ath9k: move common->debug_mask setting to ath_init_softc()
[linux-2.6.git] / drivers / net / wireless / ath / ath9k / main.c
1 /*
2  * Copyright (c) 2008-2009 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include <linux/nl80211.h>
18 #include "ath9k.h"
19 #include "btcoex.h"
20
21 static char *dev_info = "ath9k";
22
23 MODULE_AUTHOR("Atheros Communications");
24 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
25 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
26 MODULE_LICENSE("Dual BSD/GPL");
27
28 static int modparam_nohwcrypt;
29 module_param_named(nohwcrypt, modparam_nohwcrypt, int, 0444);
30 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption");
31
32 static unsigned int ath9k_debug = ATH_DBG_DEFAULT;
33 module_param_named(debug, ath9k_debug, uint, 0);
34 MODULE_PARM_DESC(ath9k_debug, "Debugging mask");
35
36 /* We use the hw_value as an index into our private channel structure */
37
38 #define CHAN2G(_freq, _idx)  { \
39         .center_freq = (_freq), \
40         .hw_value = (_idx), \
41         .max_power = 20, \
42 }
43
44 #define CHAN5G(_freq, _idx) { \
45         .band = IEEE80211_BAND_5GHZ, \
46         .center_freq = (_freq), \
47         .hw_value = (_idx), \
48         .max_power = 20, \
49 }
50
51 /* Some 2 GHz radios are actually tunable on 2312-2732
52  * on 5 MHz steps, we support the channels which we know
53  * we have calibration data for all cards though to make
54  * this static */
55 static struct ieee80211_channel ath9k_2ghz_chantable[] = {
56         CHAN2G(2412, 0), /* Channel 1 */
57         CHAN2G(2417, 1), /* Channel 2 */
58         CHAN2G(2422, 2), /* Channel 3 */
59         CHAN2G(2427, 3), /* Channel 4 */
60         CHAN2G(2432, 4), /* Channel 5 */
61         CHAN2G(2437, 5), /* Channel 6 */
62         CHAN2G(2442, 6), /* Channel 7 */
63         CHAN2G(2447, 7), /* Channel 8 */
64         CHAN2G(2452, 8), /* Channel 9 */
65         CHAN2G(2457, 9), /* Channel 10 */
66         CHAN2G(2462, 10), /* Channel 11 */
67         CHAN2G(2467, 11), /* Channel 12 */
68         CHAN2G(2472, 12), /* Channel 13 */
69         CHAN2G(2484, 13), /* Channel 14 */
70 };
71
72 /* Some 5 GHz radios are actually tunable on XXXX-YYYY
73  * on 5 MHz steps, we support the channels which we know
74  * we have calibration data for all cards though to make
75  * this static */
76 static struct ieee80211_channel ath9k_5ghz_chantable[] = {
77         /* _We_ call this UNII 1 */
78         CHAN5G(5180, 14), /* Channel 36 */
79         CHAN5G(5200, 15), /* Channel 40 */
80         CHAN5G(5220, 16), /* Channel 44 */
81         CHAN5G(5240, 17), /* Channel 48 */
82         /* _We_ call this UNII 2 */
83         CHAN5G(5260, 18), /* Channel 52 */
84         CHAN5G(5280, 19), /* Channel 56 */
85         CHAN5G(5300, 20), /* Channel 60 */
86         CHAN5G(5320, 21), /* Channel 64 */
87         /* _We_ call this "Middle band" */
88         CHAN5G(5500, 22), /* Channel 100 */
89         CHAN5G(5520, 23), /* Channel 104 */
90         CHAN5G(5540, 24), /* Channel 108 */
91         CHAN5G(5560, 25), /* Channel 112 */
92         CHAN5G(5580, 26), /* Channel 116 */
93         CHAN5G(5600, 27), /* Channel 120 */
94         CHAN5G(5620, 28), /* Channel 124 */
95         CHAN5G(5640, 29), /* Channel 128 */
96         CHAN5G(5660, 30), /* Channel 132 */
97         CHAN5G(5680, 31), /* Channel 136 */
98         CHAN5G(5700, 32), /* Channel 140 */
99         /* _We_ call this UNII 3 */
100         CHAN5G(5745, 33), /* Channel 149 */
101         CHAN5G(5765, 34), /* Channel 153 */
102         CHAN5G(5785, 35), /* Channel 157 */
103         CHAN5G(5805, 36), /* Channel 161 */
104         CHAN5G(5825, 37), /* Channel 165 */
105 };
106
107 static void ath_cache_conf_rate(struct ath_softc *sc,
108                                 struct ieee80211_conf *conf)
109 {
110         switch (conf->channel->band) {
111         case IEEE80211_BAND_2GHZ:
112                 if (conf_is_ht20(conf))
113                         sc->cur_rate_table =
114                           sc->hw_rate_table[ATH9K_MODE_11NG_HT20];
115                 else if (conf_is_ht40_minus(conf))
116                         sc->cur_rate_table =
117                           sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS];
118                 else if (conf_is_ht40_plus(conf))
119                         sc->cur_rate_table =
120                           sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS];
121                 else
122                         sc->cur_rate_table =
123                           sc->hw_rate_table[ATH9K_MODE_11G];
124                 break;
125         case IEEE80211_BAND_5GHZ:
126                 if (conf_is_ht20(conf))
127                         sc->cur_rate_table =
128                           sc->hw_rate_table[ATH9K_MODE_11NA_HT20];
129                 else if (conf_is_ht40_minus(conf))
130                         sc->cur_rate_table =
131                           sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS];
132                 else if (conf_is_ht40_plus(conf))
133                         sc->cur_rate_table =
134                           sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS];
135                 else
136                         sc->cur_rate_table =
137                           sc->hw_rate_table[ATH9K_MODE_11A];
138                 break;
139         default:
140                 BUG_ON(1);
141                 break;
142         }
143 }
144
145 static void ath_update_txpow(struct ath_softc *sc)
146 {
147         struct ath_hw *ah = sc->sc_ah;
148         u32 txpow;
149
150         if (sc->curtxpow != sc->config.txpowlimit) {
151                 ath9k_hw_set_txpowerlimit(ah, sc->config.txpowlimit);
152                 /* read back in case value is clamped */
153                 ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow);
154                 sc->curtxpow = txpow;
155         }
156 }
157
158 static u8 parse_mpdudensity(u8 mpdudensity)
159 {
160         /*
161          * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
162          *   0 for no restriction
163          *   1 for 1/4 us
164          *   2 for 1/2 us
165          *   3 for 1 us
166          *   4 for 2 us
167          *   5 for 4 us
168          *   6 for 8 us
169          *   7 for 16 us
170          */
171         switch (mpdudensity) {
172         case 0:
173                 return 0;
174         case 1:
175         case 2:
176         case 3:
177                 /* Our lower layer calculations limit our precision to
178                    1 microsecond */
179                 return 1;
180         case 4:
181                 return 2;
182         case 5:
183                 return 4;
184         case 6:
185                 return 8;
186         case 7:
187                 return 16;
188         default:
189                 return 0;
190         }
191 }
192
193 static void ath_setup_rates(struct ath_softc *sc, enum ieee80211_band band)
194 {
195         const struct ath_rate_table *rate_table = NULL;
196         struct ieee80211_supported_band *sband;
197         struct ieee80211_rate *rate;
198         int i, maxrates;
199
200         switch (band) {
201         case IEEE80211_BAND_2GHZ:
202                 rate_table = sc->hw_rate_table[ATH9K_MODE_11G];
203                 break;
204         case IEEE80211_BAND_5GHZ:
205                 rate_table = sc->hw_rate_table[ATH9K_MODE_11A];
206                 break;
207         default:
208                 break;
209         }
210
211         if (rate_table == NULL)
212                 return;
213
214         sband = &sc->sbands[band];
215         rate = sc->rates[band];
216
217         if (rate_table->rate_cnt > ATH_RATE_MAX)
218                 maxrates = ATH_RATE_MAX;
219         else
220                 maxrates = rate_table->rate_cnt;
221
222         for (i = 0; i < maxrates; i++) {
223                 rate[i].bitrate = rate_table->info[i].ratekbps / 100;
224                 rate[i].hw_value = rate_table->info[i].ratecode;
225                 if (rate_table->info[i].short_preamble) {
226                         rate[i].hw_value_short = rate_table->info[i].ratecode |
227                                 rate_table->info[i].short_preamble;
228                         rate[i].flags = IEEE80211_RATE_SHORT_PREAMBLE;
229                 }
230                 sband->n_bitrates++;
231
232                 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_CONFIG,
233                           "Rate: %2dMbps, ratecode: %2d\n",
234                           rate[i].bitrate / 10, rate[i].hw_value);
235         }
236 }
237
238 static struct ath9k_channel *ath_get_curchannel(struct ath_softc *sc,
239                                                 struct ieee80211_hw *hw)
240 {
241         struct ieee80211_channel *curchan = hw->conf.channel;
242         struct ath9k_channel *channel;
243         u8 chan_idx;
244
245         chan_idx = curchan->hw_value;
246         channel = &sc->sc_ah->channels[chan_idx];
247         ath9k_update_ichannel(sc, hw, channel);
248         return channel;
249 }
250
251 static bool ath9k_setpower(struct ath_softc *sc, enum ath9k_power_mode mode)
252 {
253         unsigned long flags;
254         bool ret;
255
256         spin_lock_irqsave(&sc->sc_pm_lock, flags);
257         ret = ath9k_hw_setpower(sc->sc_ah, mode);
258         spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
259
260         return ret;
261 }
262
263 void ath9k_ps_wakeup(struct ath_softc *sc)
264 {
265         unsigned long flags;
266
267         spin_lock_irqsave(&sc->sc_pm_lock, flags);
268         if (++sc->ps_usecount != 1)
269                 goto unlock;
270
271         ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
272
273  unlock:
274         spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
275 }
276
277 void ath9k_ps_restore(struct ath_softc *sc)
278 {
279         unsigned long flags;
280
281         spin_lock_irqsave(&sc->sc_pm_lock, flags);
282         if (--sc->ps_usecount != 0)
283                 goto unlock;
284
285         if (sc->ps_enabled &&
286             !(sc->sc_flags & (SC_OP_WAIT_FOR_BEACON |
287                               SC_OP_WAIT_FOR_CAB |
288                               SC_OP_WAIT_FOR_PSPOLL_DATA |
289                               SC_OP_WAIT_FOR_TX_ACK)))
290                 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_NETWORK_SLEEP);
291
292  unlock:
293         spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
294 }
295
296 /*
297  * Set/change channels.  If the channel is really being changed, it's done
298  * by reseting the chip.  To accomplish this we must first cleanup any pending
299  * DMA, then restart stuff.
300 */
301 int ath_set_channel(struct ath_softc *sc, struct ieee80211_hw *hw,
302                     struct ath9k_channel *hchan)
303 {
304         struct ath_hw *ah = sc->sc_ah;
305         struct ath_common *common = ath9k_hw_common(ah);
306         struct ieee80211_conf *conf = &common->hw->conf;
307         bool fastcc = true, stopped;
308         struct ieee80211_channel *channel = hw->conf.channel;
309         int r;
310
311         if (sc->sc_flags & SC_OP_INVALID)
312                 return -EIO;
313
314         ath9k_ps_wakeup(sc);
315
316         /*
317          * This is only performed if the channel settings have
318          * actually changed.
319          *
320          * To switch channels clear any pending DMA operations;
321          * wait long enough for the RX fifo to drain, reset the
322          * hardware at the new frequency, and then re-enable
323          * the relevant bits of the h/w.
324          */
325         ath9k_hw_set_interrupts(ah, 0);
326         ath_drain_all_txq(sc, false);
327         stopped = ath_stoprecv(sc);
328
329         /* XXX: do not flush receive queue here. We don't want
330          * to flush data frames already in queue because of
331          * changing channel. */
332
333         if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET))
334                 fastcc = false;
335
336         ath_print(common, ATH_DBG_CONFIG,
337                   "(%u MHz) -> (%u MHz), conf_is_ht40: %d\n",
338                   sc->sc_ah->curchan->channel,
339                   channel->center_freq, conf_is_ht40(conf));
340
341         spin_lock_bh(&sc->sc_resetlock);
342
343         r = ath9k_hw_reset(ah, hchan, fastcc);
344         if (r) {
345                 ath_print(common, ATH_DBG_FATAL,
346                           "Unable to reset channel (%u Mhz) "
347                           "reset status %d\n",
348                           channel->center_freq, r);
349                 spin_unlock_bh(&sc->sc_resetlock);
350                 goto ps_restore;
351         }
352         spin_unlock_bh(&sc->sc_resetlock);
353
354         sc->sc_flags &= ~SC_OP_FULL_RESET;
355
356         if (ath_startrecv(sc) != 0) {
357                 ath_print(common, ATH_DBG_FATAL,
358                           "Unable to restart recv logic\n");
359                 r = -EIO;
360                 goto ps_restore;
361         }
362
363         ath_cache_conf_rate(sc, &hw->conf);
364         ath_update_txpow(sc);
365         ath9k_hw_set_interrupts(ah, sc->imask);
366
367  ps_restore:
368         ath9k_ps_restore(sc);
369         return r;
370 }
371
372 /*
373  *  This routine performs the periodic noise floor calibration function
374  *  that is used to adjust and optimize the chip performance.  This
375  *  takes environmental changes (location, temperature) into account.
376  *  When the task is complete, it reschedules itself depending on the
377  *  appropriate interval that was calculated.
378  */
379 static void ath_ani_calibrate(unsigned long data)
380 {
381         struct ath_softc *sc = (struct ath_softc *)data;
382         struct ath_hw *ah = sc->sc_ah;
383         struct ath_common *common = ath9k_hw_common(ah);
384         bool longcal = false;
385         bool shortcal = false;
386         bool aniflag = false;
387         unsigned int timestamp = jiffies_to_msecs(jiffies);
388         u32 cal_interval, short_cal_interval;
389
390         short_cal_interval = (ah->opmode == NL80211_IFTYPE_AP) ?
391                 ATH_AP_SHORT_CALINTERVAL : ATH_STA_SHORT_CALINTERVAL;
392
393         /*
394         * don't calibrate when we're scanning.
395         * we are most likely not on our home channel.
396         */
397         spin_lock(&sc->ani_lock);
398         if (sc->sc_flags & SC_OP_SCANNING)
399                 goto set_timer;
400
401         /* Only calibrate if awake */
402         if (sc->sc_ah->power_mode != ATH9K_PM_AWAKE)
403                 goto set_timer;
404
405         ath9k_ps_wakeup(sc);
406
407         /* Long calibration runs independently of short calibration. */
408         if ((timestamp - sc->ani.longcal_timer) >= ATH_LONG_CALINTERVAL) {
409                 longcal = true;
410                 ath_print(common, ATH_DBG_ANI, "longcal @%lu\n", jiffies);
411                 sc->ani.longcal_timer = timestamp;
412         }
413
414         /* Short calibration applies only while caldone is false */
415         if (!sc->ani.caldone) {
416                 if ((timestamp - sc->ani.shortcal_timer) >= short_cal_interval) {
417                         shortcal = true;
418                         ath_print(common, ATH_DBG_ANI,
419                                   "shortcal @%lu\n", jiffies);
420                         sc->ani.shortcal_timer = timestamp;
421                         sc->ani.resetcal_timer = timestamp;
422                 }
423         } else {
424                 if ((timestamp - sc->ani.resetcal_timer) >=
425                     ATH_RESTART_CALINTERVAL) {
426                         sc->ani.caldone = ath9k_hw_reset_calvalid(ah);
427                         if (sc->ani.caldone)
428                                 sc->ani.resetcal_timer = timestamp;
429                 }
430         }
431
432         /* Verify whether we must check ANI */
433         if ((timestamp - sc->ani.checkani_timer) >= ATH_ANI_POLLINTERVAL) {
434                 aniflag = true;
435                 sc->ani.checkani_timer = timestamp;
436         }
437
438         /* Skip all processing if there's nothing to do. */
439         if (longcal || shortcal || aniflag) {
440                 /* Call ANI routine if necessary */
441                 if (aniflag)
442                         ath9k_hw_ani_monitor(ah, ah->curchan);
443
444                 /* Perform calibration if necessary */
445                 if (longcal || shortcal) {
446                         sc->ani.caldone =
447                                 ath9k_hw_calibrate(ah,
448                                                    ah->curchan,
449                                                    common->rx_chainmask,
450                                                    longcal);
451
452                         if (longcal)
453                                 sc->ani.noise_floor = ath9k_hw_getchan_noise(ah,
454                                                                      ah->curchan);
455
456                         ath_print(common, ATH_DBG_ANI,
457                                   " calibrate chan %u/%x nf: %d\n",
458                                   ah->curchan->channel,
459                                   ah->curchan->channelFlags,
460                                   sc->ani.noise_floor);
461                 }
462         }
463
464         ath9k_ps_restore(sc);
465
466 set_timer:
467         spin_unlock(&sc->ani_lock);
468         /*
469         * Set timer interval based on previous results.
470         * The interval must be the shortest necessary to satisfy ANI,
471         * short calibration and long calibration.
472         */
473         cal_interval = ATH_LONG_CALINTERVAL;
474         if (sc->sc_ah->config.enable_ani)
475                 cal_interval = min(cal_interval, (u32)ATH_ANI_POLLINTERVAL);
476         if (!sc->ani.caldone)
477                 cal_interval = min(cal_interval, (u32)short_cal_interval);
478
479         mod_timer(&sc->ani.timer, jiffies + msecs_to_jiffies(cal_interval));
480 }
481
482 static void ath_start_ani(struct ath_softc *sc)
483 {
484         unsigned long timestamp = jiffies_to_msecs(jiffies);
485
486         sc->ani.longcal_timer = timestamp;
487         sc->ani.shortcal_timer = timestamp;
488         sc->ani.checkani_timer = timestamp;
489
490         mod_timer(&sc->ani.timer,
491                   jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
492 }
493
494 /*
495  * Update tx/rx chainmask. For legacy association,
496  * hard code chainmask to 1x1, for 11n association, use
497  * the chainmask configuration, for bt coexistence, use
498  * the chainmask configuration even in legacy mode.
499  */
500 void ath_update_chainmask(struct ath_softc *sc, int is_ht)
501 {
502         struct ath_hw *ah = sc->sc_ah;
503         struct ath_common *common = ath9k_hw_common(ah);
504
505         if ((sc->sc_flags & SC_OP_SCANNING) || is_ht ||
506             (ah->btcoex_hw.scheme != ATH_BTCOEX_CFG_NONE)) {
507                 common->tx_chainmask = ah->caps.tx_chainmask;
508                 common->rx_chainmask = ah->caps.rx_chainmask;
509         } else {
510                 common->tx_chainmask = 1;
511                 common->rx_chainmask = 1;
512         }
513
514         ath_print(common, ATH_DBG_CONFIG,
515                   "tx chmask: %d, rx chmask: %d\n",
516                   common->tx_chainmask,
517                   common->rx_chainmask);
518 }
519
520 static void ath_node_attach(struct ath_softc *sc, struct ieee80211_sta *sta)
521 {
522         struct ath_node *an;
523
524         an = (struct ath_node *)sta->drv_priv;
525
526         if (sc->sc_flags & SC_OP_TXAGGR) {
527                 ath_tx_node_init(sc, an);
528                 an->maxampdu = 1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
529                                      sta->ht_cap.ampdu_factor);
530                 an->mpdudensity = parse_mpdudensity(sta->ht_cap.ampdu_density);
531                 an->last_rssi = ATH_RSSI_DUMMY_MARKER;
532         }
533 }
534
535 static void ath_node_detach(struct ath_softc *sc, struct ieee80211_sta *sta)
536 {
537         struct ath_node *an = (struct ath_node *)sta->drv_priv;
538
539         if (sc->sc_flags & SC_OP_TXAGGR)
540                 ath_tx_node_cleanup(sc, an);
541 }
542
543 static void ath9k_tasklet(unsigned long data)
544 {
545         struct ath_softc *sc = (struct ath_softc *)data;
546         struct ath_hw *ah = sc->sc_ah;
547         struct ath_common *common = ath9k_hw_common(ah);
548
549         u32 status = sc->intrstatus;
550
551         ath9k_ps_wakeup(sc);
552
553         if (status & ATH9K_INT_FATAL) {
554                 ath_reset(sc, false);
555                 ath9k_ps_restore(sc);
556                 return;
557         }
558
559         if (status & (ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) {
560                 spin_lock_bh(&sc->rx.rxflushlock);
561                 ath_rx_tasklet(sc, 0);
562                 spin_unlock_bh(&sc->rx.rxflushlock);
563         }
564
565         if (status & ATH9K_INT_TX)
566                 ath_tx_tasklet(sc);
567
568         if ((status & ATH9K_INT_TSFOOR) && sc->ps_enabled) {
569                 /*
570                  * TSF sync does not look correct; remain awake to sync with
571                  * the next Beacon.
572                  */
573                 ath_print(common, ATH_DBG_PS,
574                           "TSFOOR - Sync with next Beacon\n");
575                 sc->sc_flags |= SC_OP_WAIT_FOR_BEACON | SC_OP_BEACON_SYNC;
576         }
577
578         if (ah->btcoex_hw.scheme == ATH_BTCOEX_CFG_3WIRE)
579                 if (status & ATH9K_INT_GENTIMER)
580                         ath_gen_timer_isr(sc->sc_ah);
581
582         /* re-enable hardware interrupt */
583         ath9k_hw_set_interrupts(ah, sc->imask);
584         ath9k_ps_restore(sc);
585 }
586
587 irqreturn_t ath_isr(int irq, void *dev)
588 {
589 #define SCHED_INTR (                            \
590                 ATH9K_INT_FATAL |               \
591                 ATH9K_INT_RXORN |               \
592                 ATH9K_INT_RXEOL |               \
593                 ATH9K_INT_RX |                  \
594                 ATH9K_INT_TX |                  \
595                 ATH9K_INT_BMISS |               \
596                 ATH9K_INT_CST |                 \
597                 ATH9K_INT_TSFOOR |              \
598                 ATH9K_INT_GENTIMER)
599
600         struct ath_softc *sc = dev;
601         struct ath_hw *ah = sc->sc_ah;
602         enum ath9k_int status;
603         bool sched = false;
604
605         /*
606          * The hardware is not ready/present, don't
607          * touch anything. Note this can happen early
608          * on if the IRQ is shared.
609          */
610         if (sc->sc_flags & SC_OP_INVALID)
611                 return IRQ_NONE;
612
613
614         /* shared irq, not for us */
615
616         if (!ath9k_hw_intrpend(ah))
617                 return IRQ_NONE;
618
619         /*
620          * Figure out the reason(s) for the interrupt.  Note
621          * that the hal returns a pseudo-ISR that may include
622          * bits we haven't explicitly enabled so we mask the
623          * value to insure we only process bits we requested.
624          */
625         ath9k_hw_getisr(ah, &status);   /* NB: clears ISR too */
626         status &= sc->imask;    /* discard unasked-for bits */
627
628         /*
629          * If there are no status bits set, then this interrupt was not
630          * for me (should have been caught above).
631          */
632         if (!status)
633                 return IRQ_NONE;
634
635         /* Cache the status */
636         sc->intrstatus = status;
637
638         if (status & SCHED_INTR)
639                 sched = true;
640
641         /*
642          * If a FATAL or RXORN interrupt is received, we have to reset the
643          * chip immediately.
644          */
645         if (status & (ATH9K_INT_FATAL | ATH9K_INT_RXORN))
646                 goto chip_reset;
647
648         if (status & ATH9K_INT_SWBA)
649                 tasklet_schedule(&sc->bcon_tasklet);
650
651         if (status & ATH9K_INT_TXURN)
652                 ath9k_hw_updatetxtriglevel(ah, true);
653
654         if (status & ATH9K_INT_MIB) {
655                 /*
656                  * Disable interrupts until we service the MIB
657                  * interrupt; otherwise it will continue to
658                  * fire.
659                  */
660                 ath9k_hw_set_interrupts(ah, 0);
661                 /*
662                  * Let the hal handle the event. We assume
663                  * it will clear whatever condition caused
664                  * the interrupt.
665                  */
666                 ath9k_hw_procmibevent(ah);
667                 ath9k_hw_set_interrupts(ah, sc->imask);
668         }
669
670         if (!(ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
671                 if (status & ATH9K_INT_TIM_TIMER) {
672                         /* Clear RxAbort bit so that we can
673                          * receive frames */
674                         ath9k_setpower(sc, ATH9K_PM_AWAKE);
675                         ath9k_hw_setrxabort(sc->sc_ah, 0);
676                         sc->sc_flags |= SC_OP_WAIT_FOR_BEACON;
677                 }
678
679 chip_reset:
680
681         ath_debug_stat_interrupt(sc, status);
682
683         if (sched) {
684                 /* turn off every interrupt except SWBA */
685                 ath9k_hw_set_interrupts(ah, (sc->imask & ATH9K_INT_SWBA));
686                 tasklet_schedule(&sc->intr_tq);
687         }
688
689         return IRQ_HANDLED;
690
691 #undef SCHED_INTR
692 }
693
694 static u32 ath_get_extchanmode(struct ath_softc *sc,
695                                struct ieee80211_channel *chan,
696                                enum nl80211_channel_type channel_type)
697 {
698         u32 chanmode = 0;
699
700         switch (chan->band) {
701         case IEEE80211_BAND_2GHZ:
702                 switch(channel_type) {
703                 case NL80211_CHAN_NO_HT:
704                 case NL80211_CHAN_HT20:
705                         chanmode = CHANNEL_G_HT20;
706                         break;
707                 case NL80211_CHAN_HT40PLUS:
708                         chanmode = CHANNEL_G_HT40PLUS;
709                         break;
710                 case NL80211_CHAN_HT40MINUS:
711                         chanmode = CHANNEL_G_HT40MINUS;
712                         break;
713                 }
714                 break;
715         case IEEE80211_BAND_5GHZ:
716                 switch(channel_type) {
717                 case NL80211_CHAN_NO_HT:
718                 case NL80211_CHAN_HT20:
719                         chanmode = CHANNEL_A_HT20;
720                         break;
721                 case NL80211_CHAN_HT40PLUS:
722                         chanmode = CHANNEL_A_HT40PLUS;
723                         break;
724                 case NL80211_CHAN_HT40MINUS:
725                         chanmode = CHANNEL_A_HT40MINUS;
726                         break;
727                 }
728                 break;
729         default:
730                 break;
731         }
732
733         return chanmode;
734 }
735
736 static int ath_setkey_tkip(struct ath_softc *sc, u16 keyix, const u8 *key,
737                            struct ath9k_keyval *hk, const u8 *addr,
738                            bool authenticator)
739 {
740         const u8 *key_rxmic;
741         const u8 *key_txmic;
742
743         key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
744         key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
745
746         if (addr == NULL) {
747                 /*
748                  * Group key installation - only two key cache entries are used
749                  * regardless of splitmic capability since group key is only
750                  * used either for TX or RX.
751                  */
752                 if (authenticator) {
753                         memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
754                         memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_mic));
755                 } else {
756                         memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
757                         memcpy(hk->kv_txmic, key_rxmic, sizeof(hk->kv_mic));
758                 }
759                 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
760         }
761         if (!sc->splitmic) {
762                 /* TX and RX keys share the same key cache entry. */
763                 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
764                 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
765                 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
766         }
767
768         /* Separate key cache entries for TX and RX */
769
770         /* TX key goes at first index, RX key at +32. */
771         memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
772         if (!ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, NULL)) {
773                 /* TX MIC entry failed. No need to proceed further */
774                 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
775                           "Setting TX MIC Key Failed\n");
776                 return 0;
777         }
778
779         memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
780         /* XXX delete tx key on failure? */
781         return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix + 32, hk, addr);
782 }
783
784 static int ath_reserve_key_cache_slot_tkip(struct ath_softc *sc)
785 {
786         int i;
787
788         for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
789                 if (test_bit(i, sc->keymap) ||
790                     test_bit(i + 64, sc->keymap))
791                         continue; /* At least one part of TKIP key allocated */
792                 if (sc->splitmic &&
793                     (test_bit(i + 32, sc->keymap) ||
794                      test_bit(i + 64 + 32, sc->keymap)))
795                         continue; /* At least one part of TKIP key allocated */
796
797                 /* Found a free slot for a TKIP key */
798                 return i;
799         }
800         return -1;
801 }
802
803 static int ath_reserve_key_cache_slot(struct ath_softc *sc)
804 {
805         int i;
806
807         /* First, try to find slots that would not be available for TKIP. */
808         if (sc->splitmic) {
809                 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 4; i++) {
810                         if (!test_bit(i, sc->keymap) &&
811                             (test_bit(i + 32, sc->keymap) ||
812                              test_bit(i + 64, sc->keymap) ||
813                              test_bit(i + 64 + 32, sc->keymap)))
814                                 return i;
815                         if (!test_bit(i + 32, sc->keymap) &&
816                             (test_bit(i, sc->keymap) ||
817                              test_bit(i + 64, sc->keymap) ||
818                              test_bit(i + 64 + 32, sc->keymap)))
819                                 return i + 32;
820                         if (!test_bit(i + 64, sc->keymap) &&
821                             (test_bit(i , sc->keymap) ||
822                              test_bit(i + 32, sc->keymap) ||
823                              test_bit(i + 64 + 32, sc->keymap)))
824                                 return i + 64;
825                         if (!test_bit(i + 64 + 32, sc->keymap) &&
826                             (test_bit(i, sc->keymap) ||
827                              test_bit(i + 32, sc->keymap) ||
828                              test_bit(i + 64, sc->keymap)))
829                                 return i + 64 + 32;
830                 }
831         } else {
832                 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
833                         if (!test_bit(i, sc->keymap) &&
834                             test_bit(i + 64, sc->keymap))
835                                 return i;
836                         if (test_bit(i, sc->keymap) &&
837                             !test_bit(i + 64, sc->keymap))
838                                 return i + 64;
839                 }
840         }
841
842         /* No partially used TKIP slots, pick any available slot */
843         for (i = IEEE80211_WEP_NKID; i < sc->keymax; i++) {
844                 /* Do not allow slots that could be needed for TKIP group keys
845                  * to be used. This limitation could be removed if we know that
846                  * TKIP will not be used. */
847                 if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
848                         continue;
849                 if (sc->splitmic) {
850                         if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
851                                 continue;
852                         if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
853                                 continue;
854                 }
855
856                 if (!test_bit(i, sc->keymap))
857                         return i; /* Found a free slot for a key */
858         }
859
860         /* No free slot found */
861         return -1;
862 }
863
864 static int ath_key_config(struct ath_softc *sc,
865                           struct ieee80211_vif *vif,
866                           struct ieee80211_sta *sta,
867                           struct ieee80211_key_conf *key)
868 {
869         struct ath9k_keyval hk;
870         const u8 *mac = NULL;
871         int ret = 0;
872         int idx;
873
874         memset(&hk, 0, sizeof(hk));
875
876         switch (key->alg) {
877         case ALG_WEP:
878                 hk.kv_type = ATH9K_CIPHER_WEP;
879                 break;
880         case ALG_TKIP:
881                 hk.kv_type = ATH9K_CIPHER_TKIP;
882                 break;
883         case ALG_CCMP:
884                 hk.kv_type = ATH9K_CIPHER_AES_CCM;
885                 break;
886         default:
887                 return -EOPNOTSUPP;
888         }
889
890         hk.kv_len = key->keylen;
891         memcpy(hk.kv_val, key->key, key->keylen);
892
893         if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
894                 /* For now, use the default keys for broadcast keys. This may
895                  * need to change with virtual interfaces. */
896                 idx = key->keyidx;
897         } else if (key->keyidx) {
898                 if (WARN_ON(!sta))
899                         return -EOPNOTSUPP;
900                 mac = sta->addr;
901
902                 if (vif->type != NL80211_IFTYPE_AP) {
903                         /* Only keyidx 0 should be used with unicast key, but
904                          * allow this for client mode for now. */
905                         idx = key->keyidx;
906                 } else
907                         return -EIO;
908         } else {
909                 if (WARN_ON(!sta))
910                         return -EOPNOTSUPP;
911                 mac = sta->addr;
912
913                 if (key->alg == ALG_TKIP)
914                         idx = ath_reserve_key_cache_slot_tkip(sc);
915                 else
916                         idx = ath_reserve_key_cache_slot(sc);
917                 if (idx < 0)
918                         return -ENOSPC; /* no free key cache entries */
919         }
920
921         if (key->alg == ALG_TKIP)
922                 ret = ath_setkey_tkip(sc, idx, key->key, &hk, mac,
923                                       vif->type == NL80211_IFTYPE_AP);
924         else
925                 ret = ath9k_hw_set_keycache_entry(sc->sc_ah, idx, &hk, mac);
926
927         if (!ret)
928                 return -EIO;
929
930         set_bit(idx, sc->keymap);
931         if (key->alg == ALG_TKIP) {
932                 set_bit(idx + 64, sc->keymap);
933                 if (sc->splitmic) {
934                         set_bit(idx + 32, sc->keymap);
935                         set_bit(idx + 64 + 32, sc->keymap);
936                 }
937         }
938
939         return idx;
940 }
941
942 static void ath_key_delete(struct ath_softc *sc, struct ieee80211_key_conf *key)
943 {
944         ath9k_hw_keyreset(sc->sc_ah, key->hw_key_idx);
945         if (key->hw_key_idx < IEEE80211_WEP_NKID)
946                 return;
947
948         clear_bit(key->hw_key_idx, sc->keymap);
949         if (key->alg != ALG_TKIP)
950                 return;
951
952         clear_bit(key->hw_key_idx + 64, sc->keymap);
953         if (sc->splitmic) {
954                 clear_bit(key->hw_key_idx + 32, sc->keymap);
955                 clear_bit(key->hw_key_idx + 64 + 32, sc->keymap);
956         }
957 }
958
959 static void setup_ht_cap(struct ath_softc *sc,
960                          struct ieee80211_sta_ht_cap *ht_info)
961 {
962         struct ath_common *common = ath9k_hw_common(sc->sc_ah);
963         u8 tx_streams, rx_streams;
964
965         ht_info->ht_supported = true;
966         ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
967                        IEEE80211_HT_CAP_SM_PS |
968                        IEEE80211_HT_CAP_SGI_40 |
969                        IEEE80211_HT_CAP_DSSSCCK40;
970
971         ht_info->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
972         ht_info->ampdu_density = IEEE80211_HT_MPDU_DENSITY_8;
973
974         /* set up supported mcs set */
975         memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
976         tx_streams = !(common->tx_chainmask & (common->tx_chainmask - 1)) ?
977                      1 : 2;
978         rx_streams = !(common->rx_chainmask & (common->rx_chainmask - 1)) ?
979                      1 : 2;
980
981         if (tx_streams != rx_streams) {
982                 ath_print(common, ATH_DBG_CONFIG,
983                           "TX streams %d, RX streams: %d\n",
984                           tx_streams, rx_streams);
985                 ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_RX_DIFF;
986                 ht_info->mcs.tx_params |= ((tx_streams - 1) <<
987                                 IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT);
988         }
989
990         ht_info->mcs.rx_mask[0] = 0xff;
991         if (rx_streams >= 2)
992                 ht_info->mcs.rx_mask[1] = 0xff;
993
994         ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_DEFINED;
995 }
996
997 static void ath9k_bss_assoc_info(struct ath_softc *sc,
998                                  struct ieee80211_vif *vif,
999                                  struct ieee80211_bss_conf *bss_conf)
1000 {
1001         struct ath_hw *ah = sc->sc_ah;
1002         struct ath_common *common = ath9k_hw_common(ah);
1003
1004         if (bss_conf->assoc) {
1005                 ath_print(common, ATH_DBG_CONFIG,
1006                           "Bss Info ASSOC %d, bssid: %pM\n",
1007                            bss_conf->aid, common->curbssid);
1008
1009                 /* New association, store aid */
1010                 common->curaid = bss_conf->aid;
1011                 ath9k_hw_write_associd(ah);
1012
1013                 /*
1014                  * Request a re-configuration of Beacon related timers
1015                  * on the receipt of the first Beacon frame (i.e.,
1016                  * after time sync with the AP).
1017                  */
1018                 sc->sc_flags |= SC_OP_BEACON_SYNC;
1019
1020                 /* Configure the beacon */
1021                 ath_beacon_config(sc, vif);
1022
1023                 /* Reset rssi stats */
1024                 sc->sc_ah->stats.avgbrssi = ATH_RSSI_DUMMY_MARKER;
1025
1026                 ath_start_ani(sc);
1027         } else {
1028                 ath_print(common, ATH_DBG_CONFIG, "Bss Info DISASSOC\n");
1029                 common->curaid = 0;
1030                 /* Stop ANI */
1031                 del_timer_sync(&sc->ani.timer);
1032         }
1033 }
1034
1035 /********************************/
1036 /*       LED functions          */
1037 /********************************/
1038
1039 static void ath_led_blink_work(struct work_struct *work)
1040 {
1041         struct ath_softc *sc = container_of(work, struct ath_softc,
1042                                             ath_led_blink_work.work);
1043
1044         if (!(sc->sc_flags & SC_OP_LED_ASSOCIATED))
1045                 return;
1046
1047         if ((sc->led_on_duration == ATH_LED_ON_DURATION_IDLE) ||
1048             (sc->led_off_duration == ATH_LED_OFF_DURATION_IDLE))
1049                 ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin, 0);
1050         else
1051                 ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin,
1052                                   (sc->sc_flags & SC_OP_LED_ON) ? 1 : 0);
1053
1054         ieee80211_queue_delayed_work(sc->hw,
1055                                      &sc->ath_led_blink_work,
1056                                      (sc->sc_flags & SC_OP_LED_ON) ?
1057                                         msecs_to_jiffies(sc->led_off_duration) :
1058                                         msecs_to_jiffies(sc->led_on_duration));
1059
1060         sc->led_on_duration = sc->led_on_cnt ?
1061                         max((ATH_LED_ON_DURATION_IDLE - sc->led_on_cnt), 25) :
1062                         ATH_LED_ON_DURATION_IDLE;
1063         sc->led_off_duration = sc->led_off_cnt ?
1064                         max((ATH_LED_OFF_DURATION_IDLE - sc->led_off_cnt), 10) :
1065                         ATH_LED_OFF_DURATION_IDLE;
1066         sc->led_on_cnt = sc->led_off_cnt = 0;
1067         if (sc->sc_flags & SC_OP_LED_ON)
1068                 sc->sc_flags &= ~SC_OP_LED_ON;
1069         else
1070                 sc->sc_flags |= SC_OP_LED_ON;
1071 }
1072
1073 static void ath_led_brightness(struct led_classdev *led_cdev,
1074                                enum led_brightness brightness)
1075 {
1076         struct ath_led *led = container_of(led_cdev, struct ath_led, led_cdev);
1077         struct ath_softc *sc = led->sc;
1078
1079         switch (brightness) {
1080         case LED_OFF:
1081                 if (led->led_type == ATH_LED_ASSOC ||
1082                     led->led_type == ATH_LED_RADIO) {
1083                         ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin,
1084                                 (led->led_type == ATH_LED_RADIO));
1085                         sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
1086                         if (led->led_type == ATH_LED_RADIO)
1087                                 sc->sc_flags &= ~SC_OP_LED_ON;
1088                 } else {
1089                         sc->led_off_cnt++;
1090                 }
1091                 break;
1092         case LED_FULL:
1093                 if (led->led_type == ATH_LED_ASSOC) {
1094                         sc->sc_flags |= SC_OP_LED_ASSOCIATED;
1095                         ieee80211_queue_delayed_work(sc->hw,
1096                                                      &sc->ath_led_blink_work, 0);
1097                 } else if (led->led_type == ATH_LED_RADIO) {
1098                         ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin, 0);
1099                         sc->sc_flags |= SC_OP_LED_ON;
1100                 } else {
1101                         sc->led_on_cnt++;
1102                 }
1103                 break;
1104         default:
1105                 break;
1106         }
1107 }
1108
1109 static int ath_register_led(struct ath_softc *sc, struct ath_led *led,
1110                             char *trigger)
1111 {
1112         int ret;
1113
1114         led->sc = sc;
1115         led->led_cdev.name = led->name;
1116         led->led_cdev.default_trigger = trigger;
1117         led->led_cdev.brightness_set = ath_led_brightness;
1118
1119         ret = led_classdev_register(wiphy_dev(sc->hw->wiphy), &led->led_cdev);
1120         if (ret)
1121                 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
1122                           "Failed to register led:%s", led->name);
1123         else
1124                 led->registered = 1;
1125         return ret;
1126 }
1127
1128 static void ath_unregister_led(struct ath_led *led)
1129 {
1130         if (led->registered) {
1131                 led_classdev_unregister(&led->led_cdev);
1132                 led->registered = 0;
1133         }
1134 }
1135
1136 static void ath_deinit_leds(struct ath_softc *sc)
1137 {
1138         ath_unregister_led(&sc->assoc_led);
1139         sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
1140         ath_unregister_led(&sc->tx_led);
1141         ath_unregister_led(&sc->rx_led);
1142         ath_unregister_led(&sc->radio_led);
1143         ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin, 1);
1144 }
1145
1146 static void ath_init_leds(struct ath_softc *sc)
1147 {
1148         char *trigger;
1149         int ret;
1150
1151         if (AR_SREV_9287(sc->sc_ah))
1152                 sc->sc_ah->led_pin = ATH_LED_PIN_9287;
1153         else
1154                 sc->sc_ah->led_pin = ATH_LED_PIN_DEF;
1155
1156         /* Configure gpio 1 for output */
1157         ath9k_hw_cfg_output(sc->sc_ah, sc->sc_ah->led_pin,
1158                             AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1159         /* LED off, active low */
1160         ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin, 1);
1161
1162         INIT_DELAYED_WORK(&sc->ath_led_blink_work, ath_led_blink_work);
1163
1164         trigger = ieee80211_get_radio_led_name(sc->hw);
1165         snprintf(sc->radio_led.name, sizeof(sc->radio_led.name),
1166                 "ath9k-%s::radio", wiphy_name(sc->hw->wiphy));
1167         ret = ath_register_led(sc, &sc->radio_led, trigger);
1168         sc->radio_led.led_type = ATH_LED_RADIO;
1169         if (ret)
1170                 goto fail;
1171
1172         trigger = ieee80211_get_assoc_led_name(sc->hw);
1173         snprintf(sc->assoc_led.name, sizeof(sc->assoc_led.name),
1174                 "ath9k-%s::assoc", wiphy_name(sc->hw->wiphy));
1175         ret = ath_register_led(sc, &sc->assoc_led, trigger);
1176         sc->assoc_led.led_type = ATH_LED_ASSOC;
1177         if (ret)
1178                 goto fail;
1179
1180         trigger = ieee80211_get_tx_led_name(sc->hw);
1181         snprintf(sc->tx_led.name, sizeof(sc->tx_led.name),
1182                 "ath9k-%s::tx", wiphy_name(sc->hw->wiphy));
1183         ret = ath_register_led(sc, &sc->tx_led, trigger);
1184         sc->tx_led.led_type = ATH_LED_TX;
1185         if (ret)
1186                 goto fail;
1187
1188         trigger = ieee80211_get_rx_led_name(sc->hw);
1189         snprintf(sc->rx_led.name, sizeof(sc->rx_led.name),
1190                 "ath9k-%s::rx", wiphy_name(sc->hw->wiphy));
1191         ret = ath_register_led(sc, &sc->rx_led, trigger);
1192         sc->rx_led.led_type = ATH_LED_RX;
1193         if (ret)
1194                 goto fail;
1195
1196         return;
1197
1198 fail:
1199         cancel_delayed_work_sync(&sc->ath_led_blink_work);
1200         ath_deinit_leds(sc);
1201 }
1202
1203 void ath_radio_enable(struct ath_softc *sc)
1204 {
1205         struct ath_hw *ah = sc->sc_ah;
1206         struct ath_common *common = ath9k_hw_common(ah);
1207         struct ieee80211_channel *channel = sc->hw->conf.channel;
1208         int r;
1209
1210         ath9k_ps_wakeup(sc);
1211         ath9k_hw_configpcipowersave(ah, 0, 0);
1212
1213         if (!ah->curchan)
1214                 ah->curchan = ath_get_curchannel(sc, sc->hw);
1215
1216         spin_lock_bh(&sc->sc_resetlock);
1217         r = ath9k_hw_reset(ah, ah->curchan, false);
1218         if (r) {
1219                 ath_print(common, ATH_DBG_FATAL,
1220                           "Unable to reset channel %u (%uMhz) ",
1221                           "reset status %d\n",
1222                           channel->center_freq, r);
1223         }
1224         spin_unlock_bh(&sc->sc_resetlock);
1225
1226         ath_update_txpow(sc);
1227         if (ath_startrecv(sc) != 0) {
1228                 ath_print(common, ATH_DBG_FATAL,
1229                           "Unable to restart recv logic\n");
1230                 return;
1231         }
1232
1233         if (sc->sc_flags & SC_OP_BEACONS)
1234                 ath_beacon_config(sc, NULL);    /* restart beacons */
1235
1236         /* Re-Enable  interrupts */
1237         ath9k_hw_set_interrupts(ah, sc->imask);
1238
1239         /* Enable LED */
1240         ath9k_hw_cfg_output(ah, ah->led_pin,
1241                             AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1242         ath9k_hw_set_gpio(ah, ah->led_pin, 0);
1243
1244         ieee80211_wake_queues(sc->hw);
1245         ath9k_ps_restore(sc);
1246 }
1247
1248 void ath_radio_disable(struct ath_softc *sc)
1249 {
1250         struct ath_hw *ah = sc->sc_ah;
1251         struct ieee80211_channel *channel = sc->hw->conf.channel;
1252         int r;
1253
1254         ath9k_ps_wakeup(sc);
1255         ieee80211_stop_queues(sc->hw);
1256
1257         /* Disable LED */
1258         ath9k_hw_set_gpio(ah, ah->led_pin, 1);
1259         ath9k_hw_cfg_gpio_input(ah, ah->led_pin);
1260
1261         /* Disable interrupts */
1262         ath9k_hw_set_interrupts(ah, 0);
1263
1264         ath_drain_all_txq(sc, false);   /* clear pending tx frames */
1265         ath_stoprecv(sc);               /* turn off frame recv */
1266         ath_flushrecv(sc);              /* flush recv queue */
1267
1268         if (!ah->curchan)
1269                 ah->curchan = ath_get_curchannel(sc, sc->hw);
1270
1271         spin_lock_bh(&sc->sc_resetlock);
1272         r = ath9k_hw_reset(ah, ah->curchan, false);
1273         if (r) {
1274                 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
1275                           "Unable to reset channel %u (%uMhz) "
1276                           "reset status %d\n",
1277                           channel->center_freq, r);
1278         }
1279         spin_unlock_bh(&sc->sc_resetlock);
1280
1281         ath9k_hw_phy_disable(ah);
1282         ath9k_hw_configpcipowersave(ah, 1, 1);
1283         ath9k_ps_restore(sc);
1284         ath9k_setpower(sc, ATH9K_PM_FULL_SLEEP);
1285 }
1286
1287 /*******************/
1288 /*      Rfkill     */
1289 /*******************/
1290
1291 static bool ath_is_rfkill_set(struct ath_softc *sc)
1292 {
1293         struct ath_hw *ah = sc->sc_ah;
1294
1295         return ath9k_hw_gpio_get(ah, ah->rfkill_gpio) ==
1296                                   ah->rfkill_polarity;
1297 }
1298
1299 static void ath9k_rfkill_poll_state(struct ieee80211_hw *hw)
1300 {
1301         struct ath_wiphy *aphy = hw->priv;
1302         struct ath_softc *sc = aphy->sc;
1303         bool blocked = !!ath_is_rfkill_set(sc);
1304
1305         wiphy_rfkill_set_hw_state(hw->wiphy, blocked);
1306 }
1307
1308 static void ath_start_rfkill_poll(struct ath_softc *sc)
1309 {
1310         struct ath_hw *ah = sc->sc_ah;
1311
1312         if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1313                 wiphy_rfkill_start_polling(sc->hw->wiphy);
1314 }
1315
1316 void ath_cleanup(struct ath_softc *sc)
1317 {
1318         struct ath_hw *ah = sc->sc_ah;
1319         struct ath_common *common = ath9k_hw_common(ah);
1320
1321         ath_detach(sc);
1322         free_irq(sc->irq, sc);
1323         ath_bus_cleanup(common);
1324         kfree(sc->sec_wiphy);
1325         ieee80211_free_hw(sc->hw);
1326 }
1327
1328 void ath_detach(struct ath_softc *sc)
1329 {
1330         struct ieee80211_hw *hw = sc->hw;
1331         struct ath_hw *ah = sc->sc_ah;
1332         int i = 0;
1333
1334         ath9k_ps_wakeup(sc);
1335
1336         dev_dbg(sc->dev, "Detach ATH hw\n");
1337
1338         ath_deinit_leds(sc);
1339         wiphy_rfkill_stop_polling(sc->hw->wiphy);
1340
1341         for (i = 0; i < sc->num_sec_wiphy; i++) {
1342                 struct ath_wiphy *aphy = sc->sec_wiphy[i];
1343                 if (aphy == NULL)
1344                         continue;
1345                 sc->sec_wiphy[i] = NULL;
1346                 ieee80211_unregister_hw(aphy->hw);
1347                 ieee80211_free_hw(aphy->hw);
1348         }
1349         ieee80211_unregister_hw(hw);
1350         ath_rx_cleanup(sc);
1351         ath_tx_cleanup(sc);
1352
1353         tasklet_kill(&sc->intr_tq);
1354         tasklet_kill(&sc->bcon_tasklet);
1355
1356         if (!(sc->sc_flags & SC_OP_INVALID))
1357                 ath9k_setpower(sc, ATH9K_PM_AWAKE);
1358
1359         /* cleanup tx queues */
1360         for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1361                 if (ATH_TXQ_SETUP(sc, i))
1362                         ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1363
1364         if ((sc->btcoex.no_stomp_timer) &&
1365             ah->btcoex_hw.scheme == ATH_BTCOEX_CFG_3WIRE)
1366                 ath_gen_timer_free(ah, sc->btcoex.no_stomp_timer);
1367
1368         ath9k_hw_detach(ah);
1369         ath9k_exit_debug(ah);
1370         sc->sc_ah = NULL;
1371 }
1372
1373 static int ath9k_reg_notifier(struct wiphy *wiphy,
1374                               struct regulatory_request *request)
1375 {
1376         struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
1377         struct ath_wiphy *aphy = hw->priv;
1378         struct ath_softc *sc = aphy->sc;
1379         struct ath_regulatory *reg = ath9k_hw_regulatory(sc->sc_ah);
1380
1381         return ath_reg_notifier_apply(wiphy, request, reg);
1382 }
1383
1384 /*
1385  * Detects if there is any priority bt traffic
1386  */
1387 static void ath_detect_bt_priority(struct ath_softc *sc)
1388 {
1389         struct ath_btcoex *btcoex = &sc->btcoex;
1390         struct ath_hw *ah = sc->sc_ah;
1391
1392         if (ath9k_hw_gpio_get(sc->sc_ah, ah->btcoex_hw.btpriority_gpio))
1393                 btcoex->bt_priority_cnt++;
1394
1395         if (time_after(jiffies, btcoex->bt_priority_time +
1396                         msecs_to_jiffies(ATH_BT_PRIORITY_TIME_THRESHOLD))) {
1397                 if (btcoex->bt_priority_cnt >= ATH_BT_CNT_THRESHOLD) {
1398                         ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_BTCOEX,
1399                                   "BT priority traffic detected");
1400                         sc->sc_flags |= SC_OP_BT_PRIORITY_DETECTED;
1401                 } else {
1402                         sc->sc_flags &= ~SC_OP_BT_PRIORITY_DETECTED;
1403                 }
1404
1405                 btcoex->bt_priority_cnt = 0;
1406                 btcoex->bt_priority_time = jiffies;
1407         }
1408 }
1409
1410 /*
1411  * Configures appropriate weight based on stomp type.
1412  */
1413 static void ath9k_btcoex_bt_stomp(struct ath_softc *sc,
1414                                   enum ath_stomp_type stomp_type)
1415 {
1416         struct ath_hw *ah = sc->sc_ah;
1417
1418         switch (stomp_type) {
1419         case ATH_BTCOEX_STOMP_ALL:
1420                 ath9k_hw_btcoex_set_weight(ah, AR_BT_COEX_WGHT,
1421                                            AR_STOMP_ALL_WLAN_WGHT);
1422                 break;
1423         case ATH_BTCOEX_STOMP_LOW:
1424                 ath9k_hw_btcoex_set_weight(ah, AR_BT_COEX_WGHT,
1425                                            AR_STOMP_LOW_WLAN_WGHT);
1426                 break;
1427         case ATH_BTCOEX_STOMP_NONE:
1428                 ath9k_hw_btcoex_set_weight(ah, AR_BT_COEX_WGHT,
1429                                            AR_STOMP_NONE_WLAN_WGHT);
1430                 break;
1431         default:
1432                 ath_print(ath9k_hw_common(ah), ATH_DBG_BTCOEX,
1433                           "Invalid Stomptype\n");
1434                 break;
1435         }
1436
1437         ath9k_hw_btcoex_enable(ah);
1438 }
1439
1440 static void ath9k_gen_timer_start(struct ath_hw *ah,
1441                                   struct ath_gen_timer *timer,
1442                                   u32 timer_next,
1443                                   u32 timer_period)
1444 {
1445         struct ath_common *common = ath9k_hw_common(ah);
1446         struct ath_softc *sc = (struct ath_softc *) common->priv;
1447
1448         ath9k_hw_gen_timer_start(ah, timer, timer_next, timer_period);
1449
1450         if ((sc->imask & ATH9K_INT_GENTIMER) == 0) {
1451                 ath9k_hw_set_interrupts(ah, 0);
1452                 sc->imask |= ATH9K_INT_GENTIMER;
1453                 ath9k_hw_set_interrupts(ah, sc->imask);
1454         }
1455 }
1456
1457 static void ath9k_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
1458 {
1459         struct ath_common *common = ath9k_hw_common(ah);
1460         struct ath_softc *sc = (struct ath_softc *) common->priv;
1461         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
1462
1463         ath9k_hw_gen_timer_stop(ah, timer);
1464
1465         /* if no timer is enabled, turn off interrupt mask */
1466         if (timer_table->timer_mask.val == 0) {
1467                 ath9k_hw_set_interrupts(ah, 0);
1468                 sc->imask &= ~ATH9K_INT_GENTIMER;
1469                 ath9k_hw_set_interrupts(ah, sc->imask);
1470         }
1471 }
1472
1473 /*
1474  * This is the master bt coex timer which runs for every
1475  * 45ms, bt traffic will be given priority during 55% of this
1476  * period while wlan gets remaining 45%
1477  */
1478 static void ath_btcoex_period_timer(unsigned long data)
1479 {
1480         struct ath_softc *sc = (struct ath_softc *) data;
1481         struct ath_hw *ah = sc->sc_ah;
1482         struct ath_btcoex *btcoex = &sc->btcoex;
1483
1484         ath_detect_bt_priority(sc);
1485
1486         spin_lock_bh(&btcoex->btcoex_lock);
1487
1488         ath9k_btcoex_bt_stomp(sc, btcoex->bt_stomp_type);
1489
1490         spin_unlock_bh(&btcoex->btcoex_lock);
1491
1492         if (btcoex->btcoex_period != btcoex->btcoex_no_stomp) {
1493                 if (btcoex->hw_timer_enabled)
1494                         ath9k_gen_timer_stop(ah, btcoex->no_stomp_timer);
1495
1496                 ath9k_gen_timer_start(ah,
1497                                       btcoex->no_stomp_timer,
1498                                       (ath9k_hw_gettsf32(ah) +
1499                                        btcoex->btcoex_no_stomp),
1500                                        btcoex->btcoex_no_stomp * 10);
1501                 btcoex->hw_timer_enabled = true;
1502         }
1503
1504         mod_timer(&btcoex->period_timer, jiffies +
1505                                   msecs_to_jiffies(ATH_BTCOEX_DEF_BT_PERIOD));
1506 }
1507
1508 /*
1509  * Generic tsf based hw timer which configures weight
1510  * registers to time slice between wlan and bt traffic
1511  */
1512 static void ath_btcoex_no_stomp_timer(void *arg)
1513 {
1514         struct ath_softc *sc = (struct ath_softc *)arg;
1515         struct ath_hw *ah = sc->sc_ah;
1516         struct ath_btcoex *btcoex = &sc->btcoex;
1517
1518         ath_print(ath9k_hw_common(ah), ATH_DBG_BTCOEX,
1519                   "no stomp timer running \n");
1520
1521         spin_lock_bh(&btcoex->btcoex_lock);
1522
1523         if (btcoex->bt_stomp_type == ATH_BTCOEX_STOMP_LOW)
1524                 ath9k_btcoex_bt_stomp(sc, ATH_BTCOEX_STOMP_NONE);
1525          else if (btcoex->bt_stomp_type == ATH_BTCOEX_STOMP_ALL)
1526                 ath9k_btcoex_bt_stomp(sc, ATH_BTCOEX_STOMP_LOW);
1527
1528         spin_unlock_bh(&btcoex->btcoex_lock);
1529 }
1530
1531 static int ath_init_btcoex_timer(struct ath_softc *sc)
1532 {
1533         struct ath_btcoex *btcoex = &sc->btcoex;
1534
1535         btcoex->btcoex_period = ATH_BTCOEX_DEF_BT_PERIOD * 1000;
1536         btcoex->btcoex_no_stomp = (100 - ATH_BTCOEX_DEF_DUTY_CYCLE) *
1537                 btcoex->btcoex_period / 100;
1538
1539         setup_timer(&btcoex->period_timer, ath_btcoex_period_timer,
1540                         (unsigned long) sc);
1541
1542         spin_lock_init(&btcoex->btcoex_lock);
1543
1544         btcoex->no_stomp_timer = ath_gen_timer_alloc(sc->sc_ah,
1545                         ath_btcoex_no_stomp_timer,
1546                         ath_btcoex_no_stomp_timer,
1547                         (void *) sc, AR_FIRST_NDP_TIMER);
1548
1549         if (!btcoex->no_stomp_timer)
1550                 return -ENOMEM;
1551
1552         return 0;
1553 }
1554
1555 /*
1556  * Read and write, they both share the same lock. We do this to serialize
1557  * reads and writes on Atheros 802.11n PCI devices only. This is required
1558  * as the FIFO on these devices can only accept sanely 2 requests. After
1559  * that the device goes bananas. Serializing the reads/writes prevents this
1560  * from happening.
1561  */
1562
1563 static void ath9k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
1564 {
1565         struct ath_hw *ah = (struct ath_hw *) hw_priv;
1566         struct ath_common *common = ath9k_hw_common(ah);
1567         struct ath_softc *sc = (struct ath_softc *) common->priv;
1568
1569         if (ah->config.serialize_regmode == SER_REG_MODE_ON) {
1570                 unsigned long flags;
1571                 spin_lock_irqsave(&sc->sc_serial_rw, flags);
1572                 iowrite32(val, sc->mem + reg_offset);
1573                 spin_unlock_irqrestore(&sc->sc_serial_rw, flags);
1574         } else
1575                 iowrite32(val, sc->mem + reg_offset);
1576 }
1577
1578 static unsigned int ath9k_ioread32(void *hw_priv, u32 reg_offset)
1579 {
1580         struct ath_hw *ah = (struct ath_hw *) hw_priv;
1581         struct ath_common *common = ath9k_hw_common(ah);
1582         struct ath_softc *sc = (struct ath_softc *) common->priv;
1583         u32 val;
1584
1585         if (ah->config.serialize_regmode == SER_REG_MODE_ON) {
1586                 unsigned long flags;
1587                 spin_lock_irqsave(&sc->sc_serial_rw, flags);
1588                 val = ioread32(sc->mem + reg_offset);
1589                 spin_unlock_irqrestore(&sc->sc_serial_rw, flags);
1590         } else
1591                 val = ioread32(sc->mem + reg_offset);
1592         return val;
1593 }
1594
1595 static const struct ath_ops ath9k_common_ops = {
1596         .read = ath9k_ioread32,
1597         .write = ath9k_iowrite32,
1598 };
1599
1600 /*
1601  * Initialize and fill ath_softc, ath_sofct is the
1602  * "Software Carrier" struct. Historically it has existed
1603  * to allow the separation between hardware specific
1604  * variables (now in ath_hw) and driver specific variables.
1605  */
1606 static int ath_init_softc(u16 devid, struct ath_softc *sc, u16 subsysid,
1607                           const struct ath_bus_ops *bus_ops)
1608 {
1609         struct ath_hw *ah = NULL;
1610         struct ath_common *common;
1611         int r = 0, i;
1612         int csz = 0;
1613         int qnum;
1614
1615         /* XXX: hardware will not be ready until ath_open() being called */
1616         sc->sc_flags |= SC_OP_INVALID;
1617
1618         spin_lock_init(&sc->wiphy_lock);
1619         spin_lock_init(&sc->sc_resetlock);
1620         spin_lock_init(&sc->sc_serial_rw);
1621         spin_lock_init(&sc->ani_lock);
1622         spin_lock_init(&sc->sc_pm_lock);
1623         mutex_init(&sc->mutex);
1624         tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
1625         tasklet_init(&sc->bcon_tasklet, ath_beacon_tasklet,
1626                      (unsigned long)sc);
1627
1628         ah = kzalloc(sizeof(struct ath_hw), GFP_KERNEL);
1629         if (!ah) {
1630                 r = -ENOMEM;
1631                 goto bad_no_ah;
1632         }
1633
1634         ah->hw_version.devid = devid;
1635         ah->hw_version.subsysid = subsysid;
1636         sc->sc_ah = ah;
1637
1638         common = ath9k_hw_common(ah);
1639         common->ops = &ath9k_common_ops;
1640         common->bus_ops = bus_ops;
1641         common->ah = ah;
1642         common->hw = sc->hw;
1643         common->priv = sc;
1644         common->debug_mask = ath9k_debug;
1645
1646         /*
1647          * Cache line size is used to size and align various
1648          * structures used to communicate with the hardware.
1649          */
1650         ath_read_cachesize(common, &csz);
1651         /* XXX assert csz is non-zero */
1652         common->cachelsz = csz << 2;    /* convert to bytes */
1653
1654         if (ath9k_init_debug(ah) < 0)
1655                 dev_err(sc->dev, "Unable to create debugfs files\n");
1656
1657         r = ath9k_hw_init(ah);
1658         if (r) {
1659                 ath_print(common, ATH_DBG_FATAL,
1660                           "Unable to initialize hardware; "
1661                           "initialization status: %d\n", r);
1662                 goto bad;
1663         }
1664
1665         /* Get the hardware key cache size. */
1666         sc->keymax = ah->caps.keycache_size;
1667         if (sc->keymax > ATH_KEYMAX) {
1668                 ath_print(common, ATH_DBG_ANY,
1669                           "Warning, using only %u entries in %u key cache\n",
1670                           ATH_KEYMAX, sc->keymax);
1671                 sc->keymax = ATH_KEYMAX;
1672         }
1673
1674         /*
1675          * Reset the key cache since some parts do not
1676          * reset the contents on initial power up.
1677          */
1678         for (i = 0; i < sc->keymax; i++)
1679                 ath9k_hw_keyreset(ah, (u16) i);
1680
1681         /* default to MONITOR mode */
1682         sc->sc_ah->opmode = NL80211_IFTYPE_MONITOR;
1683
1684         /* Setup rate tables */
1685
1686         ath_rate_attach(sc);
1687         ath_setup_rates(sc, IEEE80211_BAND_2GHZ);
1688         ath_setup_rates(sc, IEEE80211_BAND_5GHZ);
1689
1690         /*
1691          * Allocate hardware transmit queues: one queue for
1692          * beacon frames and one data queue for each QoS
1693          * priority.  Note that the hal handles reseting
1694          * these queues at the needed time.
1695          */
1696         sc->beacon.beaconq = ath_beaconq_setup(ah);
1697         if (sc->beacon.beaconq == -1) {
1698                 ath_print(common, ATH_DBG_FATAL,
1699                           "Unable to setup a beacon xmit queue\n");
1700                 r = -EIO;
1701                 goto bad2;
1702         }
1703         sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
1704         if (sc->beacon.cabq == NULL) {
1705                 ath_print(common, ATH_DBG_FATAL,
1706                           "Unable to setup CAB xmit queue\n");
1707                 r = -EIO;
1708                 goto bad2;
1709         }
1710
1711         sc->config.cabqReadytime = ATH_CABQ_READY_TIME;
1712         ath_cabq_update(sc);
1713
1714         for (i = 0; i < ARRAY_SIZE(sc->tx.hwq_map); i++)
1715                 sc->tx.hwq_map[i] = -1;
1716
1717         /* Setup data queues */
1718         /* NB: ensure BK queue is the lowest priority h/w queue */
1719         if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) {
1720                 ath_print(common, ATH_DBG_FATAL,
1721                           "Unable to setup xmit queue for BK traffic\n");
1722                 r = -EIO;
1723                 goto bad2;
1724         }
1725
1726         if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) {
1727                 ath_print(common, ATH_DBG_FATAL,
1728                           "Unable to setup xmit queue for BE traffic\n");
1729                 r = -EIO;
1730                 goto bad2;
1731         }
1732         if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) {
1733                 ath_print(common, ATH_DBG_FATAL,
1734                           "Unable to setup xmit queue for VI traffic\n");
1735                 r = -EIO;
1736                 goto bad2;
1737         }
1738         if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) {
1739                 ath_print(common, ATH_DBG_FATAL,
1740                           "Unable to setup xmit queue for VO traffic\n");
1741                 r = -EIO;
1742                 goto bad2;
1743         }
1744
1745         /* Initializes the noise floor to a reasonable default value.
1746          * Later on this will be updated during ANI processing. */
1747
1748         sc->ani.noise_floor = ATH_DEFAULT_NOISE_FLOOR;
1749         setup_timer(&sc->ani.timer, ath_ani_calibrate, (unsigned long)sc);
1750
1751         if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1752                                    ATH9K_CIPHER_TKIP, NULL)) {
1753                 /*
1754                  * Whether we should enable h/w TKIP MIC.
1755                  * XXX: if we don't support WME TKIP MIC, then we wouldn't
1756                  * report WMM capable, so it's always safe to turn on
1757                  * TKIP MIC in this case.
1758                  */
1759                 ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC,
1760                                        0, 1, NULL);
1761         }
1762
1763         /*
1764          * Check whether the separate key cache entries
1765          * are required to handle both tx+rx MIC keys.
1766          * With split mic keys the number of stations is limited
1767          * to 27 otherwise 59.
1768          */
1769         if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1770                                    ATH9K_CIPHER_TKIP, NULL)
1771             && ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1772                                       ATH9K_CIPHER_MIC, NULL)
1773             && ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT,
1774                                       0, NULL))
1775                 sc->splitmic = 1;
1776
1777         /* turn on mcast key search if possible */
1778         if (!ath9k_hw_getcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL))
1779                 (void)ath9k_hw_setcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 1,
1780                                              1, NULL);
1781
1782         sc->config.txpowlimit = ATH_TXPOWER_MAX;
1783
1784         /* 11n Capabilities */
1785         if (ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1786                 sc->sc_flags |= SC_OP_TXAGGR;
1787                 sc->sc_flags |= SC_OP_RXAGGR;
1788         }
1789
1790         common->tx_chainmask = ah->caps.tx_chainmask;
1791         common->rx_chainmask = ah->caps.rx_chainmask;
1792
1793         ath9k_hw_setcapability(ah, ATH9K_CAP_DIVERSITY, 1, true, NULL);
1794         sc->rx.defant = ath9k_hw_getdefantenna(ah);
1795
1796         if (ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
1797                 memcpy(common->bssidmask, ath_bcast_mac, ETH_ALEN);
1798
1799         sc->beacon.slottime = ATH9K_SLOT_TIME_9;        /* default to short slot time */
1800
1801         /* initialize beacon slots */
1802         for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
1803                 sc->beacon.bslot[i] = NULL;
1804                 sc->beacon.bslot_aphy[i] = NULL;
1805         }
1806
1807         /* setup channels and rates */
1808
1809         sc->sbands[IEEE80211_BAND_2GHZ].channels = ath9k_2ghz_chantable;
1810         sc->sbands[IEEE80211_BAND_2GHZ].bitrates =
1811                 sc->rates[IEEE80211_BAND_2GHZ];
1812         sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
1813         sc->sbands[IEEE80211_BAND_2GHZ].n_channels =
1814                 ARRAY_SIZE(ath9k_2ghz_chantable);
1815
1816         if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes)) {
1817                 sc->sbands[IEEE80211_BAND_5GHZ].channels = ath9k_5ghz_chantable;
1818                 sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
1819                         sc->rates[IEEE80211_BAND_5GHZ];
1820                 sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
1821                 sc->sbands[IEEE80211_BAND_5GHZ].n_channels =
1822                         ARRAY_SIZE(ath9k_5ghz_chantable);
1823         }
1824
1825         switch (ah->btcoex_hw.scheme) {
1826         case ATH_BTCOEX_CFG_NONE:
1827                 break;
1828         case ATH_BTCOEX_CFG_2WIRE:
1829                 ath9k_hw_btcoex_init_2wire(ah);
1830                 break;
1831         case ATH_BTCOEX_CFG_3WIRE:
1832                 ath9k_hw_btcoex_init_3wire(ah);
1833                 r = ath_init_btcoex_timer(sc);
1834                 if (r)
1835                         goto bad2;
1836                 qnum = ath_tx_get_qnum(sc, ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BE);
1837                 ath9k_hw_init_btcoex_hw(ah, qnum);
1838                 sc->btcoex.bt_stomp_type = ATH_BTCOEX_STOMP_LOW;
1839                 break;
1840         default:
1841                 WARN_ON(1);
1842                 break;
1843         }
1844
1845         return 0;
1846 bad2:
1847         /* cleanup tx queues */
1848         for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1849                 if (ATH_TXQ_SETUP(sc, i))
1850                         ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1851 bad:
1852         ath9k_hw_detach(ah);
1853 bad_no_ah:
1854         ath9k_exit_debug(sc->sc_ah);
1855         sc->sc_ah = NULL;
1856
1857         return r;
1858 }
1859
1860 void ath_set_hw_capab(struct ath_softc *sc, struct ieee80211_hw *hw)
1861 {
1862         hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
1863                 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1864                 IEEE80211_HW_SIGNAL_DBM |
1865                 IEEE80211_HW_AMPDU_AGGREGATION |
1866                 IEEE80211_HW_SUPPORTS_PS |
1867                 IEEE80211_HW_PS_NULLFUNC_STACK |
1868                 IEEE80211_HW_SPECTRUM_MGMT;
1869
1870         if (AR_SREV_9160_10_OR_LATER(sc->sc_ah) || modparam_nohwcrypt)
1871                 hw->flags |= IEEE80211_HW_MFP_CAPABLE;
1872
1873         hw->wiphy->interface_modes =
1874                 BIT(NL80211_IFTYPE_AP) |
1875                 BIT(NL80211_IFTYPE_STATION) |
1876                 BIT(NL80211_IFTYPE_ADHOC) |
1877                 BIT(NL80211_IFTYPE_MESH_POINT);
1878
1879         hw->queues = 4;
1880         hw->max_rates = 4;
1881         hw->channel_change_time = 5000;
1882         hw->max_listen_interval = 10;
1883         /* Hardware supports 10 but we use 4 */
1884         hw->max_rate_tries = 4;
1885         hw->sta_data_size = sizeof(struct ath_node);
1886         hw->vif_data_size = sizeof(struct ath_vif);
1887
1888         hw->rate_control_algorithm = "ath9k_rate_control";
1889
1890         hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
1891                 &sc->sbands[IEEE80211_BAND_2GHZ];
1892         if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
1893                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
1894                         &sc->sbands[IEEE80211_BAND_5GHZ];
1895 }
1896
1897 /* Device driver core initialization */
1898 int ath_init_device(u16 devid, struct ath_softc *sc, u16 subsysid,
1899                     const struct ath_bus_ops *bus_ops)
1900 {
1901         struct ieee80211_hw *hw = sc->hw;
1902         struct ath_common *common;
1903         struct ath_hw *ah;
1904         int error = 0, i;
1905         struct ath_regulatory *reg;
1906
1907         dev_dbg(sc->dev, "Attach ATH hw\n");
1908
1909         error = ath_init_softc(devid, sc, subsysid, bus_ops);
1910         if (error != 0)
1911                 return error;
1912
1913         ah = sc->sc_ah;
1914         common = ath9k_hw_common(ah);
1915
1916         /* get mac address from hardware and set in mac80211 */
1917
1918         SET_IEEE80211_PERM_ADDR(hw, common->macaddr);
1919
1920         ath_set_hw_capab(sc, hw);
1921
1922         error = ath_regd_init(&common->regulatory, sc->hw->wiphy,
1923                               ath9k_reg_notifier);
1924         if (error)
1925                 return error;
1926
1927         reg = &common->regulatory;
1928
1929         if (ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1930                 setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
1931                 if (test_bit(ATH9K_MODE_11A, ah->caps.wireless_modes))
1932                         setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
1933         }
1934
1935         /* initialize tx/rx engine */
1936         error = ath_tx_init(sc, ATH_TXBUF);
1937         if (error != 0)
1938                 goto error_attach;
1939
1940         error = ath_rx_init(sc, ATH_RXBUF);
1941         if (error != 0)
1942                 goto error_attach;
1943
1944         INIT_WORK(&sc->chan_work, ath9k_wiphy_chan_work);
1945         INIT_DELAYED_WORK(&sc->wiphy_work, ath9k_wiphy_work);
1946         sc->wiphy_scheduler_int = msecs_to_jiffies(500);
1947
1948         error = ieee80211_register_hw(hw);
1949
1950         if (!ath_is_world_regd(reg)) {
1951                 error = regulatory_hint(hw->wiphy, reg->alpha2);
1952                 if (error)
1953                         goto error_attach;
1954         }
1955
1956         /* Initialize LED control */
1957         ath_init_leds(sc);
1958
1959         ath_start_rfkill_poll(sc);
1960
1961         return 0;
1962
1963 error_attach:
1964         /* cleanup tx queues */
1965         for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1966                 if (ATH_TXQ_SETUP(sc, i))
1967                         ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1968
1969         ath9k_hw_detach(ah);
1970         ath9k_exit_debug(ah);
1971         sc->sc_ah = NULL;
1972
1973         return error;
1974 }
1975
1976 int ath_reset(struct ath_softc *sc, bool retry_tx)
1977 {
1978         struct ath_hw *ah = sc->sc_ah;
1979         struct ath_common *common = ath9k_hw_common(ah);
1980         struct ieee80211_hw *hw = sc->hw;
1981         int r;
1982
1983         ath9k_hw_set_interrupts(ah, 0);
1984         ath_drain_all_txq(sc, retry_tx);
1985         ath_stoprecv(sc);
1986         ath_flushrecv(sc);
1987
1988         spin_lock_bh(&sc->sc_resetlock);
1989         r = ath9k_hw_reset(ah, sc->sc_ah->curchan, false);
1990         if (r)
1991                 ath_print(common, ATH_DBG_FATAL,
1992                           "Unable to reset hardware; reset status %d\n", r);
1993         spin_unlock_bh(&sc->sc_resetlock);
1994
1995         if (ath_startrecv(sc) != 0)
1996                 ath_print(common, ATH_DBG_FATAL,
1997                           "Unable to start recv logic\n");
1998
1999         /*
2000          * We may be doing a reset in response to a request
2001          * that changes the channel so update any state that
2002          * might change as a result.
2003          */
2004         ath_cache_conf_rate(sc, &hw->conf);
2005
2006         ath_update_txpow(sc);
2007
2008         if (sc->sc_flags & SC_OP_BEACONS)
2009                 ath_beacon_config(sc, NULL);    /* restart beacons */
2010
2011         ath9k_hw_set_interrupts(ah, sc->imask);
2012
2013         if (retry_tx) {
2014                 int i;
2015                 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2016                         if (ATH_TXQ_SETUP(sc, i)) {
2017                                 spin_lock_bh(&sc->tx.txq[i].axq_lock);
2018                                 ath_txq_schedule(sc, &sc->tx.txq[i]);
2019                                 spin_unlock_bh(&sc->tx.txq[i].axq_lock);
2020                         }
2021                 }
2022         }
2023
2024         return r;
2025 }
2026
2027 /*
2028  *  This function will allocate both the DMA descriptor structure, and the
2029  *  buffers it contains.  These are used to contain the descriptors used
2030  *  by the system.
2031 */
2032 int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
2033                       struct list_head *head, const char *name,
2034                       int nbuf, int ndesc)
2035 {
2036 #define DS2PHYS(_dd, _ds)                                               \
2037         ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2038 #define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
2039 #define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
2040         struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2041         struct ath_desc *ds;
2042         struct ath_buf *bf;
2043         int i, bsize, error;
2044
2045         ath_print(common, ATH_DBG_CONFIG, "%s DMA: %u buffers %u desc/buf\n",
2046                   name, nbuf, ndesc);
2047
2048         INIT_LIST_HEAD(head);
2049         /* ath_desc must be a multiple of DWORDs */
2050         if ((sizeof(struct ath_desc) % 4) != 0) {
2051                 ath_print(common, ATH_DBG_FATAL,
2052                           "ath_desc not DWORD aligned\n");
2053                 BUG_ON((sizeof(struct ath_desc) % 4) != 0);
2054                 error = -ENOMEM;
2055                 goto fail;
2056         }
2057
2058         dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2059
2060         /*
2061          * Need additional DMA memory because we can't use
2062          * descriptors that cross the 4K page boundary. Assume
2063          * one skipped descriptor per 4K page.
2064          */
2065         if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
2066                 u32 ndesc_skipped =
2067                         ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
2068                 u32 dma_len;
2069
2070                 while (ndesc_skipped) {
2071                         dma_len = ndesc_skipped * sizeof(struct ath_desc);
2072                         dd->dd_desc_len += dma_len;
2073
2074                         ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
2075                 };
2076         }
2077
2078         /* allocate descriptors */
2079         dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
2080                                          &dd->dd_desc_paddr, GFP_KERNEL);
2081         if (dd->dd_desc == NULL) {
2082                 error = -ENOMEM;
2083                 goto fail;
2084         }
2085         ds = dd->dd_desc;
2086         ath_print(common, ATH_DBG_CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
2087                   name, ds, (u32) dd->dd_desc_len,
2088                   ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
2089
2090         /* allocate buffers */
2091         bsize = sizeof(struct ath_buf) * nbuf;
2092         bf = kzalloc(bsize, GFP_KERNEL);
2093         if (bf == NULL) {
2094                 error = -ENOMEM;
2095                 goto fail2;
2096         }
2097         dd->dd_bufptr = bf;
2098
2099         for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2100                 bf->bf_desc = ds;
2101                 bf->bf_daddr = DS2PHYS(dd, ds);
2102
2103                 if (!(sc->sc_ah->caps.hw_caps &
2104                       ATH9K_HW_CAP_4KB_SPLITTRANS)) {
2105                         /*
2106                          * Skip descriptor addresses which can cause 4KB
2107                          * boundary crossing (addr + length) with a 32 dword
2108                          * descriptor fetch.
2109                          */
2110                         while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
2111                                 BUG_ON((caddr_t) bf->bf_desc >=
2112                                        ((caddr_t) dd->dd_desc +
2113                                         dd->dd_desc_len));
2114
2115                                 ds += ndesc;
2116                                 bf->bf_desc = ds;
2117                                 bf->bf_daddr = DS2PHYS(dd, ds);
2118                         }
2119                 }
2120                 list_add_tail(&bf->list, head);
2121         }
2122         return 0;
2123 fail2:
2124         dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
2125                           dd->dd_desc_paddr);
2126 fail:
2127         memset(dd, 0, sizeof(*dd));
2128         return error;
2129 #undef ATH_DESC_4KB_BOUND_CHECK
2130 #undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
2131 #undef DS2PHYS
2132 }
2133
2134 void ath_descdma_cleanup(struct ath_softc *sc,
2135                          struct ath_descdma *dd,
2136                          struct list_head *head)
2137 {
2138         dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
2139                           dd->dd_desc_paddr);
2140
2141         INIT_LIST_HEAD(head);
2142         kfree(dd->dd_bufptr);
2143         memset(dd, 0, sizeof(*dd));
2144 }
2145
2146 int ath_get_hal_qnum(u16 queue, struct ath_softc *sc)
2147 {
2148         int qnum;
2149
2150         switch (queue) {
2151         case 0:
2152                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VO];
2153                 break;
2154         case 1:
2155                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VI];
2156                 break;
2157         case 2:
2158                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
2159                 break;
2160         case 3:
2161                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BK];
2162                 break;
2163         default:
2164                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
2165                 break;
2166         }
2167
2168         return qnum;
2169 }
2170
2171 int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc)
2172 {
2173         int qnum;
2174
2175         switch (queue) {
2176         case ATH9K_WME_AC_VO:
2177                 qnum = 0;
2178                 break;
2179         case ATH9K_WME_AC_VI:
2180                 qnum = 1;
2181                 break;
2182         case ATH9K_WME_AC_BE:
2183                 qnum = 2;
2184                 break;
2185         case ATH9K_WME_AC_BK:
2186                 qnum = 3;
2187                 break;
2188         default:
2189                 qnum = -1;
2190                 break;
2191         }
2192
2193         return qnum;
2194 }
2195
2196 /* XXX: Remove me once we don't depend on ath9k_channel for all
2197  * this redundant data */
2198 void ath9k_update_ichannel(struct ath_softc *sc, struct ieee80211_hw *hw,
2199                            struct ath9k_channel *ichan)
2200 {
2201         struct ieee80211_channel *chan = hw->conf.channel;
2202         struct ieee80211_conf *conf = &hw->conf;
2203
2204         ichan->channel = chan->center_freq;
2205         ichan->chan = chan;
2206
2207         if (chan->band == IEEE80211_BAND_2GHZ) {
2208                 ichan->chanmode = CHANNEL_G;
2209                 ichan->channelFlags = CHANNEL_2GHZ | CHANNEL_OFDM | CHANNEL_G;
2210         } else {
2211                 ichan->chanmode = CHANNEL_A;
2212                 ichan->channelFlags = CHANNEL_5GHZ | CHANNEL_OFDM;
2213         }
2214
2215         if (conf_is_ht(conf))
2216                 ichan->chanmode = ath_get_extchanmode(sc, chan,
2217                                             conf->channel_type);
2218 }
2219
2220 /**********************/
2221 /* mac80211 callbacks */
2222 /**********************/
2223
2224 /*
2225  * (Re)start btcoex timers
2226  */
2227 static void ath9k_btcoex_timer_resume(struct ath_softc *sc)
2228 {
2229         struct ath_btcoex *btcoex = &sc->btcoex;
2230         struct ath_hw *ah = sc->sc_ah;
2231
2232         ath_print(ath9k_hw_common(ah), ATH_DBG_BTCOEX,
2233                   "Starting btcoex timers");
2234
2235         /* make sure duty cycle timer is also stopped when resuming */
2236         if (btcoex->hw_timer_enabled)
2237                 ath9k_gen_timer_stop(sc->sc_ah, btcoex->no_stomp_timer);
2238
2239         btcoex->bt_priority_cnt = 0;
2240         btcoex->bt_priority_time = jiffies;
2241         sc->sc_flags &= ~SC_OP_BT_PRIORITY_DETECTED;
2242
2243         mod_timer(&btcoex->period_timer, jiffies);
2244 }
2245
2246 static int ath9k_start(struct ieee80211_hw *hw)
2247 {
2248         struct ath_wiphy *aphy = hw->priv;
2249         struct ath_softc *sc = aphy->sc;
2250         struct ath_hw *ah = sc->sc_ah;
2251         struct ath_common *common = ath9k_hw_common(ah);
2252         struct ieee80211_channel *curchan = hw->conf.channel;
2253         struct ath9k_channel *init_channel;
2254         int r;
2255
2256         ath_print(common, ATH_DBG_CONFIG,
2257                   "Starting driver with initial channel: %d MHz\n",
2258                   curchan->center_freq);
2259
2260         mutex_lock(&sc->mutex);
2261
2262         if (ath9k_wiphy_started(sc)) {
2263                 if (sc->chan_idx == curchan->hw_value) {
2264                         /*
2265                          * Already on the operational channel, the new wiphy
2266                          * can be marked active.
2267                          */
2268                         aphy->state = ATH_WIPHY_ACTIVE;
2269                         ieee80211_wake_queues(hw);
2270                 } else {
2271                         /*
2272                          * Another wiphy is on another channel, start the new
2273                          * wiphy in paused state.
2274                          */
2275                         aphy->state = ATH_WIPHY_PAUSED;
2276                         ieee80211_stop_queues(hw);
2277                 }
2278                 mutex_unlock(&sc->mutex);
2279                 return 0;
2280         }
2281         aphy->state = ATH_WIPHY_ACTIVE;
2282
2283         /* setup initial channel */
2284
2285         sc->chan_idx = curchan->hw_value;
2286
2287         init_channel = ath_get_curchannel(sc, hw);
2288
2289         /* Reset SERDES registers */
2290         ath9k_hw_configpcipowersave(ah, 0, 0);
2291
2292         /*
2293          * The basic interface to setting the hardware in a good
2294          * state is ``reset''.  On return the hardware is known to
2295          * be powered up and with interrupts disabled.  This must
2296          * be followed by initialization of the appropriate bits
2297          * and then setup of the interrupt mask.
2298          */
2299         spin_lock_bh(&sc->sc_resetlock);
2300         r = ath9k_hw_reset(ah, init_channel, false);
2301         if (r) {
2302                 ath_print(common, ATH_DBG_FATAL,
2303                           "Unable to reset hardware; reset status %d "
2304                           "(freq %u MHz)\n", r,
2305                           curchan->center_freq);
2306                 spin_unlock_bh(&sc->sc_resetlock);
2307                 goto mutex_unlock;
2308         }
2309         spin_unlock_bh(&sc->sc_resetlock);
2310
2311         /*
2312          * This is needed only to setup initial state
2313          * but it's best done after a reset.
2314          */
2315         ath_update_txpow(sc);
2316
2317         /*
2318          * Setup the hardware after reset:
2319          * The receive engine is set going.
2320          * Frame transmit is handled entirely
2321          * in the frame output path; there's nothing to do
2322          * here except setup the interrupt mask.
2323          */
2324         if (ath_startrecv(sc) != 0) {
2325                 ath_print(common, ATH_DBG_FATAL,
2326                           "Unable to start recv logic\n");
2327                 r = -EIO;
2328                 goto mutex_unlock;
2329         }
2330
2331         /* Setup our intr mask. */
2332         sc->imask = ATH9K_INT_RX | ATH9K_INT_TX
2333                 | ATH9K_INT_RXEOL | ATH9K_INT_RXORN
2334                 | ATH9K_INT_FATAL | ATH9K_INT_GLOBAL;
2335
2336         if (ah->caps.hw_caps & ATH9K_HW_CAP_GTT)
2337                 sc->imask |= ATH9K_INT_GTT;
2338
2339         if (ah->caps.hw_caps & ATH9K_HW_CAP_HT)
2340                 sc->imask |= ATH9K_INT_CST;
2341
2342         ath_cache_conf_rate(sc, &hw->conf);
2343
2344         sc->sc_flags &= ~SC_OP_INVALID;
2345
2346         /* Disable BMISS interrupt when we're not associated */
2347         sc->imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
2348         ath9k_hw_set_interrupts(ah, sc->imask);
2349
2350         ieee80211_wake_queues(hw);
2351
2352         ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work, 0);
2353
2354         if ((ah->btcoex_hw.scheme != ATH_BTCOEX_CFG_NONE) &&
2355             !ah->btcoex_hw.enabled) {
2356                 ath9k_hw_btcoex_set_weight(ah, AR_BT_COEX_WGHT,
2357                                            AR_STOMP_LOW_WLAN_WGHT);
2358                 ath9k_hw_btcoex_enable(ah);
2359
2360                 if (common->bus_ops->bt_coex_prep)
2361                         common->bus_ops->bt_coex_prep(common);
2362                 if (ah->btcoex_hw.scheme == ATH_BTCOEX_CFG_3WIRE)
2363                         ath9k_btcoex_timer_resume(sc);
2364         }
2365
2366 mutex_unlock:
2367         mutex_unlock(&sc->mutex);
2368
2369         return r;
2370 }
2371
2372 static int ath9k_tx(struct ieee80211_hw *hw,
2373                     struct sk_buff *skb)
2374 {
2375         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2376         struct ath_wiphy *aphy = hw->priv;
2377         struct ath_softc *sc = aphy->sc;
2378         struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2379         struct ath_tx_control txctl;
2380         int hdrlen, padsize;
2381
2382         if (aphy->state != ATH_WIPHY_ACTIVE && aphy->state != ATH_WIPHY_SCAN) {
2383                 ath_print(common, ATH_DBG_XMIT,
2384                           "ath9k: %s: TX in unexpected wiphy state "
2385                           "%d\n", wiphy_name(hw->wiphy), aphy->state);
2386                 goto exit;
2387         }
2388
2389         if (sc->ps_enabled) {
2390                 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2391                 /*
2392                  * mac80211 does not set PM field for normal data frames, so we
2393                  * need to update that based on the current PS mode.
2394                  */
2395                 if (ieee80211_is_data(hdr->frame_control) &&
2396                     !ieee80211_is_nullfunc(hdr->frame_control) &&
2397                     !ieee80211_has_pm(hdr->frame_control)) {
2398                         ath_print(common, ATH_DBG_PS, "Add PM=1 for a TX frame "
2399                                   "while in PS mode\n");
2400                         hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM);
2401                 }
2402         }
2403
2404         if (unlikely(sc->sc_ah->power_mode != ATH9K_PM_AWAKE)) {
2405                 /*
2406                  * We are using PS-Poll and mac80211 can request TX while in
2407                  * power save mode. Need to wake up hardware for the TX to be
2408                  * completed and if needed, also for RX of buffered frames.
2409                  */
2410                 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2411                 ath9k_ps_wakeup(sc);
2412                 ath9k_hw_setrxabort(sc->sc_ah, 0);
2413                 if (ieee80211_is_pspoll(hdr->frame_control)) {
2414                         ath_print(common, ATH_DBG_PS,
2415                                   "Sending PS-Poll to pick a buffered frame\n");
2416                         sc->sc_flags |= SC_OP_WAIT_FOR_PSPOLL_DATA;
2417                 } else {
2418                         ath_print(common, ATH_DBG_PS,
2419                                   "Wake up to complete TX\n");
2420                         sc->sc_flags |= SC_OP_WAIT_FOR_TX_ACK;
2421                 }
2422                 /*
2423                  * The actual restore operation will happen only after
2424                  * the sc_flags bit is cleared. We are just dropping
2425                  * the ps_usecount here.
2426                  */
2427                 ath9k_ps_restore(sc);
2428         }
2429
2430         memset(&txctl, 0, sizeof(struct ath_tx_control));
2431
2432         /*
2433          * As a temporary workaround, assign seq# here; this will likely need
2434          * to be cleaned up to work better with Beacon transmission and virtual
2435          * BSSes.
2436          */
2437         if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
2438                 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2439                 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2440                         sc->tx.seq_no += 0x10;
2441                 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2442                 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
2443         }
2444
2445         /* Add the padding after the header if this is not already done */
2446         hdrlen = ieee80211_get_hdrlen_from_skb(skb);
2447         if (hdrlen & 3) {
2448                 padsize = hdrlen % 4;
2449                 if (skb_headroom(skb) < padsize)
2450                         return -1;
2451                 skb_push(skb, padsize);
2452                 memmove(skb->data, skb->data + padsize, hdrlen);
2453         }
2454
2455         /* Check if a tx queue is available */
2456
2457         txctl.txq = ath_test_get_txq(sc, skb);
2458         if (!txctl.txq)
2459                 goto exit;
2460
2461         ath_print(common, ATH_DBG_XMIT, "transmitting packet, skb: %p\n", skb);
2462
2463         if (ath_tx_start(hw, skb, &txctl) != 0) {
2464                 ath_print(common, ATH_DBG_XMIT, "TX failed\n");
2465                 goto exit;
2466         }
2467
2468         return 0;
2469 exit:
2470         dev_kfree_skb_any(skb);
2471         return 0;
2472 }
2473
2474 /*
2475  * Pause btcoex timer and bt duty cycle timer
2476  */
2477 static void ath9k_btcoex_timer_pause(struct ath_softc *sc)
2478 {
2479         struct ath_btcoex *btcoex = &sc->btcoex;
2480         struct ath_hw *ah = sc->sc_ah;
2481
2482         del_timer_sync(&btcoex->period_timer);
2483
2484         if (btcoex->hw_timer_enabled)
2485                 ath9k_gen_timer_stop(ah, btcoex->no_stomp_timer);
2486
2487         btcoex->hw_timer_enabled = false;
2488 }
2489
2490 static void ath9k_stop(struct ieee80211_hw *hw)
2491 {
2492         struct ath_wiphy *aphy = hw->priv;
2493         struct ath_softc *sc = aphy->sc;
2494         struct ath_hw *ah = sc->sc_ah;
2495         struct ath_common *common = ath9k_hw_common(ah);
2496
2497         mutex_lock(&sc->mutex);
2498
2499         aphy->state = ATH_WIPHY_INACTIVE;
2500
2501         cancel_delayed_work_sync(&sc->ath_led_blink_work);
2502         cancel_delayed_work_sync(&sc->tx_complete_work);
2503
2504         if (!sc->num_sec_wiphy) {
2505                 cancel_delayed_work_sync(&sc->wiphy_work);
2506                 cancel_work_sync(&sc->chan_work);
2507         }
2508
2509         if (sc->sc_flags & SC_OP_INVALID) {
2510                 ath_print(common, ATH_DBG_ANY, "Device not present\n");
2511                 mutex_unlock(&sc->mutex);
2512                 return;
2513         }
2514
2515         if (ath9k_wiphy_started(sc)) {
2516                 mutex_unlock(&sc->mutex);
2517                 return; /* another wiphy still in use */
2518         }
2519
2520         if (ah->btcoex_hw.enabled) {
2521                 ath9k_hw_btcoex_disable(ah);
2522                 if (ah->btcoex_hw.scheme == ATH_BTCOEX_CFG_3WIRE)
2523                         ath9k_btcoex_timer_pause(sc);
2524         }
2525
2526         /* make sure h/w will not generate any interrupt
2527          * before setting the invalid flag. */
2528         ath9k_hw_set_interrupts(ah, 0);
2529
2530         if (!(sc->sc_flags & SC_OP_INVALID)) {
2531                 ath_drain_all_txq(sc, false);
2532                 ath_stoprecv(sc);
2533                 ath9k_hw_phy_disable(ah);
2534         } else
2535                 sc->rx.rxlink = NULL;
2536
2537         /* disable HAL and put h/w to sleep */
2538         ath9k_hw_disable(ah);
2539         ath9k_hw_configpcipowersave(ah, 1, 1);
2540         ath9k_setpower(sc, ATH9K_PM_FULL_SLEEP);
2541
2542         sc->sc_flags |= SC_OP_INVALID;
2543
2544         mutex_unlock(&sc->mutex);
2545
2546         ath_print(common, ATH_DBG_CONFIG, "Driver halt\n");
2547 }
2548
2549 static int ath9k_add_interface(struct ieee80211_hw *hw,
2550                                struct ieee80211_if_init_conf *conf)
2551 {
2552         struct ath_wiphy *aphy = hw->priv;
2553         struct ath_softc *sc = aphy->sc;
2554         struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2555         struct ath_vif *avp = (void *)conf->vif->drv_priv;
2556         enum nl80211_iftype ic_opmode = NL80211_IFTYPE_UNSPECIFIED;
2557         int ret = 0;
2558
2559         mutex_lock(&sc->mutex);
2560
2561         if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) &&
2562             sc->nvifs > 0) {
2563                 ret = -ENOBUFS;
2564                 goto out;
2565         }
2566
2567         switch (conf->type) {
2568         case NL80211_IFTYPE_STATION:
2569                 ic_opmode = NL80211_IFTYPE_STATION;
2570                 break;
2571         case NL80211_IFTYPE_ADHOC:
2572         case NL80211_IFTYPE_AP:
2573         case NL80211_IFTYPE_MESH_POINT:
2574                 if (sc->nbcnvifs >= ATH_BCBUF) {
2575                         ret = -ENOBUFS;
2576                         goto out;
2577                 }
2578                 ic_opmode = conf->type;
2579                 break;
2580         default:
2581                 ath_print(common, ATH_DBG_FATAL,
2582                         "Interface type %d not yet supported\n", conf->type);
2583                 ret = -EOPNOTSUPP;
2584                 goto out;
2585         }
2586
2587         ath_print(common, ATH_DBG_CONFIG,
2588                   "Attach a VIF of type: %d\n", ic_opmode);
2589
2590         /* Set the VIF opmode */
2591         avp->av_opmode = ic_opmode;
2592         avp->av_bslot = -1;
2593
2594         sc->nvifs++;
2595
2596         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
2597                 ath9k_set_bssid_mask(hw);
2598
2599         if (sc->nvifs > 1)
2600                 goto out; /* skip global settings for secondary vif */
2601
2602         if (ic_opmode == NL80211_IFTYPE_AP) {
2603                 ath9k_hw_set_tsfadjust(sc->sc_ah, 1);
2604                 sc->sc_flags |= SC_OP_TSF_RESET;
2605         }
2606
2607         /* Set the device opmode */
2608         sc->sc_ah->opmode = ic_opmode;
2609
2610         /*
2611          * Enable MIB interrupts when there are hardware phy counters.
2612          * Note we only do this (at the moment) for station mode.
2613          */
2614         if ((conf->type == NL80211_IFTYPE_STATION) ||
2615             (conf->type == NL80211_IFTYPE_ADHOC) ||
2616             (conf->type == NL80211_IFTYPE_MESH_POINT)) {
2617                 sc->imask |= ATH9K_INT_MIB;
2618                 sc->imask |= ATH9K_INT_TSFOOR;
2619         }
2620
2621         ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
2622
2623         if (conf->type == NL80211_IFTYPE_AP    ||
2624             conf->type == NL80211_IFTYPE_ADHOC ||
2625             conf->type == NL80211_IFTYPE_MONITOR)
2626                 ath_start_ani(sc);
2627
2628 out:
2629         mutex_unlock(&sc->mutex);
2630         return ret;
2631 }
2632
2633 static void ath9k_remove_interface(struct ieee80211_hw *hw,
2634                                    struct ieee80211_if_init_conf *conf)
2635 {
2636         struct ath_wiphy *aphy = hw->priv;
2637         struct ath_softc *sc = aphy->sc;
2638         struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2639         struct ath_vif *avp = (void *)conf->vif->drv_priv;
2640         int i;
2641
2642         ath_print(common, ATH_DBG_CONFIG, "Detach Interface\n");
2643
2644         mutex_lock(&sc->mutex);
2645
2646         /* Stop ANI */
2647         del_timer_sync(&sc->ani.timer);
2648
2649         /* Reclaim beacon resources */
2650         if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) ||
2651             (sc->sc_ah->opmode == NL80211_IFTYPE_ADHOC) ||
2652             (sc->sc_ah->opmode == NL80211_IFTYPE_MESH_POINT)) {
2653                 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2654                 ath_beacon_return(sc, avp);
2655         }
2656
2657         sc->sc_flags &= ~SC_OP_BEACONS;
2658
2659         for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
2660                 if (sc->beacon.bslot[i] == conf->vif) {
2661                         printk(KERN_DEBUG "%s: vif had allocated beacon "
2662                                "slot\n", __func__);
2663                         sc->beacon.bslot[i] = NULL;
2664                         sc->beacon.bslot_aphy[i] = NULL;
2665                 }
2666         }
2667
2668         sc->nvifs--;
2669
2670         mutex_unlock(&sc->mutex);
2671 }
2672
2673 static int ath9k_config(struct ieee80211_hw *hw, u32 changed)
2674 {
2675         struct ath_wiphy *aphy = hw->priv;
2676         struct ath_softc *sc = aphy->sc;
2677         struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2678         struct ieee80211_conf *conf = &hw->conf;
2679         struct ath_hw *ah = sc->sc_ah;
2680         bool all_wiphys_idle = false, disable_radio = false;
2681
2682         mutex_lock(&sc->mutex);
2683
2684         /* Leave this as the first check */
2685         if (changed & IEEE80211_CONF_CHANGE_IDLE) {
2686
2687                 spin_lock_bh(&sc->wiphy_lock);
2688                 all_wiphys_idle =  ath9k_all_wiphys_idle(sc);
2689                 spin_unlock_bh(&sc->wiphy_lock);
2690
2691                 if (conf->flags & IEEE80211_CONF_IDLE){
2692                         if (all_wiphys_idle)
2693                                 disable_radio = true;
2694                 }
2695                 else if (all_wiphys_idle) {
2696                         ath_radio_enable(sc);
2697                         ath_print(common, ATH_DBG_CONFIG,
2698                                   "not-idle: enabling radio\n");
2699                 }
2700         }
2701
2702         if (changed & IEEE80211_CONF_CHANGE_PS) {
2703                 if (conf->flags & IEEE80211_CONF_PS) {
2704                         if (!(ah->caps.hw_caps &
2705                               ATH9K_HW_CAP_AUTOSLEEP)) {
2706                                 if ((sc->imask & ATH9K_INT_TIM_TIMER) == 0) {
2707                                         sc->imask |= ATH9K_INT_TIM_TIMER;
2708                                         ath9k_hw_set_interrupts(sc->sc_ah,
2709                                                         sc->imask);
2710                                 }
2711                                 ath9k_hw_setrxabort(sc->sc_ah, 1);
2712                         }
2713                         sc->ps_enabled = true;
2714                 } else {
2715                         sc->ps_enabled = false;
2716                         ath9k_setpower(sc, ATH9K_PM_AWAKE);
2717                         if (!(ah->caps.hw_caps &
2718                               ATH9K_HW_CAP_AUTOSLEEP)) {
2719                                 ath9k_hw_setrxabort(sc->sc_ah, 0);
2720                                 sc->sc_flags &= ~(SC_OP_WAIT_FOR_BEACON |
2721                                                   SC_OP_WAIT_FOR_CAB |
2722                                                   SC_OP_WAIT_FOR_PSPOLL_DATA |
2723                                                   SC_OP_WAIT_FOR_TX_ACK);
2724                                 if (sc->imask & ATH9K_INT_TIM_TIMER) {
2725                                         sc->imask &= ~ATH9K_INT_TIM_TIMER;
2726                                         ath9k_hw_set_interrupts(sc->sc_ah,
2727                                                         sc->imask);
2728                                 }
2729                         }
2730                 }
2731         }
2732
2733         if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
2734                 struct ieee80211_channel *curchan = hw->conf.channel;
2735                 int pos = curchan->hw_value;
2736
2737                 aphy->chan_idx = pos;
2738                 aphy->chan_is_ht = conf_is_ht(conf);
2739
2740                 if (aphy->state == ATH_WIPHY_SCAN ||
2741                     aphy->state == ATH_WIPHY_ACTIVE)
2742                         ath9k_wiphy_pause_all_forced(sc, aphy);
2743                 else {
2744                         /*
2745                          * Do not change operational channel based on a paused
2746                          * wiphy changes.
2747                          */
2748                         goto skip_chan_change;
2749                 }
2750
2751                 ath_print(common, ATH_DBG_CONFIG, "Set channel: %d MHz\n",
2752                           curchan->center_freq);
2753
2754                 /* XXX: remove me eventualy */
2755                 ath9k_update_ichannel(sc, hw, &sc->sc_ah->channels[pos]);
2756
2757                 ath_update_chainmask(sc, conf_is_ht(conf));
2758
2759                 if (ath_set_channel(sc, hw, &sc->sc_ah->channels[pos]) < 0) {
2760                         ath_print(common, ATH_DBG_FATAL,
2761                                   "Unable to set channel\n");
2762                         mutex_unlock(&sc->mutex);
2763                         return -EINVAL;
2764                 }
2765         }
2766
2767 skip_chan_change:
2768         if (changed & IEEE80211_CONF_CHANGE_POWER)
2769                 sc->config.txpowlimit = 2 * conf->power_level;
2770
2771         if (disable_radio) {
2772                 ath_print(common, ATH_DBG_CONFIG, "idle: disabling radio\n");
2773                 ath_radio_disable(sc);
2774         }
2775
2776         mutex_unlock(&sc->mutex);
2777
2778         return 0;
2779 }
2780
2781 #define SUPPORTED_FILTERS                       \
2782         (FIF_PROMISC_IN_BSS |                   \
2783         FIF_ALLMULTI |                          \
2784         FIF_CONTROL |                           \
2785         FIF_PSPOLL |                            \
2786         FIF_OTHER_BSS |                         \
2787         FIF_BCN_PRBRESP_PROMISC |               \
2788         FIF_FCSFAIL)
2789
2790 /* FIXME: sc->sc_full_reset ? */
2791 static void ath9k_configure_filter(struct ieee80211_hw *hw,
2792                                    unsigned int changed_flags,
2793                                    unsigned int *total_flags,
2794                                    u64 multicast)
2795 {
2796         struct ath_wiphy *aphy = hw->priv;
2797         struct ath_softc *sc = aphy->sc;
2798         u32 rfilt;
2799
2800         changed_flags &= SUPPORTED_FILTERS;
2801         *total_flags &= SUPPORTED_FILTERS;
2802
2803         sc->rx.rxfilter = *total_flags;
2804         ath9k_ps_wakeup(sc);
2805         rfilt = ath_calcrxfilter(sc);
2806         ath9k_hw_setrxfilter(sc->sc_ah, rfilt);
2807         ath9k_ps_restore(sc);
2808
2809         ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_CONFIG,
2810                   "Set HW RX filter: 0x%x\n", rfilt);
2811 }
2812
2813 static void ath9k_sta_notify(struct ieee80211_hw *hw,
2814                              struct ieee80211_vif *vif,
2815                              enum sta_notify_cmd cmd,
2816                              struct ieee80211_sta *sta)
2817 {
2818         struct ath_wiphy *aphy = hw->priv;
2819         struct ath_softc *sc = aphy->sc;
2820
2821         switch (cmd) {
2822         case STA_NOTIFY_ADD:
2823                 ath_node_attach(sc, sta);
2824                 break;
2825         case STA_NOTIFY_REMOVE:
2826                 ath_node_detach(sc, sta);
2827                 break;
2828         default:
2829                 break;
2830         }
2831 }
2832
2833 static int ath9k_conf_tx(struct ieee80211_hw *hw, u16 queue,
2834                          const struct ieee80211_tx_queue_params *params)
2835 {
2836         struct ath_wiphy *aphy = hw->priv;
2837         struct ath_softc *sc = aphy->sc;
2838         struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2839         struct ath9k_tx_queue_info qi;
2840         int ret = 0, qnum;
2841
2842         if (queue >= WME_NUM_AC)
2843                 return 0;
2844
2845         mutex_lock(&sc->mutex);
2846
2847         memset(&qi, 0, sizeof(struct ath9k_tx_queue_info));
2848
2849         qi.tqi_aifs = params->aifs;
2850         qi.tqi_cwmin = params->cw_min;
2851         qi.tqi_cwmax = params->cw_max;
2852         qi.tqi_burstTime = params->txop;
2853         qnum = ath_get_hal_qnum(queue, sc);
2854
2855         ath_print(common, ATH_DBG_CONFIG,
2856                   "Configure tx [queue/halq] [%d/%d],  "
2857                   "aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
2858                   queue, qnum, params->aifs, params->cw_min,
2859                   params->cw_max, params->txop);
2860
2861         ret = ath_txq_update(sc, qnum, &qi);
2862         if (ret)
2863                 ath_print(common, ATH_DBG_FATAL, "TXQ Update failed\n");
2864
2865         mutex_unlock(&sc->mutex);
2866
2867         return ret;
2868 }
2869
2870 static int ath9k_set_key(struct ieee80211_hw *hw,
2871                          enum set_key_cmd cmd,
2872                          struct ieee80211_vif *vif,
2873                          struct ieee80211_sta *sta,
2874                          struct ieee80211_key_conf *key)
2875 {
2876         struct ath_wiphy *aphy = hw->priv;
2877         struct ath_softc *sc = aphy->sc;
2878         struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2879         int ret = 0;
2880
2881         if (modparam_nohwcrypt)
2882                 return -ENOSPC;
2883
2884         mutex_lock(&sc->mutex);
2885         ath9k_ps_wakeup(sc);
2886         ath_print(common, ATH_DBG_CONFIG, "Set HW Key\n");
2887
2888         switch (cmd) {
2889         case SET_KEY:
2890                 ret = ath_key_config(sc, vif, sta, key);
2891                 if (ret >= 0) {
2892                         key->hw_key_idx = ret;
2893                         /* push IV and Michael MIC generation to stack */
2894                         key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2895                         if (key->alg == ALG_TKIP)
2896                                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
2897                         if (sc->sc_ah->sw_mgmt_crypto && key->alg == ALG_CCMP)
2898                                 key->flags |= IEEE80211_KEY_FLAG_SW_MGMT;
2899                         ret = 0;
2900                 }
2901                 break;
2902         case DISABLE_KEY:
2903                 ath_key_delete(sc, key);
2904                 break;
2905         default:
2906                 ret = -EINVAL;
2907         }
2908
2909         ath9k_ps_restore(sc);
2910         mutex_unlock(&sc->mutex);
2911
2912         return ret;
2913 }
2914
2915 static void ath9k_bss_info_changed(struct ieee80211_hw *hw,
2916                                    struct ieee80211_vif *vif,
2917                                    struct ieee80211_bss_conf *bss_conf,
2918                                    u32 changed)
2919 {
2920         struct ath_wiphy *aphy = hw->priv;
2921         struct ath_softc *sc = aphy->sc;
2922         struct ath_hw *ah = sc->sc_ah;
2923         struct ath_common *common = ath9k_hw_common(ah);
2924         struct ath_vif *avp = (void *)vif->drv_priv;
2925         u32 rfilt = 0;
2926         int error, i;
2927
2928         mutex_lock(&sc->mutex);
2929
2930         /*
2931          * TODO: Need to decide which hw opmode to use for
2932          *       multi-interface cases
2933          * XXX: This belongs into add_interface!
2934          */
2935         if (vif->type == NL80211_IFTYPE_AP &&
2936             ah->opmode != NL80211_IFTYPE_AP) {
2937                 ah->opmode = NL80211_IFTYPE_STATION;
2938                 ath9k_hw_setopmode(ah);
2939                 memcpy(common->curbssid, common->macaddr, ETH_ALEN);
2940                 common->curaid = 0;
2941                 ath9k_hw_write_associd(ah);
2942                 /* Request full reset to get hw opmode changed properly */
2943                 sc->sc_flags |= SC_OP_FULL_RESET;
2944         }
2945
2946         if ((changed & BSS_CHANGED_BSSID) &&
2947             !is_zero_ether_addr(bss_conf->bssid)) {
2948                 switch (vif->type) {
2949                 case NL80211_IFTYPE_STATION:
2950                 case NL80211_IFTYPE_ADHOC:
2951                 case NL80211_IFTYPE_MESH_POINT:
2952                         /* Set BSSID */
2953                         memcpy(common->curbssid, bss_conf->bssid, ETH_ALEN);
2954                         memcpy(avp->bssid, bss_conf->bssid, ETH_ALEN);
2955                         common->curaid = 0;
2956                         ath9k_hw_write_associd(ah);
2957
2958                         /* Set aggregation protection mode parameters */
2959                         sc->config.ath_aggr_prot = 0;
2960
2961                         ath_print(common, ATH_DBG_CONFIG,
2962                                   "RX filter 0x%x bssid %pM aid 0x%x\n",
2963                                   rfilt, common->curbssid, common->curaid);
2964
2965                         /* need to reconfigure the beacon */
2966                         sc->sc_flags &= ~SC_OP_BEACONS ;
2967
2968                         break;
2969                 default:
2970                         break;
2971                 }
2972         }
2973
2974         if ((vif->type == NL80211_IFTYPE_ADHOC) ||
2975             (vif->type == NL80211_IFTYPE_AP) ||
2976             (vif->type == NL80211_IFTYPE_MESH_POINT)) {
2977                 if ((changed & BSS_CHANGED_BEACON) ||
2978                     (changed & BSS_CHANGED_BEACON_ENABLED &&
2979                      bss_conf->enable_beacon)) {
2980                         /*
2981                          * Allocate and setup the beacon frame.
2982                          *
2983                          * Stop any previous beacon DMA.  This may be
2984                          * necessary, for example, when an ibss merge
2985                          * causes reconfiguration; we may be called
2986                          * with beacon transmission active.
2987                          */
2988                         ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2989
2990                         error = ath_beacon_alloc(aphy, vif);
2991                         if (!error)
2992                                 ath_beacon_config(sc, vif);
2993                 }
2994         }
2995
2996         /* Check for WLAN_CAPABILITY_PRIVACY ? */
2997         if ((avp->av_opmode != NL80211_IFTYPE_STATION)) {
2998                 for (i = 0; i < IEEE80211_WEP_NKID; i++)
2999                         if (ath9k_hw_keyisvalid(sc->sc_ah, (u16)i))
3000                                 ath9k_hw_keysetmac(sc->sc_ah,
3001                                                    (u16)i,
3002                                                    common->curbssid);
3003         }
3004
3005         /* Only legacy IBSS for now */
3006         if (vif->type == NL80211_IFTYPE_ADHOC)
3007                 ath_update_chainmask(sc, 0);
3008
3009         if (changed & BSS_CHANGED_ERP_PREAMBLE) {
3010                 ath_print(common, ATH_DBG_CONFIG, "BSS Changed PREAMBLE %d\n",
3011                           bss_conf->use_short_preamble);
3012                 if (bss_conf->use_short_preamble)
3013                         sc->sc_flags |= SC_OP_PREAMBLE_SHORT;
3014                 else
3015                         sc->sc_flags &= ~SC_OP_PREAMBLE_SHORT;
3016         }
3017
3018         if (changed & BSS_CHANGED_ERP_CTS_PROT) {
3019                 ath_print(common, ATH_DBG_CONFIG, "BSS Changed CTS PROT %d\n",
3020                           bss_conf->use_cts_prot);
3021                 if (bss_conf->use_cts_prot &&
3022                     hw->conf.channel->band != IEEE80211_BAND_5GHZ)
3023                         sc->sc_flags |= SC_OP_PROTECT_ENABLE;
3024                 else
3025                         sc->sc_flags &= ~SC_OP_PROTECT_ENABLE;
3026         }
3027
3028         if (changed & BSS_CHANGED_ASSOC) {
3029                 ath_print(common, ATH_DBG_CONFIG, "BSS Changed ASSOC %d\n",
3030                         bss_conf->assoc);
3031                 ath9k_bss_assoc_info(sc, vif, bss_conf);
3032         }
3033
3034         /*
3035          * The HW TSF has to be reset when the beacon interval changes.
3036          * We set the flag here, and ath_beacon_config_ap() would take this
3037          * into account when it gets called through the subsequent
3038          * config_interface() call - with IFCC_BEACON in the changed field.
3039          */
3040
3041         if (changed & BSS_CHANGED_BEACON_INT) {
3042                 sc->sc_flags |= SC_OP_TSF_RESET;
3043                 sc->beacon_interval = bss_conf->beacon_int;
3044         }
3045
3046         mutex_unlock(&sc->mutex);
3047 }
3048
3049 static u64 ath9k_get_tsf(struct ieee80211_hw *hw)
3050 {
3051         u64 tsf;
3052         struct ath_wiphy *aphy = hw->priv;
3053         struct ath_softc *sc = aphy->sc;
3054
3055         mutex_lock(&sc->mutex);
3056         tsf = ath9k_hw_gettsf64(sc->sc_ah);
3057         mutex_unlock(&sc->mutex);
3058
3059         return tsf;
3060 }
3061
3062 static void ath9k_set_tsf(struct ieee80211_hw *hw, u64 tsf)
3063 {
3064         struct ath_wiphy *aphy = hw->priv;
3065         struct ath_softc *sc = aphy->sc;
3066
3067         mutex_lock(&sc->mutex);
3068         ath9k_hw_settsf64(sc->sc_ah, tsf);
3069         mutex_unlock(&sc->mutex);
3070 }
3071
3072 static void ath9k_reset_tsf(struct ieee80211_hw *hw)
3073 {
3074         struct ath_wiphy *aphy = hw->priv;
3075         struct ath_softc *sc = aphy->sc;
3076
3077         mutex_lock(&sc->mutex);
3078
3079         ath9k_ps_wakeup(sc);
3080         ath9k_hw_reset_tsf(sc->sc_ah);
3081         ath9k_ps_restore(sc);
3082
3083         mutex_unlock(&sc->mutex);
3084 }
3085
3086 static int ath9k_ampdu_action(struct ieee80211_hw *hw,
3087                               enum ieee80211_ampdu_mlme_action action,
3088                               struct ieee80211_sta *sta,
3089                               u16 tid, u16 *ssn)
3090 {
3091         struct ath_wiphy *aphy = hw->priv;
3092         struct ath_softc *sc = aphy->sc;
3093         int ret = 0;
3094
3095         switch (action) {
3096         case IEEE80211_AMPDU_RX_START:
3097                 if (!(sc->sc_flags & SC_OP_RXAGGR))
3098                         ret = -ENOTSUPP;
3099                 break;
3100         case IEEE80211_AMPDU_RX_STOP:
3101                 break;
3102         case IEEE80211_AMPDU_TX_START:
3103                 ath_tx_aggr_start(sc, sta, tid, ssn);
3104                 ieee80211_start_tx_ba_cb_irqsafe(hw, sta->addr, tid);
3105                 break;
3106         case IEEE80211_AMPDU_TX_STOP:
3107                 ath_tx_aggr_stop(sc, sta, tid);
3108                 ieee80211_stop_tx_ba_cb_irqsafe(hw, sta->addr, tid);
3109                 break;
3110         case IEEE80211_AMPDU_TX_OPERATIONAL:
3111                 ath_tx_aggr_resume(sc, sta, tid);
3112                 break;
3113         default:
3114                 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
3115                           "Unknown AMPDU action\n");
3116         }
3117
3118         return ret;
3119 }
3120
3121 static void ath9k_sw_scan_start(struct ieee80211_hw *hw)
3122 {
3123         struct ath_wiphy *aphy = hw->priv;
3124         struct ath_softc *sc = aphy->sc;
3125
3126         mutex_lock(&sc->mutex);
3127         if (ath9k_wiphy_scanning(sc)) {
3128                 printk(KERN_DEBUG "ath9k: Two wiphys trying to scan at the "
3129                        "same time\n");
3130                 /*
3131                  * Do not allow the concurrent scanning state for now. This
3132                  * could be improved with scanning control moved into ath9k.
3133                  */
3134                 mutex_unlock(&sc->mutex);
3135                 return;
3136         }
3137
3138         aphy->state = ATH_WIPHY_SCAN;
3139         ath9k_wiphy_pause_all_forced(sc, aphy);
3140
3141         spin_lock_bh(&sc->ani_lock);
3142         sc->sc_flags |= SC_OP_SCANNING;