1 /******************************************************************************
3 Copyright(c) 2003 - 2005 Intel Corporation. All rights reserved.
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of version 2 of the GNU General Public License as
7 published by the Free Software Foundation.
9 This program is distributed in the hope that it will be useful, but WITHOUT
10 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 You should have received a copy of the GNU General Public License along with
15 this program; if not, write to the Free Software Foundation, Inc., 59
16 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 The full GNU General Public License is included in this distribution in the
22 James P. Ketrenos <ipw2100-admin@linux.intel.com>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 Portions of this file are based on the sample_* files provided by Wireless
26 Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
29 Portions of this file are based on the Host AP project,
30 Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
32 Copyright (c) 2002-2003, Jouni Malinen <jkmaline@cc.hut.fi>
34 Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35 ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36 available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
38 ******************************************************************************/
41 Initial driver on which this is based was developed by Janusz Gorycki,
42 Maciej Urbaniak, and Maciej Sosnowski.
44 Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
48 Tx - Commands and Data
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
54 The host writes to the TBD queue at the WRITE index. The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
58 The firmware pulls from the TBD queue at the READ index. The READ index points
59 to the currently being read entry, and is advanced once the firmware is
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent. If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD. If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc. The next TBD then referrs to the actual packet location.
68 The Tx flow cycle is as follows:
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75 to a physical address. That address is entered into a TBD. Two TBDs are
76 filled out. The first indicating a data packet, the second referring to the
78 5) the packet is removed from tx_pend_list and placed on the end of the
79 firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83 to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85 from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87 to unmap the DMA address and to free the SKB originally passed to the driver
89 11)The packet structure is placed onto the tx_free_list
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
96 Critical Sections / Locking :
98 There are two locks utilized. The first is the low level lock (priv->low_lock)
99 that protects the following:
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
103 tx_free_list : Holds pre-allocated Tx buffers.
104 TAIL modified in __ipw2100_tx_process()
105 HEAD modified in ipw2100_tx()
107 tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108 TAIL modified ipw2100_tx()
109 HEAD modified by ipw2100_tx_send_data()
111 msg_free_list : Holds pre-allocated Msg (Command) buffers
112 TAIL modified in __ipw2100_tx_process()
113 HEAD modified in ipw2100_hw_send_command()
115 msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116 TAIL modified in ipw2100_hw_send_command()
117 HEAD modified in ipw2100_tx_send_commands()
119 The flow of data on the TX side is as follows:
121 MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122 TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
124 The methods that work on the TBD ring are protected via priv->low_lock.
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
136 #include <linux/compiler.h>
137 #include <linux/config.h>
138 #include <linux/errno.h>
139 #include <linux/if_arp.h>
140 #include <linux/in6.h>
141 #include <linux/in.h>
142 #include <linux/ip.h>
143 #include <linux/kernel.h>
144 #include <linux/kmod.h>
145 #include <linux/module.h>
146 #include <linux/netdevice.h>
147 #include <linux/ethtool.h>
148 #include <linux/pci.h>
149 #include <linux/dma-mapping.h>
150 #include <linux/proc_fs.h>
151 #include <linux/skbuff.h>
152 #include <asm/uaccess.h>
154 #define __KERNEL_SYSCALLS__
155 #include <linux/fs.h>
156 #include <linux/mm.h>
157 #include <linux/slab.h>
158 #include <linux/unistd.h>
159 #include <linux/stringify.h>
160 #include <linux/tcp.h>
161 #include <linux/types.h>
162 #include <linux/version.h>
163 #include <linux/time.h>
164 #include <linux/firmware.h>
165 #include <linux/acpi.h>
166 #include <linux/ctype.h>
170 #define IPW2100_VERSION "1.1.3"
172 #define DRV_NAME "ipw2100"
173 #define DRV_VERSION IPW2100_VERSION
174 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
175 #define DRV_COPYRIGHT "Copyright(c) 2003-2005 Intel Corporation"
177 /* Debugging stuff */
178 #ifdef CONFIG_IPW2100_DEBUG
179 #define CONFIG_IPW2100_RX_DEBUG /* Reception debugging */
182 MODULE_DESCRIPTION(DRV_DESCRIPTION);
183 MODULE_VERSION(DRV_VERSION);
184 MODULE_AUTHOR(DRV_COPYRIGHT);
185 MODULE_LICENSE("GPL");
187 static int debug = 0;
189 static int channel = 0;
190 static int associate = 1;
191 static int disable = 0;
193 static struct ipw2100_fw ipw2100_firmware;
196 #include <linux/moduleparam.h>
197 module_param(debug, int, 0444);
198 module_param(mode, int, 0444);
199 module_param(channel, int, 0444);
200 module_param(associate, int, 0444);
201 module_param(disable, int, 0444);
203 MODULE_PARM_DESC(debug, "debug level");
204 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
205 MODULE_PARM_DESC(channel, "channel");
206 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
207 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
209 static u32 ipw2100_debug_level = IPW_DL_NONE;
211 #ifdef CONFIG_IPW2100_DEBUG
212 #define IPW_DEBUG(level, message...) \
214 if (ipw2100_debug_level & (level)) { \
215 printk(KERN_DEBUG "ipw2100: %c %s ", \
216 in_interrupt() ? 'I' : 'U', __FUNCTION__); \
221 #define IPW_DEBUG(level, message...) do {} while (0)
222 #endif /* CONFIG_IPW2100_DEBUG */
224 #ifdef CONFIG_IPW2100_DEBUG
225 static const char *command_types[] = {
227 "unused", /* HOST_ATTENTION */
229 "unused", /* SLEEP */
230 "unused", /* HOST_POWER_DOWN */
233 "unused", /* SET_IMR */
236 "AUTHENTICATION_TYPE",
239 "INTERNATIONAL_MODE",
254 "CLEAR_ALL_MULTICAST",
275 "AP_OR_STATION_TABLE",
279 "unused", /* SAVE_CALIBRATION */
280 "unused", /* RESTORE_CALIBRATION */
284 "HOST_PRE_POWER_DOWN",
285 "unused", /* HOST_INTERRUPT_COALESCING */
287 "CARD_DISABLE_PHY_OFF",
288 "MSDU_TX_RATES" "undefined",
290 "SET_STATION_STAT_BITS",
291 "CLEAR_STATIONS_STAT_BITS",
293 "SET_SECURITY_INFORMATION",
294 "DISASSOCIATION_BSSID",
299 /* Pre-decl until we get the code solid and then we can clean it up */
300 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
301 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
302 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
304 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
305 static void ipw2100_queues_free(struct ipw2100_priv *priv);
306 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
308 static int ipw2100_fw_download(struct ipw2100_priv *priv,
309 struct ipw2100_fw *fw);
310 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
311 struct ipw2100_fw *fw);
312 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
314 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
316 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
317 struct ipw2100_fw *fw);
318 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
319 struct ipw2100_fw *fw);
320 static void ipw2100_wx_event_work(struct ipw2100_priv *priv);
321 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
322 static struct iw_handler_def ipw2100_wx_handler_def;
324 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
326 *val = readl((void __iomem *)(dev->base_addr + reg));
327 IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
330 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
332 writel(val, (void __iomem *)(dev->base_addr + reg));
333 IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
336 static inline void read_register_word(struct net_device *dev, u32 reg,
339 *val = readw((void __iomem *)(dev->base_addr + reg));
340 IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
343 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
345 *val = readb((void __iomem *)(dev->base_addr + reg));
346 IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
349 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
351 writew(val, (void __iomem *)(dev->base_addr + reg));
352 IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
355 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
357 writeb(val, (void __iomem *)(dev->base_addr + reg));
358 IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
361 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
363 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
364 addr & IPW_REG_INDIRECT_ADDR_MASK);
365 read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
368 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
370 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
371 addr & IPW_REG_INDIRECT_ADDR_MASK);
372 write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
375 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
377 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
378 addr & IPW_REG_INDIRECT_ADDR_MASK);
379 read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
382 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
384 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
385 addr & IPW_REG_INDIRECT_ADDR_MASK);
386 write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
389 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
391 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
392 addr & IPW_REG_INDIRECT_ADDR_MASK);
393 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
396 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
398 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
399 addr & IPW_REG_INDIRECT_ADDR_MASK);
400 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
403 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
405 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
406 addr & IPW_REG_INDIRECT_ADDR_MASK);
409 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
411 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
414 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
422 /* read first nibble byte by byte */
423 aligned_addr = addr & (~0x3);
424 dif_len = addr - aligned_addr;
426 /* Start reading at aligned_addr + dif_len */
427 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
429 for (i = dif_len; i < 4; i++, buf++)
430 write_register_byte(dev,
431 IPW_REG_INDIRECT_ACCESS_DATA + i,
438 /* read DWs through autoincrement registers */
439 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
440 aligned_len = len & (~0x3);
441 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
442 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
444 /* copy the last nibble */
445 dif_len = len - aligned_len;
446 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
447 for (i = 0; i < dif_len; i++, buf++)
448 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
452 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
460 /* read first nibble byte by byte */
461 aligned_addr = addr & (~0x3);
462 dif_len = addr - aligned_addr;
464 /* Start reading at aligned_addr + dif_len */
465 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
467 for (i = dif_len; i < 4; i++, buf++)
468 read_register_byte(dev,
469 IPW_REG_INDIRECT_ACCESS_DATA + i,
476 /* read DWs through autoincrement registers */
477 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
478 aligned_len = len & (~0x3);
479 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
480 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
482 /* copy the last nibble */
483 dif_len = len - aligned_len;
484 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
485 for (i = 0; i < dif_len; i++, buf++)
486 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
489 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
491 return (dev->base_addr &&
493 ((void __iomem *)(dev->base_addr +
494 IPW_REG_DOA_DEBUG_AREA_START))
495 == IPW_DATA_DOA_DEBUG_VALUE));
498 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
499 void *val, u32 * len)
501 struct ipw2100_ordinals *ordinals = &priv->ordinals;
508 if (ordinals->table1_addr == 0) {
509 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
510 "before they have been loaded.\n");
514 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
515 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
516 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
518 printk(KERN_WARNING DRV_NAME
519 ": ordinal buffer length too small, need %zd\n",
520 IPW_ORD_TAB_1_ENTRY_SIZE);
525 read_nic_dword(priv->net_dev,
526 ordinals->table1_addr + (ord << 2), &addr);
527 read_nic_dword(priv->net_dev, addr, val);
529 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
534 if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
536 ord -= IPW_START_ORD_TAB_2;
538 /* get the address of statistic */
539 read_nic_dword(priv->net_dev,
540 ordinals->table2_addr + (ord << 3), &addr);
542 /* get the second DW of statistics ;
543 * two 16-bit words - first is length, second is count */
544 read_nic_dword(priv->net_dev,
545 ordinals->table2_addr + (ord << 3) + sizeof(u32),
548 /* get each entry length */
549 field_len = *((u16 *) & field_info);
551 /* get number of entries */
552 field_count = *(((u16 *) & field_info) + 1);
554 /* abort if no enought memory */
555 total_length = field_len * field_count;
556 if (total_length > *len) {
565 /* read the ordinal data from the SRAM */
566 read_nic_memory(priv->net_dev, addr, total_length, val);
571 printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
572 "in table 2\n", ord);
577 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
580 struct ipw2100_ordinals *ordinals = &priv->ordinals;
583 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
584 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
585 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
586 IPW_DEBUG_INFO("wrong size\n");
590 read_nic_dword(priv->net_dev,
591 ordinals->table1_addr + (ord << 2), &addr);
593 write_nic_dword(priv->net_dev, addr, *val);
595 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
600 IPW_DEBUG_INFO("wrong table\n");
601 if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
607 static char *snprint_line(char *buf, size_t count,
608 const u8 * data, u32 len, u32 ofs)
613 out = snprintf(buf, count, "%08X", ofs);
615 for (l = 0, i = 0; i < 2; i++) {
616 out += snprintf(buf + out, count - out, " ");
617 for (j = 0; j < 8 && l < len; j++, l++)
618 out += snprintf(buf + out, count - out, "%02X ",
621 out += snprintf(buf + out, count - out, " ");
624 out += snprintf(buf + out, count - out, " ");
625 for (l = 0, i = 0; i < 2; i++) {
626 out += snprintf(buf + out, count - out, " ");
627 for (j = 0; j < 8 && l < len; j++, l++) {
628 c = data[(i * 8 + j)];
629 if (!isascii(c) || !isprint(c))
632 out += snprintf(buf + out, count - out, "%c", c);
636 out += snprintf(buf + out, count - out, " ");
642 static void printk_buf(int level, const u8 * data, u32 len)
646 if (!(ipw2100_debug_level & level))
650 printk(KERN_DEBUG "%s\n",
651 snprint_line(line, sizeof(line), &data[ofs],
652 min(len, 16U), ofs));
654 len -= min(len, 16U);
658 #define MAX_RESET_BACKOFF 10
660 static void schedule_reset(struct ipw2100_priv *priv)
662 unsigned long now = get_seconds();
664 /* If we haven't received a reset request within the backoff period,
665 * then we can reset the backoff interval so this reset occurs
667 if (priv->reset_backoff &&
668 (now - priv->last_reset > priv->reset_backoff))
669 priv->reset_backoff = 0;
671 priv->last_reset = get_seconds();
673 if (!(priv->status & STATUS_RESET_PENDING)) {
674 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
675 priv->net_dev->name, priv->reset_backoff);
676 netif_carrier_off(priv->net_dev);
677 netif_stop_queue(priv->net_dev);
678 priv->status |= STATUS_RESET_PENDING;
679 if (priv->reset_backoff)
680 queue_delayed_work(priv->workqueue, &priv->reset_work,
681 priv->reset_backoff * HZ);
683 queue_work(priv->workqueue, &priv->reset_work);
685 if (priv->reset_backoff < MAX_RESET_BACKOFF)
686 priv->reset_backoff++;
688 wake_up_interruptible(&priv->wait_command_queue);
690 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
691 priv->net_dev->name);
695 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
696 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
697 struct host_command *cmd)
699 struct list_head *element;
700 struct ipw2100_tx_packet *packet;
704 IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
705 command_types[cmd->host_command], cmd->host_command,
706 cmd->host_command_length);
707 printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
708 cmd->host_command_length);
710 spin_lock_irqsave(&priv->low_lock, flags);
712 if (priv->fatal_error) {
714 ("Attempt to send command while hardware in fatal error condition.\n");
719 if (!(priv->status & STATUS_RUNNING)) {
721 ("Attempt to send command while hardware is not running.\n");
726 if (priv->status & STATUS_CMD_ACTIVE) {
728 ("Attempt to send command while another command is pending.\n");
733 if (list_empty(&priv->msg_free_list)) {
734 IPW_DEBUG_INFO("no available msg buffers\n");
738 priv->status |= STATUS_CMD_ACTIVE;
739 priv->messages_sent++;
741 element = priv->msg_free_list.next;
743 packet = list_entry(element, struct ipw2100_tx_packet, list);
744 packet->jiffy_start = jiffies;
746 /* initialize the firmware command packet */
747 packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
748 packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
749 packet->info.c_struct.cmd->host_command_len_reg =
750 cmd->host_command_length;
751 packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
753 memcpy(packet->info.c_struct.cmd->host_command_params_reg,
754 cmd->host_command_parameters,
755 sizeof(packet->info.c_struct.cmd->host_command_params_reg));
758 DEC_STAT(&priv->msg_free_stat);
760 list_add_tail(element, &priv->msg_pend_list);
761 INC_STAT(&priv->msg_pend_stat);
763 ipw2100_tx_send_commands(priv);
764 ipw2100_tx_send_data(priv);
766 spin_unlock_irqrestore(&priv->low_lock, flags);
769 * We must wait for this command to complete before another
770 * command can be sent... but if we wait more than 3 seconds
771 * then there is a problem.
775 wait_event_interruptible_timeout(priv->wait_command_queue,
777 status & STATUS_CMD_ACTIVE),
778 HOST_COMPLETE_TIMEOUT);
781 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
782 1000 * (HOST_COMPLETE_TIMEOUT / HZ));
783 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
784 priv->status &= ~STATUS_CMD_ACTIVE;
785 schedule_reset(priv);
789 if (priv->fatal_error) {
790 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
791 priv->net_dev->name);
795 /* !!!!! HACK TEST !!!!!
796 * When lots of debug trace statements are enabled, the driver
797 * doesn't seem to have as many firmware restart cycles...
799 * As a test, we're sticking in a 1/100s delay here */
800 schedule_timeout_uninterruptible(msecs_to_jiffies(10));
805 spin_unlock_irqrestore(&priv->low_lock, flags);
811 * Verify the values and data access of the hardware
812 * No locks needed or used. No functions called.
814 static int ipw2100_verify(struct ipw2100_priv *priv)
819 u32 val1 = 0x76543210;
820 u32 val2 = 0xFEDCBA98;
822 /* Domain 0 check - all values should be DOA_DEBUG */
823 for (address = IPW_REG_DOA_DEBUG_AREA_START;
824 address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
825 read_register(priv->net_dev, address, &data1);
826 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
830 /* Domain 1 check - use arbitrary read/write compare */
831 for (address = 0; address < 5; address++) {
832 /* The memory area is not used now */
833 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
835 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
837 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
839 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
841 if (val1 == data1 && val2 == data2)
850 * Loop until the CARD_DISABLED bit is the same value as the
853 * TODO: See if it would be more efficient to do a wait/wake
854 * cycle and have the completion event trigger the wakeup
857 #define IPW_CARD_DISABLE_COMPLETE_WAIT 100 // 100 milli
858 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
862 u32 len = sizeof(card_state);
865 for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
866 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
869 IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
874 /* We'll break out if either the HW state says it is
875 * in the state we want, or if HOST_COMPLETE command
877 if ((card_state == state) ||
878 ((priv->status & STATUS_ENABLED) ?
879 IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
880 if (state == IPW_HW_STATE_ENABLED)
881 priv->status |= STATUS_ENABLED;
883 priv->status &= ~STATUS_ENABLED;
891 IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
892 state ? "DISABLED" : "ENABLED");
896 /*********************************************************************
897 Procedure : sw_reset_and_clock
898 Purpose : Asserts s/w reset, asserts clock initialization
899 and waits for clock stabilization
900 ********************************************************************/
901 static int sw_reset_and_clock(struct ipw2100_priv *priv)
907 write_register(priv->net_dev, IPW_REG_RESET_REG,
908 IPW_AUX_HOST_RESET_REG_SW_RESET);
910 // wait for clock stabilization
911 for (i = 0; i < 1000; i++) {
912 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
914 // check clock ready bit
915 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
916 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
921 return -EIO; // TODO: better error value
923 /* set "initialization complete" bit to move adapter to
925 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
926 IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
928 /* wait for clock stabilization */
929 for (i = 0; i < 10000; i++) {
930 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
932 /* check clock ready bit */
933 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
934 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
939 return -EIO; /* TODO: better error value */
941 /* set D0 standby bit */
942 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
943 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
944 r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
949 /*********************************************************************
950 Procedure : ipw2100_download_firmware
951 Purpose : Initiaze adapter after power on.
953 1. assert s/w reset first!
954 2. awake clocks & wait for clock stabilization
955 3. hold ARC (don't ask me why...)
956 4. load Dino ucode and reset/clock init again
957 5. zero-out shared mem
959 *******************************************************************/
960 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
966 /* Fetch the firmware and microcode */
967 struct ipw2100_fw ipw2100_firmware;
970 if (priv->fatal_error) {
971 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
972 "fatal error %d. Interface must be brought down.\n",
973 priv->net_dev->name, priv->fatal_error);
977 if (!ipw2100_firmware.version) {
978 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
980 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
981 priv->net_dev->name, err);
982 priv->fatal_error = IPW2100_ERR_FW_LOAD;
987 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
989 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
990 priv->net_dev->name, err);
991 priv->fatal_error = IPW2100_ERR_FW_LOAD;
995 priv->firmware_version = ipw2100_firmware.version;
997 /* s/w reset and clock stabilization */
998 err = sw_reset_and_clock(priv);
1000 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1001 priv->net_dev->name, err);
1005 err = ipw2100_verify(priv);
1007 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1008 priv->net_dev->name, err);
1013 write_nic_dword(priv->net_dev,
1014 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1016 /* allow ARC to run */
1017 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1019 /* load microcode */
1020 err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1022 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1023 priv->net_dev->name, err);
1028 write_nic_dword(priv->net_dev,
1029 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1031 /* s/w reset and clock stabilization (again!!!) */
1032 err = sw_reset_and_clock(priv);
1034 printk(KERN_ERR DRV_NAME
1035 ": %s: sw_reset_and_clock failed: %d\n",
1036 priv->net_dev->name, err);
1041 err = ipw2100_fw_download(priv, &ipw2100_firmware);
1043 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1044 priv->net_dev->name, err);
1049 * When the .resume method of the driver is called, the other
1050 * part of the system, i.e. the ide driver could still stay in
1051 * the suspend stage. This prevents us from loading the firmware
1052 * from the disk. --YZ
1055 /* free any storage allocated for firmware image */
1056 ipw2100_release_firmware(priv, &ipw2100_firmware);
1059 /* zero out Domain 1 area indirectly (Si requirement) */
1060 for (address = IPW_HOST_FW_SHARED_AREA0;
1061 address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1062 write_nic_dword(priv->net_dev, address, 0);
1063 for (address = IPW_HOST_FW_SHARED_AREA1;
1064 address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1065 write_nic_dword(priv->net_dev, address, 0);
1066 for (address = IPW_HOST_FW_SHARED_AREA2;
1067 address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1068 write_nic_dword(priv->net_dev, address, 0);
1069 for (address = IPW_HOST_FW_SHARED_AREA3;
1070 address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1071 write_nic_dword(priv->net_dev, address, 0);
1072 for (address = IPW_HOST_FW_INTERRUPT_AREA;
1073 address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1074 write_nic_dword(priv->net_dev, address, 0);
1079 ipw2100_release_firmware(priv, &ipw2100_firmware);
1083 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1085 if (priv->status & STATUS_INT_ENABLED)
1087 priv->status |= STATUS_INT_ENABLED;
1088 write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1091 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1093 if (!(priv->status & STATUS_INT_ENABLED))
1095 priv->status &= ~STATUS_INT_ENABLED;
1096 write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1099 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1101 struct ipw2100_ordinals *ord = &priv->ordinals;
1103 IPW_DEBUG_INFO("enter\n");
1105 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1108 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1111 read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1112 read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1114 ord->table2_size &= 0x0000FFFF;
1116 IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1117 IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1118 IPW_DEBUG_INFO("exit\n");
1121 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1125 * Set GPIO 3 writable by FW; GPIO 1 writable
1126 * by driver and enable clock
1128 reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1129 IPW_BIT_GPIO_LED_OFF);
1130 write_register(priv->net_dev, IPW_REG_GPIO, reg);
1133 static int rf_kill_active(struct ipw2100_priv *priv)
1135 #define MAX_RF_KILL_CHECKS 5
1136 #define RF_KILL_CHECK_DELAY 40
1138 unsigned short value = 0;
1142 if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1143 priv->status &= ~STATUS_RF_KILL_HW;
1147 for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1148 udelay(RF_KILL_CHECK_DELAY);
1149 read_register(priv->net_dev, IPW_REG_GPIO, ®);
1150 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1154 priv->status |= STATUS_RF_KILL_HW;
1156 priv->status &= ~STATUS_RF_KILL_HW;
1158 return (value == 0);
1161 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1167 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1170 if (ipw2100_get_ordinal
1171 (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1172 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1177 IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1180 * EEPROM version is the byte at offset 0xfd in firmware
1181 * We read 4 bytes, then shift out the byte we actually want */
1182 read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1183 priv->eeprom_version = (val >> 24) & 0xFF;
1184 IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1187 * HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1189 * notice that the EEPROM bit is reverse polarity, i.e.
1190 * bit = 0 signifies HW RF kill switch is supported
1191 * bit = 1 signifies HW RF kill switch is NOT supported
1193 read_nic_dword(priv->net_dev, addr + 0x20, &val);
1194 if (!((val >> 24) & 0x01))
1195 priv->hw_features |= HW_FEATURE_RFKILL;
1197 IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1198 (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1204 * Start firmware execution after power on and intialization
1207 * 2. Wait for f/w initialization completes;
1209 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1212 u32 inta, inta_mask, gpio;
1214 IPW_DEBUG_INFO("enter\n");
1216 if (priv->status & STATUS_RUNNING)
1220 * Initialize the hw - drive adapter to DO state by setting
1221 * init_done bit. Wait for clk_ready bit and Download
1224 if (ipw2100_download_firmware(priv)) {
1225 printk(KERN_ERR DRV_NAME
1226 ": %s: Failed to power on the adapter.\n",
1227 priv->net_dev->name);
1231 /* Clear the Tx, Rx and Msg queues and the r/w indexes
1232 * in the firmware RBD and TBD ring queue */
1233 ipw2100_queues_initialize(priv);
1235 ipw2100_hw_set_gpio(priv);
1237 /* TODO -- Look at disabling interrupts here to make sure none
1238 * get fired during FW initialization */
1240 /* Release ARC - clear reset bit */
1241 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1243 /* wait for f/w intialization complete */
1244 IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1247 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1248 /* Todo... wait for sync command ... */
1250 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1252 /* check "init done" bit */
1253 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1254 /* reset "init done" bit */
1255 write_register(priv->net_dev, IPW_REG_INTA,
1256 IPW2100_INTA_FW_INIT_DONE);
1260 /* check error conditions : we check these after the firmware
1261 * check so that if there is an error, the interrupt handler
1262 * will see it and the adapter will be reset */
1264 (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1265 /* clear error conditions */
1266 write_register(priv->net_dev, IPW_REG_INTA,
1267 IPW2100_INTA_FATAL_ERROR |
1268 IPW2100_INTA_PARITY_ERROR);
1272 /* Clear out any pending INTAs since we aren't supposed to have
1273 * interrupts enabled at this point... */
1274 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1275 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1276 inta &= IPW_INTERRUPT_MASK;
1277 /* Clear out any pending interrupts */
1278 if (inta & inta_mask)
1279 write_register(priv->net_dev, IPW_REG_INTA, inta);
1281 IPW_DEBUG_FW("f/w initialization complete: %s\n",
1282 i ? "SUCCESS" : "FAILED");
1285 printk(KERN_WARNING DRV_NAME
1286 ": %s: Firmware did not initialize.\n",
1287 priv->net_dev->name);
1291 /* allow firmware to write to GPIO1 & GPIO3 */
1292 read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1294 gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1296 write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1298 /* Ready to receive commands */
1299 priv->status |= STATUS_RUNNING;
1301 /* The adapter has been reset; we are not associated */
1302 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1304 IPW_DEBUG_INFO("exit\n");
1309 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1311 if (!priv->fatal_error)
1314 priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1315 priv->fatal_index %= IPW2100_ERROR_QUEUE;
1316 priv->fatal_error = 0;
1319 /* NOTE: Our interrupt is disabled when this method is called */
1320 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1325 IPW_DEBUG_INFO("Power cycling the hardware.\n");
1327 ipw2100_hw_set_gpio(priv);
1329 /* Step 1. Stop Master Assert */
1330 write_register(priv->net_dev, IPW_REG_RESET_REG,
1331 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1333 /* Step 2. Wait for stop Master Assert
1334 * (not more then 50us, otherwise ret error */
1337 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1338 read_register(priv->net_dev, IPW_REG_RESET_REG, ®);
1340 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1344 priv->status &= ~STATUS_RESET_PENDING;
1348 ("exit - waited too long for master assert stop\n");
1352 write_register(priv->net_dev, IPW_REG_RESET_REG,
1353 IPW_AUX_HOST_RESET_REG_SW_RESET);
1355 /* Reset any fatal_error conditions */
1356 ipw2100_reset_fatalerror(priv);
1358 /* At this point, the adapter is now stopped and disabled */
1359 priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1360 STATUS_ASSOCIATED | STATUS_ENABLED);
1366 * Send the CARD_DISABLE_PHY_OFF comamnd to the card to disable it
1368 * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1370 * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1371 * if STATUS_ASSN_LOST is sent.
1373 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1376 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1378 struct host_command cmd = {
1379 .host_command = CARD_DISABLE_PHY_OFF,
1380 .host_command_sequence = 0,
1381 .host_command_length = 0,
1386 IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1388 /* Turn off the radio */
1389 err = ipw2100_hw_send_command(priv, &cmd);
1393 for (i = 0; i < 2500; i++) {
1394 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1395 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1397 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1398 (val2 & IPW2100_COMMAND_PHY_OFF))
1401 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1407 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1409 struct host_command cmd = {
1410 .host_command = HOST_COMPLETE,
1411 .host_command_sequence = 0,
1412 .host_command_length = 0
1416 IPW_DEBUG_HC("HOST_COMPLETE\n");
1418 if (priv->status & STATUS_ENABLED)
1421 down(&priv->adapter_sem);
1423 if (rf_kill_active(priv)) {
1424 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1428 err = ipw2100_hw_send_command(priv, &cmd);
1430 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1434 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1436 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1437 priv->net_dev->name);
1441 if (priv->stop_hang_check) {
1442 priv->stop_hang_check = 0;
1443 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
1447 up(&priv->adapter_sem);
1451 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1453 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1455 struct host_command cmd = {
1456 .host_command = HOST_PRE_POWER_DOWN,
1457 .host_command_sequence = 0,
1458 .host_command_length = 0,
1463 if (!(priv->status & STATUS_RUNNING))
1466 priv->status |= STATUS_STOPPING;
1468 /* We can only shut down the card if the firmware is operational. So,
1469 * if we haven't reset since a fatal_error, then we can not send the
1470 * shutdown commands. */
1471 if (!priv->fatal_error) {
1472 /* First, make sure the adapter is enabled so that the PHY_OFF
1473 * command can shut it down */
1474 ipw2100_enable_adapter(priv);
1476 err = ipw2100_hw_phy_off(priv);
1478 printk(KERN_WARNING DRV_NAME
1479 ": Error disabling radio %d\n", err);
1482 * If in D0-standby mode going directly to D3 may cause a
1483 * PCI bus violation. Therefore we must change out of the D0
1486 * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1487 * hardware from going into standby mode and will transition
1488 * out of D0-standy if it is already in that state.
1490 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1491 * driver upon completion. Once received, the driver can
1492 * proceed to the D3 state.
1494 * Prepare for power down command to fw. This command would
1495 * take HW out of D0-standby and prepare it for D3 state.
1497 * Currently FW does not support event notification for this
1498 * event. Therefore, skip waiting for it. Just wait a fixed
1501 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1503 err = ipw2100_hw_send_command(priv, &cmd);
1505 printk(KERN_WARNING DRV_NAME ": "
1506 "%s: Power down command failed: Error %d\n",
1507 priv->net_dev->name, err);
1509 schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1512 priv->status &= ~STATUS_ENABLED;
1515 * Set GPIO 3 writable by FW; GPIO 1 writable
1516 * by driver and enable clock
1518 ipw2100_hw_set_gpio(priv);
1521 * Power down adapter. Sequence:
1522 * 1. Stop master assert (RESET_REG[9]=1)
1523 * 2. Wait for stop master (RESET_REG[8]==1)
1524 * 3. S/w reset assert (RESET_REG[7] = 1)
1527 /* Stop master assert */
1528 write_register(priv->net_dev, IPW_REG_RESET_REG,
1529 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1531 /* wait stop master not more than 50 usec.
1532 * Otherwise return error. */
1533 for (i = 5; i > 0; i--) {
1536 /* Check master stop bit */
1537 read_register(priv->net_dev, IPW_REG_RESET_REG, ®);
1539 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1544 printk(KERN_WARNING DRV_NAME
1545 ": %s: Could now power down adapter.\n",
1546 priv->net_dev->name);
1548 /* assert s/w reset */
1549 write_register(priv->net_dev, IPW_REG_RESET_REG,
1550 IPW_AUX_HOST_RESET_REG_SW_RESET);
1552 priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1557 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1559 struct host_command cmd = {
1560 .host_command = CARD_DISABLE,
1561 .host_command_sequence = 0,
1562 .host_command_length = 0
1566 IPW_DEBUG_HC("CARD_DISABLE\n");
1568 if (!(priv->status & STATUS_ENABLED))
1571 /* Make sure we clear the associated state */
1572 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1574 if (!priv->stop_hang_check) {
1575 priv->stop_hang_check = 1;
1576 cancel_delayed_work(&priv->hang_check);
1579 down(&priv->adapter_sem);
1581 err = ipw2100_hw_send_command(priv, &cmd);
1583 printk(KERN_WARNING DRV_NAME
1584 ": exit - failed to send CARD_DISABLE command\n");
1588 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1590 printk(KERN_WARNING DRV_NAME
1591 ": exit - card failed to change to DISABLED\n");
1595 IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1598 up(&priv->adapter_sem);
1602 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1604 struct host_command cmd = {
1605 .host_command = SET_SCAN_OPTIONS,
1606 .host_command_sequence = 0,
1607 .host_command_length = 8
1611 IPW_DEBUG_INFO("enter\n");
1613 IPW_DEBUG_SCAN("setting scan options\n");
1615 cmd.host_command_parameters[0] = 0;
1617 if (!(priv->config & CFG_ASSOCIATE))
1618 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1619 if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1620 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1621 if (priv->config & CFG_PASSIVE_SCAN)
1622 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1624 cmd.host_command_parameters[1] = priv->channel_mask;
1626 err = ipw2100_hw_send_command(priv, &cmd);
1628 IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1629 cmd.host_command_parameters[0]);
1634 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1636 struct host_command cmd = {
1637 .host_command = BROADCAST_SCAN,
1638 .host_command_sequence = 0,
1639 .host_command_length = 4
1643 IPW_DEBUG_HC("START_SCAN\n");
1645 cmd.host_command_parameters[0] = 0;
1647 /* No scanning if in monitor mode */
1648 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1651 if (priv->status & STATUS_SCANNING) {
1652 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1656 IPW_DEBUG_INFO("enter\n");
1658 /* Not clearing here; doing so makes iwlist always return nothing...
1660 * We should modify the table logic to use aging tables vs. clearing
1661 * the table on each scan start.
1663 IPW_DEBUG_SCAN("starting scan\n");
1665 priv->status |= STATUS_SCANNING;
1666 err = ipw2100_hw_send_command(priv, &cmd);
1668 priv->status &= ~STATUS_SCANNING;
1670 IPW_DEBUG_INFO("exit\n");
1675 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1677 unsigned long flags;
1680 u32 ord_len = sizeof(lock);
1682 /* Quite if manually disabled. */
1683 if (priv->status & STATUS_RF_KILL_SW) {
1684 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1685 "switch\n", priv->net_dev->name);
1689 /* If the interrupt is enabled, turn it off... */
1690 spin_lock_irqsave(&priv->low_lock, flags);
1691 ipw2100_disable_interrupts(priv);
1693 /* Reset any fatal_error conditions */
1694 ipw2100_reset_fatalerror(priv);
1695 spin_unlock_irqrestore(&priv->low_lock, flags);
1697 if (priv->status & STATUS_POWERED ||
1698 (priv->status & STATUS_RESET_PENDING)) {
1699 /* Power cycle the card ... */
1700 if (ipw2100_power_cycle_adapter(priv)) {
1701 printk(KERN_WARNING DRV_NAME
1702 ": %s: Could not cycle adapter.\n",
1703 priv->net_dev->name);
1708 priv->status |= STATUS_POWERED;
1710 /* Load the firmware, start the clocks, etc. */
1711 if (ipw2100_start_adapter(priv)) {
1712 printk(KERN_ERR DRV_NAME
1713 ": %s: Failed to start the firmware.\n",
1714 priv->net_dev->name);
1719 ipw2100_initialize_ordinals(priv);
1721 /* Determine capabilities of this particular HW configuration */
1722 if (ipw2100_get_hw_features(priv)) {
1723 printk(KERN_ERR DRV_NAME
1724 ": %s: Failed to determine HW features.\n",
1725 priv->net_dev->name);
1731 if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1732 printk(KERN_ERR DRV_NAME
1733 ": %s: Failed to clear ordinal lock.\n",
1734 priv->net_dev->name);
1739 priv->status &= ~STATUS_SCANNING;
1741 if (rf_kill_active(priv)) {
1742 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1743 priv->net_dev->name);
1745 if (priv->stop_rf_kill) {
1746 priv->stop_rf_kill = 0;
1747 queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
1753 /* Turn on the interrupt so that commands can be processed */
1754 ipw2100_enable_interrupts(priv);
1756 /* Send all of the commands that must be sent prior to
1758 if (ipw2100_adapter_setup(priv)) {
1759 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1760 priv->net_dev->name);
1766 /* Enable the adapter - sends HOST_COMPLETE */
1767 if (ipw2100_enable_adapter(priv)) {
1768 printk(KERN_ERR DRV_NAME ": "
1769 "%s: failed in call to enable adapter.\n",
1770 priv->net_dev->name);
1771 ipw2100_hw_stop_adapter(priv);
1776 /* Start a scan . . . */
1777 ipw2100_set_scan_options(priv);
1778 ipw2100_start_scan(priv);
1785 /* Called by register_netdev() */
1786 static int ipw2100_net_init(struct net_device *dev)
1788 struct ipw2100_priv *priv = ieee80211_priv(dev);
1789 return ipw2100_up(priv, 1);
1792 static void ipw2100_down(struct ipw2100_priv *priv)
1794 unsigned long flags;
1795 union iwreq_data wrqu = {
1797 .sa_family = ARPHRD_ETHER}
1799 int associated = priv->status & STATUS_ASSOCIATED;
1801 /* Kill the RF switch timer */
1802 if (!priv->stop_rf_kill) {
1803 priv->stop_rf_kill = 1;
1804 cancel_delayed_work(&priv->rf_kill);
1807 /* Kill the firmare hang check timer */
1808 if (!priv->stop_hang_check) {
1809 priv->stop_hang_check = 1;
1810 cancel_delayed_work(&priv->hang_check);
1813 /* Kill any pending resets */
1814 if (priv->status & STATUS_RESET_PENDING)
1815 cancel_delayed_work(&priv->reset_work);
1817 /* Make sure the interrupt is on so that FW commands will be
1818 * processed correctly */
1819 spin_lock_irqsave(&priv->low_lock, flags);
1820 ipw2100_enable_interrupts(priv);
1821 spin_unlock_irqrestore(&priv->low_lock, flags);
1823 if (ipw2100_hw_stop_adapter(priv))
1824 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1825 priv->net_dev->name);
1827 /* Do not disable the interrupt until _after_ we disable
1828 * the adaptor. Otherwise the CARD_DISABLE command will never
1829 * be ack'd by the firmware */
1830 spin_lock_irqsave(&priv->low_lock, flags);
1831 ipw2100_disable_interrupts(priv);
1832 spin_unlock_irqrestore(&priv->low_lock, flags);
1834 #ifdef ACPI_CSTATE_LIMIT_DEFINED
1835 if (priv->config & CFG_C3_DISABLED) {
1836 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
1837 acpi_set_cstate_limit(priv->cstate_limit);
1838 priv->config &= ~CFG_C3_DISABLED;
1842 /* We have to signal any supplicant if we are disassociating */
1844 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1846 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1847 netif_carrier_off(priv->net_dev);
1848 netif_stop_queue(priv->net_dev);
1851 static void ipw2100_reset_adapter(struct ipw2100_priv *priv)
1853 unsigned long flags;
1854 union iwreq_data wrqu = {
1856 .sa_family = ARPHRD_ETHER}
1858 int associated = priv->status & STATUS_ASSOCIATED;
1860 spin_lock_irqsave(&priv->low_lock, flags);
1861 IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1863 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1864 priv->status |= STATUS_SECURITY_UPDATED;
1866 /* Force a power cycle even if interface hasn't been opened
1868 cancel_delayed_work(&priv->reset_work);
1869 priv->status |= STATUS_RESET_PENDING;
1870 spin_unlock_irqrestore(&priv->low_lock, flags);
1872 down(&priv->action_sem);
1873 /* stop timed checks so that they don't interfere with reset */
1874 priv->stop_hang_check = 1;
1875 cancel_delayed_work(&priv->hang_check);
1877 /* We have to signal any supplicant if we are disassociating */
1879 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1881 ipw2100_up(priv, 0);
1882 up(&priv->action_sem);
1886 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1889 #define MAC_ASSOCIATION_READ_DELAY (HZ)
1890 int ret, len, essid_len;
1891 char essid[IW_ESSID_MAX_SIZE];
1898 * TBD: BSSID is usually 00:00:00:00:00:00 here and not
1899 * an actual MAC of the AP. Seems like FW sets this
1900 * address too late. Read it later and expose through
1901 * /proc or schedule a later task to query and update
1904 essid_len = IW_ESSID_MAX_SIZE;
1905 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
1908 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1914 ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
1916 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1922 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
1924 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1929 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
1931 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1935 memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
1938 case TX_RATE_1_MBIT:
1939 txratename = "1Mbps";
1941 case TX_RATE_2_MBIT:
1942 txratename = "2Mbsp";
1944 case TX_RATE_5_5_MBIT:
1945 txratename = "5.5Mbps";
1947 case TX_RATE_11_MBIT:
1948 txratename = "11Mbps";
1951 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
1952 txratename = "unknown rate";
1956 IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID="
1958 priv->net_dev->name, escape_essid(essid, essid_len),
1959 txratename, chan, MAC_ARG(bssid));
1961 /* now we copy read ssid into dev */
1962 if (!(priv->config & CFG_STATIC_ESSID)) {
1963 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
1964 memcpy(priv->essid, essid, priv->essid_len);
1966 priv->channel = chan;
1967 memcpy(priv->bssid, bssid, ETH_ALEN);
1969 priv->status |= STATUS_ASSOCIATING;
1970 priv->connect_start = get_seconds();
1972 queue_delayed_work(priv->workqueue, &priv->wx_event_work, HZ / 10);
1975 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
1976 int length, int batch_mode)
1978 int ssid_len = min(length, IW_ESSID_MAX_SIZE);
1979 struct host_command cmd = {
1980 .host_command = SSID,
1981 .host_command_sequence = 0,
1982 .host_command_length = ssid_len
1986 IPW_DEBUG_HC("SSID: '%s'\n", escape_essid(essid, ssid_len));
1989 memcpy(cmd.host_command_parameters, essid, ssid_len);
1992 err = ipw2100_disable_adapter(priv);
1997 /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
1998 * disable auto association -- so we cheat by setting a bogus SSID */
1999 if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2001 u8 *bogus = (u8 *) cmd.host_command_parameters;
2002 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2003 bogus[i] = 0x18 + i;
2004 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2007 /* NOTE: We always send the SSID command even if the provided ESSID is
2008 * the same as what we currently think is set. */
2010 err = ipw2100_hw_send_command(priv, &cmd);
2012 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2013 memcpy(priv->essid, essid, ssid_len);
2014 priv->essid_len = ssid_len;
2018 if (ipw2100_enable_adapter(priv))
2025 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2027 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2028 "disassociated: '%s' " MAC_FMT " \n",
2029 escape_essid(priv->essid, priv->essid_len),
2030 MAC_ARG(priv->bssid));
2032 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2034 if (priv->status & STATUS_STOPPING) {
2035 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2039 memset(priv->bssid, 0, ETH_ALEN);
2040 memset(priv->ieee->bssid, 0, ETH_ALEN);
2042 netif_carrier_off(priv->net_dev);
2043 netif_stop_queue(priv->net_dev);
2045 if (!(priv->status & STATUS_RUNNING))
2048 if (priv->status & STATUS_SECURITY_UPDATED)
2049 queue_work(priv->workqueue, &priv->security_work);
2051 queue_work(priv->workqueue, &priv->wx_event_work);
2054 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2056 IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2057 priv->net_dev->name);
2059 /* RF_KILL is now enabled (else we wouldn't be here) */
2060 priv->status |= STATUS_RF_KILL_HW;
2062 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2063 if (priv->config & CFG_C3_DISABLED) {
2064 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
2065 acpi_set_cstate_limit(priv->cstate_limit);
2066 priv->config &= ~CFG_C3_DISABLED;
2070 /* Make sure the RF Kill check timer is running */
2071 priv->stop_rf_kill = 0;
2072 cancel_delayed_work(&priv->rf_kill);
2073 queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
2076 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2078 IPW_DEBUG_SCAN("scan complete\n");
2079 /* Age the scan results... */
2080 priv->ieee->scans++;
2081 priv->status &= ~STATUS_SCANNING;
2084 #ifdef CONFIG_IPW2100_DEBUG
2085 #define IPW2100_HANDLER(v, f) { v, f, # v }
2086 struct ipw2100_status_indicator {
2088 void (*cb) (struct ipw2100_priv * priv, u32 status);
2092 #define IPW2100_HANDLER(v, f) { v, f }
2093 struct ipw2100_status_indicator {
2095 void (*cb) (struct ipw2100_priv * priv, u32 status);
2097 #endif /* CONFIG_IPW2100_DEBUG */
2099 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2101 IPW_DEBUG_SCAN("Scanning...\n");
2102 priv->status |= STATUS_SCANNING;
2105 static const struct ipw2100_status_indicator status_handlers[] = {
2106 IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2107 IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2108 IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2109 IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2110 IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2111 IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2112 IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2113 IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2114 IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2115 IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2116 IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2117 IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2118 IPW2100_HANDLER(-1, NULL)
2121 static void isr_status_change(struct ipw2100_priv *priv, int status)
2125 if (status == IPW_STATE_SCANNING &&
2126 priv->status & STATUS_ASSOCIATED &&
2127 !(priv->status & STATUS_SCANNING)) {
2128 IPW_DEBUG_INFO("Scan detected while associated, with "
2129 "no scan request. Restarting firmware.\n");
2131 /* Wake up any sleeping jobs */
2132 schedule_reset(priv);
2135 for (i = 0; status_handlers[i].status != -1; i++) {
2136 if (status == status_handlers[i].status) {
2137 IPW_DEBUG_NOTIF("Status change: %s\n",
2138 status_handlers[i].name);
2139 if (status_handlers[i].cb)
2140 status_handlers[i].cb(priv, status);
2141 priv->wstats.status = status;
2146 IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2149 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2150 struct ipw2100_cmd_header *cmd)
2152 #ifdef CONFIG_IPW2100_DEBUG
2153 if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2154 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2155 command_types[cmd->host_command_reg],
2156 cmd->host_command_reg);
2159 if (cmd->host_command_reg == HOST_COMPLETE)
2160 priv->status |= STATUS_ENABLED;
2162 if (cmd->host_command_reg == CARD_DISABLE)
2163 priv->status &= ~STATUS_ENABLED;
2165 priv->status &= ~STATUS_CMD_ACTIVE;
2167 wake_up_interruptible(&priv->wait_command_queue);
2170 #ifdef CONFIG_IPW2100_DEBUG
2171 static const char *frame_types[] = {
2172 "COMMAND_STATUS_VAL",
2173 "STATUS_CHANGE_VAL",
2176 "HOST_NOTIFICATION_VAL"
2180 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2181 struct ipw2100_rx_packet *packet)
2183 packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2187 packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2188 packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2189 sizeof(struct ipw2100_rx),
2190 PCI_DMA_FROMDEVICE);
2191 /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2197 #define SEARCH_ERROR 0xffffffff
2198 #define SEARCH_FAIL 0xfffffffe
2199 #define SEARCH_SUCCESS 0xfffffff0
2200 #define SEARCH_DISCARD 0
2201 #define SEARCH_SNAPSHOT 1
2203 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2204 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2207 if (priv->snapshot[0])
2209 for (i = 0; i < 0x30; i++) {
2210 priv->snapshot[i] = (u8 *) kmalloc(0x1000, GFP_ATOMIC);
2211 if (!priv->snapshot[i]) {
2212 IPW_DEBUG_INFO("%s: Error allocating snapshot "
2213 "buffer %d\n", priv->net_dev->name, i);
2215 kfree(priv->snapshot[--i]);
2216 priv->snapshot[0] = NULL;
2224 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2227 if (!priv->snapshot[0])
2229 for (i = 0; i < 0x30; i++)
2230 kfree(priv->snapshot[i]);
2231 priv->snapshot[0] = NULL;
2234 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2235 size_t len, int mode)
2243 if (mode == SEARCH_SNAPSHOT) {
2244 if (!ipw2100_snapshot_alloc(priv))
2245 mode = SEARCH_DISCARD;
2248 for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2249 read_nic_dword(priv->net_dev, i, &tmp);
2250 if (mode == SEARCH_SNAPSHOT)
2251 *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2252 if (ret == SEARCH_FAIL) {
2254 for (j = 0; j < 4; j++) {
2263 if ((s - in_buf) == len)
2264 ret = (i + j) - len + 1;
2266 } else if (mode == SEARCH_DISCARD)
2275 * 0) Disconnect the SKB from the firmware (just unmap)
2276 * 1) Pack the ETH header into the SKB
2277 * 2) Pass the SKB to the network stack
2279 * When packet is provided by the firmware, it contains the following:
2282 * . ieee80211_snap_hdr
2284 * The size of the constructed ethernet
2287 #ifdef CONFIG_IPW2100_RX_DEBUG
2288 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2291 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2293 #ifdef CONFIG_IPW2100_DEBUG_C3
2294 struct ipw2100_status *status = &priv->status_queue.drv[i];
2298 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2302 IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2303 i * sizeof(struct ipw2100_status));
2305 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2306 IPW_DEBUG_INFO(": Disabling C3 transitions.\n");
2307 limit = acpi_get_cstate_limit();
2309 priv->cstate_limit = limit;
2310 acpi_set_cstate_limit(2);
2311 priv->config |= CFG_C3_DISABLED;
2315 #ifdef CONFIG_IPW2100_DEBUG_C3
2316 /* Halt the fimrware so we can get a good image */
2317 write_register(priv->net_dev, IPW_REG_RESET_REG,
2318 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2321 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2322 read_register(priv->net_dev, IPW_REG_RESET_REG, ®);
2324 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2328 match = ipw2100_match_buf(priv, (u8 *) status,
2329 sizeof(struct ipw2100_status),
2331 if (match < SEARCH_SUCCESS)
2332 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2333 "offset 0x%06X, length %d:\n",
2334 priv->net_dev->name, match,
2335 sizeof(struct ipw2100_status));
2337 IPW_DEBUG_INFO("%s: No DMA status match in "
2338 "Firmware.\n", priv->net_dev->name);
2340 printk_buf((u8 *) priv->status_queue.drv,
2341 sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2344 priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2345 priv->ieee->stats.rx_errors++;
2346 schedule_reset(priv);
2349 static void isr_rx(struct ipw2100_priv *priv, int i,
2350 struct ieee80211_rx_stats *stats)
2352 struct ipw2100_status *status = &priv->status_queue.drv[i];
2353 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2355 IPW_DEBUG_RX("Handler...\n");
2357 if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2358 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2360 priv->net_dev->name,
2361 status->frame_size, skb_tailroom(packet->skb));
2362 priv->ieee->stats.rx_errors++;
2366 if (unlikely(!netif_running(priv->net_dev))) {
2367 priv->ieee->stats.rx_errors++;
2368 priv->wstats.discard.misc++;
2369 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2372 #ifdef CONFIG_IPW2100_MONITOR
2373 if (unlikely(priv->ieee->iw_mode == IW_MODE_MONITOR &&
2374 priv->config & CFG_CRC_CHECK &&
2375 status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2376 IPW_DEBUG_RX("CRC error in packet. Dropping.\n");
2377 priv->ieee->stats.rx_errors++;
2382 if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2383 !(priv->status & STATUS_ASSOCIATED))) {
2384 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2385 priv->wstats.discard.misc++;
2389 pci_unmap_single(priv->pci_dev,
2391 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2393 skb_put(packet->skb, status->frame_size);
2395 #ifdef CONFIG_IPW2100_RX_DEBUG
2396 /* Make a copy of the frame so we can dump it to the logs if
2397 * ieee80211_rx fails */
2398 memcpy(packet_data, packet->skb->data,
2399 min_t(u32, status->frame_size, IPW_RX_NIC_BUFFER_LENGTH));
2402 if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2403 #ifdef CONFIG_IPW2100_RX_DEBUG
2404 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2405 priv->net_dev->name);
2406 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2408 priv->ieee->stats.rx_errors++;
2410 /* ieee80211_rx failed, so it didn't free the SKB */
2411 dev_kfree_skb_any(packet->skb);
2415 /* We need to allocate a new SKB and attach it to the RDB. */
2416 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2417 printk(KERN_WARNING DRV_NAME ": "
2418 "%s: Unable to allocate SKB onto RBD ring - disabling "
2419 "adapter.\n", priv->net_dev->name);
2420 /* TODO: schedule adapter shutdown */
2421 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2424 /* Update the RDB entry */
2425 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2428 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2430 struct ipw2100_status *status = &priv->status_queue.drv[i];
2431 struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2432 u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2434 switch (frame_type) {
2435 case COMMAND_STATUS_VAL:
2436 return (status->frame_size != sizeof(u->rx_data.command));
2437 case STATUS_CHANGE_VAL:
2438 return (status->frame_size != sizeof(u->rx_data.status));
2439 case HOST_NOTIFICATION_VAL:
2440 return (status->frame_size < sizeof(u->rx_data.notification));
2441 case P80211_DATA_VAL:
2442 case P8023_DATA_VAL:
2443 #ifdef CONFIG_IPW2100_MONITOR
2446 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2447 case IEEE80211_FTYPE_MGMT:
2448 case IEEE80211_FTYPE_CTL:
2450 case IEEE80211_FTYPE_DATA:
2451 return (status->frame_size >
2452 IPW_MAX_802_11_PAYLOAD_LENGTH);
2461 * ipw2100 interrupts are disabled at this point, and the ISR
2462 * is the only code that calls this method. So, we do not need
2463 * to play with any locks.
2465 * RX Queue works as follows:
2467 * Read index - firmware places packet in entry identified by the
2468 * Read index and advances Read index. In this manner,
2469 * Read index will always point to the next packet to
2470 * be filled--but not yet valid.
2472 * Write index - driver fills this entry with an unused RBD entry.
2473 * This entry has not filled by the firmware yet.
2475 * In between the W and R indexes are the RBDs that have been received
2476 * but not yet processed.
2478 * The process of handling packets will start at WRITE + 1 and advance
2479 * until it reaches the READ index.
2481 * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2484 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2486 struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2487 struct ipw2100_status_queue *sq = &priv->status_queue;
2488 struct ipw2100_rx_packet *packet;
2491 struct ipw2100_rx *u;
2492 struct ieee80211_rx_stats stats = {
2493 .mac_time = jiffies,
2496 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2497 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2499 if (r >= rxq->entries) {
2500 IPW_DEBUG_RX("exit - bad read index\n");
2504 i = (rxq->next + 1) % rxq->entries;
2507 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2508 r, rxq->next, i); */
2510 packet = &priv->rx_buffers[i];
2512 /* Sync the DMA for the STATUS buffer so CPU is sure to get
2513 * the correct values */
2514 pci_dma_sync_single_for_cpu(priv->pci_dev,
2516 sizeof(struct ipw2100_status) * i,
2517 sizeof(struct ipw2100_status),
2518 PCI_DMA_FROMDEVICE);
2520 /* Sync the DMA for the RX buffer so CPU is sure to get
2521 * the correct values */
2522 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2523 sizeof(struct ipw2100_rx),
2524 PCI_DMA_FROMDEVICE);
2526 if (unlikely(ipw2100_corruption_check(priv, i))) {
2527 ipw2100_corruption_detected(priv, i);
2532 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2533 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2534 stats.len = sq->drv[i].frame_size;
2537 if (stats.rssi != 0)
2538 stats.mask |= IEEE80211_STATMASK_RSSI;
2539 stats.freq = IEEE80211_24GHZ_BAND;
2541 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2542 priv->net_dev->name, frame_types[frame_type],
2545 switch (frame_type) {
2546 case COMMAND_STATUS_VAL:
2547 /* Reset Rx watchdog */
2548 isr_rx_complete_command(priv, &u->rx_data.command);
2551 case STATUS_CHANGE_VAL:
2552 isr_status_change(priv, u->rx_data.status);
2555 case P80211_DATA_VAL:
2556 case P8023_DATA_VAL:
2557 #ifdef CONFIG_IPW2100_MONITOR
2558 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2559 isr_rx(priv, i, &stats);
2563 if (stats.len < sizeof(u->rx_data.header))
2565 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2566 case IEEE80211_FTYPE_MGMT:
2567 ieee80211_rx_mgt(priv->ieee,
2568 &u->rx_data.header, &stats);
2571 case IEEE80211_FTYPE_CTL:
2574 case IEEE80211_FTYPE_DATA:
2575 isr_rx(priv, i, &stats);
2583 /* clear status field associated with this RBD */
2584 rxq->drv[i].status.info.field = 0;
2586 i = (i + 1) % rxq->entries;
2590 /* backtrack one entry, wrapping to end if at 0 */
2591 rxq->next = (i ? i : rxq->entries) - 1;
2593 write_register(priv->net_dev,
2594 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2599 * __ipw2100_tx_process
2601 * This routine will determine whether the next packet on
2602 * the fw_pend_list has been processed by the firmware yet.
2604 * If not, then it does nothing and returns.
2606 * If so, then it removes the item from the fw_pend_list, frees
2607 * any associated storage, and places the item back on the
2608 * free list of its source (either msg_free_list or tx_free_list)
2610 * TX Queue works as follows:
2612 * Read index - points to the next TBD that the firmware will
2613 * process. The firmware will read the data, and once
2614 * done processing, it will advance the Read index.
2616 * Write index - driver fills this entry with an constructed TBD
2617 * entry. The Write index is not advanced until the
2618 * packet has been configured.
2620 * In between the W and R indexes are the TBDs that have NOT been
2621 * processed. Lagging behind the R index are packets that have
2622 * been processed but have not been freed by the driver.
2624 * In order to free old storage, an internal index will be maintained
2625 * that points to the next packet to be freed. When all used
2626 * packets have been freed, the oldest index will be the same as the
2627 * firmware's read index.
2629 * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2631 * Because the TBD structure can not contain arbitrary data, the
2632 * driver must keep an internal queue of cached allocations such that
2633 * it can put that data back into the tx_free_list and msg_free_list
2634 * for use by future command and data packets.
2637 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2639 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2640 struct ipw2100_bd *tbd;
2641 struct list_head *element;
2642 struct ipw2100_tx_packet *packet;
2643 int descriptors_used;
2645 u32 r, w, frag_num = 0;
2647 if (list_empty(&priv->fw_pend_list))
2650 element = priv->fw_pend_list.next;
2652 packet = list_entry(element, struct ipw2100_tx_packet, list);
2653 tbd = &txq->drv[packet->index];
2655 /* Determine how many TBD entries must be finished... */
2656 switch (packet->type) {
2658 /* COMMAND uses only one slot; don't advance */
2659 descriptors_used = 1;
2664 /* DATA uses two slots; advance and loop position. */
2665 descriptors_used = tbd->num_fragments;
2666 frag_num = tbd->num_fragments - 1;
2667 e = txq->oldest + frag_num;
2672 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2673 priv->net_dev->name);
2677 /* if the last TBD is not done by NIC yet, then packet is
2678 * not ready to be released.
2681 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2683 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2686 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2687 priv->net_dev->name);
2690 * txq->next is the index of the last packet written txq->oldest is
2691 * the index of the r is the index of the next packet to be read by
2696 * Quick graphic to help you visualize the following
2697 * if / else statement
2699 * ===>| s---->|===============
2701 * | a | b | c | d | e | f | g | h | i | j | k | l
2705 * w - updated by driver
2706 * r - updated by firmware
2707 * s - start of oldest BD entry (txq->oldest)
2708 * e - end of oldest BD entry
2711 if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2712 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2717 DEC_STAT(&priv->fw_pend_stat);
2719 #ifdef CONFIG_IPW2100_DEBUG
2721 int i = txq->oldest;
2722 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2724 (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2725 txq->drv[i].host_addr, txq->drv[i].buf_length);
2727 if (packet->type == DATA) {
2728 i = (i + 1) % txq->entries;
2730 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2732 (u32) (txq->nic + i *
2733 sizeof(struct ipw2100_bd)),
2734 (u32) txq->drv[i].host_addr,
2735 txq->drv[i].buf_length);
2740 switch (packet->type) {
2742 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2743 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2744 "Expecting DATA TBD but pulled "
2745 "something else: ids %d=%d.\n",
2746 priv->net_dev->name, txq->oldest, packet->index);
2748 /* DATA packet; we have to unmap and free the SKB */
2749 for (i = 0; i < frag_num; i++) {
2750 tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2752 IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2753 (packet->index + 1 + i) % txq->entries,
2754 tbd->host_addr, tbd->buf_length);
2756 pci_unmap_single(priv->pci_dev,
2758 tbd->buf_length, PCI_DMA_TODEVICE);
2761 ieee80211_txb_free(packet->info.d_struct.txb);
2762 packet->info.d_struct.txb = NULL;
2764 list_add_tail(element, &priv->tx_free_list);
2765 INC_STAT(&priv->tx_free_stat);
2767 /* We have a free slot in the Tx queue, so wake up the
2768 * transmit layer if it is stopped. */
2769 if (priv->status & STATUS_ASSOCIATED)
2770 netif_wake_queue(priv->net_dev);
2772 /* A packet was processed by the hardware, so update the
2774 priv->net_dev->trans_start = jiffies;
2779 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2780 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2781 "Expecting COMMAND TBD but pulled "
2782 "something else: ids %d=%d.\n",
2783 priv->net_dev->name, txq->oldest, packet->index);
2785 #ifdef CONFIG_IPW2100_DEBUG
2786 if (packet->info.c_struct.cmd->host_command_reg <
2787 sizeof(command_types) / sizeof(*command_types))
2788 IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2789 command_types[packet->info.c_struct.cmd->
2791 packet->info.c_struct.cmd->
2793 packet->info.c_struct.cmd->cmd_status_reg);
2796 list_add_tail(element, &priv->msg_free_list);
2797 INC_STAT(&priv->msg_free_stat);
2801 /* advance oldest used TBD pointer to start of next entry */
2802 txq->oldest = (e + 1) % txq->entries;
2803 /* increase available TBDs number */
2804 txq->available += descriptors_used;
2805 SET_STAT(&priv->txq_stat, txq->available);
2807 IPW_DEBUG_TX("packet latency (send to process) %ld jiffies\n",
2808 jiffies - packet->jiffy_start);
2810 return (!list_empty(&priv->fw_pend_list));
2813 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2817 while (__ipw2100_tx_process(priv) && i < 200)
2821 printk(KERN_WARNING DRV_NAME ": "
2822 "%s: Driver is running slow (%d iters).\n",
2823 priv->net_dev->name, i);
2827 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
2829 struct list_head *element;
2830 struct ipw2100_tx_packet *packet;
2831 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2832 struct ipw2100_bd *tbd;
2833 int next = txq->next;
2835 while (!list_empty(&priv->msg_pend_list)) {
2836 /* if there isn't enough space in TBD queue, then
2837 * don't stuff a new one in.
2838 * NOTE: 3 are needed as a command will take one,
2839 * and there is a minimum of 2 that must be
2840 * maintained between the r and w indexes
2842 if (txq->available <= 3) {
2843 IPW_DEBUG_TX("no room in tx_queue\n");
2847 element = priv->msg_pend_list.next;
2849 DEC_STAT(&priv->msg_pend_stat);
2851 packet = list_entry(element, struct ipw2100_tx_packet, list);
2853 IPW_DEBUG_TX("using TBD at virt=%p, phys=%p\n",
2854 &txq->drv[txq->next],
2855 (void *)(txq->nic + txq->next *
2856 sizeof(struct ipw2100_bd)));
2858 packet->index = txq->next;
2860 tbd = &txq->drv[txq->next];
2862 /* initialize TBD */
2863 tbd->host_addr = packet->info.c_struct.cmd_phys;
2864 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
2865 /* not marking number of fragments causes problems
2866 * with f/w debug version */
2867 tbd->num_fragments = 1;
2868 tbd->status.info.field =
2869 IPW_BD_STATUS_TX_FRAME_COMMAND |
2870 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
2872 /* update TBD queue counters */
2874 txq->next %= txq->entries;
2876 DEC_STAT(&priv->txq_stat);
2878 list_add_tail(element, &priv->fw_pend_list);
2879 INC_STAT(&priv->fw_pend_stat);
2882 if (txq->next != next) {
2883 /* kick off the DMA by notifying firmware the
2884 * write index has moved; make sure TBD stores are sync'd */
2886 write_register(priv->net_dev,
2887 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2893 * ipw2100_tx_send_data
2896 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
2898 struct list_head *element;
2899 struct ipw2100_tx_packet *packet;
2900 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2901 struct ipw2100_bd *tbd;
2902 int next = txq->next;
2904 struct ipw2100_data_header *ipw_hdr;
2905 struct ieee80211_hdr_3addr *hdr;
2907 while (!list_empty(&priv->tx_pend_list)) {
2908 /* if there isn't enough space in TBD queue, then
2909 * don't stuff a new one in.
2910 * NOTE: 4 are needed as a data will take two,
2911 * and there is a minimum of 2 that must be
2912 * maintained between the r and w indexes
2914 element = priv->tx_pend_list.next;
2915 packet = list_entry(element, struct ipw2100_tx_packet, list);
2917 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
2919 /* TODO: Support merging buffers if more than
2920 * IPW_MAX_BDS are used */
2921 IPW_DEBUG_INFO("%s: Maximum BD theshold exceeded. "
2922 "Increase fragmentation level.\n",
2923 priv->net_dev->name);
2926 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
2927 IPW_DEBUG_TX("no room in tx_queue\n");
2932 DEC_STAT(&priv->tx_pend_stat);
2934 tbd = &txq->drv[txq->next];
2936 packet->index = txq->next;
2938 ipw_hdr = packet->info.d_struct.data;
2939 hdr = (struct ieee80211_hdr_3addr *)packet->info.d_struct.txb->
2942 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
2943 /* To DS: Addr1 = BSSID, Addr2 = SA,
2945 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
2946 memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
2947 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
2948 /* not From/To DS: Addr1 = DA, Addr2 = SA,
2950 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
2951 memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
2954 ipw_hdr->host_command_reg = SEND;
2955 ipw_hdr->host_command_reg1 = 0;
2957 /* For now we only support host based encryption */
2958 ipw_hdr->needs_encryption = 0;
2959 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
2960 if (packet->info.d_struct.txb->nr_frags > 1)
2961 ipw_hdr->fragment_size =
2962 packet->info.d_struct.txb->frag_size -
2963 IEEE80211_3ADDR_LEN;
2965 ipw_hdr->fragment_size = 0;
2967 tbd->host_addr = packet->info.d_struct.data_phys;
2968 tbd->buf_length = sizeof(struct ipw2100_data_header);
2969 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
2970 tbd->status.info.field =
2971 IPW_BD_STATUS_TX_FRAME_802_3 |
2972 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
2974 txq->next %= txq->entries;
2976 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
2977 packet->index, tbd->host_addr, tbd->buf_length);
2978 #ifdef CONFIG_IPW2100_DEBUG
2979 if (packet->info.d_struct.txb->nr_frags > 1)
2980 IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
2981 packet->info.d_struct.txb->nr_frags);
2984 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
2985 tbd = &txq->drv[txq->next];
2986 if (i == packet->info.d_struct.txb->nr_frags - 1)
2987 tbd->status.info.field =
2988 IPW_BD_STATUS_TX_FRAME_802_3 |
2989 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
2991 tbd->status.info.field =
2992 IPW_BD_STATUS_TX_FRAME_802_3 |
2993 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
2995 tbd->buf_length = packet->info.d_struct.txb->
2996 fragments[i]->len - IEEE80211_3ADDR_LEN;
2998 tbd->host_addr = pci_map_single(priv->pci_dev,
2999 packet->info.d_struct.
3002 IEEE80211_3ADDR_LEN,
3006 IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3007 txq->next, tbd->host_addr,
3010 pci_dma_sync_single_for_device(priv->pci_dev,
3016 txq->next %= txq->entries;
3019 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3020 SET_STAT(&priv->txq_stat, txq->available);
3022 list_add_tail(element, &priv->fw_pend_list);
3023 INC_STAT(&priv->fw_pend_stat);
3026 if (txq->next != next) {
3027 /* kick off the DMA by notifying firmware the
3028 * write index has moved; make sure TBD stores are sync'd */
3029 write_register(priv->net_dev,
3030 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3036 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3038 struct net_device *dev = priv->net_dev;
3039 unsigned long flags;
3042 spin_lock_irqsave(&priv->low_lock, flags);
3043 ipw2100_disable_interrupts(priv);
3045 read_register(dev, IPW_REG_INTA, &inta);
3047 IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3048 (unsigned long)inta & IPW_INTERRUPT_MASK);
3053 /* We do not loop and keep polling for more interrupts as this
3054 * is frowned upon and doesn't play nicely with other potentially
3056 IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3057 (unsigned long)inta & IPW_INTERRUPT_MASK);
3059 if (inta & IPW2100_INTA_FATAL_ERROR) {
3060 printk(KERN_WARNING DRV_NAME
3061 ": Fatal interrupt. Scheduling firmware restart.\n");
3063 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3065 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3066 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3067 priv->net_dev->name, priv->fatal_error);
3069 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3070 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3071 priv->net_dev->name, tmp);
3073 /* Wake up any sleeping jobs */
3074 schedule_reset(priv);
3077 if (inta & IPW2100_INTA_PARITY_ERROR) {
3078 printk(KERN_ERR DRV_NAME
3079 ": ***** PARITY ERROR INTERRUPT !!!! \n");
3081 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3084 if (inta & IPW2100_INTA_RX_TRANSFER) {
3085 IPW_DEBUG_ISR("RX interrupt\n");
3087 priv->rx_interrupts++;
3089 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3091 __ipw2100_rx_process(priv);
3092 __ipw2100_tx_complete(priv);
3095 if (inta & IPW2100_INTA_TX_TRANSFER) {
3096 IPW_DEBUG_ISR("TX interrupt\n");
3098 priv->tx_interrupts++;
3100 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3102 __ipw2100_tx_complete(priv);
3103 ipw2100_tx_send_commands(priv);
3104 ipw2100_tx_send_data(priv);
3107 if (inta & IPW2100_INTA_TX_COMPLETE) {
3108 IPW_DEBUG_ISR("TX complete\n");
3110 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3112 __ipw2100_tx_complete(priv);
3115 if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3116 /* ipw2100_handle_event(dev); */
3118 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3121 if (inta & IPW2100_INTA_FW_INIT_DONE) {
3122 IPW_DEBUG_ISR("FW init done interrupt\n");
3125 read_register(dev, IPW_REG_INTA, &tmp);
3126 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3127 IPW2100_INTA_PARITY_ERROR)) {
3128 write_register(dev, IPW_REG_INTA,
3129 IPW2100_INTA_FATAL_ERROR |
3130 IPW2100_INTA_PARITY_ERROR);
3133 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3136 if (inta & IPW2100_INTA_STATUS_CHANGE) {
3137 IPW_DEBUG_ISR("Status change interrupt\n");
3139 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3142 if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3143 IPW_DEBUG_ISR("slave host mode interrupt\n");
3145 write_register(dev, IPW_REG_INTA,
3146 IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3150 ipw2100_enable_interrupts(priv);
3152 spin_unlock_irqrestore(&priv->low_lock, flags);
3154 IPW_DEBUG_ISR("exit\n");
3157 static irqreturn_t ipw2100_interrupt(int irq, void *data, struct pt_regs *regs)
3159 struct ipw2100_priv *priv = data;
3160 u32 inta, inta_mask;
3165 spin_lock(&priv->low_lock);
3167 /* We check to see if we should be ignoring interrupts before
3168 * we touch the hardware. During ucode load if we try and handle
3169 * an interrupt we can cause keyboard problems as well as cause
3170 * the ucode to fail to initialize */
3171 if (!(priv->status & STATUS_INT_ENABLED)) {
3176 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3177 read_register(priv->net_dev, IPW_REG_INTA, &inta);
3179 if (inta == 0xFFFFFFFF) {
3180 /* Hardware disappeared */
3181 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3185 inta &= IPW_INTERRUPT_MASK;
3187 if (!(inta & inta_mask)) {
3188 /* Shared interrupt */
3192 /* We disable the hardware interrupt here just to prevent unneeded
3193 * calls to be made. We disable this again within the actual
3194 * work tasklet, so if another part of the code re-enables the
3195 * interrupt, that is fine */
3196 ipw2100_disable_interrupts(priv);
3198 tasklet_schedule(&priv->irq_tasklet);
3199 spin_unlock(&priv->low_lock);
3203 spin_unlock(&priv->low_lock);
3207 static int ipw2100_tx(struct ieee80211_txb *txb, struct net_device *dev,
3210 struct ipw2100_priv *priv = ieee80211_priv(dev);
3211 struct list_head *element;
3212 struct ipw2100_tx_packet *packet;
3213 unsigned long flags;
3215 spin_lock_irqsave(&priv->low_lock, flags);
3217 if (!(priv->status & STATUS_ASSOCIATED)) {
3218 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3219 priv->ieee->stats.tx_carrier_errors++;
3220 netif_stop_queue(dev);
3224 if (list_empty(&priv->tx_free_list))
3227 element = priv->tx_free_list.next;
3228 packet = list_entry(element, struct ipw2100_tx_packet, list);