[PATCH] Unlinline a bunch of other functions
[linux-2.6.git] / drivers / net / wireless / ipw2100.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2005 Intel Corporation. All rights reserved.
4
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of version 2 of the GNU General Public License as
7   published by the Free Software Foundation.
8
9   This program is distributed in the hope that it will be useful, but WITHOUT
10   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12   more details.
13
14   You should have received a copy of the GNU General Public License along with
15   this program; if not, write to the Free Software Foundation, Inc., 59
16   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17
18   The full GNU General Public License is included in this distribution in the
19   file called LICENSE.
20
21   Contact Information:
22   James P. Ketrenos <ipw2100-admin@linux.intel.com>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25   Portions of this file are based on the sample_* files provided by Wireless
26   Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27   <jt@hpl.hp.com>
28
29   Portions of this file are based on the Host AP project,
30   Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31     <jkmaline@cc.hut.fi>
32   Copyright (c) 2002-2003, Jouni Malinen <jkmaline@cc.hut.fi>
33
34   Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35   ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36   available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41  Initial driver on which this is based was developed by Janusz Gorycki,
42  Maciej Urbaniak, and Maciej Sosnowski.
43
44  Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index.  The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index.  The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent.  If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD.  If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc.  The next TBD then referrs to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72    list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75    to a physical address.  That address is entered into a TBD.  Two TBDs are
76    filled out.  The first indicating a data packet, the second referring to the
77    actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79    firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83    to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85    from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87    to unmap the DMA address and to free the SKB originally passed to the driver
88    from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized.  The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103   tx_free_list : Holds pre-allocated Tx buffers.
104     TAIL modified in __ipw2100_tx_process()
105     HEAD modified in ipw2100_tx()
106
107   tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108     TAIL modified ipw2100_tx()
109     HEAD modified by ipw2100_tx_send_data()
110
111   msg_free_list : Holds pre-allocated Msg (Command) buffers
112     TAIL modified in __ipw2100_tx_process()
113     HEAD modified in ipw2100_hw_send_command()
114
115   msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116     TAIL modified in ipw2100_hw_send_command()
117     HEAD modified in ipw2100_tx_send_commands()
118
119   The flow of data on the TX side is as follows:
120
121   MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122   TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124   The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128   and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/config.h>
138 #include <linux/errno.h>
139 #include <linux/if_arp.h>
140 #include <linux/in6.h>
141 #include <linux/in.h>
142 #include <linux/ip.h>
143 #include <linux/kernel.h>
144 #include <linux/kmod.h>
145 #include <linux/module.h>
146 #include <linux/netdevice.h>
147 #include <linux/ethtool.h>
148 #include <linux/pci.h>
149 #include <linux/dma-mapping.h>
150 #include <linux/proc_fs.h>
151 #include <linux/skbuff.h>
152 #include <asm/uaccess.h>
153 #include <asm/io.h>
154 #define __KERNEL_SYSCALLS__
155 #include <linux/fs.h>
156 #include <linux/mm.h>
157 #include <linux/slab.h>
158 #include <linux/unistd.h>
159 #include <linux/stringify.h>
160 #include <linux/tcp.h>
161 #include <linux/types.h>
162 #include <linux/version.h>
163 #include <linux/time.h>
164 #include <linux/firmware.h>
165 #include <linux/acpi.h>
166 #include <linux/ctype.h>
167
168 #include "ipw2100.h"
169
170 #define IPW2100_VERSION "1.1.3"
171
172 #define DRV_NAME        "ipw2100"
173 #define DRV_VERSION     IPW2100_VERSION
174 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
175 #define DRV_COPYRIGHT   "Copyright(c) 2003-2005 Intel Corporation"
176
177 /* Debugging stuff */
178 #ifdef CONFIG_IPW2100_DEBUG
179 #define CONFIG_IPW2100_RX_DEBUG /* Reception debugging */
180 #endif
181
182 MODULE_DESCRIPTION(DRV_DESCRIPTION);
183 MODULE_VERSION(DRV_VERSION);
184 MODULE_AUTHOR(DRV_COPYRIGHT);
185 MODULE_LICENSE("GPL");
186
187 static int debug = 0;
188 static int mode = 0;
189 static int channel = 0;
190 static int associate = 1;
191 static int disable = 0;
192 #ifdef CONFIG_PM
193 static struct ipw2100_fw ipw2100_firmware;
194 #endif
195
196 #include <linux/moduleparam.h>
197 module_param(debug, int, 0444);
198 module_param(mode, int, 0444);
199 module_param(channel, int, 0444);
200 module_param(associate, int, 0444);
201 module_param(disable, int, 0444);
202
203 MODULE_PARM_DESC(debug, "debug level");
204 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
205 MODULE_PARM_DESC(channel, "channel");
206 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
207 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
208
209 static u32 ipw2100_debug_level = IPW_DL_NONE;
210
211 #ifdef CONFIG_IPW2100_DEBUG
212 #define IPW_DEBUG(level, message...) \
213 do { \
214         if (ipw2100_debug_level & (level)) { \
215                 printk(KERN_DEBUG "ipw2100: %c %s ", \
216                        in_interrupt() ? 'I' : 'U',  __FUNCTION__); \
217                 printk(message); \
218         } \
219 } while (0)
220 #else
221 #define IPW_DEBUG(level, message...) do {} while (0)
222 #endif                          /* CONFIG_IPW2100_DEBUG */
223
224 #ifdef CONFIG_IPW2100_DEBUG
225 static const char *command_types[] = {
226         "undefined",
227         "unused",               /* HOST_ATTENTION */
228         "HOST_COMPLETE",
229         "unused",               /* SLEEP */
230         "unused",               /* HOST_POWER_DOWN */
231         "unused",
232         "SYSTEM_CONFIG",
233         "unused",               /* SET_IMR */
234         "SSID",
235         "MANDATORY_BSSID",
236         "AUTHENTICATION_TYPE",
237         "ADAPTER_ADDRESS",
238         "PORT_TYPE",
239         "INTERNATIONAL_MODE",
240         "CHANNEL",
241         "RTS_THRESHOLD",
242         "FRAG_THRESHOLD",
243         "POWER_MODE",
244         "TX_RATES",
245         "BASIC_TX_RATES",
246         "WEP_KEY_INFO",
247         "unused",
248         "unused",
249         "unused",
250         "unused",
251         "WEP_KEY_INDEX",
252         "WEP_FLAGS",
253         "ADD_MULTICAST",
254         "CLEAR_ALL_MULTICAST",
255         "BEACON_INTERVAL",
256         "ATIM_WINDOW",
257         "CLEAR_STATISTICS",
258         "undefined",
259         "undefined",
260         "undefined",
261         "undefined",
262         "TX_POWER_INDEX",
263         "undefined",
264         "undefined",
265         "undefined",
266         "undefined",
267         "undefined",
268         "undefined",
269         "BROADCAST_SCAN",
270         "CARD_DISABLE",
271         "PREFERRED_BSSID",
272         "SET_SCAN_OPTIONS",
273         "SCAN_DWELL_TIME",
274         "SWEEP_TABLE",
275         "AP_OR_STATION_TABLE",
276         "GROUP_ORDINALS",
277         "SHORT_RETRY_LIMIT",
278         "LONG_RETRY_LIMIT",
279         "unused",               /* SAVE_CALIBRATION */
280         "unused",               /* RESTORE_CALIBRATION */
281         "undefined",
282         "undefined",
283         "undefined",
284         "HOST_PRE_POWER_DOWN",
285         "unused",               /* HOST_INTERRUPT_COALESCING */
286         "undefined",
287         "CARD_DISABLE_PHY_OFF",
288         "MSDU_TX_RATES" "undefined",
289         "undefined",
290         "SET_STATION_STAT_BITS",
291         "CLEAR_STATIONS_STAT_BITS",
292         "LEAP_ROGUE_MODE",
293         "SET_SECURITY_INFORMATION",
294         "DISASSOCIATION_BSSID",
295         "SET_WPA_ASS_IE"
296 };
297 #endif
298
299 /* Pre-decl until we get the code solid and then we can clean it up */
300 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
301 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
302 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
303
304 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
305 static void ipw2100_queues_free(struct ipw2100_priv *priv);
306 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
307
308 static int ipw2100_fw_download(struct ipw2100_priv *priv,
309                                struct ipw2100_fw *fw);
310 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
311                                 struct ipw2100_fw *fw);
312 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
313                                  size_t max);
314 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
315                                     size_t max);
316 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
317                                      struct ipw2100_fw *fw);
318 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
319                                   struct ipw2100_fw *fw);
320 static void ipw2100_wx_event_work(struct ipw2100_priv *priv);
321 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
322 static struct iw_handler_def ipw2100_wx_handler_def;
323
324 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
325 {
326         *val = readl((void __iomem *)(dev->base_addr + reg));
327         IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
328 }
329
330 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
331 {
332         writel(val, (void __iomem *)(dev->base_addr + reg));
333         IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
334 }
335
336 static inline void read_register_word(struct net_device *dev, u32 reg,
337                                       u16 * val)
338 {
339         *val = readw((void __iomem *)(dev->base_addr + reg));
340         IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
341 }
342
343 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
344 {
345         *val = readb((void __iomem *)(dev->base_addr + reg));
346         IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
347 }
348
349 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
350 {
351         writew(val, (void __iomem *)(dev->base_addr + reg));
352         IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
353 }
354
355 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
356 {
357         writeb(val, (void __iomem *)(dev->base_addr + reg));
358         IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
359 }
360
361 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
362 {
363         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
364                        addr & IPW_REG_INDIRECT_ADDR_MASK);
365         read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
366 }
367
368 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
369 {
370         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
371                        addr & IPW_REG_INDIRECT_ADDR_MASK);
372         write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
373 }
374
375 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
376 {
377         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
378                        addr & IPW_REG_INDIRECT_ADDR_MASK);
379         read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
380 }
381
382 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
383 {
384         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
385                        addr & IPW_REG_INDIRECT_ADDR_MASK);
386         write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
387 }
388
389 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
390 {
391         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
392                        addr & IPW_REG_INDIRECT_ADDR_MASK);
393         read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
394 }
395
396 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
397 {
398         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
399                        addr & IPW_REG_INDIRECT_ADDR_MASK);
400         write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
401 }
402
403 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
404 {
405         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
406                        addr & IPW_REG_INDIRECT_ADDR_MASK);
407 }
408
409 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
410 {
411         write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
412 }
413
414 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
415                                     const u8 * buf)
416 {
417         u32 aligned_addr;
418         u32 aligned_len;
419         u32 dif_len;
420         u32 i;
421
422         /* read first nibble byte by byte */
423         aligned_addr = addr & (~0x3);
424         dif_len = addr - aligned_addr;
425         if (dif_len) {
426                 /* Start reading at aligned_addr + dif_len */
427                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
428                                aligned_addr);
429                 for (i = dif_len; i < 4; i++, buf++)
430                         write_register_byte(dev,
431                                             IPW_REG_INDIRECT_ACCESS_DATA + i,
432                                             *buf);
433
434                 len -= dif_len;
435                 aligned_addr += 4;
436         }
437
438         /* read DWs through autoincrement registers */
439         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
440         aligned_len = len & (~0x3);
441         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
442                 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
443
444         /* copy the last nibble */
445         dif_len = len - aligned_len;
446         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
447         for (i = 0; i < dif_len; i++, buf++)
448                 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
449                                     *buf);
450 }
451
452 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
453                                    u8 * buf)
454 {
455         u32 aligned_addr;
456         u32 aligned_len;
457         u32 dif_len;
458         u32 i;
459
460         /* read first nibble byte by byte */
461         aligned_addr = addr & (~0x3);
462         dif_len = addr - aligned_addr;
463         if (dif_len) {
464                 /* Start reading at aligned_addr + dif_len */
465                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
466                                aligned_addr);
467                 for (i = dif_len; i < 4; i++, buf++)
468                         read_register_byte(dev,
469                                            IPW_REG_INDIRECT_ACCESS_DATA + i,
470                                            buf);
471
472                 len -= dif_len;
473                 aligned_addr += 4;
474         }
475
476         /* read DWs through autoincrement registers */
477         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
478         aligned_len = len & (~0x3);
479         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
480                 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
481
482         /* copy the last nibble */
483         dif_len = len - aligned_len;
484         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
485         for (i = 0; i < dif_len; i++, buf++)
486                 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
487 }
488
489 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
490 {
491         return (dev->base_addr &&
492                 (readl
493                  ((void __iomem *)(dev->base_addr +
494                                    IPW_REG_DOA_DEBUG_AREA_START))
495                  == IPW_DATA_DOA_DEBUG_VALUE));
496 }
497
498 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
499                                void *val, u32 * len)
500 {
501         struct ipw2100_ordinals *ordinals = &priv->ordinals;
502         u32 addr;
503         u32 field_info;
504         u16 field_len;
505         u16 field_count;
506         u32 total_length;
507
508         if (ordinals->table1_addr == 0) {
509                 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
510                        "before they have been loaded.\n");
511                 return -EINVAL;
512         }
513
514         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
515                 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
516                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
517
518                         printk(KERN_WARNING DRV_NAME
519                                ": ordinal buffer length too small, need %zd\n",
520                                IPW_ORD_TAB_1_ENTRY_SIZE);
521
522                         return -EINVAL;
523                 }
524
525                 read_nic_dword(priv->net_dev,
526                                ordinals->table1_addr + (ord << 2), &addr);
527                 read_nic_dword(priv->net_dev, addr, val);
528
529                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
530
531                 return 0;
532         }
533
534         if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
535
536                 ord -= IPW_START_ORD_TAB_2;
537
538                 /* get the address of statistic */
539                 read_nic_dword(priv->net_dev,
540                                ordinals->table2_addr + (ord << 3), &addr);
541
542                 /* get the second DW of statistics ;
543                  * two 16-bit words - first is length, second is count */
544                 read_nic_dword(priv->net_dev,
545                                ordinals->table2_addr + (ord << 3) + sizeof(u32),
546                                &field_info);
547
548                 /* get each entry length */
549                 field_len = *((u16 *) & field_info);
550
551                 /* get number of entries */
552                 field_count = *(((u16 *) & field_info) + 1);
553
554                 /* abort if no enought memory */
555                 total_length = field_len * field_count;
556                 if (total_length > *len) {
557                         *len = total_length;
558                         return -EINVAL;
559                 }
560
561                 *len = total_length;
562                 if (!total_length)
563                         return 0;
564
565                 /* read the ordinal data from the SRAM */
566                 read_nic_memory(priv->net_dev, addr, total_length, val);
567
568                 return 0;
569         }
570
571         printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
572                "in table 2\n", ord);
573
574         return -EINVAL;
575 }
576
577 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
578                                u32 * len)
579 {
580         struct ipw2100_ordinals *ordinals = &priv->ordinals;
581         u32 addr;
582
583         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
584                 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
585                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
586                         IPW_DEBUG_INFO("wrong size\n");
587                         return -EINVAL;
588                 }
589
590                 read_nic_dword(priv->net_dev,
591                                ordinals->table1_addr + (ord << 2), &addr);
592
593                 write_nic_dword(priv->net_dev, addr, *val);
594
595                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
596
597                 return 0;
598         }
599
600         IPW_DEBUG_INFO("wrong table\n");
601         if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
602                 return -EINVAL;
603
604         return -EINVAL;
605 }
606
607 static char *snprint_line(char *buf, size_t count,
608                           const u8 * data, u32 len, u32 ofs)
609 {
610         int out, i, j, l;
611         char c;
612
613         out = snprintf(buf, count, "%08X", ofs);
614
615         for (l = 0, i = 0; i < 2; i++) {
616                 out += snprintf(buf + out, count - out, " ");
617                 for (j = 0; j < 8 && l < len; j++, l++)
618                         out += snprintf(buf + out, count - out, "%02X ",
619                                         data[(i * 8 + j)]);
620                 for (; j < 8; j++)
621                         out += snprintf(buf + out, count - out, "   ");
622         }
623
624         out += snprintf(buf + out, count - out, " ");
625         for (l = 0, i = 0; i < 2; i++) {
626                 out += snprintf(buf + out, count - out, " ");
627                 for (j = 0; j < 8 && l < len; j++, l++) {
628                         c = data[(i * 8 + j)];
629                         if (!isascii(c) || !isprint(c))
630                                 c = '.';
631
632                         out += snprintf(buf + out, count - out, "%c", c);
633                 }
634
635                 for (; j < 8; j++)
636                         out += snprintf(buf + out, count - out, " ");
637         }
638
639         return buf;
640 }
641
642 static void printk_buf(int level, const u8 * data, u32 len)
643 {
644         char line[81];
645         u32 ofs = 0;
646         if (!(ipw2100_debug_level & level))
647                 return;
648
649         while (len) {
650                 printk(KERN_DEBUG "%s\n",
651                        snprint_line(line, sizeof(line), &data[ofs],
652                                     min(len, 16U), ofs));
653                 ofs += 16;
654                 len -= min(len, 16U);
655         }
656 }
657
658 #define MAX_RESET_BACKOFF 10
659
660 static void schedule_reset(struct ipw2100_priv *priv)
661 {
662         unsigned long now = get_seconds();
663
664         /* If we haven't received a reset request within the backoff period,
665          * then we can reset the backoff interval so this reset occurs
666          * immediately */
667         if (priv->reset_backoff &&
668             (now - priv->last_reset > priv->reset_backoff))
669                 priv->reset_backoff = 0;
670
671         priv->last_reset = get_seconds();
672
673         if (!(priv->status & STATUS_RESET_PENDING)) {
674                 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
675                                priv->net_dev->name, priv->reset_backoff);
676                 netif_carrier_off(priv->net_dev);
677                 netif_stop_queue(priv->net_dev);
678                 priv->status |= STATUS_RESET_PENDING;
679                 if (priv->reset_backoff)
680                         queue_delayed_work(priv->workqueue, &priv->reset_work,
681                                            priv->reset_backoff * HZ);
682                 else
683                         queue_work(priv->workqueue, &priv->reset_work);
684
685                 if (priv->reset_backoff < MAX_RESET_BACKOFF)
686                         priv->reset_backoff++;
687
688                 wake_up_interruptible(&priv->wait_command_queue);
689         } else
690                 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
691                                priv->net_dev->name);
692
693 }
694
695 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
696 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
697                                    struct host_command *cmd)
698 {
699         struct list_head *element;
700         struct ipw2100_tx_packet *packet;
701         unsigned long flags;
702         int err = 0;
703
704         IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
705                      command_types[cmd->host_command], cmd->host_command,
706                      cmd->host_command_length);
707         printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
708                    cmd->host_command_length);
709
710         spin_lock_irqsave(&priv->low_lock, flags);
711
712         if (priv->fatal_error) {
713                 IPW_DEBUG_INFO
714                     ("Attempt to send command while hardware in fatal error condition.\n");
715                 err = -EIO;
716                 goto fail_unlock;
717         }
718
719         if (!(priv->status & STATUS_RUNNING)) {
720                 IPW_DEBUG_INFO
721                     ("Attempt to send command while hardware is not running.\n");
722                 err = -EIO;
723                 goto fail_unlock;
724         }
725
726         if (priv->status & STATUS_CMD_ACTIVE) {
727                 IPW_DEBUG_INFO
728                     ("Attempt to send command while another command is pending.\n");
729                 err = -EBUSY;
730                 goto fail_unlock;
731         }
732
733         if (list_empty(&priv->msg_free_list)) {
734                 IPW_DEBUG_INFO("no available msg buffers\n");
735                 goto fail_unlock;
736         }
737
738         priv->status |= STATUS_CMD_ACTIVE;
739         priv->messages_sent++;
740
741         element = priv->msg_free_list.next;
742
743         packet = list_entry(element, struct ipw2100_tx_packet, list);
744         packet->jiffy_start = jiffies;
745
746         /* initialize the firmware command packet */
747         packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
748         packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
749         packet->info.c_struct.cmd->host_command_len_reg =
750             cmd->host_command_length;
751         packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
752
753         memcpy(packet->info.c_struct.cmd->host_command_params_reg,
754                cmd->host_command_parameters,
755                sizeof(packet->info.c_struct.cmd->host_command_params_reg));
756
757         list_del(element);
758         DEC_STAT(&priv->msg_free_stat);
759
760         list_add_tail(element, &priv->msg_pend_list);
761         INC_STAT(&priv->msg_pend_stat);
762
763         ipw2100_tx_send_commands(priv);
764         ipw2100_tx_send_data(priv);
765
766         spin_unlock_irqrestore(&priv->low_lock, flags);
767
768         /*
769          * We must wait for this command to complete before another
770          * command can be sent...  but if we wait more than 3 seconds
771          * then there is a problem.
772          */
773
774         err =
775             wait_event_interruptible_timeout(priv->wait_command_queue,
776                                              !(priv->
777                                                status & STATUS_CMD_ACTIVE),
778                                              HOST_COMPLETE_TIMEOUT);
779
780         if (err == 0) {
781                 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
782                                1000 * (HOST_COMPLETE_TIMEOUT / HZ));
783                 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
784                 priv->status &= ~STATUS_CMD_ACTIVE;
785                 schedule_reset(priv);
786                 return -EIO;
787         }
788
789         if (priv->fatal_error) {
790                 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
791                        priv->net_dev->name);
792                 return -EIO;
793         }
794
795         /* !!!!! HACK TEST !!!!!
796          * When lots of debug trace statements are enabled, the driver
797          * doesn't seem to have as many firmware restart cycles...
798          *
799          * As a test, we're sticking in a 1/100s delay here */
800         schedule_timeout_uninterruptible(msecs_to_jiffies(10));
801
802         return 0;
803
804       fail_unlock:
805         spin_unlock_irqrestore(&priv->low_lock, flags);
806
807         return err;
808 }
809
810 /*
811  * Verify the values and data access of the hardware
812  * No locks needed or used.  No functions called.
813  */
814 static int ipw2100_verify(struct ipw2100_priv *priv)
815 {
816         u32 data1, data2;
817         u32 address;
818
819         u32 val1 = 0x76543210;
820         u32 val2 = 0xFEDCBA98;
821
822         /* Domain 0 check - all values should be DOA_DEBUG */
823         for (address = IPW_REG_DOA_DEBUG_AREA_START;
824              address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
825                 read_register(priv->net_dev, address, &data1);
826                 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
827                         return -EIO;
828         }
829
830         /* Domain 1 check - use arbitrary read/write compare  */
831         for (address = 0; address < 5; address++) {
832                 /* The memory area is not used now */
833                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
834                                val1);
835                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
836                                val2);
837                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
838                               &data1);
839                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
840                               &data2);
841                 if (val1 == data1 && val2 == data2)
842                         return 0;
843         }
844
845         return -EIO;
846 }
847
848 /*
849  *
850  * Loop until the CARD_DISABLED bit is the same value as the
851  * supplied parameter
852  *
853  * TODO: See if it would be more efficient to do a wait/wake
854  *       cycle and have the completion event trigger the wakeup
855  *
856  */
857 #define IPW_CARD_DISABLE_COMPLETE_WAIT              100 // 100 milli
858 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
859 {
860         int i;
861         u32 card_state;
862         u32 len = sizeof(card_state);
863         int err;
864
865         for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
866                 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
867                                           &card_state, &len);
868                 if (err) {
869                         IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
870                                        "failed.\n");
871                         return 0;
872                 }
873
874                 /* We'll break out if either the HW state says it is
875                  * in the state we want, or if HOST_COMPLETE command
876                  * finishes */
877                 if ((card_state == state) ||
878                     ((priv->status & STATUS_ENABLED) ?
879                      IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
880                         if (state == IPW_HW_STATE_ENABLED)
881                                 priv->status |= STATUS_ENABLED;
882                         else
883                                 priv->status &= ~STATUS_ENABLED;
884
885                         return 0;
886                 }
887
888                 udelay(50);
889         }
890
891         IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
892                        state ? "DISABLED" : "ENABLED");
893         return -EIO;
894 }
895
896 /*********************************************************************
897     Procedure   :   sw_reset_and_clock
898     Purpose     :   Asserts s/w reset, asserts clock initialization
899                     and waits for clock stabilization
900  ********************************************************************/
901 static int sw_reset_and_clock(struct ipw2100_priv *priv)
902 {
903         int i;
904         u32 r;
905
906         // assert s/w reset
907         write_register(priv->net_dev, IPW_REG_RESET_REG,
908                        IPW_AUX_HOST_RESET_REG_SW_RESET);
909
910         // wait for clock stabilization
911         for (i = 0; i < 1000; i++) {
912                 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
913
914                 // check clock ready bit
915                 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
916                 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
917                         break;
918         }
919
920         if (i == 1000)
921                 return -EIO;    // TODO: better error value
922
923         /* set "initialization complete" bit to move adapter to
924          * D0 state */
925         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
926                        IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
927
928         /* wait for clock stabilization */
929         for (i = 0; i < 10000; i++) {
930                 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
931
932                 /* check clock ready bit */
933                 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
934                 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
935                         break;
936         }
937
938         if (i == 10000)
939                 return -EIO;    /* TODO: better error value */
940
941         /* set D0 standby bit */
942         read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
943         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
944                        r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
945
946         return 0;
947 }
948
949 /*********************************************************************
950     Procedure   :   ipw2100_download_firmware
951     Purpose     :   Initiaze adapter after power on.
952                     The sequence is:
953                     1. assert s/w reset first!
954                     2. awake clocks & wait for clock stabilization
955                     3. hold ARC (don't ask me why...)
956                     4. load Dino ucode and reset/clock init again
957                     5. zero-out shared mem
958                     6. download f/w
959  *******************************************************************/
960 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
961 {
962         u32 address;
963         int err;
964
965 #ifndef CONFIG_PM
966         /* Fetch the firmware and microcode */
967         struct ipw2100_fw ipw2100_firmware;
968 #endif
969
970         if (priv->fatal_error) {
971                 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
972                                 "fatal error %d.  Interface must be brought down.\n",
973                                 priv->net_dev->name, priv->fatal_error);
974                 return -EINVAL;
975         }
976 #ifdef CONFIG_PM
977         if (!ipw2100_firmware.version) {
978                 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
979                 if (err) {
980                         IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
981                                         priv->net_dev->name, err);
982                         priv->fatal_error = IPW2100_ERR_FW_LOAD;
983                         goto fail;
984                 }
985         }
986 #else
987         err = ipw2100_get_firmware(priv, &ipw2100_firmware);
988         if (err) {
989                 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
990                                 priv->net_dev->name, err);
991                 priv->fatal_error = IPW2100_ERR_FW_LOAD;
992                 goto fail;
993         }
994 #endif
995         priv->firmware_version = ipw2100_firmware.version;
996
997         /* s/w reset and clock stabilization */
998         err = sw_reset_and_clock(priv);
999         if (err) {
1000                 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1001                                 priv->net_dev->name, err);
1002                 goto fail;
1003         }
1004
1005         err = ipw2100_verify(priv);
1006         if (err) {
1007                 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1008                                 priv->net_dev->name, err);
1009                 goto fail;
1010         }
1011
1012         /* Hold ARC */
1013         write_nic_dword(priv->net_dev,
1014                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1015
1016         /* allow ARC to run */
1017         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1018
1019         /* load microcode */
1020         err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1021         if (err) {
1022                 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1023                        priv->net_dev->name, err);
1024                 goto fail;
1025         }
1026
1027         /* release ARC */
1028         write_nic_dword(priv->net_dev,
1029                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1030
1031         /* s/w reset and clock stabilization (again!!!) */
1032         err = sw_reset_and_clock(priv);
1033         if (err) {
1034                 printk(KERN_ERR DRV_NAME
1035                        ": %s: sw_reset_and_clock failed: %d\n",
1036                        priv->net_dev->name, err);
1037                 goto fail;
1038         }
1039
1040         /* load f/w */
1041         err = ipw2100_fw_download(priv, &ipw2100_firmware);
1042         if (err) {
1043                 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1044                                 priv->net_dev->name, err);
1045                 goto fail;
1046         }
1047 #ifndef CONFIG_PM
1048         /*
1049          * When the .resume method of the driver is called, the other
1050          * part of the system, i.e. the ide driver could still stay in
1051          * the suspend stage. This prevents us from loading the firmware
1052          * from the disk.  --YZ
1053          */
1054
1055         /* free any storage allocated for firmware image */
1056         ipw2100_release_firmware(priv, &ipw2100_firmware);
1057 #endif
1058
1059         /* zero out Domain 1 area indirectly (Si requirement) */
1060         for (address = IPW_HOST_FW_SHARED_AREA0;
1061              address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1062                 write_nic_dword(priv->net_dev, address, 0);
1063         for (address = IPW_HOST_FW_SHARED_AREA1;
1064              address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1065                 write_nic_dword(priv->net_dev, address, 0);
1066         for (address = IPW_HOST_FW_SHARED_AREA2;
1067              address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1068                 write_nic_dword(priv->net_dev, address, 0);
1069         for (address = IPW_HOST_FW_SHARED_AREA3;
1070              address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1071                 write_nic_dword(priv->net_dev, address, 0);
1072         for (address = IPW_HOST_FW_INTERRUPT_AREA;
1073              address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1074                 write_nic_dword(priv->net_dev, address, 0);
1075
1076         return 0;
1077
1078       fail:
1079         ipw2100_release_firmware(priv, &ipw2100_firmware);
1080         return err;
1081 }
1082
1083 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1084 {
1085         if (priv->status & STATUS_INT_ENABLED)
1086                 return;
1087         priv->status |= STATUS_INT_ENABLED;
1088         write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1089 }
1090
1091 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1092 {
1093         if (!(priv->status & STATUS_INT_ENABLED))
1094                 return;
1095         priv->status &= ~STATUS_INT_ENABLED;
1096         write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1097 }
1098
1099 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1100 {
1101         struct ipw2100_ordinals *ord = &priv->ordinals;
1102
1103         IPW_DEBUG_INFO("enter\n");
1104
1105         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1106                       &ord->table1_addr);
1107
1108         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1109                       &ord->table2_addr);
1110
1111         read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1112         read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1113
1114         ord->table2_size &= 0x0000FFFF;
1115
1116         IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1117         IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1118         IPW_DEBUG_INFO("exit\n");
1119 }
1120
1121 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1122 {
1123         u32 reg = 0;
1124         /*
1125          * Set GPIO 3 writable by FW; GPIO 1 writable
1126          * by driver and enable clock
1127          */
1128         reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1129                IPW_BIT_GPIO_LED_OFF);
1130         write_register(priv->net_dev, IPW_REG_GPIO, reg);
1131 }
1132
1133 static int rf_kill_active(struct ipw2100_priv *priv)
1134 {
1135 #define MAX_RF_KILL_CHECKS 5
1136 #define RF_KILL_CHECK_DELAY 40
1137
1138         unsigned short value = 0;
1139         u32 reg = 0;
1140         int i;
1141
1142         if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1143                 priv->status &= ~STATUS_RF_KILL_HW;
1144                 return 0;
1145         }
1146
1147         for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1148                 udelay(RF_KILL_CHECK_DELAY);
1149                 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1150                 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1151         }
1152
1153         if (value == 0)
1154                 priv->status |= STATUS_RF_KILL_HW;
1155         else
1156                 priv->status &= ~STATUS_RF_KILL_HW;
1157
1158         return (value == 0);
1159 }
1160
1161 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1162 {
1163         u32 addr, len;
1164         u32 val;
1165
1166         /*
1167          * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1168          */
1169         len = sizeof(addr);
1170         if (ipw2100_get_ordinal
1171             (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1172                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1173                                __LINE__);
1174                 return -EIO;
1175         }
1176
1177         IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1178
1179         /*
1180          * EEPROM version is the byte at offset 0xfd in firmware
1181          * We read 4 bytes, then shift out the byte we actually want */
1182         read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1183         priv->eeprom_version = (val >> 24) & 0xFF;
1184         IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1185
1186         /*
1187          *  HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1188          *
1189          *  notice that the EEPROM bit is reverse polarity, i.e.
1190          *     bit = 0  signifies HW RF kill switch is supported
1191          *     bit = 1  signifies HW RF kill switch is NOT supported
1192          */
1193         read_nic_dword(priv->net_dev, addr + 0x20, &val);
1194         if (!((val >> 24) & 0x01))
1195                 priv->hw_features |= HW_FEATURE_RFKILL;
1196
1197         IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1198                        (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1199
1200         return 0;
1201 }
1202
1203 /*
1204  * Start firmware execution after power on and intialization
1205  * The sequence is:
1206  *  1. Release ARC
1207  *  2. Wait for f/w initialization completes;
1208  */
1209 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1210 {
1211         int i;
1212         u32 inta, inta_mask, gpio;
1213
1214         IPW_DEBUG_INFO("enter\n");
1215
1216         if (priv->status & STATUS_RUNNING)
1217                 return 0;
1218
1219         /*
1220          * Initialize the hw - drive adapter to DO state by setting
1221          * init_done bit. Wait for clk_ready bit and Download
1222          * fw & dino ucode
1223          */
1224         if (ipw2100_download_firmware(priv)) {
1225                 printk(KERN_ERR DRV_NAME
1226                        ": %s: Failed to power on the adapter.\n",
1227                        priv->net_dev->name);
1228                 return -EIO;
1229         }
1230
1231         /* Clear the Tx, Rx and Msg queues and the r/w indexes
1232          * in the firmware RBD and TBD ring queue */
1233         ipw2100_queues_initialize(priv);
1234
1235         ipw2100_hw_set_gpio(priv);
1236
1237         /* TODO -- Look at disabling interrupts here to make sure none
1238          * get fired during FW initialization */
1239
1240         /* Release ARC - clear reset bit */
1241         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1242
1243         /* wait for f/w intialization complete */
1244         IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1245         i = 5000;
1246         do {
1247                 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1248                 /* Todo... wait for sync command ... */
1249
1250                 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1251
1252                 /* check "init done" bit */
1253                 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1254                         /* reset "init done" bit */
1255                         write_register(priv->net_dev, IPW_REG_INTA,
1256                                        IPW2100_INTA_FW_INIT_DONE);
1257                         break;
1258                 }
1259
1260                 /* check error conditions : we check these after the firmware
1261                  * check so that if there is an error, the interrupt handler
1262                  * will see it and the adapter will be reset */
1263                 if (inta &
1264                     (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1265                         /* clear error conditions */
1266                         write_register(priv->net_dev, IPW_REG_INTA,
1267                                        IPW2100_INTA_FATAL_ERROR |
1268                                        IPW2100_INTA_PARITY_ERROR);
1269                 }
1270         } while (i--);
1271
1272         /* Clear out any pending INTAs since we aren't supposed to have
1273          * interrupts enabled at this point... */
1274         read_register(priv->net_dev, IPW_REG_INTA, &inta);
1275         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1276         inta &= IPW_INTERRUPT_MASK;
1277         /* Clear out any pending interrupts */
1278         if (inta & inta_mask)
1279                 write_register(priv->net_dev, IPW_REG_INTA, inta);
1280
1281         IPW_DEBUG_FW("f/w initialization complete: %s\n",
1282                      i ? "SUCCESS" : "FAILED");
1283
1284         if (!i) {
1285                 printk(KERN_WARNING DRV_NAME
1286                        ": %s: Firmware did not initialize.\n",
1287                        priv->net_dev->name);
1288                 return -EIO;
1289         }
1290
1291         /* allow firmware to write to GPIO1 & GPIO3 */
1292         read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1293
1294         gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1295
1296         write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1297
1298         /* Ready to receive commands */
1299         priv->status |= STATUS_RUNNING;
1300
1301         /* The adapter has been reset; we are not associated */
1302         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1303
1304         IPW_DEBUG_INFO("exit\n");
1305
1306         return 0;
1307 }
1308
1309 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1310 {
1311         if (!priv->fatal_error)
1312                 return;
1313
1314         priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1315         priv->fatal_index %= IPW2100_ERROR_QUEUE;
1316         priv->fatal_error = 0;
1317 }
1318
1319 /* NOTE: Our interrupt is disabled when this method is called */
1320 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1321 {
1322         u32 reg;
1323         int i;
1324
1325         IPW_DEBUG_INFO("Power cycling the hardware.\n");
1326
1327         ipw2100_hw_set_gpio(priv);
1328
1329         /* Step 1. Stop Master Assert */
1330         write_register(priv->net_dev, IPW_REG_RESET_REG,
1331                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1332
1333         /* Step 2. Wait for stop Master Assert
1334          *         (not more then 50us, otherwise ret error */
1335         i = 5;
1336         do {
1337                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1338                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1339
1340                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1341                         break;
1342         } while (i--);
1343
1344         priv->status &= ~STATUS_RESET_PENDING;
1345
1346         if (!i) {
1347                 IPW_DEBUG_INFO
1348                     ("exit - waited too long for master assert stop\n");
1349                 return -EIO;
1350         }
1351
1352         write_register(priv->net_dev, IPW_REG_RESET_REG,
1353                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1354
1355         /* Reset any fatal_error conditions */
1356         ipw2100_reset_fatalerror(priv);
1357
1358         /* At this point, the adapter is now stopped and disabled */
1359         priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1360                           STATUS_ASSOCIATED | STATUS_ENABLED);
1361
1362         return 0;
1363 }
1364
1365 /*
1366  * Send the CARD_DISABLE_PHY_OFF comamnd to the card to disable it
1367  *
1368  * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1369  *
1370  * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1371  * if STATUS_ASSN_LOST is sent.
1372  */
1373 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1374 {
1375
1376 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1377
1378         struct host_command cmd = {
1379                 .host_command = CARD_DISABLE_PHY_OFF,
1380                 .host_command_sequence = 0,
1381                 .host_command_length = 0,
1382         };
1383         int err, i;
1384         u32 val1, val2;
1385
1386         IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1387
1388         /* Turn off the radio */
1389         err = ipw2100_hw_send_command(priv, &cmd);
1390         if (err)
1391                 return err;
1392
1393         for (i = 0; i < 2500; i++) {
1394                 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1395                 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1396
1397                 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1398                     (val2 & IPW2100_COMMAND_PHY_OFF))
1399                         return 0;
1400
1401                 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1402         }
1403
1404         return -EIO;
1405 }
1406
1407 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1408 {
1409         struct host_command cmd = {
1410                 .host_command = HOST_COMPLETE,
1411                 .host_command_sequence = 0,
1412                 .host_command_length = 0
1413         };
1414         int err = 0;
1415
1416         IPW_DEBUG_HC("HOST_COMPLETE\n");
1417
1418         if (priv->status & STATUS_ENABLED)
1419                 return 0;
1420
1421         down(&priv->adapter_sem);
1422
1423         if (rf_kill_active(priv)) {
1424                 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1425                 goto fail_up;
1426         }
1427
1428         err = ipw2100_hw_send_command(priv, &cmd);
1429         if (err) {
1430                 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1431                 goto fail_up;
1432         }
1433
1434         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1435         if (err) {
1436                 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1437                                priv->net_dev->name);
1438                 goto fail_up;
1439         }
1440
1441         if (priv->stop_hang_check) {
1442                 priv->stop_hang_check = 0;
1443                 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
1444         }
1445
1446       fail_up:
1447         up(&priv->adapter_sem);
1448         return err;
1449 }
1450
1451 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1452 {
1453 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1454
1455         struct host_command cmd = {
1456                 .host_command = HOST_PRE_POWER_DOWN,
1457                 .host_command_sequence = 0,
1458                 .host_command_length = 0,
1459         };
1460         int err, i;
1461         u32 reg;
1462
1463         if (!(priv->status & STATUS_RUNNING))
1464                 return 0;
1465
1466         priv->status |= STATUS_STOPPING;
1467
1468         /* We can only shut down the card if the firmware is operational.  So,
1469          * if we haven't reset since a fatal_error, then we can not send the
1470          * shutdown commands. */
1471         if (!priv->fatal_error) {
1472                 /* First, make sure the adapter is enabled so that the PHY_OFF
1473                  * command can shut it down */
1474                 ipw2100_enable_adapter(priv);
1475
1476                 err = ipw2100_hw_phy_off(priv);
1477                 if (err)
1478                         printk(KERN_WARNING DRV_NAME
1479                                ": Error disabling radio %d\n", err);
1480
1481                 /*
1482                  * If in D0-standby mode going directly to D3 may cause a
1483                  * PCI bus violation.  Therefore we must change out of the D0
1484                  * state.
1485                  *
1486                  * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1487                  * hardware from going into standby mode and will transition
1488                  * out of D0-standy if it is already in that state.
1489                  *
1490                  * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1491                  * driver upon completion.  Once received, the driver can
1492                  * proceed to the D3 state.
1493                  *
1494                  * Prepare for power down command to fw.  This command would
1495                  * take HW out of D0-standby and prepare it for D3 state.
1496                  *
1497                  * Currently FW does not support event notification for this
1498                  * event. Therefore, skip waiting for it.  Just wait a fixed
1499                  * 100ms
1500                  */
1501                 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1502
1503                 err = ipw2100_hw_send_command(priv, &cmd);
1504                 if (err)
1505                         printk(KERN_WARNING DRV_NAME ": "
1506                                "%s: Power down command failed: Error %d\n",
1507                                priv->net_dev->name, err);
1508                 else
1509                         schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1510         }
1511
1512         priv->status &= ~STATUS_ENABLED;
1513
1514         /*
1515          * Set GPIO 3 writable by FW; GPIO 1 writable
1516          * by driver and enable clock
1517          */
1518         ipw2100_hw_set_gpio(priv);
1519
1520         /*
1521          * Power down adapter.  Sequence:
1522          * 1. Stop master assert (RESET_REG[9]=1)
1523          * 2. Wait for stop master (RESET_REG[8]==1)
1524          * 3. S/w reset assert (RESET_REG[7] = 1)
1525          */
1526
1527         /* Stop master assert */
1528         write_register(priv->net_dev, IPW_REG_RESET_REG,
1529                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1530
1531         /* wait stop master not more than 50 usec.
1532          * Otherwise return error. */
1533         for (i = 5; i > 0; i--) {
1534                 udelay(10);
1535
1536                 /* Check master stop bit */
1537                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1538
1539                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1540                         break;
1541         }
1542
1543         if (i == 0)
1544                 printk(KERN_WARNING DRV_NAME
1545                        ": %s: Could now power down adapter.\n",
1546                        priv->net_dev->name);
1547
1548         /* assert s/w reset */
1549         write_register(priv->net_dev, IPW_REG_RESET_REG,
1550                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1551
1552         priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1553
1554         return 0;
1555 }
1556
1557 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1558 {
1559         struct host_command cmd = {
1560                 .host_command = CARD_DISABLE,
1561                 .host_command_sequence = 0,
1562                 .host_command_length = 0
1563         };
1564         int err = 0;
1565
1566         IPW_DEBUG_HC("CARD_DISABLE\n");
1567
1568         if (!(priv->status & STATUS_ENABLED))
1569                 return 0;
1570
1571         /* Make sure we clear the associated state */
1572         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1573
1574         if (!priv->stop_hang_check) {
1575                 priv->stop_hang_check = 1;
1576                 cancel_delayed_work(&priv->hang_check);
1577         }
1578
1579         down(&priv->adapter_sem);
1580
1581         err = ipw2100_hw_send_command(priv, &cmd);
1582         if (err) {
1583                 printk(KERN_WARNING DRV_NAME
1584                        ": exit - failed to send CARD_DISABLE command\n");
1585                 goto fail_up;
1586         }
1587
1588         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1589         if (err) {
1590                 printk(KERN_WARNING DRV_NAME
1591                        ": exit - card failed to change to DISABLED\n");
1592                 goto fail_up;
1593         }
1594
1595         IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1596
1597       fail_up:
1598         up(&priv->adapter_sem);
1599         return err;
1600 }
1601
1602 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1603 {
1604         struct host_command cmd = {
1605                 .host_command = SET_SCAN_OPTIONS,
1606                 .host_command_sequence = 0,
1607                 .host_command_length = 8
1608         };
1609         int err;
1610
1611         IPW_DEBUG_INFO("enter\n");
1612
1613         IPW_DEBUG_SCAN("setting scan options\n");
1614
1615         cmd.host_command_parameters[0] = 0;
1616
1617         if (!(priv->config & CFG_ASSOCIATE))
1618                 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1619         if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1620                 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1621         if (priv->config & CFG_PASSIVE_SCAN)
1622                 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1623
1624         cmd.host_command_parameters[1] = priv->channel_mask;
1625
1626         err = ipw2100_hw_send_command(priv, &cmd);
1627
1628         IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1629                      cmd.host_command_parameters[0]);
1630
1631         return err;
1632 }
1633
1634 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1635 {
1636         struct host_command cmd = {
1637                 .host_command = BROADCAST_SCAN,
1638                 .host_command_sequence = 0,
1639                 .host_command_length = 4
1640         };
1641         int err;
1642
1643         IPW_DEBUG_HC("START_SCAN\n");
1644
1645         cmd.host_command_parameters[0] = 0;
1646
1647         /* No scanning if in monitor mode */
1648         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1649                 return 1;
1650
1651         if (priv->status & STATUS_SCANNING) {
1652                 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1653                 return 0;
1654         }
1655
1656         IPW_DEBUG_INFO("enter\n");
1657
1658         /* Not clearing here; doing so makes iwlist always return nothing...
1659          *
1660          * We should modify the table logic to use aging tables vs. clearing
1661          * the table on each scan start.
1662          */
1663         IPW_DEBUG_SCAN("starting scan\n");
1664
1665         priv->status |= STATUS_SCANNING;
1666         err = ipw2100_hw_send_command(priv, &cmd);
1667         if (err)
1668                 priv->status &= ~STATUS_SCANNING;
1669
1670         IPW_DEBUG_INFO("exit\n");
1671
1672         return err;
1673 }
1674
1675 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1676 {
1677         unsigned long flags;
1678         int rc = 0;
1679         u32 lock;
1680         u32 ord_len = sizeof(lock);
1681
1682         /* Quite if manually disabled. */
1683         if (priv->status & STATUS_RF_KILL_SW) {
1684                 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1685                                "switch\n", priv->net_dev->name);
1686                 return 0;
1687         }
1688
1689         /* If the interrupt is enabled, turn it off... */
1690         spin_lock_irqsave(&priv->low_lock, flags);
1691         ipw2100_disable_interrupts(priv);
1692
1693         /* Reset any fatal_error conditions */
1694         ipw2100_reset_fatalerror(priv);
1695         spin_unlock_irqrestore(&priv->low_lock, flags);
1696
1697         if (priv->status & STATUS_POWERED ||
1698             (priv->status & STATUS_RESET_PENDING)) {
1699                 /* Power cycle the card ... */
1700                 if (ipw2100_power_cycle_adapter(priv)) {
1701                         printk(KERN_WARNING DRV_NAME
1702                                ": %s: Could not cycle adapter.\n",
1703                                priv->net_dev->name);
1704                         rc = 1;
1705                         goto exit;
1706                 }
1707         } else
1708                 priv->status |= STATUS_POWERED;
1709
1710         /* Load the firmware, start the clocks, etc. */
1711         if (ipw2100_start_adapter(priv)) {
1712                 printk(KERN_ERR DRV_NAME
1713                        ": %s: Failed to start the firmware.\n",
1714                        priv->net_dev->name);
1715                 rc = 1;
1716                 goto exit;
1717         }
1718
1719         ipw2100_initialize_ordinals(priv);
1720
1721         /* Determine capabilities of this particular HW configuration */
1722         if (ipw2100_get_hw_features(priv)) {
1723                 printk(KERN_ERR DRV_NAME
1724                        ": %s: Failed to determine HW features.\n",
1725                        priv->net_dev->name);
1726                 rc = 1;
1727                 goto exit;
1728         }
1729
1730         lock = LOCK_NONE;
1731         if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1732                 printk(KERN_ERR DRV_NAME
1733                        ": %s: Failed to clear ordinal lock.\n",
1734                        priv->net_dev->name);
1735                 rc = 1;
1736                 goto exit;
1737         }
1738
1739         priv->status &= ~STATUS_SCANNING;
1740
1741         if (rf_kill_active(priv)) {
1742                 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1743                        priv->net_dev->name);
1744
1745                 if (priv->stop_rf_kill) {
1746                         priv->stop_rf_kill = 0;
1747                         queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
1748                 }
1749
1750                 deferred = 1;
1751         }
1752
1753         /* Turn on the interrupt so that commands can be processed */
1754         ipw2100_enable_interrupts(priv);
1755
1756         /* Send all of the commands that must be sent prior to
1757          * HOST_COMPLETE */
1758         if (ipw2100_adapter_setup(priv)) {
1759                 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1760                        priv->net_dev->name);
1761                 rc = 1;
1762                 goto exit;
1763         }
1764
1765         if (!deferred) {
1766                 /* Enable the adapter - sends HOST_COMPLETE */
1767                 if (ipw2100_enable_adapter(priv)) {
1768                         printk(KERN_ERR DRV_NAME ": "
1769                                "%s: failed in call to enable adapter.\n",
1770                                priv->net_dev->name);
1771                         ipw2100_hw_stop_adapter(priv);
1772                         rc = 1;
1773                         goto exit;
1774                 }
1775
1776                 /* Start a scan . . . */
1777                 ipw2100_set_scan_options(priv);
1778                 ipw2100_start_scan(priv);
1779         }
1780
1781       exit:
1782         return rc;
1783 }
1784
1785 /* Called by register_netdev() */
1786 static int ipw2100_net_init(struct net_device *dev)
1787 {
1788         struct ipw2100_priv *priv = ieee80211_priv(dev);
1789         return ipw2100_up(priv, 1);
1790 }
1791
1792 static void ipw2100_down(struct ipw2100_priv *priv)
1793 {
1794         unsigned long flags;
1795         union iwreq_data wrqu = {
1796                 .ap_addr = {
1797                             .sa_family = ARPHRD_ETHER}
1798         };
1799         int associated = priv->status & STATUS_ASSOCIATED;
1800
1801         /* Kill the RF switch timer */
1802         if (!priv->stop_rf_kill) {
1803                 priv->stop_rf_kill = 1;
1804                 cancel_delayed_work(&priv->rf_kill);
1805         }
1806
1807         /* Kill the firmare hang check timer */
1808         if (!priv->stop_hang_check) {
1809                 priv->stop_hang_check = 1;
1810                 cancel_delayed_work(&priv->hang_check);
1811         }
1812
1813         /* Kill any pending resets */
1814         if (priv->status & STATUS_RESET_PENDING)
1815                 cancel_delayed_work(&priv->reset_work);
1816
1817         /* Make sure the interrupt is on so that FW commands will be
1818          * processed correctly */
1819         spin_lock_irqsave(&priv->low_lock, flags);
1820         ipw2100_enable_interrupts(priv);
1821         spin_unlock_irqrestore(&priv->low_lock, flags);
1822
1823         if (ipw2100_hw_stop_adapter(priv))
1824                 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1825                        priv->net_dev->name);
1826
1827         /* Do not disable the interrupt until _after_ we disable
1828          * the adaptor.  Otherwise the CARD_DISABLE command will never
1829          * be ack'd by the firmware */
1830         spin_lock_irqsave(&priv->low_lock, flags);
1831         ipw2100_disable_interrupts(priv);
1832         spin_unlock_irqrestore(&priv->low_lock, flags);
1833
1834 #ifdef ACPI_CSTATE_LIMIT_DEFINED
1835         if (priv->config & CFG_C3_DISABLED) {
1836                 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
1837                 acpi_set_cstate_limit(priv->cstate_limit);
1838                 priv->config &= ~CFG_C3_DISABLED;
1839         }
1840 #endif
1841
1842         /* We have to signal any supplicant if we are disassociating */
1843         if (associated)
1844                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1845
1846         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1847         netif_carrier_off(priv->net_dev);
1848         netif_stop_queue(priv->net_dev);
1849 }
1850
1851 static void ipw2100_reset_adapter(struct ipw2100_priv *priv)
1852 {
1853         unsigned long flags;
1854         union iwreq_data wrqu = {
1855                 .ap_addr = {
1856                             .sa_family = ARPHRD_ETHER}
1857         };
1858         int associated = priv->status & STATUS_ASSOCIATED;
1859
1860         spin_lock_irqsave(&priv->low_lock, flags);
1861         IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1862         priv->resets++;
1863         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1864         priv->status |= STATUS_SECURITY_UPDATED;
1865
1866         /* Force a power cycle even if interface hasn't been opened
1867          * yet */
1868         cancel_delayed_work(&priv->reset_work);
1869         priv->status |= STATUS_RESET_PENDING;
1870         spin_unlock_irqrestore(&priv->low_lock, flags);
1871
1872         down(&priv->action_sem);
1873         /* stop timed checks so that they don't interfere with reset */
1874         priv->stop_hang_check = 1;
1875         cancel_delayed_work(&priv->hang_check);
1876
1877         /* We have to signal any supplicant if we are disassociating */
1878         if (associated)
1879                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1880
1881         ipw2100_up(priv, 0);
1882         up(&priv->action_sem);
1883
1884 }
1885
1886 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1887 {
1888
1889 #define MAC_ASSOCIATION_READ_DELAY (HZ)
1890         int ret, len, essid_len;
1891         char essid[IW_ESSID_MAX_SIZE];
1892         u32 txrate;
1893         u32 chan;
1894         char *txratename;
1895         u8 bssid[ETH_ALEN];
1896
1897         /*
1898          * TBD: BSSID is usually 00:00:00:00:00:00 here and not
1899          *      an actual MAC of the AP. Seems like FW sets this
1900          *      address too late. Read it later and expose through
1901          *      /proc or schedule a later task to query and update
1902          */
1903
1904         essid_len = IW_ESSID_MAX_SIZE;
1905         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
1906                                   essid, &essid_len);
1907         if (ret) {
1908                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1909                                __LINE__);
1910                 return;
1911         }
1912
1913         len = sizeof(u32);
1914         ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
1915         if (ret) {
1916                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1917                                __LINE__);
1918                 return;
1919         }
1920
1921         len = sizeof(u32);
1922         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
1923         if (ret) {
1924                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1925                                __LINE__);
1926                 return;
1927         }
1928         len = ETH_ALEN;
1929         ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
1930         if (ret) {
1931                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1932                                __LINE__);
1933                 return;
1934         }
1935         memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
1936
1937         switch (txrate) {
1938         case TX_RATE_1_MBIT:
1939                 txratename = "1Mbps";
1940                 break;
1941         case TX_RATE_2_MBIT:
1942                 txratename = "2Mbsp";
1943                 break;
1944         case TX_RATE_5_5_MBIT:
1945                 txratename = "5.5Mbps";
1946                 break;
1947         case TX_RATE_11_MBIT:
1948                 txratename = "11Mbps";
1949                 break;
1950         default:
1951                 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
1952                 txratename = "unknown rate";
1953                 break;
1954         }
1955
1956         IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID="
1957                        MAC_FMT ")\n",
1958                        priv->net_dev->name, escape_essid(essid, essid_len),
1959                        txratename, chan, MAC_ARG(bssid));
1960
1961         /* now we copy read ssid into dev */
1962         if (!(priv->config & CFG_STATIC_ESSID)) {
1963                 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
1964                 memcpy(priv->essid, essid, priv->essid_len);
1965         }
1966         priv->channel = chan;
1967         memcpy(priv->bssid, bssid, ETH_ALEN);
1968
1969         priv->status |= STATUS_ASSOCIATING;
1970         priv->connect_start = get_seconds();
1971
1972         queue_delayed_work(priv->workqueue, &priv->wx_event_work, HZ / 10);
1973 }
1974
1975 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
1976                              int length, int batch_mode)
1977 {
1978         int ssid_len = min(length, IW_ESSID_MAX_SIZE);
1979         struct host_command cmd = {
1980                 .host_command = SSID,
1981                 .host_command_sequence = 0,
1982                 .host_command_length = ssid_len
1983         };
1984         int err;
1985
1986         IPW_DEBUG_HC("SSID: '%s'\n", escape_essid(essid, ssid_len));
1987
1988         if (ssid_len)
1989                 memcpy(cmd.host_command_parameters, essid, ssid_len);
1990
1991         if (!batch_mode) {
1992                 err = ipw2100_disable_adapter(priv);
1993                 if (err)
1994                         return err;
1995         }
1996
1997         /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
1998          * disable auto association -- so we cheat by setting a bogus SSID */
1999         if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2000                 int i;
2001                 u8 *bogus = (u8 *) cmd.host_command_parameters;
2002                 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2003                         bogus[i] = 0x18 + i;
2004                 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2005         }
2006
2007         /* NOTE:  We always send the SSID command even if the provided ESSID is
2008          * the same as what we currently think is set. */
2009
2010         err = ipw2100_hw_send_command(priv, &cmd);
2011         if (!err) {
2012                 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2013                 memcpy(priv->essid, essid, ssid_len);
2014                 priv->essid_len = ssid_len;
2015         }
2016
2017         if (!batch_mode) {
2018                 if (ipw2100_enable_adapter(priv))
2019                         err = -EIO;
2020         }
2021
2022         return err;
2023 }
2024
2025 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2026 {
2027         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2028                   "disassociated: '%s' " MAC_FMT " \n",
2029                   escape_essid(priv->essid, priv->essid_len),
2030                   MAC_ARG(priv->bssid));
2031
2032         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2033
2034         if (priv->status & STATUS_STOPPING) {
2035                 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2036                 return;
2037         }
2038
2039         memset(priv->bssid, 0, ETH_ALEN);
2040         memset(priv->ieee->bssid, 0, ETH_ALEN);
2041
2042         netif_carrier_off(priv->net_dev);
2043         netif_stop_queue(priv->net_dev);
2044
2045         if (!(priv->status & STATUS_RUNNING))
2046                 return;
2047
2048         if (priv->status & STATUS_SECURITY_UPDATED)
2049                 queue_work(priv->workqueue, &priv->security_work);
2050
2051         queue_work(priv->workqueue, &priv->wx_event_work);
2052 }
2053
2054 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2055 {
2056         IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2057                        priv->net_dev->name);
2058
2059         /* RF_KILL is now enabled (else we wouldn't be here) */
2060         priv->status |= STATUS_RF_KILL_HW;
2061
2062 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2063         if (priv->config & CFG_C3_DISABLED) {
2064                 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
2065                 acpi_set_cstate_limit(priv->cstate_limit);
2066                 priv->config &= ~CFG_C3_DISABLED;
2067         }
2068 #endif
2069
2070         /* Make sure the RF Kill check timer is running */
2071         priv->stop_rf_kill = 0;
2072         cancel_delayed_work(&priv->rf_kill);
2073         queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
2074 }
2075
2076 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2077 {
2078         IPW_DEBUG_SCAN("scan complete\n");
2079         /* Age the scan results... */
2080         priv->ieee->scans++;
2081         priv->status &= ~STATUS_SCANNING;
2082 }
2083
2084 #ifdef CONFIG_IPW2100_DEBUG
2085 #define IPW2100_HANDLER(v, f) { v, f, # v }
2086 struct ipw2100_status_indicator {
2087         int status;
2088         void (*cb) (struct ipw2100_priv * priv, u32 status);
2089         char *name;
2090 };
2091 #else
2092 #define IPW2100_HANDLER(v, f) { v, f }
2093 struct ipw2100_status_indicator {
2094         int status;
2095         void (*cb) (struct ipw2100_priv * priv, u32 status);
2096 };
2097 #endif                          /* CONFIG_IPW2100_DEBUG */
2098
2099 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2100 {
2101         IPW_DEBUG_SCAN("Scanning...\n");
2102         priv->status |= STATUS_SCANNING;
2103 }
2104
2105 static const struct ipw2100_status_indicator status_handlers[] = {
2106         IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2107         IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2108         IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2109         IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2110         IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2111         IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2112         IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2113         IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2114         IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2115         IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2116         IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2117         IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2118         IPW2100_HANDLER(-1, NULL)
2119 };
2120
2121 static void isr_status_change(struct ipw2100_priv *priv, int status)
2122 {
2123         int i;
2124
2125         if (status == IPW_STATE_SCANNING &&
2126             priv->status & STATUS_ASSOCIATED &&
2127             !(priv->status & STATUS_SCANNING)) {
2128                 IPW_DEBUG_INFO("Scan detected while associated, with "
2129                                "no scan request.  Restarting firmware.\n");
2130
2131                 /* Wake up any sleeping jobs */
2132                 schedule_reset(priv);
2133         }
2134
2135         for (i = 0; status_handlers[i].status != -1; i++) {
2136                 if (status == status_handlers[i].status) {
2137                         IPW_DEBUG_NOTIF("Status change: %s\n",
2138                                         status_handlers[i].name);
2139                         if (status_handlers[i].cb)
2140                                 status_handlers[i].cb(priv, status);
2141                         priv->wstats.status = status;
2142                         return;
2143                 }
2144         }
2145
2146         IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2147 }
2148
2149 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2150                                     struct ipw2100_cmd_header *cmd)
2151 {
2152 #ifdef CONFIG_IPW2100_DEBUG
2153         if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2154                 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2155                              command_types[cmd->host_command_reg],
2156                              cmd->host_command_reg);
2157         }
2158 #endif
2159         if (cmd->host_command_reg == HOST_COMPLETE)
2160                 priv->status |= STATUS_ENABLED;
2161
2162         if (cmd->host_command_reg == CARD_DISABLE)
2163                 priv->status &= ~STATUS_ENABLED;
2164
2165         priv->status &= ~STATUS_CMD_ACTIVE;
2166
2167         wake_up_interruptible(&priv->wait_command_queue);
2168 }
2169
2170 #ifdef CONFIG_IPW2100_DEBUG
2171 static const char *frame_types[] = {
2172         "COMMAND_STATUS_VAL",
2173         "STATUS_CHANGE_VAL",
2174         "P80211_DATA_VAL",
2175         "P8023_DATA_VAL",
2176         "HOST_NOTIFICATION_VAL"
2177 };
2178 #endif
2179
2180 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2181                                     struct ipw2100_rx_packet *packet)
2182 {
2183         packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2184         if (!packet->skb)
2185                 return -ENOMEM;
2186
2187         packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2188         packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2189                                           sizeof(struct ipw2100_rx),
2190                                           PCI_DMA_FROMDEVICE);
2191         /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2192          *       dma_addr */
2193
2194         return 0;
2195 }
2196
2197 #define SEARCH_ERROR   0xffffffff
2198 #define SEARCH_FAIL    0xfffffffe
2199 #define SEARCH_SUCCESS 0xfffffff0
2200 #define SEARCH_DISCARD 0
2201 #define SEARCH_SNAPSHOT 1
2202
2203 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2204 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2205 {
2206         int i;
2207         if (priv->snapshot[0])
2208                 return 1;
2209         for (i = 0; i < 0x30; i++) {
2210                 priv->snapshot[i] = (u8 *) kmalloc(0x1000, GFP_ATOMIC);
2211                 if (!priv->snapshot[i]) {
2212                         IPW_DEBUG_INFO("%s: Error allocating snapshot "
2213                                        "buffer %d\n", priv->net_dev->name, i);
2214                         while (i > 0)
2215                                 kfree(priv->snapshot[--i]);
2216                         priv->snapshot[0] = NULL;
2217                         return 0;
2218                 }
2219         }
2220
2221         return 1;
2222 }
2223
2224 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2225 {
2226         int i;
2227         if (!priv->snapshot[0])
2228                 return;
2229         for (i = 0; i < 0x30; i++)
2230                 kfree(priv->snapshot[i]);
2231         priv->snapshot[0] = NULL;
2232 }
2233
2234 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2235                                     size_t len, int mode)
2236 {
2237         u32 i, j;
2238         u32 tmp;
2239         u8 *s, *d;
2240         u32 ret;
2241
2242         s = in_buf;
2243         if (mode == SEARCH_SNAPSHOT) {
2244                 if (!ipw2100_snapshot_alloc(priv))
2245                         mode = SEARCH_DISCARD;
2246         }
2247
2248         for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2249                 read_nic_dword(priv->net_dev, i, &tmp);
2250                 if (mode == SEARCH_SNAPSHOT)
2251                         *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2252                 if (ret == SEARCH_FAIL) {
2253                         d = (u8 *) & tmp;
2254                         for (j = 0; j < 4; j++) {
2255                                 if (*s != *d) {
2256                                         s = in_buf;
2257                                         continue;
2258                                 }
2259
2260                                 s++;
2261                                 d++;
2262
2263                                 if ((s - in_buf) == len)
2264                                         ret = (i + j) - len + 1;
2265                         }
2266                 } else if (mode == SEARCH_DISCARD)
2267                         return ret;
2268         }
2269
2270         return ret;
2271 }
2272
2273 /*
2274  *
2275  * 0) Disconnect the SKB from the firmware (just unmap)
2276  * 1) Pack the ETH header into the SKB
2277  * 2) Pass the SKB to the network stack
2278  *
2279  * When packet is provided by the firmware, it contains the following:
2280  *
2281  * .  ieee80211_hdr
2282  * .  ieee80211_snap_hdr
2283  *
2284  * The size of the constructed ethernet
2285  *
2286  */
2287 #ifdef CONFIG_IPW2100_RX_DEBUG
2288 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2289 #endif
2290
2291 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2292 {
2293 #ifdef CONFIG_IPW2100_DEBUG_C3
2294         struct ipw2100_status *status = &priv->status_queue.drv[i];
2295         u32 match, reg;
2296         int j;
2297 #endif
2298 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2299         int limit;
2300 #endif
2301
2302         IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2303                        i * sizeof(struct ipw2100_status));
2304
2305 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2306         IPW_DEBUG_INFO(": Disabling C3 transitions.\n");
2307         limit = acpi_get_cstate_limit();
2308         if (limit > 2) {
2309                 priv->cstate_limit = limit;
2310                 acpi_set_cstate_limit(2);
2311                 priv->config |= CFG_C3_DISABLED;
2312         }
2313 #endif
2314
2315 #ifdef CONFIG_IPW2100_DEBUG_C3
2316         /* Halt the fimrware so we can get a good image */
2317         write_register(priv->net_dev, IPW_REG_RESET_REG,
2318                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2319         j = 5;
2320         do {
2321                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2322                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2323
2324                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2325                         break;
2326         } while (j--);
2327
2328         match = ipw2100_match_buf(priv, (u8 *) status,
2329                                   sizeof(struct ipw2100_status),
2330                                   SEARCH_SNAPSHOT);
2331         if (match < SEARCH_SUCCESS)
2332                 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2333                                "offset 0x%06X, length %d:\n",
2334                                priv->net_dev->name, match,
2335                                sizeof(struct ipw2100_status));
2336         else
2337                 IPW_DEBUG_INFO("%s: No DMA status match in "
2338                                "Firmware.\n", priv->net_dev->name);
2339
2340         printk_buf((u8 *) priv->status_queue.drv,
2341                    sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2342 #endif
2343
2344         priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2345         priv->ieee->stats.rx_errors++;
2346         schedule_reset(priv);
2347 }
2348
2349 static void isr_rx(struct ipw2100_priv *priv, int i,
2350                           struct ieee80211_rx_stats *stats)
2351 {
2352         struct ipw2100_status *status = &priv->status_queue.drv[i];
2353         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2354
2355         IPW_DEBUG_RX("Handler...\n");
2356
2357         if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2358                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2359                                "  Dropping.\n",
2360                                priv->net_dev->name,
2361                                status->frame_size, skb_tailroom(packet->skb));
2362                 priv->ieee->stats.rx_errors++;
2363                 return;
2364         }
2365
2366         if (unlikely(!netif_running(priv->net_dev))) {
2367                 priv->ieee->stats.rx_errors++;
2368                 priv->wstats.discard.misc++;
2369                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2370                 return;
2371         }
2372 #ifdef CONFIG_IPW2100_MONITOR
2373         if (unlikely(priv->ieee->iw_mode == IW_MODE_MONITOR &&
2374                      priv->config & CFG_CRC_CHECK &&
2375                      status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2376                 IPW_DEBUG_RX("CRC error in packet.  Dropping.\n");
2377                 priv->ieee->stats.rx_errors++;
2378                 return;
2379         }
2380 #endif
2381
2382         if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2383                      !(priv->status & STATUS_ASSOCIATED))) {
2384                 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2385                 priv->wstats.discard.misc++;
2386                 return;
2387         }
2388
2389         pci_unmap_single(priv->pci_dev,
2390                          packet->dma_addr,
2391                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2392
2393         skb_put(packet->skb, status->frame_size);
2394
2395 #ifdef CONFIG_IPW2100_RX_DEBUG
2396         /* Make a copy of the frame so we can dump it to the logs if
2397          * ieee80211_rx fails */
2398         memcpy(packet_data, packet->skb->data,
2399                min_t(u32, status->frame_size, IPW_RX_NIC_BUFFER_LENGTH));
2400 #endif
2401
2402         if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2403 #ifdef CONFIG_IPW2100_RX_DEBUG
2404                 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2405                                priv->net_dev->name);
2406                 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2407 #endif
2408                 priv->ieee->stats.rx_errors++;
2409
2410                 /* ieee80211_rx failed, so it didn't free the SKB */
2411                 dev_kfree_skb_any(packet->skb);
2412                 packet->skb = NULL;
2413         }
2414
2415         /* We need to allocate a new SKB and attach it to the RDB. */
2416         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2417                 printk(KERN_WARNING DRV_NAME ": "
2418                        "%s: Unable to allocate SKB onto RBD ring - disabling "
2419                        "adapter.\n", priv->net_dev->name);
2420                 /* TODO: schedule adapter shutdown */
2421                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2422         }
2423
2424         /* Update the RDB entry */
2425         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2426 }
2427
2428 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2429 {
2430         struct ipw2100_status *status = &priv->status_queue.drv[i];
2431         struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2432         u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2433
2434         switch (frame_type) {
2435         case COMMAND_STATUS_VAL:
2436                 return (status->frame_size != sizeof(u->rx_data.command));
2437         case STATUS_CHANGE_VAL:
2438                 return (status->frame_size != sizeof(u->rx_data.status));
2439         case HOST_NOTIFICATION_VAL:
2440                 return (status->frame_size < sizeof(u->rx_data.notification));
2441         case P80211_DATA_VAL:
2442         case P8023_DATA_VAL:
2443 #ifdef CONFIG_IPW2100_MONITOR
2444                 return 0;
2445 #else
2446                 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2447                 case IEEE80211_FTYPE_MGMT:
2448                 case IEEE80211_FTYPE_CTL:
2449                         return 0;
2450                 case IEEE80211_FTYPE_DATA:
2451                         return (status->frame_size >
2452                                 IPW_MAX_802_11_PAYLOAD_LENGTH);
2453                 }
2454 #endif
2455         }
2456
2457         return 1;
2458 }
2459
2460 /*
2461  * ipw2100 interrupts are disabled at this point, and the ISR
2462  * is the only code that calls this method.  So, we do not need
2463  * to play with any locks.
2464  *
2465  * RX Queue works as follows:
2466  *
2467  * Read index - firmware places packet in entry identified by the
2468  *              Read index and advances Read index.  In this manner,
2469  *              Read index will always point to the next packet to
2470  *              be filled--but not yet valid.
2471  *
2472  * Write index - driver fills this entry with an unused RBD entry.
2473  *               This entry has not filled by the firmware yet.
2474  *
2475  * In between the W and R indexes are the RBDs that have been received
2476  * but not yet processed.
2477  *
2478  * The process of handling packets will start at WRITE + 1 and advance
2479  * until it reaches the READ index.
2480  *
2481  * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2482  *
2483  */
2484 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2485 {
2486         struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2487         struct ipw2100_status_queue *sq = &priv->status_queue;
2488         struct ipw2100_rx_packet *packet;
2489         u16 frame_type;
2490         u32 r, w, i, s;
2491         struct ipw2100_rx *u;
2492         struct ieee80211_rx_stats stats = {
2493                 .mac_time = jiffies,
2494         };
2495
2496         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2497         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2498
2499         if (r >= rxq->entries) {
2500                 IPW_DEBUG_RX("exit - bad read index\n");
2501                 return;
2502         }
2503
2504         i = (rxq->next + 1) % rxq->entries;
2505         s = i;
2506         while (i != r) {
2507                 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2508                    r, rxq->next, i); */
2509
2510                 packet = &priv->rx_buffers[i];
2511
2512                 /* Sync the DMA for the STATUS buffer so CPU is sure to get
2513                  * the correct values */
2514                 pci_dma_sync_single_for_cpu(priv->pci_dev,
2515                                             sq->nic +
2516                                             sizeof(struct ipw2100_status) * i,
2517                                             sizeof(struct ipw2100_status),
2518                                             PCI_DMA_FROMDEVICE);
2519
2520                 /* Sync the DMA for the RX buffer so CPU is sure to get
2521                  * the correct values */
2522                 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2523                                             sizeof(struct ipw2100_rx),
2524                                             PCI_DMA_FROMDEVICE);
2525
2526                 if (unlikely(ipw2100_corruption_check(priv, i))) {
2527                         ipw2100_corruption_detected(priv, i);
2528                         goto increment;
2529                 }
2530
2531                 u = packet->rxp;
2532                 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2533                 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2534                 stats.len = sq->drv[i].frame_size;
2535
2536                 stats.mask = 0;
2537                 if (stats.rssi != 0)
2538                         stats.mask |= IEEE80211_STATMASK_RSSI;
2539                 stats.freq = IEEE80211_24GHZ_BAND;
2540
2541                 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2542                              priv->net_dev->name, frame_types[frame_type],
2543                              stats.len);
2544
2545                 switch (frame_type) {
2546                 case COMMAND_STATUS_VAL:
2547                         /* Reset Rx watchdog */
2548                         isr_rx_complete_command(priv, &u->rx_data.command);
2549                         break;
2550
2551                 case STATUS_CHANGE_VAL:
2552                         isr_status_change(priv, u->rx_data.status);
2553                         break;
2554
2555                 case P80211_DATA_VAL:
2556                 case P8023_DATA_VAL:
2557 #ifdef CONFIG_IPW2100_MONITOR
2558                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2559                                 isr_rx(priv, i, &stats);
2560                                 break;
2561                         }
2562 #endif
2563                         if (stats.len < sizeof(u->rx_data.header))
2564                                 break;
2565                         switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2566                         case IEEE80211_FTYPE_MGMT:
2567                                 ieee80211_rx_mgt(priv->ieee,
2568                                                  &u->rx_data.header, &stats);
2569                                 break;
2570
2571                         case IEEE80211_FTYPE_CTL:
2572                                 break;
2573
2574                         case IEEE80211_FTYPE_DATA:
2575                                 isr_rx(priv, i, &stats);
2576                                 break;
2577
2578                         }
2579                         break;
2580                 }
2581
2582               increment:
2583                 /* clear status field associated with this RBD */
2584                 rxq->drv[i].status.info.field = 0;
2585
2586                 i = (i + 1) % rxq->entries;
2587         }
2588
2589         if (i != s) {
2590                 /* backtrack one entry, wrapping to end if at 0 */
2591                 rxq->next = (i ? i : rxq->entries) - 1;
2592
2593                 write_register(priv->net_dev,
2594                                IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2595         }
2596 }
2597
2598 /*
2599  * __ipw2100_tx_process
2600  *
2601  * This routine will determine whether the next packet on
2602  * the fw_pend_list has been processed by the firmware yet.
2603  *
2604  * If not, then it does nothing and returns.
2605  *
2606  * If so, then it removes the item from the fw_pend_list, frees
2607  * any associated storage, and places the item back on the
2608  * free list of its source (either msg_free_list or tx_free_list)
2609  *
2610  * TX Queue works as follows:
2611  *
2612  * Read index - points to the next TBD that the firmware will
2613  *              process.  The firmware will read the data, and once
2614  *              done processing, it will advance the Read index.
2615  *
2616  * Write index - driver fills this entry with an constructed TBD
2617  *               entry.  The Write index is not advanced until the
2618  *               packet has been configured.
2619  *
2620  * In between the W and R indexes are the TBDs that have NOT been
2621  * processed.  Lagging behind the R index are packets that have
2622  * been processed but have not been freed by the driver.
2623  *
2624  * In order to free old storage, an internal index will be maintained
2625  * that points to the next packet to be freed.  When all used
2626  * packets have been freed, the oldest index will be the same as the
2627  * firmware's read index.
2628  *
2629  * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2630  *
2631  * Because the TBD structure can not contain arbitrary data, the
2632  * driver must keep an internal queue of cached allocations such that
2633  * it can put that data back into the tx_free_list and msg_free_list
2634  * for use by future command and data packets.
2635  *
2636  */
2637 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2638 {
2639         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2640         struct ipw2100_bd *tbd;
2641         struct list_head *element;
2642         struct ipw2100_tx_packet *packet;
2643         int descriptors_used;
2644         int e, i;
2645         u32 r, w, frag_num = 0;
2646
2647         if (list_empty(&priv->fw_pend_list))
2648                 return 0;
2649
2650         element = priv->fw_pend_list.next;
2651
2652         packet = list_entry(element, struct ipw2100_tx_packet, list);
2653         tbd = &txq->drv[packet->index];
2654
2655         /* Determine how many TBD entries must be finished... */
2656         switch (packet->type) {
2657         case COMMAND:
2658                 /* COMMAND uses only one slot; don't advance */
2659                 descriptors_used = 1;
2660                 e = txq->oldest;
2661                 break;
2662
2663         case DATA:
2664                 /* DATA uses two slots; advance and loop position. */
2665                 descriptors_used = tbd->num_fragments;
2666                 frag_num = tbd->num_fragments - 1;
2667                 e = txq->oldest + frag_num;
2668                 e %= txq->entries;
2669                 break;
2670
2671         default:
2672                 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2673                        priv->net_dev->name);
2674                 return 0;
2675         }
2676
2677         /* if the last TBD is not done by NIC yet, then packet is
2678          * not ready to be released.
2679          *
2680          */
2681         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2682                       &r);
2683         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2684                       &w);
2685         if (w != txq->next)
2686                 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2687                        priv->net_dev->name);
2688
2689         /*
2690          * txq->next is the index of the last packet written txq->oldest is
2691          * the index of the r is the index of the next packet to be read by
2692          * firmware
2693          */
2694
2695         /*
2696          * Quick graphic to help you visualize the following
2697          * if / else statement
2698          *
2699          * ===>|                     s---->|===============
2700          *                               e>|
2701          * | a | b | c | d | e | f | g | h | i | j | k | l
2702          *       r---->|
2703          *               w
2704          *
2705          * w - updated by driver
2706          * r - updated by firmware
2707          * s - start of oldest BD entry (txq->oldest)
2708          * e - end of oldest BD entry
2709          *
2710          */
2711         if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2712                 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2713                 return 0;
2714         }
2715
2716         list_del(element);
2717         DEC_STAT(&priv->fw_pend_stat);
2718
2719 #ifdef CONFIG_IPW2100_DEBUG
2720         {
2721                 int i = txq->oldest;
2722                 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2723                              &txq->drv[i],
2724                              (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2725                              txq->drv[i].host_addr, txq->drv[i].buf_length);
2726
2727                 if (packet->type == DATA) {
2728                         i = (i + 1) % txq->entries;
2729
2730                         IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2731                                      &txq->drv[i],
2732                                      (u32) (txq->nic + i *
2733                                             sizeof(struct ipw2100_bd)),
2734                                      (u32) txq->drv[i].host_addr,
2735                                      txq->drv[i].buf_length);
2736                 }
2737         }
2738 #endif
2739
2740         switch (packet->type) {
2741         case DATA:
2742                 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2743                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2744                                "Expecting DATA TBD but pulled "
2745                                "something else: ids %d=%d.\n",
2746                                priv->net_dev->name, txq->oldest, packet->index);
2747
2748                 /* DATA packet; we have to unmap and free the SKB */
2749                 for (i = 0; i < frag_num; i++) {
2750                         tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2751
2752                         IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2753                                      (packet->index + 1 + i) % txq->entries,
2754                                      tbd->host_addr, tbd->buf_length);
2755
2756                         pci_unmap_single(priv->pci_dev,
2757                                          tbd->host_addr,
2758                                          tbd->buf_length, PCI_DMA_TODEVICE);
2759                 }
2760
2761                 ieee80211_txb_free(packet->info.d_struct.txb);
2762                 packet->info.d_struct.txb = NULL;
2763
2764                 list_add_tail(element, &priv->tx_free_list);
2765                 INC_STAT(&priv->tx_free_stat);
2766
2767                 /* We have a free slot in the Tx queue, so wake up the
2768                  * transmit layer if it is stopped. */
2769                 if (priv->status & STATUS_ASSOCIATED)
2770                         netif_wake_queue(priv->net_dev);
2771
2772                 /* A packet was processed by the hardware, so update the
2773                  * watchdog */
2774                 priv->net_dev->trans_start = jiffies;
2775
2776                 break;
2777
2778         case COMMAND:
2779                 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2780                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2781                                "Expecting COMMAND TBD but pulled "
2782                                "something else: ids %d=%d.\n",
2783                                priv->net_dev->name, txq->oldest, packet->index);
2784
2785 #ifdef CONFIG_IPW2100_DEBUG
2786                 if (packet->info.c_struct.cmd->host_command_reg <
2787                     sizeof(command_types) / sizeof(*command_types))
2788                         IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2789                                      command_types[packet->info.c_struct.cmd->
2790                                                    host_command_reg],
2791                                      packet->info.c_struct.cmd->
2792                                      host_command_reg,
2793                                      packet->info.c_struct.cmd->cmd_status_reg);
2794 #endif
2795
2796                 list_add_tail(element, &priv->msg_free_list);
2797                 INC_STAT(&priv->msg_free_stat);
2798                 break;
2799         }
2800
2801         /* advance oldest used TBD pointer to start of next entry */
2802         txq->oldest = (e + 1) % txq->entries;
2803         /* increase available TBDs number */
2804         txq->available += descriptors_used;
2805         SET_STAT(&priv->txq_stat, txq->available);
2806
2807         IPW_DEBUG_TX("packet latency (send to process)  %ld jiffies\n",
2808                      jiffies - packet->jiffy_start);
2809
2810         return (!list_empty(&priv->fw_pend_list));
2811 }
2812
2813 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2814 {
2815         int i = 0;
2816
2817         while (__ipw2100_tx_process(priv) && i < 200)
2818                 i++;
2819
2820         if (i == 200) {
2821                 printk(KERN_WARNING DRV_NAME ": "
2822                        "%s: Driver is running slow (%d iters).\n",
2823                        priv->net_dev->name, i);
2824         }
2825 }
2826
2827 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
2828 {
2829         struct list_head *element;
2830         struct ipw2100_tx_packet *packet;
2831         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2832         struct ipw2100_bd *tbd;
2833         int next = txq->next;
2834
2835         while (!list_empty(&priv->msg_pend_list)) {
2836                 /* if there isn't enough space in TBD queue, then
2837                  * don't stuff a new one in.
2838                  * NOTE: 3 are needed as a command will take one,
2839                  *       and there is a minimum of 2 that must be
2840                  *       maintained between the r and w indexes
2841                  */
2842                 if (txq->available <= 3) {
2843                         IPW_DEBUG_TX("no room in tx_queue\n");
2844                         break;
2845                 }
2846
2847                 element = priv->msg_pend_list.next;
2848                 list_del(element);
2849                 DEC_STAT(&priv->msg_pend_stat);
2850
2851                 packet = list_entry(element, struct ipw2100_tx_packet, list);
2852
2853                 IPW_DEBUG_TX("using TBD at virt=%p, phys=%p\n",
2854                              &txq->drv[txq->next],
2855                              (void *)(txq->nic + txq->next *
2856                                       sizeof(struct ipw2100_bd)));
2857
2858                 packet->index = txq->next;
2859
2860                 tbd = &txq->drv[txq->next];
2861
2862                 /* initialize TBD */
2863                 tbd->host_addr = packet->info.c_struct.cmd_phys;
2864                 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
2865                 /* not marking number of fragments causes problems
2866                  * with f/w debug version */
2867                 tbd->num_fragments = 1;
2868                 tbd->status.info.field =
2869                     IPW_BD_STATUS_TX_FRAME_COMMAND |
2870                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
2871
2872                 /* update TBD queue counters */
2873                 txq->next++;
2874                 txq->next %= txq->entries;
2875                 txq->available--;
2876                 DEC_STAT(&priv->txq_stat);
2877
2878                 list_add_tail(element, &priv->fw_pend_list);
2879                 INC_STAT(&priv->fw_pend_stat);
2880         }
2881
2882         if (txq->next != next) {
2883                 /* kick off the DMA by notifying firmware the
2884                  * write index has moved; make sure TBD stores are sync'd */
2885                 wmb();
2886                 write_register(priv->net_dev,
2887                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2888                                txq->next);
2889         }
2890 }
2891
2892 /*
2893  * ipw2100_tx_send_data
2894  *
2895  */
2896 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
2897 {
2898         struct list_head *element;
2899         struct ipw2100_tx_packet *packet;
2900         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2901         struct ipw2100_bd *tbd;
2902         int next = txq->next;
2903         int i = 0;
2904         struct ipw2100_data_header *ipw_hdr;
2905         struct ieee80211_hdr_3addr *hdr;
2906
2907         while (!list_empty(&priv->tx_pend_list)) {
2908                 /* if there isn't enough space in TBD queue, then
2909                  * don't stuff a new one in.
2910                  * NOTE: 4 are needed as a data will take two,
2911                  *       and there is a minimum of 2 that must be
2912                  *       maintained between the r and w indexes
2913                  */
2914                 element = priv->tx_pend_list.next;
2915                 packet = list_entry(element, struct ipw2100_tx_packet, list);
2916
2917                 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
2918                              IPW_MAX_BDS)) {
2919                         /* TODO: Support merging buffers if more than
2920                          * IPW_MAX_BDS are used */
2921                         IPW_DEBUG_INFO("%s: Maximum BD theshold exceeded.  "
2922                                        "Increase fragmentation level.\n",
2923                                        priv->net_dev->name);
2924                 }
2925
2926                 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
2927                         IPW_DEBUG_TX("no room in tx_queue\n");
2928                         break;
2929                 }
2930
2931                 list_del(element);
2932                 DEC_STAT(&priv->tx_pend_stat);
2933
2934                 tbd = &txq->drv[txq->next];
2935
2936                 packet->index = txq->next;
2937
2938                 ipw_hdr = packet->info.d_struct.data;
2939                 hdr = (struct ieee80211_hdr_3addr *)packet->info.d_struct.txb->
2940                     fragments[0]->data;
2941
2942                 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
2943                         /* To DS: Addr1 = BSSID, Addr2 = SA,
2944                            Addr3 = DA */
2945                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
2946                         memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
2947                 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
2948                         /* not From/To DS: Addr1 = DA, Addr2 = SA,
2949                            Addr3 = BSSID */
2950                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
2951                         memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
2952                 }
2953
2954                 ipw_hdr->host_command_reg = SEND;
2955                 ipw_hdr->host_command_reg1 = 0;
2956
2957                 /* For now we only support host based encryption */
2958                 ipw_hdr->needs_encryption = 0;
2959                 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
2960                 if (packet->info.d_struct.txb->nr_frags > 1)
2961                         ipw_hdr->fragment_size =
2962                             packet->info.d_struct.txb->frag_size -
2963                             IEEE80211_3ADDR_LEN;
2964                 else
2965                         ipw_hdr->fragment_size = 0;
2966
2967                 tbd->host_addr = packet->info.d_struct.data_phys;
2968                 tbd->buf_length = sizeof(struct ipw2100_data_header);
2969                 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
2970                 tbd->status.info.field =
2971                     IPW_BD_STATUS_TX_FRAME_802_3 |
2972                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
2973                 txq->next++;
2974                 txq->next %= txq->entries;
2975
2976                 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
2977                              packet->index, tbd->host_addr, tbd->buf_length);
2978 #ifdef CONFIG_IPW2100_DEBUG
2979                 if (packet->info.d_struct.txb->nr_frags > 1)
2980                         IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
2981                                        packet->info.d_struct.txb->nr_frags);
2982 #endif
2983
2984                 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
2985                         tbd = &txq->drv[txq->next];
2986                         if (i == packet->info.d_struct.txb->nr_frags - 1)
2987                                 tbd->status.info.field =
2988                                     IPW_BD_STATUS_TX_FRAME_802_3 |
2989                                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
2990                         else
2991                                 tbd->status.info.field =
2992                                     IPW_BD_STATUS_TX_FRAME_802_3 |
2993                                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
2994
2995                         tbd->buf_length = packet->info.d_struct.txb->
2996                             fragments[i]->len - IEEE80211_3ADDR_LEN;
2997
2998                         tbd->host_addr = pci_map_single(priv->pci_dev,
2999                                                         packet->info.d_struct.
3000                                                         txb->fragments[i]->
3001                                                         data +
3002                                                         IEEE80211_3ADDR_LEN,
3003                                                         tbd->buf_length,
3004                                                         PCI_DMA_TODEVICE);
3005
3006                         IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3007                                      txq->next, tbd->host_addr,
3008                                      tbd->buf_length);
3009
3010                         pci_dma_sync_single_for_device(priv->pci_dev,
3011                                                        tbd->host_addr,
3012                                                        tbd->buf_length,
3013                                                        PCI_DMA_TODEVICE);
3014
3015                         txq->next++;
3016                         txq->next %= txq->entries;
3017                 }
3018
3019                 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3020                 SET_STAT(&priv->txq_stat, txq->available);
3021
3022                 list_add_tail(element, &priv->fw_pend_list);
3023                 INC_STAT(&priv->fw_pend_stat);
3024         }
3025
3026         if (txq->next != next) {
3027                 /* kick off the DMA by notifying firmware the
3028                  * write index has moved; make sure TBD stores are sync'd */
3029                 write_register(priv->net_dev,
3030                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3031                                txq->next);
3032         }
3033         return;
3034 }
3035
3036 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3037 {
3038         struct net_device *dev = priv->net_dev;
3039         unsigned long flags;
3040         u32 inta, tmp;
3041
3042         spin_lock_irqsave(&priv->low_lock, flags);
3043         ipw2100_disable_interrupts(priv);
3044
3045         read_register(dev, IPW_REG_INTA, &inta);
3046
3047         IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3048                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3049
3050         priv->in_isr++;
3051         priv->interrupts++;
3052
3053         /* We do not loop and keep polling for more interrupts as this
3054          * is frowned upon and doesn't play nicely with other potentially
3055          * chained IRQs */
3056         IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3057                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3058
3059         if (inta & IPW2100_INTA_FATAL_ERROR) {
3060                 printk(KERN_WARNING DRV_NAME
3061                        ": Fatal interrupt. Scheduling firmware restart.\n");
3062                 priv->inta_other++;
3063                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3064
3065                 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3066                 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3067                                priv->net_dev->name, priv->fatal_error);
3068
3069                 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3070                 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3071                                priv->net_dev->name, tmp);
3072
3073                 /* Wake up any sleeping jobs */
3074                 schedule_reset(priv);
3075         }
3076
3077         if (inta & IPW2100_INTA_PARITY_ERROR) {
3078                 printk(KERN_ERR DRV_NAME
3079                        ": ***** PARITY ERROR INTERRUPT !!!! \n");
3080                 priv->inta_other++;
3081                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3082         }
3083
3084         if (inta & IPW2100_INTA_RX_TRANSFER) {
3085                 IPW_DEBUG_ISR("RX interrupt\n");
3086
3087                 priv->rx_interrupts++;
3088
3089                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3090
3091                 __ipw2100_rx_process(priv);
3092                 __ipw2100_tx_complete(priv);
3093         }
3094
3095         if (inta & IPW2100_INTA_TX_TRANSFER) {
3096                 IPW_DEBUG_ISR("TX interrupt\n");
3097
3098                 priv->tx_interrupts++;
3099
3100                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3101
3102                 __ipw2100_tx_complete(priv);
3103                 ipw2100_tx_send_commands(priv);
3104                 ipw2100_tx_send_data(priv);
3105         }
3106
3107         if (inta & IPW2100_INTA_TX_COMPLETE) {
3108                 IPW_DEBUG_ISR("TX complete\n");
3109                 priv->inta_other++;
3110                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3111
3112                 __ipw2100_tx_complete(priv);
3113         }
3114
3115         if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3116                 /* ipw2100_handle_event(dev); */
3117                 priv->inta_other++;
3118                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3119         }
3120
3121         if (inta & IPW2100_INTA_FW_INIT_DONE) {
3122                 IPW_DEBUG_ISR("FW init done interrupt\n");
3123                 priv->inta_other++;
3124
3125                 read_register(dev, IPW_REG_INTA, &tmp);
3126                 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3127                            IPW2100_INTA_PARITY_ERROR)) {
3128                         write_register(dev, IPW_REG_INTA,
3129                                        IPW2100_INTA_FATAL_ERROR |
3130                                        IPW2100_INTA_PARITY_ERROR);
3131                 }
3132
3133                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3134         }
3135
3136         if (inta & IPW2100_INTA_STATUS_CHANGE) {
3137                 IPW_DEBUG_ISR("Status change interrupt\n");
3138                 priv->inta_other++;
3139                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3140         }
3141
3142         if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3143                 IPW_DEBUG_ISR("slave host mode interrupt\n");
3144                 priv->inta_other++;
3145                 write_register(dev, IPW_REG_INTA,
3146                                IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3147         }
3148
3149         priv->in_isr--;
3150         ipw2100_enable_interrupts(priv);
3151
3152         spin_unlock_irqrestore(&priv->low_lock, flags);
3153
3154         IPW_DEBUG_ISR("exit\n");
3155 }
3156
3157 static irqreturn_t ipw2100_interrupt(int irq, void *data, struct pt_regs *regs)
3158 {
3159         struct ipw2100_priv *priv = data;
3160         u32 inta, inta_mask;
3161
3162         if (!data)
3163                 return IRQ_NONE;
3164
3165         spin_lock(&priv->low_lock);
3166
3167         /* We check to see if we should be ignoring interrupts before
3168          * we touch the hardware.  During ucode load if we try and handle
3169          * an interrupt we can cause keyboard problems as well as cause
3170          * the ucode to fail to initialize */
3171         if (!(priv->status & STATUS_INT_ENABLED)) {
3172                 /* Shared IRQ */
3173                 goto none;
3174         }
3175
3176         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3177         read_register(priv->net_dev, IPW_REG_INTA, &inta);
3178
3179         if (inta == 0xFFFFFFFF) {
3180                 /* Hardware disappeared */
3181                 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3182                 goto none;
3183         }
3184
3185         inta &= IPW_INTERRUPT_MASK;
3186
3187         if (!(inta & inta_mask)) {
3188                 /* Shared interrupt */
3189                 goto none;
3190         }
3191
3192         /* We disable the hardware interrupt here just to prevent unneeded
3193          * calls to be made.  We disable this again within the actual
3194          * work tasklet, so if another part of the code re-enables the
3195          * interrupt, that is fine */
3196         ipw2100_disable_interrupts(priv);
3197
3198         tasklet_schedule(&priv->irq_tasklet);
3199         spin_unlock(&priv->low_lock);
3200
3201         return IRQ_HANDLED;
3202       none:
3203         spin_unlock(&priv->low_lock);
3204         return IRQ_NONE;
3205 }
3206
3207 static int ipw2100_tx(struct ieee80211_txb *txb, struct net_device *dev,
3208                       int pri)
3209 {
3210         struct ipw2100_priv *priv = ieee80211_priv(dev);
3211         struct list_head *element;
3212         struct ipw2100_tx_packet *packet;
3213         unsigned long flags;
3214
3215         spin_lock_irqsave(&priv->low_lock, flags);
3216
3217         if (!(priv->status & STATUS_ASSOCIATED)) {
3218                 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3219                 priv->ieee->stats.tx_carrier_errors++;
3220                 netif_stop_queue(dev);
3221                 goto fail_unlock;
3222         }
3223
3224         if (list_empty(&priv->tx_free_list))
3225                 goto fail_unlock;
3226
3227         element = priv->tx_free_list.next;
3228         packet = list_entry(element, struct ipw2100_tx_packet, list);