1 /******************************************************************************
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of version 2 of the GNU General Public License as
7 published by the Free Software Foundation.
9 This program is distributed in the hope that it will be useful, but WITHOUT
10 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 You should have received a copy of the GNU General Public License along with
15 this program; if not, write to the Free Software Foundation, Inc., 59
16 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 The full GNU General Public License is included in this distribution in the
22 James P. Ketrenos <ipw2100-admin@linux.intel.com>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 Portions of this file are based on the sample_* files provided by Wireless
26 Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
29 Portions of this file are based on the Host AP project,
30 Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
32 Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
34 Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35 ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36 available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
38 ******************************************************************************/
41 Initial driver on which this is based was developed by Janusz Gorycki,
42 Maciej Urbaniak, and Maciej Sosnowski.
44 Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
48 Tx - Commands and Data
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
54 The host writes to the TBD queue at the WRITE index. The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
58 The firmware pulls from the TBD queue at the READ index. The READ index points
59 to the currently being read entry, and is advanced once the firmware is
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent. If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD. If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc. The next TBD then referrs to the actual packet location.
68 The Tx flow cycle is as follows:
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75 to a physical address. That address is entered into a TBD. Two TBDs are
76 filled out. The first indicating a data packet, the second referring to the
78 5) the packet is removed from tx_pend_list and placed on the end of the
79 firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83 to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85 from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87 to unmap the DMA address and to free the SKB originally passed to the driver
89 11)The packet structure is placed onto the tx_free_list
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
96 Critical Sections / Locking :
98 There are two locks utilized. The first is the low level lock (priv->low_lock)
99 that protects the following:
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
103 tx_free_list : Holds pre-allocated Tx buffers.
104 TAIL modified in __ipw2100_tx_process()
105 HEAD modified in ipw2100_tx()
107 tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108 TAIL modified ipw2100_tx()
109 HEAD modified by ipw2100_tx_send_data()
111 msg_free_list : Holds pre-allocated Msg (Command) buffers
112 TAIL modified in __ipw2100_tx_process()
113 HEAD modified in ipw2100_hw_send_command()
115 msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116 TAIL modified in ipw2100_hw_send_command()
117 HEAD modified in ipw2100_tx_send_commands()
119 The flow of data on the TX side is as follows:
121 MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122 TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
124 The methods that work on the TBD ring are protected via priv->low_lock.
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/version.h>
161 #include <linux/time.h>
162 #include <linux/firmware.h>
163 #include <linux/acpi.h>
164 #include <linux/ctype.h>
165 #include <linux/latency.h>
169 #define IPW2100_VERSION "git-1.2.2"
171 #define DRV_NAME "ipw2100"
172 #define DRV_VERSION IPW2100_VERSION
173 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
174 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
176 /* Debugging stuff */
177 #ifdef CONFIG_IPW2100_DEBUG
178 #define IPW2100_RX_DEBUG /* Reception debugging */
181 MODULE_DESCRIPTION(DRV_DESCRIPTION);
182 MODULE_VERSION(DRV_VERSION);
183 MODULE_AUTHOR(DRV_COPYRIGHT);
184 MODULE_LICENSE("GPL");
186 static int debug = 0;
188 static int channel = 0;
189 static int associate = 1;
190 static int disable = 0;
192 static struct ipw2100_fw ipw2100_firmware;
195 #include <linux/moduleparam.h>
196 module_param(debug, int, 0444);
197 module_param(mode, int, 0444);
198 module_param(channel, int, 0444);
199 module_param(associate, int, 0444);
200 module_param(disable, int, 0444);
202 MODULE_PARM_DESC(debug, "debug level");
203 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
204 MODULE_PARM_DESC(channel, "channel");
205 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
206 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
208 static u32 ipw2100_debug_level = IPW_DL_NONE;
210 #ifdef CONFIG_IPW2100_DEBUG
211 #define IPW_DEBUG(level, message...) \
213 if (ipw2100_debug_level & (level)) { \
214 printk(KERN_DEBUG "ipw2100: %c %s ", \
215 in_interrupt() ? 'I' : 'U', __FUNCTION__); \
220 #define IPW_DEBUG(level, message...) do {} while (0)
221 #endif /* CONFIG_IPW2100_DEBUG */
223 #ifdef CONFIG_IPW2100_DEBUG
224 static const char *command_types[] = {
226 "unused", /* HOST_ATTENTION */
228 "unused", /* SLEEP */
229 "unused", /* HOST_POWER_DOWN */
232 "unused", /* SET_IMR */
235 "AUTHENTICATION_TYPE",
238 "INTERNATIONAL_MODE",
253 "CLEAR_ALL_MULTICAST",
274 "AP_OR_STATION_TABLE",
278 "unused", /* SAVE_CALIBRATION */
279 "unused", /* RESTORE_CALIBRATION */
283 "HOST_PRE_POWER_DOWN",
284 "unused", /* HOST_INTERRUPT_COALESCING */
286 "CARD_DISABLE_PHY_OFF",
287 "MSDU_TX_RATES" "undefined",
289 "SET_STATION_STAT_BITS",
290 "CLEAR_STATIONS_STAT_BITS",
292 "SET_SECURITY_INFORMATION",
293 "DISASSOCIATION_BSSID",
298 /* Pre-decl until we get the code solid and then we can clean it up */
299 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
300 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
301 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
303 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
304 static void ipw2100_queues_free(struct ipw2100_priv *priv);
305 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
307 static int ipw2100_fw_download(struct ipw2100_priv *priv,
308 struct ipw2100_fw *fw);
309 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
310 struct ipw2100_fw *fw);
311 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
313 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
315 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
316 struct ipw2100_fw *fw);
317 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
318 struct ipw2100_fw *fw);
319 static void ipw2100_wx_event_work(struct work_struct *work);
320 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
321 static struct iw_handler_def ipw2100_wx_handler_def;
323 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
325 *val = readl((void __iomem *)(dev->base_addr + reg));
326 IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
329 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
331 writel(val, (void __iomem *)(dev->base_addr + reg));
332 IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
335 static inline void read_register_word(struct net_device *dev, u32 reg,
338 *val = readw((void __iomem *)(dev->base_addr + reg));
339 IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
342 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
344 *val = readb((void __iomem *)(dev->base_addr + reg));
345 IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
348 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
350 writew(val, (void __iomem *)(dev->base_addr + reg));
351 IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
354 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
356 writeb(val, (void __iomem *)(dev->base_addr + reg));
357 IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
360 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
362 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
363 addr & IPW_REG_INDIRECT_ADDR_MASK);
364 read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
367 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
369 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
370 addr & IPW_REG_INDIRECT_ADDR_MASK);
371 write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
374 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
376 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
377 addr & IPW_REG_INDIRECT_ADDR_MASK);
378 read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
381 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
383 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
384 addr & IPW_REG_INDIRECT_ADDR_MASK);
385 write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
388 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
390 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
391 addr & IPW_REG_INDIRECT_ADDR_MASK);
392 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
395 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
397 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
398 addr & IPW_REG_INDIRECT_ADDR_MASK);
399 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
402 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
404 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
405 addr & IPW_REG_INDIRECT_ADDR_MASK);
408 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
410 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
413 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
421 /* read first nibble byte by byte */
422 aligned_addr = addr & (~0x3);
423 dif_len = addr - aligned_addr;
425 /* Start reading at aligned_addr + dif_len */
426 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
428 for (i = dif_len; i < 4; i++, buf++)
429 write_register_byte(dev,
430 IPW_REG_INDIRECT_ACCESS_DATA + i,
437 /* read DWs through autoincrement registers */
438 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
439 aligned_len = len & (~0x3);
440 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
441 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
443 /* copy the last nibble */
444 dif_len = len - aligned_len;
445 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
446 for (i = 0; i < dif_len; i++, buf++)
447 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
451 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
459 /* read first nibble byte by byte */
460 aligned_addr = addr & (~0x3);
461 dif_len = addr - aligned_addr;
463 /* Start reading at aligned_addr + dif_len */
464 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
466 for (i = dif_len; i < 4; i++, buf++)
467 read_register_byte(dev,
468 IPW_REG_INDIRECT_ACCESS_DATA + i,
475 /* read DWs through autoincrement registers */
476 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
477 aligned_len = len & (~0x3);
478 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
479 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
481 /* copy the last nibble */
482 dif_len = len - aligned_len;
483 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
484 for (i = 0; i < dif_len; i++, buf++)
485 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
488 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
490 return (dev->base_addr &&
492 ((void __iomem *)(dev->base_addr +
493 IPW_REG_DOA_DEBUG_AREA_START))
494 == IPW_DATA_DOA_DEBUG_VALUE));
497 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
498 void *val, u32 * len)
500 struct ipw2100_ordinals *ordinals = &priv->ordinals;
507 if (ordinals->table1_addr == 0) {
508 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
509 "before they have been loaded.\n");
513 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
514 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
515 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
517 printk(KERN_WARNING DRV_NAME
518 ": ordinal buffer length too small, need %zd\n",
519 IPW_ORD_TAB_1_ENTRY_SIZE);
524 read_nic_dword(priv->net_dev,
525 ordinals->table1_addr + (ord << 2), &addr);
526 read_nic_dword(priv->net_dev, addr, val);
528 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
533 if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
535 ord -= IPW_START_ORD_TAB_2;
537 /* get the address of statistic */
538 read_nic_dword(priv->net_dev,
539 ordinals->table2_addr + (ord << 3), &addr);
541 /* get the second DW of statistics ;
542 * two 16-bit words - first is length, second is count */
543 read_nic_dword(priv->net_dev,
544 ordinals->table2_addr + (ord << 3) + sizeof(u32),
547 /* get each entry length */
548 field_len = *((u16 *) & field_info);
550 /* get number of entries */
551 field_count = *(((u16 *) & field_info) + 1);
553 /* abort if no enought memory */
554 total_length = field_len * field_count;
555 if (total_length > *len) {
564 /* read the ordinal data from the SRAM */
565 read_nic_memory(priv->net_dev, addr, total_length, val);
570 printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
571 "in table 2\n", ord);
576 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
579 struct ipw2100_ordinals *ordinals = &priv->ordinals;
582 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
583 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
584 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
585 IPW_DEBUG_INFO("wrong size\n");
589 read_nic_dword(priv->net_dev,
590 ordinals->table1_addr + (ord << 2), &addr);
592 write_nic_dword(priv->net_dev, addr, *val);
594 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
599 IPW_DEBUG_INFO("wrong table\n");
600 if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
606 static char *snprint_line(char *buf, size_t count,
607 const u8 * data, u32 len, u32 ofs)
612 out = snprintf(buf, count, "%08X", ofs);
614 for (l = 0, i = 0; i < 2; i++) {
615 out += snprintf(buf + out, count - out, " ");
616 for (j = 0; j < 8 && l < len; j++, l++)
617 out += snprintf(buf + out, count - out, "%02X ",
620 out += snprintf(buf + out, count - out, " ");
623 out += snprintf(buf + out, count - out, " ");
624 for (l = 0, i = 0; i < 2; i++) {
625 out += snprintf(buf + out, count - out, " ");
626 for (j = 0; j < 8 && l < len; j++, l++) {
627 c = data[(i * 8 + j)];
628 if (!isascii(c) || !isprint(c))
631 out += snprintf(buf + out, count - out, "%c", c);
635 out += snprintf(buf + out, count - out, " ");
641 static void printk_buf(int level, const u8 * data, u32 len)
645 if (!(ipw2100_debug_level & level))
649 printk(KERN_DEBUG "%s\n",
650 snprint_line(line, sizeof(line), &data[ofs],
651 min(len, 16U), ofs));
653 len -= min(len, 16U);
657 #define MAX_RESET_BACKOFF 10
659 static void schedule_reset(struct ipw2100_priv *priv)
661 unsigned long now = get_seconds();
663 /* If we haven't received a reset request within the backoff period,
664 * then we can reset the backoff interval so this reset occurs
666 if (priv->reset_backoff &&
667 (now - priv->last_reset > priv->reset_backoff))
668 priv->reset_backoff = 0;
670 priv->last_reset = get_seconds();
672 if (!(priv->status & STATUS_RESET_PENDING)) {
673 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
674 priv->net_dev->name, priv->reset_backoff);
675 netif_carrier_off(priv->net_dev);
676 netif_stop_queue(priv->net_dev);
677 priv->status |= STATUS_RESET_PENDING;
678 if (priv->reset_backoff)
679 queue_delayed_work(priv->workqueue, &priv->reset_work,
680 priv->reset_backoff * HZ);
682 queue_delayed_work(priv->workqueue, &priv->reset_work,
685 if (priv->reset_backoff < MAX_RESET_BACKOFF)
686 priv->reset_backoff++;
688 wake_up_interruptible(&priv->wait_command_queue);
690 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
691 priv->net_dev->name);
695 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
696 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
697 struct host_command *cmd)
699 struct list_head *element;
700 struct ipw2100_tx_packet *packet;
704 IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
705 command_types[cmd->host_command], cmd->host_command,
706 cmd->host_command_length);
707 printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
708 cmd->host_command_length);
710 spin_lock_irqsave(&priv->low_lock, flags);
712 if (priv->fatal_error) {
714 ("Attempt to send command while hardware in fatal error condition.\n");
719 if (!(priv->status & STATUS_RUNNING)) {
721 ("Attempt to send command while hardware is not running.\n");
726 if (priv->status & STATUS_CMD_ACTIVE) {
728 ("Attempt to send command while another command is pending.\n");
733 if (list_empty(&priv->msg_free_list)) {
734 IPW_DEBUG_INFO("no available msg buffers\n");
738 priv->status |= STATUS_CMD_ACTIVE;
739 priv->messages_sent++;
741 element = priv->msg_free_list.next;
743 packet = list_entry(element, struct ipw2100_tx_packet, list);
744 packet->jiffy_start = jiffies;
746 /* initialize the firmware command packet */
747 packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
748 packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
749 packet->info.c_struct.cmd->host_command_len_reg =
750 cmd->host_command_length;
751 packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
753 memcpy(packet->info.c_struct.cmd->host_command_params_reg,
754 cmd->host_command_parameters,
755 sizeof(packet->info.c_struct.cmd->host_command_params_reg));
758 DEC_STAT(&priv->msg_free_stat);
760 list_add_tail(element, &priv->msg_pend_list);
761 INC_STAT(&priv->msg_pend_stat);
763 ipw2100_tx_send_commands(priv);
764 ipw2100_tx_send_data(priv);
766 spin_unlock_irqrestore(&priv->low_lock, flags);
769 * We must wait for this command to complete before another
770 * command can be sent... but if we wait more than 3 seconds
771 * then there is a problem.
775 wait_event_interruptible_timeout(priv->wait_command_queue,
777 status & STATUS_CMD_ACTIVE),
778 HOST_COMPLETE_TIMEOUT);
781 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
782 1000 * (HOST_COMPLETE_TIMEOUT / HZ));
783 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
784 priv->status &= ~STATUS_CMD_ACTIVE;
785 schedule_reset(priv);
789 if (priv->fatal_error) {
790 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
791 priv->net_dev->name);
795 /* !!!!! HACK TEST !!!!!
796 * When lots of debug trace statements are enabled, the driver
797 * doesn't seem to have as many firmware restart cycles...
799 * As a test, we're sticking in a 1/100s delay here */
800 schedule_timeout_uninterruptible(msecs_to_jiffies(10));
805 spin_unlock_irqrestore(&priv->low_lock, flags);
811 * Verify the values and data access of the hardware
812 * No locks needed or used. No functions called.
814 static int ipw2100_verify(struct ipw2100_priv *priv)
819 u32 val1 = 0x76543210;
820 u32 val2 = 0xFEDCBA98;
822 /* Domain 0 check - all values should be DOA_DEBUG */
823 for (address = IPW_REG_DOA_DEBUG_AREA_START;
824 address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
825 read_register(priv->net_dev, address, &data1);
826 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
830 /* Domain 1 check - use arbitrary read/write compare */
831 for (address = 0; address < 5; address++) {
832 /* The memory area is not used now */
833 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
835 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
837 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
839 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
841 if (val1 == data1 && val2 == data2)
850 * Loop until the CARD_DISABLED bit is the same value as the
853 * TODO: See if it would be more efficient to do a wait/wake
854 * cycle and have the completion event trigger the wakeup
857 #define IPW_CARD_DISABLE_COMPLETE_WAIT 100 // 100 milli
858 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
862 u32 len = sizeof(card_state);
865 for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
866 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
869 IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
874 /* We'll break out if either the HW state says it is
875 * in the state we want, or if HOST_COMPLETE command
877 if ((card_state == state) ||
878 ((priv->status & STATUS_ENABLED) ?
879 IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
880 if (state == IPW_HW_STATE_ENABLED)
881 priv->status |= STATUS_ENABLED;
883 priv->status &= ~STATUS_ENABLED;
891 IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
892 state ? "DISABLED" : "ENABLED");
896 /*********************************************************************
897 Procedure : sw_reset_and_clock
898 Purpose : Asserts s/w reset, asserts clock initialization
899 and waits for clock stabilization
900 ********************************************************************/
901 static int sw_reset_and_clock(struct ipw2100_priv *priv)
907 write_register(priv->net_dev, IPW_REG_RESET_REG,
908 IPW_AUX_HOST_RESET_REG_SW_RESET);
910 // wait for clock stabilization
911 for (i = 0; i < 1000; i++) {
912 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
914 // check clock ready bit
915 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
916 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
921 return -EIO; // TODO: better error value
923 /* set "initialization complete" bit to move adapter to
925 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
926 IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
928 /* wait for clock stabilization */
929 for (i = 0; i < 10000; i++) {
930 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
932 /* check clock ready bit */
933 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
934 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
939 return -EIO; /* TODO: better error value */
941 /* set D0 standby bit */
942 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
943 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
944 r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
949 /*********************************************************************
950 Procedure : ipw2100_download_firmware
951 Purpose : Initiaze adapter after power on.
953 1. assert s/w reset first!
954 2. awake clocks & wait for clock stabilization
955 3. hold ARC (don't ask me why...)
956 4. load Dino ucode and reset/clock init again
957 5. zero-out shared mem
959 *******************************************************************/
960 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
966 /* Fetch the firmware and microcode */
967 struct ipw2100_fw ipw2100_firmware;
970 if (priv->fatal_error) {
971 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
972 "fatal error %d. Interface must be brought down.\n",
973 priv->net_dev->name, priv->fatal_error);
977 if (!ipw2100_firmware.version) {
978 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
980 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
981 priv->net_dev->name, err);
982 priv->fatal_error = IPW2100_ERR_FW_LOAD;
987 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
989 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
990 priv->net_dev->name, err);
991 priv->fatal_error = IPW2100_ERR_FW_LOAD;
995 priv->firmware_version = ipw2100_firmware.version;
997 /* s/w reset and clock stabilization */
998 err = sw_reset_and_clock(priv);
1000 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1001 priv->net_dev->name, err);
1005 err = ipw2100_verify(priv);
1007 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1008 priv->net_dev->name, err);
1013 write_nic_dword(priv->net_dev,
1014 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1016 /* allow ARC to run */
1017 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1019 /* load microcode */
1020 err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1022 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1023 priv->net_dev->name, err);
1028 write_nic_dword(priv->net_dev,
1029 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1031 /* s/w reset and clock stabilization (again!!!) */
1032 err = sw_reset_and_clock(priv);
1034 printk(KERN_ERR DRV_NAME
1035 ": %s: sw_reset_and_clock failed: %d\n",
1036 priv->net_dev->name, err);
1041 err = ipw2100_fw_download(priv, &ipw2100_firmware);
1043 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1044 priv->net_dev->name, err);
1049 * When the .resume method of the driver is called, the other
1050 * part of the system, i.e. the ide driver could still stay in
1051 * the suspend stage. This prevents us from loading the firmware
1052 * from the disk. --YZ
1055 /* free any storage allocated for firmware image */
1056 ipw2100_release_firmware(priv, &ipw2100_firmware);
1059 /* zero out Domain 1 area indirectly (Si requirement) */
1060 for (address = IPW_HOST_FW_SHARED_AREA0;
1061 address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1062 write_nic_dword(priv->net_dev, address, 0);
1063 for (address = IPW_HOST_FW_SHARED_AREA1;
1064 address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1065 write_nic_dword(priv->net_dev, address, 0);
1066 for (address = IPW_HOST_FW_SHARED_AREA2;
1067 address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1068 write_nic_dword(priv->net_dev, address, 0);
1069 for (address = IPW_HOST_FW_SHARED_AREA3;
1070 address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1071 write_nic_dword(priv->net_dev, address, 0);
1072 for (address = IPW_HOST_FW_INTERRUPT_AREA;
1073 address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1074 write_nic_dword(priv->net_dev, address, 0);
1079 ipw2100_release_firmware(priv, &ipw2100_firmware);
1083 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1085 if (priv->status & STATUS_INT_ENABLED)
1087 priv->status |= STATUS_INT_ENABLED;
1088 write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1091 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1093 if (!(priv->status & STATUS_INT_ENABLED))
1095 priv->status &= ~STATUS_INT_ENABLED;
1096 write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1099 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1101 struct ipw2100_ordinals *ord = &priv->ordinals;
1103 IPW_DEBUG_INFO("enter\n");
1105 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1108 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1111 read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1112 read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1114 ord->table2_size &= 0x0000FFFF;
1116 IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1117 IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1118 IPW_DEBUG_INFO("exit\n");
1121 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1125 * Set GPIO 3 writable by FW; GPIO 1 writable
1126 * by driver and enable clock
1128 reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1129 IPW_BIT_GPIO_LED_OFF);
1130 write_register(priv->net_dev, IPW_REG_GPIO, reg);
1133 static int rf_kill_active(struct ipw2100_priv *priv)
1135 #define MAX_RF_KILL_CHECKS 5
1136 #define RF_KILL_CHECK_DELAY 40
1138 unsigned short value = 0;
1142 if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1143 priv->status &= ~STATUS_RF_KILL_HW;
1147 for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1148 udelay(RF_KILL_CHECK_DELAY);
1149 read_register(priv->net_dev, IPW_REG_GPIO, ®);
1150 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1154 priv->status |= STATUS_RF_KILL_HW;
1156 priv->status &= ~STATUS_RF_KILL_HW;
1158 return (value == 0);
1161 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1167 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1170 if (ipw2100_get_ordinal
1171 (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1172 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1177 IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1180 * EEPROM version is the byte at offset 0xfd in firmware
1181 * We read 4 bytes, then shift out the byte we actually want */
1182 read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1183 priv->eeprom_version = (val >> 24) & 0xFF;
1184 IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1187 * HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1189 * notice that the EEPROM bit is reverse polarity, i.e.
1190 * bit = 0 signifies HW RF kill switch is supported
1191 * bit = 1 signifies HW RF kill switch is NOT supported
1193 read_nic_dword(priv->net_dev, addr + 0x20, &val);
1194 if (!((val >> 24) & 0x01))
1195 priv->hw_features |= HW_FEATURE_RFKILL;
1197 IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1198 (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1204 * Start firmware execution after power on and intialization
1207 * 2. Wait for f/w initialization completes;
1209 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1212 u32 inta, inta_mask, gpio;
1214 IPW_DEBUG_INFO("enter\n");
1216 if (priv->status & STATUS_RUNNING)
1220 * Initialize the hw - drive adapter to DO state by setting
1221 * init_done bit. Wait for clk_ready bit and Download
1224 if (ipw2100_download_firmware(priv)) {
1225 printk(KERN_ERR DRV_NAME
1226 ": %s: Failed to power on the adapter.\n",
1227 priv->net_dev->name);
1231 /* Clear the Tx, Rx and Msg queues and the r/w indexes
1232 * in the firmware RBD and TBD ring queue */
1233 ipw2100_queues_initialize(priv);
1235 ipw2100_hw_set_gpio(priv);
1237 /* TODO -- Look at disabling interrupts here to make sure none
1238 * get fired during FW initialization */
1240 /* Release ARC - clear reset bit */
1241 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1243 /* wait for f/w intialization complete */
1244 IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1247 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1248 /* Todo... wait for sync command ... */
1250 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1252 /* check "init done" bit */
1253 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1254 /* reset "init done" bit */
1255 write_register(priv->net_dev, IPW_REG_INTA,
1256 IPW2100_INTA_FW_INIT_DONE);
1260 /* check error conditions : we check these after the firmware
1261 * check so that if there is an error, the interrupt handler
1262 * will see it and the adapter will be reset */
1264 (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1265 /* clear error conditions */
1266 write_register(priv->net_dev, IPW_REG_INTA,
1267 IPW2100_INTA_FATAL_ERROR |
1268 IPW2100_INTA_PARITY_ERROR);
1272 /* Clear out any pending INTAs since we aren't supposed to have
1273 * interrupts enabled at this point... */
1274 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1275 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1276 inta &= IPW_INTERRUPT_MASK;
1277 /* Clear out any pending interrupts */
1278 if (inta & inta_mask)
1279 write_register(priv->net_dev, IPW_REG_INTA, inta);
1281 IPW_DEBUG_FW("f/w initialization complete: %s\n",
1282 i ? "SUCCESS" : "FAILED");
1285 printk(KERN_WARNING DRV_NAME
1286 ": %s: Firmware did not initialize.\n",
1287 priv->net_dev->name);
1291 /* allow firmware to write to GPIO1 & GPIO3 */
1292 read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1294 gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1296 write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1298 /* Ready to receive commands */
1299 priv->status |= STATUS_RUNNING;
1301 /* The adapter has been reset; we are not associated */
1302 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1304 IPW_DEBUG_INFO("exit\n");
1309 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1311 if (!priv->fatal_error)
1314 priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1315 priv->fatal_index %= IPW2100_ERROR_QUEUE;
1316 priv->fatal_error = 0;
1319 /* NOTE: Our interrupt is disabled when this method is called */
1320 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1325 IPW_DEBUG_INFO("Power cycling the hardware.\n");
1327 ipw2100_hw_set_gpio(priv);
1329 /* Step 1. Stop Master Assert */
1330 write_register(priv->net_dev, IPW_REG_RESET_REG,
1331 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1333 /* Step 2. Wait for stop Master Assert
1334 * (not more then 50us, otherwise ret error */
1337 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1338 read_register(priv->net_dev, IPW_REG_RESET_REG, ®);
1340 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1344 priv->status &= ~STATUS_RESET_PENDING;
1348 ("exit - waited too long for master assert stop\n");
1352 write_register(priv->net_dev, IPW_REG_RESET_REG,
1353 IPW_AUX_HOST_RESET_REG_SW_RESET);
1355 /* Reset any fatal_error conditions */
1356 ipw2100_reset_fatalerror(priv);
1358 /* At this point, the adapter is now stopped and disabled */
1359 priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1360 STATUS_ASSOCIATED | STATUS_ENABLED);
1366 * Send the CARD_DISABLE_PHY_OFF comamnd to the card to disable it
1368 * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1370 * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1371 * if STATUS_ASSN_LOST is sent.
1373 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1376 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1378 struct host_command cmd = {
1379 .host_command = CARD_DISABLE_PHY_OFF,
1380 .host_command_sequence = 0,
1381 .host_command_length = 0,
1386 IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1388 /* Turn off the radio */
1389 err = ipw2100_hw_send_command(priv, &cmd);
1393 for (i = 0; i < 2500; i++) {
1394 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1395 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1397 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1398 (val2 & IPW2100_COMMAND_PHY_OFF))
1401 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1407 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1409 struct host_command cmd = {
1410 .host_command = HOST_COMPLETE,
1411 .host_command_sequence = 0,
1412 .host_command_length = 0
1416 IPW_DEBUG_HC("HOST_COMPLETE\n");
1418 if (priv->status & STATUS_ENABLED)
1421 mutex_lock(&priv->adapter_mutex);
1423 if (rf_kill_active(priv)) {
1424 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1428 err = ipw2100_hw_send_command(priv, &cmd);
1430 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1434 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1436 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1437 priv->net_dev->name);
1441 if (priv->stop_hang_check) {
1442 priv->stop_hang_check = 0;
1443 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
1447 mutex_unlock(&priv->adapter_mutex);
1451 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1453 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1455 struct host_command cmd = {
1456 .host_command = HOST_PRE_POWER_DOWN,
1457 .host_command_sequence = 0,
1458 .host_command_length = 0,
1463 if (!(priv->status & STATUS_RUNNING))
1466 priv->status |= STATUS_STOPPING;
1468 /* We can only shut down the card if the firmware is operational. So,
1469 * if we haven't reset since a fatal_error, then we can not send the
1470 * shutdown commands. */
1471 if (!priv->fatal_error) {
1472 /* First, make sure the adapter is enabled so that the PHY_OFF
1473 * command can shut it down */
1474 ipw2100_enable_adapter(priv);
1476 err = ipw2100_hw_phy_off(priv);
1478 printk(KERN_WARNING DRV_NAME
1479 ": Error disabling radio %d\n", err);
1482 * If in D0-standby mode going directly to D3 may cause a
1483 * PCI bus violation. Therefore we must change out of the D0
1486 * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1487 * hardware from going into standby mode and will transition
1488 * out of D0-standby if it is already in that state.
1490 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1491 * driver upon completion. Once received, the driver can
1492 * proceed to the D3 state.
1494 * Prepare for power down command to fw. This command would
1495 * take HW out of D0-standby and prepare it for D3 state.
1497 * Currently FW does not support event notification for this
1498 * event. Therefore, skip waiting for it. Just wait a fixed
1501 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1503 err = ipw2100_hw_send_command(priv, &cmd);
1505 printk(KERN_WARNING DRV_NAME ": "
1506 "%s: Power down command failed: Error %d\n",
1507 priv->net_dev->name, err);
1509 schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1512 priv->status &= ~STATUS_ENABLED;
1515 * Set GPIO 3 writable by FW; GPIO 1 writable
1516 * by driver and enable clock
1518 ipw2100_hw_set_gpio(priv);
1521 * Power down adapter. Sequence:
1522 * 1. Stop master assert (RESET_REG[9]=1)
1523 * 2. Wait for stop master (RESET_REG[8]==1)
1524 * 3. S/w reset assert (RESET_REG[7] = 1)
1527 /* Stop master assert */
1528 write_register(priv->net_dev, IPW_REG_RESET_REG,
1529 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1531 /* wait stop master not more than 50 usec.
1532 * Otherwise return error. */
1533 for (i = 5; i > 0; i--) {
1536 /* Check master stop bit */
1537 read_register(priv->net_dev, IPW_REG_RESET_REG, ®);
1539 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1544 printk(KERN_WARNING DRV_NAME
1545 ": %s: Could now power down adapter.\n",
1546 priv->net_dev->name);
1548 /* assert s/w reset */
1549 write_register(priv->net_dev, IPW_REG_RESET_REG,
1550 IPW_AUX_HOST_RESET_REG_SW_RESET);
1552 priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1557 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1559 struct host_command cmd = {
1560 .host_command = CARD_DISABLE,
1561 .host_command_sequence = 0,
1562 .host_command_length = 0
1566 IPW_DEBUG_HC("CARD_DISABLE\n");
1568 if (!(priv->status & STATUS_ENABLED))
1571 /* Make sure we clear the associated state */
1572 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1574 if (!priv->stop_hang_check) {
1575 priv->stop_hang_check = 1;
1576 cancel_delayed_work(&priv->hang_check);
1579 mutex_lock(&priv->adapter_mutex);
1581 err = ipw2100_hw_send_command(priv, &cmd);
1583 printk(KERN_WARNING DRV_NAME
1584 ": exit - failed to send CARD_DISABLE command\n");
1588 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1590 printk(KERN_WARNING DRV_NAME
1591 ": exit - card failed to change to DISABLED\n");
1595 IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1598 mutex_unlock(&priv->adapter_mutex);
1602 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1604 struct host_command cmd = {
1605 .host_command = SET_SCAN_OPTIONS,
1606 .host_command_sequence = 0,
1607 .host_command_length = 8
1611 IPW_DEBUG_INFO("enter\n");
1613 IPW_DEBUG_SCAN("setting scan options\n");
1615 cmd.host_command_parameters[0] = 0;
1617 if (!(priv->config & CFG_ASSOCIATE))
1618 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1619 if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1620 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1621 if (priv->config & CFG_PASSIVE_SCAN)
1622 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1624 cmd.host_command_parameters[1] = priv->channel_mask;
1626 err = ipw2100_hw_send_command(priv, &cmd);
1628 IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1629 cmd.host_command_parameters[0]);
1634 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1636 struct host_command cmd = {
1637 .host_command = BROADCAST_SCAN,
1638 .host_command_sequence = 0,
1639 .host_command_length = 4
1643 IPW_DEBUG_HC("START_SCAN\n");
1645 cmd.host_command_parameters[0] = 0;
1647 /* No scanning if in monitor mode */
1648 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1651 if (priv->status & STATUS_SCANNING) {
1652 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1656 IPW_DEBUG_INFO("enter\n");
1658 /* Not clearing here; doing so makes iwlist always return nothing...
1660 * We should modify the table logic to use aging tables vs. clearing
1661 * the table on each scan start.
1663 IPW_DEBUG_SCAN("starting scan\n");
1665 priv->status |= STATUS_SCANNING;
1666 err = ipw2100_hw_send_command(priv, &cmd);
1668 priv->status &= ~STATUS_SCANNING;
1670 IPW_DEBUG_INFO("exit\n");
1675 static const struct ieee80211_geo ipw_geos[] = {
1679 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1680 {2427, 4}, {2432, 5}, {2437, 6},
1681 {2442, 7}, {2447, 8}, {2452, 9},
1682 {2457, 10}, {2462, 11}, {2467, 12},
1683 {2472, 13}, {2484, 14}},
1687 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1689 unsigned long flags;
1692 u32 ord_len = sizeof(lock);
1694 /* Quite if manually disabled. */
1695 if (priv->status & STATUS_RF_KILL_SW) {
1696 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1697 "switch\n", priv->net_dev->name);
1701 /* the ipw2100 hardware really doesn't want power management delays
1702 * longer than 175usec
1704 modify_acceptable_latency("ipw2100", 175);
1706 /* If the interrupt is enabled, turn it off... */
1707 spin_lock_irqsave(&priv->low_lock, flags);
1708 ipw2100_disable_interrupts(priv);
1710 /* Reset any fatal_error conditions */
1711 ipw2100_reset_fatalerror(priv);
1712 spin_unlock_irqrestore(&priv->low_lock, flags);
1714 if (priv->status & STATUS_POWERED ||
1715 (priv->status & STATUS_RESET_PENDING)) {
1716 /* Power cycle the card ... */
1717 if (ipw2100_power_cycle_adapter(priv)) {
1718 printk(KERN_WARNING DRV_NAME
1719 ": %s: Could not cycle adapter.\n",
1720 priv->net_dev->name);
1725 priv->status |= STATUS_POWERED;
1727 /* Load the firmware, start the clocks, etc. */
1728 if (ipw2100_start_adapter(priv)) {
1729 printk(KERN_ERR DRV_NAME
1730 ": %s: Failed to start the firmware.\n",
1731 priv->net_dev->name);
1736 ipw2100_initialize_ordinals(priv);
1738 /* Determine capabilities of this particular HW configuration */
1739 if (ipw2100_get_hw_features(priv)) {
1740 printk(KERN_ERR DRV_NAME
1741 ": %s: Failed to determine HW features.\n",
1742 priv->net_dev->name);
1747 /* Initialize the geo */
1748 if (ieee80211_set_geo(priv->ieee, &ipw_geos[0])) {
1749 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1752 priv->ieee->freq_band = IEEE80211_24GHZ_BAND;
1755 if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1756 printk(KERN_ERR DRV_NAME
1757 ": %s: Failed to clear ordinal lock.\n",
1758 priv->net_dev->name);
1763 priv->status &= ~STATUS_SCANNING;
1765 if (rf_kill_active(priv)) {
1766 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1767 priv->net_dev->name);
1769 if (priv->stop_rf_kill) {
1770 priv->stop_rf_kill = 0;
1771 queue_delayed_work(priv->workqueue, &priv->rf_kill,
1778 /* Turn on the interrupt so that commands can be processed */
1779 ipw2100_enable_interrupts(priv);
1781 /* Send all of the commands that must be sent prior to
1783 if (ipw2100_adapter_setup(priv)) {
1784 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1785 priv->net_dev->name);
1791 /* Enable the adapter - sends HOST_COMPLETE */
1792 if (ipw2100_enable_adapter(priv)) {
1793 printk(KERN_ERR DRV_NAME ": "
1794 "%s: failed in call to enable adapter.\n",
1795 priv->net_dev->name);
1796 ipw2100_hw_stop_adapter(priv);
1801 /* Start a scan . . . */
1802 ipw2100_set_scan_options(priv);
1803 ipw2100_start_scan(priv);
1810 /* Called by register_netdev() */
1811 static int ipw2100_net_init(struct net_device *dev)
1813 struct ipw2100_priv *priv = ieee80211_priv(dev);
1814 return ipw2100_up(priv, 1);
1817 static void ipw2100_down(struct ipw2100_priv *priv)
1819 unsigned long flags;
1820 union iwreq_data wrqu = {
1822 .sa_family = ARPHRD_ETHER}
1824 int associated = priv->status & STATUS_ASSOCIATED;
1826 /* Kill the RF switch timer */
1827 if (!priv->stop_rf_kill) {
1828 priv->stop_rf_kill = 1;
1829 cancel_delayed_work(&priv->rf_kill);
1832 /* Kill the firmare hang check timer */
1833 if (!priv->stop_hang_check) {
1834 priv->stop_hang_check = 1;
1835 cancel_delayed_work(&priv->hang_check);
1838 /* Kill any pending resets */
1839 if (priv->status & STATUS_RESET_PENDING)
1840 cancel_delayed_work(&priv->reset_work);
1842 /* Make sure the interrupt is on so that FW commands will be
1843 * processed correctly */
1844 spin_lock_irqsave(&priv->low_lock, flags);
1845 ipw2100_enable_interrupts(priv);
1846 spin_unlock_irqrestore(&priv->low_lock, flags);
1848 if (ipw2100_hw_stop_adapter(priv))
1849 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1850 priv->net_dev->name);
1852 /* Do not disable the interrupt until _after_ we disable
1853 * the adaptor. Otherwise the CARD_DISABLE command will never
1854 * be ack'd by the firmware */
1855 spin_lock_irqsave(&priv->low_lock, flags);
1856 ipw2100_disable_interrupts(priv);
1857 spin_unlock_irqrestore(&priv->low_lock, flags);
1859 modify_acceptable_latency("ipw2100", INFINITE_LATENCY);
1861 #ifdef ACPI_CSTATE_LIMIT_DEFINED
1862 if (priv->config & CFG_C3_DISABLED) {
1863 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
1864 acpi_set_cstate_limit(priv->cstate_limit);
1865 priv->config &= ~CFG_C3_DISABLED;
1869 /* We have to signal any supplicant if we are disassociating */
1871 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1873 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1874 netif_carrier_off(priv->net_dev);
1875 netif_stop_queue(priv->net_dev);
1878 static void ipw2100_reset_adapter(struct work_struct *work)
1880 struct ipw2100_priv *priv =
1881 container_of(work, struct ipw2100_priv, reset_work.work);
1882 unsigned long flags;
1883 union iwreq_data wrqu = {
1885 .sa_family = ARPHRD_ETHER}
1887 int associated = priv->status & STATUS_ASSOCIATED;
1889 spin_lock_irqsave(&priv->low_lock, flags);
1890 IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1892 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1893 priv->status |= STATUS_SECURITY_UPDATED;
1895 /* Force a power cycle even if interface hasn't been opened
1897 cancel_delayed_work(&priv->reset_work);
1898 priv->status |= STATUS_RESET_PENDING;
1899 spin_unlock_irqrestore(&priv->low_lock, flags);
1901 mutex_lock(&priv->action_mutex);
1902 /* stop timed checks so that they don't interfere with reset */
1903 priv->stop_hang_check = 1;
1904 cancel_delayed_work(&priv->hang_check);
1906 /* We have to signal any supplicant if we are disassociating */
1908 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1910 ipw2100_up(priv, 0);
1911 mutex_unlock(&priv->action_mutex);
1915 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1918 #define MAC_ASSOCIATION_READ_DELAY (HZ)
1919 int ret, len, essid_len;
1920 char essid[IW_ESSID_MAX_SIZE];
1925 DECLARE_MAC_BUF(mac);
1928 * TBD: BSSID is usually 00:00:00:00:00:00 here and not
1929 * an actual MAC of the AP. Seems like FW sets this
1930 * address too late. Read it later and expose through
1931 * /proc or schedule a later task to query and update
1934 essid_len = IW_ESSID_MAX_SIZE;
1935 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
1938 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1944 ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
1946 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1952 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
1954 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1959 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
1961 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1965 memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
1968 case TX_RATE_1_MBIT:
1969 txratename = "1Mbps";
1971 case TX_RATE_2_MBIT:
1972 txratename = "2Mbsp";
1974 case TX_RATE_5_5_MBIT:
1975 txratename = "5.5Mbps";
1977 case TX_RATE_11_MBIT:
1978 txratename = "11Mbps";
1981 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
1982 txratename = "unknown rate";
1986 IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID="
1988 priv->net_dev->name, escape_essid(essid, essid_len),
1989 txratename, chan, print_mac(mac, bssid));
1991 /* now we copy read ssid into dev */
1992 if (!(priv->config & CFG_STATIC_ESSID)) {
1993 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
1994 memcpy(priv->essid, essid, priv->essid_len);
1996 priv->channel = chan;
1997 memcpy(priv->bssid, bssid, ETH_ALEN);
1999 priv->status |= STATUS_ASSOCIATING;
2000 priv->connect_start = get_seconds();
2002 queue_delayed_work(priv->workqueue, &priv->wx_event_work, HZ / 10);
2005 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2006 int length, int batch_mode)
2008 int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2009 struct host_command cmd = {
2010 .host_command = SSID,
2011 .host_command_sequence = 0,
2012 .host_command_length = ssid_len
2016 IPW_DEBUG_HC("SSID: '%s'\n", escape_essid(essid, ssid_len));
2019 memcpy(cmd.host_command_parameters, essid, ssid_len);
2022 err = ipw2100_disable_adapter(priv);
2027 /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2028 * disable auto association -- so we cheat by setting a bogus SSID */
2029 if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2031 u8 *bogus = (u8 *) cmd.host_command_parameters;
2032 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2033 bogus[i] = 0x18 + i;
2034 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2037 /* NOTE: We always send the SSID command even if the provided ESSID is
2038 * the same as what we currently think is set. */
2040 err = ipw2100_hw_send_command(priv, &cmd);
2042 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2043 memcpy(priv->essid, essid, ssid_len);
2044 priv->essid_len = ssid_len;
2048 if (ipw2100_enable_adapter(priv))
2055 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2057 DECLARE_MAC_BUF(mac);
2059 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2060 "disassociated: '%s' %s \n",
2061 escape_essid(priv->essid, priv->essid_len),
2062 print_mac(mac, priv->bssid));
2064 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2066 if (priv->status & STATUS_STOPPING) {
2067 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2071 memset(priv->bssid, 0, ETH_ALEN);
2072 memset(priv->ieee->bssid, 0, ETH_ALEN);
2074 netif_carrier_off(priv->net_dev);
2075 netif_stop_queue(priv->net_dev);
2077 if (!(priv->status & STATUS_RUNNING))
2080 if (priv->status & STATUS_SECURITY_UPDATED)
2081 queue_delayed_work(priv->workqueue, &priv->security_work, 0);
2083 queue_delayed_work(priv->workqueue, &priv->wx_event_work, 0);
2086 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2088 IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2089 priv->net_dev->name);
2091 /* RF_KILL is now enabled (else we wouldn't be here) */
2092 priv->status |= STATUS_RF_KILL_HW;
2094 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2095 if (priv->config & CFG_C3_DISABLED) {
2096 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
2097 acpi_set_cstate_limit(priv->cstate_limit);
2098 priv->config &= ~CFG_C3_DISABLED;
2102 /* Make sure the RF Kill check timer is running */
2103 priv->stop_rf_kill = 0;
2104 cancel_delayed_work(&priv->rf_kill);
2105 queue_delayed_work(priv->workqueue, &priv->rf_kill, round_jiffies(HZ));
2108 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2110 IPW_DEBUG_SCAN("scan complete\n");
2111 /* Age the scan results... */
2112 priv->ieee->scans++;
2113 priv->status &= ~STATUS_SCANNING;
2116 #ifdef CONFIG_IPW2100_DEBUG
2117 #define IPW2100_HANDLER(v, f) { v, f, # v }
2118 struct ipw2100_status_indicator {
2120 void (*cb) (struct ipw2100_priv * priv, u32 status);
2124 #define IPW2100_HANDLER(v, f) { v, f }
2125 struct ipw2100_status_indicator {
2127 void (*cb) (struct ipw2100_priv * priv, u32 status);
2129 #endif /* CONFIG_IPW2100_DEBUG */
2131 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2133 IPW_DEBUG_SCAN("Scanning...\n");
2134 priv->status |= STATUS_SCANNING;
2137 static const struct ipw2100_status_indicator status_handlers[] = {
2138 IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2139 IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2140 IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2141 IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2142 IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2143 IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2144 IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2145 IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2146 IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2147 IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2148 IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2149 IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2150 IPW2100_HANDLER(-1, NULL)
2153 static void isr_status_change(struct ipw2100_priv *priv, int status)
2157 if (status == IPW_STATE_SCANNING &&
2158 priv->status & STATUS_ASSOCIATED &&
2159 !(priv->status & STATUS_SCANNING)) {
2160 IPW_DEBUG_INFO("Scan detected while associated, with "
2161 "no scan request. Restarting firmware.\n");
2163 /* Wake up any sleeping jobs */
2164 schedule_reset(priv);
2167 for (i = 0; status_handlers[i].status != -1; i++) {
2168 if (status == status_handlers[i].status) {
2169 IPW_DEBUG_NOTIF("Status change: %s\n",
2170 status_handlers[i].name);
2171 if (status_handlers[i].cb)
2172 status_handlers[i].cb(priv, status);
2173 priv->wstats.status = status;
2178 IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2181 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2182 struct ipw2100_cmd_header *cmd)
2184 #ifdef CONFIG_IPW2100_DEBUG
2185 if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2186 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2187 command_types[cmd->host_command_reg],
2188 cmd->host_command_reg);
2191 if (cmd->host_command_reg == HOST_COMPLETE)
2192 priv->status |= STATUS_ENABLED;
2194 if (cmd->host_command_reg == CARD_DISABLE)
2195 priv->status &= ~STATUS_ENABLED;
2197 priv->status &= ~STATUS_CMD_ACTIVE;
2199 wake_up_interruptible(&priv->wait_command_queue);
2202 #ifdef CONFIG_IPW2100_DEBUG
2203 static const char *frame_types[] = {
2204 "COMMAND_STATUS_VAL",
2205 "STATUS_CHANGE_VAL",
2208 "HOST_NOTIFICATION_VAL"
2212 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2213 struct ipw2100_rx_packet *packet)
2215 packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2219 packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2220 packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2221 sizeof(struct ipw2100_rx),
2222 PCI_DMA_FROMDEVICE);
2223 /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2229 #define SEARCH_ERROR 0xffffffff
2230 #define SEARCH_FAIL 0xfffffffe
2231 #define SEARCH_SUCCESS 0xfffffff0
2232 #define SEARCH_DISCARD 0
2233 #define SEARCH_SNAPSHOT 1
2235 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2236 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2239 if (!priv->snapshot[0])
2241 for (i = 0; i < 0x30; i++)
2242 kfree(priv->snapshot[i]);
2243 priv->snapshot[0] = NULL;
2246 #ifdef IPW2100_DEBUG_C3
2247 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2250 if (priv->snapshot[0])
2252 for (i = 0; i < 0x30; i++) {
2253 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2254 if (!priv->snapshot[i]) {
2255 IPW_DEBUG_INFO("%s: Error allocating snapshot "
2256 "buffer %d\n", priv->net_dev->name, i);
2258 kfree(priv->snapshot[--i]);
2259 priv->snapshot[0] = NULL;
2267 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2268 size_t len, int mode)
2276 if (mode == SEARCH_SNAPSHOT) {
2277 if (!ipw2100_snapshot_alloc(priv))
2278 mode = SEARCH_DISCARD;
2281 for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2282 read_nic_dword(priv->net_dev, i, &tmp);
2283 if (mode == SEARCH_SNAPSHOT)
2284 *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2285 if (ret == SEARCH_FAIL) {
2287 for (j = 0; j < 4; j++) {
2296 if ((s - in_buf) == len)
2297 ret = (i + j) - len + 1;
2299 } else if (mode == SEARCH_DISCARD)
2309 * 0) Disconnect the SKB from the firmware (just unmap)
2310 * 1) Pack the ETH header into the SKB
2311 * 2) Pass the SKB to the network stack
2313 * When packet is provided by the firmware, it contains the following:
2316 * . ieee80211_snap_hdr
2318 * The size of the constructed ethernet
2321 #ifdef IPW2100_RX_DEBUG
2322 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2325 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2327 #ifdef IPW2100_DEBUG_C3
2328 struct ipw2100_status *status = &priv->status_queue.drv[i];
2332 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2336 IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2337 i * sizeof(struct ipw2100_status));
2339 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2340 IPW_DEBUG_INFO(": Disabling C3 transitions.\n");
2341 limit = acpi_get_cstate_limit();
2343 priv->cstate_limit = limit;
2344 acpi_set_cstate_limit(2);
2345 priv->config |= CFG_C3_DISABLED;
2349 #ifdef IPW2100_DEBUG_C3
2350 /* Halt the fimrware so we can get a good image */
2351 write_register(priv->net_dev, IPW_REG_RESET_REG,
2352 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2355 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2356 read_register(priv->net_dev, IPW_REG_RESET_REG, ®);
2358 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2362 match = ipw2100_match_buf(priv, (u8 *) status,
2363 sizeof(struct ipw2100_status),
2365 if (match < SEARCH_SUCCESS)
2366 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2367 "offset 0x%06X, length %d:\n",
2368 priv->net_dev->name, match,
2369 sizeof(struct ipw2100_status));
2371 IPW_DEBUG_INFO("%s: No DMA status match in "
2372 "Firmware.\n", priv->net_dev->name);
2374 printk_buf((u8 *) priv->status_queue.drv,
2375 sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2378 priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2379 priv->ieee->stats.rx_errors++;
2380 schedule_reset(priv);
2383 static void isr_rx(struct ipw2100_priv *priv, int i,
2384 struct ieee80211_rx_stats *stats)
2386 struct ipw2100_status *status = &priv->status_queue.drv[i];
2387 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2389 IPW_DEBUG_RX("Handler...\n");
2391 if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2392 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2394 priv->net_dev->name,
2395 status->frame_size, skb_tailroom(packet->skb));
2396 priv->ieee->stats.rx_errors++;
2400 if (unlikely(!netif_running(priv->net_dev))) {
2401 priv->ieee->stats.rx_errors++;
2402 priv->wstats.discard.misc++;
2403 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2407 if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2408 !(priv->status & STATUS_ASSOCIATED))) {
2409 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2410 priv->wstats.discard.misc++;
2414 pci_unmap_single(priv->pci_dev,
2416 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2418 skb_put(packet->skb, status->frame_size);
2420 #ifdef IPW2100_RX_DEBUG
2421 /* Make a copy of the frame so we can dump it to the logs if
2422 * ieee80211_rx fails */
2423 skb_copy_from_linear_data(packet->skb, packet_data,
2424 min_t(u32, status->frame_size,
2425 IPW_RX_NIC_BUFFER_LENGTH));
2428 if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2429 #ifdef IPW2100_RX_DEBUG
2430 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2431 priv->net_dev->name);
2432 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2434 priv->ieee->stats.rx_errors++;
2436 /* ieee80211_rx failed, so it didn't free the SKB */
2437 dev_kfree_skb_any(packet->skb);
2441 /* We need to allocate a new SKB and attach it to the RDB. */
2442 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2443 printk(KERN_WARNING DRV_NAME ": "
2444 "%s: Unable to allocate SKB onto RBD ring - disabling "
2445 "adapter.\n", priv->net_dev->name);
2446 /* TODO: schedule adapter shutdown */
2447 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2450 /* Update the RDB entry */
2451 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2454 #ifdef CONFIG_IPW2100_MONITOR
2456 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2457 struct ieee80211_rx_stats *stats)
2459 struct ipw2100_status *status = &priv->status_queue.drv[i];
2460 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2462 /* Magic struct that slots into the radiotap header -- no reason
2463 * to build this manually element by element, we can write it much
2464 * more efficiently than we can parse it. ORDER MATTERS HERE */
2466 struct ieee80211_radiotap_header rt_hdr;
2467 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2470 IPW_DEBUG_RX("Handler...\n");
2472 if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2473 sizeof(struct ipw_rt_hdr))) {
2474 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2476 priv->net_dev->name,
2478 skb_tailroom(packet->skb));
2479 priv->ieee->stats.rx_errors++;
2483 if (unlikely(!netif_running(priv->net_dev))) {
2484 priv->ieee->stats.rx_errors++;
2485 priv->wstats.discard.misc++;
2486 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2490 if (unlikely(priv->config & CFG_CRC_CHECK &&
2491 status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2492 IPW_DEBUG_RX("CRC error in packet. Dropping.\n");
2493 priv->ieee->stats.rx_errors++;
2497 pci_unmap_single(priv->pci_dev, packet->dma_addr,
2498 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2499 memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2500 packet->skb->data, status->frame_size);
2502 ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2504 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2505 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2506 ipw_rt->rt_hdr.it_len = sizeof(struct ipw_rt_hdr); /* total hdr+data */
2508 ipw_rt->rt_hdr.it_present = 1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL;
2510 ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2512 skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2514 if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2515 priv->ieee->stats.rx_errors++;
2517 /* ieee80211_rx failed, so it didn't free the SKB */
2518 dev_kfree_skb_any(packet->skb);
2522 /* We need to allocate a new SKB and attach it to the RDB. */
2523 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2525 "%s: Unable to allocate SKB onto RBD ring - disabling "
2526 "adapter.\n", priv->net_dev->name);
2527 /* TODO: schedule adapter shutdown */
2528 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2531 /* Update the RDB entry */
2532 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2537 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2539 struct ipw2100_status *status = &priv->status_queue.drv[i];
2540 struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2541 u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2543 switch (frame_type) {
2544 case COMMAND_STATUS_VAL:
2545 return (status->frame_size != sizeof(u->rx_data.command));
2546 case STATUS_CHANGE_VAL:
2547 return (status->frame_size != sizeof(u->rx_data.status));
2548 case HOST_NOTIFICATION_VAL:
2549 return (status->frame_size < sizeof(u->rx_data.notification));
2550 case P80211_DATA_VAL:
2551 case P8023_DATA_VAL:
2552 #ifdef CONFIG_IPW2100_MONITOR
2555 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2556 case IEEE80211_FTYPE_MGMT:
2557 case IEEE80211_FTYPE_CTL:
2559 case IEEE80211_FTYPE_DATA:
2560 return (status->frame_size >
2561 IPW_MAX_802_11_PAYLOAD_LENGTH);
2570 * ipw2100 interrupts are disabled at this point, and the ISR
2571 * is the only code that calls this method. So, we do not need
2572 * to play with any locks.
2574 * RX Queue works as follows:
2576 * Read index - firmware places packet in entry identified by the
2577 * Read index and advances Read index. In this manner,
2578 * Read index will always point to the next packet to
2579 * be filled--but not yet valid.
2581 * Write index - driver fills this entry with an unused RBD entry.
2582 * This entry has not filled by the firmware yet.
2584 * In between the W and R indexes are the RBDs that have been received
2585 * but not yet processed.
2587 * The process of handling packets will start at WRITE + 1 and advance
2588 * until it reaches the READ index.
2590 * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2593 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2595 struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2596 struct ipw2100_status_queue *sq = &priv->status_queue;
2597 struct ipw2100_rx_packet *packet;
2600 struct ipw2100_rx *u;
2601 struct ieee80211_rx_stats stats = {
2602 .mac_time = jiffies,
2605 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2606 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2608 if (r >= rxq->entries) {
2609 IPW_DEBUG_RX("exit - bad read index\n");
2613 i = (rxq->next + 1) % rxq->entries;
2616 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2617 r, rxq->next, i); */
2619 packet = &priv->rx_buffers[i];
2621 /* Sync the DMA for the STATUS buffer so CPU is sure to get
2622 * the correct values */
2623 pci_dma_sync_single_for_cpu(priv->pci_dev,
2625 sizeof(struct ipw2100_status) * i,
2626 sizeof(struct ipw2100_status),
2627 PCI_DMA_FROMDEVICE);
2629 /* Sync the DMA for the RX buffer so CPU is sure to get
2630 * the correct values */
2631 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2632 sizeof(struct ipw2100_rx),
2633 PCI_DMA_FROMDEVICE);
2635 if (unlikely(ipw2100_corruption_check(priv, i))) {
2636 ipw2100_corruption_detected(priv, i);
2641 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2642 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2643 stats.len = sq->drv[i].frame_size;
2646 if (stats.rssi != 0)
2647 stats.mask |= IEEE80211_STATMASK_RSSI;
2648 stats.freq = IEEE80211_24GHZ_BAND;
2650 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2651 priv->net_dev->name, frame_types[frame_type],
2654 switch (frame_type) {
2655 case COMMAND_STATUS_VAL:
2656 /* Reset Rx watchdog */
2657 isr_rx_complete_command(priv, &u->rx_data.command);
2660 case STATUS_CHANGE_VAL:
2661 isr_status_change(priv, u->rx_data.status);
2664 case P80211_DATA_VAL:
2665 case P8023_DATA_VAL:
2666 #ifdef CONFIG_IPW2100_MONITOR
2667 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2668 isr_rx_monitor(priv, i, &stats);
2672 if (stats.len < sizeof(struct ieee80211_hdr_3addr))
2674 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2675 case IEEE80211_FTYPE_MGMT:
2676 ieee80211_rx_mgt(priv->ieee,
2677 &u->rx_data.header, &stats);
2680 case IEEE80211_FTYPE_CTL:
2683 case IEEE80211_FTYPE_DATA:
2684 isr_rx(priv, i, &stats);
2692 /* clear status field associated with this RBD */
2693 rxq->drv[i].status.info.field = 0;
2695 i = (i + 1) % rxq->entries;
2699 /* backtrack one entry, wrapping to end if at 0 */
2700 rxq->next = (i ? i : rxq->entries) - 1;
2702 write_register(priv->net_dev,
2703 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2708 * __ipw2100_tx_process
2710 * This routine will determine whether the next packet on
2711 * the fw_pend_list has been processed by the firmware yet.
2713 * If not, then it does nothing and returns.
2715 * If so, then it removes the item from the fw_pend_list, frees
2716 * any associated storage, and places the item back on the
2717 * free list of its source (either msg_free_list or tx_free_list)
2719 * TX Queue works as follows:
2721 * Read index - points to the next TBD that the firmware will
2722 * process. The firmware will read the data, and once
2723 * done processing, it will advance the Read index.
2725 * Write index - driver fills this entry with an constructed TBD
2726 * entry. The Write index is not advanced until the
2727 * packet has been configured.
2729 * In between the W and R indexes are the TBDs that have NOT been
2730 * processed. Lagging behind the R index are packets that have
2731 * been processed but have not been freed by the driver.
2733 * In order to free old storage, an internal index will be maintained
2734 * that points to the next packet to be freed. When all used
2735 * packets have been freed, the oldest index will be the same as the
2736 * firmware's read index.
2738 * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2740 * Because the TBD structure can not contain arbitrary data, the
2741 * driver must keep an internal queue of cached allocations such that
2742 * it can put that data back into the tx_free_list and msg_free_list
2743 * for use by future command and data packets.
2746 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2748 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2749 struct ipw2100_bd *tbd;
2750 struct list_head *element;
2751 struct ipw2100_tx_packet *packet;
2752 int descriptors_used;
2754 u32 r, w, frag_num = 0;
2756 if (list_empty(&priv->fw_pend_list))
2759 element = priv->fw_pend_list.next;
2761 packet = list_entry(element, struct ipw2100_tx_packet, list);
2762 tbd = &txq->drv[packet->index];
2764 /* Determine how many TBD entries must be finished... */
2765 switch (packet->type) {
2767 /* COMMAND uses only one slot; don't advance */
2768 descriptors_used = 1;
2773 /* DATA uses two slots; advance and loop position. */
2774 descriptors_used = tbd->num_fragments;
2775 frag_num = tbd->num_fragments - 1;
2776 e = txq->oldest + frag_num;
2781 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2782 priv->net_dev->name);
2786 /* if the last TBD is not done by NIC yet, then packet is
2787 * not ready to be released.
2790 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2792 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2795 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2796 priv->net_dev->name);
2799 * txq->next is the index of the last packet written txq->oldest is
2800 * the index of the r is the index of the next packet to be read by
2805 * Quick graphic to help you visualize the following
2806 * if / else statement
2808 * ===>| s---->|===============
2810 * | a | b | c | d | e | f | g | h | i | j | k | l
2814 * w - updated by driver
2815 * r - updated by firmware
2816 * s - start of oldest BD entry (txq->oldest)
2817 * e - end of oldest BD entry
2820 if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2821 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2826 DEC_STAT(&priv->fw_pend_stat);
2828 #ifdef CONFIG_IPW2100_DEBUG
2830 int i = txq->oldest;
2831 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2833 (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2834 txq->drv[i].host_addr, txq->drv[i].buf_length);
2836 if (packet->type == DATA) {
2837 i = (i + 1) % txq->entries;
2839 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2841 (u32) (txq->nic + i *
2842 sizeof(struct ipw2100_bd)),
2843 (u32) txq->drv[i].host_addr,
2844 txq->drv[i].buf_length);
2849 switch (packet->type) {
2851 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2852 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2853 "Expecting DATA TBD but pulled "
2854 "something else: ids %d=%d.\n",
2855 priv->net_dev->name, txq->oldest, packet->index);
2857 /* DATA packet; we have to unmap and free the SKB */
2858 for (i = 0; i < frag_num; i++) {
2859 tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2861 IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2862 (packet->index + 1 + i) % txq->entries,
2863 tbd->host_addr, tbd->buf_length);
2865 pci_unmap_single(priv->pci_dev,
2867 tbd->buf_length, PCI_DMA_TODEVICE);
2870 ieee80211_txb_free(packet->info.d_struct.txb);
2871 packet->info.d_struct.txb = NULL;
2873 list_add_tail(element, &priv->tx_free_list);
2874 INC_STAT(&priv->tx_free_stat);
2876 /* We have a free slot in the Tx queue, so wake up the
2877 * transmit layer if it is stopped. */
2878 if (priv->status & STATUS_ASSOCIATED)
2879 netif_wake_queue(priv->net_dev);
2881 /* A packet was processed by the hardware, so update the
2883 priv->net_dev->trans_start = jiffies;
2888 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2889 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2890 "Expecting COMMAND TBD but pulled "
2891 "something else: ids %d=%d.\n",
2892 priv->net_dev->name, txq->oldest, packet->index);
2894 #ifdef CONFIG_IPW2100_DEBUG
2895 if (packet->info.c_struct.cmd->host_command_reg <
2896 ARRAY_SIZE(command_types))
2897 IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2898 command_types[packet->info.c_struct.cmd->
2900 packet->info.c_struct.cmd->
2902 packet->info.c_struct.cmd->cmd_status_reg);
2905 list_add_tail(element, &priv->msg_free_list);
2906 INC_STAT(&priv->msg_free_stat);
2910 /* advance oldest used TBD pointer to start of next entry */
2911 txq->oldest = (e + 1) % txq->entries;
2912 /* increase available TBDs number */
2913 txq->available += descriptors_used;
2914 SET_STAT(&priv->txq_stat, txq->available);
2916 IPW_DEBUG_TX("packet latency (send to process) %ld jiffies\n",
2917 jiffies - packet->jiffy_start);
2919 return (!list_empty(&priv->fw_pend_list));
2922 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2926 while (__ipw2100_tx_process(priv) && i < 200)
2930 printk(KERN_WARNING DRV_NAME ": "
2931 "%s: Driver is running slow (%d iters).\n",
2932 priv->net_dev->name, i);
2936 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
2938 struct list_head *element;
2939 struct ipw2100_tx_packet *packet;
2940 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2941 struct ipw2100_bd *tbd;
2942 int next = txq->next;
2944 while (!list_empty(&priv->msg_pend_list)) {
2945 /* if there isn't enough space in TBD queue, then
2946 * don't stuff a new one in.
2947 * NOTE: 3 are needed as a command will take one,
2948 * and there is a minimum of 2 that must be
2949 * maintained between the r and w indexes
2951 if (txq->available <= 3) {
2952 IPW_DEBUG_TX("no room in tx_queue\n");
2956 element = priv->msg_pend_list.next;
2958 DEC_STAT(&priv->msg_pend_stat);
2960 packet = list_entry(element, struct ipw2100_tx_packet, list);
2962 IPW_DEBUG_TX("using TBD at virt=%p, phys=%p\n",
2963 &txq->drv[txq->next],
2964 (void *)(txq->nic + txq->next *
2965 sizeof(struct ipw2100_bd)));
2967 packet->index = txq->next;
2969 tbd = &txq->drv[txq->next];
2971 /* initialize TBD */
2972 tbd->host_addr = packet->info.c_struct.cmd_phys;
2973 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
2974 /* not marking number of fragments causes problems
2975 * with f/w debug version */
2976 tbd->num_fragments = 1;
2977 tbd->status.info.field =
2978 IPW_BD_STATUS_TX_FRAME_COMMAND |
2979 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
2981 /* update TBD queue counters */
2983 txq->next %= txq->entries;
2985 DEC_STAT(&priv->txq_stat);
2987 list_add_tail(element, &priv->fw_pend_list);
2988 INC_STAT(&priv->fw_pend_stat);
2991 if (txq->next != next) {
2992 /* kick off the DMA by notifying firmware the
2993 * write index has moved; make sure TBD stores are sync'd */
2995 write_register(priv->net_dev,
2996 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3002 * ipw2100_tx_send_data
3005 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3007 struct list_head *element;
3008 struct ipw2100_tx_packet *packet;
3009 struct ipw2100_bd_queue *txq = &priv->tx_queue;
3010 struct ipw2100_bd *tbd;
3011 int next = txq->next;
3013 struct ipw2100_data_header *ipw_hdr;
3014 struct ieee80211_hdr_3addr *hdr;
3016 while (!list_empty(&priv->tx_pend_list)) {
3017 /* if there isn't enough space in TBD queue, then
3018 * don't stuff a new one in.
3019 * NOTE: 4 are needed as a data will take two,
3020 * and there is a minimum of 2 that must be
3021 * maintained between the r and w indexes
3023 element = priv->tx_pend_list.next;
3024 packet = list_entry(element, struct ipw2100_tx_packet, list);
3026 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3028 /* TODO: Support merging buffers if more than
3029 * IPW_MAX_BDS are used */
3030 IPW_DEBUG_INFO("%s: Maximum BD theshold exceeded. "
3031 "Increase fragmentation level.\n",
3032 priv->net_dev->name);
3035 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3036 IPW_DEBUG_TX("no room in tx_queue\n");
3041 DEC_STAT(&priv->tx_pend_stat);
3043 tbd = &txq->drv[txq->next];
3045 packet->index = txq->next;
3047 ipw_hdr = packet->info.d_struct.data;
3048 hdr = (struct ieee80211_hdr_3addr *)packet->info.d_struct.txb->
3051 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3052 /* To DS: Addr1 = BSSID, Addr2 = SA,
3054 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3055 memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3056 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3057 /* not From/To DS: Addr1 = DA, Addr2 = SA,
3059 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3060 memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3063 ipw_hdr->host_command_reg = SEND;
3064 ipw_hdr->host_command_reg1 = 0;
3066 /* For now we only support host based encryption */
3067 ipw_hdr->needs_encryption = 0;
3068 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3069 if (packet->info.d_struct.txb->nr_frags > 1)
3070 ipw_hdr->fragment_size =
3071 packet->info.d_struct.txb->frag_size -
3072 IEEE80211_3ADDR_LEN;
3074 ipw_hdr->fragment_size = 0;
3076 tbd->host_addr = packet->info.d_struct.data_phys;
3077 tbd->buf_length = sizeof(struct ipw2100_data_header);
3078 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3079 tbd->status.info.field =
3080 IPW_BD_STATUS_TX_FRAME_802_3 |
3081 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3083 txq->next %= txq->entries;
3085 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3086 packet->index, tbd->host_addr, tbd->buf_length);
3087 #ifdef CONFIG_IPW2100_DEBUG
3088 if (packet->info.d_struct.txb->nr_frags > 1)
3089 IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3090 packet->info.d_struct.txb->nr_frags);
3093 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3094 tbd = &txq->drv[txq->next];
3095 if (i == packet->info.d_struct.txb->nr_frags - 1)
3096 tbd->status.info.field =
3097 IPW_BD_STATUS_TX_FRAME_802_3 |
3098 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3100 tbd->status.info.field =
3101 IPW_BD_STATUS_TX_FRAME_802_3 |
3102 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3104 tbd->buf_length = packet->info.d_struct.txb->
3105 fragments[i]->len - IEEE80211_3ADDR_LEN;
3107 tbd->host_addr = pci_map_single(priv->pci_dev,
3108 packet->info.d_struct.
3111 IEEE80211_3ADDR_LEN,
3115 IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3116 txq->next, tbd->host_addr,
3119 pci_dma_sync_single_for_device(priv->pci_dev,
3125 txq->next %= txq->entries;
3128 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3129 SET_STAT(&priv->txq_stat, txq->available);
3131 list_add_tail(element, &priv->fw_pend_list);
3132 INC_STAT(&priv->fw_pend_stat);
3135 if (txq->next != next) {
3136 /* kick off the DMA by notifying firmware the
3137 * write index has moved; make sure TBD stores are sync'd */
3138 write_register(priv->net_dev,
3139 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3145 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3147 struct net_device *dev = priv->net_dev;
3148 unsigned long flags;
3151 spin_lock_irqsave(&priv->low_lock, flags);
3152 ipw2100_disable_interrupts(priv);
3154 read_register(dev, IPW_REG_INTA, &inta);
3156 IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3157 (unsigned long)inta & IPW_INTERRUPT_MASK);
3162 /* We do not loop and keep polling for more interrupts as this
3163 * is frowned upon and doesn't play nicely with other potentially
3165 IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3166 (unsigned long)inta & IPW_INTERRUPT_MASK);
3168 if (inta & IPW2100_INTA_FATAL_ERROR) {
3169 printk(KERN_WARNING DRV_NAME
3170 ": Fatal interrupt. Scheduling firmware restart.\n");
3172 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3174 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3175 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3176 priv->net_dev->name, priv->fatal_error);
3178 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3179 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3180 priv->net_dev->name, tmp);
3182 /* Wake up any sleeping jobs */
3183 schedule_reset(priv);
3186 if (inta & IPW2100_INTA_PARITY_ERROR) {
3187 printk(KERN_ERR DRV_NAME
3188 ": ***** PARITY ERROR INTERRUPT !!!! \n");
3190 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3193 if (inta & IPW2100_INTA_RX_TRANSFER) {
3194 IPW_DEBUG_ISR("RX interrupt\n");
3196 priv->rx_interrupts++;
3198 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3200 __ipw2100_rx_process(priv);
3201 __ipw2100_tx_complete(priv);
3204 if (inta & IPW2100_INTA_TX_TRANSFER) {
3205 IPW_DEBUG_ISR("TX interrupt\n");
3207 priv->tx_interrupts++;
3209 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3211 __ipw2100_tx_complete(priv);
3212 ipw2100_tx_send_commands(priv);
3213 ipw2100_tx_send_data(priv);
3216 if (inta & IPW2100_INTA_TX_COMPLETE) {
3217 IPW_DEBUG_ISR("TX complete\n");
3219 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3221 __ipw2100_tx_complete(priv);