2 * Copyright (c) 2006, Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 * Author: Fenghua Yu <fenghua.yu@intel.com>
24 #include <linux/init.h>
25 #include <linux/bitmap.h>
26 #include <linux/debugfs.h>
27 #include <linux/slab.h>
28 #include <linux/irq.h>
29 #include <linux/interrupt.h>
30 #include <linux/spinlock.h>
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mempool.h>
35 #include <linux/timer.h>
36 #include <linux/iova.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/sysdev.h>
40 #include <linux/tboot.h>
41 #include <linux/dmi.h>
42 #include <asm/cacheflush.h>
43 #include <asm/iommu.h>
46 #define ROOT_SIZE VTD_PAGE_SIZE
47 #define CONTEXT_SIZE VTD_PAGE_SIZE
49 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
50 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
51 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
53 #define IOAPIC_RANGE_START (0xfee00000)
54 #define IOAPIC_RANGE_END (0xfeefffff)
55 #define IOVA_START_ADDR (0x1000)
57 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
59 #define MAX_AGAW_WIDTH 64
61 #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
62 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
64 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
65 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
66 #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
67 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
68 #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
70 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
71 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
72 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
75 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
76 are never going to work. */
77 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
79 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
82 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
84 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
86 static inline unsigned long page_to_dma_pfn(struct page *pg)
88 return mm_to_dma_pfn(page_to_pfn(pg));
90 static inline unsigned long virt_to_dma_pfn(void *p)
92 return page_to_dma_pfn(virt_to_page(p));
95 /* global iommu list, set NULL for ignored DMAR units */
96 static struct intel_iommu **g_iommus;
98 static void __init check_tylersburg_isoch(void);
99 static int rwbf_quirk;
104 * 12-63: Context Ptr (12 - (haw-1))
111 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
112 static inline bool root_present(struct root_entry *root)
114 return (root->val & 1);
116 static inline void set_root_present(struct root_entry *root)
120 static inline void set_root_value(struct root_entry *root, unsigned long value)
122 root->val |= value & VTD_PAGE_MASK;
125 static inline struct context_entry *
126 get_context_addr_from_root(struct root_entry *root)
128 return (struct context_entry *)
129 (root_present(root)?phys_to_virt(
130 root->val & VTD_PAGE_MASK) :
137 * 1: fault processing disable
138 * 2-3: translation type
139 * 12-63: address space root
145 struct context_entry {
150 static inline bool context_present(struct context_entry *context)
152 return (context->lo & 1);
154 static inline void context_set_present(struct context_entry *context)
159 static inline void context_set_fault_enable(struct context_entry *context)
161 context->lo &= (((u64)-1) << 2) | 1;
164 static inline void context_set_translation_type(struct context_entry *context,
167 context->lo &= (((u64)-1) << 4) | 3;
168 context->lo |= (value & 3) << 2;
171 static inline void context_set_address_root(struct context_entry *context,
174 context->lo |= value & VTD_PAGE_MASK;
177 static inline void context_set_address_width(struct context_entry *context,
180 context->hi |= value & 7;
183 static inline void context_set_domain_id(struct context_entry *context,
186 context->hi |= (value & ((1 << 16) - 1)) << 8;
189 static inline void context_clear_entry(struct context_entry *context)
202 * 12-63: Host physcial address
208 static inline void dma_clear_pte(struct dma_pte *pte)
213 static inline void dma_set_pte_readable(struct dma_pte *pte)
215 pte->val |= DMA_PTE_READ;
218 static inline void dma_set_pte_writable(struct dma_pte *pte)
220 pte->val |= DMA_PTE_WRITE;
223 static inline void dma_set_pte_snp(struct dma_pte *pte)
225 pte->val |= DMA_PTE_SNP;
228 static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
230 pte->val = (pte->val & ~3) | (prot & 3);
233 static inline u64 dma_pte_addr(struct dma_pte *pte)
236 return pte->val & VTD_PAGE_MASK;
238 /* Must have a full atomic 64-bit read */
239 return __cmpxchg64(pte, 0ULL, 0ULL) & VTD_PAGE_MASK;
243 static inline void dma_set_pte_pfn(struct dma_pte *pte, unsigned long pfn)
245 pte->val |= (uint64_t)pfn << VTD_PAGE_SHIFT;
248 static inline bool dma_pte_present(struct dma_pte *pte)
250 return (pte->val & 3) != 0;
253 static inline int first_pte_in_page(struct dma_pte *pte)
255 return !((unsigned long)pte & ~VTD_PAGE_MASK);
259 * This domain is a statically identity mapping domain.
260 * 1. This domain creats a static 1:1 mapping to all usable memory.
261 * 2. It maps to each iommu if successful.
262 * 3. Each iommu mapps to this domain if successful.
264 static struct dmar_domain *si_domain;
265 static int hw_pass_through = 1;
267 /* devices under the same p2p bridge are owned in one domain */
268 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
270 /* domain represents a virtual machine, more than one devices
271 * across iommus may be owned in one domain, e.g. kvm guest.
273 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
275 /* si_domain contains mulitple devices */
276 #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 2)
279 int id; /* domain id */
280 int nid; /* node id */
281 unsigned long iommu_bmp; /* bitmap of iommus this domain uses*/
283 struct list_head devices; /* all devices' list */
284 struct iova_domain iovad; /* iova's that belong to this domain */
286 struct dma_pte *pgd; /* virtual address */
287 int gaw; /* max guest address width */
289 /* adjusted guest address width, 0 is level 2 30-bit */
292 int flags; /* flags to find out type of domain */
294 int iommu_coherency;/* indicate coherency of iommu access */
295 int iommu_snooping; /* indicate snooping control feature*/
296 int iommu_count; /* reference count of iommu */
297 spinlock_t iommu_lock; /* protect iommu set in domain */
298 u64 max_addr; /* maximum mapped address */
301 /* PCI domain-device relationship */
302 struct device_domain_info {
303 struct list_head link; /* link to domain siblings */
304 struct list_head global; /* link to global list */
305 int segment; /* PCI domain */
306 u8 bus; /* PCI bus number */
307 u8 devfn; /* PCI devfn number */
308 struct pci_dev *dev; /* it's NULL for PCIE-to-PCI bridge */
309 struct intel_iommu *iommu; /* IOMMU used by this device */
310 struct dmar_domain *domain; /* pointer to domain */
313 static void flush_unmaps_timeout(unsigned long data);
315 DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
317 #define HIGH_WATER_MARK 250
318 struct deferred_flush_tables {
320 struct iova *iova[HIGH_WATER_MARK];
321 struct dmar_domain *domain[HIGH_WATER_MARK];
324 static struct deferred_flush_tables *deferred_flush;
326 /* bitmap for indexing intel_iommus */
327 static int g_num_of_iommus;
329 static DEFINE_SPINLOCK(async_umap_flush_lock);
330 static LIST_HEAD(unmaps_to_do);
333 static long list_size;
335 static void domain_remove_dev_info(struct dmar_domain *domain);
337 #ifdef CONFIG_DMAR_DEFAULT_ON
338 int dmar_disabled = 0;
340 int dmar_disabled = 1;
341 #endif /*CONFIG_DMAR_DEFAULT_ON*/
343 static int __initdata dmar_map_gfx = 1;
344 static int dmar_forcedac;
345 static int intel_iommu_strict;
347 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
348 static DEFINE_SPINLOCK(device_domain_lock);
349 static LIST_HEAD(device_domain_list);
351 static struct iommu_ops intel_iommu_ops;
353 static int __init intel_iommu_setup(char *str)
358 if (!strncmp(str, "on", 2)) {
360 printk(KERN_INFO "Intel-IOMMU: enabled\n");
361 } else if (!strncmp(str, "off", 3)) {
363 printk(KERN_INFO "Intel-IOMMU: disabled\n");
364 } else if (!strncmp(str, "igfx_off", 8)) {
367 "Intel-IOMMU: disable GFX device mapping\n");
368 } else if (!strncmp(str, "forcedac", 8)) {
370 "Intel-IOMMU: Forcing DAC for PCI devices\n");
372 } else if (!strncmp(str, "strict", 6)) {
374 "Intel-IOMMU: disable batched IOTLB flush\n");
375 intel_iommu_strict = 1;
378 str += strcspn(str, ",");
384 __setup("intel_iommu=", intel_iommu_setup);
386 static struct kmem_cache *iommu_domain_cache;
387 static struct kmem_cache *iommu_devinfo_cache;
388 static struct kmem_cache *iommu_iova_cache;
390 static inline void *iommu_kmem_cache_alloc(struct kmem_cache *cachep)
395 /* trying to avoid low memory issues */
396 flags = current->flags & PF_MEMALLOC;
397 current->flags |= PF_MEMALLOC;
398 vaddr = kmem_cache_alloc(cachep, GFP_ATOMIC);
399 current->flags &= (~PF_MEMALLOC | flags);
404 static inline void *alloc_pgtable_page(int node)
410 /* trying to avoid low memory issues */
411 flags = current->flags & PF_MEMALLOC;
412 current->flags |= PF_MEMALLOC;
413 page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
415 vaddr = page_address(page);
416 current->flags &= (~PF_MEMALLOC | flags);
420 static inline void free_pgtable_page(void *vaddr)
422 free_page((unsigned long)vaddr);
425 static inline void *alloc_domain_mem(void)
427 return iommu_kmem_cache_alloc(iommu_domain_cache);
430 static void free_domain_mem(void *vaddr)
432 kmem_cache_free(iommu_domain_cache, vaddr);
435 static inline void * alloc_devinfo_mem(void)
437 return iommu_kmem_cache_alloc(iommu_devinfo_cache);
440 static inline void free_devinfo_mem(void *vaddr)
442 kmem_cache_free(iommu_devinfo_cache, vaddr);
445 struct iova *alloc_iova_mem(void)
447 return iommu_kmem_cache_alloc(iommu_iova_cache);
450 void free_iova_mem(struct iova *iova)
452 kmem_cache_free(iommu_iova_cache, iova);
456 static inline int width_to_agaw(int width);
458 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
463 sagaw = cap_sagaw(iommu->cap);
464 for (agaw = width_to_agaw(max_gaw);
466 if (test_bit(agaw, &sagaw))
474 * Calculate max SAGAW for each iommu.
476 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
478 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
482 * calculate agaw for each iommu.
483 * "SAGAW" may be different across iommus, use a default agaw, and
484 * get a supported less agaw for iommus that don't support the default agaw.
486 int iommu_calculate_agaw(struct intel_iommu *iommu)
488 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
491 /* This functionin only returns single iommu in a domain */
492 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
496 /* si_domain and vm domain should not get here. */
497 BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
498 BUG_ON(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY);
500 iommu_id = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
501 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
504 return g_iommus[iommu_id];
507 static void domain_update_iommu_coherency(struct dmar_domain *domain)
511 domain->iommu_coherency = 1;
513 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
514 for (; i < g_num_of_iommus; ) {
515 if (!ecap_coherent(g_iommus[i]->ecap)) {
516 domain->iommu_coherency = 0;
519 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
523 static void domain_update_iommu_snooping(struct dmar_domain *domain)
527 domain->iommu_snooping = 1;
529 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
530 for (; i < g_num_of_iommus; ) {
531 if (!ecap_sc_support(g_iommus[i]->ecap)) {
532 domain->iommu_snooping = 0;
535 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
539 /* Some capabilities may be different across iommus */
540 static void domain_update_iommu_cap(struct dmar_domain *domain)
542 domain_update_iommu_coherency(domain);
543 domain_update_iommu_snooping(domain);
546 static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn)
548 struct dmar_drhd_unit *drhd = NULL;
551 for_each_drhd_unit(drhd) {
554 if (segment != drhd->segment)
557 for (i = 0; i < drhd->devices_cnt; i++) {
558 if (drhd->devices[i] &&
559 drhd->devices[i]->bus->number == bus &&
560 drhd->devices[i]->devfn == devfn)
562 if (drhd->devices[i] &&
563 drhd->devices[i]->subordinate &&
564 drhd->devices[i]->subordinate->number <= bus &&
565 drhd->devices[i]->subordinate->subordinate >= bus)
569 if (drhd->include_all)
576 static void domain_flush_cache(struct dmar_domain *domain,
577 void *addr, int size)
579 if (!domain->iommu_coherency)
580 clflush_cache_range(addr, size);
583 /* Gets context entry for a given bus and devfn */
584 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
587 struct root_entry *root;
588 struct context_entry *context;
589 unsigned long phy_addr;
592 spin_lock_irqsave(&iommu->lock, flags);
593 root = &iommu->root_entry[bus];
594 context = get_context_addr_from_root(root);
596 context = (struct context_entry *)
597 alloc_pgtable_page(iommu->node);
599 spin_unlock_irqrestore(&iommu->lock, flags);
602 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
603 phy_addr = virt_to_phys((void *)context);
604 set_root_value(root, phy_addr);
605 set_root_present(root);
606 __iommu_flush_cache(iommu, root, sizeof(*root));
608 spin_unlock_irqrestore(&iommu->lock, flags);
609 return &context[devfn];
612 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
614 struct root_entry *root;
615 struct context_entry *context;
619 spin_lock_irqsave(&iommu->lock, flags);
620 root = &iommu->root_entry[bus];
621 context = get_context_addr_from_root(root);
626 ret = context_present(&context[devfn]);
628 spin_unlock_irqrestore(&iommu->lock, flags);
632 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
634 struct root_entry *root;
635 struct context_entry *context;
638 spin_lock_irqsave(&iommu->lock, flags);
639 root = &iommu->root_entry[bus];
640 context = get_context_addr_from_root(root);
642 context_clear_entry(&context[devfn]);
643 __iommu_flush_cache(iommu, &context[devfn], \
646 spin_unlock_irqrestore(&iommu->lock, flags);
649 static void free_context_table(struct intel_iommu *iommu)
651 struct root_entry *root;
654 struct context_entry *context;
656 spin_lock_irqsave(&iommu->lock, flags);
657 if (!iommu->root_entry) {
660 for (i = 0; i < ROOT_ENTRY_NR; i++) {
661 root = &iommu->root_entry[i];
662 context = get_context_addr_from_root(root);
664 free_pgtable_page(context);
666 free_pgtable_page(iommu->root_entry);
667 iommu->root_entry = NULL;
669 spin_unlock_irqrestore(&iommu->lock, flags);
672 /* page table handling */
673 #define LEVEL_STRIDE (9)
674 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
676 static inline int agaw_to_level(int agaw)
681 static inline int agaw_to_width(int agaw)
683 return 30 + agaw * LEVEL_STRIDE;
687 static inline int width_to_agaw(int width)
689 return (width - 30) / LEVEL_STRIDE;
692 static inline unsigned int level_to_offset_bits(int level)
694 return (level - 1) * LEVEL_STRIDE;
697 static inline int pfn_level_offset(unsigned long pfn, int level)
699 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
702 static inline unsigned long level_mask(int level)
704 return -1UL << level_to_offset_bits(level);
707 static inline unsigned long level_size(int level)
709 return 1UL << level_to_offset_bits(level);
712 static inline unsigned long align_to_level(unsigned long pfn, int level)
714 return (pfn + level_size(level) - 1) & level_mask(level);
717 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
720 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
721 struct dma_pte *parent, *pte = NULL;
722 int level = agaw_to_level(domain->agaw);
725 BUG_ON(!domain->pgd);
726 BUG_ON(addr_width < BITS_PER_LONG && pfn >> addr_width);
727 parent = domain->pgd;
732 offset = pfn_level_offset(pfn, level);
733 pte = &parent[offset];
737 if (!dma_pte_present(pte)) {
740 tmp_page = alloc_pgtable_page(domain->nid);
745 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
746 pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
747 if (cmpxchg64(&pte->val, 0ULL, pteval)) {
748 /* Someone else set it while we were thinking; use theirs. */
749 free_pgtable_page(tmp_page);
752 domain_flush_cache(domain, pte, sizeof(*pte));
755 parent = phys_to_virt(dma_pte_addr(pte));
762 /* return address's pte at specific level */
763 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
767 struct dma_pte *parent, *pte = NULL;
768 int total = agaw_to_level(domain->agaw);
771 parent = domain->pgd;
772 while (level <= total) {
773 offset = pfn_level_offset(pfn, total);
774 pte = &parent[offset];
778 if (!dma_pte_present(pte))
780 parent = phys_to_virt(dma_pte_addr(pte));
786 /* clear last level pte, a tlb flush should be followed */
787 static void dma_pte_clear_range(struct dmar_domain *domain,
788 unsigned long start_pfn,
789 unsigned long last_pfn)
791 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
792 struct dma_pte *first_pte, *pte;
794 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
795 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
796 BUG_ON(start_pfn > last_pfn);
798 /* we don't need lock here; nobody else touches the iova range */
800 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1);
802 start_pfn = align_to_level(start_pfn + 1, 2);
809 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
811 domain_flush_cache(domain, first_pte,
812 (void *)pte - (void *)first_pte);
814 } while (start_pfn && start_pfn <= last_pfn);
817 /* free page table pages. last level pte should already be cleared */
818 static void dma_pte_free_pagetable(struct dmar_domain *domain,
819 unsigned long start_pfn,
820 unsigned long last_pfn)
822 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
823 struct dma_pte *first_pte, *pte;
824 int total = agaw_to_level(domain->agaw);
828 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
829 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
830 BUG_ON(start_pfn > last_pfn);
832 /* We don't need lock here; nobody else touches the iova range */
834 while (level <= total) {
835 tmp = align_to_level(start_pfn, level);
837 /* If we can't even clear one PTE at this level, we're done */
838 if (tmp + level_size(level) - 1 > last_pfn)
842 first_pte = pte = dma_pfn_level_pte(domain, tmp, level);
844 tmp = align_to_level(tmp + 1, level + 1);
848 if (dma_pte_present(pte)) {
849 free_pgtable_page(phys_to_virt(dma_pte_addr(pte)));
853 tmp += level_size(level);
854 } while (!first_pte_in_page(pte) &&
855 tmp + level_size(level) - 1 <= last_pfn);
857 domain_flush_cache(domain, first_pte,
858 (void *)pte - (void *)first_pte);
860 } while (tmp && tmp + level_size(level) - 1 <= last_pfn);
864 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
865 free_pgtable_page(domain->pgd);
871 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
873 struct root_entry *root;
876 root = (struct root_entry *)alloc_pgtable_page(iommu->node);
880 __iommu_flush_cache(iommu, root, ROOT_SIZE);
882 spin_lock_irqsave(&iommu->lock, flags);
883 iommu->root_entry = root;
884 spin_unlock_irqrestore(&iommu->lock, flags);
889 static void iommu_set_root_entry(struct intel_iommu *iommu)
895 addr = iommu->root_entry;
897 spin_lock_irqsave(&iommu->register_lock, flag);
898 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
900 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
902 /* Make sure hardware complete it */
903 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
904 readl, (sts & DMA_GSTS_RTPS), sts);
906 spin_unlock_irqrestore(&iommu->register_lock, flag);
909 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
914 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
917 spin_lock_irqsave(&iommu->register_lock, flag);
918 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
920 /* Make sure hardware complete it */
921 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
922 readl, (!(val & DMA_GSTS_WBFS)), val);
924 spin_unlock_irqrestore(&iommu->register_lock, flag);
927 /* return value determine if we need a write buffer flush */
928 static void __iommu_flush_context(struct intel_iommu *iommu,
929 u16 did, u16 source_id, u8 function_mask,
936 case DMA_CCMD_GLOBAL_INVL:
937 val = DMA_CCMD_GLOBAL_INVL;
939 case DMA_CCMD_DOMAIN_INVL:
940 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
942 case DMA_CCMD_DEVICE_INVL:
943 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
944 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
951 spin_lock_irqsave(&iommu->register_lock, flag);
952 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
954 /* Make sure hardware complete it */
955 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
956 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
958 spin_unlock_irqrestore(&iommu->register_lock, flag);
961 /* return value determine if we need a write buffer flush */
962 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
963 u64 addr, unsigned int size_order, u64 type)
965 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
966 u64 val = 0, val_iva = 0;
970 case DMA_TLB_GLOBAL_FLUSH:
971 /* global flush doesn't need set IVA_REG */
972 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
974 case DMA_TLB_DSI_FLUSH:
975 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
977 case DMA_TLB_PSI_FLUSH:
978 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
979 /* Note: always flush non-leaf currently */
980 val_iva = size_order | addr;
985 /* Note: set drain read/write */
988 * This is probably to be super secure.. Looks like we can
989 * ignore it without any impact.
991 if (cap_read_drain(iommu->cap))
992 val |= DMA_TLB_READ_DRAIN;
994 if (cap_write_drain(iommu->cap))
995 val |= DMA_TLB_WRITE_DRAIN;
997 spin_lock_irqsave(&iommu->register_lock, flag);
998 /* Note: Only uses first TLB reg currently */
1000 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1001 dmar_writeq(iommu->reg + tlb_offset + 8, val);
1003 /* Make sure hardware complete it */
1004 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1005 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1007 spin_unlock_irqrestore(&iommu->register_lock, flag);
1009 /* check IOTLB invalidation granularity */
1010 if (DMA_TLB_IAIG(val) == 0)
1011 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
1012 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1013 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
1014 (unsigned long long)DMA_TLB_IIRG(type),
1015 (unsigned long long)DMA_TLB_IAIG(val));
1018 static struct device_domain_info *iommu_support_dev_iotlb(
1019 struct dmar_domain *domain, int segment, u8 bus, u8 devfn)
1022 unsigned long flags;
1023 struct device_domain_info *info;
1024 struct intel_iommu *iommu = device_to_iommu(segment, bus, devfn);
1026 if (!ecap_dev_iotlb_support(iommu->ecap))
1032 spin_lock_irqsave(&device_domain_lock, flags);
1033 list_for_each_entry(info, &domain->devices, link)
1034 if (info->bus == bus && info->devfn == devfn) {
1038 spin_unlock_irqrestore(&device_domain_lock, flags);
1040 if (!found || !info->dev)
1043 if (!pci_find_ext_capability(info->dev, PCI_EXT_CAP_ID_ATS))
1046 if (!dmar_find_matched_atsr_unit(info->dev))
1049 info->iommu = iommu;
1054 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1059 pci_enable_ats(info->dev, VTD_PAGE_SHIFT);
1062 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1064 if (!info->dev || !pci_ats_enabled(info->dev))
1067 pci_disable_ats(info->dev);
1070 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1071 u64 addr, unsigned mask)
1074 unsigned long flags;
1075 struct device_domain_info *info;
1077 spin_lock_irqsave(&device_domain_lock, flags);
1078 list_for_each_entry(info, &domain->devices, link) {
1079 if (!info->dev || !pci_ats_enabled(info->dev))
1082 sid = info->bus << 8 | info->devfn;
1083 qdep = pci_ats_queue_depth(info->dev);
1084 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1086 spin_unlock_irqrestore(&device_domain_lock, flags);
1089 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
1090 unsigned long pfn, unsigned int pages)
1092 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1093 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1098 * Fallback to domain selective flush if no PSI support or the size is
1100 * PSI requires page size to be 2 ^ x, and the base address is naturally
1101 * aligned to the size
1103 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1104 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1107 iommu->flush.flush_iotlb(iommu, did, addr, mask,
1111 * In caching mode, domain ID 0 is reserved for non-present to present
1112 * mapping flush. Device IOTLB doesn't need to be flushed in this case.
1114 if (!cap_caching_mode(iommu->cap) || did)
1115 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
1118 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1121 unsigned long flags;
1123 spin_lock_irqsave(&iommu->register_lock, flags);
1124 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1125 pmen &= ~DMA_PMEN_EPM;
1126 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1128 /* wait for the protected region status bit to clear */
1129 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1130 readl, !(pmen & DMA_PMEN_PRS), pmen);
1132 spin_unlock_irqrestore(&iommu->register_lock, flags);
1135 static int iommu_enable_translation(struct intel_iommu *iommu)
1138 unsigned long flags;
1140 spin_lock_irqsave(&iommu->register_lock, flags);
1141 iommu->gcmd |= DMA_GCMD_TE;
1142 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1144 /* Make sure hardware complete it */
1145 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1146 readl, (sts & DMA_GSTS_TES), sts);
1148 spin_unlock_irqrestore(&iommu->register_lock, flags);
1152 static int iommu_disable_translation(struct intel_iommu *iommu)
1157 spin_lock_irqsave(&iommu->register_lock, flag);
1158 iommu->gcmd &= ~DMA_GCMD_TE;
1159 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1161 /* Make sure hardware complete it */
1162 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1163 readl, (!(sts & DMA_GSTS_TES)), sts);
1165 spin_unlock_irqrestore(&iommu->register_lock, flag);
1170 static int iommu_init_domains(struct intel_iommu *iommu)
1172 unsigned long ndomains;
1173 unsigned long nlongs;
1175 ndomains = cap_ndoms(iommu->cap);
1176 pr_debug("Number of Domains supportd <%ld>\n", ndomains);
1177 nlongs = BITS_TO_LONGS(ndomains);
1179 spin_lock_init(&iommu->lock);
1181 /* TBD: there might be 64K domains,
1182 * consider other allocation for future chip
1184 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1185 if (!iommu->domain_ids) {
1186 printk(KERN_ERR "Allocating domain id array failed\n");
1189 iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1191 if (!iommu->domains) {
1192 printk(KERN_ERR "Allocating domain array failed\n");
1197 * if Caching mode is set, then invalid translations are tagged
1198 * with domainid 0. Hence we need to pre-allocate it.
1200 if (cap_caching_mode(iommu->cap))
1201 set_bit(0, iommu->domain_ids);
1206 static void domain_exit(struct dmar_domain *domain);
1207 static void vm_domain_exit(struct dmar_domain *domain);
1209 void free_dmar_iommu(struct intel_iommu *iommu)
1211 struct dmar_domain *domain;
1213 unsigned long flags;
1215 if ((iommu->domains) && (iommu->domain_ids)) {
1216 i = find_first_bit(iommu->domain_ids, cap_ndoms(iommu->cap));
1217 for (; i < cap_ndoms(iommu->cap); ) {
1218 domain = iommu->domains[i];
1219 clear_bit(i, iommu->domain_ids);
1221 spin_lock_irqsave(&domain->iommu_lock, flags);
1222 if (--domain->iommu_count == 0) {
1223 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1224 vm_domain_exit(domain);
1226 domain_exit(domain);
1228 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1230 i = find_next_bit(iommu->domain_ids,
1231 cap_ndoms(iommu->cap), i+1);
1235 if (iommu->gcmd & DMA_GCMD_TE)
1236 iommu_disable_translation(iommu);
1239 set_irq_data(iommu->irq, NULL);
1240 /* This will mask the irq */
1241 free_irq(iommu->irq, iommu);
1242 destroy_irq(iommu->irq);
1245 kfree(iommu->domains);
1246 kfree(iommu->domain_ids);
1248 g_iommus[iommu->seq_id] = NULL;
1250 /* if all iommus are freed, free g_iommus */
1251 for (i = 0; i < g_num_of_iommus; i++) {
1256 if (i == g_num_of_iommus)
1259 /* free context mapping */
1260 free_context_table(iommu);
1263 static struct dmar_domain *alloc_domain(void)
1265 struct dmar_domain *domain;
1267 domain = alloc_domain_mem();
1272 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
1278 static int iommu_attach_domain(struct dmar_domain *domain,
1279 struct intel_iommu *iommu)
1282 unsigned long ndomains;
1283 unsigned long flags;
1285 ndomains = cap_ndoms(iommu->cap);
1287 spin_lock_irqsave(&iommu->lock, flags);
1289 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1290 if (num >= ndomains) {
1291 spin_unlock_irqrestore(&iommu->lock, flags);
1292 printk(KERN_ERR "IOMMU: no free domain ids\n");
1297 set_bit(num, iommu->domain_ids);
1298 set_bit(iommu->seq_id, &domain->iommu_bmp);
1299 iommu->domains[num] = domain;
1300 spin_unlock_irqrestore(&iommu->lock, flags);
1305 static void iommu_detach_domain(struct dmar_domain *domain,
1306 struct intel_iommu *iommu)
1308 unsigned long flags;
1312 spin_lock_irqsave(&iommu->lock, flags);
1313 ndomains = cap_ndoms(iommu->cap);
1314 num = find_first_bit(iommu->domain_ids, ndomains);
1315 for (; num < ndomains; ) {
1316 if (iommu->domains[num] == domain) {
1320 num = find_next_bit(iommu->domain_ids,
1321 cap_ndoms(iommu->cap), num+1);
1325 clear_bit(num, iommu->domain_ids);
1326 clear_bit(iommu->seq_id, &domain->iommu_bmp);
1327 iommu->domains[num] = NULL;
1329 spin_unlock_irqrestore(&iommu->lock, flags);
1332 static struct iova_domain reserved_iova_list;
1333 static struct lock_class_key reserved_rbtree_key;
1335 static void dmar_init_reserved_ranges(void)
1337 struct pci_dev *pdev = NULL;
1341 init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1343 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1344 &reserved_rbtree_key);
1346 /* IOAPIC ranges shouldn't be accessed by DMA */
1347 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1348 IOVA_PFN(IOAPIC_RANGE_END));
1350 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1352 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1353 for_each_pci_dev(pdev) {
1356 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1357 r = &pdev->resource[i];
1358 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1360 iova = reserve_iova(&reserved_iova_list,
1364 printk(KERN_ERR "Reserve iova failed\n");
1370 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1372 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1375 static inline int guestwidth_to_adjustwidth(int gaw)
1378 int r = (gaw - 12) % 9;
1389 static int domain_init(struct dmar_domain *domain, int guest_width)
1391 struct intel_iommu *iommu;
1392 int adjust_width, agaw;
1393 unsigned long sagaw;
1395 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1396 spin_lock_init(&domain->iommu_lock);
1398 domain_reserve_special_ranges(domain);
1400 /* calculate AGAW */
1401 iommu = domain_get_iommu(domain);
1402 if (guest_width > cap_mgaw(iommu->cap))
1403 guest_width = cap_mgaw(iommu->cap);
1404 domain->gaw = guest_width;
1405 adjust_width = guestwidth_to_adjustwidth(guest_width);
1406 agaw = width_to_agaw(adjust_width);
1407 sagaw = cap_sagaw(iommu->cap);
1408 if (!test_bit(agaw, &sagaw)) {
1409 /* hardware doesn't support it, choose a bigger one */
1410 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1411 agaw = find_next_bit(&sagaw, 5, agaw);
1415 domain->agaw = agaw;
1416 INIT_LIST_HEAD(&domain->devices);
1418 if (ecap_coherent(iommu->ecap))
1419 domain->iommu_coherency = 1;
1421 domain->iommu_coherency = 0;
1423 if (ecap_sc_support(iommu->ecap))
1424 domain->iommu_snooping = 1;
1426 domain->iommu_snooping = 0;
1428 domain->iommu_count = 1;
1429 domain->nid = iommu->node;
1431 /* always allocate the top pgd */
1432 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1435 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1439 static void domain_exit(struct dmar_domain *domain)
1441 struct dmar_drhd_unit *drhd;
1442 struct intel_iommu *iommu;
1444 /* Domain 0 is reserved, so dont process it */
1448 domain_remove_dev_info(domain);
1450 put_iova_domain(&domain->iovad);
1453 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1455 /* free page tables */
1456 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1458 for_each_active_iommu(iommu, drhd)
1459 if (test_bit(iommu->seq_id, &domain->iommu_bmp))
1460 iommu_detach_domain(domain, iommu);
1462 free_domain_mem(domain);
1465 static int domain_context_mapping_one(struct dmar_domain *domain, int segment,
1466 u8 bus, u8 devfn, int translation)
1468 struct context_entry *context;
1469 unsigned long flags;
1470 struct intel_iommu *iommu;
1471 struct dma_pte *pgd;
1473 unsigned long ndomains;
1476 struct device_domain_info *info = NULL;
1478 pr_debug("Set context mapping for %02x:%02x.%d\n",
1479 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1481 BUG_ON(!domain->pgd);
1482 BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1483 translation != CONTEXT_TT_MULTI_LEVEL);
1485 iommu = device_to_iommu(segment, bus, devfn);
1489 context = device_to_context_entry(iommu, bus, devfn);
1492 spin_lock_irqsave(&iommu->lock, flags);
1493 if (context_present(context)) {
1494 spin_unlock_irqrestore(&iommu->lock, flags);
1501 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
1502 domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) {
1505 /* find an available domain id for this device in iommu */
1506 ndomains = cap_ndoms(iommu->cap);
1507 num = find_first_bit(iommu->domain_ids, ndomains);
1508 for (; num < ndomains; ) {
1509 if (iommu->domains[num] == domain) {
1514 num = find_next_bit(iommu->domain_ids,
1515 cap_ndoms(iommu->cap), num+1);
1519 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1520 if (num >= ndomains) {
1521 spin_unlock_irqrestore(&iommu->lock, flags);
1522 printk(KERN_ERR "IOMMU: no free domain ids\n");
1526 set_bit(num, iommu->domain_ids);
1527 iommu->domains[num] = domain;
1531 /* Skip top levels of page tables for
1532 * iommu which has less agaw than default.
1534 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1535 pgd = phys_to_virt(dma_pte_addr(pgd));
1536 if (!dma_pte_present(pgd)) {
1537 spin_unlock_irqrestore(&iommu->lock, flags);
1543 context_set_domain_id(context, id);
1545 if (translation != CONTEXT_TT_PASS_THROUGH) {
1546 info = iommu_support_dev_iotlb(domain, segment, bus, devfn);
1547 translation = info ? CONTEXT_TT_DEV_IOTLB :
1548 CONTEXT_TT_MULTI_LEVEL;
1551 * In pass through mode, AW must be programmed to indicate the largest
1552 * AGAW value supported by hardware. And ASR is ignored by hardware.
1554 if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
1555 context_set_address_width(context, iommu->msagaw);
1557 context_set_address_root(context, virt_to_phys(pgd));
1558 context_set_address_width(context, iommu->agaw);
1561 context_set_translation_type(context, translation);
1562 context_set_fault_enable(context);
1563 context_set_present(context);
1564 domain_flush_cache(domain, context, sizeof(*context));
1567 * It's a non-present to present mapping. If hardware doesn't cache
1568 * non-present entry we only need to flush the write-buffer. If the
1569 * _does_ cache non-present entries, then it does so in the special
1570 * domain #0, which we have to flush:
1572 if (cap_caching_mode(iommu->cap)) {
1573 iommu->flush.flush_context(iommu, 0,
1574 (((u16)bus) << 8) | devfn,
1575 DMA_CCMD_MASK_NOBIT,
1576 DMA_CCMD_DEVICE_INVL);
1577 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_DSI_FLUSH);
1579 iommu_flush_write_buffer(iommu);
1581 iommu_enable_dev_iotlb(info);
1582 spin_unlock_irqrestore(&iommu->lock, flags);
1584 spin_lock_irqsave(&domain->iommu_lock, flags);
1585 if (!test_and_set_bit(iommu->seq_id, &domain->iommu_bmp)) {
1586 domain->iommu_count++;
1587 if (domain->iommu_count == 1)
1588 domain->nid = iommu->node;
1589 domain_update_iommu_cap(domain);
1591 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1596 domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev,
1600 struct pci_dev *tmp, *parent;
1602 ret = domain_context_mapping_one(domain, pci_domain_nr(pdev->bus),
1603 pdev->bus->number, pdev->devfn,
1608 /* dependent device mapping */
1609 tmp = pci_find_upstream_pcie_bridge(pdev);
1612 /* Secondary interface's bus number and devfn 0 */
1613 parent = pdev->bus->self;
1614 while (parent != tmp) {
1615 ret = domain_context_mapping_one(domain,
1616 pci_domain_nr(parent->bus),
1617 parent->bus->number,
1618 parent->devfn, translation);
1621 parent = parent->bus->self;
1623 if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
1624 return domain_context_mapping_one(domain,
1625 pci_domain_nr(tmp->subordinate),
1626 tmp->subordinate->number, 0,
1628 else /* this is a legacy PCI bridge */
1629 return domain_context_mapping_one(domain,
1630 pci_domain_nr(tmp->bus),
1636 static int domain_context_mapped(struct pci_dev *pdev)
1639 struct pci_dev *tmp, *parent;
1640 struct intel_iommu *iommu;
1642 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
1647 ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn);
1650 /* dependent device mapping */
1651 tmp = pci_find_upstream_pcie_bridge(pdev);
1654 /* Secondary interface's bus number and devfn 0 */
1655 parent = pdev->bus->self;
1656 while (parent != tmp) {
1657 ret = device_context_mapped(iommu, parent->bus->number,
1661 parent = parent->bus->self;
1664 return device_context_mapped(iommu, tmp->subordinate->number,
1667 return device_context_mapped(iommu, tmp->bus->number,
1671 /* Returns a number of VTD pages, but aligned to MM page size */
1672 static inline unsigned long aligned_nrpages(unsigned long host_addr,
1675 host_addr &= ~PAGE_MASK;
1676 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
1679 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1680 struct scatterlist *sg, unsigned long phys_pfn,
1681 unsigned long nr_pages, int prot)
1683 struct dma_pte *first_pte = NULL, *pte = NULL;
1684 phys_addr_t uninitialized_var(pteval);
1685 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
1686 unsigned long sg_res;
1688 BUG_ON(addr_width < BITS_PER_LONG && (iov_pfn + nr_pages - 1) >> addr_width);
1690 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1693 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
1698 sg_res = nr_pages + 1;
1699 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
1702 while (nr_pages--) {
1706 sg_res = aligned_nrpages(sg->offset, sg->length);
1707 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
1708 sg->dma_length = sg->length;
1709 pteval = page_to_phys(sg_page(sg)) | prot;
1712 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn);
1716 /* We don't need lock here, nobody else
1717 * touches the iova range
1719 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
1721 static int dumps = 5;
1722 printk(KERN_CRIT "ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
1723 iov_pfn, tmp, (unsigned long long)pteval);
1726 debug_dma_dump_mappings(NULL);
1731 if (!nr_pages || first_pte_in_page(pte)) {
1732 domain_flush_cache(domain, first_pte,
1733 (void *)pte - (void *)first_pte);
1737 pteval += VTD_PAGE_SIZE;
1745 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1746 struct scatterlist *sg, unsigned long nr_pages,
1749 return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
1752 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1753 unsigned long phys_pfn, unsigned long nr_pages,
1756 return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
1759 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
1764 clear_context_table(iommu, bus, devfn);
1765 iommu->flush.flush_context(iommu, 0, 0, 0,
1766 DMA_CCMD_GLOBAL_INVL);
1767 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
1770 static void domain_remove_dev_info(struct dmar_domain *domain)
1772 struct device_domain_info *info;
1773 unsigned long flags;
1774 struct intel_iommu *iommu;
1776 spin_lock_irqsave(&device_domain_lock, flags);
1777 while (!list_empty(&domain->devices)) {
1778 info = list_entry(domain->devices.next,
1779 struct device_domain_info, link);
1780 list_del(&info->link);
1781 list_del(&info->global);
1783 info->dev->dev.archdata.iommu = NULL;
1784 spin_unlock_irqrestore(&device_domain_lock, flags);
1786 iommu_disable_dev_iotlb(info);
1787 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
1788 iommu_detach_dev(iommu, info->bus, info->devfn);
1789 free_devinfo_mem(info);
1791 spin_lock_irqsave(&device_domain_lock, flags);
1793 spin_unlock_irqrestore(&device_domain_lock, flags);
1798 * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1800 static struct dmar_domain *
1801 find_domain(struct pci_dev *pdev)
1803 struct device_domain_info *info;
1805 /* No lock here, assumes no domain exit in normal case */
1806 info = pdev->dev.archdata.iommu;
1808 return info->domain;
1812 /* domain is initialized */
1813 static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1815 struct dmar_domain *domain, *found = NULL;
1816 struct intel_iommu *iommu;
1817 struct dmar_drhd_unit *drhd;
1818 struct device_domain_info *info, *tmp;
1819 struct pci_dev *dev_tmp;
1820 unsigned long flags;
1821 int bus = 0, devfn = 0;
1825 domain = find_domain(pdev);
1829 segment = pci_domain_nr(pdev->bus);
1831 dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1833 if (dev_tmp->is_pcie) {
1834 bus = dev_tmp->subordinate->number;
1837 bus = dev_tmp->bus->number;
1838 devfn = dev_tmp->devfn;
1840 spin_lock_irqsave(&device_domain_lock, flags);
1841 list_for_each_entry(info, &device_domain_list, global) {
1842 if (info->segment == segment &&
1843 info->bus == bus && info->devfn == devfn) {
1844 found = info->domain;
1848 spin_unlock_irqrestore(&device_domain_lock, flags);
1849 /* pcie-pci bridge already has a domain, uses it */
1856 domain = alloc_domain();
1860 /* Allocate new domain for the device */
1861 drhd = dmar_find_matched_drhd_unit(pdev);
1863 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
1867 iommu = drhd->iommu;
1869 ret = iommu_attach_domain(domain, iommu);
1871 domain_exit(domain);
1875 if (domain_init(domain, gaw)) {
1876 domain_exit(domain);
1880 /* register pcie-to-pci device */
1882 info = alloc_devinfo_mem();
1884 domain_exit(domain);
1887 info->segment = segment;
1889 info->devfn = devfn;
1891 info->domain = domain;
1892 /* This domain is shared by devices under p2p bridge */
1893 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
1895 /* pcie-to-pci bridge already has a domain, uses it */
1897 spin_lock_irqsave(&device_domain_lock, flags);
1898 list_for_each_entry(tmp, &device_domain_list, global) {
1899 if (tmp->segment == segment &&
1900 tmp->bus == bus && tmp->devfn == devfn) {
1901 found = tmp->domain;
1906 free_devinfo_mem(info);
1907 domain_exit(domain);
1910 list_add(&info->link, &domain->devices);
1911 list_add(&info->global, &device_domain_list);
1913 spin_unlock_irqrestore(&device_domain_lock, flags);
1917 info = alloc_devinfo_mem();
1920 info->segment = segment;
1921 info->bus = pdev->bus->number;
1922 info->devfn = pdev->devfn;
1924 info->domain = domain;
1925 spin_lock_irqsave(&device_domain_lock, flags);
1926 /* somebody is fast */
1927 found = find_domain(pdev);
1928 if (found != NULL) {
1929 spin_unlock_irqrestore(&device_domain_lock, flags);
1930 if (found != domain) {
1931 domain_exit(domain);
1934 free_devinfo_mem(info);
1937 list_add(&info->link, &domain->devices);
1938 list_add(&info->global, &device_domain_list);
1939 pdev->dev.archdata.iommu = info;
1940 spin_unlock_irqrestore(&device_domain_lock, flags);
1943 /* recheck it here, maybe others set it */
1944 return find_domain(pdev);
1947 static int iommu_identity_mapping;
1948 #define IDENTMAP_ALL 1
1949 #define IDENTMAP_GFX 2
1950 #define IDENTMAP_AZALIA 4
1952 static int iommu_domain_identity_map(struct dmar_domain *domain,
1953 unsigned long long start,
1954 unsigned long long end)
1956 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
1957 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
1959 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
1960 dma_to_mm_pfn(last_vpfn))) {
1961 printk(KERN_ERR "IOMMU: reserve iova failed\n");
1965 pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
1966 start, end, domain->id);
1968 * RMRR range might have overlap with physical memory range,
1971 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
1973 return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
1974 last_vpfn - first_vpfn + 1,
1975 DMA_PTE_READ|DMA_PTE_WRITE);
1978 static int iommu_prepare_identity_map(struct pci_dev *pdev,
1979 unsigned long long start,
1980 unsigned long long end)
1982 struct dmar_domain *domain;
1985 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
1989 /* For _hardware_ passthrough, don't bother. But for software
1990 passthrough, we do it anyway -- it may indicate a memory
1991 range which is reserved in E820, so which didn't get set
1992 up to start with in si_domain */
1993 if (domain == si_domain && hw_pass_through) {
1994 printk("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
1995 pci_name(pdev), start, end);
2000 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2001 pci_name(pdev), start, end);
2003 if (end >> agaw_to_width(domain->agaw)) {
2004 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2005 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2006 agaw_to_width(domain->agaw),
2007 dmi_get_system_info(DMI_BIOS_VENDOR),
2008 dmi_get_system_info(DMI_BIOS_VERSION),
2009 dmi_get_system_info(DMI_PRODUCT_VERSION));
2014 ret = iommu_domain_identity_map(domain, start, end);
2018 /* context entry init */
2019 ret = domain_context_mapping(domain, pdev, CONTEXT_TT_MULTI_LEVEL);
2026 domain_exit(domain);
2030 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2031 struct pci_dev *pdev)
2033 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2035 return iommu_prepare_identity_map(pdev, rmrr->base_address,
2036 rmrr->end_address + 1);
2039 #ifdef CONFIG_DMAR_FLOPPY_WA
2040 static inline void iommu_prepare_isa(void)
2042 struct pci_dev *pdev;
2045 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2049 printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
2050 ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024);
2053 printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; "
2054 "floppy might not work\n");
2058 static inline void iommu_prepare_isa(void)
2062 #endif /* !CONFIG_DMAR_FLPY_WA */
2064 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2066 static int __init si_domain_work_fn(unsigned long start_pfn,
2067 unsigned long end_pfn, void *datax)
2071 *ret = iommu_domain_identity_map(si_domain,
2072 (uint64_t)start_pfn << PAGE_SHIFT,
2073 (uint64_t)end_pfn << PAGE_SHIFT);
2078 static int __init si_domain_init(int hw)
2080 struct dmar_drhd_unit *drhd;
2081 struct intel_iommu *iommu;
2084 si_domain = alloc_domain();
2088 pr_debug("Identity mapping domain is domain %d\n", si_domain->id);
2090 for_each_active_iommu(iommu, drhd) {
2091 ret = iommu_attach_domain(si_domain, iommu);
2093 domain_exit(si_domain);
2098 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2099 domain_exit(si_domain);
2103 si_domain->flags = DOMAIN_FLAG_STATIC_IDENTITY;
2108 for_each_online_node(nid) {
2109 work_with_active_regions(nid, si_domain_work_fn, &ret);
2117 static void domain_remove_one_dev_info(struct dmar_domain *domain,
2118 struct pci_dev *pdev);
2119 static int identity_mapping(struct pci_dev *pdev)
2121 struct device_domain_info *info;
2123 if (likely(!iommu_identity_mapping))
2127 list_for_each_entry(info, &si_domain->devices, link)
2128 if (info->dev == pdev)
2133 static int domain_add_dev_info(struct dmar_domain *domain,
2134 struct pci_dev *pdev,
2137 struct device_domain_info *info;
2138 unsigned long flags;
2141 info = alloc_devinfo_mem();
2145 ret = domain_context_mapping(domain, pdev, translation);
2147 free_devinfo_mem(info);
2151 info->segment = pci_domain_nr(pdev->bus);
2152 info->bus = pdev->bus->number;
2153 info->devfn = pdev->devfn;
2155 info->domain = domain;
2157 spin_lock_irqsave(&device_domain_lock, flags);
2158 list_add(&info->link, &domain->devices);
2159 list_add(&info->global, &device_domain_list);
2160 pdev->dev.archdata.iommu = info;
2161 spin_unlock_irqrestore(&device_domain_lock, flags);
2166 static int iommu_should_identity_map(struct pci_dev *pdev, int startup)
2168 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2171 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2174 if (!(iommu_identity_mapping & IDENTMAP_ALL))
2178 * We want to start off with all devices in the 1:1 domain, and
2179 * take them out later if we find they can't access all of memory.
2181 * However, we can't do this for PCI devices behind bridges,
2182 * because all PCI devices behind the same bridge will end up
2183 * with the same source-id on their transactions.
2185 * Practically speaking, we can't change things around for these
2186 * devices at run-time, because we can't be sure there'll be no
2187 * DMA transactions in flight for any of their siblings.
2189 * So PCI devices (unless they're on the root bus) as well as
2190 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2191 * the 1:1 domain, just in _case_ one of their siblings turns out
2192 * not to be able to map all of memory.
2194 if (!pdev->is_pcie) {
2195 if (!pci_is_root_bus(pdev->bus))
2197 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2199 } else if (pdev->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE)
2203 * At boot time, we don't yet know if devices will be 64-bit capable.
2204 * Assume that they will -- if they turn out not to be, then we can
2205 * take them out of the 1:1 domain later.
2208 return pdev->dma_mask > DMA_BIT_MASK(32);
2213 static int __init iommu_prepare_static_identity_mapping(int hw)
2215 struct pci_dev *pdev = NULL;
2218 ret = si_domain_init(hw);
2222 for_each_pci_dev(pdev) {
2223 if (iommu_should_identity_map(pdev, 1)) {
2224 printk(KERN_INFO "IOMMU: %s identity mapping for device %s\n",
2225 hw ? "hardware" : "software", pci_name(pdev));
2227 ret = domain_add_dev_info(si_domain, pdev,
2228 hw ? CONTEXT_TT_PASS_THROUGH :
2229 CONTEXT_TT_MULTI_LEVEL);
2238 int __init init_dmars(void)
2240 struct dmar_drhd_unit *drhd;
2241 struct dmar_rmrr_unit *rmrr;
2242 struct pci_dev *pdev;
2243 struct intel_iommu *iommu;
2249 * initialize and program root entry to not present
2252 for_each_drhd_unit(drhd) {
2255 * lock not needed as this is only incremented in the single
2256 * threaded kernel __init code path all other access are read
2261 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
2264 printk(KERN_ERR "Allocating global iommu array failed\n");
2269 deferred_flush = kzalloc(g_num_of_iommus *
2270 sizeof(struct deferred_flush_tables), GFP_KERNEL);
2271 if (!deferred_flush) {
2276 for_each_drhd_unit(drhd) {
2280 iommu = drhd->iommu;
2281 g_iommus[iommu->seq_id] = iommu;
2283 ret = iommu_init_domains(iommu);
2289 * we could share the same root & context tables
2290 * amoung all IOMMU's. Need to Split it later.
2292 ret = iommu_alloc_root_entry(iommu);
2294 printk(KERN_ERR "IOMMU: allocate root entry failed\n");
2297 if (!ecap_pass_through(iommu->ecap))
2298 hw_pass_through = 0;
2302 * Start from the sane iommu hardware state.
2304 for_each_drhd_unit(drhd) {
2308 iommu = drhd->iommu;
2311 * If the queued invalidation is already initialized by us
2312 * (for example, while enabling interrupt-remapping) then
2313 * we got the things already rolling from a sane state.
2319 * Clear any previous faults.
2321 dmar_fault(-1, iommu);
2323 * Disable queued invalidation if supported and already enabled
2324 * before OS handover.
2326 dmar_disable_qi(iommu);
2329 for_each_drhd_unit(drhd) {
2333 iommu = drhd->iommu;
2335 if (dmar_enable_qi(iommu)) {
2337 * Queued Invalidate not enabled, use Register Based
2340 iommu->flush.flush_context = __iommu_flush_context;
2341 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2342 printk(KERN_INFO "IOMMU 0x%Lx: using Register based "
2344 (unsigned long long)drhd->reg_base_addr);
2346 iommu->flush.flush_context = qi_flush_context;
2347 iommu->flush.flush_iotlb = qi_flush_iotlb;
2348 printk(KERN_INFO "IOMMU 0x%Lx: using Queued "
2350 (unsigned long long)drhd->reg_base_addr);
2354 if (iommu_pass_through)
2355 iommu_identity_mapping |= IDENTMAP_ALL;
2357 #ifdef CONFIG_DMAR_BROKEN_GFX_WA
2358 iommu_identity_mapping |= IDENTMAP_GFX;
2361 check_tylersburg_isoch();
2364 * If pass through is not set or not enabled, setup context entries for
2365 * identity mappings for rmrr, gfx, and isa and may fall back to static
2366 * identity mapping if iommu_identity_mapping is set.
2368 if (iommu_identity_mapping) {
2369 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
2371 printk(KERN_CRIT "Failed to setup IOMMU pass-through\n");
2377 * for each dev attached to rmrr
2379 * locate drhd for dev, alloc domain for dev
2380 * allocate free domain
2381 * allocate page table entries for rmrr
2382 * if context not allocated for bus
2383 * allocate and init context
2384 * set present in root table for this bus
2385 * init context with domain, translation etc
2389 printk(KERN_INFO "IOMMU: Setting RMRR:\n");
2390 for_each_rmrr_units(rmrr) {
2391 for (i = 0; i < rmrr->devices_cnt; i++) {
2392 pdev = rmrr->devices[i];
2394 * some BIOS lists non-exist devices in DMAR
2399 ret = iommu_prepare_rmrr_dev(rmrr, pdev);
2402 "IOMMU: mapping reserved region failed\n");
2406 iommu_prepare_isa();
2411 * global invalidate context cache
2412 * global invalidate iotlb
2413 * enable translation
2415 for_each_drhd_unit(drhd) {
2418 iommu = drhd->iommu;
2420 iommu_flush_write_buffer(iommu);
2422 ret = dmar_set_interrupt(iommu);
2426 iommu_set_root_entry(iommu);
2428 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
2429 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2431 ret = iommu_enable_translation(iommu);
2435 iommu_disable_protect_mem_regions(iommu);
2440 for_each_drhd_unit(drhd) {
2443 iommu = drhd->iommu;
2450 /* This takes a number of _MM_ pages, not VTD pages */
2451 static struct iova *intel_alloc_iova(struct device *dev,
2452 struct dmar_domain *domain,
2453 unsigned long nrpages, uint64_t dma_mask)
2455 struct pci_dev *pdev = to_pci_dev(dev);
2456 struct iova *iova = NULL;
2458 /* Restrict dma_mask to the width that the iommu can handle */
2459 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
2461 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
2463 * First try to allocate an io virtual address in
2464 * DMA_BIT_MASK(32) and if that fails then try allocating
2467 iova = alloc_iova(&domain->iovad, nrpages,
2468 IOVA_PFN(DMA_BIT_MASK(32)), 1);
2472 iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
2473 if (unlikely(!iova)) {
2474 printk(KERN_ERR "Allocating %ld-page iova for %s failed",
2475 nrpages, pci_name(pdev));
2482 static struct dmar_domain *__get_valid_domain_for_dev(struct pci_dev *pdev)
2484 struct dmar_domain *domain;
2487 domain = get_domain_for_dev(pdev,
2488 DEFAULT_DOMAIN_ADDRESS_WIDTH);
2491 "Allocating domain for %s failed", pci_name(pdev));
2495 /* make sure context mapping is ok */
2496 if (unlikely(!domain_context_mapped(pdev))) {
2497 ret = domain_context_mapping(domain, pdev,
2498 CONTEXT_TT_MULTI_LEVEL);
2501 "Domain context map for %s failed",
2510 static inline struct dmar_domain *get_valid_domain_for_dev(struct pci_dev *dev)
2512 struct device_domain_info *info;
2514 /* No lock here, assumes no domain exit in normal case */
2515 info = dev->dev.archdata.iommu;
2517 return info->domain;
2519 return __get_valid_domain_for_dev(dev);
2522 static int iommu_dummy(struct pci_dev *pdev)
2524 return pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
2527 /* Check if the pdev needs to go through non-identity map and unmap process.*/
2528 static int iommu_no_mapping(struct device *dev)
2530 struct pci_dev *pdev;
2533 if (unlikely(dev->bus != &pci_bus_type))
2536 pdev = to_pci_dev(dev);
2537 if (iommu_dummy(pdev))
2540 if (!iommu_identity_mapping)
2543 found = identity_mapping(pdev);
2545 if (iommu_should_identity_map(pdev, 0))
2549 * 32 bit DMA is removed from si_domain and fall back
2550 * to non-identity mapping.
2552 domain_remove_one_dev_info(si_domain, pdev);
2553 printk(KERN_INFO "32bit %s uses non-identity mapping\n",
2559 * In case of a detached 64 bit DMA device from vm, the device
2560 * is put into si_domain for identity mapping.
2562 if (iommu_should_identity_map(pdev, 0)) {
2564 ret = domain_add_dev_info(si_domain, pdev,
2566 CONTEXT_TT_PASS_THROUGH :
2567 CONTEXT_TT_MULTI_LEVEL);
2569 printk(KERN_INFO "64bit %s uses identity mapping\n",
2579 static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
2580 size_t size, int dir, u64 dma_mask)
2582 struct pci_dev *pdev = to_pci_dev(hwdev);
2583 struct dmar_domain *domain;
2584 phys_addr_t start_paddr;
2588 struct intel_iommu *iommu;
2589 unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
2591 BUG_ON(dir == DMA_NONE);
2593 if (iommu_no_mapping(hwdev))
2596 domain = get_valid_domain_for_dev(pdev);
2600 iommu = domain_get_iommu(domain);
2601 size = aligned_nrpages(paddr, size);
2603 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size),
2609 * Check if DMAR supports zero-length reads on write only
2612 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2613 !cap_zlr(iommu->cap))
2614 prot |= DMA_PTE_READ;
2615 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2616 prot |= DMA_PTE_WRITE;
2618 * paddr - (paddr + size) might be partial page, we should map the whole
2619 * page. Note: if two part of one page are separately mapped, we
2620 * might have two guest_addr mapping to the same host paddr, but this
2621 * is not a big problem
2623 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
2624 mm_to_dma_pfn(paddr_pfn), size, prot);
2628 /* it's a non-present to present mapping. Only flush if caching mode */
2629 if (cap_caching_mode(iommu->cap))
2630 iommu_flush_iotlb_psi(iommu, 0, mm_to_dma_pfn(iova->pfn_lo), size);
2632 iommu_flush_write_buffer(iommu);
2634 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
2635 start_paddr += paddr & ~PAGE_MASK;
2640 __free_iova(&domain->iovad, iova);
2641 printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
2642 pci_name(pdev), size, (unsigned long long)paddr, dir);
2646 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
2647 unsigned long offset, size_t size,
2648 enum dma_data_direction dir,
2649 struct dma_attrs *attrs)
2651 return __intel_map_single(dev, page_to_phys(page) + offset, size,
2652 dir, to_pci_dev(dev)->dma_mask);
2655 static void flush_unmaps(void)
2661 /* just flush them all */
2662 for (i = 0; i < g_num_of_iommus; i++) {
2663 struct intel_iommu *iommu = g_iommus[i];
2667 if (!deferred_flush[i].next)
2670 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2671 DMA_TLB_GLOBAL_FLUSH);
2672 for (j = 0; j < deferred_flush[i].next; j++) {
2674 struct iova *iova = deferred_flush[i].iova[j];
2676 mask = ilog2(mm_to_dma_pfn(iova->pfn_hi - iova->pfn_lo + 1));
2677 iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
2678 (uint64_t)iova->pfn_lo << PAGE_SHIFT, mask);
2679 __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
2681 deferred_flush[i].next = 0;
2687 static void flush_unmaps_timeout(unsigned long data)
2689 unsigned long flags;
2691 spin_lock_irqsave(&async_umap_flush_lock, flags);
2693 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2696 static void add_unmap(struct dmar_domain *dom, struct iova *iova)
2698 unsigned long flags;
2700 struct intel_iommu *iommu;
2702 spin_lock_irqsave(&async_umap_flush_lock, flags);
2703 if (list_size == HIGH_WATER_MARK)
2706 iommu = domain_get_iommu(dom);
2707 iommu_id = iommu->seq_id;
2709 next = deferred_flush[iommu_id].next;
2710 deferred_flush[iommu_id].domain[next] = dom;
2711 deferred_flush[iommu_id].iova[next] = iova;
2712 deferred_flush[iommu_id].next++;
2715 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
2719 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2722 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
2723 size_t size, enum dma_data_direction dir,
2724 struct dma_attrs *attrs)
2726 struct pci_dev *pdev = to_pci_dev(dev);
2727 struct dmar_domain *domain;
2728 unsigned long start_pfn, last_pfn;
2730 struct intel_iommu *iommu;
2732 if (iommu_no_mapping(dev))
2735 domain = find_domain(pdev);
2738 iommu = domain_get_iommu(domain);
2740 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
2741 if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n",
2742 (unsigned long long)dev_addr))
2745 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2746 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2748 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
2749 pci_name(pdev), start_pfn, last_pfn);
2751 /* clear the whole page */
2752 dma_pte_clear_range(domain, start_pfn, last_pfn);
2754 /* free page tables */
2755 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2757 if (intel_iommu_strict) {
2758 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
2759 last_pfn - start_pfn + 1);
2761 __free_iova(&domain->iovad, iova);
2763 add_unmap(domain, iova);
2765 * queue up the release of the unmap to save the 1/6th of the
2766 * cpu used up by the iotlb flush operation...
2771 static void *intel_alloc_coherent(struct device *hwdev, size_t size,
2772 dma_addr_t *dma_handle, gfp_t flags)
2777 size = PAGE_ALIGN(size);
2778 order = get_order(size);
2780 if (!iommu_no_mapping(hwdev))
2781 flags &= ~(GFP_DMA | GFP_DMA32);
2782 else if (hwdev->coherent_dma_mask < dma_get_required_mask(hwdev)) {
2783 if (hwdev->coherent_dma_mask < DMA_BIT_MASK(32))
2789 vaddr = (void *)__get_free_pages(flags, order);
2792 memset(vaddr, 0, size);
2794 *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
2796 hwdev->coherent_dma_mask);
2799 free_pages((unsigned long)vaddr, order);
2803 static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
2804 dma_addr_t dma_handle)
2808 size = PAGE_ALIGN(size);
2809 order = get_order(size);
2811 intel_unmap_page(hwdev, dma_handle, size, DMA_BIDIRECTIONAL, NULL);
2812 free_pages((unsigned long)vaddr, order);
2815 static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
2816 int nelems, enum dma_data_direction dir,
2817 struct dma_attrs *attrs)
2819 struct pci_dev *pdev = to_pci_dev(hwdev);
2820 struct dmar_domain *domain;
2821 unsigned long start_pfn, last_pfn;
2823 struct intel_iommu *iommu;
2825 if (iommu_no_mapping(hwdev))
2828 domain = find_domain(pdev);
2831 iommu = domain_get_iommu(domain);
2833 iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
2834 if (WARN_ONCE(!iova, "Driver unmaps unmatched sglist at PFN %llx\n",
2835 (unsigned long long)sglist[0].dma_address))
2838 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2839 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2841 /* clear the whole page */
2842 dma_pte_clear_range(domain, start_pfn, last_pfn);
2844 /* free page tables */
2845 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2847 if (intel_iommu_strict) {
2848 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
2849 last_pfn - start_pfn + 1);
2851 __free_iova(&domain->iovad, iova);
2853 add_unmap(domain, iova);
2855 * queue up the release of the unmap to save the 1/6th of the
2856 * cpu used up by the iotlb flush operation...
2861 static int intel_nontranslate_map_sg(struct device *hddev,
2862 struct scatterlist *sglist, int nelems, int dir)
2865 struct scatterlist *sg;
2867 for_each_sg(sglist, sg, nelems, i) {
2868 BUG_ON(!sg_page(sg));
2869 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
2870 sg->dma_length = sg->length;
2875 static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
2876 enum dma_data_direction dir, struct dma_attrs *attrs)
2879 struct pci_dev *pdev = to_pci_dev(hwdev);
2880 struct dmar_domain *domain;
2883 size_t offset_pfn = 0;
2884 struct iova *iova = NULL;
2886 struct scatterlist *sg;
2887 unsigned long start_vpfn;
2888 struct intel_iommu *iommu;
2890 BUG_ON(dir == DMA_NONE);
2891 if (iommu_no_mapping(hwdev))
2892 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
2894 domain = get_valid_domain_for_dev(pdev);
2898 iommu = domain_get_iommu(domain);
2900 for_each_sg(sglist, sg, nelems, i)
2901 size += aligned_nrpages(sg->offset, sg->length);
2903 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size),
2906 sglist->dma_length = 0;
2911 * Check if DMAR supports zero-length reads on write only
2914 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2915 !cap_zlr(iommu->cap))
2916 prot |= DMA_PTE_READ;
2917 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2918 prot |= DMA_PTE_WRITE;
2920 start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
2922 ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
2923 if (unlikely(ret)) {
2924 /* clear the page */
2925 dma_pte_clear_range(domain, start_vpfn,
2926 start_vpfn + size - 1);
2927 /* free page tables */
2928 dma_pte_free_pagetable(domain, start_vpfn,
2929 start_vpfn + size - 1);
2931 __free_iova(&domain->iovad, iova);
2935 /* it's a non-present to present mapping. Only flush if caching mode */
2936 if (cap_caching_mode(iommu->cap))
2937 iommu_flush_iotlb_psi(iommu, 0, start_vpfn, offset_pfn);
2939 iommu_flush_write_buffer(iommu);
2944 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
2949 struct dma_map_ops intel_dma_ops = {
2950 .alloc_coherent = intel_alloc_coherent,
2951 .free_coherent = intel_free_coherent,
2952 .map_sg = intel_map_sg,
2953 .unmap_sg = intel_unmap_sg,
2954 .map_page = intel_map_page,
2955 .unmap_page = intel_unmap_page,
2956 .mapping_error = intel_mapping_error,
2959 static inline int iommu_domain_cache_init(void)
2963 iommu_domain_cache = kmem_cache_create("iommu_domain",
2964 sizeof(struct dmar_domain),
2969 if (!iommu_domain_cache) {
2970 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
2977 static inline int iommu_devinfo_cache_init(void)
2981 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
2982 sizeof(struct device_domain_info),
2986 if (!iommu_devinfo_cache) {
2987 printk(KERN_ERR "Couldn't create devinfo cache\n");
2994 static inline int iommu_iova_cache_init(void)
2998 iommu_iova_cache = kmem_cache_create("iommu_iova",
2999 sizeof(struct iova),
3003 if (!iommu_iova_cache) {
3004 printk(KERN_ERR "Couldn't create iova cache\n");
3011 static int __init iommu_init_mempool(void)
3014 ret = iommu_iova_cache_init();
3018 ret = iommu_domain_cache_init();
3022 ret = iommu_devinfo_cache_init();
3026 kmem_cache_destroy(iommu_domain_cache);
3028 kmem_cache_destroy(iommu_iova_cache);
3033 static void __init iommu_exit_mempool(void)
3035 kmem_cache_destroy(iommu_devinfo_cache);
3036 kmem_cache_destroy(iommu_domain_cache);
3037 kmem_cache_destroy(iommu_iova_cache);
3041 static void __init init_no_remapping_devices(void)
3043 struct dmar_drhd_unit *drhd;
3045 for_each_drhd_unit(drhd) {
3046 if (!drhd->include_all) {
3048 for (i = 0; i < drhd->devices_cnt; i++)
3049 if (drhd->devices[i] != NULL)
3051 /* ignore DMAR unit if no pci devices exist */
3052 if (i == drhd->devices_cnt)
3060 for_each_drhd_unit(drhd) {
3062 if (drhd->ignored || drhd->include_all)
3065 for (i = 0; i < drhd->devices_cnt; i++)
3066 if (drhd->devices[i] &&
3067 !IS_GFX_DEVICE(drhd->devices[i]))
3070 if (i < drhd->devices_cnt)
3073 /* bypass IOMMU if it is just for gfx devices */
3075 for (i = 0; i < drhd->devices_cnt; i++) {
3076 if (!drhd->devices[i])
3078 drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3083 #ifdef CONFIG_SUSPEND
3084 static int init_iommu_hw(void)
3086 struct dmar_drhd_unit *drhd;
3087 struct intel_iommu *iommu = NULL;
3089 for_each_active_iommu(iommu, drhd)
3091 dmar_reenable_qi(iommu);
3093 for_each_active_iommu(iommu, drhd) {
3094 iommu_flush_write_buffer(iommu);
3096 iommu_set_root_entry(iommu);
3098 iommu->flush.flush_context(iommu, 0, 0, 0,
3099 DMA_CCMD_GLOBAL_INVL);
3100 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3101 DMA_TLB_GLOBAL_FLUSH);
3102 iommu_enable_translation(iommu);
3103 iommu_disable_protect_mem_regions(iommu);
3109 static void iommu_flush_all(void)
3111 struct dmar_drhd_unit *drhd;
3112 struct intel_iommu *iommu;
3114 for_each_active_iommu(iommu, drhd) {
3115 iommu->flush.flush_context(iommu, 0, 0, 0,
3116 DMA_CCMD_GLOBAL_INVL);
3117 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3118 DMA_TLB_GLOBAL_FLUSH);
3122 static int iommu_suspend(struct sys_device *dev, pm_message_t state)
3124 struct dmar_drhd_unit *drhd;
3125 struct intel_iommu *iommu = NULL;
3128 for_each_active_iommu(iommu, drhd) {
3129 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3131 if (!iommu->iommu_state)
3137 for_each_active_iommu(iommu, drhd) {
3138 iommu_disable_translation(iommu);
3140 spin_lock_irqsave(&iommu->register_lock, flag);
3142 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3143 readl(iommu->reg + DMAR_FECTL_REG);
3144 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3145 readl(iommu->reg + DMAR_FEDATA_REG);
3146 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3147 readl(iommu->reg + DMAR_FEADDR_REG);
3148 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3149 readl(iommu->reg + DMAR_FEUADDR_REG);
3151 spin_unlock_irqrestore(&iommu->register_lock, flag);
3156 for_each_active_iommu(iommu, drhd)
3157 kfree(iommu->iommu_state);
3162 static int iommu_resume(struct sys_device *dev)
3164 struct dmar_drhd_unit *drhd;
3165 struct intel_iommu *iommu = NULL;
3168 if (init_iommu_hw()) {
3169 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3173 for_each_active_iommu(iommu, drhd) {
3175 spin_lock_irqsave(&iommu->register_lock, flag);
3177 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3178 iommu->reg + DMAR_FECTL_REG);
3179 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3180 iommu->reg + DMAR_FEDATA_REG);
3181 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3182 iommu->reg + DMAR_FEADDR_REG);
3183 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3184 iommu->reg + DMAR_FEUADDR_REG);
3186 spin_unlock_irqrestore(&iommu->register_lock, flag);
3189 for_each_active_iommu(iommu, drhd)
3190 kfree(iommu->iommu_state);
3195 static struct sysdev_class iommu_sysclass = {
3197 .resume = iommu_resume,
3198 .suspend = iommu_suspend,
3201 static struct sys_device device_iommu = {
3202 .cls = &iommu_sysclass,
3205 static int __init init_iommu_sysfs(void)
3209 error = sysdev_class_register(&iommu_sysclass);
3213 error = sysdev_register(&device_iommu);
3215 sysdev_class_unregister(&iommu_sysclass);
3221 static int __init init_iommu_sysfs(void)
3225 #endif /* CONFIG_PM */
3228 * Here we only respond to action of unbound device from driver.
3230 * Added device is not attached to its DMAR domain here yet. That will happen
3231 * when mapping the device to iova.
3233 static int device_notifier(struct notifier_block *nb,
3234 unsigned long action, void *data)
3236 struct device *dev = data;
3237 struct pci_dev *pdev = to_pci_dev(dev);
3238 struct dmar_domain *domain;
3240 domain = find_domain(pdev);
3244 if (action == BUS_NOTIFY_UNBOUND_DRIVER && !iommu_pass_through)
3245 domain_remove_one_dev_info(domain, pdev);
3250 static struct notifier_block device_nb = {
3251 .notifier_call = device_notifier,
3254 int __init intel_iommu_init(void)
3259 /* VT-d is required for a TXT/tboot launch, so enforce that */
3260 force_on = tboot_force_iommu();
3262 if (dmar_table_init()) {
3264 panic("tboot: Failed to initialize DMAR table\n");
3268 if (dmar_dev_scope_init()) {
3270 panic("tboot: Failed to initialize DMAR device scope\n");
3275 * Check the need for DMA-remapping initialization now.
3276 * Above initialization will also be used by Interrupt-remapping.
3278 if (no_iommu || dmar_disabled)
3281 iommu_init_mempool();
3282 dmar_init_reserved_ranges();
3284 init_no_remapping_devices();
3289 panic("tboot: Failed to initialize DMARs\n");
3290 printk(KERN_ERR "IOMMU: dmar init failed\n");
3291 put_iova_domain(&reserved_iova_list);
3292 iommu_exit_mempool();
3296 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
3298 init_timer(&unmap_timer);
3299 #ifdef CONFIG_SWIOTLB
3302 dma_ops = &intel_dma_ops;
3306 register_iommu(&intel_iommu_ops);
3308 bus_register_notifier(&pci_bus_type, &device_nb);
3313 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
3314 struct pci_dev *pdev)
3316 struct pci_dev *tmp, *parent;
3318 if (!iommu || !pdev)
3321 /* dependent device detach */
3322 tmp = pci_find_upstream_pcie_bridge(pdev);
3323 /* Secondary interface's bus number and devfn 0 */
3325 parent = pdev->bus->self;
3326 while (parent != tmp) {
3327 iommu_detach_dev(iommu, parent->bus->number,
3329 parent = parent->bus->self;
3331 if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
3332 iommu_detach_dev(iommu,
3333 tmp->subordinate->number, 0);
3334 else /* this is a legacy PCI bridge */
3335 iommu_detach_dev(iommu, tmp->bus->number,
3340 static void domain_remove_one_dev_info(struct dmar_domain *domain,
3341 struct pci_dev *pdev)
3343 struct device_domain_info *info;
3344 struct intel_iommu *iomm