Merge master.kernel.org:/pub/scm/linux/kernel/git/jejb/voyager-2.6
[linux-2.6.git] / drivers / scsi / aacraid / commsup.c
1 /*
2  *      Adaptec AAC series RAID controller driver
3  *      (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com)
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2, or (at your option)
13  * any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; see the file COPYING.  If not, write to
22  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23  *
24  * Module Name:
25  *  commsup.c
26  *
27  * Abstract: Contain all routines that are required for FSA host/adapter
28  *    communication.
29  *
30  */
31
32 #include <linux/kernel.h>
33 #include <linux/init.h>
34 #include <linux/types.h>
35 #include <linux/sched.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/completion.h>
40 #include <linux/blkdev.h>
41 #include <linux/delay.h>
42 #include <linux/kthread.h>
43 #include <linux/interrupt.h>
44 #include <scsi/scsi.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_device.h>
47 #include <scsi/scsi_cmnd.h>
48 #include <asm/semaphore.h>
49
50 #include "aacraid.h"
51
52 /**
53  *      fib_map_alloc           -       allocate the fib objects
54  *      @dev: Adapter to allocate for
55  *
56  *      Allocate and map the shared PCI space for the FIB blocks used to
57  *      talk to the Adaptec firmware.
58  */
59  
60 static int fib_map_alloc(struct aac_dev *dev)
61 {
62         dprintk((KERN_INFO
63           "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
64           dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
65           AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
66         if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, dev->max_fib_size
67           * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
68           &dev->hw_fib_pa))==NULL)
69                 return -ENOMEM;
70         return 0;
71 }
72
73 /**
74  *      aac_fib_map_free                -       free the fib objects
75  *      @dev: Adapter to free
76  *
77  *      Free the PCI mappings and the memory allocated for FIB blocks
78  *      on this adapter.
79  */
80
81 void aac_fib_map_free(struct aac_dev *dev)
82 {
83         pci_free_consistent(dev->pdev, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB), dev->hw_fib_va, dev->hw_fib_pa);
84 }
85
86 /**
87  *      aac_fib_setup   -       setup the fibs
88  *      @dev: Adapter to set up
89  *
90  *      Allocate the PCI space for the fibs, map it and then intialise the
91  *      fib area, the unmapped fib data and also the free list
92  */
93
94 int aac_fib_setup(struct aac_dev * dev)
95 {
96         struct fib *fibptr;
97         struct hw_fib *hw_fib_va;
98         dma_addr_t hw_fib_pa;
99         int i;
100
101         while (((i = fib_map_alloc(dev)) == -ENOMEM)
102          && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
103                 dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
104                 dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
105         }
106         if (i<0)
107                 return -ENOMEM;
108                 
109         hw_fib_va = dev->hw_fib_va;
110         hw_fib_pa = dev->hw_fib_pa;
111         memset(hw_fib_va, 0, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
112         /*
113          *      Initialise the fibs
114          */
115         for (i = 0, fibptr = &dev->fibs[i]; i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++, fibptr++) 
116         {
117                 fibptr->dev = dev;
118                 fibptr->hw_fib = hw_fib_va;
119                 fibptr->data = (void *) fibptr->hw_fib->data;
120                 fibptr->next = fibptr+1;        /* Forward chain the fibs */
121                 init_MUTEX_LOCKED(&fibptr->event_wait);
122                 spin_lock_init(&fibptr->event_lock);
123                 hw_fib_va->header.XferState = cpu_to_le32(0xffffffff);
124                 hw_fib_va->header.SenderSize = cpu_to_le16(dev->max_fib_size);
125                 fibptr->hw_fib_pa = hw_fib_pa;
126                 hw_fib_va = (struct hw_fib *)((unsigned char *)hw_fib_va + dev->max_fib_size);
127                 hw_fib_pa = hw_fib_pa + dev->max_fib_size;
128         }
129         /*
130          *      Add the fib chain to the free list
131          */
132         dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
133         /*
134          *      Enable this to debug out of queue space
135          */
136         dev->free_fib = &dev->fibs[0];
137         return 0;
138 }
139
140 /**
141  *      aac_fib_alloc   -       allocate a fib
142  *      @dev: Adapter to allocate the fib for
143  *
144  *      Allocate a fib from the adapter fib pool. If the pool is empty we
145  *      return NULL.
146  */
147  
148 struct fib *aac_fib_alloc(struct aac_dev *dev)
149 {
150         struct fib * fibptr;
151         unsigned long flags;
152         spin_lock_irqsave(&dev->fib_lock, flags);
153         fibptr = dev->free_fib; 
154         if(!fibptr){
155                 spin_unlock_irqrestore(&dev->fib_lock, flags);
156                 return fibptr;
157         }
158         dev->free_fib = fibptr->next;
159         spin_unlock_irqrestore(&dev->fib_lock, flags);
160         /*
161          *      Set the proper node type code and node byte size
162          */
163         fibptr->type = FSAFS_NTC_FIB_CONTEXT;
164         fibptr->size = sizeof(struct fib);
165         /*
166          *      Null out fields that depend on being zero at the start of
167          *      each I/O
168          */
169         fibptr->hw_fib->header.XferState = 0;
170         fibptr->callback = NULL;
171         fibptr->callback_data = NULL;
172
173         return fibptr;
174 }
175
176 /**
177  *      aac_fib_free    -       free a fib
178  *      @fibptr: fib to free up
179  *
180  *      Frees up a fib and places it on the appropriate queue
181  *      (either free or timed out)
182  */
183  
184 void aac_fib_free(struct fib *fibptr)
185 {
186         unsigned long flags;
187
188         spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
189         if (fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT) {
190                 aac_config.fib_timeouts++;
191                 fibptr->next = fibptr->dev->timeout_fib;
192                 fibptr->dev->timeout_fib = fibptr;
193         } else {
194                 if (fibptr->hw_fib->header.XferState != 0) {
195                         printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
196                                  (void*)fibptr, 
197                                  le32_to_cpu(fibptr->hw_fib->header.XferState));
198                 }
199                 fibptr->next = fibptr->dev->free_fib;
200                 fibptr->dev->free_fib = fibptr;
201         }       
202         spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
203 }
204
205 /**
206  *      aac_fib_init    -       initialise a fib
207  *      @fibptr: The fib to initialize
208  *      
209  *      Set up the generic fib fields ready for use
210  */
211  
212 void aac_fib_init(struct fib *fibptr)
213 {
214         struct hw_fib *hw_fib = fibptr->hw_fib;
215
216         hw_fib->header.StructType = FIB_MAGIC;
217         hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
218         hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
219         hw_fib->header.SenderFibAddress = 0; /* Filled in later if needed */
220         hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
221         hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
222 }
223
224 /**
225  *      fib_deallocate          -       deallocate a fib
226  *      @fibptr: fib to deallocate
227  *
228  *      Will deallocate and return to the free pool the FIB pointed to by the
229  *      caller.
230  */
231  
232 static void fib_dealloc(struct fib * fibptr)
233 {
234         struct hw_fib *hw_fib = fibptr->hw_fib;
235         BUG_ON(hw_fib->header.StructType != FIB_MAGIC);
236         hw_fib->header.XferState = 0;        
237 }
238
239 /*
240  *      Commuication primitives define and support the queuing method we use to
241  *      support host to adapter commuication. All queue accesses happen through
242  *      these routines and are the only routines which have a knowledge of the
243  *       how these queues are implemented.
244  */
245  
246 /**
247  *      aac_get_entry           -       get a queue entry
248  *      @dev: Adapter
249  *      @qid: Queue Number
250  *      @entry: Entry return
251  *      @index: Index return
252  *      @nonotify: notification control
253  *
254  *      With a priority the routine returns a queue entry if the queue has free entries. If the queue
255  *      is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
256  *      returned.
257  */
258  
259 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
260 {
261         struct aac_queue * q;
262         unsigned long idx;
263
264         /*
265          *      All of the queues wrap when they reach the end, so we check
266          *      to see if they have reached the end and if they have we just
267          *      set the index back to zero. This is a wrap. You could or off
268          *      the high bits in all updates but this is a bit faster I think.
269          */
270
271         q = &dev->queues->queue[qid];
272
273         idx = *index = le32_to_cpu(*(q->headers.producer));
274         /* Interrupt Moderation, only interrupt for first two entries */
275         if (idx != le32_to_cpu(*(q->headers.consumer))) {
276                 if (--idx == 0) {
277                         if (qid == AdapNormCmdQueue)
278                                 idx = ADAP_NORM_CMD_ENTRIES;
279                         else
280                                 idx = ADAP_NORM_RESP_ENTRIES;
281                 }
282                 if (idx != le32_to_cpu(*(q->headers.consumer)))
283                         *nonotify = 1; 
284         }
285
286         if (qid == AdapNormCmdQueue) {
287                 if (*index >= ADAP_NORM_CMD_ENTRIES) 
288                         *index = 0; /* Wrap to front of the Producer Queue. */
289         } else {
290                 if (*index >= ADAP_NORM_RESP_ENTRIES) 
291                         *index = 0; /* Wrap to front of the Producer Queue. */
292         }
293
294         if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { /* Queue is full */
295                 printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
296                                 qid, q->numpending);
297                 return 0;
298         } else {
299                 *entry = q->base + *index;
300                 return 1;
301         }
302 }   
303
304 /**
305  *      aac_queue_get           -       get the next free QE
306  *      @dev: Adapter
307  *      @index: Returned index
308  *      @priority: Priority of fib
309  *      @fib: Fib to associate with the queue entry
310  *      @wait: Wait if queue full
311  *      @fibptr: Driver fib object to go with fib
312  *      @nonotify: Don't notify the adapter
313  *
314  *      Gets the next free QE off the requested priorty adapter command
315  *      queue and associates the Fib with the QE. The QE represented by
316  *      index is ready to insert on the queue when this routine returns
317  *      success.
318  */
319
320 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
321 {
322         struct aac_entry * entry = NULL;
323         int map = 0;
324             
325         if (qid == AdapNormCmdQueue) {
326                 /*  if no entries wait for some if caller wants to */
327                 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) 
328                 {
329                         printk(KERN_ERR "GetEntries failed\n");
330                 }
331                 /*
332                  *      Setup queue entry with a command, status and fib mapped
333                  */
334                 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
335                 map = 1;
336         } else {
337                 while(!aac_get_entry(dev, qid, &entry, index, nonotify)) 
338                 {
339                         /* if no entries wait for some if caller wants to */
340                 }
341                 /*
342                  *      Setup queue entry with command, status and fib mapped
343                  */
344                 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
345                 entry->addr = hw_fib->header.SenderFibAddress;
346                         /* Restore adapters pointer to the FIB */
347                 hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress;    /* Let the adapter now where to find its data */
348                 map = 0;
349         }
350         /*
351          *      If MapFib is true than we need to map the Fib and put pointers
352          *      in the queue entry.
353          */
354         if (map)
355                 entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
356         return 0;
357 }
358
359 /*
360  *      Define the highest level of host to adapter communication routines. 
361  *      These routines will support host to adapter FS commuication. These 
362  *      routines have no knowledge of the commuication method used. This level
363  *      sends and receives FIBs. This level has no knowledge of how these FIBs
364  *      get passed back and forth.
365  */
366
367 /**
368  *      aac_fib_send    -       send a fib to the adapter
369  *      @command: Command to send
370  *      @fibptr: The fib
371  *      @size: Size of fib data area
372  *      @priority: Priority of Fib
373  *      @wait: Async/sync select
374  *      @reply: True if a reply is wanted
375  *      @callback: Called with reply
376  *      @callback_data: Passed to callback
377  *
378  *      Sends the requested FIB to the adapter and optionally will wait for a
379  *      response FIB. If the caller does not wish to wait for a response than
380  *      an event to wait on must be supplied. This event will be set when a
381  *      response FIB is received from the adapter.
382  */
383  
384 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
385                 int priority, int wait, int reply, fib_callback callback,
386                 void *callback_data)
387 {
388         struct aac_dev * dev = fibptr->dev;
389         struct hw_fib * hw_fib = fibptr->hw_fib;
390         unsigned long flags = 0;
391         unsigned long qflags;
392
393         if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
394                 return -EBUSY;
395         /*
396          *      There are 5 cases with the wait and reponse requested flags. 
397          *      The only invalid cases are if the caller requests to wait and
398          *      does not request a response and if the caller does not want a
399          *      response and the Fib is not allocated from pool. If a response
400          *      is not requesed the Fib will just be deallocaed by the DPC
401          *      routine when the response comes back from the adapter. No
402          *      further processing will be done besides deleting the Fib. We 
403          *      will have a debug mode where the adapter can notify the host
404          *      it had a problem and the host can log that fact.
405          */
406         if (wait && !reply) {
407                 return -EINVAL;
408         } else if (!wait && reply) {
409                 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
410                 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
411         } else if (!wait && !reply) {
412                 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
413                 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
414         } else if (wait && reply) {
415                 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
416                 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
417         } 
418         /*
419          *      Map the fib into 32bits by using the fib number
420          */
421
422         hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
423         hw_fib->header.SenderData = (u32)(fibptr - dev->fibs);
424         /*
425          *      Set FIB state to indicate where it came from and if we want a
426          *      response from the adapter. Also load the command from the
427          *      caller.
428          *
429          *      Map the hw fib pointer as a 32bit value
430          */
431         hw_fib->header.Command = cpu_to_le16(command);
432         hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
433         fibptr->hw_fib->header.Flags = 0;       /* 0 the flags field - internal only*/
434         /*
435          *      Set the size of the Fib we want to send to the adapter
436          */
437         hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
438         if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
439                 return -EMSGSIZE;
440         }                
441         /*
442          *      Get a queue entry connect the FIB to it and send an notify
443          *      the adapter a command is ready.
444          */
445         hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
446
447         /*
448          *      Fill in the Callback and CallbackContext if we are not
449          *      going to wait.
450          */
451         if (!wait) {
452                 fibptr->callback = callback;
453                 fibptr->callback_data = callback_data;
454         }
455
456         fibptr->done = 0;
457         fibptr->flags = 0;
458
459         FIB_COUNTER_INCREMENT(aac_config.FibsSent);
460
461         dprintk((KERN_DEBUG "Fib contents:.\n"));
462         dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command)));
463         dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
464         dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState)));
465         dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib));
466         dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
467         dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
468
469         if (!dev->queues)
470                 return -EBUSY;
471
472         if(wait)
473                 spin_lock_irqsave(&fibptr->event_lock, flags);
474         aac_adapter_deliver(fibptr);
475
476         /*
477          *      If the caller wanted us to wait for response wait now. 
478          */
479     
480         if (wait) {
481                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
482                 /* Only set for first known interruptable command */
483                 if (wait < 0) {
484                         /*
485                          * *VERY* Dangerous to time out a command, the
486                          * assumption is made that we have no hope of
487                          * functioning because an interrupt routing or other
488                          * hardware failure has occurred.
489                          */
490                         unsigned long count = 36000000L; /* 3 minutes */
491                         while (down_trylock(&fibptr->event_wait)) {
492                                 int blink;
493                                 if (--count == 0) {
494                                         struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
495                                         spin_lock_irqsave(q->lock, qflags);
496                                         q->numpending--;
497                                         spin_unlock_irqrestore(q->lock, qflags);
498                                         if (wait == -1) {
499                                                 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
500                                                   "Usually a result of a PCI interrupt routing problem;\n"
501                                                   "update mother board BIOS or consider utilizing one of\n"
502                                                   "the SAFE mode kernel options (acpi, apic etc)\n");
503                                         }
504                                         return -ETIMEDOUT;
505                                 }
506                                 if ((blink = aac_adapter_check_health(dev)) > 0) {
507                                         if (wait == -1) {
508                                                 printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
509                                                   "Usually a result of a serious unrecoverable hardware problem\n",
510                                                   blink);
511                                         }
512                                         return -EFAULT;
513                                 }
514                                 udelay(5);
515                         }
516                 } else if (down_interruptible(&fibptr->event_wait)) {
517                         spin_lock_irqsave(&fibptr->event_lock, flags);
518                         if (fibptr->done == 0) {
519                                 fibptr->done = 2; /* Tell interrupt we aborted */
520                                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
521                                 return -EINTR;
522                         }
523                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
524                 }
525                 BUG_ON(fibptr->done == 0);
526                         
527                 if((fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)){
528                         return -ETIMEDOUT;
529                 } else {
530                         return 0;
531                 }
532         }
533         /*
534          *      If the user does not want a response than return success otherwise
535          *      return pending
536          */
537         if (reply)
538                 return -EINPROGRESS;
539         else
540                 return 0;
541 }
542
543 /** 
544  *      aac_consumer_get        -       get the top of the queue
545  *      @dev: Adapter
546  *      @q: Queue
547  *      @entry: Return entry
548  *
549  *      Will return a pointer to the entry on the top of the queue requested that
550  *      we are a consumer of, and return the address of the queue entry. It does
551  *      not change the state of the queue. 
552  */
553
554 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
555 {
556         u32 index;
557         int status;
558         if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
559                 status = 0;
560         } else {
561                 /*
562                  *      The consumer index must be wrapped if we have reached
563                  *      the end of the queue, else we just use the entry
564                  *      pointed to by the header index
565                  */
566                 if (le32_to_cpu(*q->headers.consumer) >= q->entries) 
567                         index = 0;              
568                 else
569                         index = le32_to_cpu(*q->headers.consumer);
570                 *entry = q->base + index;
571                 status = 1;
572         }
573         return(status);
574 }
575
576 /**
577  *      aac_consumer_free       -       free consumer entry
578  *      @dev: Adapter
579  *      @q: Queue
580  *      @qid: Queue ident
581  *
582  *      Frees up the current top of the queue we are a consumer of. If the
583  *      queue was full notify the producer that the queue is no longer full.
584  */
585
586 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
587 {
588         int wasfull = 0;
589         u32 notify;
590
591         if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
592                 wasfull = 1;
593         
594         if (le32_to_cpu(*q->headers.consumer) >= q->entries)
595                 *q->headers.consumer = cpu_to_le32(1);
596         else
597                 *q->headers.consumer = cpu_to_le32(le32_to_cpu(*q->headers.consumer)+1);
598         
599         if (wasfull) {
600                 switch (qid) {
601
602                 case HostNormCmdQueue:
603                         notify = HostNormCmdNotFull;
604                         break;
605                 case HostNormRespQueue:
606                         notify = HostNormRespNotFull;
607                         break;
608                 default:
609                         BUG();
610                         return;
611                 }
612                 aac_adapter_notify(dev, notify);
613         }
614 }        
615
616 /**
617  *      aac_fib_adapter_complete        -       complete adapter issued fib
618  *      @fibptr: fib to complete
619  *      @size: size of fib
620  *
621  *      Will do all necessary work to complete a FIB that was sent from
622  *      the adapter.
623  */
624
625 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
626 {
627         struct hw_fib * hw_fib = fibptr->hw_fib;
628         struct aac_dev * dev = fibptr->dev;
629         struct aac_queue * q;
630         unsigned long nointr = 0;
631         unsigned long qflags;
632
633         if (hw_fib->header.XferState == 0) {
634                 if (dev->comm_interface == AAC_COMM_MESSAGE)
635                         kfree (hw_fib);
636                 return 0;
637         }
638         /*
639          *      If we plan to do anything check the structure type first.
640          */ 
641         if ( hw_fib->header.StructType != FIB_MAGIC ) {
642                 if (dev->comm_interface == AAC_COMM_MESSAGE)
643                         kfree (hw_fib);
644                 return -EINVAL;
645         }
646         /*
647          *      This block handles the case where the adapter had sent us a
648          *      command and we have finished processing the command. We
649          *      call completeFib when we are done processing the command 
650          *      and want to send a response back to the adapter. This will 
651          *      send the completed cdb to the adapter.
652          */
653         if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
654                 if (dev->comm_interface == AAC_COMM_MESSAGE) {
655                         kfree (hw_fib);
656                 } else {
657                         u32 index;
658                         hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
659                         if (size) {
660                                 size += sizeof(struct aac_fibhdr);
661                                 if (size > le16_to_cpu(hw_fib->header.SenderSize)) 
662                                         return -EMSGSIZE;
663                                 hw_fib->header.Size = cpu_to_le16(size);
664                         }
665                         q = &dev->queues->queue[AdapNormRespQueue];
666                         spin_lock_irqsave(q->lock, qflags);
667                         aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
668                         *(q->headers.producer) = cpu_to_le32(index + 1);
669                         spin_unlock_irqrestore(q->lock, qflags);
670                         if (!(nointr & (int)aac_config.irq_mod))
671                                 aac_adapter_notify(dev, AdapNormRespQueue);
672                 }
673         }
674         else 
675         {
676                 printk(KERN_WARNING "aac_fib_adapter_complete: Unknown xferstate detected.\n");
677                 BUG();
678         }   
679         return 0;
680 }
681
682 /**
683  *      aac_fib_complete        -       fib completion handler
684  *      @fib: FIB to complete
685  *
686  *      Will do all necessary work to complete a FIB.
687  */
688  
689 int aac_fib_complete(struct fib *fibptr)
690 {
691         struct hw_fib * hw_fib = fibptr->hw_fib;
692
693         /*
694          *      Check for a fib which has already been completed
695          */
696
697         if (hw_fib->header.XferState == 0)
698                 return 0;
699         /*
700          *      If we plan to do anything check the structure type first.
701          */ 
702
703         if (hw_fib->header.StructType != FIB_MAGIC)
704                 return -EINVAL;
705         /*
706          *      This block completes a cdb which orginated on the host and we 
707          *      just need to deallocate the cdb or reinit it. At this point the
708          *      command is complete that we had sent to the adapter and this
709          *      cdb could be reused.
710          */
711         if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
712                 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
713         {
714                 fib_dealloc(fibptr);
715         }
716         else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
717         {
718                 /*
719                  *      This handles the case when the host has aborted the I/O
720                  *      to the adapter because the adapter is not responding
721                  */
722                 fib_dealloc(fibptr);
723         } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
724                 fib_dealloc(fibptr);
725         } else {
726                 BUG();
727         }   
728         return 0;
729 }
730
731 /**
732  *      aac_printf      -       handle printf from firmware
733  *      @dev: Adapter
734  *      @val: Message info
735  *
736  *      Print a message passed to us by the controller firmware on the
737  *      Adaptec board
738  */
739
740 void aac_printf(struct aac_dev *dev, u32 val)
741 {
742         char *cp = dev->printfbuf;
743         if (dev->printf_enabled)
744         {
745                 int length = val & 0xffff;
746                 int level = (val >> 16) & 0xffff;
747                 
748                 /*
749                  *      The size of the printfbuf is set in port.c
750                  *      There is no variable or define for it
751                  */
752                 if (length > 255)
753                         length = 255;
754                 if (cp[length] != 0)
755                         cp[length] = 0;
756                 if (level == LOG_AAC_HIGH_ERROR)
757                         printk(KERN_WARNING "%s:%s", dev->name, cp);
758                 else
759                         printk(KERN_INFO "%s:%s", dev->name, cp);
760         }
761         memset(cp, 0,  256);
762 }
763
764
765 /**
766  *      aac_handle_aif          -       Handle a message from the firmware
767  *      @dev: Which adapter this fib is from
768  *      @fibptr: Pointer to fibptr from adapter
769  *
770  *      This routine handles a driver notify fib from the adapter and
771  *      dispatches it to the appropriate routine for handling.
772  */
773
774 #define AIF_SNIFF_TIMEOUT       (30*HZ)
775 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
776 {
777         struct hw_fib * hw_fib = fibptr->hw_fib;
778         struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
779         int busy;
780         u32 container;
781         struct scsi_device *device;
782         enum {
783                 NOTHING,
784                 DELETE,
785                 ADD,
786                 CHANGE
787         } device_config_needed;
788
789         /* Sniff for container changes */
790
791         if (!dev || !dev->fsa_dev)
792                 return;
793         container = (u32)-1;
794
795         /*
796          *      We have set this up to try and minimize the number of
797          * re-configures that take place. As a result of this when
798          * certain AIF's come in we will set a flag waiting for another
799          * type of AIF before setting the re-config flag.
800          */
801         switch (le32_to_cpu(aifcmd->command)) {
802         case AifCmdDriverNotify:
803                 switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
804                 /*
805                  *      Morph or Expand complete
806                  */
807                 case AifDenMorphComplete:
808                 case AifDenVolumeExtendComplete:
809                         container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
810                         if (container >= dev->maximum_num_containers)
811                                 break;
812
813                         /*
814                          *      Find the scsi_device associated with the SCSI
815                          * address. Make sure we have the right array, and if
816                          * so set the flag to initiate a new re-config once we
817                          * see an AifEnConfigChange AIF come through.
818                          */
819
820                         if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
821                                 device = scsi_device_lookup(dev->scsi_host_ptr, 
822                                         CONTAINER_TO_CHANNEL(container), 
823                                         CONTAINER_TO_ID(container), 
824                                         CONTAINER_TO_LUN(container));
825                                 if (device) {
826                                         dev->fsa_dev[container].config_needed = CHANGE;
827                                         dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
828                                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
829                                         scsi_device_put(device);
830                                 }
831                         }
832                 }
833
834                 /*
835                  *      If we are waiting on something and this happens to be
836                  * that thing then set the re-configure flag.
837                  */
838                 if (container != (u32)-1) {
839                         if (container >= dev->maximum_num_containers)
840                                 break;
841                         if ((dev->fsa_dev[container].config_waiting_on ==
842                             le32_to_cpu(*(u32 *)aifcmd->data)) &&
843                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
844                                 dev->fsa_dev[container].config_waiting_on = 0;
845                 } else for (container = 0;
846                     container < dev->maximum_num_containers; ++container) {
847                         if ((dev->fsa_dev[container].config_waiting_on ==
848                             le32_to_cpu(*(u32 *)aifcmd->data)) &&
849                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
850                                 dev->fsa_dev[container].config_waiting_on = 0;
851                 }
852                 break;
853
854         case AifCmdEventNotify:
855                 switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
856                 /*
857                  *      Add an Array.
858                  */
859                 case AifEnAddContainer:
860                         container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
861                         if (container >= dev->maximum_num_containers)
862                                 break;
863                         dev->fsa_dev[container].config_needed = ADD;
864                         dev->fsa_dev[container].config_waiting_on =
865                                 AifEnConfigChange;
866                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
867                         break;
868
869                 /*
870                  *      Delete an Array.
871                  */
872                 case AifEnDeleteContainer:
873                         container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
874                         if (container >= dev->maximum_num_containers)
875                                 break;
876                         dev->fsa_dev[container].config_needed = DELETE;
877                         dev->fsa_dev[container].config_waiting_on =
878                                 AifEnConfigChange;
879                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
880                         break;
881
882                 /*
883                  *      Container change detected. If we currently are not
884                  * waiting on something else, setup to wait on a Config Change.
885                  */
886                 case AifEnContainerChange:
887                         container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
888                         if (container >= dev->maximum_num_containers)
889                                 break;
890                         if (dev->fsa_dev[container].config_waiting_on &&
891                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
892                                 break;
893                         dev->fsa_dev[container].config_needed = CHANGE;
894                         dev->fsa_dev[container].config_waiting_on =
895                                 AifEnConfigChange;
896                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
897                         break;
898
899                 case AifEnConfigChange:
900                         break;
901
902                 }
903
904                 /*
905                  *      If we are waiting on something and this happens to be
906                  * that thing then set the re-configure flag.
907                  */
908                 if (container != (u32)-1) {
909                         if (container >= dev->maximum_num_containers)
910                                 break;
911                         if ((dev->fsa_dev[container].config_waiting_on ==
912                             le32_to_cpu(*(u32 *)aifcmd->data)) &&
913                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
914                                 dev->fsa_dev[container].config_waiting_on = 0;
915                 } else for (container = 0;
916                     container < dev->maximum_num_containers; ++container) {
917                         if ((dev->fsa_dev[container].config_waiting_on ==
918                             le32_to_cpu(*(u32 *)aifcmd->data)) &&
919                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
920                                 dev->fsa_dev[container].config_waiting_on = 0;
921                 }
922                 break;
923
924         case AifCmdJobProgress:
925                 /*
926                  *      These are job progress AIF's. When a Clear is being
927                  * done on a container it is initially created then hidden from
928                  * the OS. When the clear completes we don't get a config
929                  * change so we monitor the job status complete on a clear then
930                  * wait for a container change.
931                  */
932
933                 if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
934                  && ((((u32 *)aifcmd->data)[6] == ((u32 *)aifcmd->data)[5])
935                   || (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess)))) {
936                         for (container = 0;
937                             container < dev->maximum_num_containers;
938                             ++container) {
939                                 /*
940                                  * Stomp on all config sequencing for all
941                                  * containers?
942                                  */
943                                 dev->fsa_dev[container].config_waiting_on =
944                                         AifEnContainerChange;
945                                 dev->fsa_dev[container].config_needed = ADD;
946                                 dev->fsa_dev[container].config_waiting_stamp =
947                                         jiffies;
948                         }
949                 }
950                 if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
951                  && (((u32 *)aifcmd->data)[6] == 0)
952                  && (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning))) {
953                         for (container = 0;
954                             container < dev->maximum_num_containers;
955                             ++container) {
956                                 /*
957                                  * Stomp on all config sequencing for all
958                                  * containers?
959                                  */
960                                 dev->fsa_dev[container].config_waiting_on =
961                                         AifEnContainerChange;
962                                 dev->fsa_dev[container].config_needed = DELETE;
963                                 dev->fsa_dev[container].config_waiting_stamp =
964                                         jiffies;
965                         }
966                 }
967                 break;
968         }
969
970         device_config_needed = NOTHING;
971         for (container = 0; container < dev->maximum_num_containers;
972             ++container) {
973                 if ((dev->fsa_dev[container].config_waiting_on == 0) &&
974                         (dev->fsa_dev[container].config_needed != NOTHING) &&
975                         time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
976                         device_config_needed =
977                                 dev->fsa_dev[container].config_needed;
978                         dev->fsa_dev[container].config_needed = NOTHING;
979                         break;
980                 }
981         }
982         if (device_config_needed == NOTHING)
983                 return;
984
985         /*
986          *      If we decided that a re-configuration needs to be done,
987          * schedule it here on the way out the door, please close the door
988          * behind you.
989          */
990
991         busy = 0;
992
993
994         /*
995          *      Find the scsi_device associated with the SCSI address,
996          * and mark it as changed, invalidating the cache. This deals
997          * with changes to existing device IDs.
998          */
999
1000         if (!dev || !dev->scsi_host_ptr)
1001                 return;
1002         /*
1003          * force reload of disk info via aac_probe_container
1004          */
1005         if ((device_config_needed == CHANGE)
1006          && (dev->fsa_dev[container].valid == 1))
1007                 dev->fsa_dev[container].valid = 2;
1008         if ((device_config_needed == CHANGE) ||
1009                         (device_config_needed == ADD))
1010                 aac_probe_container(dev, container);
1011         device = scsi_device_lookup(dev->scsi_host_ptr, 
1012                 CONTAINER_TO_CHANNEL(container), 
1013                 CONTAINER_TO_ID(container), 
1014                 CONTAINER_TO_LUN(container));
1015         if (device) {
1016                 switch (device_config_needed) {
1017                 case DELETE:
1018                 case CHANGE:
1019                         scsi_rescan_device(&device->sdev_gendev);
1020
1021                 default:
1022                         break;
1023                 }
1024                 scsi_device_put(device);
1025         }
1026         if (device_config_needed == ADD) {
1027                 scsi_add_device(dev->scsi_host_ptr,
1028                   CONTAINER_TO_CHANNEL(container),
1029                   CONTAINER_TO_ID(container),
1030                   CONTAINER_TO_LUN(container));
1031         }
1032
1033 }
1034
1035 static int _aac_reset_adapter(struct aac_dev *aac)
1036 {
1037         int index, quirks;
1038         u32 ret;
1039         int retval;
1040         struct Scsi_Host *host;
1041         struct scsi_device *dev;
1042         struct scsi_cmnd *command;
1043         struct scsi_cmnd *command_list;
1044
1045         /*
1046          * Assumptions:
1047          *      - host is locked.
1048          *      - in_reset is asserted, so no new i/o is getting to the
1049          *        card.
1050          *      - The card is dead.
1051          */
1052         host = aac->scsi_host_ptr;
1053         scsi_block_requests(host);
1054         aac_adapter_disable_int(aac);
1055         spin_unlock_irq(host->host_lock);
1056         kthread_stop(aac->thread);
1057
1058         /*
1059          *      If a positive health, means in a known DEAD PANIC
1060          * state and the adapter could be reset to `try again'.
1061          */
1062         retval = aac_adapter_check_health(aac);
1063         if (retval == 0)
1064                 retval = aac_adapter_sync_cmd(aac, IOP_RESET_ALWAYS,
1065                   0, 0, 0, 0, 0, 0, &ret, NULL, NULL, NULL, NULL);
1066         if (retval)
1067                 retval = aac_adapter_sync_cmd(aac, IOP_RESET,
1068                   0, 0, 0, 0, 0, 0, &ret, NULL, NULL, NULL, NULL);
1069
1070         if (retval)
1071                 goto out;
1072         if (ret != 0x00000001) {
1073                 retval = -ENODEV;
1074                 goto out;
1075         }
1076
1077         /*
1078          *      Loop through the fibs, close the synchronous FIBS
1079          */
1080         for (index = 0; index < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); index++) {
1081                 struct fib *fib = &aac->fibs[index];
1082                 if (!(fib->hw_fib->header.XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1083                   (fib->hw_fib->header.XferState & cpu_to_le32(ResponseExpected))) {
1084                         unsigned long flagv;
1085                         spin_lock_irqsave(&fib->event_lock, flagv);
1086                         up(&fib->event_wait);
1087                         spin_unlock_irqrestore(&fib->event_lock, flagv);
1088                         schedule();
1089                 }
1090         }
1091         index = aac->cardtype;
1092
1093         /*
1094          * Re-initialize the adapter, first free resources, then carefully
1095          * apply the initialization sequence to come back again. Only risk
1096          * is a change in Firmware dropping cache, it is assumed the caller
1097          * will ensure that i/o is queisced and the card is flushed in that
1098          * case.
1099          */
1100         aac_fib_map_free(aac);
1101         aac->hw_fib_va = NULL;
1102         aac->hw_fib_pa = 0;
1103         pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, aac->comm_phys);
1104         aac->comm_addr = NULL;
1105         aac->comm_phys = 0;
1106         kfree(aac->queues);
1107         aac->queues = NULL;
1108         free_irq(aac->pdev->irq, aac);
1109         kfree(aac->fsa_dev);
1110         aac->fsa_dev = NULL;
1111         if (aac_get_driver_ident(index)->quirks & AAC_QUIRK_31BIT) {
1112                 if (((retval = pci_set_dma_mask(aac->pdev, DMA_32BIT_MASK))) ||
1113                   ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_32BIT_MASK))))
1114                         goto out;
1115         } else {
1116                 if (((retval = pci_set_dma_mask(aac->pdev, 0x7FFFFFFFULL))) ||
1117                   ((retval = pci_set_consistent_dma_mask(aac->pdev, 0x7FFFFFFFULL))))
1118                         goto out;
1119         }
1120         if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1121                 goto out;
1122         if (aac_get_driver_ident(index)->quirks & AAC_QUIRK_31BIT)
1123                 if ((retval = pci_set_dma_mask(aac->pdev, DMA_32BIT_MASK)))
1124                         goto out;
1125         aac->thread = kthread_run(aac_command_thread, aac, aac->name);
1126         if (IS_ERR(aac->thread)) {
1127                 retval = PTR_ERR(aac->thread);
1128                 goto out;
1129         }
1130         (void)aac_get_adapter_info(aac);
1131         quirks = aac_get_driver_ident(index)->quirks;
1132         if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1133                 host->sg_tablesize = 34;
1134                 host->max_sectors = (host->sg_tablesize * 8) + 112;
1135         }
1136         if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1137                 host->sg_tablesize = 17;
1138                 host->max_sectors = (host->sg_tablesize * 8) + 112;
1139         }
1140         aac_get_config_status(aac, 1);
1141         aac_get_containers(aac);
1142         /*
1143          * This is where the assumption that the Adapter is quiesced
1144          * is important.
1145          */
1146         command_list = NULL;
1147         __shost_for_each_device(dev, host) {
1148                 unsigned long flags;
1149                 spin_lock_irqsave(&dev->list_lock, flags);
1150                 list_for_each_entry(command, &dev->cmd_list, list)
1151                         if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1152                                 command->SCp.buffer = (struct scatterlist *)command_list;
1153                                 command_list = command;
1154                         }
1155                 spin_unlock_irqrestore(&dev->list_lock, flags);
1156         }
1157         while ((command = command_list)) {
1158                 command_list = (struct scsi_cmnd *)command->SCp.buffer;
1159                 command->SCp.buffer = NULL;
1160                 command->result = DID_OK << 16
1161                   | COMMAND_COMPLETE << 8
1162                   | SAM_STAT_TASK_SET_FULL;
1163                 command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1164                 command->scsi_done(command);
1165         }
1166         retval = 0;
1167
1168 out:
1169         aac->in_reset = 0;
1170         scsi_unblock_requests(host);
1171         spin_lock_irq(host->host_lock);
1172         return retval;
1173 }
1174
1175 int aac_check_health(struct aac_dev * aac)
1176 {
1177         int BlinkLED;
1178         unsigned long time_now, flagv = 0;
1179         struct list_head * entry;
1180         struct Scsi_Host * host;
1181
1182         /* Extending the scope of fib_lock slightly to protect aac->in_reset */
1183         if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1184                 return 0;
1185
1186         if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1187                 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1188                 return 0; /* OK */
1189         }
1190
1191         aac->in_reset = 1;
1192
1193         /* Fake up an AIF:
1194          *      aac_aifcmd.command = AifCmdEventNotify = 1
1195          *      aac_aifcmd.seqnum = 0xFFFFFFFF
1196          *      aac_aifcmd.data[0] = AifEnExpEvent = 23
1197          *      aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1198          *      aac.aifcmd.data[2] = AifHighPriority = 3
1199          *      aac.aifcmd.data[3] = BlinkLED
1200          */
1201
1202         time_now = jiffies/HZ;
1203         entry = aac->fib_list.next;
1204
1205         /*
1206          * For each Context that is on the
1207          * fibctxList, make a copy of the
1208          * fib, and then set the event to wake up the
1209          * thread that is waiting for it.
1210          */
1211         while (entry != &aac->fib_list) {
1212                 /*
1213                  * Extract the fibctx
1214                  */
1215                 struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1216                 struct hw_fib * hw_fib;
1217                 struct fib * fib;
1218                 /*
1219                  * Check if the queue is getting
1220                  * backlogged
1221                  */
1222                 if (fibctx->count > 20) {
1223                         /*
1224                          * It's *not* jiffies folks,
1225                          * but jiffies / HZ, so do not
1226                          * panic ...
1227                          */
1228                         u32 time_last = fibctx->jiffies;
1229                         /*
1230                          * Has it been > 2 minutes
1231                          * since the last read off
1232                          * the queue?
1233                          */
1234                         if ((time_now - time_last) > aif_timeout) {
1235                                 entry = entry->next;
1236                                 aac_close_fib_context(aac, fibctx);
1237                                 continue;
1238                         }
1239                 }
1240                 /*
1241                  * Warning: no sleep allowed while
1242                  * holding spinlock
1243                  */
1244                 hw_fib = kmalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1245                 fib = kmalloc(sizeof(struct fib), GFP_ATOMIC);
1246                 if (fib && hw_fib) {
1247                         struct aac_aifcmd * aif;
1248
1249                         memset(hw_fib, 0, sizeof(struct hw_fib));
1250                         memset(fib, 0, sizeof(struct fib));
1251                         fib->hw_fib = hw_fib;
1252                         fib->dev = aac;
1253                         aac_fib_init(fib);
1254                         fib->type = FSAFS_NTC_FIB_CONTEXT;
1255                         fib->size = sizeof (struct fib);
1256                         fib->data = hw_fib->data;
1257                         aif = (struct aac_aifcmd *)hw_fib->data;
1258                         aif->command = cpu_to_le32(AifCmdEventNotify);
1259                         aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1260                         aif->data[0] = cpu_to_le32(AifEnExpEvent);
1261                         aif->data[1] = cpu_to_le32(AifExeFirmwarePanic);
1262                         aif->data[2] = cpu_to_le32(AifHighPriority);
1263                         aif->data[3] = cpu_to_le32(BlinkLED);
1264
1265                         /*
1266                          * Put the FIB onto the
1267                          * fibctx's fibs
1268                          */
1269                         list_add_tail(&fib->fiblink, &fibctx->fib_list);
1270                         fibctx->count++;
1271                         /*
1272                          * Set the event to wake up the
1273                          * thread that will waiting.
1274                          */
1275                         up(&fibctx->wait_sem);
1276                 } else {
1277                         printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1278                         kfree(fib);
1279                         kfree(hw_fib);
1280                 }
1281                 entry = entry->next;
1282         }
1283
1284         spin_unlock_irqrestore(&aac->fib_lock, flagv);
1285
1286         if (BlinkLED < 0) {
1287                 printk(KERN_ERR "%s: Host adapter dead %d\n", aac->name, BlinkLED);
1288                 goto out;
1289         }
1290
1291         printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1292
1293         host = aac->scsi_host_ptr;
1294         spin_lock_irqsave(host->host_lock, flagv);
1295         BlinkLED = _aac_reset_adapter(aac);
1296         spin_unlock_irqrestore(host->host_lock, flagv);
1297         return BlinkLED;
1298
1299 out:
1300         aac->in_reset = 0;
1301         return BlinkLED;
1302 }
1303
1304
1305 /**
1306  *      aac_command_thread      -       command processing thread
1307  *      @dev: Adapter to monitor
1308  *
1309  *      Waits on the commandready event in it's queue. When the event gets set
1310  *      it will pull FIBs off it's queue. It will continue to pull FIBs off
1311  *      until the queue is empty. When the queue is empty it will wait for
1312  *      more FIBs.
1313  */
1314  
1315 int aac_command_thread(void *data)
1316 {
1317         struct aac_dev *dev = data;
1318         struct hw_fib *hw_fib, *hw_newfib;
1319         struct fib *fib, *newfib;
1320         struct aac_fib_context *fibctx;
1321         unsigned long flags;
1322         DECLARE_WAITQUEUE(wait, current);
1323
1324         /*
1325          *      We can only have one thread per adapter for AIF's.
1326          */
1327         if (dev->aif_thread)
1328                 return -EINVAL;
1329
1330         /*
1331          *      Let the DPC know it has a place to send the AIF's to.
1332          */
1333         dev->aif_thread = 1;
1334         add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1335         set_current_state(TASK_INTERRUPTIBLE);
1336         dprintk ((KERN_INFO "aac_command_thread start\n"));
1337         while(1) 
1338         {
1339                 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1340                 while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
1341                         struct list_head *entry;
1342                         struct aac_aifcmd * aifcmd;
1343
1344                         set_current_state(TASK_RUNNING);
1345         
1346                         entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
1347                         list_del(entry);
1348                 
1349                         spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1350                         fib = list_entry(entry, struct fib, fiblink);
1351                         /*
1352                          *      We will process the FIB here or pass it to a 
1353                          *      worker thread that is TBD. We Really can't 
1354                          *      do anything at this point since we don't have
1355                          *      anything defined for this thread to do.
1356                          */
1357                         hw_fib = fib->hw_fib;
1358                         memset(fib, 0, sizeof(struct fib));
1359                         fib->type = FSAFS_NTC_FIB_CONTEXT;
1360                         fib->size = sizeof( struct fib );
1361                         fib->hw_fib = hw_fib;
1362                         fib->data = hw_fib->data;
1363                         fib->dev = dev;
1364                         /*
1365                          *      We only handle AifRequest fibs from the adapter.
1366                          */
1367                         aifcmd = (struct aac_aifcmd *) hw_fib->data;
1368                         if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
1369                                 /* Handle Driver Notify Events */
1370                                 aac_handle_aif(dev, fib);
1371                                 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1372                                 aac_fib_adapter_complete(fib, (u16)sizeof(u32));
1373                         } else {
1374                                 struct list_head *entry;
1375                                 /* The u32 here is important and intended. We are using
1376                                    32bit wrapping time to fit the adapter field */
1377                                    
1378                                 u32 time_now, time_last;
1379                                 unsigned long flagv;
1380                                 unsigned num;
1381                                 struct hw_fib ** hw_fib_pool, ** hw_fib_p;
1382                                 struct fib ** fib_pool, ** fib_p;
1383                         
1384                                 /* Sniff events */
1385                                 if ((aifcmd->command == 
1386                                      cpu_to_le32(AifCmdEventNotify)) ||
1387                                     (aifcmd->command == 
1388                                      cpu_to_le32(AifCmdJobProgress))) {
1389                                         aac_handle_aif(dev, fib);
1390                                 }
1391                                 
1392                                 time_now = jiffies/HZ;
1393
1394                                 /*
1395                                  * Warning: no sleep allowed while
1396                                  * holding spinlock. We take the estimate
1397                                  * and pre-allocate a set of fibs outside the
1398                                  * lock.
1399                                  */
1400                                 num = le32_to_cpu(dev->init->AdapterFibsSize)
1401                                     / sizeof(struct hw_fib); /* some extra */
1402                                 spin_lock_irqsave(&dev->fib_lock, flagv);
1403                                 entry = dev->fib_list.next;
1404                                 while (entry != &dev->fib_list) {
1405                                         entry = entry->next;
1406                                         ++num;
1407                                 }
1408                                 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1409                                 hw_fib_pool = NULL;
1410                                 fib_pool = NULL;
1411                                 if (num
1412                                  && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
1413                                  && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
1414                                         hw_fib_p = hw_fib_pool;
1415                                         fib_p = fib_pool;
1416                                         while (hw_fib_p < &hw_fib_pool[num]) {
1417                                                 if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
1418                                                         --hw_fib_p;
1419                                                         break;
1420                                                 }
1421                                                 if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
1422                                                         kfree(*(--hw_fib_p));
1423                                                         break;
1424                                                 }
1425                                         }
1426                                         if ((num = hw_fib_p - hw_fib_pool) == 0) {
1427                                                 kfree(fib_pool);
1428                                                 fib_pool = NULL;
1429                                                 kfree(hw_fib_pool);
1430                                                 hw_fib_pool = NULL;
1431                                         }
1432                                 } else {
1433                                         kfree(hw_fib_pool);
1434                                         hw_fib_pool = NULL;
1435                                 }
1436                                 spin_lock_irqsave(&dev->fib_lock, flagv);
1437                                 entry = dev->fib_list.next;
1438                                 /*
1439                                  * For each Context that is on the 
1440                                  * fibctxList, make a copy of the
1441                                  * fib, and then set the event to wake up the
1442                                  * thread that is waiting for it.
1443                                  */
1444                                 hw_fib_p = hw_fib_pool;
1445                                 fib_p = fib_pool;
1446                                 while (entry != &dev->fib_list) {
1447                                         /*
1448                                          * Extract the fibctx
1449                                          */
1450                                         fibctx = list_entry(entry, struct aac_fib_context, next);
1451                                         /*
1452                                          * Check if the queue is getting
1453                                          * backlogged
1454                                          */
1455                                         if (fibctx->count > 20)
1456                                         {
1457                                                 /*
1458                                                  * It's *not* jiffies folks,
1459                                                  * but jiffies / HZ so do not
1460                                                  * panic ...
1461                                                  */
1462                                                 time_last = fibctx->jiffies;
1463                                                 /*
1464                                                  * Has it been > 2 minutes 
1465                                                  * since the last read off
1466                                                  * the queue?
1467                                                  */
1468                                                 if ((time_now - time_last) > aif_timeout) {
1469                                                         entry = entry->next;
1470                                                         aac_close_fib_context(dev, fibctx);
1471                                                         continue;
1472                                                 }
1473                                         }
1474                                         /*
1475                                          * Warning: no sleep allowed while
1476                                          * holding spinlock
1477                                          */
1478                                         if (hw_fib_p < &hw_fib_pool[num]) {
1479                                                 hw_newfib = *hw_fib_p;
1480                                                 *(hw_fib_p++) = NULL;
1481                                                 newfib = *fib_p;
1482                                                 *(fib_p++) = NULL;
1483                                                 /*
1484                                                  * Make the copy of the FIB
1485                                                  */
1486                                                 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
1487                                                 memcpy(newfib, fib, sizeof(struct fib));
1488                                                 newfib->hw_fib = hw_newfib;
1489                                                 /*
1490                                                  * Put the FIB onto the
1491                                                  * fibctx's fibs
1492                                                  */
1493                                                 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
1494                                                 fibctx->count++;
1495                                                 /* 
1496                                                  * Set the event to wake up the
1497                                                  * thread that is waiting.
1498                                                  */
1499                                                 up(&fibctx->wait_sem);
1500                                         } else {
1501                                                 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1502                                         }
1503                                         entry = entry->next;
1504                                 }
1505                                 /*
1506                                  *      Set the status of this FIB
1507                                  */
1508                                 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1509                                 aac_fib_adapter_complete(fib, sizeof(u32));
1510                                 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1511                                 /* Free up the remaining resources */
1512                                 hw_fib_p = hw_fib_pool;
1513                                 fib_p = fib_pool;
1514                                 while (hw_fib_p < &hw_fib_pool[num]) {
1515                                         kfree(*hw_fib_p);
1516                                         kfree(*fib_p);
1517                                         ++fib_p;
1518                                         ++hw_fib_p;
1519                                 }
1520                                 kfree(hw_fib_pool);
1521                                 kfree(fib_pool);
1522                         }
1523                         kfree(fib);
1524                         spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1525                 }
1526                 /*
1527                  *      There are no more AIF's
1528                  */
1529                 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1530                 schedule();
1531
1532                 if (kthread_should_stop())
1533                         break;
1534                 set_current_state(TASK_INTERRUPTIBLE);
1535         }
1536         if (dev->queues)
1537                 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1538         dev->aif_thread = 0;
1539         return 0;
1540 }