2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/config.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/init.h>
40 #include <linux/list.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/blkdev.h>
45 #include <linux/delay.h>
46 #include <linux/timer.h>
47 #include <linux/interrupt.h>
48 #include <linux/completion.h>
49 #include <linux/suspend.h>
50 #include <linux/workqueue.h>
51 #include <linux/jiffies.h>
52 #include <linux/scatterlist.h>
53 #include <scsi/scsi.h>
54 #include "scsi_priv.h"
55 #include <scsi/scsi_cmnd.h>
56 #include <scsi/scsi_host.h>
57 #include <linux/libata.h>
59 #include <asm/semaphore.h>
60 #include <asm/byteorder.h>
64 static unsigned int ata_dev_init_params(struct ata_port *ap,
65 struct ata_device *dev);
66 static void ata_set_mode(struct ata_port *ap);
67 static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev);
68 static unsigned int ata_get_mode_mask(const struct ata_port *ap, int shift);
69 static int fgb(u32 bitmap);
70 static int ata_choose_xfer_mode(const struct ata_port *ap,
72 unsigned int *xfer_shift_out);
74 static unsigned int ata_unique_id = 1;
75 static struct workqueue_struct *ata_wq;
77 int atapi_enabled = 0;
78 module_param(atapi_enabled, int, 0444);
79 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
82 module_param_named(fua, libata_fua, int, 0444);
83 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
85 MODULE_AUTHOR("Jeff Garzik");
86 MODULE_DESCRIPTION("Library module for ATA devices");
87 MODULE_LICENSE("GPL");
88 MODULE_VERSION(DRV_VERSION);
92 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
93 * @tf: Taskfile to convert
94 * @fis: Buffer into which data will output
95 * @pmp: Port multiplier port
97 * Converts a standard ATA taskfile to a Serial ATA
98 * FIS structure (Register - Host to Device).
101 * Inherited from caller.
104 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
106 fis[0] = 0x27; /* Register - Host to Device FIS */
107 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
108 bit 7 indicates Command FIS */
109 fis[2] = tf->command;
110 fis[3] = tf->feature;
117 fis[8] = tf->hob_lbal;
118 fis[9] = tf->hob_lbam;
119 fis[10] = tf->hob_lbah;
120 fis[11] = tf->hob_feature;
123 fis[13] = tf->hob_nsect;
134 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
135 * @fis: Buffer from which data will be input
136 * @tf: Taskfile to output
138 * Converts a serial ATA FIS structure to a standard ATA taskfile.
141 * Inherited from caller.
144 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
146 tf->command = fis[2]; /* status */
147 tf->feature = fis[3]; /* error */
154 tf->hob_lbal = fis[8];
155 tf->hob_lbam = fis[9];
156 tf->hob_lbah = fis[10];
159 tf->hob_nsect = fis[13];
162 static const u8 ata_rw_cmds[] = {
166 ATA_CMD_READ_MULTI_EXT,
167 ATA_CMD_WRITE_MULTI_EXT,
171 ATA_CMD_WRITE_MULTI_FUA_EXT,
175 ATA_CMD_PIO_READ_EXT,
176 ATA_CMD_PIO_WRITE_EXT,
189 ATA_CMD_WRITE_FUA_EXT
193 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
194 * @qc: command to examine and configure
196 * Examine the device configuration and tf->flags to calculate
197 * the proper read/write commands and protocol to use.
202 int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
204 struct ata_taskfile *tf = &qc->tf;
205 struct ata_device *dev = qc->dev;
208 int index, fua, lba48, write;
210 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
211 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
212 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
214 if (dev->flags & ATA_DFLAG_PIO) {
215 tf->protocol = ATA_PROT_PIO;
216 index = dev->multi_count ? 0 : 8;
217 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
218 /* Unable to use DMA due to host limitation */
219 tf->protocol = ATA_PROT_PIO;
220 index = dev->multi_count ? 0 : 8;
222 tf->protocol = ATA_PROT_DMA;
226 cmd = ata_rw_cmds[index + fua + lba48 + write];
234 static const char * const xfer_mode_str[] = {
254 * ata_udma_string - convert UDMA bit offset to string
255 * @mask: mask of bits supported; only highest bit counts.
257 * Determine string which represents the highest speed
258 * (highest bit in @udma_mask).
264 * Constant C string representing highest speed listed in
265 * @udma_mask, or the constant C string "<n/a>".
268 static const char *ata_mode_string(unsigned int mask)
272 for (i = 7; i >= 0; i--)
275 for (i = ATA_SHIFT_MWDMA + 2; i >= ATA_SHIFT_MWDMA; i--)
278 for (i = ATA_SHIFT_PIO + 4; i >= ATA_SHIFT_PIO; i--)
285 return xfer_mode_str[i];
289 * ata_pio_devchk - PATA device presence detection
290 * @ap: ATA channel to examine
291 * @device: Device to examine (starting at zero)
293 * This technique was originally described in
294 * Hale Landis's ATADRVR (www.ata-atapi.com), and
295 * later found its way into the ATA/ATAPI spec.
297 * Write a pattern to the ATA shadow registers,
298 * and if a device is present, it will respond by
299 * correctly storing and echoing back the
300 * ATA shadow register contents.
306 static unsigned int ata_pio_devchk(struct ata_port *ap,
309 struct ata_ioports *ioaddr = &ap->ioaddr;
312 ap->ops->dev_select(ap, device);
314 outb(0x55, ioaddr->nsect_addr);
315 outb(0xaa, ioaddr->lbal_addr);
317 outb(0xaa, ioaddr->nsect_addr);
318 outb(0x55, ioaddr->lbal_addr);
320 outb(0x55, ioaddr->nsect_addr);
321 outb(0xaa, ioaddr->lbal_addr);
323 nsect = inb(ioaddr->nsect_addr);
324 lbal = inb(ioaddr->lbal_addr);
326 if ((nsect == 0x55) && (lbal == 0xaa))
327 return 1; /* we found a device */
329 return 0; /* nothing found */
333 * ata_mmio_devchk - PATA device presence detection
334 * @ap: ATA channel to examine
335 * @device: Device to examine (starting at zero)
337 * This technique was originally described in
338 * Hale Landis's ATADRVR (www.ata-atapi.com), and
339 * later found its way into the ATA/ATAPI spec.
341 * Write a pattern to the ATA shadow registers,
342 * and if a device is present, it will respond by
343 * correctly storing and echoing back the
344 * ATA shadow register contents.
350 static unsigned int ata_mmio_devchk(struct ata_port *ap,
353 struct ata_ioports *ioaddr = &ap->ioaddr;
356 ap->ops->dev_select(ap, device);
358 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
359 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
361 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
362 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
364 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
365 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
367 nsect = readb((void __iomem *) ioaddr->nsect_addr);
368 lbal = readb((void __iomem *) ioaddr->lbal_addr);
370 if ((nsect == 0x55) && (lbal == 0xaa))
371 return 1; /* we found a device */
373 return 0; /* nothing found */
377 * ata_devchk - PATA device presence detection
378 * @ap: ATA channel to examine
379 * @device: Device to examine (starting at zero)
381 * Dispatch ATA device presence detection, depending
382 * on whether we are using PIO or MMIO to talk to the
383 * ATA shadow registers.
389 static unsigned int ata_devchk(struct ata_port *ap,
392 if (ap->flags & ATA_FLAG_MMIO)
393 return ata_mmio_devchk(ap, device);
394 return ata_pio_devchk(ap, device);
398 * ata_dev_classify - determine device type based on ATA-spec signature
399 * @tf: ATA taskfile register set for device to be identified
401 * Determine from taskfile register contents whether a device is
402 * ATA or ATAPI, as per "Signature and persistence" section
403 * of ATA/PI spec (volume 1, sect 5.14).
409 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
410 * the event of failure.
413 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
415 /* Apple's open source Darwin code hints that some devices only
416 * put a proper signature into the LBA mid/high registers,
417 * So, we only check those. It's sufficient for uniqueness.
420 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
421 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
422 DPRINTK("found ATA device by sig\n");
426 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
427 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
428 DPRINTK("found ATAPI device by sig\n");
429 return ATA_DEV_ATAPI;
432 DPRINTK("unknown device\n");
433 return ATA_DEV_UNKNOWN;
437 * ata_dev_try_classify - Parse returned ATA device signature
438 * @ap: ATA channel to examine
439 * @device: Device to examine (starting at zero)
440 * @r_err: Value of error register on completion
442 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
443 * an ATA/ATAPI-defined set of values is placed in the ATA
444 * shadow registers, indicating the results of device detection
447 * Select the ATA device, and read the values from the ATA shadow
448 * registers. Then parse according to the Error register value,
449 * and the spec-defined values examined by ata_dev_classify().
455 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
459 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
461 struct ata_taskfile tf;
465 ap->ops->dev_select(ap, device);
467 memset(&tf, 0, sizeof(tf));
469 ap->ops->tf_read(ap, &tf);
474 /* see if device passed diags */
477 else if ((device == 0) && (err == 0x81))
482 /* determine if device is ATA or ATAPI */
483 class = ata_dev_classify(&tf);
485 if (class == ATA_DEV_UNKNOWN)
487 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
493 * ata_id_string - Convert IDENTIFY DEVICE page into string
494 * @id: IDENTIFY DEVICE results we will examine
495 * @s: string into which data is output
496 * @ofs: offset into identify device page
497 * @len: length of string to return. must be an even number.
499 * The strings in the IDENTIFY DEVICE page are broken up into
500 * 16-bit chunks. Run through the string, and output each
501 * 8-bit chunk linearly, regardless of platform.
507 void ata_id_string(const u16 *id, unsigned char *s,
508 unsigned int ofs, unsigned int len)
527 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
528 * @id: IDENTIFY DEVICE results we will examine
529 * @s: string into which data is output
530 * @ofs: offset into identify device page
531 * @len: length of string to return. must be an odd number.
533 * This function is identical to ata_id_string except that it
534 * trims trailing spaces and terminates the resulting string with
535 * null. @len must be actual maximum length (even number) + 1.
540 void ata_id_c_string(const u16 *id, unsigned char *s,
541 unsigned int ofs, unsigned int len)
547 ata_id_string(id, s, ofs, len - 1);
549 p = s + strnlen(s, len - 1);
550 while (p > s && p[-1] == ' ')
555 static u64 ata_id_n_sectors(const u16 *id)
557 if (ata_id_has_lba(id)) {
558 if (ata_id_has_lba48(id))
559 return ata_id_u64(id, 100);
561 return ata_id_u32(id, 60);
563 if (ata_id_current_chs_valid(id))
564 return ata_id_u32(id, 57);
566 return id[1] * id[3] * id[6];
571 * ata_noop_dev_select - Select device 0/1 on ATA bus
572 * @ap: ATA channel to manipulate
573 * @device: ATA device (numbered from zero) to select
575 * This function performs no actual function.
577 * May be used as the dev_select() entry in ata_port_operations.
582 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
588 * ata_std_dev_select - Select device 0/1 on ATA bus
589 * @ap: ATA channel to manipulate
590 * @device: ATA device (numbered from zero) to select
592 * Use the method defined in the ATA specification to
593 * make either device 0, or device 1, active on the
594 * ATA channel. Works with both PIO and MMIO.
596 * May be used as the dev_select() entry in ata_port_operations.
602 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
607 tmp = ATA_DEVICE_OBS;
609 tmp = ATA_DEVICE_OBS | ATA_DEV1;
611 if (ap->flags & ATA_FLAG_MMIO) {
612 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
614 outb(tmp, ap->ioaddr.device_addr);
616 ata_pause(ap); /* needed; also flushes, for mmio */
620 * ata_dev_select - Select device 0/1 on ATA bus
621 * @ap: ATA channel to manipulate
622 * @device: ATA device (numbered from zero) to select
623 * @wait: non-zero to wait for Status register BSY bit to clear
624 * @can_sleep: non-zero if context allows sleeping
626 * Use the method defined in the ATA specification to
627 * make either device 0, or device 1, active on the
630 * This is a high-level version of ata_std_dev_select(),
631 * which additionally provides the services of inserting
632 * the proper pauses and status polling, where needed.
638 void ata_dev_select(struct ata_port *ap, unsigned int device,
639 unsigned int wait, unsigned int can_sleep)
641 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
642 ap->id, device, wait);
647 ap->ops->dev_select(ap, device);
650 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
657 * ata_dump_id - IDENTIFY DEVICE info debugging output
658 * @id: IDENTIFY DEVICE page to dump
660 * Dump selected 16-bit words from the given IDENTIFY DEVICE
667 static inline void ata_dump_id(const u16 *id)
669 DPRINTK("49==0x%04x "
679 DPRINTK("80==0x%04x "
689 DPRINTK("88==0x%04x "
696 * Compute the PIO modes available for this device. This is not as
697 * trivial as it seems if we must consider early devices correctly.
699 * FIXME: pre IDE drive timing (do we care ?).
702 static unsigned int ata_pio_modes(const struct ata_device *adev)
706 /* Usual case. Word 53 indicates word 64 is valid */
707 if (adev->id[ATA_ID_FIELD_VALID] & (1 << 1)) {
708 modes = adev->id[ATA_ID_PIO_MODES] & 0x03;
714 /* If word 64 isn't valid then Word 51 high byte holds the PIO timing
715 number for the maximum. Turn it into a mask and return it */
716 modes = (2 << ((adev->id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF)) - 1 ;
718 /* But wait.. there's more. Design your standards by committee and
719 you too can get a free iordy field to process. However its the
720 speeds not the modes that are supported... Note drivers using the
721 timing API will get this right anyway */
725 ata_queue_packet_task(struct ata_port *ap)
727 if (!(ap->flags & ATA_FLAG_FLUSH_PIO_TASK))
728 queue_work(ata_wq, &ap->packet_task);
732 ata_queue_pio_task(struct ata_port *ap)
734 if (!(ap->flags & ATA_FLAG_FLUSH_PIO_TASK))
735 queue_work(ata_wq, &ap->pio_task);
739 ata_queue_delayed_pio_task(struct ata_port *ap, unsigned long delay)
741 if (!(ap->flags & ATA_FLAG_FLUSH_PIO_TASK))
742 queue_delayed_work(ata_wq, &ap->pio_task, delay);
746 * ata_flush_pio_tasks - Flush pio_task and packet_task
747 * @ap: the target ata_port
749 * After this function completes, pio_task and packet_task are
750 * guranteed not to be running or scheduled.
753 * Kernel thread context (may sleep)
756 static void ata_flush_pio_tasks(struct ata_port *ap)
763 spin_lock_irqsave(&ap->host_set->lock, flags);
764 ap->flags |= ATA_FLAG_FLUSH_PIO_TASK;
765 spin_unlock_irqrestore(&ap->host_set->lock, flags);
767 DPRINTK("flush #1\n");
768 flush_workqueue(ata_wq);
771 * At this point, if a task is running, it's guaranteed to see
772 * the FLUSH flag; thus, it will never queue pio tasks again.
775 tmp |= cancel_delayed_work(&ap->pio_task);
776 tmp |= cancel_delayed_work(&ap->packet_task);
778 DPRINTK("flush #2\n");
779 flush_workqueue(ata_wq);
782 spin_lock_irqsave(&ap->host_set->lock, flags);
783 ap->flags &= ~ATA_FLAG_FLUSH_PIO_TASK;
784 spin_unlock_irqrestore(&ap->host_set->lock, flags);
789 void ata_qc_complete_internal(struct ata_queued_cmd *qc)
791 struct completion *waiting = qc->private_data;
793 qc->ap->ops->tf_read(qc->ap, &qc->tf);
798 * ata_exec_internal - execute libata internal command
799 * @ap: Port to which the command is sent
800 * @dev: Device to which the command is sent
801 * @tf: Taskfile registers for the command and the result
802 * @dma_dir: Data tranfer direction of the command
803 * @buf: Data buffer of the command
804 * @buflen: Length of data buffer
806 * Executes libata internal command with timeout. @tf contains
807 * command on entry and result on return. Timeout and error
808 * conditions are reported via return value. No recovery action
809 * is taken after a command times out. It's caller's duty to
810 * clean up after timeout.
813 * None. Should be called with kernel context, might sleep.
817 ata_exec_internal(struct ata_port *ap, struct ata_device *dev,
818 struct ata_taskfile *tf,
819 int dma_dir, void *buf, unsigned int buflen)
821 u8 command = tf->command;
822 struct ata_queued_cmd *qc;
823 DECLARE_COMPLETION(wait);
825 unsigned int err_mask;
827 spin_lock_irqsave(&ap->host_set->lock, flags);
829 qc = ata_qc_new_init(ap, dev);
833 qc->dma_dir = dma_dir;
834 if (dma_dir != DMA_NONE) {
835 ata_sg_init_one(qc, buf, buflen);
836 qc->nsect = buflen / ATA_SECT_SIZE;
839 qc->private_data = &wait;
840 qc->complete_fn = ata_qc_complete_internal;
842 qc->err_mask = ata_qc_issue(qc);
846 spin_unlock_irqrestore(&ap->host_set->lock, flags);
848 if (!wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL)) {
849 spin_lock_irqsave(&ap->host_set->lock, flags);
851 /* We're racing with irq here. If we lose, the
852 * following test prevents us from completing the qc
853 * again. If completion irq occurs after here but
854 * before the caller cleans up, it will result in a
855 * spurious interrupt. We can live with that.
857 if (qc->flags & ATA_QCFLAG_ACTIVE) {
858 qc->err_mask = AC_ERR_TIMEOUT;
860 printk(KERN_WARNING "ata%u: qc timeout (cmd 0x%x)\n",
864 spin_unlock_irqrestore(&ap->host_set->lock, flags);
868 err_mask = qc->err_mask;
876 * ata_pio_need_iordy - check if iordy needed
879 * Check if the current speed of the device requires IORDY. Used
880 * by various controllers for chip configuration.
883 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
886 int speed = adev->pio_mode - XFER_PIO_0;
893 /* If we have no drive specific rule, then PIO 2 is non IORDY */
895 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
896 pio = adev->id[ATA_ID_EIDE_PIO];
897 /* Is the speed faster than the drive allows non IORDY ? */
899 /* This is cycle times not frequency - watch the logic! */
900 if (pio > 240) /* PIO2 is 240nS per cycle */
909 * ata_dev_read_id - Read ID data from the specified device
910 * @ap: port on which target device resides
911 * @dev: target device
912 * @p_class: pointer to class of the target device (may be changed)
913 * @post_reset: is this read ID post-reset?
914 * @p_id: read IDENTIFY page (newly allocated)
916 * Read ID data from the specified device. ATA_CMD_ID_ATA is
917 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
918 * devices. This function also takes care of EDD signature
919 * misreporting (to be removed once EDD support is gone) and
920 * issues ATA_CMD_INIT_DEV_PARAMS for pre-ATA4 drives.
923 * Kernel thread context (may sleep)
926 * 0 on success, -errno otherwise.
928 static int ata_dev_read_id(struct ata_port *ap, struct ata_device *dev,
929 unsigned int *p_class, int post_reset, u16 **p_id)
931 unsigned int class = *p_class;
932 unsigned int using_edd;
933 struct ata_taskfile tf;
934 unsigned int err_mask = 0;
939 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
941 if (ap->ops->probe_reset ||
942 ap->flags & (ATA_FLAG_SRST | ATA_FLAG_SATA_RESET))
947 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
949 id = kmalloc(sizeof(id[0]) * ATA_ID_WORDS, GFP_KERNEL);
952 reason = "out of memory";
957 ata_tf_init(ap, &tf, dev->devno);
961 tf.command = ATA_CMD_ID_ATA;
964 tf.command = ATA_CMD_ID_ATAPI;
968 reason = "unsupported class";
972 tf.protocol = ATA_PROT_PIO;
974 err_mask = ata_exec_internal(ap, dev, &tf, DMA_FROM_DEVICE,
975 id, sizeof(id[0]) * ATA_ID_WORDS);
979 reason = "I/O error";
981 if (err_mask & ~AC_ERR_DEV)
985 * arg! EDD works for all test cases, but seems to return
986 * the ATA signature for some ATAPI devices. Until the
987 * reason for this is found and fixed, we fix up the mess
988 * here. If IDENTIFY DEVICE returns command aborted
989 * (as ATAPI devices do), then we issue an
990 * IDENTIFY PACKET DEVICE.
992 * ATA software reset (SRST, the default) does not appear
993 * to have this problem.
995 if ((using_edd) && (class == ATA_DEV_ATA)) {
997 if (err & ATA_ABORTED) {
998 class = ATA_DEV_ATAPI;
1005 swap_buf_le16(id, ATA_ID_WORDS);
1007 /* print device capabilities */
1008 printk(KERN_DEBUG "ata%u: dev %u cfg "
1009 "49:%04x 82:%04x 83:%04x 84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1011 id[49], id[82], id[83], id[84], id[85], id[86], id[87], id[88]);
1014 if ((class == ATA_DEV_ATA) != ata_id_is_ata(id)) {
1016 reason = "device reports illegal type";
1020 if (post_reset && class == ATA_DEV_ATA) {
1022 * The exact sequence expected by certain pre-ATA4 drives is:
1025 * INITIALIZE DEVICE PARAMETERS
1027 * Some drives were very specific about that exact sequence.
1029 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1030 err_mask = ata_dev_init_params(ap, dev);
1033 reason = "INIT_DEV_PARAMS failed";
1037 /* current CHS translation info (id[53-58]) might be
1038 * changed. reread the identify device info.
1050 printk(KERN_WARNING "ata%u: dev %u failed to IDENTIFY (%s)\n",
1051 ap->id, dev->devno, reason);
1056 static inline u8 ata_dev_knobble(const struct ata_port *ap,
1057 struct ata_device *dev)
1059 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1063 * ata_dev_configure - Configure the specified ATA/ATAPI device
1064 * @ap: Port on which target device resides
1065 * @dev: Target device to configure
1066 * @print_info: Enable device info printout
1068 * Configure @dev according to @dev->id. Generic and low-level
1069 * driver specific fixups are also applied.
1072 * Kernel thread context (may sleep)
1075 * 0 on success, -errno otherwise
1077 static int ata_dev_configure(struct ata_port *ap, struct ata_device *dev,
1080 unsigned long xfer_modes;
1083 if (!ata_dev_present(dev)) {
1084 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
1085 ap->id, dev->devno);
1089 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1091 /* initialize to-be-configured parameters */
1093 dev->max_sectors = 0;
1101 * common ATA, ATAPI feature tests
1104 /* we require DMA support (bits 8 of word 49) */
1105 if (!ata_id_has_dma(dev->id)) {
1106 printk(KERN_DEBUG "ata%u: no dma\n", ap->id);
1111 /* quick-n-dirty find max transfer mode; for printk only */
1112 xfer_modes = dev->id[ATA_ID_UDMA_MODES];
1114 xfer_modes = (dev->id[ATA_ID_MWDMA_MODES]) << ATA_SHIFT_MWDMA;
1116 xfer_modes = ata_pio_modes(dev);
1118 ata_dump_id(dev->id);
1120 /* ATA-specific feature tests */
1121 if (dev->class == ATA_DEV_ATA) {
1122 dev->n_sectors = ata_id_n_sectors(dev->id);
1124 if (ata_id_has_lba(dev->id)) {
1125 const char *lba_desc;
1128 dev->flags |= ATA_DFLAG_LBA;
1129 if (ata_id_has_lba48(dev->id)) {
1130 dev->flags |= ATA_DFLAG_LBA48;
1134 /* print device info to dmesg */
1136 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1137 "max %s, %Lu sectors: %s\n",
1139 ata_id_major_version(dev->id),
1140 ata_mode_string(xfer_modes),
1141 (unsigned long long)dev->n_sectors,
1146 /* Default translation */
1147 dev->cylinders = dev->id[1];
1148 dev->heads = dev->id[3];
1149 dev->sectors = dev->id[6];
1151 if (ata_id_current_chs_valid(dev->id)) {
1152 /* Current CHS translation is valid. */
1153 dev->cylinders = dev->id[54];
1154 dev->heads = dev->id[55];
1155 dev->sectors = dev->id[56];
1158 /* print device info to dmesg */
1160 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1161 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1163 ata_id_major_version(dev->id),
1164 ata_mode_string(xfer_modes),
1165 (unsigned long long)dev->n_sectors,
1166 dev->cylinders, dev->heads, dev->sectors);
1172 /* ATAPI-specific feature tests */
1173 else if (dev->class == ATA_DEV_ATAPI) {
1174 rc = atapi_cdb_len(dev->id);
1175 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1176 printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
1180 dev->cdb_len = (unsigned int) rc;
1182 /* print device info to dmesg */
1184 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
1185 ap->id, dev->devno, ata_mode_string(xfer_modes));
1188 ap->host->max_cmd_len = 0;
1189 for (i = 0; i < ATA_MAX_DEVICES; i++)
1190 ap->host->max_cmd_len = max_t(unsigned int,
1191 ap->host->max_cmd_len,
1192 ap->device[i].cdb_len);
1194 /* limit bridge transfers to udma5, 200 sectors */
1195 if (ata_dev_knobble(ap, dev)) {
1197 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1198 ap->id, dev->devno);
1199 ap->udma_mask &= ATA_UDMA5;
1200 dev->max_sectors = ATA_MAX_SECTORS;
1203 if (ap->ops->dev_config)
1204 ap->ops->dev_config(ap, dev);
1206 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
1210 printk(KERN_WARNING "ata%u: dev %u not supported, ignoring\n",
1211 ap->id, dev->devno);
1212 DPRINTK("EXIT, err\n");
1217 * ata_bus_probe - Reset and probe ATA bus
1220 * Master ATA bus probing function. Initiates a hardware-dependent
1221 * bus reset, then attempts to identify any devices found on
1225 * PCI/etc. bus probe sem.
1228 * Zero on success, non-zero on error.
1231 static int ata_bus_probe(struct ata_port *ap)
1233 unsigned int classes[ATA_MAX_DEVICES];
1234 unsigned int i, rc, found = 0;
1239 if (ap->ops->probe_reset) {
1240 rc = ap->ops->probe_reset(ap, classes);
1242 printk("ata%u: reset failed (errno=%d)\n", ap->id, rc);
1246 for (i = 0; i < ATA_MAX_DEVICES; i++)
1247 if (classes[i] == ATA_DEV_UNKNOWN)
1248 classes[i] = ATA_DEV_NONE;
1250 ap->ops->phy_reset(ap);
1252 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1253 if (!(ap->flags & ATA_FLAG_PORT_DISABLED))
1254 classes[i] = ap->device[i].class;
1256 ap->device[i].class = ATA_DEV_UNKNOWN;
1261 /* read IDENTIFY page and configure devices */
1262 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1263 struct ata_device *dev = &ap->device[i];
1265 dev->class = classes[i];
1267 if (!ata_dev_present(dev))
1270 WARN_ON(dev->id != NULL);
1271 if (ata_dev_read_id(ap, dev, &dev->class, 1, &dev->id)) {
1272 dev->class = ATA_DEV_NONE;
1276 if (ata_dev_configure(ap, dev, 1)) {
1277 dev->class++; /* disable device */
1285 goto err_out_disable;
1288 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1289 goto err_out_disable;
1294 ap->ops->port_disable(ap);
1299 * ata_port_probe - Mark port as enabled
1300 * @ap: Port for which we indicate enablement
1302 * Modify @ap data structure such that the system
1303 * thinks that the entire port is enabled.
1305 * LOCKING: host_set lock, or some other form of
1309 void ata_port_probe(struct ata_port *ap)
1311 ap->flags &= ~ATA_FLAG_PORT_DISABLED;
1315 * sata_print_link_status - Print SATA link status
1316 * @ap: SATA port to printk link status about
1318 * This function prints link speed and status of a SATA link.
1323 static void sata_print_link_status(struct ata_port *ap)
1328 if (!ap->ops->scr_read)
1331 sstatus = scr_read(ap, SCR_STATUS);
1333 if (sata_dev_present(ap)) {
1334 tmp = (sstatus >> 4) & 0xf;
1337 else if (tmp & (1 << 1))
1340 speed = "<unknown>";
1341 printk(KERN_INFO "ata%u: SATA link up %s Gbps (SStatus %X)\n",
1342 ap->id, speed, sstatus);
1344 printk(KERN_INFO "ata%u: SATA link down (SStatus %X)\n",
1350 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1351 * @ap: SATA port associated with target SATA PHY.
1353 * This function issues commands to standard SATA Sxxx
1354 * PHY registers, to wake up the phy (and device), and
1355 * clear any reset condition.
1358 * PCI/etc. bus probe sem.
1361 void __sata_phy_reset(struct ata_port *ap)
1364 unsigned long timeout = jiffies + (HZ * 5);
1366 if (ap->flags & ATA_FLAG_SATA_RESET) {
1367 /* issue phy wake/reset */
1368 scr_write_flush(ap, SCR_CONTROL, 0x301);
1369 /* Couldn't find anything in SATA I/II specs, but
1370 * AHCI-1.1 10.4.2 says at least 1 ms. */
1373 scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
1375 /* wait for phy to become ready, if necessary */
1378 sstatus = scr_read(ap, SCR_STATUS);
1379 if ((sstatus & 0xf) != 1)
1381 } while (time_before(jiffies, timeout));
1383 /* print link status */
1384 sata_print_link_status(ap);
1386 /* TODO: phy layer with polling, timeouts, etc. */
1387 if (sata_dev_present(ap))
1390 ata_port_disable(ap);
1392 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1395 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1396 ata_port_disable(ap);
1400 ap->cbl = ATA_CBL_SATA;
1404 * sata_phy_reset - Reset SATA bus.
1405 * @ap: SATA port associated with target SATA PHY.
1407 * This function resets the SATA bus, and then probes
1408 * the bus for devices.
1411 * PCI/etc. bus probe sem.
1414 void sata_phy_reset(struct ata_port *ap)
1416 __sata_phy_reset(ap);
1417 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1423 * ata_port_disable - Disable port.
1424 * @ap: Port to be disabled.
1426 * Modify @ap data structure such that the system
1427 * thinks that the entire port is disabled, and should
1428 * never attempt to probe or communicate with devices
1431 * LOCKING: host_set lock, or some other form of
1435 void ata_port_disable(struct ata_port *ap)
1437 ap->device[0].class = ATA_DEV_NONE;
1438 ap->device[1].class = ATA_DEV_NONE;
1439 ap->flags |= ATA_FLAG_PORT_DISABLED;
1443 * This mode timing computation functionality is ported over from
1444 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1447 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1448 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1449 * for PIO 5, which is a nonstandard extension and UDMA6, which
1450 * is currently supported only by Maxtor drives.
1453 static const struct ata_timing ata_timing[] = {
1455 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1456 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1457 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1458 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1460 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1461 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1462 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1464 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1466 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1467 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1468 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1470 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1471 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1472 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1474 /* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1475 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1476 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1478 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1479 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1480 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1482 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1487 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1488 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1490 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1492 q->setup = EZ(t->setup * 1000, T);
1493 q->act8b = EZ(t->act8b * 1000, T);
1494 q->rec8b = EZ(t->rec8b * 1000, T);
1495 q->cyc8b = EZ(t->cyc8b * 1000, T);
1496 q->active = EZ(t->active * 1000, T);
1497 q->recover = EZ(t->recover * 1000, T);
1498 q->cycle = EZ(t->cycle * 1000, T);
1499 q->udma = EZ(t->udma * 1000, UT);
1502 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1503 struct ata_timing *m, unsigned int what)
1505 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1506 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1507 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1508 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1509 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1510 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1511 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1512 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1515 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1517 const struct ata_timing *t;
1519 for (t = ata_timing; t->mode != speed; t++)
1520 if (t->mode == 0xFF)
1525 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1526 struct ata_timing *t, int T, int UT)
1528 const struct ata_timing *s;
1529 struct ata_timing p;
1535 if (!(s = ata_timing_find_mode(speed)))
1538 memcpy(t, s, sizeof(*s));
1541 * If the drive is an EIDE drive, it can tell us it needs extended
1542 * PIO/MW_DMA cycle timing.
1545 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1546 memset(&p, 0, sizeof(p));
1547 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1548 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1549 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1550 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1551 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1553 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1557 * Convert the timing to bus clock counts.
1560 ata_timing_quantize(t, t, T, UT);
1563 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1564 * S.M.A.R.T * and some other commands. We have to ensure that the
1565 * DMA cycle timing is slower/equal than the fastest PIO timing.
1568 if (speed > XFER_PIO_4) {
1569 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1570 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1574 * Lengthen active & recovery time so that cycle time is correct.
1577 if (t->act8b + t->rec8b < t->cyc8b) {
1578 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1579 t->rec8b = t->cyc8b - t->act8b;
1582 if (t->active + t->recover < t->cycle) {
1583 t->active += (t->cycle - (t->active + t->recover)) / 2;
1584 t->recover = t->cycle - t->active;
1590 static const struct {
1593 } xfer_mode_classes[] = {
1594 { ATA_SHIFT_UDMA, XFER_UDMA_0 },
1595 { ATA_SHIFT_MWDMA, XFER_MW_DMA_0 },
1596 { ATA_SHIFT_PIO, XFER_PIO_0 },
1599 static u8 base_from_shift(unsigned int shift)
1603 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++)
1604 if (xfer_mode_classes[i].shift == shift)
1605 return xfer_mode_classes[i].base;
1610 static void ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
1615 if (!ata_dev_present(dev) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1618 if (dev->xfer_shift == ATA_SHIFT_PIO)
1619 dev->flags |= ATA_DFLAG_PIO;
1621 ata_dev_set_xfermode(ap, dev);
1623 base = base_from_shift(dev->xfer_shift);
1624 ofs = dev->xfer_mode - base;
1625 idx = ofs + dev->xfer_shift;
1626 WARN_ON(idx >= ARRAY_SIZE(xfer_mode_str));
1628 if (ata_dev_revalidate(ap, dev, 0)) {
1629 printk(KERN_ERR "ata%u: failed to revalidate after set "
1630 "xfermode, disabled\n", ap->id);
1631 ata_port_disable(ap);
1634 DPRINTK("idx=%d xfer_shift=%u, xfer_mode=0x%x, base=0x%x, offset=%d\n",
1635 idx, dev->xfer_shift, (int)dev->xfer_mode, (int)base, ofs);
1637 printk(KERN_INFO "ata%u: dev %u configured for %s\n",
1638 ap->id, dev->devno, xfer_mode_str[idx]);
1641 static int ata_host_set_pio(struct ata_port *ap)
1647 mask = ata_get_mode_mask(ap, ATA_SHIFT_PIO);
1650 printk(KERN_WARNING "ata%u: no PIO support\n", ap->id);
1654 base = base_from_shift(ATA_SHIFT_PIO);
1655 xfer_mode = base + x;
1657 DPRINTK("base 0x%x xfer_mode 0x%x mask 0x%x x %d\n",
1658 (int)base, (int)xfer_mode, mask, x);
1660 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1661 struct ata_device *dev = &ap->device[i];
1662 if (ata_dev_present(dev)) {
1663 dev->pio_mode = xfer_mode;
1664 dev->xfer_mode = xfer_mode;
1665 dev->xfer_shift = ATA_SHIFT_PIO;
1666 if (ap->ops->set_piomode)
1667 ap->ops->set_piomode(ap, dev);
1674 static void ata_host_set_dma(struct ata_port *ap, u8 xfer_mode,
1675 unsigned int xfer_shift)
1679 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1680 struct ata_device *dev = &ap->device[i];
1681 if (ata_dev_present(dev)) {
1682 dev->dma_mode = xfer_mode;
1683 dev->xfer_mode = xfer_mode;
1684 dev->xfer_shift = xfer_shift;
1685 if (ap->ops->set_dmamode)
1686 ap->ops->set_dmamode(ap, dev);
1692 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1693 * @ap: port on which timings will be programmed
1695 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.).
1698 * PCI/etc. bus probe sem.
1700 static void ata_set_mode(struct ata_port *ap)
1702 unsigned int xfer_shift;
1706 /* step 1: always set host PIO timings */
1707 rc = ata_host_set_pio(ap);
1711 /* step 2: choose the best data xfer mode */
1712 xfer_mode = xfer_shift = 0;
1713 rc = ata_choose_xfer_mode(ap, &xfer_mode, &xfer_shift);
1717 /* step 3: if that xfer mode isn't PIO, set host DMA timings */
1718 if (xfer_shift != ATA_SHIFT_PIO)
1719 ata_host_set_dma(ap, xfer_mode, xfer_shift);
1721 /* step 4: update devices' xfer mode */
1722 ata_dev_set_mode(ap, &ap->device[0]);
1723 ata_dev_set_mode(ap, &ap->device[1]);
1725 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1728 if (ap->ops->post_set_mode)
1729 ap->ops->post_set_mode(ap);
1734 ata_port_disable(ap);
1738 * ata_tf_to_host - issue ATA taskfile to host controller
1739 * @ap: port to which command is being issued
1740 * @tf: ATA taskfile register set
1742 * Issues ATA taskfile register set to ATA host controller,
1743 * with proper synchronization with interrupt handler and
1747 * spin_lock_irqsave(host_set lock)
1750 static inline void ata_tf_to_host(struct ata_port *ap,
1751 const struct ata_taskfile *tf)
1753 ap->ops->tf_load(ap, tf);
1754 ap->ops->exec_command(ap, tf);
1758 * ata_busy_sleep - sleep until BSY clears, or timeout
1759 * @ap: port containing status register to be polled
1760 * @tmout_pat: impatience timeout
1761 * @tmout: overall timeout
1763 * Sleep until ATA Status register bit BSY clears,
1764 * or a timeout occurs.
1769 unsigned int ata_busy_sleep (struct ata_port *ap,
1770 unsigned long tmout_pat, unsigned long tmout)
1772 unsigned long timer_start, timeout;
1775 status = ata_busy_wait(ap, ATA_BUSY, 300);
1776 timer_start = jiffies;
1777 timeout = timer_start + tmout_pat;
1778 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1780 status = ata_busy_wait(ap, ATA_BUSY, 3);
1783 if (status & ATA_BUSY)
1784 printk(KERN_WARNING "ata%u is slow to respond, "
1785 "please be patient\n", ap->id);
1787 timeout = timer_start + tmout;
1788 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1790 status = ata_chk_status(ap);
1793 if (status & ATA_BUSY) {
1794 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
1795 ap->id, tmout / HZ);
1802 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
1804 struct ata_ioports *ioaddr = &ap->ioaddr;
1805 unsigned int dev0 = devmask & (1 << 0);
1806 unsigned int dev1 = devmask & (1 << 1);
1807 unsigned long timeout;
1809 /* if device 0 was found in ata_devchk, wait for its
1813 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1815 /* if device 1 was found in ata_devchk, wait for
1816 * register access, then wait for BSY to clear
1818 timeout = jiffies + ATA_TMOUT_BOOT;
1822 ap->ops->dev_select(ap, 1);
1823 if (ap->flags & ATA_FLAG_MMIO) {
1824 nsect = readb((void __iomem *) ioaddr->nsect_addr);
1825 lbal = readb((void __iomem *) ioaddr->lbal_addr);
1827 nsect = inb(ioaddr->nsect_addr);
1828 lbal = inb(ioaddr->lbal_addr);
1830 if ((nsect == 1) && (lbal == 1))
1832 if (time_after(jiffies, timeout)) {
1836 msleep(50); /* give drive a breather */
1839 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1841 /* is all this really necessary? */
1842 ap->ops->dev_select(ap, 0);
1844 ap->ops->dev_select(ap, 1);
1846 ap->ops->dev_select(ap, 0);
1850 * ata_bus_edd - Issue EXECUTE DEVICE DIAGNOSTIC command.
1851 * @ap: Port to reset and probe
1853 * Use the EXECUTE DEVICE DIAGNOSTIC command to reset and
1854 * probe the bus. Not often used these days.
1857 * PCI/etc. bus probe sem.
1858 * Obtains host_set lock.
1862 static unsigned int ata_bus_edd(struct ata_port *ap)
1864 struct ata_taskfile tf;
1865 unsigned long flags;
1867 /* set up execute-device-diag (bus reset) taskfile */
1868 /* also, take interrupts to a known state (disabled) */
1869 DPRINTK("execute-device-diag\n");
1870 ata_tf_init(ap, &tf, 0);
1872 tf.command = ATA_CMD_EDD;
1873 tf.protocol = ATA_PROT_NODATA;
1876 spin_lock_irqsave(&ap->host_set->lock, flags);
1877 ata_tf_to_host(ap, &tf);
1878 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1880 /* spec says at least 2ms. but who knows with those
1881 * crazy ATAPI devices...
1885 return ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1888 static unsigned int ata_bus_softreset(struct ata_port *ap,
1889 unsigned int devmask)
1891 struct ata_ioports *ioaddr = &ap->ioaddr;
1893 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
1895 /* software reset. causes dev0 to be selected */
1896 if (ap->flags & ATA_FLAG_MMIO) {
1897 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1898 udelay(20); /* FIXME: flush */
1899 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
1900 udelay(20); /* FIXME: flush */
1901 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1903 outb(ap->ctl, ioaddr->ctl_addr);
1905 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1907 outb(ap->ctl, ioaddr->ctl_addr);
1910 /* spec mandates ">= 2ms" before checking status.
1911 * We wait 150ms, because that was the magic delay used for
1912 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
1913 * between when the ATA command register is written, and then
1914 * status is checked. Because waiting for "a while" before
1915 * checking status is fine, post SRST, we perform this magic
1916 * delay here as well.
1920 ata_bus_post_reset(ap, devmask);
1926 * ata_bus_reset - reset host port and associated ATA channel
1927 * @ap: port to reset
1929 * This is typically the first time we actually start issuing
1930 * commands to the ATA channel. We wait for BSY to clear, then
1931 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
1932 * result. Determine what devices, if any, are on the channel
1933 * by looking at the device 0/1 error register. Look at the signature
1934 * stored in each device's taskfile registers, to determine if
1935 * the device is ATA or ATAPI.
1938 * PCI/etc. bus probe sem.
1939 * Obtains host_set lock.
1942 * Sets ATA_FLAG_PORT_DISABLED if bus reset fails.
1945 void ata_bus_reset(struct ata_port *ap)
1947 struct ata_ioports *ioaddr = &ap->ioaddr;
1948 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
1950 unsigned int dev0, dev1 = 0, rc = 0, devmask = 0;
1952 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
1954 /* determine if device 0/1 are present */
1955 if (ap->flags & ATA_FLAG_SATA_RESET)
1958 dev0 = ata_devchk(ap, 0);
1960 dev1 = ata_devchk(ap, 1);
1964 devmask |= (1 << 0);
1966 devmask |= (1 << 1);
1968 /* select device 0 again */
1969 ap->ops->dev_select(ap, 0);
1971 /* issue bus reset */
1972 if (ap->flags & ATA_FLAG_SRST)
1973 rc = ata_bus_softreset(ap, devmask);
1974 else if ((ap->flags & ATA_FLAG_SATA_RESET) == 0) {
1975 /* set up device control */
1976 if (ap->flags & ATA_FLAG_MMIO)
1977 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1979 outb(ap->ctl, ioaddr->ctl_addr);
1980 rc = ata_bus_edd(ap);
1987 * determine by signature whether we have ATA or ATAPI devices
1989 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1990 if ((slave_possible) && (err != 0x81))
1991 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1993 /* re-enable interrupts */
1994 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
1997 /* is double-select really necessary? */
1998 if (ap->device[1].class != ATA_DEV_NONE)
1999 ap->ops->dev_select(ap, 1);
2000 if (ap->device[0].class != ATA_DEV_NONE)
2001 ap->ops->dev_select(ap, 0);
2003 /* if no devices were detected, disable this port */
2004 if ((ap->device[0].class == ATA_DEV_NONE) &&
2005 (ap->device[1].class == ATA_DEV_NONE))
2008 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2009 /* set up device control for ATA_FLAG_SATA_RESET */
2010 if (ap->flags & ATA_FLAG_MMIO)
2011 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2013 outb(ap->ctl, ioaddr->ctl_addr);
2020 printk(KERN_ERR "ata%u: disabling port\n", ap->id);
2021 ap->ops->port_disable(ap);
2026 static int sata_phy_resume(struct ata_port *ap)
2028 unsigned long timeout = jiffies + (HZ * 5);
2031 scr_write_flush(ap, SCR_CONTROL, 0x300);
2033 /* Wait for phy to become ready, if necessary. */
2036 sstatus = scr_read(ap, SCR_STATUS);
2037 if ((sstatus & 0xf) != 1)
2039 } while (time_before(jiffies, timeout));
2045 * ata_std_probeinit - initialize probing
2046 * @ap: port to be probed
2048 * @ap is about to be probed. Initialize it. This function is
2049 * to be used as standard callback for ata_drive_probe_reset().
2051 * NOTE!!! Do not use this function as probeinit if a low level
2052 * driver implements only hardreset. Just pass NULL as probeinit
2053 * in that case. Using this function is probably okay but doing
2054 * so makes reset sequence different from the original
2055 * ->phy_reset implementation and Jeff nervous. :-P
2057 extern void ata_std_probeinit(struct ata_port *ap)
2059 if (ap->flags & ATA_FLAG_SATA && ap->ops->scr_read) {
2060 sata_phy_resume(ap);
2061 if (sata_dev_present(ap))
2062 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2067 * ata_std_softreset - reset host port via ATA SRST
2068 * @ap: port to reset
2069 * @verbose: fail verbosely
2070 * @classes: resulting classes of attached devices
2072 * Reset host port using ATA SRST. This function is to be used
2073 * as standard callback for ata_drive_*_reset() functions.
2076 * Kernel thread context (may sleep)
2079 * 0 on success, -errno otherwise.
2081 int ata_std_softreset(struct ata_port *ap, int verbose, unsigned int *classes)
2083 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2084 unsigned int devmask = 0, err_mask;
2089 if (ap->ops->scr_read && !sata_dev_present(ap)) {
2090 classes[0] = ATA_DEV_NONE;
2094 /* determine if device 0/1 are present */
2095 if (ata_devchk(ap, 0))
2096 devmask |= (1 << 0);
2097 if (slave_possible && ata_devchk(ap, 1))
2098 devmask |= (1 << 1);
2100 /* select device 0 again */
2101 ap->ops->dev_select(ap, 0);
2103 /* issue bus reset */
2104 DPRINTK("about to softreset, devmask=%x\n", devmask);
2105 err_mask = ata_bus_softreset(ap, devmask);
2108 printk(KERN_ERR "ata%u: SRST failed (err_mask=0x%x)\n",
2111 DPRINTK("EXIT, softreset failed (err_mask=0x%x)\n",
2116 /* determine by signature whether we have ATA or ATAPI devices */
2117 classes[0] = ata_dev_try_classify(ap, 0, &err);
2118 if (slave_possible && err != 0x81)
2119 classes[1] = ata_dev_try_classify(ap, 1, &err);
2122 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2127 * sata_std_hardreset - reset host port via SATA phy reset
2128 * @ap: port to reset
2129 * @verbose: fail verbosely
2130 * @class: resulting class of attached device
2132 * SATA phy-reset host port using DET bits of SControl register.
2133 * This function is to be used as standard callback for
2134 * ata_drive_*_reset().
2137 * Kernel thread context (may sleep)
2140 * 0 on success, -errno otherwise.
2142 int sata_std_hardreset(struct ata_port *ap, int verbose, unsigned int *class)
2146 /* Issue phy wake/reset */
2147 scr_write_flush(ap, SCR_CONTROL, 0x301);
2150 * Couldn't find anything in SATA I/II specs, but AHCI-1.1
2151 * 10.4.2 says at least 1 ms.
2155 /* Bring phy back */
2156 sata_phy_resume(ap);
2158 /* TODO: phy layer with polling, timeouts, etc. */
2159 if (!sata_dev_present(ap)) {
2160 *class = ATA_DEV_NONE;
2161 DPRINTK("EXIT, link offline\n");
2165 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2167 printk(KERN_ERR "ata%u: COMRESET failed "
2168 "(device not ready)\n", ap->id);
2170 DPRINTK("EXIT, device not ready\n");
2174 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2176 *class = ata_dev_try_classify(ap, 0, NULL);
2178 DPRINTK("EXIT, class=%u\n", *class);
2183 * ata_std_postreset - standard postreset callback
2184 * @ap: the target ata_port
2185 * @classes: classes of attached devices
2187 * This function is invoked after a successful reset. Note that
2188 * the device might have been reset more than once using
2189 * different reset methods before postreset is invoked.
2191 * This function is to be used as standard callback for
2192 * ata_drive_*_reset().
2195 * Kernel thread context (may sleep)
2197 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2201 /* set cable type if it isn't already set */
2202 if (ap->cbl == ATA_CBL_NONE && ap->flags & ATA_FLAG_SATA)
2203 ap->cbl = ATA_CBL_SATA;
2205 /* print link status */
2206 if (ap->cbl == ATA_CBL_SATA)
2207 sata_print_link_status(ap);
2209 /* re-enable interrupts */
2210 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2213 /* is double-select really necessary? */
2214 if (classes[0] != ATA_DEV_NONE)
2215 ap->ops->dev_select(ap, 1);
2216 if (classes[1] != ATA_DEV_NONE)
2217 ap->ops->dev_select(ap, 0);
2219 /* bail out if no device is present */
2220 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2221 DPRINTK("EXIT, no device\n");
2225 /* set up device control */
2226 if (ap->ioaddr.ctl_addr) {
2227 if (ap->flags & ATA_FLAG_MMIO)
2228 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2230 outb(ap->ctl, ap->ioaddr.ctl_addr);
2237 * ata_std_probe_reset - standard probe reset method
2238 * @ap: prot to perform probe-reset
2239 * @classes: resulting classes of attached devices
2241 * The stock off-the-shelf ->probe_reset method.
2244 * Kernel thread context (may sleep)
2247 * 0 on success, -errno otherwise.
2249 int ata_std_probe_reset(struct ata_port *ap, unsigned int *classes)
2251 ata_reset_fn_t hardreset;
2254 if (ap->flags & ATA_FLAG_SATA && ap->ops->scr_read)
2255 hardreset = sata_std_hardreset;
2257 return ata_drive_probe_reset(ap, ata_std_probeinit,
2258 ata_std_softreset, hardreset,
2259 ata_std_postreset, classes);
2262 static int do_probe_reset(struct ata_port *ap, ata_reset_fn_t reset,
2263 ata_postreset_fn_t postreset,
2264 unsigned int *classes)
2268 for (i = 0; i < ATA_MAX_DEVICES; i++)
2269 classes[i] = ATA_DEV_UNKNOWN;
2271 rc = reset(ap, 0, classes);
2275 /* If any class isn't ATA_DEV_UNKNOWN, consider classification
2276 * is complete and convert all ATA_DEV_UNKNOWN to
2279 for (i = 0; i < ATA_MAX_DEVICES; i++)
2280 if (classes[i] != ATA_DEV_UNKNOWN)
2283 if (i < ATA_MAX_DEVICES)
2284 for (i = 0; i < ATA_MAX_DEVICES; i++)
2285 if (classes[i] == ATA_DEV_UNKNOWN)
2286 classes[i] = ATA_DEV_NONE;
2289 postreset(ap, classes);
2291 return classes[0] != ATA_DEV_UNKNOWN ? 0 : -ENODEV;
2295 * ata_drive_probe_reset - Perform probe reset with given methods
2296 * @ap: port to reset
2297 * @probeinit: probeinit method (can be NULL)
2298 * @softreset: softreset method (can be NULL)
2299 * @hardreset: hardreset method (can be NULL)
2300 * @postreset: postreset method (can be NULL)
2301 * @classes: resulting classes of attached devices
2303 * Reset the specified port and classify attached devices using
2304 * given methods. This function prefers softreset but tries all
2305 * possible reset sequences to reset and classify devices. This
2306 * function is intended to be used for constructing ->probe_reset
2307 * callback by low level drivers.
2309 * Reset methods should follow the following rules.
2311 * - Return 0 on sucess, -errno on failure.
2312 * - If classification is supported, fill classes[] with
2313 * recognized class codes.
2314 * - If classification is not supported, leave classes[] alone.
2315 * - If verbose is non-zero, print error message on failure;
2316 * otherwise, shut up.
2319 * Kernel thread context (may sleep)
2322 * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV
2323 * if classification fails, and any error code from reset
2326 int ata_drive_probe_reset(struct ata_port *ap, ata_probeinit_fn_t probeinit,
2327 ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
2328 ata_postreset_fn_t postreset, unsigned int *classes)
2336 rc = do_probe_reset(ap, softreset, postreset, classes);
2344 rc = do_probe_reset(ap, hardreset, postreset, classes);
2345 if (rc == 0 || rc != -ENODEV)
2349 rc = do_probe_reset(ap, softreset, postreset, classes);
2355 * ata_dev_same_device - Determine whether new ID matches configured device
2356 * @ap: port on which the device to compare against resides
2357 * @dev: device to compare against
2358 * @new_class: class of the new device
2359 * @new_id: IDENTIFY page of the new device
2361 * Compare @new_class and @new_id against @dev and determine
2362 * whether @dev is the device indicated by @new_class and
2369 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2371 static int ata_dev_same_device(struct ata_port *ap, struct ata_device *dev,
2372 unsigned int new_class, const u16 *new_id)
2374 const u16 *old_id = dev->id;
2375 unsigned char model[2][41], serial[2][21];
2378 if (dev->class != new_class) {
2380 "ata%u: dev %u class mismatch %d != %d\n",
2381 ap->id, dev->devno, dev->class, new_class);
2385 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2386 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2387 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2388 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2389 new_n_sectors = ata_id_n_sectors(new_id);
2391 if (strcmp(model[0], model[1])) {
2393 "ata%u: dev %u model number mismatch '%s' != '%s'\n",
2394 ap->id, dev->devno, model[0], model[1]);
2398 if (strcmp(serial[0], serial[1])) {
2400 "ata%u: dev %u serial number mismatch '%s' != '%s'\n",
2401 ap->id, dev->devno, serial[0], serial[1]);
2405 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
2407 "ata%u: dev %u n_sectors mismatch %llu != %llu\n",
2408 ap->id, dev->devno, (unsigned long long)dev->n_sectors,
2409 (unsigned long long)new_n_sectors);
2417 * ata_dev_revalidate - Revalidate ATA device
2418 * @ap: port on which the device to revalidate resides
2419 * @dev: device to revalidate
2420 * @post_reset: is this revalidation after reset?
2422 * Re-read IDENTIFY page and make sure @dev is still attached to
2426 * Kernel thread context (may sleep)
2429 * 0 on success, negative errno otherwise
2431 int ata_dev_revalidate(struct ata_port *ap, struct ata_device *dev,
2438 if (!ata_dev_present(dev))
2444 /* allocate & read ID data */
2445 rc = ata_dev_read_id(ap, dev, &class, post_reset, &id);
2449 /* is the device still there? */
2450 if (!ata_dev_same_device(ap, dev, class, id)) {
2458 /* configure device according to the new ID */
2459 return ata_dev_configure(ap, dev, 0);
2462 printk(KERN_ERR "ata%u: dev %u revalidation failed (errno=%d)\n",
2463 ap->id, dev->devno, rc);
2468 static void ata_pr_blacklisted(const struct ata_port *ap,
2469 const struct ata_device *dev)
2471 printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, disabling DMA\n",
2472 ap->id, dev->devno);
2475 static const char * const ata_dma_blacklist [] = {
2494 "Toshiba CD-ROM XM-6202B",
2495 "TOSHIBA CD-ROM XM-1702BC",
2497 "E-IDE CD-ROM CR-840",
2500 "SAMSUNG CD-ROM SC-148C",
2501 "SAMSUNG CD-ROM SC",
2503 "ATAPI CD-ROM DRIVE 40X MAXIMUM",
2507 static int ata_dma_blacklisted(const struct ata_device *dev)
2509 unsigned char model_num[41];
2512 ata_id_c_string(dev->id, model_num, ATA_ID_PROD_OFS, sizeof(model_num));
2514 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i++)
2515 if (!strcmp(ata_dma_blacklist[i], model_num))
2521 static unsigned int ata_get_mode_mask(const struct ata_port *ap, int shift)
2523 const struct ata_device *master, *slave;
2526 master = &ap->device[0];
2527 slave = &ap->device[1];
2529 WARN_ON(!ata_dev_present(master) && !ata_dev_present(slave));
2531 if (shift == ATA_SHIFT_UDMA) {
2532 mask = ap->udma_mask;
2533 if (ata_dev_present(master)) {
2534 mask &= (master->id[ATA_ID_UDMA_MODES] & 0xff);
2535 if (ata_dma_blacklisted(master)) {
2537 ata_pr_blacklisted(ap, master);
2540 if (ata_dev_present(slave)) {
2541 mask &= (slave->id[ATA_ID_UDMA_MODES] & 0xff);
2542 if (ata_dma_blacklisted(slave)) {
2544 ata_pr_blacklisted(ap, slave);
2548 else if (shift == ATA_SHIFT_MWDMA) {
2549 mask = ap->mwdma_mask;
2550 if (ata_dev_present(master)) {
2551 mask &= (master->id[ATA_ID_MWDMA_MODES] & 0x07);
2552 if (ata_dma_blacklisted(master)) {
2554 ata_pr_blacklisted(ap, master);
2557 if (ata_dev_present(slave)) {
2558 mask &= (slave->id[ATA_ID_MWDMA_MODES] & 0x07);
2559 if (ata_dma_blacklisted(slave)) {
2561 ata_pr_blacklisted(ap, slave);
2565 else if (shift == ATA_SHIFT_PIO) {
2566 mask = ap->pio_mask;
2567 if (ata_dev_present(master)) {
2568 /* spec doesn't return explicit support for
2569 * PIO0-2, so we fake it
2571 u16 tmp_mode = master->id[ATA_ID_PIO_MODES] & 0x03;
2576 if (ata_dev_present(slave)) {
2577 /* spec doesn't return explicit support for
2578 * PIO0-2, so we fake it
2580 u16 tmp_mode = slave->id[ATA_ID_PIO_MODES] & 0x03;
2587 mask = 0xffffffff; /* shut up compiler warning */
2594 /* find greatest bit */
2595 static int fgb(u32 bitmap)
2600 for (i = 0; i < 32; i++)
2601 if (bitmap & (1 << i))
2608 * ata_choose_xfer_mode - attempt to find best transfer mode
2609 * @ap: Port for which an xfer mode will be selected
2610 * @xfer_mode_out: (output) SET FEATURES - XFER MODE code
2611 * @xfer_shift_out: (output) bit shift that selects this mode
2613 * Based on host and device capabilities, determine the
2614 * maximum transfer mode that is amenable to all.
2617 * PCI/etc. bus probe sem.
2620 * Zero on success, negative on error.
2623 static int ata_choose_xfer_mode(const struct ata_port *ap,
2625 unsigned int *xfer_shift_out)
2627 unsigned int mask, shift;
2630 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++) {
2631 shift = xfer_mode_classes[i].shift;
2632 mask = ata_get_mode_mask(ap, shift);
2636 *xfer_mode_out = xfer_mode_classes[i].base + x;
2637 *xfer_shift_out = shift;
2646 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2647 * @ap: Port associated with device @dev
2648 * @dev: Device to which command will be sent
2650 * Issue SET FEATURES - XFER MODE command to device @dev
2654 * PCI/etc. bus probe sem.
2657 static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev)
2659 struct ata_taskfile tf;
2661 /* set up set-features taskfile */
2662 DPRINTK("set features - xfer mode\n");
2664 ata_tf_init(ap, &tf, dev->devno);
2665 tf.command = ATA_CMD_SET_FEATURES;
2666 tf.feature = SETFEATURES_XFER;
2667 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2668 tf.protocol = ATA_PROT_NODATA;
2669 tf.nsect = dev->xfer_mode;
2671 if (ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0)) {
2672 printk(KERN_ERR "ata%u: failed to set xfermode, disabled\n",
2674 ata_port_disable(ap);
2681 * ata_dev_init_params - Issue INIT DEV PARAMS command
2682 * @ap: Port associated with device @dev
2683 * @dev: Device to which command will be sent
2686 * Kernel thread context (may sleep)
2689 * 0 on success, AC_ERR_* mask otherwise.
2692 static unsigned int ata_dev_init_params(struct ata_port *ap,
2693 struct ata_device *dev)
2695 struct ata_taskfile tf;
2696 unsigned int err_mask;
2697 u16 sectors = dev->id[6];
2698 u16 heads = dev->id[3];
2700 /* Number of sectors per track 1-255. Number of heads 1-16 */
2701 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
2704 /* set up init dev params taskfile */
2705 DPRINTK("init dev params \n");
2707 ata_tf_init(ap, &tf, dev->devno);
2708 tf.command = ATA_CMD_INIT_DEV_PARAMS;
2709 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2710 tf.protocol = ATA_PROT_NODATA;
2712 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
2714 err_mask = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
2716 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2721 * ata_sg_clean - Unmap DMA memory associated with command
2722 * @qc: Command containing DMA memory to be released
2724 * Unmap all mapped DMA memory associated with this command.
2727 * spin_lock_irqsave(host_set lock)
2730 static void ata_sg_clean(struct ata_queued_cmd *qc)
2732 struct ata_port *ap = qc->ap;
2733 struct scatterlist *sg = qc->__sg;
2734 int dir = qc->dma_dir;
2735 void *pad_buf = NULL;
2737 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
2738 WARN_ON(sg == NULL);
2740 if (qc->flags & ATA_QCFLAG_SINGLE)
2741 WARN_ON(qc->n_elem > 1);
2743 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
2745 /* if we padded the buffer out to 32-bit bound, and data
2746 * xfer direction is from-device, we must copy from the
2747 * pad buffer back into the supplied buffer
2749 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
2750 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2752 if (qc->flags & ATA_QCFLAG_SG) {
2754 dma_unmap_sg(ap->host_set->dev, sg, qc->n_elem, dir);
2755 /* restore last sg */
2756 sg[qc->orig_n_elem - 1].length += qc->pad_len;
2758 struct scatterlist *psg = &qc->pad_sgent;
2759 void *addr = kmap_atomic(psg->page, KM_IRQ0);
2760 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
2761 kunmap_atomic(addr, KM_IRQ0);
2765 dma_unmap_single(ap->host_set->dev,
2766 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
2769 sg->length += qc->pad_len;
2771 memcpy(qc->buf_virt + sg->length - qc->pad_len,
2772 pad_buf, qc->pad_len);
2775 qc->flags &= ~ATA_QCFLAG_DMAMAP;
2780 * ata_fill_sg - Fill PCI IDE PRD table
2781 * @qc: Metadata associated with taskfile to be transferred
2783 * Fill PCI IDE PRD (scatter-gather) table with segments
2784 * associated with the current disk command.
2787 * spin_lock_irqsave(host_set lock)
2790 static void ata_fill_sg(struct ata_queued_cmd *qc)
2792 struct ata_port *ap = qc->ap;
2793 struct scatterlist *sg;
2796 WARN_ON(qc->__sg == NULL);
2797 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
2800 ata_for_each_sg(sg, qc) {
2804 /* determine if physical DMA addr spans 64K boundary.
2805 * Note h/w doesn't support 64-bit, so we unconditionally
2806 * truncate dma_addr_t to u32.
2808 addr = (u32) sg_dma_address(sg);
2809 sg_len = sg_dma_len(sg);
2812 offset = addr & 0xffff;
2814 if ((offset + sg_len) > 0x10000)
2815 len = 0x10000 - offset;
2817 ap->prd[idx].addr = cpu_to_le32(addr);
2818 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
2819 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
2828 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2831 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
2832 * @qc: Metadata associated with taskfile to check
2834 * Allow low-level driver to filter ATA PACKET commands, returning
2835 * a status indicating whether or not it is OK to use DMA for the
2836 * supplied PACKET command.
2839 * spin_lock_irqsave(host_set lock)
2841 * RETURNS: 0 when ATAPI DMA can be used
2844 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
2846 struct ata_port *ap = qc->ap;
2847 int rc = 0; /* Assume ATAPI DMA is OK by default */
2849 if (ap->ops->check_atapi_dma)
2850 rc = ap->ops->check_atapi_dma(qc);
2855 * ata_qc_prep - Prepare taskfile for submission
2856 * @qc: Metadata associated with taskfile to be prepared
2858 * Prepare ATA taskfile for submission.
2861 * spin_lock_irqsave(host_set lock)
2863 void ata_qc_prep(struct ata_queued_cmd *qc)
2865 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2872 * ata_sg_init_one - Associate command with memory buffer
2873 * @qc: Command to be associated
2874 * @buf: Memory buffer
2875 * @buflen: Length of memory buffer, in bytes.
2877 * Initialize the data-related elements of queued_cmd @qc
2878 * to point to a single memory buffer, @buf of byte length @buflen.
2881 * spin_lock_irqsave(host_set lock)
2884 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
2886 struct scatterlist *sg;
2888 qc->flags |= ATA_QCFLAG_SINGLE;
2890 memset(&qc->sgent, 0, sizeof(qc->sgent));
2891 qc->__sg = &qc->sgent;
2893 qc->orig_n_elem = 1;
2897 sg_init_one(sg, buf, buflen);
2901 * ata_sg_init - Associate command with scatter-gather table.
2902 * @qc: Command to be associated
2903 * @sg: Scatter-gather table.
2904 * @n_elem: Number of elements in s/g table.
2906 * Initialize the data-related elements of queued_cmd @qc
2907 * to point to a scatter-gather table @sg, containing @n_elem
2911 * spin_lock_irqsave(host_set lock)
2914 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
2915 unsigned int n_elem)
2917 qc->flags |= ATA_QCFLAG_SG;
2919 qc->n_elem = n_elem;
2920 qc->orig_n_elem = n_elem;
2924 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
2925 * @qc: Command with memory buffer to be mapped.
2927 * DMA-map the memory buffer associated with queued_cmd @qc.
2930 * spin_lock_irqsave(host_set lock)
2933 * Zero on success, negative on error.
2936 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
2938 struct ata_port *ap = qc->ap;
2939 int dir = qc->dma_dir;
2940 struct scatterlist *sg = qc->__sg;
2941 dma_addr_t dma_address;
2944 /* we must lengthen transfers to end on a 32-bit boundary */
2945 qc->pad_len = sg->length & 3;
2947 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2948 struct scatterlist *psg = &qc->pad_sgent;
2950 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
2952 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
2954 if (qc->tf.flags & ATA_TFLAG_WRITE)
2955 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
2958 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
2959 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
2961 sg->length -= qc->pad_len;
2962 if (sg->length == 0)
2965 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
2966 sg->length, qc->pad_len);
2974 dma_address = dma_map_single(ap->host_set->dev, qc->buf_virt,
2976 if (dma_mapping_error(dma_address)) {
2978 sg->length += qc->pad_len;
2982 sg_dma_address(sg) = dma_address;
2983 sg_dma_len(sg) = sg->length;
2986 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
2987 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
2993 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
2994 * @qc: Command with scatter-gather table to be mapped.
2996 * DMA-map the scatter-gather table associated with queued_cmd @qc.
2999 * spin_lock_irqsave(host_set lock)
3002 * Zero on success, negative on error.
3006 static int ata_sg_setup(struct ata_queued_cmd *qc)
3008 struct ata_port *ap = qc->ap;
3009 struct scatterlist *sg = qc->__sg;
3010 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3011 int n_elem, pre_n_elem, dir, trim_sg = 0;
3013 VPRINTK("ENTER, ata%u\n", ap->id);
3014 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3016 /* we must lengthen transfers to end on a 32-bit boundary */
3017 qc->pad_len = lsg->length & 3;
3019 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3020 struct scatterlist *psg = &qc->pad_sgent;
3021 unsigned int offset;
3023 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3025 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3028 * psg->page/offset are used to copy to-be-written
3029 * data in this function or read data in ata_sg_clean.
3031 offset = lsg->offset + lsg->length - qc->pad_len;
3032 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3033 psg->offset = offset_in_page(offset);
3035 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3036 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3037 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3038 kunmap_atomic(addr, KM_IRQ0);
3041 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3042 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3044 lsg->length -= qc->pad_len;
3045 if (lsg->length == 0)
3048 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3049 qc->n_elem - 1, lsg->length, qc->pad_len);
3052 pre_n_elem = qc->n_elem;
3053 if (trim_sg && pre_n_elem)
3062 n_elem = dma_map_sg(ap->host_set->dev, sg, pre_n_elem, dir);
3064 /* restore last sg */
3065 lsg->length += qc->pad_len;
3069 DPRINTK("%d sg elements mapped\n", n_elem);
3072 qc->n_elem = n_elem;
3078 * ata_poll_qc_complete - turn irq back on and finish qc
3079 * @qc: Command to complete
3080 * @err_mask: ATA status register content
3083 * None. (grabs host lock)
3086 void ata_poll_qc_complete(struct ata_queued_cmd *qc)
3088 struct ata_port *ap = qc->ap;
3089 unsigned long flags;
3091 spin_lock_irqsave(&ap->host_set->lock, flags);
3092 ap->flags &= ~ATA_FLAG_NOINTR;
3094 ata_qc_complete(qc);
3095 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3099 * ata_pio_poll - poll using PIO, depending on current state
3100 * @ap: the target ata_port
3103 * None. (executing in kernel thread context)
3106 * timeout value to use
3109 static unsigned long ata_pio_poll(struct ata_port *ap)
3111 struct ata_queued_cmd *qc;
3113 unsigned int poll_state = HSM_ST_UNKNOWN;
3114 unsigned int reg_state = HSM_ST_UNKNOWN;
3116 qc = ata_qc_from_tag(ap, ap->active_tag);
3117 WARN_ON(qc == NULL);
3119 switch (ap->hsm_task_state) {
3122 poll_state = HSM_ST_POLL;
3126 case HSM_ST_LAST_POLL:
3127 poll_state = HSM_ST_LAST_POLL;
3128 reg_state = HSM_ST_LAST;
3135 status = ata_chk_status(ap);
3136 if (status & ATA_BUSY) {
3137 if (time_after(jiffies, ap->pio_task_timeout)) {
3138 qc->err_mask |= AC_ERR_TIMEOUT;
3139 ap->hsm_task_state = HSM_ST_TMOUT;
3142 ap->hsm_task_state = poll_state;
3143 return ATA_SHORT_PAUSE;
3146 ap->hsm_task_state = reg_state;
3151 * ata_pio_complete - check if drive is busy or idle
3152 * @ap: the target ata_port
3155 * None. (executing in kernel thread context)
3158 * Non-zero if qc completed, zero otherwise.
3161 static int ata_pio_complete (struct ata_port *ap)
3163 struct ata_queued_cmd *qc;
3167 * This is purely heuristic. This is a fast path. Sometimes when
3168 * we enter, BSY will be cleared in a chk-status or two. If not,
3169 * the drive is probably seeking or something. Snooze for a couple
3170 * msecs, then chk-status again. If still busy, fall back to
3171 * HSM_ST_POLL state.
3173 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3174 if (drv_stat & ATA_BUSY) {
3176 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3177 if (drv_stat & ATA_BUSY) {
3178 ap->hsm_task_state = HSM_ST_LAST_POLL;
3179 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3184 qc = ata_qc_from_tag(ap, ap->active_tag);
3185 WARN_ON(qc == NULL);
3187 drv_stat = ata_wait_idle(ap);
3188 if (!ata_ok(drv_stat)) {
3189 qc->err_mask |= __ac_err_mask(drv_stat);
3190 ap->hsm_task_state = HSM_ST_ERR;
3194 ap->hsm_task_state = HSM_ST_IDLE;
3196 WARN_ON(qc->err_mask);
3197 ata_poll_qc_complete(qc);
3199 /* another command may start at this point */
3206 * swap_buf_le16 - swap halves of 16-bit words in place
3207 * @buf: Buffer to swap
3208 * @buf_words: Number of 16-bit words in buffer.
3210 * Swap halves of 16-bit words if needed to convert from
3211 * little-endian byte order to native cpu byte order, or
3215 * Inherited from caller.
3217 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3222 for (i = 0; i < buf_words; i++)
3223 buf[i] = le16_to_cpu(buf[i]);
3224 #endif /* __BIG_ENDIAN */
3228 * ata_mmio_data_xfer - Transfer data by MMIO
3229 * @ap: port to read/write
3231 * @buflen: buffer length
3232 * @write_data: read/write
3234 * Transfer data from/to the device data register by MMIO.
3237 * Inherited from caller.
3240 static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
3241 unsigned int buflen, int write_data)
3244 unsigned int words = buflen >> 1;
3245 u16 *buf16 = (u16 *) buf;
3246 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3248 /* Transfer multiple of 2 bytes */
3250 for (i = 0; i < words; i++)
3251 writew(le16_to_cpu(buf16[i]), mmio);
3253 for (i = 0; i < words; i++)
3254 buf16[i] = cpu_to_le16(readw(mmio));
3257 /* Transfer trailing 1 byte, if any. */
3258 if (unlikely(buflen & 0x01)) {
3259 u16 align_buf[1] = { 0 };
3260 unsigned char *trailing_buf = buf + buflen - 1;
3263 memcpy(align_buf, trailing_buf, 1);
3264 writew(le16_to_cpu(align_buf[0]), mmio);
3266 align_buf[0] = cpu_to_le16(readw(mmio));
3267 memcpy(trailing_buf, align_buf, 1);
3273 * ata_pio_data_xfer - Transfer data by PIO
3274 * @ap: port to read/write
3276 * @buflen: buffer length
3277 * @write_data: read/write
3279 * Transfer data from/to the device data register by PIO.
3282 * Inherited from caller.
3285 static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
3286 unsigned int buflen, int write_data)
3288 unsigned int words = buflen >> 1;
3290 /* Transfer multiple of 2 bytes */
3292 outsw(ap->ioaddr.data_addr, buf, words);
3294 insw(ap->ioaddr.data_addr, buf, words);
3296 /* Transfer trailing 1 byte, if any. */
3297 if (unlikely(buflen & 0x01)) {
3298 u16 align_buf[1] = { 0 };
3299 unsigned char *trailing_buf = buf + buflen - 1;
3302 memcpy(align_buf, trailing_buf, 1);
3303 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3305 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3306 memcpy(trailing_buf, align_buf, 1);
3312 * ata_data_xfer - Transfer data from/to the data register.
3313 * @ap: port to read/write
3315 * @buflen: buffer length
3316 * @do_write: read/write
3318 * Transfer data from/to the device data register.
3321 * Inherited from caller.
3324 static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
3325 unsigned int buflen, int do_write)
3327 /* Make the crap hardware pay the costs not the good stuff */
3328 if (unlikely(ap->flags & ATA_FLAG_IRQ_MASK)) {
3329 unsigned long flags;
3330 local_irq_save(flags);
3331 if (ap->flags & ATA_FLAG_MMIO)
3332 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3334 ata_pio_data_xfer(ap, buf, buflen, do_write);
3335 local_irq_restore(flags);
3337 if (ap->flags & ATA_FLAG_MMIO)
3338 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3340 ata_pio_data_xfer(ap, buf, buflen, do_write);
3345 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3346 * @qc: Command on going
3348 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3351 * Inherited from caller.
3354 static void ata_pio_sector(struct ata_queued_cmd *qc)
3356 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3357 struct scatterlist *sg = qc->__sg;
3358 struct ata_port *ap = qc->ap;
3360 unsigned int offset;
3363 if (qc->cursect == (qc->nsect - 1))
3364 ap->hsm_task_state = HSM_ST_LAST;
3366 page = sg[qc->cursg].page;
3367 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3369 /* get the current page and offset */
3370 page = nth_page(page, (offset >> PAGE_SHIFT));
3371 offset %= PAGE_SIZE;
3373 buf = kmap(page) + offset;
3378 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3383 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3385 /* do the actual data transfer */
3386 do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3387 ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write);