Merge branch 'fixes-jgarzik' of git://git.kernel.org/pub/scm/linux/kernel/git/linvill...
[linux-2.6.git] / drivers / net / wireless / ipw2100.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of version 2 of the GNU General Public License as
7   published by the Free Software Foundation.
8
9   This program is distributed in the hope that it will be useful, but WITHOUT
10   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12   more details.
13
14   You should have received a copy of the GNU General Public License along with
15   this program; if not, write to the Free Software Foundation, Inc., 59
16   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17
18   The full GNU General Public License is included in this distribution in the
19   file called LICENSE.
20
21   Contact Information:
22   James P. Ketrenos <ipw2100-admin@linux.intel.com>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25   Portions of this file are based on the sample_* files provided by Wireless
26   Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27   <jt@hpl.hp.com>
28
29   Portions of this file are based on the Host AP project,
30   Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31     <j@w1.fi>
32   Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33
34   Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35   ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36   available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41  Initial driver on which this is based was developed by Janusz Gorycki,
42  Maciej Urbaniak, and Maciej Sosnowski.
43
44  Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index.  The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index.  The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent.  If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD.  If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc.  The next TBD then referrs to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72    list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75    to a physical address.  That address is entered into a TBD.  Two TBDs are
76    filled out.  The first indicating a data packet, the second referring to the
77    actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79    firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83    to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85    from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87    to unmap the DMA address and to free the SKB originally passed to the driver
88    from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized.  The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103   tx_free_list : Holds pre-allocated Tx buffers.
104     TAIL modified in __ipw2100_tx_process()
105     HEAD modified in ipw2100_tx()
106
107   tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108     TAIL modified ipw2100_tx()
109     HEAD modified by ipw2100_tx_send_data()
110
111   msg_free_list : Holds pre-allocated Msg (Command) buffers
112     TAIL modified in __ipw2100_tx_process()
113     HEAD modified in ipw2100_hw_send_command()
114
115   msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116     TAIL modified in ipw2100_hw_send_command()
117     HEAD modified in ipw2100_tx_send_commands()
118
119   The flow of data on the TX side is as follows:
120
121   MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122   TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124   The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128   and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/version.h>
161 #include <linux/time.h>
162 #include <linux/firmware.h>
163 #include <linux/acpi.h>
164 #include <linux/ctype.h>
165 #include <linux/latency.h>
166
167 #include "ipw2100.h"
168
169 #define IPW2100_VERSION "git-1.2.2"
170
171 #define DRV_NAME        "ipw2100"
172 #define DRV_VERSION     IPW2100_VERSION
173 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
174 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
175
176 /* Debugging stuff */
177 #ifdef CONFIG_IPW2100_DEBUG
178 #define IPW2100_RX_DEBUG        /* Reception debugging */
179 #endif
180
181 MODULE_DESCRIPTION(DRV_DESCRIPTION);
182 MODULE_VERSION(DRV_VERSION);
183 MODULE_AUTHOR(DRV_COPYRIGHT);
184 MODULE_LICENSE("GPL");
185
186 static int debug = 0;
187 static int mode = 0;
188 static int channel = 0;
189 static int associate = 1;
190 static int disable = 0;
191 #ifdef CONFIG_PM
192 static struct ipw2100_fw ipw2100_firmware;
193 #endif
194
195 #include <linux/moduleparam.h>
196 module_param(debug, int, 0444);
197 module_param(mode, int, 0444);
198 module_param(channel, int, 0444);
199 module_param(associate, int, 0444);
200 module_param(disable, int, 0444);
201
202 MODULE_PARM_DESC(debug, "debug level");
203 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
204 MODULE_PARM_DESC(channel, "channel");
205 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
206 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
207
208 static u32 ipw2100_debug_level = IPW_DL_NONE;
209
210 #ifdef CONFIG_IPW2100_DEBUG
211 #define IPW_DEBUG(level, message...) \
212 do { \
213         if (ipw2100_debug_level & (level)) { \
214                 printk(KERN_DEBUG "ipw2100: %c %s ", \
215                        in_interrupt() ? 'I' : 'U',  __FUNCTION__); \
216                 printk(message); \
217         } \
218 } while (0)
219 #else
220 #define IPW_DEBUG(level, message...) do {} while (0)
221 #endif                          /* CONFIG_IPW2100_DEBUG */
222
223 #ifdef CONFIG_IPW2100_DEBUG
224 static const char *command_types[] = {
225         "undefined",
226         "unused",               /* HOST_ATTENTION */
227         "HOST_COMPLETE",
228         "unused",               /* SLEEP */
229         "unused",               /* HOST_POWER_DOWN */
230         "unused",
231         "SYSTEM_CONFIG",
232         "unused",               /* SET_IMR */
233         "SSID",
234         "MANDATORY_BSSID",
235         "AUTHENTICATION_TYPE",
236         "ADAPTER_ADDRESS",
237         "PORT_TYPE",
238         "INTERNATIONAL_MODE",
239         "CHANNEL",
240         "RTS_THRESHOLD",
241         "FRAG_THRESHOLD",
242         "POWER_MODE",
243         "TX_RATES",
244         "BASIC_TX_RATES",
245         "WEP_KEY_INFO",
246         "unused",
247         "unused",
248         "unused",
249         "unused",
250         "WEP_KEY_INDEX",
251         "WEP_FLAGS",
252         "ADD_MULTICAST",
253         "CLEAR_ALL_MULTICAST",
254         "BEACON_INTERVAL",
255         "ATIM_WINDOW",
256         "CLEAR_STATISTICS",
257         "undefined",
258         "undefined",
259         "undefined",
260         "undefined",
261         "TX_POWER_INDEX",
262         "undefined",
263         "undefined",
264         "undefined",
265         "undefined",
266         "undefined",
267         "undefined",
268         "BROADCAST_SCAN",
269         "CARD_DISABLE",
270         "PREFERRED_BSSID",
271         "SET_SCAN_OPTIONS",
272         "SCAN_DWELL_TIME",
273         "SWEEP_TABLE",
274         "AP_OR_STATION_TABLE",
275         "GROUP_ORDINALS",
276         "SHORT_RETRY_LIMIT",
277         "LONG_RETRY_LIMIT",
278         "unused",               /* SAVE_CALIBRATION */
279         "unused",               /* RESTORE_CALIBRATION */
280         "undefined",
281         "undefined",
282         "undefined",
283         "HOST_PRE_POWER_DOWN",
284         "unused",               /* HOST_INTERRUPT_COALESCING */
285         "undefined",
286         "CARD_DISABLE_PHY_OFF",
287         "MSDU_TX_RATES" "undefined",
288         "undefined",
289         "SET_STATION_STAT_BITS",
290         "CLEAR_STATIONS_STAT_BITS",
291         "LEAP_ROGUE_MODE",
292         "SET_SECURITY_INFORMATION",
293         "DISASSOCIATION_BSSID",
294         "SET_WPA_ASS_IE"
295 };
296 #endif
297
298 /* Pre-decl until we get the code solid and then we can clean it up */
299 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
300 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
301 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
302
303 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
304 static void ipw2100_queues_free(struct ipw2100_priv *priv);
305 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
306
307 static int ipw2100_fw_download(struct ipw2100_priv *priv,
308                                struct ipw2100_fw *fw);
309 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
310                                 struct ipw2100_fw *fw);
311 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
312                                  size_t max);
313 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
314                                     size_t max);
315 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
316                                      struct ipw2100_fw *fw);
317 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
318                                   struct ipw2100_fw *fw);
319 static void ipw2100_wx_event_work(struct work_struct *work);
320 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
321 static struct iw_handler_def ipw2100_wx_handler_def;
322
323 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
324 {
325         *val = readl((void __iomem *)(dev->base_addr + reg));
326         IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
327 }
328
329 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
330 {
331         writel(val, (void __iomem *)(dev->base_addr + reg));
332         IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
333 }
334
335 static inline void read_register_word(struct net_device *dev, u32 reg,
336                                       u16 * val)
337 {
338         *val = readw((void __iomem *)(dev->base_addr + reg));
339         IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
340 }
341
342 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
343 {
344         *val = readb((void __iomem *)(dev->base_addr + reg));
345         IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
346 }
347
348 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
349 {
350         writew(val, (void __iomem *)(dev->base_addr + reg));
351         IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
352 }
353
354 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
355 {
356         writeb(val, (void __iomem *)(dev->base_addr + reg));
357         IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
358 }
359
360 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
361 {
362         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
363                        addr & IPW_REG_INDIRECT_ADDR_MASK);
364         read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
365 }
366
367 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
368 {
369         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
370                        addr & IPW_REG_INDIRECT_ADDR_MASK);
371         write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
372 }
373
374 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
375 {
376         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
377                        addr & IPW_REG_INDIRECT_ADDR_MASK);
378         read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
379 }
380
381 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
382 {
383         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
384                        addr & IPW_REG_INDIRECT_ADDR_MASK);
385         write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
386 }
387
388 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
389 {
390         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
391                        addr & IPW_REG_INDIRECT_ADDR_MASK);
392         read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
393 }
394
395 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
396 {
397         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
398                        addr & IPW_REG_INDIRECT_ADDR_MASK);
399         write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
400 }
401
402 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
403 {
404         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
405                        addr & IPW_REG_INDIRECT_ADDR_MASK);
406 }
407
408 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
409 {
410         write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
411 }
412
413 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
414                                     const u8 * buf)
415 {
416         u32 aligned_addr;
417         u32 aligned_len;
418         u32 dif_len;
419         u32 i;
420
421         /* read first nibble byte by byte */
422         aligned_addr = addr & (~0x3);
423         dif_len = addr - aligned_addr;
424         if (dif_len) {
425                 /* Start reading at aligned_addr + dif_len */
426                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
427                                aligned_addr);
428                 for (i = dif_len; i < 4; i++, buf++)
429                         write_register_byte(dev,
430                                             IPW_REG_INDIRECT_ACCESS_DATA + i,
431                                             *buf);
432
433                 len -= dif_len;
434                 aligned_addr += 4;
435         }
436
437         /* read DWs through autoincrement registers */
438         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
439         aligned_len = len & (~0x3);
440         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
441                 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
442
443         /* copy the last nibble */
444         dif_len = len - aligned_len;
445         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
446         for (i = 0; i < dif_len; i++, buf++)
447                 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
448                                     *buf);
449 }
450
451 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
452                                    u8 * buf)
453 {
454         u32 aligned_addr;
455         u32 aligned_len;
456         u32 dif_len;
457         u32 i;
458
459         /* read first nibble byte by byte */
460         aligned_addr = addr & (~0x3);
461         dif_len = addr - aligned_addr;
462         if (dif_len) {
463                 /* Start reading at aligned_addr + dif_len */
464                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
465                                aligned_addr);
466                 for (i = dif_len; i < 4; i++, buf++)
467                         read_register_byte(dev,
468                                            IPW_REG_INDIRECT_ACCESS_DATA + i,
469                                            buf);
470
471                 len -= dif_len;
472                 aligned_addr += 4;
473         }
474
475         /* read DWs through autoincrement registers */
476         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
477         aligned_len = len & (~0x3);
478         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
479                 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
480
481         /* copy the last nibble */
482         dif_len = len - aligned_len;
483         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
484         for (i = 0; i < dif_len; i++, buf++)
485                 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
486 }
487
488 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
489 {
490         return (dev->base_addr &&
491                 (readl
492                  ((void __iomem *)(dev->base_addr +
493                                    IPW_REG_DOA_DEBUG_AREA_START))
494                  == IPW_DATA_DOA_DEBUG_VALUE));
495 }
496
497 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
498                                void *val, u32 * len)
499 {
500         struct ipw2100_ordinals *ordinals = &priv->ordinals;
501         u32 addr;
502         u32 field_info;
503         u16 field_len;
504         u16 field_count;
505         u32 total_length;
506
507         if (ordinals->table1_addr == 0) {
508                 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
509                        "before they have been loaded.\n");
510                 return -EINVAL;
511         }
512
513         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
514                 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
515                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
516
517                         printk(KERN_WARNING DRV_NAME
518                                ": ordinal buffer length too small, need %zd\n",
519                                IPW_ORD_TAB_1_ENTRY_SIZE);
520
521                         return -EINVAL;
522                 }
523
524                 read_nic_dword(priv->net_dev,
525                                ordinals->table1_addr + (ord << 2), &addr);
526                 read_nic_dword(priv->net_dev, addr, val);
527
528                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
529
530                 return 0;
531         }
532
533         if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
534
535                 ord -= IPW_START_ORD_TAB_2;
536
537                 /* get the address of statistic */
538                 read_nic_dword(priv->net_dev,
539                                ordinals->table2_addr + (ord << 3), &addr);
540
541                 /* get the second DW of statistics ;
542                  * two 16-bit words - first is length, second is count */
543                 read_nic_dword(priv->net_dev,
544                                ordinals->table2_addr + (ord << 3) + sizeof(u32),
545                                &field_info);
546
547                 /* get each entry length */
548                 field_len = *((u16 *) & field_info);
549
550                 /* get number of entries */
551                 field_count = *(((u16 *) & field_info) + 1);
552
553                 /* abort if no enought memory */
554                 total_length = field_len * field_count;
555                 if (total_length > *len) {
556                         *len = total_length;
557                         return -EINVAL;
558                 }
559
560                 *len = total_length;
561                 if (!total_length)
562                         return 0;
563
564                 /* read the ordinal data from the SRAM */
565                 read_nic_memory(priv->net_dev, addr, total_length, val);
566
567                 return 0;
568         }
569
570         printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
571                "in table 2\n", ord);
572
573         return -EINVAL;
574 }
575
576 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
577                                u32 * len)
578 {
579         struct ipw2100_ordinals *ordinals = &priv->ordinals;
580         u32 addr;
581
582         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
583                 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
584                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
585                         IPW_DEBUG_INFO("wrong size\n");
586                         return -EINVAL;
587                 }
588
589                 read_nic_dword(priv->net_dev,
590                                ordinals->table1_addr + (ord << 2), &addr);
591
592                 write_nic_dword(priv->net_dev, addr, *val);
593
594                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
595
596                 return 0;
597         }
598
599         IPW_DEBUG_INFO("wrong table\n");
600         if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
601                 return -EINVAL;
602
603         return -EINVAL;
604 }
605
606 static char *snprint_line(char *buf, size_t count,
607                           const u8 * data, u32 len, u32 ofs)
608 {
609         int out, i, j, l;
610         char c;
611
612         out = snprintf(buf, count, "%08X", ofs);
613
614         for (l = 0, i = 0; i < 2; i++) {
615                 out += snprintf(buf + out, count - out, " ");
616                 for (j = 0; j < 8 && l < len; j++, l++)
617                         out += snprintf(buf + out, count - out, "%02X ",
618                                         data[(i * 8 + j)]);
619                 for (; j < 8; j++)
620                         out += snprintf(buf + out, count - out, "   ");
621         }
622
623         out += snprintf(buf + out, count - out, " ");
624         for (l = 0, i = 0; i < 2; i++) {
625                 out += snprintf(buf + out, count - out, " ");
626                 for (j = 0; j < 8 && l < len; j++, l++) {
627                         c = data[(i * 8 + j)];
628                         if (!isascii(c) || !isprint(c))
629                                 c = '.';
630
631                         out += snprintf(buf + out, count - out, "%c", c);
632                 }
633
634                 for (; j < 8; j++)
635                         out += snprintf(buf + out, count - out, " ");
636         }
637
638         return buf;
639 }
640
641 static void printk_buf(int level, const u8 * data, u32 len)
642 {
643         char line[81];
644         u32 ofs = 0;
645         if (!(ipw2100_debug_level & level))
646                 return;
647
648         while (len) {
649                 printk(KERN_DEBUG "%s\n",
650                        snprint_line(line, sizeof(line), &data[ofs],
651                                     min(len, 16U), ofs));
652                 ofs += 16;
653                 len -= min(len, 16U);
654         }
655 }
656
657 #define MAX_RESET_BACKOFF 10
658
659 static void schedule_reset(struct ipw2100_priv *priv)
660 {
661         unsigned long now = get_seconds();
662
663         /* If we haven't received a reset request within the backoff period,
664          * then we can reset the backoff interval so this reset occurs
665          * immediately */
666         if (priv->reset_backoff &&
667             (now - priv->last_reset > priv->reset_backoff))
668                 priv->reset_backoff = 0;
669
670         priv->last_reset = get_seconds();
671
672         if (!(priv->status & STATUS_RESET_PENDING)) {
673                 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
674                                priv->net_dev->name, priv->reset_backoff);
675                 netif_carrier_off(priv->net_dev);
676                 netif_stop_queue(priv->net_dev);
677                 priv->status |= STATUS_RESET_PENDING;
678                 if (priv->reset_backoff)
679                         queue_delayed_work(priv->workqueue, &priv->reset_work,
680                                            priv->reset_backoff * HZ);
681                 else
682                         queue_delayed_work(priv->workqueue, &priv->reset_work,
683                                            0);
684
685                 if (priv->reset_backoff < MAX_RESET_BACKOFF)
686                         priv->reset_backoff++;
687
688                 wake_up_interruptible(&priv->wait_command_queue);
689         } else
690                 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
691                                priv->net_dev->name);
692
693 }
694
695 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
696 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
697                                    struct host_command *cmd)
698 {
699         struct list_head *element;
700         struct ipw2100_tx_packet *packet;
701         unsigned long flags;
702         int err = 0;
703
704         IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
705                      command_types[cmd->host_command], cmd->host_command,
706                      cmd->host_command_length);
707         printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
708                    cmd->host_command_length);
709
710         spin_lock_irqsave(&priv->low_lock, flags);
711
712         if (priv->fatal_error) {
713                 IPW_DEBUG_INFO
714                     ("Attempt to send command while hardware in fatal error condition.\n");
715                 err = -EIO;
716                 goto fail_unlock;
717         }
718
719         if (!(priv->status & STATUS_RUNNING)) {
720                 IPW_DEBUG_INFO
721                     ("Attempt to send command while hardware is not running.\n");
722                 err = -EIO;
723                 goto fail_unlock;
724         }
725
726         if (priv->status & STATUS_CMD_ACTIVE) {
727                 IPW_DEBUG_INFO
728                     ("Attempt to send command while another command is pending.\n");
729                 err = -EBUSY;
730                 goto fail_unlock;
731         }
732
733         if (list_empty(&priv->msg_free_list)) {
734                 IPW_DEBUG_INFO("no available msg buffers\n");
735                 goto fail_unlock;
736         }
737
738         priv->status |= STATUS_CMD_ACTIVE;
739         priv->messages_sent++;
740
741         element = priv->msg_free_list.next;
742
743         packet = list_entry(element, struct ipw2100_tx_packet, list);
744         packet->jiffy_start = jiffies;
745
746         /* initialize the firmware command packet */
747         packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
748         packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
749         packet->info.c_struct.cmd->host_command_len_reg =
750             cmd->host_command_length;
751         packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
752
753         memcpy(packet->info.c_struct.cmd->host_command_params_reg,
754                cmd->host_command_parameters,
755                sizeof(packet->info.c_struct.cmd->host_command_params_reg));
756
757         list_del(element);
758         DEC_STAT(&priv->msg_free_stat);
759
760         list_add_tail(element, &priv->msg_pend_list);
761         INC_STAT(&priv->msg_pend_stat);
762
763         ipw2100_tx_send_commands(priv);
764         ipw2100_tx_send_data(priv);
765
766         spin_unlock_irqrestore(&priv->low_lock, flags);
767
768         /*
769          * We must wait for this command to complete before another
770          * command can be sent...  but if we wait more than 3 seconds
771          * then there is a problem.
772          */
773
774         err =
775             wait_event_interruptible_timeout(priv->wait_command_queue,
776                                              !(priv->
777                                                status & STATUS_CMD_ACTIVE),
778                                              HOST_COMPLETE_TIMEOUT);
779
780         if (err == 0) {
781                 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
782                                1000 * (HOST_COMPLETE_TIMEOUT / HZ));
783                 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
784                 priv->status &= ~STATUS_CMD_ACTIVE;
785                 schedule_reset(priv);
786                 return -EIO;
787         }
788
789         if (priv->fatal_error) {
790                 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
791                        priv->net_dev->name);
792                 return -EIO;
793         }
794
795         /* !!!!! HACK TEST !!!!!
796          * When lots of debug trace statements are enabled, the driver
797          * doesn't seem to have as many firmware restart cycles...
798          *
799          * As a test, we're sticking in a 1/100s delay here */
800         schedule_timeout_uninterruptible(msecs_to_jiffies(10));
801
802         return 0;
803
804       fail_unlock:
805         spin_unlock_irqrestore(&priv->low_lock, flags);
806
807         return err;
808 }
809
810 /*
811  * Verify the values and data access of the hardware
812  * No locks needed or used.  No functions called.
813  */
814 static int ipw2100_verify(struct ipw2100_priv *priv)
815 {
816         u32 data1, data2;
817         u32 address;
818
819         u32 val1 = 0x76543210;
820         u32 val2 = 0xFEDCBA98;
821
822         /* Domain 0 check - all values should be DOA_DEBUG */
823         for (address = IPW_REG_DOA_DEBUG_AREA_START;
824              address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
825                 read_register(priv->net_dev, address, &data1);
826                 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
827                         return -EIO;
828         }
829
830         /* Domain 1 check - use arbitrary read/write compare  */
831         for (address = 0; address < 5; address++) {
832                 /* The memory area is not used now */
833                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
834                                val1);
835                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
836                                val2);
837                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
838                               &data1);
839                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
840                               &data2);
841                 if (val1 == data1 && val2 == data2)
842                         return 0;
843         }
844
845         return -EIO;
846 }
847
848 /*
849  *
850  * Loop until the CARD_DISABLED bit is the same value as the
851  * supplied parameter
852  *
853  * TODO: See if it would be more efficient to do a wait/wake
854  *       cycle and have the completion event trigger the wakeup
855  *
856  */
857 #define IPW_CARD_DISABLE_COMPLETE_WAIT              100 // 100 milli
858 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
859 {
860         int i;
861         u32 card_state;
862         u32 len = sizeof(card_state);
863         int err;
864
865         for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
866                 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
867                                           &card_state, &len);
868                 if (err) {
869                         IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
870                                        "failed.\n");
871                         return 0;
872                 }
873
874                 /* We'll break out if either the HW state says it is
875                  * in the state we want, or if HOST_COMPLETE command
876                  * finishes */
877                 if ((card_state == state) ||
878                     ((priv->status & STATUS_ENABLED) ?
879                      IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
880                         if (state == IPW_HW_STATE_ENABLED)
881                                 priv->status |= STATUS_ENABLED;
882                         else
883                                 priv->status &= ~STATUS_ENABLED;
884
885                         return 0;
886                 }
887
888                 udelay(50);
889         }
890
891         IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
892                        state ? "DISABLED" : "ENABLED");
893         return -EIO;
894 }
895
896 /*********************************************************************
897     Procedure   :   sw_reset_and_clock
898     Purpose     :   Asserts s/w reset, asserts clock initialization
899                     and waits for clock stabilization
900  ********************************************************************/
901 static int sw_reset_and_clock(struct ipw2100_priv *priv)
902 {
903         int i;
904         u32 r;
905
906         // assert s/w reset
907         write_register(priv->net_dev, IPW_REG_RESET_REG,
908                        IPW_AUX_HOST_RESET_REG_SW_RESET);
909
910         // wait for clock stabilization
911         for (i = 0; i < 1000; i++) {
912                 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
913
914                 // check clock ready bit
915                 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
916                 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
917                         break;
918         }
919
920         if (i == 1000)
921                 return -EIO;    // TODO: better error value
922
923         /* set "initialization complete" bit to move adapter to
924          * D0 state */
925         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
926                        IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
927
928         /* wait for clock stabilization */
929         for (i = 0; i < 10000; i++) {
930                 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
931
932                 /* check clock ready bit */
933                 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
934                 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
935                         break;
936         }
937
938         if (i == 10000)
939                 return -EIO;    /* TODO: better error value */
940
941         /* set D0 standby bit */
942         read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
943         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
944                        r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
945
946         return 0;
947 }
948
949 /*********************************************************************
950     Procedure   :   ipw2100_download_firmware
951     Purpose     :   Initiaze adapter after power on.
952                     The sequence is:
953                     1. assert s/w reset first!
954                     2. awake clocks & wait for clock stabilization
955                     3. hold ARC (don't ask me why...)
956                     4. load Dino ucode and reset/clock init again
957                     5. zero-out shared mem
958                     6. download f/w
959  *******************************************************************/
960 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
961 {
962         u32 address;
963         int err;
964
965 #ifndef CONFIG_PM
966         /* Fetch the firmware and microcode */
967         struct ipw2100_fw ipw2100_firmware;
968 #endif
969
970         if (priv->fatal_error) {
971                 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
972                                 "fatal error %d.  Interface must be brought down.\n",
973                                 priv->net_dev->name, priv->fatal_error);
974                 return -EINVAL;
975         }
976 #ifdef CONFIG_PM
977         if (!ipw2100_firmware.version) {
978                 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
979                 if (err) {
980                         IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
981                                         priv->net_dev->name, err);
982                         priv->fatal_error = IPW2100_ERR_FW_LOAD;
983                         goto fail;
984                 }
985         }
986 #else
987         err = ipw2100_get_firmware(priv, &ipw2100_firmware);
988         if (err) {
989                 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
990                                 priv->net_dev->name, err);
991                 priv->fatal_error = IPW2100_ERR_FW_LOAD;
992                 goto fail;
993         }
994 #endif
995         priv->firmware_version = ipw2100_firmware.version;
996
997         /* s/w reset and clock stabilization */
998         err = sw_reset_and_clock(priv);
999         if (err) {
1000                 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1001                                 priv->net_dev->name, err);
1002                 goto fail;
1003         }
1004
1005         err = ipw2100_verify(priv);
1006         if (err) {
1007                 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1008                                 priv->net_dev->name, err);
1009                 goto fail;
1010         }
1011
1012         /* Hold ARC */
1013         write_nic_dword(priv->net_dev,
1014                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1015
1016         /* allow ARC to run */
1017         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1018
1019         /* load microcode */
1020         err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1021         if (err) {
1022                 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1023                        priv->net_dev->name, err);
1024                 goto fail;
1025         }
1026
1027         /* release ARC */
1028         write_nic_dword(priv->net_dev,
1029                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1030
1031         /* s/w reset and clock stabilization (again!!!) */
1032         err = sw_reset_and_clock(priv);
1033         if (err) {
1034                 printk(KERN_ERR DRV_NAME
1035                        ": %s: sw_reset_and_clock failed: %d\n",
1036                        priv->net_dev->name, err);
1037                 goto fail;
1038         }
1039
1040         /* load f/w */
1041         err = ipw2100_fw_download(priv, &ipw2100_firmware);
1042         if (err) {
1043                 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1044                                 priv->net_dev->name, err);
1045                 goto fail;
1046         }
1047 #ifndef CONFIG_PM
1048         /*
1049          * When the .resume method of the driver is called, the other
1050          * part of the system, i.e. the ide driver could still stay in
1051          * the suspend stage. This prevents us from loading the firmware
1052          * from the disk.  --YZ
1053          */
1054
1055         /* free any storage allocated for firmware image */
1056         ipw2100_release_firmware(priv, &ipw2100_firmware);
1057 #endif
1058
1059         /* zero out Domain 1 area indirectly (Si requirement) */
1060         for (address = IPW_HOST_FW_SHARED_AREA0;
1061              address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1062                 write_nic_dword(priv->net_dev, address, 0);
1063         for (address = IPW_HOST_FW_SHARED_AREA1;
1064              address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1065                 write_nic_dword(priv->net_dev, address, 0);
1066         for (address = IPW_HOST_FW_SHARED_AREA2;
1067              address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1068                 write_nic_dword(priv->net_dev, address, 0);
1069         for (address = IPW_HOST_FW_SHARED_AREA3;
1070              address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1071                 write_nic_dword(priv->net_dev, address, 0);
1072         for (address = IPW_HOST_FW_INTERRUPT_AREA;
1073              address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1074                 write_nic_dword(priv->net_dev, address, 0);
1075
1076         return 0;
1077
1078       fail:
1079         ipw2100_release_firmware(priv, &ipw2100_firmware);
1080         return err;
1081 }
1082
1083 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1084 {
1085         if (priv->status & STATUS_INT_ENABLED)
1086                 return;
1087         priv->status |= STATUS_INT_ENABLED;
1088         write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1089 }
1090
1091 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1092 {
1093         if (!(priv->status & STATUS_INT_ENABLED))
1094                 return;
1095         priv->status &= ~STATUS_INT_ENABLED;
1096         write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1097 }
1098
1099 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1100 {
1101         struct ipw2100_ordinals *ord = &priv->ordinals;
1102
1103         IPW_DEBUG_INFO("enter\n");
1104
1105         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1106                       &ord->table1_addr);
1107
1108         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1109                       &ord->table2_addr);
1110
1111         read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1112         read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1113
1114         ord->table2_size &= 0x0000FFFF;
1115
1116         IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1117         IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1118         IPW_DEBUG_INFO("exit\n");
1119 }
1120
1121 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1122 {
1123         u32 reg = 0;
1124         /*
1125          * Set GPIO 3 writable by FW; GPIO 1 writable
1126          * by driver and enable clock
1127          */
1128         reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1129                IPW_BIT_GPIO_LED_OFF);
1130         write_register(priv->net_dev, IPW_REG_GPIO, reg);
1131 }
1132
1133 static int rf_kill_active(struct ipw2100_priv *priv)
1134 {
1135 #define MAX_RF_KILL_CHECKS 5
1136 #define RF_KILL_CHECK_DELAY 40
1137
1138         unsigned short value = 0;
1139         u32 reg = 0;
1140         int i;
1141
1142         if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1143                 priv->status &= ~STATUS_RF_KILL_HW;
1144                 return 0;
1145         }
1146
1147         for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1148                 udelay(RF_KILL_CHECK_DELAY);
1149                 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1150                 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1151         }
1152
1153         if (value == 0)
1154                 priv->status |= STATUS_RF_KILL_HW;
1155         else
1156                 priv->status &= ~STATUS_RF_KILL_HW;
1157
1158         return (value == 0);
1159 }
1160
1161 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1162 {
1163         u32 addr, len;
1164         u32 val;
1165
1166         /*
1167          * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1168          */
1169         len = sizeof(addr);
1170         if (ipw2100_get_ordinal
1171             (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1172                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1173                                __LINE__);
1174                 return -EIO;
1175         }
1176
1177         IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1178
1179         /*
1180          * EEPROM version is the byte at offset 0xfd in firmware
1181          * We read 4 bytes, then shift out the byte we actually want */
1182         read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1183         priv->eeprom_version = (val >> 24) & 0xFF;
1184         IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1185
1186         /*
1187          *  HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1188          *
1189          *  notice that the EEPROM bit is reverse polarity, i.e.
1190          *     bit = 0  signifies HW RF kill switch is supported
1191          *     bit = 1  signifies HW RF kill switch is NOT supported
1192          */
1193         read_nic_dword(priv->net_dev, addr + 0x20, &val);
1194         if (!((val >> 24) & 0x01))
1195                 priv->hw_features |= HW_FEATURE_RFKILL;
1196
1197         IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1198                        (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1199
1200         return 0;
1201 }
1202
1203 /*
1204  * Start firmware execution after power on and intialization
1205  * The sequence is:
1206  *  1. Release ARC
1207  *  2. Wait for f/w initialization completes;
1208  */
1209 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1210 {
1211         int i;
1212         u32 inta, inta_mask, gpio;
1213
1214         IPW_DEBUG_INFO("enter\n");
1215
1216         if (priv->status & STATUS_RUNNING)
1217                 return 0;
1218
1219         /*
1220          * Initialize the hw - drive adapter to DO state by setting
1221          * init_done bit. Wait for clk_ready bit and Download
1222          * fw & dino ucode
1223          */
1224         if (ipw2100_download_firmware(priv)) {
1225                 printk(KERN_ERR DRV_NAME
1226                        ": %s: Failed to power on the adapter.\n",
1227                        priv->net_dev->name);
1228                 return -EIO;
1229         }
1230
1231         /* Clear the Tx, Rx and Msg queues and the r/w indexes
1232          * in the firmware RBD and TBD ring queue */
1233         ipw2100_queues_initialize(priv);
1234
1235         ipw2100_hw_set_gpio(priv);
1236
1237         /* TODO -- Look at disabling interrupts here to make sure none
1238          * get fired during FW initialization */
1239
1240         /* Release ARC - clear reset bit */
1241         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1242
1243         /* wait for f/w intialization complete */
1244         IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1245         i = 5000;
1246         do {
1247                 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1248                 /* Todo... wait for sync command ... */
1249
1250                 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1251
1252                 /* check "init done" bit */
1253                 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1254                         /* reset "init done" bit */
1255                         write_register(priv->net_dev, IPW_REG_INTA,
1256                                        IPW2100_INTA_FW_INIT_DONE);
1257                         break;
1258                 }
1259
1260                 /* check error conditions : we check these after the firmware
1261                  * check so that if there is an error, the interrupt handler
1262                  * will see it and the adapter will be reset */
1263                 if (inta &
1264                     (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1265                         /* clear error conditions */
1266                         write_register(priv->net_dev, IPW_REG_INTA,
1267                                        IPW2100_INTA_FATAL_ERROR |
1268                                        IPW2100_INTA_PARITY_ERROR);
1269                 }
1270         } while (i--);
1271
1272         /* Clear out any pending INTAs since we aren't supposed to have
1273          * interrupts enabled at this point... */
1274         read_register(priv->net_dev, IPW_REG_INTA, &inta);
1275         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1276         inta &= IPW_INTERRUPT_MASK;
1277         /* Clear out any pending interrupts */
1278         if (inta & inta_mask)
1279                 write_register(priv->net_dev, IPW_REG_INTA, inta);
1280
1281         IPW_DEBUG_FW("f/w initialization complete: %s\n",
1282                      i ? "SUCCESS" : "FAILED");
1283
1284         if (!i) {
1285                 printk(KERN_WARNING DRV_NAME
1286                        ": %s: Firmware did not initialize.\n",
1287                        priv->net_dev->name);
1288                 return -EIO;
1289         }
1290
1291         /* allow firmware to write to GPIO1 & GPIO3 */
1292         read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1293
1294         gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1295
1296         write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1297
1298         /* Ready to receive commands */
1299         priv->status |= STATUS_RUNNING;
1300
1301         /* The adapter has been reset; we are not associated */
1302         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1303
1304         IPW_DEBUG_INFO("exit\n");
1305
1306         return 0;
1307 }
1308
1309 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1310 {
1311         if (!priv->fatal_error)
1312                 return;
1313
1314         priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1315         priv->fatal_index %= IPW2100_ERROR_QUEUE;
1316         priv->fatal_error = 0;
1317 }
1318
1319 /* NOTE: Our interrupt is disabled when this method is called */
1320 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1321 {
1322         u32 reg;
1323         int i;
1324
1325         IPW_DEBUG_INFO("Power cycling the hardware.\n");
1326
1327         ipw2100_hw_set_gpio(priv);
1328
1329         /* Step 1. Stop Master Assert */
1330         write_register(priv->net_dev, IPW_REG_RESET_REG,
1331                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1332
1333         /* Step 2. Wait for stop Master Assert
1334          *         (not more then 50us, otherwise ret error */
1335         i = 5;
1336         do {
1337                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1338                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1339
1340                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1341                         break;
1342         } while (i--);
1343
1344         priv->status &= ~STATUS_RESET_PENDING;
1345
1346         if (!i) {
1347                 IPW_DEBUG_INFO
1348                     ("exit - waited too long for master assert stop\n");
1349                 return -EIO;
1350         }
1351
1352         write_register(priv->net_dev, IPW_REG_RESET_REG,
1353                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1354
1355         /* Reset any fatal_error conditions */
1356         ipw2100_reset_fatalerror(priv);
1357
1358         /* At this point, the adapter is now stopped and disabled */
1359         priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1360                           STATUS_ASSOCIATED | STATUS_ENABLED);
1361
1362         return 0;
1363 }
1364
1365 /*
1366  * Send the CARD_DISABLE_PHY_OFF comamnd to the card to disable it
1367  *
1368  * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1369  *
1370  * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1371  * if STATUS_ASSN_LOST is sent.
1372  */
1373 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1374 {
1375
1376 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1377
1378         struct host_command cmd = {
1379                 .host_command = CARD_DISABLE_PHY_OFF,
1380                 .host_command_sequence = 0,
1381                 .host_command_length = 0,
1382         };
1383         int err, i;
1384         u32 val1, val2;
1385
1386         IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1387
1388         /* Turn off the radio */
1389         err = ipw2100_hw_send_command(priv, &cmd);
1390         if (err)
1391                 return err;
1392
1393         for (i = 0; i < 2500; i++) {
1394                 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1395                 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1396
1397                 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1398                     (val2 & IPW2100_COMMAND_PHY_OFF))
1399                         return 0;
1400
1401                 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1402         }
1403
1404         return -EIO;
1405 }
1406
1407 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1408 {
1409         struct host_command cmd = {
1410                 .host_command = HOST_COMPLETE,
1411                 .host_command_sequence = 0,
1412                 .host_command_length = 0
1413         };
1414         int err = 0;
1415
1416         IPW_DEBUG_HC("HOST_COMPLETE\n");
1417
1418         if (priv->status & STATUS_ENABLED)
1419                 return 0;
1420
1421         mutex_lock(&priv->adapter_mutex);
1422
1423         if (rf_kill_active(priv)) {
1424                 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1425                 goto fail_up;
1426         }
1427
1428         err = ipw2100_hw_send_command(priv, &cmd);
1429         if (err) {
1430                 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1431                 goto fail_up;
1432         }
1433
1434         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1435         if (err) {
1436                 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1437                                priv->net_dev->name);
1438                 goto fail_up;
1439         }
1440
1441         if (priv->stop_hang_check) {
1442                 priv->stop_hang_check = 0;
1443                 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
1444         }
1445
1446       fail_up:
1447         mutex_unlock(&priv->adapter_mutex);
1448         return err;
1449 }
1450
1451 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1452 {
1453 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1454
1455         struct host_command cmd = {
1456                 .host_command = HOST_PRE_POWER_DOWN,
1457                 .host_command_sequence = 0,
1458                 .host_command_length = 0,
1459         };
1460         int err, i;
1461         u32 reg;
1462
1463         if (!(priv->status & STATUS_RUNNING))
1464                 return 0;
1465
1466         priv->status |= STATUS_STOPPING;
1467
1468         /* We can only shut down the card if the firmware is operational.  So,
1469          * if we haven't reset since a fatal_error, then we can not send the
1470          * shutdown commands. */
1471         if (!priv->fatal_error) {
1472                 /* First, make sure the adapter is enabled so that the PHY_OFF
1473                  * command can shut it down */
1474                 ipw2100_enable_adapter(priv);
1475
1476                 err = ipw2100_hw_phy_off(priv);
1477                 if (err)
1478                         printk(KERN_WARNING DRV_NAME
1479                                ": Error disabling radio %d\n", err);
1480
1481                 /*
1482                  * If in D0-standby mode going directly to D3 may cause a
1483                  * PCI bus violation.  Therefore we must change out of the D0
1484                  * state.
1485                  *
1486                  * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1487                  * hardware from going into standby mode and will transition
1488                  * out of D0-standby if it is already in that state.
1489                  *
1490                  * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1491                  * driver upon completion.  Once received, the driver can
1492                  * proceed to the D3 state.
1493                  *
1494                  * Prepare for power down command to fw.  This command would
1495                  * take HW out of D0-standby and prepare it for D3 state.
1496                  *
1497                  * Currently FW does not support event notification for this
1498                  * event. Therefore, skip waiting for it.  Just wait a fixed
1499                  * 100ms
1500                  */
1501                 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1502
1503                 err = ipw2100_hw_send_command(priv, &cmd);
1504                 if (err)
1505                         printk(KERN_WARNING DRV_NAME ": "
1506                                "%s: Power down command failed: Error %d\n",
1507                                priv->net_dev->name, err);
1508                 else
1509                         schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1510         }
1511
1512         priv->status &= ~STATUS_ENABLED;
1513
1514         /*
1515          * Set GPIO 3 writable by FW; GPIO 1 writable
1516          * by driver and enable clock
1517          */
1518         ipw2100_hw_set_gpio(priv);
1519
1520         /*
1521          * Power down adapter.  Sequence:
1522          * 1. Stop master assert (RESET_REG[9]=1)
1523          * 2. Wait for stop master (RESET_REG[8]==1)
1524          * 3. S/w reset assert (RESET_REG[7] = 1)
1525          */
1526
1527         /* Stop master assert */
1528         write_register(priv->net_dev, IPW_REG_RESET_REG,
1529                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1530
1531         /* wait stop master not more than 50 usec.
1532          * Otherwise return error. */
1533         for (i = 5; i > 0; i--) {
1534                 udelay(10);
1535
1536                 /* Check master stop bit */
1537                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1538
1539                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1540                         break;
1541         }
1542
1543         if (i == 0)
1544                 printk(KERN_WARNING DRV_NAME
1545                        ": %s: Could now power down adapter.\n",
1546                        priv->net_dev->name);
1547
1548         /* assert s/w reset */
1549         write_register(priv->net_dev, IPW_REG_RESET_REG,
1550                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1551
1552         priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1553
1554         return 0;
1555 }
1556
1557 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1558 {
1559         struct host_command cmd = {
1560                 .host_command = CARD_DISABLE,
1561                 .host_command_sequence = 0,
1562                 .host_command_length = 0
1563         };
1564         int err = 0;
1565
1566         IPW_DEBUG_HC("CARD_DISABLE\n");
1567
1568         if (!(priv->status & STATUS_ENABLED))
1569                 return 0;
1570
1571         /* Make sure we clear the associated state */
1572         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1573
1574         if (!priv->stop_hang_check) {
1575                 priv->stop_hang_check = 1;
1576                 cancel_delayed_work(&priv->hang_check);
1577         }
1578
1579         mutex_lock(&priv->adapter_mutex);
1580
1581         err = ipw2100_hw_send_command(priv, &cmd);
1582         if (err) {
1583                 printk(KERN_WARNING DRV_NAME
1584                        ": exit - failed to send CARD_DISABLE command\n");
1585                 goto fail_up;
1586         }
1587
1588         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1589         if (err) {
1590                 printk(KERN_WARNING DRV_NAME
1591                        ": exit - card failed to change to DISABLED\n");
1592                 goto fail_up;
1593         }
1594
1595         IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1596
1597       fail_up:
1598         mutex_unlock(&priv->adapter_mutex);
1599         return err;
1600 }
1601
1602 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1603 {
1604         struct host_command cmd = {
1605                 .host_command = SET_SCAN_OPTIONS,
1606                 .host_command_sequence = 0,
1607                 .host_command_length = 8
1608         };
1609         int err;
1610
1611         IPW_DEBUG_INFO("enter\n");
1612
1613         IPW_DEBUG_SCAN("setting scan options\n");
1614
1615         cmd.host_command_parameters[0] = 0;
1616
1617         if (!(priv->config & CFG_ASSOCIATE))
1618                 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1619         if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1620                 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1621         if (priv->config & CFG_PASSIVE_SCAN)
1622                 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1623
1624         cmd.host_command_parameters[1] = priv->channel_mask;
1625
1626         err = ipw2100_hw_send_command(priv, &cmd);
1627
1628         IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1629                      cmd.host_command_parameters[0]);
1630
1631         return err;
1632 }
1633
1634 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1635 {
1636         struct host_command cmd = {
1637                 .host_command = BROADCAST_SCAN,
1638                 .host_command_sequence = 0,
1639                 .host_command_length = 4
1640         };
1641         int err;
1642
1643         IPW_DEBUG_HC("START_SCAN\n");
1644
1645         cmd.host_command_parameters[0] = 0;
1646
1647         /* No scanning if in monitor mode */
1648         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1649                 return 1;
1650
1651         if (priv->status & STATUS_SCANNING) {
1652                 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1653                 return 0;
1654         }
1655
1656         IPW_DEBUG_INFO("enter\n");
1657
1658         /* Not clearing here; doing so makes iwlist always return nothing...
1659          *
1660          * We should modify the table logic to use aging tables vs. clearing
1661          * the table on each scan start.
1662          */
1663         IPW_DEBUG_SCAN("starting scan\n");
1664
1665         priv->status |= STATUS_SCANNING;
1666         err = ipw2100_hw_send_command(priv, &cmd);
1667         if (err)
1668                 priv->status &= ~STATUS_SCANNING;
1669
1670         IPW_DEBUG_INFO("exit\n");
1671
1672         return err;
1673 }
1674
1675 static const struct ieee80211_geo ipw_geos[] = {
1676         {                       /* Restricted */
1677          "---",
1678          .bg_channels = 14,
1679          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1680                 {2427, 4}, {2432, 5}, {2437, 6},
1681                 {2442, 7}, {2447, 8}, {2452, 9},
1682                 {2457, 10}, {2462, 11}, {2467, 12},
1683                 {2472, 13}, {2484, 14}},
1684          },
1685 };
1686
1687 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1688 {
1689         unsigned long flags;
1690         int rc = 0;
1691         u32 lock;
1692         u32 ord_len = sizeof(lock);
1693
1694         /* Quite if manually disabled. */
1695         if (priv->status & STATUS_RF_KILL_SW) {
1696                 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1697                                "switch\n", priv->net_dev->name);
1698                 return 0;
1699         }
1700
1701         /* the ipw2100 hardware really doesn't want power management delays
1702          * longer than 175usec
1703          */
1704         modify_acceptable_latency("ipw2100", 175);
1705
1706         /* If the interrupt is enabled, turn it off... */
1707         spin_lock_irqsave(&priv->low_lock, flags);
1708         ipw2100_disable_interrupts(priv);
1709
1710         /* Reset any fatal_error conditions */
1711         ipw2100_reset_fatalerror(priv);
1712         spin_unlock_irqrestore(&priv->low_lock, flags);
1713
1714         if (priv->status & STATUS_POWERED ||
1715             (priv->status & STATUS_RESET_PENDING)) {
1716                 /* Power cycle the card ... */
1717                 if (ipw2100_power_cycle_adapter(priv)) {
1718                         printk(KERN_WARNING DRV_NAME
1719                                ": %s: Could not cycle adapter.\n",
1720                                priv->net_dev->name);
1721                         rc = 1;
1722                         goto exit;
1723                 }
1724         } else
1725                 priv->status |= STATUS_POWERED;
1726
1727         /* Load the firmware, start the clocks, etc. */
1728         if (ipw2100_start_adapter(priv)) {
1729                 printk(KERN_ERR DRV_NAME
1730                        ": %s: Failed to start the firmware.\n",
1731                        priv->net_dev->name);
1732                 rc = 1;
1733                 goto exit;
1734         }
1735
1736         ipw2100_initialize_ordinals(priv);
1737
1738         /* Determine capabilities of this particular HW configuration */
1739         if (ipw2100_get_hw_features(priv)) {
1740                 printk(KERN_ERR DRV_NAME
1741                        ": %s: Failed to determine HW features.\n",
1742                        priv->net_dev->name);
1743                 rc = 1;
1744                 goto exit;
1745         }
1746
1747         /* Initialize the geo */
1748         if (ieee80211_set_geo(priv->ieee, &ipw_geos[0])) {
1749                 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1750                 return 0;
1751         }
1752         priv->ieee->freq_band = IEEE80211_24GHZ_BAND;
1753
1754         lock = LOCK_NONE;
1755         if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1756                 printk(KERN_ERR DRV_NAME
1757                        ": %s: Failed to clear ordinal lock.\n",
1758                        priv->net_dev->name);
1759                 rc = 1;
1760                 goto exit;
1761         }
1762
1763         priv->status &= ~STATUS_SCANNING;
1764
1765         if (rf_kill_active(priv)) {
1766                 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1767                        priv->net_dev->name);
1768
1769                 if (priv->stop_rf_kill) {
1770                         priv->stop_rf_kill = 0;
1771                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
1772                                            round_jiffies(HZ));
1773                 }
1774
1775                 deferred = 1;
1776         }
1777
1778         /* Turn on the interrupt so that commands can be processed */
1779         ipw2100_enable_interrupts(priv);
1780
1781         /* Send all of the commands that must be sent prior to
1782          * HOST_COMPLETE */
1783         if (ipw2100_adapter_setup(priv)) {
1784                 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1785                        priv->net_dev->name);
1786                 rc = 1;
1787                 goto exit;
1788         }
1789
1790         if (!deferred) {
1791                 /* Enable the adapter - sends HOST_COMPLETE */
1792                 if (ipw2100_enable_adapter(priv)) {
1793                         printk(KERN_ERR DRV_NAME ": "
1794                                "%s: failed in call to enable adapter.\n",
1795                                priv->net_dev->name);
1796                         ipw2100_hw_stop_adapter(priv);
1797                         rc = 1;
1798                         goto exit;
1799                 }
1800
1801                 /* Start a scan . . . */
1802                 ipw2100_set_scan_options(priv);
1803                 ipw2100_start_scan(priv);
1804         }
1805
1806       exit:
1807         return rc;
1808 }
1809
1810 /* Called by register_netdev() */
1811 static int ipw2100_net_init(struct net_device *dev)
1812 {
1813         struct ipw2100_priv *priv = ieee80211_priv(dev);
1814         return ipw2100_up(priv, 1);
1815 }
1816
1817 static void ipw2100_down(struct ipw2100_priv *priv)
1818 {
1819         unsigned long flags;
1820         union iwreq_data wrqu = {
1821                 .ap_addr = {
1822                             .sa_family = ARPHRD_ETHER}
1823         };
1824         int associated = priv->status & STATUS_ASSOCIATED;
1825
1826         /* Kill the RF switch timer */
1827         if (!priv->stop_rf_kill) {
1828                 priv->stop_rf_kill = 1;
1829                 cancel_delayed_work(&priv->rf_kill);
1830         }
1831
1832         /* Kill the firmare hang check timer */
1833         if (!priv->stop_hang_check) {
1834                 priv->stop_hang_check = 1;
1835                 cancel_delayed_work(&priv->hang_check);
1836         }
1837
1838         /* Kill any pending resets */
1839         if (priv->status & STATUS_RESET_PENDING)
1840                 cancel_delayed_work(&priv->reset_work);
1841
1842         /* Make sure the interrupt is on so that FW commands will be
1843          * processed correctly */
1844         spin_lock_irqsave(&priv->low_lock, flags);
1845         ipw2100_enable_interrupts(priv);
1846         spin_unlock_irqrestore(&priv->low_lock, flags);
1847
1848         if (ipw2100_hw_stop_adapter(priv))
1849                 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1850                        priv->net_dev->name);
1851
1852         /* Do not disable the interrupt until _after_ we disable
1853          * the adaptor.  Otherwise the CARD_DISABLE command will never
1854          * be ack'd by the firmware */
1855         spin_lock_irqsave(&priv->low_lock, flags);
1856         ipw2100_disable_interrupts(priv);
1857         spin_unlock_irqrestore(&priv->low_lock, flags);
1858
1859         modify_acceptable_latency("ipw2100", INFINITE_LATENCY);
1860
1861 #ifdef ACPI_CSTATE_LIMIT_DEFINED
1862         if (priv->config & CFG_C3_DISABLED) {
1863                 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
1864                 acpi_set_cstate_limit(priv->cstate_limit);
1865                 priv->config &= ~CFG_C3_DISABLED;
1866         }
1867 #endif
1868
1869         /* We have to signal any supplicant if we are disassociating */
1870         if (associated)
1871                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1872
1873         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1874         netif_carrier_off(priv->net_dev);
1875         netif_stop_queue(priv->net_dev);
1876 }
1877
1878 static void ipw2100_reset_adapter(struct work_struct *work)
1879 {
1880         struct ipw2100_priv *priv =
1881                 container_of(work, struct ipw2100_priv, reset_work.work);
1882         unsigned long flags;
1883         union iwreq_data wrqu = {
1884                 .ap_addr = {
1885                             .sa_family = ARPHRD_ETHER}
1886         };
1887         int associated = priv->status & STATUS_ASSOCIATED;
1888
1889         spin_lock_irqsave(&priv->low_lock, flags);
1890         IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1891         priv->resets++;
1892         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1893         priv->status |= STATUS_SECURITY_UPDATED;
1894
1895         /* Force a power cycle even if interface hasn't been opened
1896          * yet */
1897         cancel_delayed_work(&priv->reset_work);
1898         priv->status |= STATUS_RESET_PENDING;
1899         spin_unlock_irqrestore(&priv->low_lock, flags);
1900
1901         mutex_lock(&priv->action_mutex);
1902         /* stop timed checks so that they don't interfere with reset */
1903         priv->stop_hang_check = 1;
1904         cancel_delayed_work(&priv->hang_check);
1905
1906         /* We have to signal any supplicant if we are disassociating */
1907         if (associated)
1908                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1909
1910         ipw2100_up(priv, 0);
1911         mutex_unlock(&priv->action_mutex);
1912
1913 }
1914
1915 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1916 {
1917
1918 #define MAC_ASSOCIATION_READ_DELAY (HZ)
1919         int ret, len, essid_len;
1920         char essid[IW_ESSID_MAX_SIZE];
1921         u32 txrate;
1922         u32 chan;
1923         char *txratename;
1924         u8 bssid[ETH_ALEN];
1925         DECLARE_MAC_BUF(mac);
1926
1927         /*
1928          * TBD: BSSID is usually 00:00:00:00:00:00 here and not
1929          *      an actual MAC of the AP. Seems like FW sets this
1930          *      address too late. Read it later and expose through
1931          *      /proc or schedule a later task to query and update
1932          */
1933
1934         essid_len = IW_ESSID_MAX_SIZE;
1935         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
1936                                   essid, &essid_len);
1937         if (ret) {
1938                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1939                                __LINE__);
1940                 return;
1941         }
1942
1943         len = sizeof(u32);
1944         ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
1945         if (ret) {
1946                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1947                                __LINE__);
1948                 return;
1949         }
1950
1951         len = sizeof(u32);
1952         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
1953         if (ret) {
1954                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1955                                __LINE__);
1956                 return;
1957         }
1958         len = ETH_ALEN;
1959         ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
1960         if (ret) {
1961                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1962                                __LINE__);
1963                 return;
1964         }
1965         memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
1966
1967         switch (txrate) {
1968         case TX_RATE_1_MBIT:
1969                 txratename = "1Mbps";
1970                 break;
1971         case TX_RATE_2_MBIT:
1972                 txratename = "2Mbsp";
1973                 break;
1974         case TX_RATE_5_5_MBIT:
1975                 txratename = "5.5Mbps";
1976                 break;
1977         case TX_RATE_11_MBIT:
1978                 txratename = "11Mbps";
1979                 break;
1980         default:
1981                 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
1982                 txratename = "unknown rate";
1983                 break;
1984         }
1985
1986         IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID="
1987                        "%s)\n",
1988                        priv->net_dev->name, escape_essid(essid, essid_len),
1989                        txratename, chan, print_mac(mac, bssid));
1990
1991         /* now we copy read ssid into dev */
1992         if (!(priv->config & CFG_STATIC_ESSID)) {
1993                 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
1994                 memcpy(priv->essid, essid, priv->essid_len);
1995         }
1996         priv->channel = chan;
1997         memcpy(priv->bssid, bssid, ETH_ALEN);
1998
1999         priv->status |= STATUS_ASSOCIATING;
2000         priv->connect_start = get_seconds();
2001
2002         queue_delayed_work(priv->workqueue, &priv->wx_event_work, HZ / 10);
2003 }
2004
2005 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2006                              int length, int batch_mode)
2007 {
2008         int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2009         struct host_command cmd = {
2010                 .host_command = SSID,
2011                 .host_command_sequence = 0,
2012                 .host_command_length = ssid_len
2013         };
2014         int err;
2015
2016         IPW_DEBUG_HC("SSID: '%s'\n", escape_essid(essid, ssid_len));
2017
2018         if (ssid_len)
2019                 memcpy(cmd.host_command_parameters, essid, ssid_len);
2020
2021         if (!batch_mode) {
2022                 err = ipw2100_disable_adapter(priv);
2023                 if (err)
2024                         return err;
2025         }
2026
2027         /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2028          * disable auto association -- so we cheat by setting a bogus SSID */
2029         if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2030                 int i;
2031                 u8 *bogus = (u8 *) cmd.host_command_parameters;
2032                 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2033                         bogus[i] = 0x18 + i;
2034                 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2035         }
2036
2037         /* NOTE:  We always send the SSID command even if the provided ESSID is
2038          * the same as what we currently think is set. */
2039
2040         err = ipw2100_hw_send_command(priv, &cmd);
2041         if (!err) {
2042                 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2043                 memcpy(priv->essid, essid, ssid_len);
2044                 priv->essid_len = ssid_len;
2045         }
2046
2047         if (!batch_mode) {
2048                 if (ipw2100_enable_adapter(priv))
2049                         err = -EIO;
2050         }
2051
2052         return err;
2053 }
2054
2055 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2056 {
2057         DECLARE_MAC_BUF(mac);
2058
2059         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2060                   "disassociated: '%s' %s \n",
2061                   escape_essid(priv->essid, priv->essid_len),
2062                   print_mac(mac, priv->bssid));
2063
2064         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2065
2066         if (priv->status & STATUS_STOPPING) {
2067                 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2068                 return;
2069         }
2070
2071         memset(priv->bssid, 0, ETH_ALEN);
2072         memset(priv->ieee->bssid, 0, ETH_ALEN);
2073
2074         netif_carrier_off(priv->net_dev);
2075         netif_stop_queue(priv->net_dev);
2076
2077         if (!(priv->status & STATUS_RUNNING))
2078                 return;
2079
2080         if (priv->status & STATUS_SECURITY_UPDATED)
2081                 queue_delayed_work(priv->workqueue, &priv->security_work, 0);
2082
2083         queue_delayed_work(priv->workqueue, &priv->wx_event_work, 0);
2084 }
2085
2086 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2087 {
2088         IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2089                        priv->net_dev->name);
2090
2091         /* RF_KILL is now enabled (else we wouldn't be here) */
2092         priv->status |= STATUS_RF_KILL_HW;
2093
2094 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2095         if (priv->config & CFG_C3_DISABLED) {
2096                 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
2097                 acpi_set_cstate_limit(priv->cstate_limit);
2098                 priv->config &= ~CFG_C3_DISABLED;
2099         }
2100 #endif
2101
2102         /* Make sure the RF Kill check timer is running */
2103         priv->stop_rf_kill = 0;
2104         cancel_delayed_work(&priv->rf_kill);
2105         queue_delayed_work(priv->workqueue, &priv->rf_kill, round_jiffies(HZ));
2106 }
2107
2108 static void send_scan_event(void *data)
2109 {
2110         struct ipw2100_priv *priv = data;
2111         union iwreq_data wrqu;
2112
2113         wrqu.data.length = 0;
2114         wrqu.data.flags = 0;
2115         wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2116 }
2117
2118 static void ipw2100_scan_event_later(struct work_struct *work)
2119 {
2120         send_scan_event(container_of(work, struct ipw2100_priv,
2121                                         scan_event_later.work));
2122 }
2123
2124 static void ipw2100_scan_event_now(struct work_struct *work)
2125 {
2126         send_scan_event(container_of(work, struct ipw2100_priv,
2127                                         scan_event_now));
2128 }
2129
2130 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2131 {
2132         IPW_DEBUG_SCAN("scan complete\n");
2133         /* Age the scan results... */
2134         priv->ieee->scans++;
2135         priv->status &= ~STATUS_SCANNING;
2136
2137         /* Only userspace-requested scan completion events go out immediately */
2138         if (!priv->user_requested_scan) {
2139                 if (!delayed_work_pending(&priv->scan_event_later))
2140                         queue_delayed_work(priv->workqueue,
2141                                         &priv->scan_event_later,
2142                                         round_jiffies(msecs_to_jiffies(4000)));
2143         } else {
2144                 priv->user_requested_scan = 0;
2145                 cancel_delayed_work(&priv->scan_event_later);
2146                 queue_work(priv->workqueue, &priv->scan_event_now);
2147         }
2148 }
2149
2150 #ifdef CONFIG_IPW2100_DEBUG
2151 #define IPW2100_HANDLER(v, f) { v, f, # v }
2152 struct ipw2100_status_indicator {
2153         int status;
2154         void (*cb) (struct ipw2100_priv * priv, u32 status);
2155         char *name;
2156 };
2157 #else
2158 #define IPW2100_HANDLER(v, f) { v, f }
2159 struct ipw2100_status_indicator {
2160         int status;
2161         void (*cb) (struct ipw2100_priv * priv, u32 status);
2162 };
2163 #endif                          /* CONFIG_IPW2100_DEBUG */
2164
2165 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2166 {
2167         IPW_DEBUG_SCAN("Scanning...\n");
2168         priv->status |= STATUS_SCANNING;
2169 }
2170
2171 static const struct ipw2100_status_indicator status_handlers[] = {
2172         IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2173         IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2174         IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2175         IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2176         IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2177         IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2178         IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2179         IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2180         IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2181         IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2182         IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2183         IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2184         IPW2100_HANDLER(-1, NULL)
2185 };
2186
2187 static void isr_status_change(struct ipw2100_priv *priv, int status)
2188 {
2189         int i;
2190
2191         if (status == IPW_STATE_SCANNING &&
2192             priv->status & STATUS_ASSOCIATED &&
2193             !(priv->status & STATUS_SCANNING)) {
2194                 IPW_DEBUG_INFO("Scan detected while associated, with "
2195                                "no scan request.  Restarting firmware.\n");
2196
2197                 /* Wake up any sleeping jobs */
2198                 schedule_reset(priv);
2199         }
2200
2201         for (i = 0; status_handlers[i].status != -1; i++) {
2202                 if (status == status_handlers[i].status) {
2203                         IPW_DEBUG_NOTIF("Status change: %s\n",
2204                                         status_handlers[i].name);
2205                         if (status_handlers[i].cb)
2206                                 status_handlers[i].cb(priv, status);
2207                         priv->wstats.status = status;
2208                         return;
2209                 }
2210         }
2211
2212         IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2213 }
2214
2215 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2216                                     struct ipw2100_cmd_header *cmd)
2217 {
2218 #ifdef CONFIG_IPW2100_DEBUG
2219         if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2220                 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2221                              command_types[cmd->host_command_reg],
2222                              cmd->host_command_reg);
2223         }
2224 #endif
2225         if (cmd->host_command_reg == HOST_COMPLETE)
2226                 priv->status |= STATUS_ENABLED;
2227
2228         if (cmd->host_command_reg == CARD_DISABLE)
2229                 priv->status &= ~STATUS_ENABLED;
2230
2231         priv->status &= ~STATUS_CMD_ACTIVE;
2232
2233         wake_up_interruptible(&priv->wait_command_queue);
2234 }
2235
2236 #ifdef CONFIG_IPW2100_DEBUG
2237 static const char *frame_types[] = {
2238         "COMMAND_STATUS_VAL",
2239         "STATUS_CHANGE_VAL",
2240         "P80211_DATA_VAL",
2241         "P8023_DATA_VAL",
2242         "HOST_NOTIFICATION_VAL"
2243 };
2244 #endif
2245
2246 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2247                                     struct ipw2100_rx_packet *packet)
2248 {
2249         packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2250         if (!packet->skb)
2251                 return -ENOMEM;
2252
2253         packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2254         packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2255                                           sizeof(struct ipw2100_rx),
2256                                           PCI_DMA_FROMDEVICE);
2257         /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2258          *       dma_addr */
2259
2260         return 0;
2261 }
2262
2263 #define SEARCH_ERROR   0xffffffff
2264 #define SEARCH_FAIL    0xfffffffe
2265 #define SEARCH_SUCCESS 0xfffffff0
2266 #define SEARCH_DISCARD 0
2267 #define SEARCH_SNAPSHOT 1
2268
2269 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2270 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2271 {
2272         int i;
2273         if (!priv->snapshot[0])
2274                 return;
2275         for (i = 0; i < 0x30; i++)
2276                 kfree(priv->snapshot[i]);
2277         priv->snapshot[0] = NULL;
2278 }
2279
2280 #ifdef IPW2100_DEBUG_C3
2281 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2282 {
2283         int i;
2284         if (priv->snapshot[0])
2285                 return 1;
2286         for (i = 0; i < 0x30; i++) {
2287                 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2288                 if (!priv->snapshot[i]) {
2289                         IPW_DEBUG_INFO("%s: Error allocating snapshot "
2290                                        "buffer %d\n", priv->net_dev->name, i);
2291                         while (i > 0)
2292                                 kfree(priv->snapshot[--i]);
2293                         priv->snapshot[0] = NULL;
2294                         return 0;
2295                 }
2296         }
2297
2298         return 1;
2299 }
2300
2301 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2302                                     size_t len, int mode)
2303 {
2304         u32 i, j;
2305         u32 tmp;
2306         u8 *s, *d;
2307         u32 ret;
2308
2309         s = in_buf;
2310         if (mode == SEARCH_SNAPSHOT) {
2311                 if (!ipw2100_snapshot_alloc(priv))
2312                         mode = SEARCH_DISCARD;
2313         }
2314
2315         for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2316                 read_nic_dword(priv->net_dev, i, &tmp);
2317                 if (mode == SEARCH_SNAPSHOT)
2318                         *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2319                 if (ret == SEARCH_FAIL) {
2320                         d = (u8 *) & tmp;
2321                         for (j = 0; j < 4; j++) {
2322                                 if (*s != *d) {
2323                                         s = in_buf;
2324                                         continue;
2325                                 }
2326
2327                                 s++;
2328                                 d++;
2329
2330                                 if ((s - in_buf) == len)
2331                                         ret = (i + j) - len + 1;
2332                         }
2333                 } else if (mode == SEARCH_DISCARD)
2334                         return ret;
2335         }
2336
2337         return ret;
2338 }
2339 #endif
2340
2341 /*
2342  *
2343  * 0) Disconnect the SKB from the firmware (just unmap)
2344  * 1) Pack the ETH header into the SKB
2345  * 2) Pass the SKB to the network stack
2346  *
2347  * When packet is provided by the firmware, it contains the following:
2348  *
2349  * .  ieee80211_hdr
2350  * .  ieee80211_snap_hdr
2351  *
2352  * The size of the constructed ethernet
2353  *
2354  */
2355 #ifdef IPW2100_RX_DEBUG
2356 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2357 #endif
2358
2359 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2360 {
2361 #ifdef IPW2100_DEBUG_C3
2362         struct ipw2100_status *status = &priv->status_queue.drv[i];
2363         u32 match, reg;
2364         int j;
2365 #endif
2366 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2367         int limit;
2368 #endif
2369
2370         IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2371                        i * sizeof(struct ipw2100_status));
2372
2373 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2374         IPW_DEBUG_INFO(": Disabling C3 transitions.\n");
2375         limit = acpi_get_cstate_limit();
2376         if (limit > 2) {
2377                 priv->cstate_limit = limit;
2378                 acpi_set_cstate_limit(2);
2379                 priv->config |= CFG_C3_DISABLED;
2380         }
2381 #endif
2382
2383 #ifdef IPW2100_DEBUG_C3
2384         /* Halt the fimrware so we can get a good image */
2385         write_register(priv->net_dev, IPW_REG_RESET_REG,
2386                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2387         j = 5;
2388         do {
2389                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2390                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2391
2392                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2393                         break;
2394         } while (j--);
2395
2396         match = ipw2100_match_buf(priv, (u8 *) status,
2397                                   sizeof(struct ipw2100_status),
2398                                   SEARCH_SNAPSHOT);
2399         if (match < SEARCH_SUCCESS)
2400                 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2401                                "offset 0x%06X, length %d:\n",
2402                                priv->net_dev->name, match,
2403                                sizeof(struct ipw2100_status));
2404         else
2405                 IPW_DEBUG_INFO("%s: No DMA status match in "
2406                                "Firmware.\n", priv->net_dev->name);
2407
2408         printk_buf((u8 *) priv->status_queue.drv,
2409                    sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2410 #endif
2411
2412         priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2413         priv->ieee->stats.rx_errors++;
2414         schedule_reset(priv);
2415 }
2416
2417 static void isr_rx(struct ipw2100_priv *priv, int i,
2418                           struct ieee80211_rx_stats *stats)
2419 {
2420         struct ipw2100_status *status = &priv->status_queue.drv[i];
2421         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2422
2423         IPW_DEBUG_RX("Handler...\n");
2424
2425         if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2426                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2427                                "  Dropping.\n",
2428                                priv->net_dev->name,
2429                                status->frame_size, skb_tailroom(packet->skb));
2430                 priv->ieee->stats.rx_errors++;
2431                 return;
2432         }
2433
2434         if (unlikely(!netif_running(priv->net_dev))) {
2435                 priv->ieee->stats.rx_errors++;
2436                 priv->wstats.discard.misc++;
2437                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2438                 return;
2439         }
2440
2441         if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2442                      !(priv->status & STATUS_ASSOCIATED))) {
2443                 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2444                 priv->wstats.discard.misc++;
2445                 return;
2446         }
2447
2448         pci_unmap_single(priv->pci_dev,
2449                          packet->dma_addr,
2450                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2451
2452         skb_put(packet->skb, status->frame_size);
2453
2454 #ifdef IPW2100_RX_DEBUG
2455         /* Make a copy of the frame so we can dump it to the logs if
2456          * ieee80211_rx fails */
2457         skb_copy_from_linear_data(packet->skb, packet_data,
2458                                   min_t(u32, status->frame_size,
2459                                              IPW_RX_NIC_BUFFER_LENGTH));
2460 #endif
2461
2462         if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2463 #ifdef IPW2100_RX_DEBUG
2464                 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2465                                priv->net_dev->name);
2466                 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2467 #endif
2468                 priv->ieee->stats.rx_errors++;
2469
2470                 /* ieee80211_rx failed, so it didn't free the SKB */
2471                 dev_kfree_skb_any(packet->skb);
2472                 packet->skb = NULL;
2473         }
2474
2475         /* We need to allocate a new SKB and attach it to the RDB. */
2476         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2477                 printk(KERN_WARNING DRV_NAME ": "
2478                        "%s: Unable to allocate SKB onto RBD ring - disabling "
2479                        "adapter.\n", priv->net_dev->name);
2480                 /* TODO: schedule adapter shutdown */
2481                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2482         }
2483
2484         /* Update the RDB entry */
2485         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2486 }
2487
2488 #ifdef CONFIG_IPW2100_MONITOR
2489
2490 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2491                    struct ieee80211_rx_stats *stats)
2492 {
2493         struct ipw2100_status *status = &priv->status_queue.drv[i];
2494         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2495
2496         /* Magic struct that slots into the radiotap header -- no reason
2497          * to build this manually element by element, we can write it much
2498          * more efficiently than we can parse it. ORDER MATTERS HERE */
2499         struct ipw_rt_hdr {
2500                 struct ieee80211_radiotap_header rt_hdr;
2501                 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2502         } *ipw_rt;
2503
2504         IPW_DEBUG_RX("Handler...\n");
2505
2506         if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2507                                 sizeof(struct ipw_rt_hdr))) {
2508                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2509                                "  Dropping.\n",
2510                                priv->net_dev->name,
2511                                status->frame_size,
2512                                skb_tailroom(packet->skb));
2513                 priv->ieee->stats.rx_errors++;
2514                 return;
2515         }
2516
2517         if (unlikely(!netif_running(priv->net_dev))) {
2518                 priv->ieee->stats.rx_errors++;
2519                 priv->wstats.discard.misc++;
2520                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2521                 return;
2522         }
2523
2524         if (unlikely(priv->config & CFG_CRC_CHECK &&
2525                      status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2526                 IPW_DEBUG_RX("CRC error in packet.  Dropping.\n");
2527                 priv->ieee->stats.rx_errors++;
2528                 return;
2529         }
2530
2531         pci_unmap_single(priv->pci_dev, packet->dma_addr,
2532                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2533         memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2534                 packet->skb->data, status->frame_size);
2535
2536         ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2537
2538         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2539         ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2540         ipw_rt->rt_hdr.it_len = sizeof(struct ipw_rt_hdr); /* total hdr+data */
2541
2542         ipw_rt->rt_hdr.it_present = 1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL;
2543
2544         ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2545
2546         skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2547
2548         if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2549                 priv->ieee->stats.rx_errors++;
2550
2551                 /* ieee80211_rx failed, so it didn't free the SKB */
2552                 dev_kfree_skb_any(packet->skb);
2553                 packet->skb = NULL;
2554         }
2555
2556         /* We need to allocate a new SKB and attach it to the RDB. */
2557         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2558                 IPW_DEBUG_WARNING(
2559                         "%s: Unable to allocate SKB onto RBD ring - disabling "
2560                         "adapter.\n", priv->net_dev->name);
2561                 /* TODO: schedule adapter shutdown */
2562                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2563         }
2564
2565         /* Update the RDB entry */
2566         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2567 }
2568
2569 #endif
2570
2571 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2572 {
2573         struct ipw2100_status *status = &priv->status_queue.drv[i];
2574         struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2575         u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2576
2577         switch (frame_type) {
2578         case COMMAND_STATUS_VAL:
2579                 return (status->frame_size != sizeof(u->rx_data.command));
2580         case STATUS_CHANGE_VAL:
2581                 return (status->frame_size != sizeof(u->rx_data.status));
2582         case HOST_NOTIFICATION_VAL:
2583                 return (status->frame_size < sizeof(u->rx_data.notification));
2584         case P80211_DATA_VAL:
2585         case P8023_DATA_VAL:
2586 #ifdef CONFIG_IPW2100_MONITOR
2587                 return 0;
2588 #else
2589                 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2590                 case IEEE80211_FTYPE_MGMT:
2591                 case IEEE80211_FTYPE_CTL:
2592                         return 0;
2593                 case IEEE80211_FTYPE_DATA:
2594                         return (status->frame_size >
2595                                 IPW_MAX_802_11_PAYLOAD_LENGTH);
2596                 }
2597 #endif
2598         }
2599
2600         return 1;
2601 }
2602
2603 /*
2604  * ipw2100 interrupts are disabled at this point, and the ISR
2605  * is the only code that calls this method.  So, we do not need
2606  * to play with any locks.
2607  *
2608  * RX Queue works as follows:
2609  *
2610  * Read index - firmware places packet in entry identified by the
2611  *              Read index and advances Read index.  In this manner,
2612  *              Read index will always point to the next packet to
2613  *              be filled--but not yet valid.
2614  *
2615  * Write index - driver fills this entry with an unused RBD entry.
2616  *               This entry has not filled by the firmware yet.
2617  *
2618  * In between the W and R indexes are the RBDs that have been received
2619  * but not yet processed.
2620  *
2621  * The process of handling packets will start at WRITE + 1 and advance
2622  * until it reaches the READ index.
2623  *
2624  * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2625  *
2626  */
2627 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2628 {
2629         struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2630         struct ipw2100_status_queue *sq = &priv->status_queue;
2631         struct ipw2100_rx_packet *packet;
2632         u16 frame_type;
2633         u32 r, w, i, s;
2634         struct ipw2100_rx *u;
2635         struct ieee80211_rx_stats stats = {
2636                 .mac_time = jiffies,
2637         };
2638
2639         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2640         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2641
2642         if (r >= rxq->entries) {
2643                 IPW_DEBUG_RX("exit - bad read index\n");
2644                 return;
2645         }
2646
2647         i = (rxq->next + 1) % rxq->entries;
2648         s = i;
2649         while (i != r) {
2650                 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2651                    r, rxq->next, i); */
2652
2653                 packet = &priv->rx_buffers[i];
2654
2655                 /* Sync the DMA for the STATUS buffer so CPU is sure to get
2656                  * the correct values */
2657                 pci_dma_sync_single_for_cpu(priv->pci_dev,
2658                                             sq->nic +
2659                                             sizeof(struct ipw2100_status) * i,
2660                                             sizeof(struct ipw2100_status),
2661                                             PCI_DMA_FROMDEVICE);
2662
2663                 /* Sync the DMA for the RX buffer so CPU is sure to get
2664                  * the correct values */
2665                 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2666                                             sizeof(struct ipw2100_rx),
2667                                             PCI_DMA_FROMDEVICE);
2668
2669                 if (unlikely(ipw2100_corruption_check(priv, i))) {
2670                         ipw2100_corruption_detected(priv, i);
2671                         goto increment;
2672                 }
2673
2674                 u = packet->rxp;
2675                 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2676                 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2677                 stats.len = sq->drv[i].frame_size;
2678
2679                 stats.mask = 0;
2680                 if (stats.rssi != 0)
2681                         stats.mask |= IEEE80211_STATMASK_RSSI;
2682                 stats.freq = IEEE80211_24GHZ_BAND;
2683
2684                 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2685                              priv->net_dev->name, frame_types[frame_type],
2686                              stats.len);
2687
2688                 switch (frame_type) {
2689                 case COMMAND_STATUS_VAL:
2690                         /* Reset Rx watchdog */
2691                         isr_rx_complete_command(priv, &u->rx_data.command);
2692                         break;
2693
2694                 case STATUS_CHANGE_VAL:
2695                         isr_status_change(priv, u->rx_data.status);
2696                         break;
2697
2698                 case P80211_DATA_VAL:
2699                 case P8023_DATA_VAL:
2700 #ifdef CONFIG_IPW2100_MONITOR
2701                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2702                                 isr_rx_monitor(priv, i, &stats);
2703                                 break;
2704                         }
2705 #endif
2706                         if (stats.len < sizeof(struct ieee80211_hdr_3addr))
2707                                 break;
2708                         switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2709                         case IEEE80211_FTYPE_MGMT:
2710                                 ieee80211_rx_mgt(priv->ieee,
2711                                                  &u->rx_data.header, &stats);
2712                                 break;
2713
2714                         case IEEE80211_FTYPE_CTL:
2715                                 break;
2716
2717                         case IEEE80211_FTYPE_DATA:
2718                                 isr_rx(priv, i, &stats);
2719                                 break;
2720
2721                         }
2722                         break;
2723                 }
2724
2725               increment:
2726                 /* clear status field associated with this RBD */
2727                 rxq->drv[i].status.info.field = 0;
2728
2729                 i = (i + 1) % rxq->entries;
2730         }
2731
2732         if (i != s) {
2733                 /* backtrack one entry, wrapping to end if at 0 */
2734                 rxq->next = (i ? i : rxq->entries) - 1;
2735
2736                 write_register(priv->net_dev,
2737                                IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2738         }
2739 }
2740
2741 /*
2742  * __ipw2100_tx_process
2743  *
2744  * This routine will determine whether the next packet on
2745  * the fw_pend_list has been processed by the firmware yet.
2746  *
2747  * If not, then it does nothing and returns.
2748  *
2749  * If so, then it removes the item from the fw_pend_list, frees
2750  * any associated storage, and places the item back on the
2751  * free list of its source (either msg_free_list or tx_free_list)
2752  *
2753  * TX Queue works as follows:
2754  *
2755  * Read index - points to the next TBD that the firmware will
2756  *              process.  The firmware will read the data, and once
2757  *              done processing, it will advance the Read index.
2758  *
2759  * Write index - driver fills this entry with an constructed TBD
2760  *               entry.  The Write index is not advanced until the
2761  *               packet has been configured.
2762  *
2763  * In between the W and R indexes are the TBDs that have NOT been
2764  * processed.  Lagging behind the R index are packets that have
2765  * been processed but have not been freed by the driver.
2766  *
2767  * In order to free old storage, an internal index will be maintained
2768  * that points to the next packet to be freed.  When all used
2769  * packets have been freed, the oldest index will be the same as the
2770  * firmware's read index.
2771  *
2772  * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2773  *
2774  * Because the TBD structure can not contain arbitrary data, the
2775  * driver must keep an internal queue of cached allocations such that
2776  * it can put that data back into the tx_free_list and msg_free_list
2777  * for use by future command and data packets.
2778  *
2779  */
2780 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2781 {
2782         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2783         struct ipw2100_bd *tbd;
2784         struct list_head *element;
2785         struct ipw2100_tx_packet *packet;
2786         int descriptors_used;
2787         int e, i;
2788         u32 r, w, frag_num = 0;
2789
2790         if (list_empty(&priv->fw_pend_list))
2791                 return 0;
2792
2793         element = priv->fw_pend_list.next;
2794
2795         packet = list_entry(element, struct ipw2100_tx_packet, list);
2796         tbd = &txq->drv[packet->index];
2797
2798         /* Determine how many TBD entries must be finished... */
2799         switch (packet->type) {
2800         case COMMAND:
2801                 /* COMMAND uses only one slot; don't advance */
2802                 descriptors_used = 1;
2803                 e = txq->oldest;
2804                 break;
2805
2806         case DATA:
2807                 /* DATA uses two slots; advance and loop position. */
2808                 descriptors_used = tbd->num_fragments;
2809                 frag_num = tbd->num_fragments - 1;
2810                 e = txq->oldest + frag_num;
2811                 e %= txq->entries;
2812                 break;
2813
2814         default:
2815                 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2816                        priv->net_dev->name);
2817                 return 0;
2818         }
2819
2820         /* if the last TBD is not done by NIC yet, then packet is
2821          * not ready to be released.
2822          *
2823          */
2824         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2825                       &r);
2826         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2827                       &w);
2828         if (w != txq->next)
2829                 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2830                        priv->net_dev->name);
2831
2832         /*
2833          * txq->next is the index of the last packet written txq->oldest is
2834          * the index of the r is the index of the next packet to be read by
2835          * firmware
2836          */
2837
2838         /*
2839          * Quick graphic to help you visualize the following
2840          * if / else statement
2841          *
2842          * ===>|                     s---->|===============
2843          *                               e>|
2844          * | a | b | c | d | e | f | g | h | i | j | k | l
2845          *       r---->|
2846          *               w
2847          *
2848          * w - updated by driver
2849          * r - updated by firmware
2850          * s - start of oldest BD entry (txq->oldest)
2851          * e - end of oldest BD entry
2852          *
2853          */
2854         if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2855                 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2856                 return 0;
2857         }
2858
2859         list_del(element);
2860         DEC_STAT(&priv->fw_pend_stat);
2861
2862 #ifdef CONFIG_IPW2100_DEBUG
2863         {
2864                 int i = txq->oldest;
2865                 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2866                              &txq->drv[i],
2867                              (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2868                              txq->drv[i].host_addr, txq->drv[i].buf_length);
2869
2870                 if (packet->type == DATA) {
2871                         i = (i + 1) % txq->entries;
2872
2873                         IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2874                                      &txq->drv[i],
2875                                      (u32) (txq->nic + i *
2876                                             sizeof(struct ipw2100_bd)),
2877                                      (u32) txq->drv[i].host_addr,
2878                                      txq->drv[i].buf_length);
2879                 }
2880         }
2881 #endif
2882
2883         switch (packet->type) {
2884         case DATA:
2885                 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2886                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2887                                "Expecting DATA TBD but pulled "
2888                                "something else: ids %d=%d.\n",
2889                                priv->net_dev->name, txq->oldest, packet->index);
2890
2891                 /* DATA packet; we have to unmap and free the SKB */
2892                 for (i = 0; i < frag_num; i++) {
2893                         tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2894
2895                         IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2896                                      (packet->index + 1 + i) % txq->entries,
2897                                      tbd->host_addr, tbd->buf_length);
2898
2899                         pci_unmap_single(priv->pci_dev,
2900                                          tbd->host_addr,
2901                                          tbd->buf_length, PCI_DMA_TODEVICE);
2902                 }
2903
2904                 ieee80211_txb_free(packet->info.d_struct.txb);
2905                 packet->info.d_struct.txb = NULL;
2906
2907                 list_add_tail(element, &priv->tx_free_list);
2908                 INC_STAT(&priv->tx_free_stat);
2909
2910                 /* We have a free slot in the Tx queue, so wake up the
2911                  * transmit layer if it is stopped. */
2912                 if (priv->status & STATUS_ASSOCIATED)
2913                         netif_wake_queue(priv->net_dev);
2914
2915                 /* A packet was processed by the hardware, so update the
2916                  * watchdog */
2917                 priv->net_dev->trans_start = jiffies;
2918
2919                 break;
2920
2921         case COMMAND:
2922                 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2923                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2924                                "Expecting COMMAND TBD but pulled "
2925                                "something else: ids %d=%d.\n",
2926                                priv->net_dev->name, txq->oldest, packet->index);
2927
2928 #ifdef CONFIG_IPW2100_DEBUG
2929                 if (packet->info.c_struct.cmd->host_command_reg <
2930                     ARRAY_SIZE(command_types))
2931                         IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2932                                      command_types[packet->info.c_struct.cmd->
2933                                                    host_command_reg],
2934                                      packet->info.c_struct.cmd->
2935                                      host_command_reg,
2936                                      packet->info.c_struct.cmd->cmd_status_reg);
2937 #endif
2938
2939                 list_add_tail(element, &priv->msg_free_list);
2940                 INC_STAT(&priv->msg_free_stat);
2941                 break;
2942         }
2943
2944         /* advance oldest used TBD pointer to start of next entry */
2945         txq->oldest = (e + 1) % txq->entries;
2946         /* increase available TBDs number */
2947         txq->available += descriptors_used;
2948         SET_STAT(&priv->txq_stat, txq->available);
2949
2950         IPW_DEBUG_TX("packet latency (send to process)  %ld jiffies\n",
2951                      jiffies - packet->jiffy_start);
2952
2953         return (!list_empty(&priv->fw_pend_list));
2954 }
2955
2956 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2957 {
2958         int i = 0;
2959
2960         while (__ipw2100_tx_process(priv) && i < 200)
2961                 i++;
2962
2963         if (i == 200) {
2964                 printk(KERN_WARNING DRV_NAME ": "
2965                        "%s: Driver is running slow (%d iters).\n",
2966                        priv->net_dev->name, i);
2967         }
2968 }
2969
2970 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
2971 {
2972         struct list_head *element;
2973         struct ipw2100_tx_packet *packet;
2974         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2975         struct ipw2100_bd *tbd;
2976         int next = txq->next;
2977
2978         while (!list_empty(&priv->msg_pend_list)) {
2979                 /* if there isn't enough space in TBD queue, then
2980                  * don't stuff a new one in.
2981                  * NOTE: 3 are needed as a command will take one,
2982                  *       and there is a minimum of 2 that must be
2983                  *       maintained between the r and w indexes
2984                  */
2985                 if (txq->available <= 3) {
2986                         IPW_DEBUG_TX("no room in tx_queue\n");
2987                         break;
2988                 }
2989
2990                 element = priv->msg_pend_list.next;
2991                 list_del(element);
2992                 DEC_STAT(&priv->msg_pend_stat);
2993
2994                 packet = list_entry(element, struct ipw2100_tx_packet, list);
2995
2996                 IPW_DEBUG_TX("using TBD at virt=%p, phys=%p\n",
2997                              &txq->drv[txq->next],
2998                              (void *)(txq->nic + txq->next *
2999                                       sizeof(struct ipw2100_bd)));
3000
3001                 packet->index = txq->next;
3002
3003                 tbd = &txq->drv[txq->next];
3004
3005                 /* initialize TBD */
3006                 tbd->host_addr = packet->info.c_struct.cmd_phys;
3007                 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
3008                 /* not marking number of fragments causes problems
3009                  * with f/w debug version */
3010                 tbd->num_fragments = 1;
3011                 tbd->status.info.field =
3012                     IPW_BD_STATUS_TX_FRAME_COMMAND |
3013                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3014
3015                 /* update TBD queue counters */
3016                 txq->next++;
3017                 txq->next %= txq->entries;
3018                 txq->available--;
3019                 DEC_STAT(&priv->txq_stat);
3020
3021                 list_add_tail(element, &priv->fw_pend_list);
3022                 INC_STAT(&priv->fw_pend_stat);
3023         }
3024
3025         if (txq->next != next) {
3026                 /* kick off the DMA by notifying firmware the
3027                  * write index has moved; make sure TBD stores are sync'd */
3028                 wmb();
3029                 write_register(priv->net_dev,
3030                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3031                                txq->next);
3032         }
3033 }
3034
3035 /*
3036  * ipw2100_tx_send_data
3037  *
3038  */
3039 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3040 {
3041         struct list_head *element;
3042         struct ipw2100_tx_packet *packet;
3043         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3044         struct ipw2100_bd *tbd;
3045         int next = txq->next;
3046         int i = 0;
3047         struct ipw2100_data_header *ipw_hdr;
3048         struct ieee80211_hdr_3addr *hdr;
3049
3050         while (!list_empty(&priv->tx_pend_list)) {
3051                 /* if there isn't enough space in TBD queue, then
3052                  * don't stuff a new one in.
3053                  * NOTE: 4 are needed as a data will take two,
3054                  *       and there is a minimum of 2 that must be
3055                  *       maintained between the r and w indexes
3056                  */
3057                 element = priv->tx_pend_list.next;
3058                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3059
3060                 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3061                              IPW_MAX_BDS)) {
3062                         /* TODO: Support merging buffers if more than
3063                          * IPW_MAX_BDS are used */
3064                         IPW_DEBUG_INFO("%s: Maximum BD theshold exceeded.  "
3065                                        "Increase fragmentation level.\n",
3066                                        priv->net_dev->name);
3067                 }
3068
3069                 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3070                         IPW_DEBUG_TX("no room in tx_queue\n");
3071                         break;
3072                 }
3073
3074                 list_del(element);
3075                 DEC_STAT(&priv->tx_pend_stat);
3076
3077                 tbd = &txq->drv[txq->next];
3078
3079                 packet->index = txq->next;
3080
3081                 ipw_hdr = packet->info.d_struct.data;
3082                 hdr = (struct ieee80211_hdr_3addr *)packet->info.d_struct.txb->
3083                     fragments[0]->data;
3084
3085                 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3086                         /* To DS: Addr1 = BSSID, Addr2 = SA,
3087                            Addr3 = DA */
3088                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3089                         memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3090                 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3091                         /* not From/To DS: Addr1 = DA, Addr2 = SA,
3092                            Addr3 = BSSID */
3093                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3094                         memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3095                 }
3096
3097                 ipw_hdr->host_command_reg = SEND;
3098                 ipw_hdr->host_command_reg1 = 0;
3099
3100                 /* For now we only support host based encryption */
3101                 ipw_hdr->needs_encryption = 0;
3102                 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3103                 if (packet->info.d_struct.txb->nr_frags > 1)
3104                         ipw_hdr->fragment_size =
3105                             packet->info.d_struct.txb->frag_size -
3106                             IEEE80211_3ADDR_LEN;
3107                 else
3108                         ipw_hdr->fragment_size = 0;
3109
3110                 tbd->host_addr = packet->info.d_struct.data_phys;
3111                 tbd->buf_length = sizeof(struct ipw2100_data_header);
3112                 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3113                 tbd->status.info.field =
3114                     IPW_BD_STATUS_TX_FRAME_802_3 |
3115                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3116                 txq->next++;
3117                 txq->next %= txq->entries;
3118
3119                 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3120                              packet->index, tbd->host_addr, tbd->buf_length);
3121 #ifdef CONFIG_IPW2100_DEBUG
3122                 if (packet->info.d_struct.txb->nr_frags > 1)
3123                         IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3124                                        packet->info.d_struct.txb->nr_frags);
3125 #endif
3126
3127                 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3128                         tbd = &txq->drv[txq->next];
3129                         if (i == packet->info.d_struct.txb->nr_frags - 1)
3130                                 tbd->status.info.field =
3131                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3132                                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3133                         else
3134                                 tbd->status.info.field =
3135                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3136                                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3137
3138                         tbd->buf_length = packet->info.d_struct.txb->
3139                             fragments[i]->len - IEEE80211_3ADDR_LEN;
3140
3141                         tbd->host_addr = pci_map_single(priv->pci_dev,
3142                                                         packet->info.d_struct.
3143                                                         txb->fragments[i]->
3144                                                         data +
3145                                                         IEEE80211_3ADDR_LEN,
3146                                                         tbd->buf_length,
3147                                                         PCI_DMA_TODEVICE);
3148
3149                         IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3150                                      txq->next, tbd->host_addr,
3151                                      tbd->buf_length);
3152
3153                         pci_dma_sync_single_for_device(priv->pci_dev,
3154                                                        tbd->host_addr,
3155                                                        tbd->buf_length,
3156                                                        PCI_DMA_TODEVICE);
3157
3158                         txq->next++;
3159                         txq->next %= txq->entries;
3160                 }
3161
3162                 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3163                 SET_STAT(&priv->txq_stat, txq->available);
3164
3165                 list_add_tail(element, &priv->fw_pend_list);
3166                 INC_STAT(&priv->fw_pend_stat);
3167         }
3168
3169         if (txq->next != next) {
3170                 /* kick off the DMA by notifying firmware the
3171                  * write index has moved; make sure TBD stores are sync'd */
3172                 write_register(priv->net_dev,
3173                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3174                                txq->next);
3175         }
3176         return;
3177 }
3178
3179 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3180 {
3181         struct net_device *dev = priv->net_dev;
3182         unsigned long flags;
3183         u32 inta, tmp;
3184
3185         spin_lock_irqsave(&priv->low_lock, flags);
3186         ipw2100_disable_interrupts(priv);
3187
3188         read_register(dev, IPW_REG_INTA, &inta);
3189
3190         IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3191                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3192
3193         priv->in_isr++;
3194         priv->interrupts++;
3195
3196         /* We do not loop and keep polling for more interrupts as this
3197          * is frowned upon and doesn't play nicely with other potentially
3198          * chained IRQs */
3199         IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3200                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3201
3202         if (inta & IPW2100_INTA_FATAL_ERROR) {
3203                 printk(KERN_WARNING DRV_NAME
3204                        ": Fatal interrupt. Scheduling firmware restart.\n");
3205                 priv->inta_other++;
3206                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3207
3208                 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3209                 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3210                                priv->net_dev->name, priv->fatal_error);
3211
3212                 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3213                 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3214                                priv->net_dev->name, tmp);
3215
3216                 /* Wake up any sleeping jobs */
3217                 schedule_reset(priv);
3218         }
3219
3220         if (inta & IPW2100_INTA_PARITY_ERROR) {
3221                 printk(KERN_ERR DRV_NAME
3222                      &n