;
1346 for (i = 0; i < ATA_MAX_DEVICES; i++)
1347 ap->host->max_cmd_len = max_t(unsigned int,
1348 ap->host->max_cmd_len,
1349 ap->device[i].cdb_len);
1351 /* limit bridge transfers to udma5, 200 sectors */
1352 if (ata_dev_knobble(ap, dev)) {
1354 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1355 ap->id, dev->devno);
1356 dev->udma_mask &= ATA_UDMA5;
1357 dev->max_sectors = ATA_MAX_SECTORS;
1360 if (ap->ops->dev_config)
1361 ap->ops->dev_config(ap, dev);
1363 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
1367 DPRINTK("EXIT, err\n");
1372 * ata_bus_probe - Reset and probe ATA bus
1375 * Master ATA bus probing function. Initiates a hardware-dependent
1376 * bus reset, then attempts to identify any devices found on
1380 * PCI/etc. bus probe sem.
1383 * Zero on success, non-zero on error.
1386 static int ata_bus_probe(struct ata_port *ap)
1388 unsigned int classes[ATA_MAX_DEVICES];
1389 unsigned int i, rc, found = 0;
1393 /* reset and determine device classes */
1394 for (i = 0; i < ATA_MAX_DEVICES; i++)
1395 classes[i] = ATA_DEV_UNKNOWN;
1397 if (ap->ops->probe_reset) {
1398 rc = ap->ops->probe_reset(ap, classes);
1400 printk("ata%u: reset failed (errno=%d)\n", ap->id, rc);
1404 ap->ops->phy_reset(ap);
1406 if (!(ap->flags & ATA_FLAG_PORT_DISABLED))
1407 for (i = 0; i < ATA_MAX_DEVICES; i++)
1408 classes[i] = ap->device[i].class;
1413 for (i = 0; i < ATA_MAX_DEVICES; i++)
1414 if (classes[i] == ATA_DEV_UNKNOWN)
1415 classes[i] = ATA_DEV_NONE;
1417 /* read IDENTIFY page and configure devices */
1418 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1419 struct ata_device *dev = &ap->device[i];
1421 dev->class = classes[i];
1423 if (!ata_dev_present(dev))
1426 WARN_ON(dev->id != NULL);
1427 if (ata_dev_read_id(ap, dev, &dev->class, 1, &dev->id)) {
1428 dev->class = ATA_DEV_NONE;
1432 if (ata_dev_configure(ap, dev, 1)) {
1433 ata_dev_disable(ap, dev);
1441 goto err_out_disable;
1444 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1445 goto err_out_disable;
1450 ap->ops->port_disable(ap);
1455 * ata_port_probe - Mark port as enabled
1456 * @ap: Port for which we indicate enablement
1458 * Modify @ap data structure such that the system
1459 * thinks that the entire port is enabled.
1461 * LOCKING: host_set lock, or some other form of
1465 void ata_port_probe(struct ata_port *ap)
1467 ap->flags &= ~ATA_FLAG_PORT_DISABLED;
1471 * sata_print_link_status - Print SATA link status
1472 * @ap: SATA port to printk link status about
1474 * This function prints link speed and status of a SATA link.
1479 static void sata_print_link_status(struct ata_port *ap)
1484 if (!ap->ops->scr_read)
1487 sstatus = scr_read(ap, SCR_STATUS);
1489 if (sata_dev_present(ap)) {
1490 tmp = (sstatus >> 4) & 0xf;
1493 else if (tmp & (1 << 1))
1496 speed = "<unknown>";
1497 printk(KERN_INFO "ata%u: SATA link up %s Gbps (SStatus %X)\n",
1498 ap->id, speed, sstatus);
1500 printk(KERN_INFO "ata%u: SATA link down (SStatus %X)\n",
1506 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1507 * @ap: SATA port associated with target SATA PHY.
1509 * This function issues commands to standard SATA Sxxx
1510 * PHY registers, to wake up the phy (and device), and
1511 * clear any reset condition.
1514 * PCI/etc. bus probe sem.
1517 void __sata_phy_reset(struct ata_port *ap)
1520 unsigned long timeout = jiffies + (HZ * 5);
1522 if (ap->flags & ATA_FLAG_SATA_RESET) {
1523 /* issue phy wake/reset */
1524 scr_write_flush(ap, SCR_CONTROL, 0x301);
1525 /* Couldn't find anything in SATA I/II specs, but
1526 * AHCI-1.1 10.4.2 says at least 1 ms. */
1529 scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
1531 /* wait for phy to become ready, if necessary */
1534 sstatus = scr_read(ap, SCR_STATUS);
1535 if ((sstatus & 0xf) != 1)
1537 } while (time_before(jiffies, timeout));
1539 /* print link status */
1540 sata_print_link_status(ap);
1542 /* TODO: phy layer with polling, timeouts, etc. */
1543 if (sata_dev_present(ap))
1546 ata_port_disable(ap);
1548 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1551 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1552 ata_port_disable(ap);
1556 ap->cbl = ATA_CBL_SATA;
1560 * sata_phy_reset - Reset SATA bus.
1561 * @ap: SATA port associated with target SATA PHY.
1563 * This function resets the SATA bus, and then probes
1564 * the bus for devices.
1567 * PCI/etc. bus probe sem.
1570 void sata_phy_reset(struct ata_port *ap)
1572 __sata_phy_reset(ap);
1573 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1579 * ata_dev_pair - return other device on cable
1583 * Obtain the other device on the same cable, or if none is
1584 * present NULL is returned
1587 struct ata_device *ata_dev_pair(struct ata_port *ap, struct ata_device *adev)
1589 struct ata_device *pair = &ap->device[1 - adev->devno];
1590 if (!ata_dev_present(pair))
1596 * ata_port_disable - Disable port.
1597 * @ap: Port to be disabled.
1599 * Modify @ap data structure such that the system
1600 * thinks that the entire port is disabled, and should
1601 * never attempt to probe or communicate with devices
1604 * LOCKING: host_set lock, or some other form of
1608 void ata_port_disable(struct ata_port *ap)
1610 ap->device[0].class = ATA_DEV_NONE;
1611 ap->device[1].class = ATA_DEV_NONE;
1612 ap->flags |= ATA_FLAG_PORT_DISABLED;
1616 * This mode timing computation functionality is ported over from
1617 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1620 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1621 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1622 * for PIO 5, which is a nonstandard extension and UDMA6, which
1623 * is currently supported only by Maxtor drives.
1626 static const struct ata_timing ata_timing[] = {
1628 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1629 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1630 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1631 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1633 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1634 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1635 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1637 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1639 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1640 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1641 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1643 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1644 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1645 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1647 /* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1648 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1649 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1651 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1652 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1653 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1655 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1660 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1661 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1663 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1665 q->setup = EZ(t->setup * 1000, T);
1666 q->act8b = EZ(t->act8b * 1000, T);
1667 q->rec8b = EZ(t->rec8b * 1000, T);
1668 q->cyc8b = EZ(t->cyc8b * 1000, T);
1669 q->active = EZ(t->active * 1000, T);
1670 q->recover = EZ(t->recover * 1000, T);
1671 q->cycle = EZ(t->cycle * 1000, T);
1672 q->udma = EZ(t->udma * 1000, UT);
1675 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1676 struct ata_timing *m, unsigned int what)
1678 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1679 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1680 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1681 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1682 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1683 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1684 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1685 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1688 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1690 const struct ata_timing *t;
1692 for (t = ata_timing; t->mode != speed; t++)
1693 if (t->mode == 0xFF)
1698 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1699 struct ata_timing *t, int T, int UT)
1701 const struct ata_timing *s;
1702 struct ata_timing p;
1708 if (!(s = ata_timing_find_mode(speed)))
1711 memcpy(t, s, sizeof(*s));
1714 * If the drive is an EIDE drive, it can tell us it needs extended
1715 * PIO/MW_DMA cycle timing.
1718 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1719 memset(&p, 0, sizeof(p));
1720 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1721 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1722 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1723 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1724 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1726 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1730 * Convert the timing to bus clock counts.
1733 ata_timing_quantize(t, t, T, UT);
1736 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1737 * S.M.A.R.T * and some other commands. We have to ensure that the
1738 * DMA cycle timing is slower/equal than the fastest PIO timing.
1741 if (speed > XFER_PIO_4) {
1742 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1743 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1747 * Lengthen active & recovery time so that cycle time is correct.
1750 if (t->act8b + t->rec8b < t->cyc8b) {
1751 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1752 t->rec8b = t->cyc8b - t->act8b;
1755 if (t->active + t->recover < t->cycle) {
1756 t->active += (t->cycle - (t->active + t->recover)) / 2;
1757 t->recover = t->cycle - t->active;
1763 static int ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
1765 unsigned int err_mask;
1768 if (dev->xfer_shift == ATA_SHIFT_PIO)
1769 dev->flags |= ATA_DFLAG_PIO;
1771 err_mask = ata_dev_set_xfermode(ap, dev);
1774 "ata%u: failed to set xfermode (err_mask=0x%x)\n",
1779 rc = ata_dev_revalidate(ap, dev, 0);
1782 "ata%u: failed to revalidate after set xfermode\n",
1787 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
1788 dev->xfer_shift, (int)dev->xfer_mode);
1790 printk(KERN_INFO "ata%u: dev %u configured for %s\n",
1792 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
1796 static int ata_host_set_pio(struct ata_port *ap)
1800 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1801 struct ata_device *dev = &ap->device[i];
1803 if (!ata_dev_present(dev))
1806 if (!dev->pio_mode) {
1807 printk(KERN_WARNING "ata%u: no PIO support for device %d.\n", ap->id, i);
1811 dev->xfer_mode = dev->pio_mode;
1812 dev->xfer_shift = ATA_SHIFT_PIO;
1813 if (ap->ops->set_piomode)
1814 ap->ops->set_piomode(ap, dev);
1820 static void ata_host_set_dma(struct ata_port *ap)
1824 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1825 struct ata_device *dev = &ap->device[i];
1827 if (!ata_dev_present(dev) || !dev->dma_mode)
1830 dev->xfer_mode = dev->dma_mode;
1831 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
1832 if (ap->ops->set_dmamode)
1833 ap->ops->set_dmamode(ap, dev);
1838 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1839 * @ap: port on which timings will be programmed
1841 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.).
1844 * PCI/etc. bus probe sem.
1846 static void ata_set_mode(struct ata_port *ap)
1850 /* step 1: calculate xfer_mask */
1851 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1852 struct ata_device *dev = &ap->device[i];
1853 unsigned int pio_mask, dma_mask;
1855 if (!ata_dev_present(dev))
1858 ata_dev_xfermask(ap, dev);
1860 /* TODO: let LLDD filter dev->*_mask here */
1862 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
1863 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
1864 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
1865 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
1868 /* step 2: always set host PIO timings */
1869 rc = ata_host_set_pio(ap);
1873 /* step 3: set host DMA timings */
1874 ata_host_set_dma(ap);
1876 /* step 4: update devices' xfer mode */
1877 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1878 struct ata_device *dev = &ap->device[i];
1880 if (!ata_dev_present(dev))
1883 if (ata_dev_set_mode(ap, dev))
1887 if (ap->ops->post_set_mode)
1888 ap->ops->post_set_mode(ap);
1893 ata_port_disable(ap);
1897 * ata_tf_to_host - issue ATA taskfile to host controller
1898 * @ap: port to which command is being issued
1899 * @tf: ATA taskfile register set
1901 * Issues ATA taskfile register set to ATA host controller,
1902 * with proper synchronization with interrupt handler and
1906 * spin_lock_irqsave(host_set lock)
1909 static inline void ata_tf_to_host(struct ata_port *ap,
1910 const struct ata_taskfile *tf)
1912 ap->ops->tf_load(ap, tf);
1913 ap->ops->exec_command(ap, tf);
1917 * ata_busy_sleep - sleep until BSY clears, or timeout
1918 * @ap: port containing status register to be polled
1919 * @tmout_pat: impatience timeout
1920 * @tmout: overall timeout
1922 * Sleep until ATA Status register bit BSY clears,
1923 * or a timeout occurs.
1928 unsigned int ata_busy_sleep (struct ata_port *ap,
1929 unsigned long tmout_pat, unsigned long tmout)
1931 unsigned long timer_start, timeout;
1934 status = ata_busy_wait(ap, ATA_BUSY, 300);
1935 timer_start = jiffies;
1936 timeout = timer_start + tmout_pat;
1937 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1939 status = ata_busy_wait(ap, ATA_BUSY, 3);
1942 if (status & ATA_BUSY)
1943 printk(KERN_WARNING "ata%u is slow to respond, "
1944 "please be patient\n", ap->id);
1946 timeout = timer_start + tmout;
1947 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1949 status = ata_chk_status(ap);
1952 if (status & ATA_BUSY) {
1953 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
1954 ap->id, tmout / HZ);
1961 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
1963 struct ata_ioports *ioaddr = &ap->ioaddr;
1964 unsigned int dev0 = devmask & (1 << 0);
1965 unsigned int dev1 = devmask & (1 << 1);
1966 unsigned long timeout;
1968 /* if device 0 was found in ata_devchk, wait for its
1972 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1974 /* if device 1 was found in ata_devchk, wait for
1975 * register access, then wait for BSY to clear
1977 timeout = jiffies + ATA_TMOUT_BOOT;
1981 ap->ops->dev_select(ap, 1);
1982 if (ap->flags & ATA_FLAG_MMIO) {
1983 nsect = readb((void __iomem *) ioaddr->nsect_addr);
1984 lbal = readb((void __iomem *) ioaddr->lbal_addr);
1986 nsect = inb(ioaddr->nsect_addr);
1987 lbal = inb(ioaddr->lbal_addr);
1989 if ((nsect == 1) && (lbal == 1))
1991 if (time_after(jiffies, timeout)) {
1995 msleep(50); /* give drive a breather */
1998 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2000 /* is all this really necessary? */
2001 ap->ops->dev_select(ap, 0);
2003 ap->ops->dev_select(ap, 1);
2005 ap->ops->dev_select(ap, 0);
2009 * ata_bus_edd - Issue EXECUTE DEVICE DIAGNOSTIC command.
2010 * @ap: Port to reset and probe
2012 * Use the EXECUTE DEVICE DIAGNOSTIC command to reset and
2013 * probe the bus. Not often used these days.
2016 * PCI/etc. bus probe sem.
2017 * Obtains host_set lock.
2021 static unsigned int ata_bus_edd(struct ata_port *ap)
2023 struct ata_taskfile tf;
2024 unsigned long flags;
2026 /* set up execute-device-diag (bus reset) taskfile */
2027 /* also, take interrupts to a known state (disabled) */
2028 DPRINTK("execute-device-diag\n");
2029 ata_tf_init(ap, &tf, 0);
2031 tf.command = ATA_CMD_EDD;
2032 tf.protocol = ATA_PROT_NODATA;
2035 spin_lock_irqsave(&ap->host_set->lock, flags);
2036 ata_tf_to_host(ap, &tf);
2037 spin_unlock_irqrestore(&ap->host_set->lock, flags);
2039 /* spec says at least 2ms. but who knows with those
2040 * crazy ATAPI devices...
2044 return ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2047 static unsigned int ata_bus_softreset(struct ata_port *ap,
2048 unsigned int devmask)
2050 struct ata_ioports *ioaddr = &ap->ioaddr;
2052 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2054 /* software reset. causes dev0 to be selected */
2055 if (ap->flags & ATA_FLAG_MMIO) {
2056 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2057 udelay(20); /* FIXME: flush */
2058 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2059 udelay(20); /* FIXME: flush */
2060 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2062 outb(ap->ctl, ioaddr->ctl_addr);
2064 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2066 outb(ap->ctl, ioaddr->ctl_addr);
2069 /* spec mandates ">= 2ms" before checking status.
2070 * We wait 150ms, because that was the magic delay used for
2071 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2072 * between when the ATA command register is written, and then
2073 * status is checked. Because waiting for "a while" before
2074 * checking status is fine, post SRST, we perform this magic
2075 * delay here as well.
2077 * Old drivers/ide uses the 2mS rule and then waits for ready
2082 /* Before we perform post reset processing we want to see if
2083 the bus shows 0xFF because the odd clown forgets the D7 pulldown
2086 if (ata_check_status(ap) == 0xFF)
2087 return 1; /* Positive is failure for some reason */
2089 ata_bus_post_reset(ap, devmask);
2095 * ata_bus_reset - reset host port and associated ATA channel
2096 * @ap: port to reset
2098 * This is typically the first time we actually start issuing
2099 * commands to the ATA channel. We wait for BSY to clear, then
2100 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2101 * result. Determine what devices, if any, are on the channel
2102 * by looking at the device 0/1 error register. Look at the signature
2103 * stored in each device's taskfile registers, to determine if
2104 * the device is ATA or ATAPI.
2107 * PCI/etc. bus probe sem.
2108 * Obtains host_set lock.
2111 * Sets ATA_FLAG_PORT_DISABLED if bus reset fails.
2114 void ata_bus_reset(struct ata_port *ap)
2116 struct ata_ioports *ioaddr = &ap->ioaddr;
2117 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2119 unsigned int dev0, dev1 = 0, rc = 0, devmask = 0;
2121 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2123 /* determine if device 0/1 are present */
2124 if (ap->flags & ATA_FLAG_SATA_RESET)
2127 dev0 = ata_devchk(ap, 0);
2129 dev1 = ata_devchk(ap, 1);
2133 devmask |= (1 << 0);
2135 devmask |= (1 << 1);
2137 /* select device 0 again */
2138 ap->ops->dev_select(ap, 0);
2140 /* issue bus reset */
2141 if (ap->flags & ATA_FLAG_SRST)
2142 rc = ata_bus_softreset(ap, devmask);
2143 else if ((ap->flags & ATA_FLAG_SATA_RESET) == 0) {
2144 /* set up device control */
2145 if (ap->flags & ATA_FLAG_MMIO)
2146 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2148 outb(ap->ctl, ioaddr->ctl_addr);
2149 rc = ata_bus_edd(ap);
2156 * determine by signature whether we have ATA or ATAPI devices
2158 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2159 if ((slave_possible) && (err != 0x81))
2160 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2162 /* re-enable interrupts */
2163 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2166 /* is double-select really necessary? */
2167 if (ap->device[1].class != ATA_DEV_NONE)
2168 ap->ops->dev_select(ap, 1);
2169 if (ap->device[0].class != ATA_DEV_NONE)
2170 ap->ops->dev_select(ap, 0);
2172 /* if no devices were detected, disable this port */
2173 if ((ap->device[0].class == ATA_DEV_NONE) &&
2174 (ap->device[1].class == ATA_DEV_NONE))
2177 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2178 /* set up device control for ATA_FLAG_SATA_RESET */
2179 if (ap->flags & ATA_FLAG_MMIO)
2180 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2182 outb(ap->ctl, ioaddr->ctl_addr);
2189 printk(KERN_ERR "ata%u: disabling port\n", ap->id);
2190 ap->ops->port_disable(ap);
2195 static int sata_phy_resume(struct ata_port *ap)
2197 unsigned long timeout = jiffies + (HZ * 5);
2200 scr_write_flush(ap, SCR_CONTROL, 0x300);
2202 /* Wait for phy to become ready, if necessary. */
2205 sstatus = scr_read(ap, SCR_STATUS);
2206 if ((sstatus & 0xf) != 1)
2208 } while (time_before(jiffies, timeout));
2214 * ata_std_probeinit - initialize probing
2215 * @ap: port to be probed
2217 * @ap is about to be probed. Initialize it. This function is
2218 * to be used as standard callback for ata_drive_probe_reset().
2220 * NOTE!!! Do not use this function as probeinit if a low level
2221 * driver implements only hardreset. Just pass NULL as probeinit
2222 * in that case. Using this function is probably okay but doing
2223 * so makes reset sequence different from the original
2224 * ->phy_reset implementation and Jeff nervous. :-P
2226 extern void ata_std_probeinit(struct ata_port *ap)
2228 if (ap->flags & ATA_FLAG_SATA && ap->ops->scr_read) {
2229 sata_phy_resume(ap);
2230 if (sata_dev_present(ap))
2231 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2236 * ata_std_softreset - reset host port via ATA SRST
2237 * @ap: port to reset
2238 * @verbose: fail verbosely
2239 * @classes: resulting classes of attached devices
2241 * Reset host port using ATA SRST. This function is to be used
2242 * as standard callback for ata_drive_*_reset() functions.
2245 * Kernel thread context (may sleep)
2248 * 0 on success, -errno otherwise.
2250 int ata_std_softreset(struct ata_port *ap, int verbose, unsigned int *classes)
2252 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2253 unsigned int devmask = 0, err_mask;
2258 if (ap->ops->scr_read && !sata_dev_present(ap)) {
2259 classes[0] = ATA_DEV_NONE;
2263 /* determine if device 0/1 are present */
2264 if (ata_devchk(ap, 0))
2265 devmask |= (1 << 0);
2266 if (slave_possible && ata_devchk(ap, 1))
2267 devmask |= (1 << 1);
2269 /* select device 0 again */
2270 ap->ops->dev_select(ap, 0);
2272 /* issue bus reset */
2273 DPRINTK("about to softreset, devmask=%x\n", devmask);
2274 err_mask = ata_bus_softreset(ap, devmask);
2277 printk(KERN_ERR "ata%u: SRST failed (err_mask=0x%x)\n",
2280 DPRINTK("EXIT, softreset failed (err_mask=0x%x)\n",
2285 /* determine by signature whether we have ATA or ATAPI devices */
2286 classes[0] = ata_dev_try_classify(ap, 0, &err);
2287 if (slave_possible && err != 0x81)
2288 classes[1] = ata_dev_try_classify(ap, 1, &err);
2291 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2296 * sata_std_hardreset - reset host port via SATA phy reset
2297 * @ap: port to reset
2298 * @verbose: fail verbosely
2299 * @class: resulting class of attached device
2301 * SATA phy-reset host port using DET bits of SControl register.
2302 * This function is to be used as standard callback for
2303 * ata_drive_*_reset().
2306 * Kernel thread context (may sleep)
2309 * 0 on success, -errno otherwise.
2311 int sata_std_hardreset(struct ata_port *ap, int verbose, unsigned int *class)
2315 /* Issue phy wake/reset */
2316 scr_write_flush(ap, SCR_CONTROL, 0x301);
2319 * Couldn't find anything in SATA I/II specs, but AHCI-1.1
2320 * 10.4.2 says at least 1 ms.
2324 /* Bring phy back */
2325 sata_phy_resume(ap);
2327 /* TODO: phy layer with polling, timeouts, etc. */
2328 if (!sata_dev_present(ap)) {
2329 *class = ATA_DEV_NONE;
2330 DPRINTK("EXIT, link offline\n");
2334 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2336 printk(KERN_ERR "ata%u: COMRESET failed "
2337 "(device not ready)\n", ap->id);
2339 DPRINTK("EXIT, device not ready\n");
2343 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2345 *class = ata_dev_try_classify(ap, 0, NULL);
2347 DPRINTK("EXIT, class=%u\n", *class);
2352 * ata_std_postreset - standard postreset callback
2353 * @ap: the target ata_port
2354 * @classes: classes of attached devices
2356 * This function is invoked after a successful reset. Note that
2357 * the device might have been reset more than once using
2358 * different reset methods before postreset is invoked.
2360 * This function is to be used as standard callback for
2361 * ata_drive_*_reset().
2364 * Kernel thread context (may sleep)
2366 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2370 /* set cable type if it isn't already set */
2371 if (ap->cbl == ATA_CBL_NONE && ap->flags & ATA_FLAG_SATA)
2372 ap->cbl = ATA_CBL_SATA;
2374 /* print link status */
2375 if (ap->cbl == ATA_CBL_SATA)
2376 sata_print_link_status(ap);
2378 /* re-enable interrupts */
2379 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2382 /* is double-select really necessary? */
2383 if (classes[0] != ATA_DEV_NONE)
2384 ap->ops->dev_select(ap, 1);
2385 if (classes[1] != ATA_DEV_NONE)
2386 ap->ops->dev_select(ap, 0);
2388 /* bail out if no device is present */
2389 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2390 DPRINTK("EXIT, no device\n");
2394 /* set up device control */
2395 if (ap->ioaddr.ctl_addr) {
2396 if (ap->flags & ATA_FLAG_MMIO)
2397 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2399 outb(ap->ctl, ap->ioaddr.ctl_addr);
2406 * ata_std_probe_reset - standard probe reset method
2407 * @ap: prot to perform probe-reset
2408 * @classes: resulting classes of attached devices
2410 * The stock off-the-shelf ->probe_reset method.
2413 * Kernel thread context (may sleep)
2416 * 0 on success, -errno otherwise.
2418 int ata_std_probe_reset(struct ata_port *ap, unsigned int *classes)
2420 ata_reset_fn_t hardreset;
2423 if (ap->flags & ATA_FLAG_SATA && ap->ops->scr_read)
2424 hardreset = sata_std_hardreset;
2426 return ata_drive_probe_reset(ap, ata_std_probeinit,
2427 ata_std_softreset, hardreset,
2428 ata_std_postreset, classes);
2431 static int do_probe_reset(struct ata_port *ap, ata_reset_fn_t reset,
2432 ata_postreset_fn_t postreset,
2433 unsigned int *classes)
2437 for (i = 0; i < ATA_MAX_DEVICES; i++)
2438 classes[i] = ATA_DEV_UNKNOWN;
2440 rc = reset(ap, 0, classes);
2444 /* If any class isn't ATA_DEV_UNKNOWN, consider classification
2445 * is complete and convert all ATA_DEV_UNKNOWN to
2448 for (i = 0; i < ATA_MAX_DEVICES; i++)
2449 if (classes[i] != ATA_DEV_UNKNOWN)
2452 if (i < ATA_MAX_DEVICES)
2453 for (i = 0; i < ATA_MAX_DEVICES; i++)
2454 if (classes[i] == ATA_DEV_UNKNOWN)
2455 classes[i] = ATA_DEV_NONE;
2458 postreset(ap, classes);
2460 return classes[0] != ATA_DEV_UNKNOWN ? 0 : -ENODEV;
2464 * ata_drive_probe_reset - Perform probe reset with given methods
2465 * @ap: port to reset
2466 * @probeinit: probeinit method (can be NULL)
2467 * @softreset: softreset method (can be NULL)
2468 * @hardreset: hardreset method (can be NULL)
2469 * @postreset: postreset method (can be NULL)
2470 * @classes: resulting classes of attached devices
2472 * Reset the specified port and classify attached devices using
2473 * given methods. This function prefers softreset but tries all
2474 * possible reset sequences to reset and classify devices. This
2475 * function is intended to be used for constructing ->probe_reset
2476 * callback by low level drivers.
2478 * Reset methods should follow the following rules.
2480 * - Return 0 on sucess, -errno on failure.
2481 * - If classification is supported, fill classes[] with
2482 * recognized class codes.
2483 * - If classification is not supported, leave classes[] alone.
2484 * - If verbose is non-zero, print error message on failure;
2485 * otherwise, shut up.
2488 * Kernel thread context (may sleep)
2491 * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV
2492 * if classification fails, and any error code from reset
2495 int ata_drive_probe_reset(struct ata_port *ap, ata_probeinit_fn_t probeinit,
2496 ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
2497 ata_postreset_fn_t postreset, unsigned int *classes)
2505 rc = do_probe_reset(ap, softreset, postreset, classes);
2513 rc = do_probe_reset(ap, hardreset, postreset, classes);
2514 if (rc == 0 || rc != -ENODEV)
2518 rc = do_probe_reset(ap, softreset, postreset, classes);
2524 * ata_dev_same_device - Determine whether new ID matches configured device
2525 * @ap: port on which the device to compare against resides
2526 * @dev: device to compare against
2527 * @new_class: class of the new device
2528 * @new_id: IDENTIFY page of the new device
2530 * Compare @new_class and @new_id against @dev and determine
2531 * whether @dev is the device indicated by @new_class and
2538 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2540 static int ata_dev_same_device(struct ata_port *ap, struct ata_device *dev,
2541 unsigned int new_class, const u16 *new_id)
2543 const u16 *old_id = dev->id;
2544 unsigned char model[2][41], serial[2][21];
2547 if (dev->class != new_class) {
2549 "ata%u: dev %u class mismatch %d != %d\n",
2550 ap->id, dev->devno, dev->class, new_class);
2554 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2555 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2556 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2557 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2558 new_n_sectors = ata_id_n_sectors(new_id);
2560 if (strcmp(model[0], model[1])) {
2562 "ata%u: dev %u model number mismatch '%s' != '%s'\n",
2563 ap->id, dev->devno, model[0], model[1]);
2567 if (strcmp(serial[0], serial[1])) {
2569 "ata%u: dev %u serial number mismatch '%s' != '%s'\n",
2570 ap->id, dev->devno, serial[0], serial[1]);
2574 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
2576 "ata%u: dev %u n_sectors mismatch %llu != %llu\n",
2577 ap->id, dev->devno, (unsigned long long)dev->n_sectors,
2578 (unsigned long long)new_n_sectors);
2586 * ata_dev_revalidate - Revalidate ATA device
2587 * @ap: port on which the device to revalidate resides
2588 * @dev: device to revalidate
2589 * @post_reset: is this revalidation after reset?
2591 * Re-read IDENTIFY page and make sure @dev is still attached to
2595 * Kernel thread context (may sleep)
2598 * 0 on success, negative errno otherwise
2600 int ata_dev_revalidate(struct ata_port *ap, struct ata_device *dev,
2607 if (!ata_dev_present(dev))
2613 /* allocate & read ID data */
2614 rc = ata_dev_read_id(ap, dev, &class, post_reset, &id);
2618 /* is the device still there? */
2619 if (!ata_dev_same_device(ap, dev, class, id)) {
2627 /* configure device according to the new ID */
2628 return ata_dev_configure(ap, dev, 0);
2631 printk(KERN_ERR "ata%u: dev %u revalidation failed (errno=%d)\n",
2632 ap->id, dev->devno, rc);
2637 static const char * const ata_dma_blacklist [] = {
2638 "WDC AC11000H", NULL,
2639 "WDC AC22100H", NULL,
2640 "WDC AC32500H", NULL,
2641 "WDC AC33100H", NULL,
2642 "WDC AC31600H", NULL,
2643 "WDC AC32100H", "24.09P07",
2644 "WDC AC23200L", "21.10N21",
2645 "Compaq CRD-8241B", NULL,
2650 "SanDisk SDP3B", NULL,
2651 "SanDisk SDP3B-64", NULL,
2652 "SANYO CD-ROM CRD", NULL,
2653 "HITACHI CDR-8", NULL,
2654 "HITACHI CDR-8335", NULL,
2655 "HITACHI CDR-8435", NULL,
2656 "Toshiba CD-ROM XM-6202B", NULL,
2657 "TOSHIBA CD-ROM XM-1702BC", NULL,
2659 "E-IDE CD-ROM CR-840", NULL,
2660 "CD-ROM Drive/F5A", NULL,
2661 "WPI CDD-820", NULL,
2662 "SAMSUNG CD-ROM SC-148C", NULL,
2663 "SAMSUNG CD-ROM SC", NULL,
2664 "SanDisk SDP3B-64", NULL,
2665 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
2666 "_NEC DV5800A", NULL,
2667 "SAMSUNG CD-ROM SN-124", "N001"
2670 static int ata_strim(char *s, size_t len)
2672 len = strnlen(s, len);
2674 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2675 while ((len > 0) && (s[len - 1] == ' ')) {
2682 static int ata_dma_blacklisted(const struct ata_device *dev)
2684 unsigned char model_num[40];
2685 unsigned char model_rev[16];
2686 unsigned int nlen, rlen;
2689 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2691 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
2693 nlen = ata_strim(model_num, sizeof(model_num));
2694 rlen = ata_strim(model_rev, sizeof(model_rev));
2696 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
2697 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
2698 if (ata_dma_blacklist[i+1] == NULL)
2700 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
2708 * ata_dev_xfermask - Compute supported xfermask of the given device
2709 * @ap: Port on which the device to compute xfermask for resides
2710 * @dev: Device to compute xfermask for
2712 * Compute supported xfermask of @dev and store it in
2713 * dev->*_mask. This function is responsible for applying all
2714 * known limits including host controller limits, device
2720 static void ata_dev_xfermask(struct ata_port *ap, struct ata_device *dev)
2722 unsigned long xfer_mask;
2725 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
2728 /* use port-wide xfermask for now */
2729 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2730 struct ata_device *d = &ap->device[i];
2731 if (!ata_dev_present(d))
2733 xfer_mask &= ata_pack_xfermask(d->pio_mask, d->mwdma_mask,
2735 xfer_mask &= ata_id_xfermask(d->id);
2736 if (ata_dma_blacklisted(d))
2737 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
2740 if (ata_dma_blacklisted(dev))
2741 printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, "
2742 "disabling DMA\n", ap->id, dev->devno);
2744 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2749 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2750 * @ap: Port associated with device @dev
2751 * @dev: Device to which command will be sent
2753 * Issue SET FEATURES - XFER MODE command to device @dev
2757 * PCI/etc. bus probe sem.
2760 * 0 on success, AC_ERR_* mask otherwise.
2763 static unsigned int ata_dev_set_xfermode(struct ata_port *ap,
2764 struct ata_device *dev)
2766 struct ata_taskfile tf;
2767 unsigned int err_mask;
2769 /* set up set-features taskfile */
2770 DPRINTK("set features - xfer mode\n");
2772 ata_tf_init(ap, &tf, dev->devno);
2773 tf.command = ATA_CMD_SET_FEATURES;
2774 tf.feature = SETFEATURES_XFER;
2775 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2776 tf.protocol = ATA_PROT_NODATA;
2777 tf.nsect = dev->xfer_mode;
2779 err_mask = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
2781 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2786 * ata_dev_init_params - Issue INIT DEV PARAMS command
2787 * @ap: Port associated with device @dev
2788 * @dev: Device to which command will be sent
2791 * Kernel thread context (may sleep)
2794 * 0 on success, AC_ERR_* mask otherwise.
2797 static unsigned int ata_dev_init_params(struct ata_port *ap,
2798 struct ata_device *dev)
2800 struct ata_taskfile tf;
2801 unsigned int err_mask;
2802 u16 sectors = dev->id[6];
2803 u16 heads = dev->id[3];
2805 /* Number of sectors per track 1-255. Number of heads 1-16 */
2806 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
2809 /* set up init dev params taskfile */
2810 DPRINTK("init dev params \n");
2812 ata_tf_init(ap, &tf, dev->devno);
2813 tf.command = ATA_CMD_INIT_DEV_PARAMS;
2814 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2815 tf.protocol = ATA_PROT_NODATA;
2817 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
2819 err_mask = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
2821 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2826 * ata_sg_clean - Unmap DMA memory associated with command
2827 * @qc: Command containing DMA memory to be released
2829 * Unmap all mapped DMA memory associated with this command.
2832 * spin_lock_irqsave(host_set lock)
2835 static void ata_sg_clean(struct ata_queued_cmd *qc)
2837 struct ata_port *ap = qc->ap;
2838 struct scatterlist *sg = qc->__sg;
2839 int dir = qc->dma_dir;
2840 void *pad_buf = NULL;
2842 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
2843 WARN_ON(sg == NULL);
2845 if (qc->flags & ATA_QCFLAG_SINGLE)
2846 WARN_ON(qc->n_elem > 1);
2848 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
2850 /* if we padded the buffer out to 32-bit bound, and data
2851 * xfer direction is from-device, we must copy from the
2852 * pad buffer back into the supplied buffer
2854 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
2855 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2857 if (qc->flags & ATA_QCFLAG_SG) {
2859 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
2860 /* restore last sg */
2861 sg[qc->orig_n_elem - 1].length += qc->pad_len;
2863 struct scatterlist *psg = &qc->pad_sgent;
2864 void *addr = kmap_atomic(psg->page, KM_IRQ0);
2865 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
2866 kunmap_atomic(addr, KM_IRQ0);
2870 dma_unmap_single(ap->dev,
2871 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
2874 sg->length += qc->pad_len;
2876 memcpy(qc->buf_virt + sg->length - qc->pad_len,
2877 pad_buf, qc->pad_len);
2880 qc->flags &= ~ATA_QCFLAG_DMAMAP;
2885 * ata_fill_sg - Fill PCI IDE PRD table
2886 * @qc: Metadata associated with taskfile to be transferred
2888 * Fill PCI IDE PRD (scatter-gather) table with segments
2889 * associated with the current disk command.
2892 * spin_lock_irqsave(host_set lock)
2895 static void ata_fill_sg(struct ata_queued_cmd *qc)
2897 struct ata_port *ap = qc->ap;
2898 struct scatterlist *sg;
2901 WARN_ON(qc->__sg == NULL);
2902 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
2905 ata_for_each_sg(sg, qc) {
2909 /* determine if physical DMA addr spans 64K boundary.
2910 * Note h/w doesn't support 64-bit, so we unconditionally
2911 * truncate dma_addr_t to u32.
2913 addr = (u32) sg_dma_address(sg);
2914 sg_len = sg_dma_len(sg);
2917 offset = addr & 0xffff;
2919 if ((offset + sg_len) > 0x10000)
2920 len = 0x10000 - offset;
2922 ap->prd[idx].addr = cpu_to_le32(addr);
2923 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
2924 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
2933 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2936 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
2937 * @qc: Metadata associated with taskfile to check
2939 * Allow low-level driver to filter ATA PACKET commands, returning
2940 * a status indicating whether or not it is OK to use DMA for the
2941 * supplied PACKET command.
2944 * spin_lock_irqsave(host_set lock)
2946 * RETURNS: 0 when ATAPI DMA can be used
2949 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
2951 struct ata_port *ap = qc->ap;
2952 int rc = 0; /* Assume ATAPI DMA is OK by default */
2954 if (ap->ops->check_atapi_dma)
2955 rc = ap->ops->check_atapi_dma(qc);
2960 * ata_qc_prep - Prepare taskfile for submission
2961 * @qc: Metadata associated with taskfile to be prepared
2963 * Prepare ATA taskfile for submission.
2966 * spin_lock_irqsave(host_set lock)
2968 void ata_qc_prep(struct ata_queued_cmd *qc)
2970 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2976 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
2979 * ata_sg_init_one - Associate command with memory buffer
2980 * @qc: Command to be associated
2981 * @buf: Memory buffer
2982 * @buflen: Length of memory buffer, in bytes.
2984 * Initialize the data-related elements of queued_cmd @qc
2985 * to point to a single memory buffer, @buf of byte length @buflen.
2988 * spin_lock_irqsave(host_set lock)
2991 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
2993 struct scatterlist *sg;
2995 qc->flags |= ATA_QCFLAG_SINGLE;
2997 memset(&qc->sgent, 0, sizeof(qc->sgent));
2998 qc->__sg = &qc->sgent;
3000 qc->orig_n_elem = 1;
3004 sg_init_one(sg, buf, buflen);
3008 * ata_sg_init - Associate command with scatter-gather table.
3009 * @qc: Command to be associated
3010 * @sg: Scatter-gather table.
3011 * @n_elem: Number of elements in s/g table.
3013 * Initialize the data-related elements of queued_cmd @qc
3014 * to point to a scatter-gather table @sg, containing @n_elem
3018 * spin_lock_irqsave(host_set lock)
3021 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3022 unsigned int n_elem)
3024 qc->flags |= ATA_QCFLAG_SG;
3026 qc->n_elem = n_elem;
3027 qc->orig_n_elem = n_elem;
3031 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3032 * @qc: Command with memory buffer to be mapped.
3034 * DMA-map the memory buffer associated with queued_cmd @qc.
3037 * spin_lock_irqsave(host_set lock)
3040 * Zero on success, negative on error.
3043 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3045 struct ata_port *ap = qc->ap;
3046 int dir = qc->dma_dir;
3047 struct scatterlist *sg = qc->__sg;
3048 dma_addr_t dma_address;
3051 /* we must lengthen transfers to end on a 32-bit boundary */
3052 qc->pad_len = sg->length & 3;
3054 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3055 struct scatterlist *psg = &qc->pad_sgent;
3057 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3059 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3061 if (qc->tf.flags & ATA_TFLAG_WRITE)
3062 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3065 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3066 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3068 sg->length -= qc->pad_len;
3069 if (sg->length == 0)
3072 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3073 sg->length, qc->pad_len);
3081 dma_address = dma_map_single(ap->dev, qc->buf_virt,
3083 if (dma_mapping_error(dma_address)) {
3085 sg->length += qc->pad_len;
3089 sg_dma_address(sg) = dma_address;
3090 sg_dma_len(sg) = sg->length;
3093 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3094 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3100 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3101 * @qc: Command with scatter-gather table to be mapped.
3103 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3106 * spin_lock_irqsave(host_set lock)
3109 * Zero on success, negative on error.
3113 static int ata_sg_setup(struct ata_queued_cmd *qc)
3115 struct ata_port *ap = qc->ap;
3116 struct scatterlist *sg = qc->__sg;
3117 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3118 int n_elem, pre_n_elem, dir, trim_sg = 0;
3120 VPRINTK("ENTER, ata%u\n", ap->id);
3121 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3123 /* we must lengthen transfers to end on a 32-bit boundary */
3124 qc->pad_len = lsg->length & 3;
3126 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3127 struct scatterlist *psg = &qc->pad_sgent;
3128 unsigned int offset;
3130 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3132 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3135 * psg->page/offset are used to copy to-be-written
3136 * data in this function or read data in ata_sg_clean.
3138 offset = lsg->offset + lsg->length - qc->pad_len;
3139 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3140 psg->offset = offset_in_page(offset);
3142 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3143 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3144 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3145 kunmap_atomic(addr, KM_IRQ0);
3148 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3149 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3151 lsg->length -= qc->pad_len;
3152 if (lsg->length == 0)
3155 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3156 qc->n_elem - 1, lsg->length, qc->pad_len);
3159 pre_n_elem = qc->n_elem;
3160 if (trim_sg && pre_n_elem)
3169 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
3171 /* restore last sg */
3172 lsg->length += qc->pad_len;
3176 DPRINTK("%d sg elements mapped\n", n_elem);
3179 qc->n_elem = n_elem;
3185 * ata_poll_qc_complete - turn irq back on and finish qc
3186 * @qc: Command to complete
3187 * @err_mask: ATA status register content
3190 * None. (grabs host lock)
3193 void ata_poll_qc_complete(struct ata_queued_cmd *qc)
3195 struct ata_port *ap = qc->ap;
3196 unsigned long flags;
3198 spin_lock_irqsave(&ap->host_set->lock, flags);
3199 ap->flags &= ~ATA_FLAG_NOINTR;
3201 ata_qc_complete(qc);
3202 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3206 * ata_pio_poll - poll using PIO, depending on current state
3207 * @ap: the target ata_port
3210 * None. (executing in kernel thread context)
3213 * timeout value to use
3216 static unsigned long ata_pio_poll(struct ata_port *ap)
3218 struct ata_queued_cmd *qc;
3220 unsigned int poll_state = HSM_ST_UNKNOWN;
3221 unsigned int reg_state = HSM_ST_UNKNOWN;
3223 qc = ata_qc_from_tag(ap, ap->active_tag);
3224 WARN_ON(qc == NULL);
3226 switch (ap->hsm_task_state) {
3229 poll_state = HSM_ST_POLL;
3233 case HSM_ST_LAST_POLL:
3234 poll_state = HSM_ST_LAST_POLL;
3235 reg_state = HSM_ST_LAST;
3242 status = ata_chk_status(ap);
3243 if (status & ATA_BUSY) {
3244 if (time_after(jiffies, ap->pio_task_timeout)) {
3245 qc->err_mask |= AC_ERR_TIMEOUT;
3246 ap->hsm_task_state = HSM_ST_TMOUT;
3249 ap->hsm_task_state = poll_state;
3250 return ATA_SHORT_PAUSE;
3253 ap->hsm_task_state = reg_state;
3258 * ata_pio_complete - check if drive is busy or idle
3259 * @ap: the target ata_port
3262 * None. (executing in kernel thread context)
3265 * Non-zero if qc completed, zero otherwise.
3268 static int ata_pio_complete (struct ata_port *ap)
3270 struct ata_queued_cmd *qc;
3274 * This is purely heuristic. This is a fast path. Sometimes when
3275 * we enter, BSY will be cleared in a chk-status or two. If not,
3276 * the drive is probably seeking or something. Snooze for a couple
3277 * msecs, then chk-status again. If still busy, fall back to
3278 * HSM_ST_POLL state.
3280 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3281 if (drv_stat & ATA_BUSY) {
3283 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3284 if (drv_stat & ATA_BUSY) {
3285 ap->hsm_task_state = HSM_ST_LAST_POLL;
3286 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3291 qc = ata_qc_from_tag(ap, ap->active_tag);
3292 WARN_ON(qc == NULL);
3294 drv_stat = ata_wait_idle(ap);
3295 if (!ata_ok(drv_stat)) {
3296 qc->err_mask |= __ac_err_mask(drv_stat);
3297 ap->hsm_task_state = HSM_ST_ERR;
3301 ap->hsm_task_state = HSM_ST_IDLE;
3303 WARN_ON(qc->err_mask);
3304 ata_poll_qc_complete(qc);
3306 /* another command may start at this point */
3313 * swap_buf_le16 - swap halves of 16-bit words in place
3314 * @buf: Buffer to swap
3315 * @buf_words: Number of 16-bit words in buffer.
3317 * Swap halves of 16-bit words if needed to convert from
3318 * little-endian byte order to native cpu byte order, or
3322 * Inherited from caller.
3324 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3329 for (i = 0; i < buf_words; i++)
3330 buf[i] = le16_to_cpu(buf[i]);
3331 #endif /* __BIG_ENDIAN */
3335 * ata_mmio_data_xfer - Transfer data by MMIO
3336 * @ap: port to read/write
3338 * @buflen: buffer length
3339 * @write_data: read/write
3341 * Transfer data from/to the device data register by MMIO.
3344 * Inherited from caller.
3347 static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
3348 unsigned int buflen, int write_data)
3351 unsigned int words = buflen >> 1;
3352 u16 *buf16 = (u16 *) buf;
3353 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3355 /* Transfer multiple of 2 bytes */
3357 for (i = 0; i < words; i++)
3358 writew(le16_to_cpu(buf16[i]), mmio);
3360 for (i = 0; i < words; i++)
3361 buf16[i] = cpu_to_le16(readw(mmio));
3364 /* Transfer trailing 1 byte, if any. */
3365 if (unlikely(buflen & 0x01)) {
3366 u16 align_buf[1] = { 0 };
3367 unsigned char *trailing_buf = buf + buflen - 1;
3370 memcpy(align_buf, trailing_buf, 1);
3371 writew(le16_to_cpu(align_buf[0]), mmio);
3373 align_buf[0] = cpu_to_le16(readw(mmio));
3374 memcpy(trailing_buf, align_buf, 1);
3380 * ata_pio_data_xfer - Transfer data by PIO
3381 * @ap: port to read/write
3383 * @buflen: buffer length
3384 * @write_data: read/write
3386 * Transfer data from/to the device data register by PIO.
3389 * Inherited from caller.
3392 static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
3393 unsigned int buflen, int write_data)
3395 unsigned int words = buflen >> 1;
3397 /* Transfer multiple of 2 bytes */