2 * Copyright (c) 2006, Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 * Author: Fenghua Yu <fenghua.yu@intel.com>
24 #include <linux/init.h>
25 #include <linux/bitmap.h>
26 #include <linux/debugfs.h>
27 #include <linux/slab.h>
28 #include <linux/irq.h>
29 #include <linux/interrupt.h>
30 #include <linux/spinlock.h>
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mempool.h>
35 #include <linux/timer.h>
36 #include <linux/iova.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/sysdev.h>
40 #include <linux/tboot.h>
41 #include <linux/dmi.h>
42 #include <asm/cacheflush.h>
43 #include <asm/iommu.h>
46 #define ROOT_SIZE VTD_PAGE_SIZE
47 #define CONTEXT_SIZE VTD_PAGE_SIZE
49 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
50 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
51 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
53 #define IOAPIC_RANGE_START (0xfee00000)
54 #define IOAPIC_RANGE_END (0xfeefffff)
55 #define IOVA_START_ADDR (0x1000)
57 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
59 #define MAX_AGAW_WIDTH 64
61 #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
62 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
64 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
65 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
66 #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
67 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
68 #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
70 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
71 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
72 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
75 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
76 are never going to work. */
77 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
79 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
82 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
84 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
86 static inline unsigned long page_to_dma_pfn(struct page *pg)
88 return mm_to_dma_pfn(page_to_pfn(pg));
90 static inline unsigned long virt_to_dma_pfn(void *p)
92 return page_to_dma_pfn(virt_to_page(p));
95 /* global iommu list, set NULL for ignored DMAR units */
96 static struct intel_iommu **g_iommus;
98 static void __init check_tylersburg_isoch(void);
99 static int rwbf_quirk;
104 * 12-63: Context Ptr (12 - (haw-1))
111 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
112 static inline bool root_present(struct root_entry *root)
114 return (root->val & 1);
116 static inline void set_root_present(struct root_entry *root)
120 static inline void set_root_value(struct root_entry *root, unsigned long value)
122 root->val |= value & VTD_PAGE_MASK;
125 static inline struct context_entry *
126 get_context_addr_from_root(struct root_entry *root)
128 return (struct context_entry *)
129 (root_present(root)?phys_to_virt(
130 root->val & VTD_PAGE_MASK) :
137 * 1: fault processing disable
138 * 2-3: translation type
139 * 12-63: address space root
145 struct context_entry {
150 static inline bool context_present(struct context_entry *context)
152 return (context->lo & 1);
154 static inline void context_set_present(struct context_entry *context)
159 static inline void context_set_fault_enable(struct context_entry *context)
161 context->lo &= (((u64)-1) << 2) | 1;
164 static inline void context_set_translation_type(struct context_entry *context,
167 context->lo &= (((u64)-1) << 4) | 3;
168 context->lo |= (value & 3) << 2;
171 static inline void context_set_address_root(struct context_entry *context,
174 context->lo |= value & VTD_PAGE_MASK;
177 static inline void context_set_address_width(struct context_entry *context,
180 context->hi |= value & 7;
183 static inline void context_set_domain_id(struct context_entry *context,
186 context->hi |= (value & ((1 << 16) - 1)) << 8;
189 static inline void context_clear_entry(struct context_entry *context)
202 * 12-63: Host physcial address
208 static inline void dma_clear_pte(struct dma_pte *pte)
213 static inline void dma_set_pte_readable(struct dma_pte *pte)
215 pte->val |= DMA_PTE_READ;
218 static inline void dma_set_pte_writable(struct dma_pte *pte)
220 pte->val |= DMA_PTE_WRITE;
223 static inline void dma_set_pte_snp(struct dma_pte *pte)
225 pte->val |= DMA_PTE_SNP;
228 static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
230 pte->val = (pte->val & ~3) | (prot & 3);
233 static inline u64 dma_pte_addr(struct dma_pte *pte)
236 return pte->val & VTD_PAGE_MASK;
238 /* Must have a full atomic 64-bit read */
239 return __cmpxchg64(pte, 0ULL, 0ULL) & VTD_PAGE_MASK;
243 static inline void dma_set_pte_pfn(struct dma_pte *pte, unsigned long pfn)
245 pte->val |= (uint64_t)pfn << VTD_PAGE_SHIFT;
248 static inline bool dma_pte_present(struct dma_pte *pte)
250 return (pte->val & 3) != 0;
253 static inline int first_pte_in_page(struct dma_pte *pte)
255 return !((unsigned long)pte & ~VTD_PAGE_MASK);
259 * This domain is a statically identity mapping domain.
260 * 1. This domain creats a static 1:1 mapping to all usable memory.
261 * 2. It maps to each iommu if successful.
262 * 3. Each iommu mapps to this domain if successful.
264 static struct dmar_domain *si_domain;
265 static int hw_pass_through = 1;
267 /* devices under the same p2p bridge are owned in one domain */
268 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
270 /* domain represents a virtual machine, more than one devices
271 * across iommus may be owned in one domain, e.g. kvm guest.
273 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
275 /* si_domain contains mulitple devices */
276 #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 2)
279 int id; /* domain id */
280 int nid; /* node id */
281 unsigned long iommu_bmp; /* bitmap of iommus this domain uses*/
283 struct list_head devices; /* all devices' list */
284 struct iova_domain iovad; /* iova's that belong to this domain */
286 struct dma_pte *pgd; /* virtual address */
287 int gaw; /* max guest address width */
289 /* adjusted guest address width, 0 is level 2 30-bit */
292 int flags; /* flags to find out type of domain */
294 int iommu_coherency;/* indicate coherency of iommu access */
295 int iommu_snooping; /* indicate snooping control feature*/
296 int iommu_count; /* reference count of iommu */
297 spinlock_t iommu_lock; /* protect iommu set in domain */
298 u64 max_addr; /* maximum mapped address */
301 /* PCI domain-device relationship */
302 struct device_domain_info {
303 struct list_head link; /* link to domain siblings */
304 struct list_head global; /* link to global list */
305 int segment; /* PCI domain */
306 u8 bus; /* PCI bus number */
307 u8 devfn; /* PCI devfn number */
308 struct pci_dev *dev; /* it's NULL for PCIe-to-PCI bridge */
309 struct intel_iommu *iommu; /* IOMMU used by this device */
310 struct dmar_domain *domain; /* pointer to domain */
313 static void flush_unmaps_timeout(unsigned long data);
315 DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
317 #define HIGH_WATER_MARK 250
318 struct deferred_flush_tables {
320 struct iova *iova[HIGH_WATER_MARK];
321 struct dmar_domain *domain[HIGH_WATER_MARK];
324 static struct deferred_flush_tables *deferred_flush;
326 /* bitmap for indexing intel_iommus */
327 static int g_num_of_iommus;
329 static DEFINE_SPINLOCK(async_umap_flush_lock);
330 static LIST_HEAD(unmaps_to_do);
333 static long list_size;
335 static void domain_remove_dev_info(struct dmar_domain *domain);
337 #ifdef CONFIG_DMAR_DEFAULT_ON
338 int dmar_disabled = 0;
340 int dmar_disabled = 1;
341 #endif /*CONFIG_DMAR_DEFAULT_ON*/
343 static int dmar_map_gfx = 1;
344 static int dmar_forcedac;
345 static int intel_iommu_strict;
347 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
348 static DEFINE_SPINLOCK(device_domain_lock);
349 static LIST_HEAD(device_domain_list);
351 static struct iommu_ops intel_iommu_ops;
353 static int __init intel_iommu_setup(char *str)
358 if (!strncmp(str, "on", 2)) {
360 printk(KERN_INFO "Intel-IOMMU: enabled\n");
361 } else if (!strncmp(str, "off", 3)) {
363 printk(KERN_INFO "Intel-IOMMU: disabled\n");
364 } else if (!strncmp(str, "igfx_off", 8)) {
367 "Intel-IOMMU: disable GFX device mapping\n");
368 } else if (!strncmp(str, "forcedac", 8)) {
370 "Intel-IOMMU: Forcing DAC for PCI devices\n");
372 } else if (!strncmp(str, "strict", 6)) {
374 "Intel-IOMMU: disable batched IOTLB flush\n");
375 intel_iommu_strict = 1;
378 str += strcspn(str, ",");
384 __setup("intel_iommu=", intel_iommu_setup);
386 static struct kmem_cache *iommu_domain_cache;
387 static struct kmem_cache *iommu_devinfo_cache;
388 static struct kmem_cache *iommu_iova_cache;
390 static inline void *alloc_pgtable_page(int node)
395 page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
397 vaddr = page_address(page);
401 static inline void free_pgtable_page(void *vaddr)
403 free_page((unsigned long)vaddr);
406 static inline void *alloc_domain_mem(void)
408 return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
411 static void free_domain_mem(void *vaddr)
413 kmem_cache_free(iommu_domain_cache, vaddr);
416 static inline void * alloc_devinfo_mem(void)
418 return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
421 static inline void free_devinfo_mem(void *vaddr)
423 kmem_cache_free(iommu_devinfo_cache, vaddr);
426 struct iova *alloc_iova_mem(void)
428 return kmem_cache_alloc(iommu_iova_cache, GFP_ATOMIC);
431 void free_iova_mem(struct iova *iova)
433 kmem_cache_free(iommu_iova_cache, iova);
437 static inline int width_to_agaw(int width);
439 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
444 sagaw = cap_sagaw(iommu->cap);
445 for (agaw = width_to_agaw(max_gaw);
447 if (test_bit(agaw, &sagaw))
455 * Calculate max SAGAW for each iommu.
457 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
459 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
463 * calculate agaw for each iommu.
464 * "SAGAW" may be different across iommus, use a default agaw, and
465 * get a supported less agaw for iommus that don't support the default agaw.
467 int iommu_calculate_agaw(struct intel_iommu *iommu)
469 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
472 /* This functionin only returns single iommu in a domain */
473 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
477 /* si_domain and vm domain should not get here. */
478 BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
479 BUG_ON(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY);
481 iommu_id = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
482 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
485 return g_iommus[iommu_id];
488 static void domain_update_iommu_coherency(struct dmar_domain *domain)
492 domain->iommu_coherency = 1;
494 for_each_set_bit(i, &domain->iommu_bmp, g_num_of_iommus) {
495 if (!ecap_coherent(g_iommus[i]->ecap)) {
496 domain->iommu_coherency = 0;
502 static void domain_update_iommu_snooping(struct dmar_domain *domain)
506 domain->iommu_snooping = 1;
508 for_each_set_bit(i, &domain->iommu_bmp, g_num_of_iommus) {
509 if (!ecap_sc_support(g_iommus[i]->ecap)) {
510 domain->iommu_snooping = 0;
516 /* Some capabilities may be different across iommus */
517 static void domain_update_iommu_cap(struct dmar_domain *domain)
519 domain_update_iommu_coherency(domain);
520 domain_update_iommu_snooping(domain);
523 static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn)
525 struct dmar_drhd_unit *drhd = NULL;
528 for_each_drhd_unit(drhd) {
531 if (segment != drhd->segment)
534 for (i = 0; i < drhd->devices_cnt; i++) {
535 if (drhd->devices[i] &&
536 drhd->devices[i]->bus->number == bus &&
537 drhd->devices[i]->devfn == devfn)
539 if (drhd->devices[i] &&
540 drhd->devices[i]->subordinate &&
541 drhd->devices[i]->subordinate->number <= bus &&
542 drhd->devices[i]->subordinate->subordinate >= bus)
546 if (drhd->include_all)
553 static void domain_flush_cache(struct dmar_domain *domain,
554 void *addr, int size)
556 if (!domain->iommu_coherency)
557 clflush_cache_range(addr, size);
560 /* Gets context entry for a given bus and devfn */
561 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
564 struct root_entry *root;
565 struct context_entry *context;
566 unsigned long phy_addr;
569 spin_lock_irqsave(&iommu->lock, flags);
570 root = &iommu->root_entry[bus];
571 context = get_context_addr_from_root(root);
573 context = (struct context_entry *)
574 alloc_pgtable_page(iommu->node);
576 spin_unlock_irqrestore(&iommu->lock, flags);
579 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
580 phy_addr = virt_to_phys((void *)context);
581 set_root_value(root, phy_addr);
582 set_root_present(root);
583 __iommu_flush_cache(iommu, root, sizeof(*root));
585 spin_unlock_irqrestore(&iommu->lock, flags);
586 return &context[devfn];
589 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
591 struct root_entry *root;
592 struct context_entry *context;
596 spin_lock_irqsave(&iommu->lock, flags);
597 root = &iommu->root_entry[bus];
598 context = get_context_addr_from_root(root);
603 ret = context_present(&context[devfn]);
605 spin_unlock_irqrestore(&iommu->lock, flags);
609 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
611 struct root_entry *root;
612 struct context_entry *context;
615 spin_lock_irqsave(&iommu->lock, flags);
616 root = &iommu->root_entry[bus];
617 context = get_context_addr_from_root(root);
619 context_clear_entry(&context[devfn]);
620 __iommu_flush_cache(iommu, &context[devfn], \
623 spin_unlock_irqrestore(&iommu->lock, flags);
626 static void free_context_table(struct intel_iommu *iommu)
628 struct root_entry *root;
631 struct context_entry *context;
633 spin_lock_irqsave(&iommu->lock, flags);
634 if (!iommu->root_entry) {
637 for (i = 0; i < ROOT_ENTRY_NR; i++) {
638 root = &iommu->root_entry[i];
639 context = get_context_addr_from_root(root);
641 free_pgtable_page(context);
643 free_pgtable_page(iommu->root_entry);
644 iommu->root_entry = NULL;
646 spin_unlock_irqrestore(&iommu->lock, flags);
649 /* page table handling */
650 #define LEVEL_STRIDE (9)
651 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
653 static inline int agaw_to_level(int agaw)
658 static inline int agaw_to_width(int agaw)
660 return 30 + agaw * LEVEL_STRIDE;
664 static inline int width_to_agaw(int width)
666 return (width - 30) / LEVEL_STRIDE;
669 static inline unsigned int level_to_offset_bits(int level)
671 return (level - 1) * LEVEL_STRIDE;
674 static inline int pfn_level_offset(unsigned long pfn, int level)
676 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
679 static inline unsigned long level_mask(int level)
681 return -1UL << level_to_offset_bits(level);
684 static inline unsigned long level_size(int level)
686 return 1UL << level_to_offset_bits(level);
689 static inline unsigned long align_to_level(unsigned long pfn, int level)
691 return (pfn + level_size(level) - 1) & level_mask(level);
694 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
697 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
698 struct dma_pte *parent, *pte = NULL;
699 int level = agaw_to_level(domain->agaw);
702 BUG_ON(!domain->pgd);
703 BUG_ON(addr_width < BITS_PER_LONG && pfn >> addr_width);
704 parent = domain->pgd;
709 offset = pfn_level_offset(pfn, level);
710 pte = &parent[offset];
714 if (!dma_pte_present(pte)) {
717 tmp_page = alloc_pgtable_page(domain->nid);
722 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
723 pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
724 if (cmpxchg64(&pte->val, 0ULL, pteval)) {
725 /* Someone else set it while we were thinking; use theirs. */
726 free_pgtable_page(tmp_page);
729 domain_flush_cache(domain, pte, sizeof(*pte));
732 parent = phys_to_virt(dma_pte_addr(pte));
739 /* return address's pte at specific level */
740 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
744 struct dma_pte *parent, *pte = NULL;
745 int total = agaw_to_level(domain->agaw);
748 parent = domain->pgd;
749 while (level <= total) {
750 offset = pfn_level_offset(pfn, total);
751 pte = &parent[offset];
755 if (!dma_pte_present(pte))
757 parent = phys_to_virt(dma_pte_addr(pte));
763 /* clear last level pte, a tlb flush should be followed */
764 static void dma_pte_clear_range(struct dmar_domain *domain,
765 unsigned long start_pfn,
766 unsigned long last_pfn)
768 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
769 struct dma_pte *first_pte, *pte;
771 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
772 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
773 BUG_ON(start_pfn > last_pfn);
775 /* we don't need lock here; nobody else touches the iova range */
777 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1);
779 start_pfn = align_to_level(start_pfn + 1, 2);
786 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
788 domain_flush_cache(domain, first_pte,
789 (void *)pte - (void *)first_pte);
791 } while (start_pfn && start_pfn <= last_pfn);
794 /* free page table pages. last level pte should already be cleared */
795 static void dma_pte_free_pagetable(struct dmar_domain *domain,
796 unsigned long start_pfn,
797 unsigned long last_pfn)
799 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
800 struct dma_pte *first_pte, *pte;
801 int total = agaw_to_level(domain->agaw);
805 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
806 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
807 BUG_ON(start_pfn > last_pfn);
809 /* We don't need lock here; nobody else touches the iova range */
811 while (level <= total) {
812 tmp = align_to_level(start_pfn, level);
814 /* If we can't even clear one PTE at this level, we're done */
815 if (tmp + level_size(level) - 1 > last_pfn)
819 first_pte = pte = dma_pfn_level_pte(domain, tmp, level);
821 tmp = align_to_level(tmp + 1, level + 1);
825 if (dma_pte_present(pte)) {
826 free_pgtable_page(phys_to_virt(dma_pte_addr(pte)));
830 tmp += level_size(level);
831 } while (!first_pte_in_page(pte) &&
832 tmp + level_size(level) - 1 <= last_pfn);
834 domain_flush_cache(domain, first_pte,
835 (void *)pte - (void *)first_pte);
837 } while (tmp && tmp + level_size(level) - 1 <= last_pfn);
841 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
842 free_pgtable_page(domain->pgd);
848 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
850 struct root_entry *root;
853 root = (struct root_entry *)alloc_pgtable_page(iommu->node);
857 __iommu_flush_cache(iommu, root, ROOT_SIZE);
859 spin_lock_irqsave(&iommu->lock, flags);
860 iommu->root_entry = root;
861 spin_unlock_irqrestore(&iommu->lock, flags);
866 static void iommu_set_root_entry(struct intel_iommu *iommu)
872 addr = iommu->root_entry;
874 spin_lock_irqsave(&iommu->register_lock, flag);
875 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
877 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
879 /* Make sure hardware complete it */
880 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
881 readl, (sts & DMA_GSTS_RTPS), sts);
883 spin_unlock_irqrestore(&iommu->register_lock, flag);
886 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
891 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
894 spin_lock_irqsave(&iommu->register_lock, flag);
895 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
897 /* Make sure hardware complete it */
898 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
899 readl, (!(val & DMA_GSTS_WBFS)), val);
901 spin_unlock_irqrestore(&iommu->register_lock, flag);
904 /* return value determine if we need a write buffer flush */
905 static void __iommu_flush_context(struct intel_iommu *iommu,
906 u16 did, u16 source_id, u8 function_mask,
913 case DMA_CCMD_GLOBAL_INVL:
914 val = DMA_CCMD_GLOBAL_INVL;
916 case DMA_CCMD_DOMAIN_INVL:
917 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
919 case DMA_CCMD_DEVICE_INVL:
920 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
921 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
928 spin_lock_irqsave(&iommu->register_lock, flag);
929 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
931 /* Make sure hardware complete it */
932 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
933 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
935 spin_unlock_irqrestore(&iommu->register_lock, flag);
938 /* return value determine if we need a write buffer flush */
939 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
940 u64 addr, unsigned int size_order, u64 type)
942 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
943 u64 val = 0, val_iva = 0;
947 case DMA_TLB_GLOBAL_FLUSH:
948 /* global flush doesn't need set IVA_REG */
949 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
951 case DMA_TLB_DSI_FLUSH:
952 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
954 case DMA_TLB_PSI_FLUSH:
955 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
956 /* Note: always flush non-leaf currently */
957 val_iva = size_order | addr;
962 /* Note: set drain read/write */
965 * This is probably to be super secure.. Looks like we can
966 * ignore it without any impact.
968 if (cap_read_drain(iommu->cap))
969 val |= DMA_TLB_READ_DRAIN;
971 if (cap_write_drain(iommu->cap))
972 val |= DMA_TLB_WRITE_DRAIN;
974 spin_lock_irqsave(&iommu->register_lock, flag);
975 /* Note: Only uses first TLB reg currently */
977 dmar_writeq(iommu->reg + tlb_offset, val_iva);
978 dmar_writeq(iommu->reg + tlb_offset + 8, val);
980 /* Make sure hardware complete it */
981 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
982 dmar_readq, (!(val & DMA_TLB_IVT)), val);
984 spin_unlock_irqrestore(&iommu->register_lock, flag);
986 /* check IOTLB invalidation granularity */
987 if (DMA_TLB_IAIG(val) == 0)
988 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
989 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
990 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
991 (unsigned long long)DMA_TLB_IIRG(type),
992 (unsigned long long)DMA_TLB_IAIG(val));
995 static struct device_domain_info *iommu_support_dev_iotlb(
996 struct dmar_domain *domain, int segment, u8 bus, u8 devfn)
1000 struct device_domain_info *info;
1001 struct intel_iommu *iommu = device_to_iommu(segment, bus, devfn);
1003 if (!ecap_dev_iotlb_support(iommu->ecap))
1009 spin_lock_irqsave(&device_domain_lock, flags);
1010 list_for_each_entry(info, &domain->devices, link)
1011 if (info->bus == bus && info->devfn == devfn) {
1015 spin_unlock_irqrestore(&device_domain_lock, flags);
1017 if (!found || !info->dev)
1020 if (!pci_find_ext_capability(info->dev, PCI_EXT_CAP_ID_ATS))
1023 if (!dmar_find_matched_atsr_unit(info->dev))
1026 info->iommu = iommu;
1031 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1036 pci_enable_ats(info->dev, VTD_PAGE_SHIFT);
1039 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1041 if (!info->dev || !pci_ats_enabled(info->dev))
1044 pci_disable_ats(info->dev);
1047 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1048 u64 addr, unsigned mask)
1051 unsigned long flags;
1052 struct device_domain_info *info;
1054 spin_lock_irqsave(&device_domain_lock, flags);
1055 list_for_each_entry(info, &domain->devices, link) {
1056 if (!info->dev || !pci_ats_enabled(info->dev))
1059 sid = info->bus << 8 | info->devfn;
1060 qdep = pci_ats_queue_depth(info->dev);
1061 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1063 spin_unlock_irqrestore(&device_domain_lock, flags);
1066 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
1067 unsigned long pfn, unsigned int pages, int map)
1069 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1070 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1075 * Fallback to domain selective flush if no PSI support or the size is
1077 * PSI requires page size to be 2 ^ x, and the base address is naturally
1078 * aligned to the size
1080 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1081 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1084 iommu->flush.flush_iotlb(iommu, did, addr, mask,
1088 * In caching mode, changes of pages from non-present to present require
1089 * flush. However, device IOTLB doesn't need to be flushed in this case.
1091 if (!cap_caching_mode(iommu->cap) || !map)
1092 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
1095 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1098 unsigned long flags;
1100 spin_lock_irqsave(&iommu->register_lock, flags);
1101 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1102 pmen &= ~DMA_PMEN_EPM;
1103 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1105 /* wait for the protected region status bit to clear */
1106 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1107 readl, !(pmen & DMA_PMEN_PRS), pmen);
1109 spin_unlock_irqrestore(&iommu->register_lock, flags);
1112 static int iommu_enable_translation(struct intel_iommu *iommu)
1115 unsigned long flags;
1117 spin_lock_irqsave(&iommu->register_lock, flags);
1118 iommu->gcmd |= DMA_GCMD_TE;
1119 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1121 /* Make sure hardware complete it */
1122 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1123 readl, (sts & DMA_GSTS_TES), sts);
1125 spin_unlock_irqrestore(&iommu->register_lock, flags);
1129 static int iommu_disable_translation(struct intel_iommu *iommu)
1134 spin_lock_irqsave(&iommu->register_lock, flag);
1135 iommu->gcmd &= ~DMA_GCMD_TE;
1136 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1138 /* Make sure hardware complete it */
1139 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1140 readl, (!(sts & DMA_GSTS_TES)), sts);
1142 spin_unlock_irqrestore(&iommu->register_lock, flag);
1147 static int iommu_init_domains(struct intel_iommu *iommu)
1149 unsigned long ndomains;
1150 unsigned long nlongs;
1152 ndomains = cap_ndoms(iommu->cap);
1153 pr_debug("IOMMU %d: Number of Domains supportd <%ld>\n", iommu->seq_id,
1155 nlongs = BITS_TO_LONGS(ndomains);
1157 spin_lock_init(&iommu->lock);
1159 /* TBD: there might be 64K domains,
1160 * consider other allocation for future chip
1162 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1163 if (!iommu->domain_ids) {
1164 printk(KERN_ERR "Allocating domain id array failed\n");
1167 iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1169 if (!iommu->domains) {
1170 printk(KERN_ERR "Allocating domain array failed\n");
1175 * if Caching mode is set, then invalid translations are tagged
1176 * with domainid 0. Hence we need to pre-allocate it.
1178 if (cap_caching_mode(iommu->cap))
1179 set_bit(0, iommu->domain_ids);
1184 static void domain_exit(struct dmar_domain *domain);
1185 static void vm_domain_exit(struct dmar_domain *domain);
1187 void free_dmar_iommu(struct intel_iommu *iommu)
1189 struct dmar_domain *domain;
1191 unsigned long flags;
1193 if ((iommu->domains) && (iommu->domain_ids)) {
1194 for_each_set_bit(i, iommu->domain_ids, cap_ndoms(iommu->cap)) {
1195 domain = iommu->domains[i];
1196 clear_bit(i, iommu->domain_ids);
1198 spin_lock_irqsave(&domain->iommu_lock, flags);
1199 if (--domain->iommu_count == 0) {
1200 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1201 vm_domain_exit(domain);
1203 domain_exit(domain);
1205 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1209 if (iommu->gcmd & DMA_GCMD_TE)
1210 iommu_disable_translation(iommu);
1213 set_irq_data(iommu->irq, NULL);
1214 /* This will mask the irq */
1215 free_irq(iommu->irq, iommu);
1216 destroy_irq(iommu->irq);
1219 kfree(iommu->domains);
1220 kfree(iommu->domain_ids);
1222 g_iommus[iommu->seq_id] = NULL;
1224 /* if all iommus are freed, free g_iommus */
1225 for (i = 0; i < g_num_of_iommus; i++) {
1230 if (i == g_num_of_iommus)
1233 /* free context mapping */
1234 free_context_table(iommu);
1237 static struct dmar_domain *alloc_domain(void)
1239 struct dmar_domain *domain;
1241 domain = alloc_domain_mem();
1246 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
1252 static int iommu_attach_domain(struct dmar_domain *domain,
1253 struct intel_iommu *iommu)
1256 unsigned long ndomains;
1257 unsigned long flags;
1259 ndomains = cap_ndoms(iommu->cap);
1261 spin_lock_irqsave(&iommu->lock, flags);
1263 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1264 if (num >= ndomains) {
1265 spin_unlock_irqrestore(&iommu->lock, flags);
1266 printk(KERN_ERR "IOMMU: no free domain ids\n");
1271 set_bit(num, iommu->domain_ids);
1272 set_bit(iommu->seq_id, &domain->iommu_bmp);
1273 iommu->domains[num] = domain;
1274 spin_unlock_irqrestore(&iommu->lock, flags);
1279 static void iommu_detach_domain(struct dmar_domain *domain,
1280 struct intel_iommu *iommu)
1282 unsigned long flags;
1286 spin_lock_irqsave(&iommu->lock, flags);
1287 ndomains = cap_ndoms(iommu->cap);
1288 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1289 if (iommu->domains[num] == domain) {
1296 clear_bit(num, iommu->domain_ids);
1297 clear_bit(iommu->seq_id, &domain->iommu_bmp);
1298 iommu->domains[num] = NULL;
1300 spin_unlock_irqrestore(&iommu->lock, flags);
1303 static struct iova_domain reserved_iova_list;
1304 static struct lock_class_key reserved_rbtree_key;
1306 static void dmar_init_reserved_ranges(void)
1308 struct pci_dev *pdev = NULL;
1312 init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1314 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1315 &reserved_rbtree_key);
1317 /* IOAPIC ranges shouldn't be accessed by DMA */
1318 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1319 IOVA_PFN(IOAPIC_RANGE_END));
1321 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1323 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1324 for_each_pci_dev(pdev) {
1327 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1328 r = &pdev->resource[i];
1329 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1331 iova = reserve_iova(&reserved_iova_list,
1335 printk(KERN_ERR "Reserve iova failed\n");
1341 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1343 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1346 static inline int guestwidth_to_adjustwidth(int gaw)
1349 int r = (gaw - 12) % 9;
1360 static int domain_init(struct dmar_domain *domain, int guest_width)
1362 struct intel_iommu *iommu;
1363 int adjust_width, agaw;
1364 unsigned long sagaw;
1366 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1367 spin_lock_init(&domain->iommu_lock);
1369 domain_reserve_special_ranges(domain);
1371 /* calculate AGAW */
1372 iommu = domain_get_iommu(domain);
1373 if (guest_width > cap_mgaw(iommu->cap))
1374 guest_width = cap_mgaw(iommu->cap);
1375 domain->gaw = guest_width;
1376 adjust_width = guestwidth_to_adjustwidth(guest_width);
1377 agaw = width_to_agaw(adjust_width);
1378 sagaw = cap_sagaw(iommu->cap);
1379 if (!test_bit(agaw, &sagaw)) {
1380 /* hardware doesn't support it, choose a bigger one */
1381 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1382 agaw = find_next_bit(&sagaw, 5, agaw);
1386 domain->agaw = agaw;
1387 INIT_LIST_HEAD(&domain->devices);
1389 if (ecap_coherent(iommu->ecap))
1390 domain->iommu_coherency = 1;
1392 domain->iommu_coherency = 0;
1394 if (ecap_sc_support(iommu->ecap))
1395 domain->iommu_snooping = 1;
1397 domain->iommu_snooping = 0;
1399 domain->iommu_count = 1;
1400 domain->nid = iommu->node;
1402 /* always allocate the top pgd */
1403 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1406 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1410 static void domain_exit(struct dmar_domain *domain)
1412 struct dmar_drhd_unit *drhd;
1413 struct intel_iommu *iommu;
1415 /* Domain 0 is reserved, so dont process it */
1419 domain_remove_dev_info(domain);
1421 put_iova_domain(&domain->iovad);
1424 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1426 /* free page tables */
1427 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1429 for_each_active_iommu(iommu, drhd)
1430 if (test_bit(iommu->seq_id, &domain->iommu_bmp))
1431 iommu_detach_domain(domain, iommu);
1433 free_domain_mem(domain);
1436 static int domain_context_mapping_one(struct dmar_domain *domain, int segment,
1437 u8 bus, u8 devfn, int translation)
1439 struct context_entry *context;
1440 unsigned long flags;
1441 struct intel_iommu *iommu;
1442 struct dma_pte *pgd;
1444 unsigned long ndomains;
1447 struct device_domain_info *info = NULL;
1449 pr_debug("Set context mapping for %02x:%02x.%d\n",
1450 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1452 BUG_ON(!domain->pgd);
1453 BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1454 translation != CONTEXT_TT_MULTI_LEVEL);
1456 iommu = device_to_iommu(segment, bus, devfn);
1460 context = device_to_context_entry(iommu, bus, devfn);
1463 spin_lock_irqsave(&iommu->lock, flags);
1464 if (context_present(context)) {
1465 spin_unlock_irqrestore(&iommu->lock, flags);
1472 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
1473 domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) {
1476 /* find an available domain id for this device in iommu */
1477 ndomains = cap_ndoms(iommu->cap);
1478 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1479 if (iommu->domains[num] == domain) {
1487 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1488 if (num >= ndomains) {
1489 spin_unlock_irqrestore(&iommu->lock, flags);
1490 printk(KERN_ERR "IOMMU: no free domain ids\n");
1494 set_bit(num, iommu->domain_ids);
1495 iommu->domains[num] = domain;
1499 /* Skip top levels of page tables for
1500 * iommu which has less agaw than default.
1501 * Unnecessary for PT mode.
1503 if (translation != CONTEXT_TT_PASS_THROUGH) {
1504 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1505 pgd = phys_to_virt(dma_pte_addr(pgd));
1506 if (!dma_pte_present(pgd)) {
1507 spin_unlock_irqrestore(&iommu->lock, flags);
1514 context_set_domain_id(context, id);
1516 if (translation != CONTEXT_TT_PASS_THROUGH) {
1517 info = iommu_support_dev_iotlb(domain, segment, bus, devfn);
1518 translation = info ? CONTEXT_TT_DEV_IOTLB :
1519 CONTEXT_TT_MULTI_LEVEL;
1522 * In pass through mode, AW must be programmed to indicate the largest
1523 * AGAW value supported by hardware. And ASR is ignored by hardware.
1525 if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
1526 context_set_address_width(context, iommu->msagaw);
1528 context_set_address_root(context, virt_to_phys(pgd));
1529 context_set_address_width(context, iommu->agaw);
1532 context_set_translation_type(context, translation);
1533 context_set_fault_enable(context);
1534 context_set_present(context);
1535 domain_flush_cache(domain, context, sizeof(*context));
1538 * It's a non-present to present mapping. If hardware doesn't cache
1539 * non-present entry we only need to flush the write-buffer. If the
1540 * _does_ cache non-present entries, then it does so in the special
1541 * domain #0, which we have to flush:
1543 if (cap_caching_mode(iommu->cap)) {
1544 iommu->flush.flush_context(iommu, 0,
1545 (((u16)bus) << 8) | devfn,
1546 DMA_CCMD_MASK_NOBIT,
1547 DMA_CCMD_DEVICE_INVL);
1548 iommu->flush.flush_iotlb(iommu, domain->id, 0, 0, DMA_TLB_DSI_FLUSH);
1550 iommu_flush_write_buffer(iommu);
1552 iommu_enable_dev_iotlb(info);
1553 spin_unlock_irqrestore(&iommu->lock, flags);
1555 spin_lock_irqsave(&domain->iommu_lock, flags);
1556 if (!test_and_set_bit(iommu->seq_id, &domain->iommu_bmp)) {
1557 domain->iommu_count++;
1558 if (domain->iommu_count == 1)
1559 domain->nid = iommu->node;
1560 domain_update_iommu_cap(domain);
1562 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1567 domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev,
1571 struct pci_dev *tmp, *parent;
1573 ret = domain_context_mapping_one(domain, pci_domain_nr(pdev->bus),
1574 pdev->bus->number, pdev->devfn,
1579 /* dependent device mapping */
1580 tmp = pci_find_upstream_pcie_bridge(pdev);
1583 /* Secondary interface's bus number and devfn 0 */
1584 parent = pdev->bus->self;
1585 while (parent != tmp) {
1586 ret = domain_context_mapping_one(domain,
1587 pci_domain_nr(parent->bus),
1588 parent->bus->number,
1589 parent->devfn, translation);
1592 parent = parent->bus->self;
1594 if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
1595 return domain_context_mapping_one(domain,
1596 pci_domain_nr(tmp->subordinate),
1597 tmp->subordinate->number, 0,
1599 else /* this is a legacy PCI bridge */
1600 return domain_context_mapping_one(domain,
1601 pci_domain_nr(tmp->bus),
1607 static int domain_context_mapped(struct pci_dev *pdev)
1610 struct pci_dev *tmp, *parent;
1611 struct intel_iommu *iommu;
1613 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
1618 ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn);
1621 /* dependent device mapping */
1622 tmp = pci_find_upstream_pcie_bridge(pdev);
1625 /* Secondary interface's bus number and devfn 0 */
1626 parent = pdev->bus->self;
1627 while (parent != tmp) {
1628 ret = device_context_mapped(iommu, parent->bus->number,
1632 parent = parent->bus->self;
1634 if (pci_is_pcie(tmp))
1635 return device_context_mapped(iommu, tmp->subordinate->number,
1638 return device_context_mapped(iommu, tmp->bus->number,
1642 /* Returns a number of VTD pages, but aligned to MM page size */
1643 static inline unsigned long aligned_nrpages(unsigned long host_addr,
1646 host_addr &= ~PAGE_MASK;
1647 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
1650 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1651 struct scatterlist *sg, unsigned long phys_pfn,
1652 unsigned long nr_pages, int prot)
1654 struct dma_pte *first_pte = NULL, *pte = NULL;
1655 phys_addr_t uninitialized_var(pteval);
1656 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
1657 unsigned long sg_res;
1659 BUG_ON(addr_width < BITS_PER_LONG && (iov_pfn + nr_pages - 1) >> addr_width);
1661 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1664 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
1669 sg_res = nr_pages + 1;
1670 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
1673 while (nr_pages--) {
1677 sg_res = aligned_nrpages(sg->offset, sg->length);
1678 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
1679 sg->dma_length = sg->length;
1680 pteval = page_to_phys(sg_page(sg)) | prot;
1683 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn);
1687 /* We don't need lock here, nobody else
1688 * touches the iova range
1690 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
1692 static int dumps = 5;
1693 printk(KERN_CRIT "ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
1694 iov_pfn, tmp, (unsigned long long)pteval);
1697 debug_dma_dump_mappings(NULL);
1702 if (!nr_pages || first_pte_in_page(pte)) {
1703 domain_flush_cache(domain, first_pte,
1704 (void *)pte - (void *)first_pte);
1708 pteval += VTD_PAGE_SIZE;
1716 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1717 struct scatterlist *sg, unsigned long nr_pages,
1720 return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
1723 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1724 unsigned long phys_pfn, unsigned long nr_pages,
1727 return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
1730 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
1735 clear_context_table(iommu, bus, devfn);
1736 iommu->flush.flush_context(iommu, 0, 0, 0,
1737 DMA_CCMD_GLOBAL_INVL);
1738 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
1741 static void domain_remove_dev_info(struct dmar_domain *domain)
1743 struct device_domain_info *info;
1744 unsigned long flags;
1745 struct intel_iommu *iommu;
1747 spin_lock_irqsave(&device_domain_lock, flags);
1748 while (!list_empty(&domain->devices)) {
1749 info = list_entry(domain->devices.next,
1750 struct device_domain_info, link);
1751 list_del(&info->link);
1752 list_del(&info->global);
1754 info->dev->dev.archdata.iommu = NULL;
1755 spin_unlock_irqrestore(&device_domain_lock, flags);
1757 iommu_disable_dev_iotlb(info);
1758 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
1759 iommu_detach_dev(iommu, info->bus, info->devfn);
1760 free_devinfo_mem(info);
1762 spin_lock_irqsave(&device_domain_lock, flags);
1764 spin_unlock_irqrestore(&device_domain_lock, flags);
1769 * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1771 static struct dmar_domain *
1772 find_domain(struct pci_dev *pdev)
1774 struct device_domain_info *info;
1776 /* No lock here, assumes no domain exit in normal case */
1777 info = pdev->dev.archdata.iommu;
1779 return info->domain;
1783 /* domain is initialized */
1784 static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1786 struct dmar_domain *domain, *found = NULL;
1787 struct intel_iommu *iommu;
1788 struct dmar_drhd_unit *drhd;
1789 struct device_domain_info *info, *tmp;
1790 struct pci_dev *dev_tmp;
1791 unsigned long flags;
1792 int bus = 0, devfn = 0;
1796 domain = find_domain(pdev);
1800 segment = pci_domain_nr(pdev->bus);
1802 dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1804 if (pci_is_pcie(dev_tmp)) {
1805 bus = dev_tmp->subordinate->number;
1808 bus = dev_tmp->bus->number;
1809 devfn = dev_tmp->devfn;
1811 spin_lock_irqsave(&device_domain_lock, flags);
1812 list_for_each_entry(info, &device_domain_list, global) {
1813 if (info->segment == segment &&
1814 info->bus == bus && info->devfn == devfn) {
1815 found = info->domain;
1819 spin_unlock_irqrestore(&device_domain_lock, flags);
1820 /* pcie-pci bridge already has a domain, uses it */
1827 domain = alloc_domain();
1831 /* Allocate new domain for the device */
1832 drhd = dmar_find_matched_drhd_unit(pdev);
1834 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
1838 iommu = drhd->iommu;
1840 ret = iommu_attach_domain(domain, iommu);
1842 domain_exit(domain);
1846 if (domain_init(domain, gaw)) {
1847 domain_exit(domain);
1851 /* register pcie-to-pci device */
1853 info = alloc_devinfo_mem();
1855 domain_exit(domain);
1858 info->segment = segment;
1860 info->devfn = devfn;
1862 info->domain = domain;
1863 /* This domain is shared by devices under p2p bridge */
1864 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
1866 /* pcie-to-pci bridge already has a domain, uses it */
1868 spin_lock_irqsave(&device_domain_lock, flags);
1869 list_for_each_entry(tmp, &device_domain_list, global) {
1870 if (tmp->segment == segment &&
1871 tmp->bus == bus && tmp->devfn == devfn) {
1872 found = tmp->domain;
1877 spin_unlock_irqrestore(&device_domain_lock, flags);
1878 free_devinfo_mem(info);
1879 domain_exit(domain);
1882 list_add(&info->link, &domain->devices);
1883 list_add(&info->global, &device_domain_list);
1884 spin_unlock_irqrestore(&device_domain_lock, flags);
1889 info = alloc_devinfo_mem();
1892 info->segment = segment;
1893 info->bus = pdev->bus->number;
1894 info->devfn = pdev->devfn;
1896 info->domain = domain;
1897 spin_lock_irqsave(&device_domain_lock, flags);
1898 /* somebody is fast */
1899 found = find_domain(pdev);
1900 if (found != NULL) {
1901 spin_unlock_irqrestore(&device_domain_lock, flags);
1902 if (found != domain) {
1903 domain_exit(domain);
1906 free_devinfo_mem(info);
1909 list_add(&info->link, &domain->devices);
1910 list_add(&info->global, &device_domain_list);
1911 pdev->dev.archdata.iommu = info;
1912 spin_unlock_irqrestore(&device_domain_lock, flags);
1915 /* recheck it here, maybe others set it */
1916 return find_domain(pdev);
1919 static int iommu_identity_mapping;
1920 #define IDENTMAP_ALL 1
1921 #define IDENTMAP_GFX 2
1922 #define IDENTMAP_AZALIA 4
1924 static int iommu_domain_identity_map(struct dmar_domain *domain,
1925 unsigned long long start,
1926 unsigned long long end)
1928 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
1929 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
1931 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
1932 dma_to_mm_pfn(last_vpfn))) {
1933 printk(KERN_ERR "IOMMU: reserve iova failed\n");
1937 pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
1938 start, end, domain->id);
1940 * RMRR range might have overlap with physical memory range,
1943 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
1945 return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
1946 last_vpfn - first_vpfn + 1,
1947 DMA_PTE_READ|DMA_PTE_WRITE);
1950 static int iommu_prepare_identity_map(struct pci_dev *pdev,
1951 unsigned long long start,
1952 unsigned long long end)
1954 struct dmar_domain *domain;
1957 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
1961 /* For _hardware_ passthrough, don't bother. But for software
1962 passthrough, we do it anyway -- it may indicate a memory
1963 range which is reserved in E820, so which didn't get set
1964 up to start with in si_domain */
1965 if (domain == si_domain && hw_pass_through) {
1966 printk("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
1967 pci_name(pdev), start, end);
1972 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
1973 pci_name(pdev), start, end);
1976 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
1977 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
1978 dmi_get_system_info(DMI_BIOS_VENDOR),
1979 dmi_get_system_info(DMI_BIOS_VERSION),
1980 dmi_get_system_info(DMI_PRODUCT_VERSION));
1985 if (end >> agaw_to_width(domain->agaw)) {
1986 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
1987 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
1988 agaw_to_width(domain->agaw),
1989 dmi_get_system_info(DMI_BIOS_VENDOR),
1990 dmi_get_system_info(DMI_BIOS_VERSION),
1991 dmi_get_system_info(DMI_PRODUCT_VERSION));
1996 ret = iommu_domain_identity_map(domain, start, end);
2000 /* context entry init */
2001 ret = domain_context_mapping(domain, pdev, CONTEXT_TT_MULTI_LEVEL);
2008 domain_exit(domain);
2012 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2013 struct pci_dev *pdev)
2015 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2017 return iommu_prepare_identity_map(pdev, rmrr->base_address,
2018 rmrr->end_address + 1);
2021 #ifdef CONFIG_DMAR_FLOPPY_WA
2022 static inline void iommu_prepare_isa(void)
2024 struct pci_dev *pdev;
2027 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2031 printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
2032 ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024);
2035 printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; "
2036 "floppy might not work\n");
2040 static inline void iommu_prepare_isa(void)
2044 #endif /* !CONFIG_DMAR_FLPY_WA */
2046 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2048 static int __init si_domain_work_fn(unsigned long start_pfn,
2049 unsigned long end_pfn, void *datax)
2053 *ret = iommu_domain_identity_map(si_domain,
2054 (uint64_t)start_pfn << PAGE_SHIFT,
2055 (uint64_t)end_pfn << PAGE_SHIFT);
2060 static int __init si_domain_init(int hw)
2062 struct dmar_drhd_unit *drhd;
2063 struct intel_iommu *iommu;
2066 si_domain = alloc_domain();
2070 pr_debug("Identity mapping domain is domain %d\n", si_domain->id);
2072 for_each_active_iommu(iommu, drhd) {
2073 ret = iommu_attach_domain(si_domain, iommu);
2075 domain_exit(si_domain);
2080 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2081 domain_exit(si_domain);
2085 si_domain->flags = DOMAIN_FLAG_STATIC_IDENTITY;
2090 for_each_online_node(nid) {
2091 work_with_active_regions(nid, si_domain_work_fn, &ret);
2099 static void domain_remove_one_dev_info(struct dmar_domain *domain,
2100 struct pci_dev *pdev);
2101 static int identity_mapping(struct pci_dev *pdev)
2103 struct device_domain_info *info;
2105 if (likely(!iommu_identity_mapping))
2109 list_for_each_entry(info, &si_domain->devices, link)
2110 if (info->dev == pdev)
2115 static int domain_add_dev_info(struct dmar_domain *domain,
2116 struct pci_dev *pdev,
2119 struct device_domain_info *info;
2120 unsigned long flags;
2123 info = alloc_devinfo_mem();
2127 ret = domain_context_mapping(domain, pdev, translation);
2129 free_devinfo_mem(info);
2133 info->segment = pci_domain_nr(pdev->bus);
2134 info->bus = pdev->bus->number;
2135 info->devfn = pdev->devfn;
2137 info->domain = domain;
2139 spin_lock_irqsave(&device_domain_lock, flags);
2140 list_add(&info->link, &domain->devices);
2141 list_add(&info->global, &device_domain_list);
2142 pdev->dev.archdata.iommu = info;
2143 spin_unlock_irqrestore(&device_domain_lock, flags);
2148 static int iommu_should_identity_map(struct pci_dev *pdev, int startup)
2150 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2153 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2156 if (!(iommu_identity_mapping & IDENTMAP_ALL))
2160 * We want to start off with all devices in the 1:1 domain, and
2161 * take them out later if we find they can't access all of memory.
2163 * However, we can't do this for PCI devices behind bridges,
2164 * because all PCI devices behind the same bridge will end up
2165 * with the same source-id on their transactions.
2167 * Practically speaking, we can't change things around for these
2168 * devices at run-time, because we can't be sure there'll be no
2169 * DMA transactions in flight for any of their siblings.
2171 * So PCI devices (unless they're on the root bus) as well as
2172 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2173 * the 1:1 domain, just in _case_ one of their siblings turns out
2174 * not to be able to map all of memory.
2176 if (!pci_is_pcie(pdev)) {
2177 if (!pci_is_root_bus(pdev->bus))
2179 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2181 } else if (pdev->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE)
2185 * At boot time, we don't yet know if devices will be 64-bit capable.
2186 * Assume that they will -- if they turn out not to be, then we can
2187 * take them out of the 1:1 domain later.
2190 return pdev->dma_mask > DMA_BIT_MASK(32);
2195 static int __init iommu_prepare_static_identity_mapping(int hw)
2197 struct pci_dev *pdev = NULL;
2200 ret = si_domain_init(hw);
2204 for_each_pci_dev(pdev) {
2205 if (iommu_should_identity_map(pdev, 1)) {
2206 printk(KERN_INFO "IOMMU: %s identity mapping for device %s\n",
2207 hw ? "hardware" : "software", pci_name(pdev));
2209 ret = domain_add_dev_info(si_domain, pdev,
2210 hw ? CONTEXT_TT_PASS_THROUGH :
2211 CONTEXT_TT_MULTI_LEVEL);
2220 int __init init_dmars(void)
2222 struct dmar_drhd_unit *drhd;
2223 struct dmar_rmrr_unit *rmrr;
2224 struct pci_dev *pdev;
2225 struct intel_iommu *iommu;
2231 * initialize and program root entry to not present
2234 for_each_drhd_unit(drhd) {
2237 * lock not needed as this is only incremented in the single
2238 * threaded kernel __init code path all other access are read
2243 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
2246 printk(KERN_ERR "Allocating global iommu array failed\n");
2251 deferred_flush = kzalloc(g_num_of_iommus *
2252 sizeof(struct deferred_flush_tables), GFP_KERNEL);
2253 if (!deferred_flush) {
2258 for_each_drhd_unit(drhd) {
2262 iommu = drhd->iommu;
2263 g_iommus[iommu->seq_id] = iommu;
2265 ret = iommu_init_domains(iommu);
2271 * we could share the same root & context tables
2272 * amoung all IOMMU's. Need to Split it later.
2274 ret = iommu_alloc_root_entry(iommu);
2276 printk(KERN_ERR "IOMMU: allocate root entry failed\n");
2279 if (!ecap_pass_through(iommu->ecap))
2280 hw_pass_through = 0;
2284 * Start from the sane iommu hardware state.
2286 for_each_drhd_unit(drhd) {
2290 iommu = drhd->iommu;
2293 * If the queued invalidation is already initialized by us
2294 * (for example, while enabling interrupt-remapping) then
2295 * we got the things already rolling from a sane state.
2301 * Clear any previous faults.
2303 dmar_fault(-1, iommu);
2305 * Disable queued invalidation if supported and already enabled
2306 * before OS handover.
2308 dmar_disable_qi(iommu);
2311 for_each_drhd_unit(drhd) {
2315 iommu = drhd->iommu;
2317 if (dmar_enable_qi(iommu)) {
2319 * Queued Invalidate not enabled, use Register Based
2322 iommu->flush.flush_context = __iommu_flush_context;
2323 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2324 printk(KERN_INFO "IOMMU %d 0x%Lx: using Register based "
2327 (unsigned long long)drhd->reg_base_addr);
2329 iommu->flush.flush_context = qi_flush_context;
2330 iommu->flush.flush_iotlb = qi_flush_iotlb;
2331 printk(KERN_INFO "IOMMU %d 0x%Lx: using Queued "
2334 (unsigned long long)drhd->reg_base_addr);
2338 if (iommu_pass_through)
2339 iommu_identity_mapping |= IDENTMAP_ALL;
2341 #ifdef CONFIG_DMAR_BROKEN_GFX_WA
2342 iommu_identity_mapping |= IDENTMAP_GFX;
2345 check_tylersburg_isoch();
2348 * If pass through is not set or not enabled, setup context entries for
2349 * identity mappings for rmrr, gfx, and isa and may fall back to static
2350 * identity mapping if iommu_identity_mapping is set.
2352 if (iommu_identity_mapping) {
2353 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
2355 printk(KERN_CRIT "Failed to setup IOMMU pass-through\n");
2361 * for each dev attached to rmrr
2363 * locate drhd for dev, alloc domain for dev
2364 * allocate free domain
2365 * allocate page table entries for rmrr
2366 * if context not allocated for bus
2367 * allocate and init context
2368 * set present in root table for this bus
2369 * init context with domain, translation etc
2373 printk(KERN_INFO "IOMMU: Setting RMRR:\n");
2374 for_each_rmrr_units(rmrr) {
2375 for (i = 0; i < rmrr->devices_cnt; i++) {
2376 pdev = rmrr->devices[i];
2378 * some BIOS lists non-exist devices in DMAR
2383 ret = iommu_prepare_rmrr_dev(rmrr, pdev);
2386 "IOMMU: mapping reserved region failed\n");
2390 iommu_prepare_isa();
2395 * global invalidate context cache
2396 * global invalidate iotlb
2397 * enable translation
2399 for_each_drhd_unit(drhd) {
2402 iommu = drhd->iommu;
2404 iommu_flush_write_buffer(iommu);
2406 ret = dmar_set_interrupt(iommu);
2410 iommu_set_root_entry(iommu);
2412 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
2413 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2415 ret = iommu_enable_translation(iommu);
2419 iommu_disable_protect_mem_regions(iommu);
2424 for_each_drhd_unit(drhd) {
2427 iommu = drhd->iommu;
2434 /* This takes a number of _MM_ pages, not VTD pages */
2435 static struct iova *intel_alloc_iova(struct device *dev,
2436 struct dmar_domain *domain,
2437 unsigned long nrpages, uint64_t dma_mask)
2439 struct pci_dev *pdev = to_pci_dev(dev);
2440 struct iova *iova = NULL;
2442 /* Restrict dma_mask to the width that the iommu can handle */
2443 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
2445 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
2447 * First try to allocate an io virtual address in
2448 * DMA_BIT_MASK(32) and if that fails then try allocating
2451 iova = alloc_iova(&domain->iovad, nrpages,
2452 IOVA_PFN(DMA_BIT_MASK(32)), 1);
2456 iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
2457 if (unlikely(!iova)) {
2458 printk(KERN_ERR "Allocating %ld-page iova for %s failed",
2459 nrpages, pci_name(pdev));
2466 static struct dmar_domain *__get_valid_domain_for_dev(struct pci_dev *pdev)
2468 struct dmar_domain *domain;
2471 domain = get_domain_for_dev(pdev,
2472 DEFAULT_DOMAIN_ADDRESS_WIDTH);
2475 "Allocating domain for %s failed", pci_name(pdev));
2479 /* make sure context mapping is ok */
2480 if (unlikely(!domain_context_mapped(pdev))) {
2481 ret = domain_context_mapping(domain, pdev,
2482 CONTEXT_TT_MULTI_LEVEL);
2485 "Domain context map for %s failed",
2494 static inline struct dmar_domain *get_valid_domain_for_dev(struct pci_dev *dev)
2496 struct device_domain_info *info;
2498 /* No lock here, assumes no domain exit in normal case */
2499 info = dev->dev.archdata.iommu;
2501 return info->domain;
2503 return __get_valid_domain_for_dev(dev);
2506 static int iommu_dummy(struct pci_dev *pdev)
2508 return pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
2511 /* Check if the pdev needs to go through non-identity map and unmap process.*/
2512 static int iommu_no_mapping(struct device *dev)
2514 struct pci_dev *pdev;
2517 if (unlikely(dev->bus != &pci_bus_type))
2520 pdev = to_pci_dev(dev);
2521 if (iommu_dummy(pdev))
2524 if (!iommu_identity_mapping)
2527 found = identity_mapping(pdev);
2529 if (iommu_should_identity_map(pdev, 0))
2533 * 32 bit DMA is removed from si_domain and fall back
2534 * to non-identity mapping.
2536 domain_remove_one_dev_info(si_domain, pdev);
2537 printk(KERN_INFO "32bit %s uses non-identity mapping\n",
2543 * In case of a detached 64 bit DMA device from vm, the device
2544 * is put into si_domain for identity mapping.
2546 if (iommu_should_identity_map(pdev, 0)) {
2548 ret = domain_add_dev_info(si_domain, pdev,
2550 CONTEXT_TT_PASS_THROUGH :
2551 CONTEXT_TT_MULTI_LEVEL);
2553 printk(KERN_INFO "64bit %s uses identity mapping\n",
2563 static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
2564 size_t size, int dir, u64 dma_mask)
2566 struct pci_dev *pdev = to_pci_dev(hwdev);
2567 struct dmar_domain *domain;
2568 phys_addr_t start_paddr;
2572 struct intel_iommu *iommu;
2573 unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
2575 BUG_ON(dir == DMA_NONE);
2577 if (iommu_no_mapping(hwdev))
2580 domain = get_valid_domain_for_dev(pdev);
2584 iommu = domain_get_iommu(domain);
2585 size = aligned_nrpages(paddr, size);
2587 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size),
2593 * Check if DMAR supports zero-length reads on write only
2596 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2597 !cap_zlr(iommu->cap))
2598 prot |= DMA_PTE_READ;
2599 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2600 prot |= DMA_PTE_WRITE;
2602 * paddr - (paddr + size) might be partial page, we should map the whole
2603 * page. Note: if two part of one page are separately mapped, we
2604 * might have two guest_addr mapping to the same host paddr, but this
2605 * is not a big problem
2607 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
2608 mm_to_dma_pfn(paddr_pfn), size, prot);
2612 /* it's a non-present to present mapping. Only flush if caching mode */
2613 if (cap_caching_mode(iommu->cap))
2614 iommu_flush_iotlb_psi(iommu, domain->id, mm_to_dma_pfn(iova->pfn_lo), size, 1);
2616 iommu_flush_write_buffer(iommu);
2618 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
2619 start_paddr += paddr & ~PAGE_MASK;
2624 __free_iova(&domain->iovad, iova);
2625 printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
2626 pci_name(pdev), size, (unsigned long long)paddr, dir);
2630 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
2631 unsigned long offset, size_t size,
2632 enum dma_data_direction dir,
2633 struct dma_attrs *attrs)
2635 return __intel_map_single(dev, page_to_phys(page) + offset, size,
2636 dir, to_pci_dev(dev)->dma_mask);
2639 static void flush_unmaps(void)
2645 /* just flush them all */
2646 for (i = 0; i < g_num_of_iommus; i++) {
2647 struct intel_iommu *iommu = g_iommus[i];
2651 if (!deferred_flush[i].next)
2654 /* In caching mode, global flushes turn emulation expensive */
2655 if (!cap_caching_mode(iommu->cap))
2656 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2657 DMA_TLB_GLOBAL_FLUSH);
2658 for (j = 0; j < deferred_flush[i].next; j++) {
2660 struct iova *iova = deferred_flush[i].iova[j];
2661 struct dmar_domain *domain = deferred_flush[i].domain[j];
2663 /* On real hardware multiple invalidations are expensive */
2664 if (cap_caching_mode(iommu->cap))
2665 iommu_flush_iotlb_psi(iommu, domain->id,
2666 iova->pfn_lo, iova->pfn_hi - iova->pfn_lo + 1, 0);
2668 mask = ilog2(mm_to_dma_pfn(iova->pfn_hi - iova->pfn_lo + 1));
2669 iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
2670 (uint64_t)iova->pfn_lo << PAGE_SHIFT, mask);
2672 __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
2674 deferred_flush[i].next = 0;
2680 static void flush_unmaps_timeout(unsigned long data)
2682 unsigned long flags;
2684 spin_lock_irqsave(&async_umap_flush_lock, flags);
2686 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2689 static void add_unmap(struct dmar_domain *dom, struct iova *iova)
2691 unsigned long flags;
2693 struct intel_iommu *iommu;
2695 spin_lock_irqsave(&async_umap_flush_lock, flags);
2696 if (list_size == HIGH_WATER_MARK)
2699 iommu = domain_get_iommu(dom);
2700 iommu_id = iommu->seq_id;
2702 next = deferred_flush[iommu_id].next;
2703 deferred_flush[iommu_id].domain[next] = dom;
2704 deferred_flush[iommu_id].iova[next] = iova;
2705 deferred_flush[iommu_id].next++;
2708 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
2712 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2715 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
2716 size_t size, enum dma_data_direction dir,
2717 struct dma_attrs *attrs)
2719 struct pci_dev *pdev = to_pci_dev(dev);
2720 struct dmar_domain *domain;
2721 unsigned long start_pfn, last_pfn;
2723 struct intel_iommu *iommu;
2725 if (iommu_no_mapping(dev))
2728 domain = find_domain(pdev);
2731 iommu = domain_get_iommu(domain);
2733 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
2734 if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n",
2735 (unsigned long long)dev_addr))
2738 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2739 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2741 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
2742 pci_name(pdev), start_pfn, last_pfn);
2744 /* clear the whole page */
2745 dma_pte_clear_range(domain, start_pfn, last_pfn);
2747 /* free page tables */
2748 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2750 if (intel_iommu_strict) {
2751 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
2752 last_pfn - start_pfn + 1, 0);
2754 __free_iova(&domain->iovad, iova);
2756 add_unmap(domain, iova);
2758 * queue up the release of the unmap to save the 1/6th of the
2759 * cpu used up by the iotlb flush operation...
2764 static void *intel_alloc_coherent(struct device *hwdev, size_t size,
2765 dma_addr_t *dma_handle, gfp_t flags)
2770 size = PAGE_ALIGN(size);
2771 order = get_order(size);
2773 if (!iommu_no_mapping(hwdev))
2774 flags &= ~(GFP_DMA | GFP_DMA32);
2775 else if (hwdev->coherent_dma_mask < dma_get_required_mask(hwdev)) {
2776 if (hwdev->coherent_dma_mask < DMA_BIT_MASK(32))
2782 vaddr = (void *)__get_free_pages(flags, order);
2785 memset(vaddr, 0, size);
2787 *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
2789 hwdev->coherent_dma_mask);
2792 free_pages((unsigned long)vaddr, order);
2796 static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
2797 dma_addr_t dma_handle)
2801 size = PAGE_ALIGN(size);
2802 order = get_order(size);
2804 intel_unmap_page(hwdev, dma_handle, size, DMA_BIDIRECTIONAL, NULL);
2805 free_pages((unsigned long)vaddr, order);
2808 static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
2809 int nelems, enum dma_data_direction dir,
2810 struct dma_attrs *attrs)
2812 struct pci_dev *pdev = to_pci_dev(hwdev);
2813 struct dmar_domain *domain;
2814 unsigned long start_pfn, last_pfn;
2816 struct intel_iommu *iommu;
2818 if (iommu_no_mapping(hwdev))
2821 domain = find_domain(pdev);
2824 iommu = domain_get_iommu(domain);
2826 iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
2827 if (WARN_ONCE(!iova, "Driver unmaps unmatched sglist at PFN %llx\n",
2828 (unsigned long long)sglist[0].dma_address))
2831 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2832 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2834 /* clear the whole page */
2835 dma_pte_clear_range(domain, start_pfn, last_pfn);
2837 /* free page tables */
2838 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2840 if (intel_iommu_strict) {
2841 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
2842 last_pfn - start_pfn + 1, 0);
2844 __free_iova(&domain->iovad, iova);
2846 add_unmap(domain, iova);
2848 * queue up the release of the unmap to save the 1/6th of the
2849 * cpu used up by the iotlb flush operation...
2854 static int intel_nontranslate_map_sg(struct device *hddev,
2855 struct scatterlist *sglist, int nelems, int dir)
2858 struct scatterlist *sg;
2860 for_each_sg(sglist, sg, nelems, i) {
2861 BUG_ON(!sg_page(sg));
2862 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
2863 sg->dma_length = sg->length;
2868 static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
2869 enum dma_data_direction dir, struct dma_attrs *attrs)
2872 struct pci_dev *pdev = to_pci_dev(hwdev);
2873 struct dmar_domain *domain;
2876 struct iova *iova = NULL;
2878 struct scatterlist *sg;
2879 unsigned long start_vpfn;
2880 struct intel_iommu *iommu;
2882 BUG_ON(dir == DMA_NONE);
2883 if (iommu_no_mapping(hwdev))
2884 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
2886 domain = get_valid_domain_for_dev(pdev);
2890 iommu = domain_get_iommu(domain);
2892 for_each_sg(sglist, sg, nelems, i)
2893 size += aligned_nrpages(sg->offset, sg->length);
2895 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size),
2898 sglist->dma_length = 0;
2903 * Check if DMAR supports zero-length reads on write only
2906 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2907 !cap_zlr(iommu->cap))
2908 prot |= DMA_PTE_READ;
2909 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2910 prot |= DMA_PTE_WRITE;
2912 start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
2914 ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
2915 if (unlikely(ret)) {
2916 /* clear the page */
2917 dma_pte_clear_range(domain, start_vpfn,
2918 start_vpfn + size - 1);
2919 /* free page tables */
2920 dma_pte_free_pagetable(domain, start_vpfn,
2921 start_vpfn + size - 1);
2923 __free_iova(&domain->iovad, iova);
2927 /* it's a non-present to present mapping. Only flush if caching mode */
2928 if (cap_caching_mode(iommu->cap))
2929 iommu_flush_iotlb_psi(iommu, domain->id, start_vpfn, size, 1);
2931 iommu_flush_write_buffer(iommu);
2936 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
2941 struct dma_map_ops intel_dma_ops = {
2942 .alloc_coherent = intel_alloc_coherent,
2943 .free_coherent = intel_free_coherent,
2944 .map_sg = intel_map_sg,
2945 .unmap_sg = intel_unmap_sg,
2946 .map_page = intel_map_page,
2947 .unmap_page = intel_unmap_page,
2948 .mapping_error = intel_mapping_error,
2951 static inline int iommu_domain_cache_init(void)
2955 iommu_domain_cache = kmem_cache_create("iommu_domain",
2956 sizeof(struct dmar_domain),
2961 if (!iommu_domain_cache) {
2962 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
2969 static inline int iommu_devinfo_cache_init(void)
2973 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
2974 sizeof(struct device_domain_info),
2978 if (!iommu_devinfo_cache) {
2979 printk(KERN_ERR "Couldn't create devinfo cache\n");
2986 static inline int iommu_iova_cache_init(void)
2990 iommu_iova_cache = kmem_cache_create("iommu_iova",
2991 sizeof(struct iova),
2995 if (!iommu_iova_cache) {
2996 printk(KERN_ERR "Couldn't create iova cache\n");
3003 static int __init iommu_init_mempool(void)
3006 ret = iommu_iova_cache_init();
3010 ret = iommu_domain_cache_init();
3014 ret = iommu_devinfo_cache_init();
3018 kmem_cache_destroy(iommu_domain_cache);
3020 kmem_cache_destroy(iommu_iova_cache);
3025 static void __init iommu_exit_mempool(void)
3027 kmem_cache_destroy(iommu_devinfo_cache);
3028 kmem_cache_destroy(iommu_domain_cache);
3029 kmem_cache_destroy(iommu_iova_cache);
3033 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
3035 struct dmar_drhd_unit *drhd;
3039 /* We know that this device on this chipset has its own IOMMU.
3040 * If we find it under a different IOMMU, then the BIOS is lying
3041 * to us. Hope that the IOMMU for this device is actually
3042 * disabled, and it needs no translation...
3044 rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
3046 /* "can't" happen */
3047 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
3050 vtbar &= 0xffff0000;
3052 /* we know that the this iommu should be at offset 0xa000 from vtbar */
3053 drhd = dmar_find_matched_drhd_unit(pdev);
3054 if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
3055 TAINT_FIRMWARE_WORKAROUND,
3056 "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
3057 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3059 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
3061 static void __init init_no_remapping_devices(void)
3063 struct dmar_drhd_unit *drhd;
3065 for_each_drhd_unit(drhd) {
3066 if (!drhd->include_all) {
3068 for (i = 0; i < drhd->devices_cnt; i++)
3069 if (drhd->devices[i] != NULL)
3071 /* ignore DMAR unit if no pci devices exist */
3072 if (i == drhd->devices_cnt)
3080 for_each_drhd_unit(drhd) {
3082 if (drhd->ignored || drhd->include_all)
3085 for (i = 0; i < drhd->devices_cnt; i++)
3086 if (drhd->devices[i] &&
3087 !IS_GFX_DEVICE(drhd->devices[i]))
3090 if (i < drhd->devices_cnt)
3093 /* bypass IOMMU if it is just for gfx devices */
3095 for (i = 0; i < drhd->devices_cnt; i++) {
3096 if (!drhd->devices[i])
3098 drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3103 #ifdef CONFIG_SUSPEND
3104 static int init_iommu_hw(void)
3106 struct dmar_drhd_unit *drhd;
3107 struct intel_iommu *iommu = NULL;
3109 for_each_active_iommu(iommu, drhd)
3111 dmar_reenable_qi(iommu);
3113 for_each_active_iommu(iommu, drhd) {
3114 iommu_flush_write_buffer(iommu);
3116 iommu_set_root_entry(iommu);
3118 iommu->flush.flush_context(iommu, 0, 0, 0,
3119 DMA_CCMD_GLOBAL_INVL);
3120 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3121 DMA_TLB_GLOBAL_FLUSH);
3122 iommu_enable_translation(iommu);
3123 iommu_disable_protect_mem_regions(iommu);
3129 static void iommu_flush_all(void)
3131 struct dmar_drhd_unit *drhd;
3132 struct intel_iommu *iommu;
3134 for_each_active_iommu(iommu, drhd) {
3135 iommu->flush.flush_context(iommu, 0, 0, 0,
3136 DMA_CCMD_GLOBAL_INVL);
3137 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3138 DMA_TLB_GLOBAL_FLUSH);
3142 static int iommu_suspend(struct sys_device *dev, pm_message_t state)
3144 struct dmar_drhd_unit *drhd;
3145 struct intel_iommu *iommu = NULL;
3148 for_each_active_iommu(iommu, drhd) {
3149 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3151 if (!iommu->iommu_state)
3157 for_each_active_iommu(iommu, drhd) {
3158 iommu_disable_translation(iommu);
3160 spin_lock_irqsave(&iommu->register_lock, flag);
3162 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3163 readl(iommu->reg + DMAR_FECTL_REG);
3164 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3165 readl(iommu->reg + DMAR_FEDATA_REG);
3166 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3167 readl(iommu->reg + DMAR_FEADDR_REG);
3168 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3169 readl(iommu->reg + DMAR_FEUADDR_REG);
3171 spin_unlock_irqrestore(&iommu->register_lock, flag);
3176 for_each_active_iommu(iommu, drhd)
3177 kfree(iommu->iommu_state);
3182 static int iommu_resume(struct sys_device *dev)
3184 struct dmar_drhd_unit *drhd;
3185 struct intel_iommu *iommu = NULL;
3188 if (init_iommu_hw()) {
3189 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3193 for_each_active_iommu(iommu, drhd) {
3195 spin_lock_irqsave(&iommu->register_lock, flag);
3197 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3198 iommu->reg + DMAR_FECTL_REG);
3199 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3200 iommu->reg + DMAR_FEDATA_REG);
3201 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3202 iommu->reg + DMAR_FEADDR_REG);
3203 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3204 iommu->reg + DMAR_FEUADDR_REG);
3206 spin_unlock_irqrestore(&iommu->register_lock, flag);
3209 for_each_active_iommu(iommu, drhd)
3210 kfree(iommu->iommu_state);
3215 static struct sysdev_class iommu_sysclass = {
3217 .resume = iommu_resume,
3218 .suspend = iommu_suspend,
3221 static struct sys_device device_iommu = {
3222 .cls = &iommu_sysclass,
3225 static int __init init_iommu_sysfs(void)
3229 error = sysdev_class_register(&iommu_sysclass);
3233 error = sysdev_register(&device_iommu);
3235 sysdev_class_unregister(&iommu_sysclass);
3241 static int __init init_iommu_sysfs(void)
3245 #endif /* CONFIG_PM */
3248 * Here we only respond to action of unbound device from driver.
3250 * Added device is not attached to its DMAR domain here yet. That will happen
3251 * when mapping the device to iova.
3253 static int device_notifier(struct notifier_block *nb,
3254 unsigned long action, void *data)
3256 struct device *dev = data;
3257 struct pci_dev *pdev = to_pci_dev(dev);
3258 struct dmar_domain *domain;
3260 if (iommu_no_mapping(dev))
3263 domain = find_domain(pdev);
3267 if (action == BUS_NOTIFY_UNBOUND_DRIVER && !iommu_pass_through)
3268 domain_remove_one_dev_info(domain, pdev);
3273 static struct notifier_block device_nb = {
3274 .notifier_call = device_notifier,
3277 int __init intel_iommu_init(void)
3282 /* VT-d is required for a TXT/tboot launch, so enforce that */
3283 force_on = tboot_force_iommu();
3285 if (dmar_table_init()) {
3287 panic("tboot: Failed to initialize DMAR table\n");
3291 if (dmar_dev_scope_init()) {
3293 panic("tboot: Failed to initialize DMAR device scope\n");
3298 * Check the need for DMA-remapping initialization now.
3299 * Above initialization will also be used by Interrupt-remapping.
3301 if (no_iommu || dmar_disabled)
3304 iommu_init_mempool();
3305 dmar_init_reserved_ranges();
3307 init_no_remapping_devices();
3312 panic("tboot: Failed to initialize DMARs\n");
3313 printk(KERN_ERR "IOMMU: dmar init failed\n");
3314 put_iova_domain(&reserved_iova_list);
3315 iommu_exit_mempool();
3319 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
3321 init_timer(&unmap_timer);
3322 #ifdef CONFIG_SWIOTLB
3325 dma_ops = &intel_dma_ops;
3329 register_iommu(&intel_iommu_ops);
3331 bus_register_notifier(&pci_bus_type, &device_nb);
3336 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
3337 struct pci_dev *pdev)
3339 struct pci_dev *tmp, *parent;
3341 if (!iommu || !pdev)