2 * Copyright (c) 2008-2009 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include <linux/nl80211.h>
21 static char *dev_info = "ath9k";
23 MODULE_AUTHOR("Atheros Communications");
24 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
25 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
26 MODULE_LICENSE("Dual BSD/GPL");
28 static int modparam_nohwcrypt;
29 module_param_named(nohwcrypt, modparam_nohwcrypt, int, 0444);
30 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption");
32 /* We use the hw_value as an index into our private channel structure */
34 #define CHAN2G(_freq, _idx) { \
35 .center_freq = (_freq), \
40 #define CHAN5G(_freq, _idx) { \
41 .band = IEEE80211_BAND_5GHZ, \
42 .center_freq = (_freq), \
47 /* Some 2 GHz radios are actually tunable on 2312-2732
48 * on 5 MHz steps, we support the channels which we know
49 * we have calibration data for all cards though to make
51 static struct ieee80211_channel ath9k_2ghz_chantable[] = {
52 CHAN2G(2412, 0), /* Channel 1 */
53 CHAN2G(2417, 1), /* Channel 2 */
54 CHAN2G(2422, 2), /* Channel 3 */
55 CHAN2G(2427, 3), /* Channel 4 */
56 CHAN2G(2432, 4), /* Channel 5 */
57 CHAN2G(2437, 5), /* Channel 6 */
58 CHAN2G(2442, 6), /* Channel 7 */
59 CHAN2G(2447, 7), /* Channel 8 */
60 CHAN2G(2452, 8), /* Channel 9 */
61 CHAN2G(2457, 9), /* Channel 10 */
62 CHAN2G(2462, 10), /* Channel 11 */
63 CHAN2G(2467, 11), /* Channel 12 */
64 CHAN2G(2472, 12), /* Channel 13 */
65 CHAN2G(2484, 13), /* Channel 14 */
68 /* Some 5 GHz radios are actually tunable on XXXX-YYYY
69 * on 5 MHz steps, we support the channels which we know
70 * we have calibration data for all cards though to make
72 static struct ieee80211_channel ath9k_5ghz_chantable[] = {
73 /* _We_ call this UNII 1 */
74 CHAN5G(5180, 14), /* Channel 36 */
75 CHAN5G(5200, 15), /* Channel 40 */
76 CHAN5G(5220, 16), /* Channel 44 */
77 CHAN5G(5240, 17), /* Channel 48 */
78 /* _We_ call this UNII 2 */
79 CHAN5G(5260, 18), /* Channel 52 */
80 CHAN5G(5280, 19), /* Channel 56 */
81 CHAN5G(5300, 20), /* Channel 60 */
82 CHAN5G(5320, 21), /* Channel 64 */
83 /* _We_ call this "Middle band" */
84 CHAN5G(5500, 22), /* Channel 100 */
85 CHAN5G(5520, 23), /* Channel 104 */
86 CHAN5G(5540, 24), /* Channel 108 */
87 CHAN5G(5560, 25), /* Channel 112 */
88 CHAN5G(5580, 26), /* Channel 116 */
89 CHAN5G(5600, 27), /* Channel 120 */
90 CHAN5G(5620, 28), /* Channel 124 */
91 CHAN5G(5640, 29), /* Channel 128 */
92 CHAN5G(5660, 30), /* Channel 132 */
93 CHAN5G(5680, 31), /* Channel 136 */
94 CHAN5G(5700, 32), /* Channel 140 */
95 /* _We_ call this UNII 3 */
96 CHAN5G(5745, 33), /* Channel 149 */
97 CHAN5G(5765, 34), /* Channel 153 */
98 CHAN5G(5785, 35), /* Channel 157 */
99 CHAN5G(5805, 36), /* Channel 161 */
100 CHAN5G(5825, 37), /* Channel 165 */
103 static void ath_cache_conf_rate(struct ath_softc *sc,
104 struct ieee80211_conf *conf)
106 switch (conf->channel->band) {
107 case IEEE80211_BAND_2GHZ:
108 if (conf_is_ht20(conf))
110 sc->hw_rate_table[ATH9K_MODE_11NG_HT20];
111 else if (conf_is_ht40_minus(conf))
113 sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS];
114 else if (conf_is_ht40_plus(conf))
116 sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS];
119 sc->hw_rate_table[ATH9K_MODE_11G];
121 case IEEE80211_BAND_5GHZ:
122 if (conf_is_ht20(conf))
124 sc->hw_rate_table[ATH9K_MODE_11NA_HT20];
125 else if (conf_is_ht40_minus(conf))
127 sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS];
128 else if (conf_is_ht40_plus(conf))
130 sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS];
133 sc->hw_rate_table[ATH9K_MODE_11A];
141 static void ath_update_txpow(struct ath_softc *sc)
143 struct ath_hw *ah = sc->sc_ah;
146 if (sc->curtxpow != sc->config.txpowlimit) {
147 ath9k_hw_set_txpowerlimit(ah, sc->config.txpowlimit);
148 /* read back in case value is clamped */
149 ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow);
150 sc->curtxpow = txpow;
154 static u8 parse_mpdudensity(u8 mpdudensity)
157 * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
158 * 0 for no restriction
167 switch (mpdudensity) {
173 /* Our lower layer calculations limit our precision to
189 static void ath_setup_rates(struct ath_softc *sc, enum ieee80211_band band)
191 const struct ath_rate_table *rate_table = NULL;
192 struct ieee80211_supported_band *sband;
193 struct ieee80211_rate *rate;
197 case IEEE80211_BAND_2GHZ:
198 rate_table = sc->hw_rate_table[ATH9K_MODE_11G];
200 case IEEE80211_BAND_5GHZ:
201 rate_table = sc->hw_rate_table[ATH9K_MODE_11A];
207 if (rate_table == NULL)
210 sband = &sc->sbands[band];
211 rate = sc->rates[band];
213 if (rate_table->rate_cnt > ATH_RATE_MAX)
214 maxrates = ATH_RATE_MAX;
216 maxrates = rate_table->rate_cnt;
218 for (i = 0; i < maxrates; i++) {
219 rate[i].bitrate = rate_table->info[i].ratekbps / 100;
220 rate[i].hw_value = rate_table->info[i].ratecode;
221 if (rate_table->info[i].short_preamble) {
222 rate[i].hw_value_short = rate_table->info[i].ratecode |
223 rate_table->info[i].short_preamble;
224 rate[i].flags = IEEE80211_RATE_SHORT_PREAMBLE;
228 DPRINTF(sc->sc_ah, ATH_DBG_CONFIG, "Rate: %2dMbps, ratecode: %2d\n",
229 rate[i].bitrate / 10, rate[i].hw_value);
233 static struct ath9k_channel *ath_get_curchannel(struct ath_softc *sc,
234 struct ieee80211_hw *hw)
236 struct ieee80211_channel *curchan = hw->conf.channel;
237 struct ath9k_channel *channel;
240 chan_idx = curchan->hw_value;
241 channel = &sc->sc_ah->channels[chan_idx];
242 ath9k_update_ichannel(sc, hw, channel);
247 * Set/change channels. If the channel is really being changed, it's done
248 * by reseting the chip. To accomplish this we must first cleanup any pending
249 * DMA, then restart stuff.
251 int ath_set_channel(struct ath_softc *sc, struct ieee80211_hw *hw,
252 struct ath9k_channel *hchan)
254 struct ath_hw *ah = sc->sc_ah;
255 bool fastcc = true, stopped;
256 struct ieee80211_channel *channel = hw->conf.channel;
259 if (sc->sc_flags & SC_OP_INVALID)
265 * This is only performed if the channel settings have
268 * To switch channels clear any pending DMA operations;
269 * wait long enough for the RX fifo to drain, reset the
270 * hardware at the new frequency, and then re-enable
271 * the relevant bits of the h/w.
273 ath9k_hw_set_interrupts(ah, 0);
274 ath_drain_all_txq(sc, false);
275 stopped = ath_stoprecv(sc);
277 /* XXX: do not flush receive queue here. We don't want
278 * to flush data frames already in queue because of
279 * changing channel. */
281 if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET))
284 DPRINTF(sc->sc_ah, ATH_DBG_CONFIG,
285 "(%u MHz) -> (%u MHz), chanwidth: %d\n",
286 sc->sc_ah->curchan->channel,
287 channel->center_freq, sc->tx_chan_width);
289 spin_lock_bh(&sc->sc_resetlock);
291 r = ath9k_hw_reset(ah, hchan, fastcc);
293 DPRINTF(sc->sc_ah, ATH_DBG_FATAL,
294 "Unable to reset channel (%u Mhz) "
296 channel->center_freq, r);
297 spin_unlock_bh(&sc->sc_resetlock);
300 spin_unlock_bh(&sc->sc_resetlock);
302 sc->sc_flags &= ~SC_OP_FULL_RESET;
304 if (ath_startrecv(sc) != 0) {
305 DPRINTF(sc->sc_ah, ATH_DBG_FATAL,
306 "Unable to restart recv logic\n");
311 ath_cache_conf_rate(sc, &hw->conf);
312 ath_update_txpow(sc);
313 ath9k_hw_set_interrupts(ah, sc->imask);
316 ath9k_ps_restore(sc);
321 * This routine performs the periodic noise floor calibration function
322 * that is used to adjust and optimize the chip performance. This
323 * takes environmental changes (location, temperature) into account.
324 * When the task is complete, it reschedules itself depending on the
325 * appropriate interval that was calculated.
327 static void ath_ani_calibrate(unsigned long data)
329 struct ath_softc *sc = (struct ath_softc *)data;
330 struct ath_hw *ah = sc->sc_ah;
331 bool longcal = false;
332 bool shortcal = false;
333 bool aniflag = false;
334 unsigned int timestamp = jiffies_to_msecs(jiffies);
335 u32 cal_interval, short_cal_interval;
337 short_cal_interval = (ah->opmode == NL80211_IFTYPE_AP) ?
338 ATH_AP_SHORT_CALINTERVAL : ATH_STA_SHORT_CALINTERVAL;
341 * don't calibrate when we're scanning.
342 * we are most likely not on our home channel.
344 spin_lock(&sc->ani_lock);
345 if (sc->sc_flags & SC_OP_SCANNING)
348 /* Only calibrate if awake */
349 if (sc->sc_ah->power_mode != ATH9K_PM_AWAKE)
354 /* Long calibration runs independently of short calibration. */
355 if ((timestamp - sc->ani.longcal_timer) >= ATH_LONG_CALINTERVAL) {
357 DPRINTF(sc->sc_ah, ATH_DBG_ANI, "longcal @%lu\n", jiffies);
358 sc->ani.longcal_timer = timestamp;
361 /* Short calibration applies only while caldone is false */
362 if (!sc->ani.caldone) {
363 if ((timestamp - sc->ani.shortcal_timer) >= short_cal_interval) {
365 DPRINTF(sc->sc_ah, ATH_DBG_ANI, "shortcal @%lu\n", jiffies);
366 sc->ani.shortcal_timer = timestamp;
367 sc->ani.resetcal_timer = timestamp;
370 if ((timestamp - sc->ani.resetcal_timer) >=
371 ATH_RESTART_CALINTERVAL) {
372 sc->ani.caldone = ath9k_hw_reset_calvalid(ah);
374 sc->ani.resetcal_timer = timestamp;
378 /* Verify whether we must check ANI */
379 if ((timestamp - sc->ani.checkani_timer) >= ATH_ANI_POLLINTERVAL) {
381 sc->ani.checkani_timer = timestamp;
384 /* Skip all processing if there's nothing to do. */
385 if (longcal || shortcal || aniflag) {
386 /* Call ANI routine if necessary */
388 ath9k_hw_ani_monitor(ah, ah->curchan);
390 /* Perform calibration if necessary */
391 if (longcal || shortcal) {
392 sc->ani.caldone = ath9k_hw_calibrate(ah, ah->curchan,
393 sc->rx_chainmask, longcal);
396 sc->ani.noise_floor = ath9k_hw_getchan_noise(ah,
399 DPRINTF(sc->sc_ah, ATH_DBG_ANI," calibrate chan %u/%x nf: %d\n",
400 ah->curchan->channel, ah->curchan->channelFlags,
401 sc->ani.noise_floor);
405 ath9k_ps_restore(sc);
408 spin_unlock(&sc->ani_lock);
410 * Set timer interval based on previous results.
411 * The interval must be the shortest necessary to satisfy ANI,
412 * short calibration and long calibration.
414 cal_interval = ATH_LONG_CALINTERVAL;
415 if (sc->sc_ah->config.enable_ani)
416 cal_interval = min(cal_interval, (u32)ATH_ANI_POLLINTERVAL);
417 if (!sc->ani.caldone)
418 cal_interval = min(cal_interval, (u32)short_cal_interval);
420 mod_timer(&sc->ani.timer, jiffies + msecs_to_jiffies(cal_interval));
423 static void ath_start_ani(struct ath_softc *sc)
425 unsigned long timestamp = jiffies_to_msecs(jiffies);
427 sc->ani.longcal_timer = timestamp;
428 sc->ani.shortcal_timer = timestamp;
429 sc->ani.checkani_timer = timestamp;
431 mod_timer(&sc->ani.timer,
432 jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
436 * Update tx/rx chainmask. For legacy association,
437 * hard code chainmask to 1x1, for 11n association, use
438 * the chainmask configuration, for bt coexistence, use
439 * the chainmask configuration even in legacy mode.
441 void ath_update_chainmask(struct ath_softc *sc, int is_ht)
443 struct ath_hw *ah = sc->sc_ah;
445 if ((sc->sc_flags & SC_OP_SCANNING) || is_ht ||
446 (ah->btcoex_info.btcoex_scheme != ATH_BTCOEX_CFG_NONE)) {
447 sc->tx_chainmask = sc->sc_ah->caps.tx_chainmask;
448 sc->rx_chainmask = sc->sc_ah->caps.rx_chainmask;
450 sc->tx_chainmask = 1;
451 sc->rx_chainmask = 1;
454 DPRINTF(ah, ATH_DBG_CONFIG, "tx chmask: %d, rx chmask: %d\n",
455 sc->tx_chainmask, sc->rx_chainmask);
458 static void ath_node_attach(struct ath_softc *sc, struct ieee80211_sta *sta)
462 an = (struct ath_node *)sta->drv_priv;
464 if (sc->sc_flags & SC_OP_TXAGGR) {
465 ath_tx_node_init(sc, an);
466 an->maxampdu = 1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
467 sta->ht_cap.ampdu_factor);
468 an->mpdudensity = parse_mpdudensity(sta->ht_cap.ampdu_density);
469 an->last_rssi = ATH_RSSI_DUMMY_MARKER;
473 static void ath_node_detach(struct ath_softc *sc, struct ieee80211_sta *sta)
475 struct ath_node *an = (struct ath_node *)sta->drv_priv;
477 if (sc->sc_flags & SC_OP_TXAGGR)
478 ath_tx_node_cleanup(sc, an);
481 static void ath9k_tasklet(unsigned long data)
483 struct ath_softc *sc = (struct ath_softc *)data;
484 struct ath_hw *ah = sc->sc_ah;
486 u32 status = sc->intrstatus;
490 if (status & ATH9K_INT_FATAL) {
491 ath_reset(sc, false);
492 ath9k_ps_restore(sc);
496 if (status & (ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) {
497 spin_lock_bh(&sc->rx.rxflushlock);
498 ath_rx_tasklet(sc, 0);
499 spin_unlock_bh(&sc->rx.rxflushlock);
502 if (status & ATH9K_INT_TX)
505 if ((status & ATH9K_INT_TSFOOR) && sc->ps_enabled) {
507 * TSF sync does not look correct; remain awake to sync with
510 DPRINTF(ah, ATH_DBG_PS, "TSFOOR - Sync with next Beacon\n");
511 sc->sc_flags |= SC_OP_WAIT_FOR_BEACON | SC_OP_BEACON_SYNC;
514 if (ah->btcoex_info.btcoex_scheme == ATH_BTCOEX_CFG_3WIRE)
515 if (status & ATH9K_INT_GENTIMER)
516 ath_gen_timer_isr(sc->sc_ah);
518 /* re-enable hardware interrupt */
519 ath9k_hw_set_interrupts(ah, sc->imask);
520 ath9k_ps_restore(sc);
523 irqreturn_t ath_isr(int irq, void *dev)
525 #define SCHED_INTR ( \
536 struct ath_softc *sc = dev;
537 struct ath_hw *ah = sc->sc_ah;
538 enum ath9k_int status;
542 * The hardware is not ready/present, don't
543 * touch anything. Note this can happen early
544 * on if the IRQ is shared.
546 if (sc->sc_flags & SC_OP_INVALID)
550 /* shared irq, not for us */
552 if (!ath9k_hw_intrpend(ah))
556 * Figure out the reason(s) for the interrupt. Note
557 * that the hal returns a pseudo-ISR that may include
558 * bits we haven't explicitly enabled so we mask the
559 * value to insure we only process bits we requested.
561 ath9k_hw_getisr(ah, &status); /* NB: clears ISR too */
562 status &= sc->imask; /* discard unasked-for bits */
565 * If there are no status bits set, then this interrupt was not
566 * for me (should have been caught above).
571 /* Cache the status */
572 sc->intrstatus = status;
574 if (status & SCHED_INTR)
578 * If a FATAL or RXORN interrupt is received, we have to reset the
581 if (status & (ATH9K_INT_FATAL | ATH9K_INT_RXORN))
584 if (status & ATH9K_INT_SWBA)
585 tasklet_schedule(&sc->bcon_tasklet);
587 if (status & ATH9K_INT_TXURN)
588 ath9k_hw_updatetxtriglevel(ah, true);
590 if (status & ATH9K_INT_MIB) {
592 * Disable interrupts until we service the MIB
593 * interrupt; otherwise it will continue to
596 ath9k_hw_set_interrupts(ah, 0);
598 * Let the hal handle the event. We assume
599 * it will clear whatever condition caused
602 ath9k_hw_procmibevent(ah);
603 ath9k_hw_set_interrupts(ah, sc->imask);
606 if (!(ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
607 if (status & ATH9K_INT_TIM_TIMER) {
608 /* Clear RxAbort bit so that we can
610 ath9k_hw_setpower(ah, ATH9K_PM_AWAKE);
611 ath9k_hw_setrxabort(sc->sc_ah, 0);
612 sc->sc_flags |= SC_OP_WAIT_FOR_BEACON;
617 ath_debug_stat_interrupt(sc, status);
620 /* turn off every interrupt except SWBA */
621 ath9k_hw_set_interrupts(ah, (sc->imask & ATH9K_INT_SWBA));
622 tasklet_schedule(&sc->intr_tq);
630 static u32 ath_get_extchanmode(struct ath_softc *sc,
631 struct ieee80211_channel *chan,
632 enum nl80211_channel_type channel_type)
636 switch (chan->band) {
637 case IEEE80211_BAND_2GHZ:
638 switch(channel_type) {
639 case NL80211_CHAN_NO_HT:
640 case NL80211_CHAN_HT20:
641 chanmode = CHANNEL_G_HT20;
643 case NL80211_CHAN_HT40PLUS:
644 chanmode = CHANNEL_G_HT40PLUS;
646 case NL80211_CHAN_HT40MINUS:
647 chanmode = CHANNEL_G_HT40MINUS;
651 case IEEE80211_BAND_5GHZ:
652 switch(channel_type) {
653 case NL80211_CHAN_NO_HT:
654 case NL80211_CHAN_HT20:
655 chanmode = CHANNEL_A_HT20;
657 case NL80211_CHAN_HT40PLUS:
658 chanmode = CHANNEL_A_HT40PLUS;
660 case NL80211_CHAN_HT40MINUS:
661 chanmode = CHANNEL_A_HT40MINUS;
672 static int ath_setkey_tkip(struct ath_softc *sc, u16 keyix, const u8 *key,
673 struct ath9k_keyval *hk, const u8 *addr,
679 key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
680 key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
684 * Group key installation - only two key cache entries are used
685 * regardless of splitmic capability since group key is only
686 * used either for TX or RX.
689 memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
690 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_mic));
692 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
693 memcpy(hk->kv_txmic, key_rxmic, sizeof(hk->kv_mic));
695 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
698 /* TX and RX keys share the same key cache entry. */
699 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
700 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
701 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
704 /* Separate key cache entries for TX and RX */
706 /* TX key goes at first index, RX key at +32. */
707 memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
708 if (!ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, NULL)) {
709 /* TX MIC entry failed. No need to proceed further */
710 DPRINTF(sc->sc_ah, ATH_DBG_FATAL,
711 "Setting TX MIC Key Failed\n");
715 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
716 /* XXX delete tx key on failure? */
717 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix + 32, hk, addr);
720 static int ath_reserve_key_cache_slot_tkip(struct ath_softc *sc)
724 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
725 if (test_bit(i, sc->keymap) ||
726 test_bit(i + 64, sc->keymap))
727 continue; /* At least one part of TKIP key allocated */
729 (test_bit(i + 32, sc->keymap) ||
730 test_bit(i + 64 + 32, sc->keymap)))
731 continue; /* At least one part of TKIP key allocated */
733 /* Found a free slot for a TKIP key */
739 static int ath_reserve_key_cache_slot(struct ath_softc *sc)
743 /* First, try to find slots that would not be available for TKIP. */
745 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 4; i++) {
746 if (!test_bit(i, sc->keymap) &&
747 (test_bit(i + 32, sc->keymap) ||
748 test_bit(i + 64, sc->keymap) ||
749 test_bit(i + 64 + 32, sc->keymap)))
751 if (!test_bit(i + 32, sc->keymap) &&
752 (test_bit(i, sc->keymap) ||
753 test_bit(i + 64, sc->keymap) ||
754 test_bit(i + 64 + 32, sc->keymap)))
756 if (!test_bit(i + 64, sc->keymap) &&
757 (test_bit(i , sc->keymap) ||
758 test_bit(i + 32, sc->keymap) ||
759 test_bit(i + 64 + 32, sc->keymap)))
761 if (!test_bit(i + 64 + 32, sc->keymap) &&
762 (test_bit(i, sc->keymap) ||
763 test_bit(i + 32, sc->keymap) ||
764 test_bit(i + 64, sc->keymap)))
768 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
769 if (!test_bit(i, sc->keymap) &&
770 test_bit(i + 64, sc->keymap))
772 if (test_bit(i, sc->keymap) &&
773 !test_bit(i + 64, sc->keymap))
778 /* No partially used TKIP slots, pick any available slot */
779 for (i = IEEE80211_WEP_NKID; i < sc->keymax; i++) {
780 /* Do not allow slots that could be needed for TKIP group keys
781 * to be used. This limitation could be removed if we know that
782 * TKIP will not be used. */
783 if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
786 if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
788 if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
792 if (!test_bit(i, sc->keymap))
793 return i; /* Found a free slot for a key */
796 /* No free slot found */
800 static int ath_key_config(struct ath_softc *sc,
801 struct ieee80211_vif *vif,
802 struct ieee80211_sta *sta,
803 struct ieee80211_key_conf *key)
805 struct ath9k_keyval hk;
806 const u8 *mac = NULL;
810 memset(&hk, 0, sizeof(hk));
814 hk.kv_type = ATH9K_CIPHER_WEP;
817 hk.kv_type = ATH9K_CIPHER_TKIP;
820 hk.kv_type = ATH9K_CIPHER_AES_CCM;
826 hk.kv_len = key->keylen;
827 memcpy(hk.kv_val, key->key, key->keylen);
829 if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
830 /* For now, use the default keys for broadcast keys. This may
831 * need to change with virtual interfaces. */
833 } else if (key->keyidx) {
838 if (vif->type != NL80211_IFTYPE_AP) {
839 /* Only keyidx 0 should be used with unicast key, but
840 * allow this for client mode for now. */
849 if (key->alg == ALG_TKIP)
850 idx = ath_reserve_key_cache_slot_tkip(sc);
852 idx = ath_reserve_key_cache_slot(sc);
854 return -ENOSPC; /* no free key cache entries */
857 if (key->alg == ALG_TKIP)
858 ret = ath_setkey_tkip(sc, idx, key->key, &hk, mac,
859 vif->type == NL80211_IFTYPE_AP);
861 ret = ath9k_hw_set_keycache_entry(sc->sc_ah, idx, &hk, mac);
866 set_bit(idx, sc->keymap);
867 if (key->alg == ALG_TKIP) {
868 set_bit(idx + 64, sc->keymap);
870 set_bit(idx + 32, sc->keymap);
871 set_bit(idx + 64 + 32, sc->keymap);
878 static void ath_key_delete(struct ath_softc *sc, struct ieee80211_key_conf *key)
880 ath9k_hw_keyreset(sc->sc_ah, key->hw_key_idx);
881 if (key->hw_key_idx < IEEE80211_WEP_NKID)
884 clear_bit(key->hw_key_idx, sc->keymap);
885 if (key->alg != ALG_TKIP)
888 clear_bit(key->hw_key_idx + 64, sc->keymap);
890 clear_bit(key->hw_key_idx + 32, sc->keymap);
891 clear_bit(key->hw_key_idx + 64 + 32, sc->keymap);
895 static void setup_ht_cap(struct ath_softc *sc,
896 struct ieee80211_sta_ht_cap *ht_info)
898 u8 tx_streams, rx_streams;
900 ht_info->ht_supported = true;
901 ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
902 IEEE80211_HT_CAP_SM_PS |
903 IEEE80211_HT_CAP_SGI_40 |
904 IEEE80211_HT_CAP_DSSSCCK40;
906 ht_info->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
907 ht_info->ampdu_density = IEEE80211_HT_MPDU_DENSITY_8;
909 /* set up supported mcs set */
910 memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
911 tx_streams = !(sc->tx_chainmask & (sc->tx_chainmask - 1)) ? 1 : 2;
912 rx_streams = !(sc->rx_chainmask & (sc->rx_chainmask - 1)) ? 1 : 2;
914 if (tx_streams != rx_streams) {
915 DPRINTF(sc->sc_ah, ATH_DBG_CONFIG, "TX streams %d, RX streams: %d\n",
916 tx_streams, rx_streams);
917 ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_RX_DIFF;
918 ht_info->mcs.tx_params |= ((tx_streams - 1) <<
919 IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT);
922 ht_info->mcs.rx_mask[0] = 0xff;
924 ht_info->mcs.rx_mask[1] = 0xff;
926 ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_DEFINED;
929 static void ath9k_bss_assoc_info(struct ath_softc *sc,
930 struct ieee80211_vif *vif,
931 struct ieee80211_bss_conf *bss_conf)
934 if (bss_conf->assoc) {
935 DPRINTF(sc->sc_ah, ATH_DBG_CONFIG, "Bss Info ASSOC %d, bssid: %pM\n",
936 bss_conf->aid, sc->curbssid);
938 /* New association, store aid */
939 sc->curaid = bss_conf->aid;
940 ath9k_hw_write_associd(sc);
943 * Request a re-configuration of Beacon related timers
944 * on the receipt of the first Beacon frame (i.e.,
945 * after time sync with the AP).
947 sc->sc_flags |= SC_OP_BEACON_SYNC;
949 /* Configure the beacon */
950 ath_beacon_config(sc, vif);
952 /* Reset rssi stats */
953 sc->sc_ah->stats.avgbrssi = ATH_RSSI_DUMMY_MARKER;
957 DPRINTF(sc->sc_ah, ATH_DBG_CONFIG, "Bss Info DISASSOC\n");
960 del_timer_sync(&sc->ani.timer);
964 /********************************/
966 /********************************/
968 static void ath_led_blink_work(struct work_struct *work)
970 struct ath_softc *sc = container_of(work, struct ath_softc,
971 ath_led_blink_work.work);
973 if (!(sc->sc_flags & SC_OP_LED_ASSOCIATED))
976 if ((sc->led_on_duration == ATH_LED_ON_DURATION_IDLE) ||
977 (sc->led_off_duration == ATH_LED_OFF_DURATION_IDLE))
978 ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin, 0);
980 ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin,
981 (sc->sc_flags & SC_OP_LED_ON) ? 1 : 0);
983 ieee80211_queue_delayed_work(sc->hw,
984 &sc->ath_led_blink_work,
985 (sc->sc_flags & SC_OP_LED_ON) ?
986 msecs_to_jiffies(sc->led_off_duration) :
987 msecs_to_jiffies(sc->led_on_duration));
989 sc->led_on_duration = sc->led_on_cnt ?
990 max((ATH_LED_ON_DURATION_IDLE - sc->led_on_cnt), 25) :
991 ATH_LED_ON_DURATION_IDLE;
992 sc->led_off_duration = sc->led_off_cnt ?
993 max((ATH_LED_OFF_DURATION_IDLE - sc->led_off_cnt), 10) :
994 ATH_LED_OFF_DURATION_IDLE;
995 sc->led_on_cnt = sc->led_off_cnt = 0;
996 if (sc->sc_flags & SC_OP_LED_ON)
997 sc->sc_flags &= ~SC_OP_LED_ON;
999 sc->sc_flags |= SC_OP_LED_ON;
1002 static void ath_led_brightness(struct led_classdev *led_cdev,
1003 enum led_brightness brightness)
1005 struct ath_led *led = container_of(led_cdev, struct ath_led, led_cdev);
1006 struct ath_softc *sc = led->sc;
1008 switch (brightness) {
1010 if (led->led_type == ATH_LED_ASSOC ||
1011 led->led_type == ATH_LED_RADIO) {
1012 ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin,
1013 (led->led_type == ATH_LED_RADIO));
1014 sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
1015 if (led->led_type == ATH_LED_RADIO)
1016 sc->sc_flags &= ~SC_OP_LED_ON;
1022 if (led->led_type == ATH_LED_ASSOC) {
1023 sc->sc_flags |= SC_OP_LED_ASSOCIATED;
1024 ieee80211_queue_delayed_work(sc->hw,
1025 &sc->ath_led_blink_work, 0);
1026 } else if (led->led_type == ATH_LED_RADIO) {
1027 ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin, 0);
1028 sc->sc_flags |= SC_OP_LED_ON;
1038 static int ath_register_led(struct ath_softc *sc, struct ath_led *led,
1044 led->led_cdev.name = led->name;
1045 led->led_cdev.default_trigger = trigger;
1046 led->led_cdev.brightness_set = ath_led_brightness;
1048 ret = led_classdev_register(wiphy_dev(sc->hw->wiphy), &led->led_cdev);
1050 DPRINTF(sc->sc_ah, ATH_DBG_FATAL,
1051 "Failed to register led:%s", led->name);
1053 led->registered = 1;
1057 static void ath_unregister_led(struct ath_led *led)
1059 if (led->registered) {
1060 led_classdev_unregister(&led->led_cdev);
1061 led->registered = 0;
1065 static void ath_deinit_leds(struct ath_softc *sc)
1067 ath_unregister_led(&sc->assoc_led);
1068 sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
1069 ath_unregister_led(&sc->tx_led);
1070 ath_unregister_led(&sc->rx_led);
1071 ath_unregister_led(&sc->radio_led);
1072 ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin, 1);
1075 static void ath_init_leds(struct ath_softc *sc)
1080 if (AR_SREV_9287(sc->sc_ah))
1081 sc->sc_ah->led_pin = ATH_LED_PIN_9287;
1083 sc->sc_ah->led_pin = ATH_LED_PIN_DEF;
1085 /* Configure gpio 1 for output */
1086 ath9k_hw_cfg_output(sc->sc_ah, sc->sc_ah->led_pin,
1087 AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1088 /* LED off, active low */
1089 ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin, 1);
1091 INIT_DELAYED_WORK(&sc->ath_led_blink_work, ath_led_blink_work);
1093 trigger = ieee80211_get_radio_led_name(sc->hw);
1094 snprintf(sc->radio_led.name, sizeof(sc->radio_led.name),
1095 "ath9k-%s::radio", wiphy_name(sc->hw->wiphy));
1096 ret = ath_register_led(sc, &sc->radio_led, trigger);
1097 sc->radio_led.led_type = ATH_LED_RADIO;
1101 trigger = ieee80211_get_assoc_led_name(sc->hw);
1102 snprintf(sc->assoc_led.name, sizeof(sc->assoc_led.name),
1103 "ath9k-%s::assoc", wiphy_name(sc->hw->wiphy));
1104 ret = ath_register_led(sc, &sc->assoc_led, trigger);
1105 sc->assoc_led.led_type = ATH_LED_ASSOC;
1109 trigger = ieee80211_get_tx_led_name(sc->hw);
1110 snprintf(sc->tx_led.name, sizeof(sc->tx_led.name),
1111 "ath9k-%s::tx", wiphy_name(sc->hw->wiphy));
1112 ret = ath_register_led(sc, &sc->tx_led, trigger);
1113 sc->tx_led.led_type = ATH_LED_TX;
1117 trigger = ieee80211_get_rx_led_name(sc->hw);
1118 snprintf(sc->rx_led.name, sizeof(sc->rx_led.name),
1119 "ath9k-%s::rx", wiphy_name(sc->hw->wiphy));
1120 ret = ath_register_led(sc, &sc->rx_led, trigger);
1121 sc->rx_led.led_type = ATH_LED_RX;
1128 cancel_delayed_work_sync(&sc->ath_led_blink_work);
1129 ath_deinit_leds(sc);
1132 void ath_radio_enable(struct ath_softc *sc)
1134 struct ath_hw *ah = sc->sc_ah;
1135 struct ieee80211_channel *channel = sc->hw->conf.channel;
1138 ath9k_ps_wakeup(sc);
1139 ath9k_hw_configpcipowersave(ah, 0, 0);
1142 ah->curchan = ath_get_curchannel(sc, sc->hw);
1144 spin_lock_bh(&sc->sc_resetlock);
1145 r = ath9k_hw_reset(ah, ah->curchan, false);
1147 DPRINTF(sc->sc_ah, ATH_DBG_FATAL,
1148 "Unable to reset channel %u (%uMhz) ",
1149 "reset status %d\n",
1150 channel->center_freq, r);
1152 spin_unlock_bh(&sc->sc_resetlock);
1154 ath_update_txpow(sc);
1155 if (ath_startrecv(sc) != 0) {
1156 DPRINTF(sc->sc_ah, ATH_DBG_FATAL,
1157 "Unable to restart recv logic\n");
1161 if (sc->sc_flags & SC_OP_BEACONS)
1162 ath_beacon_config(sc, NULL); /* restart beacons */
1164 /* Re-Enable interrupts */
1165 ath9k_hw_set_interrupts(ah, sc->imask);
1168 ath9k_hw_cfg_output(ah, ah->led_pin,
1169 AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1170 ath9k_hw_set_gpio(ah, ah->led_pin, 0);
1172 ieee80211_wake_queues(sc->hw);
1173 ath9k_ps_restore(sc);
1176 void ath_radio_disable(struct ath_softc *sc)
1178 struct ath_hw *ah = sc->sc_ah;
1179 struct ieee80211_channel *channel = sc->hw->conf.channel;
1182 ath9k_ps_wakeup(sc);
1183 ieee80211_stop_queues(sc->hw);
1186 ath9k_hw_set_gpio(ah, ah->led_pin, 1);
1187 ath9k_hw_cfg_gpio_input(ah, ah->led_pin);
1189 /* Disable interrupts */
1190 ath9k_hw_set_interrupts(ah, 0);
1192 ath_drain_all_txq(sc, false); /* clear pending tx frames */
1193 ath_stoprecv(sc); /* turn off frame recv */
1194 ath_flushrecv(sc); /* flush recv queue */
1197 ah->curchan = ath_get_curchannel(sc, sc->hw);
1199 spin_lock_bh(&sc->sc_resetlock);
1200 r = ath9k_hw_reset(ah, ah->curchan, false);
1202 DPRINTF(sc->sc_ah, ATH_DBG_FATAL,
1203 "Unable to reset channel %u (%uMhz) "
1204 "reset status %d\n",
1205 channel->center_freq, r);
1207 spin_unlock_bh(&sc->sc_resetlock);
1209 ath9k_hw_phy_disable(ah);
1210 ath9k_hw_configpcipowersave(ah, 1, 1);
1211 ath9k_ps_restore(sc);
1212 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1215 /*******************/
1217 /*******************/
1219 static bool ath_is_rfkill_set(struct ath_softc *sc)
1221 struct ath_hw *ah = sc->sc_ah;
1223 return ath9k_hw_gpio_get(ah, ah->rfkill_gpio) ==
1224 ah->rfkill_polarity;
1227 static void ath9k_rfkill_poll_state(struct ieee80211_hw *hw)
1229 struct ath_wiphy *aphy = hw->priv;
1230 struct ath_softc *sc = aphy->sc;
1231 bool blocked = !!ath_is_rfkill_set(sc);
1233 wiphy_rfkill_set_hw_state(hw->wiphy, blocked);
1236 static void ath_start_rfkill_poll(struct ath_softc *sc)
1238 struct ath_hw *ah = sc->sc_ah;
1240 if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1241 wiphy_rfkill_start_polling(sc->hw->wiphy);
1244 void ath_cleanup(struct ath_softc *sc)
1247 free_irq(sc->irq, sc);
1248 ath_bus_cleanup(sc);
1249 kfree(sc->sec_wiphy);
1250 ieee80211_free_hw(sc->hw);
1253 void ath_detach(struct ath_softc *sc)
1255 struct ieee80211_hw *hw = sc->hw;
1256 struct ath_hw *ah = sc->sc_ah;
1259 ath9k_ps_wakeup(sc);
1261 dev_dbg(sc->dev, "Detach ATH hw\n");
1263 ath_deinit_leds(sc);
1264 wiphy_rfkill_stop_polling(sc->hw->wiphy);
1266 for (i = 0; i < sc->num_sec_wiphy; i++) {
1267 struct ath_wiphy *aphy = sc->sec_wiphy[i];
1270 sc->sec_wiphy[i] = NULL;
1271 ieee80211_unregister_hw(aphy->hw);
1272 ieee80211_free_hw(aphy->hw);
1274 ieee80211_unregister_hw(hw);
1278 tasklet_kill(&sc->intr_tq);
1279 tasklet_kill(&sc->bcon_tasklet);
1281 if (!(sc->sc_flags & SC_OP_INVALID))
1282 ath9k_hw_setpower(ah, ATH9K_PM_AWAKE);
1284 /* cleanup tx queues */
1285 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1286 if (ATH_TXQ_SETUP(sc, i))
1287 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1289 if ((sc->btcoex.no_stomp_timer) &&
1290 ah->btcoex_info.btcoex_scheme == ATH_BTCOEX_CFG_3WIRE)
1291 ath_gen_timer_free(ah, sc->btcoex.no_stomp_timer);
1293 ath9k_hw_detach(ah);
1294 ath9k_exit_debug(ah);
1298 static int ath9k_reg_notifier(struct wiphy *wiphy,
1299 struct regulatory_request *request)
1301 struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
1302 struct ath_wiphy *aphy = hw->priv;
1303 struct ath_softc *sc = aphy->sc;
1304 struct ath_regulatory *reg = &sc->common.regulatory;
1306 return ath_reg_notifier_apply(wiphy, request, reg);
1310 * Detects if there is any priority bt traffic
1312 static void ath_detect_bt_priority(struct ath_softc *sc)
1314 struct ath_btcoex *btcoex = &sc->btcoex;
1315 struct ath_hw *ah = sc->sc_ah;
1317 if (ath9k_hw_gpio_get(sc->sc_ah, ah->btcoex_info.btpriority_gpio))
1318 btcoex->bt_priority_cnt++;
1320 if (time_after(jiffies, btcoex->bt_priority_time +
1321 msecs_to_jiffies(ATH_BT_PRIORITY_TIME_THRESHOLD))) {
1322 if (btcoex->bt_priority_cnt >= ATH_BT_CNT_THRESHOLD) {
1323 DPRINTF(sc->sc_ah, ATH_DBG_BTCOEX,
1324 "BT priority traffic detected");
1325 sc->sc_flags |= SC_OP_BT_PRIORITY_DETECTED;
1327 sc->sc_flags &= ~SC_OP_BT_PRIORITY_DETECTED;
1330 btcoex->bt_priority_cnt = 0;
1331 btcoex->bt_priority_time = jiffies;
1335 static void ath_btcoex_set_weight(struct ath_btcoex_info *btcoex_info,
1339 btcoex_info->bt_coex_weights = SM(bt_weight, AR_BTCOEX_BT_WGHT) |
1340 SM(wlan_weight, AR_BTCOEX_WL_WGHT);
1343 static void ath9k_hw_btcoex_init_weight(struct ath_hw *ah)
1345 ath_btcoex_set_weight(&ah->btcoex_info, AR_BT_COEX_WGHT,
1346 AR_STOMP_LOW_WLAN_WGHT);
1350 * Configures appropriate weight based on stomp type.
1352 static void ath_btcoex_bt_stomp(struct ath_softc *sc,
1353 struct ath_btcoex_info *btinfo,
1357 switch (stomp_type) {
1358 case ATH_BTCOEX_STOMP_ALL:
1359 ath_btcoex_set_weight(btinfo, AR_BT_COEX_WGHT,
1360 AR_STOMP_ALL_WLAN_WGHT);
1362 case ATH_BTCOEX_STOMP_LOW:
1363 ath_btcoex_set_weight(btinfo, AR_BT_COEX_WGHT,
1364 AR_STOMP_LOW_WLAN_WGHT);
1366 case ATH_BTCOEX_STOMP_NONE:
1367 ath_btcoex_set_weight(btinfo, AR_BT_COEX_WGHT,
1368 AR_STOMP_NONE_WLAN_WGHT);
1371 DPRINTF(sc->sc_ah, ATH_DBG_BTCOEX, "Invalid Stomptype\n");
1375 ath9k_hw_btcoex_enable(sc->sc_ah);
1379 * This is the master bt coex timer which runs for every
1380 * 45ms, bt traffic will be given priority during 55% of this
1381 * period while wlan gets remaining 45%
1383 static void ath_btcoex_period_timer(unsigned long data)
1385 struct ath_softc *sc = (struct ath_softc *) data;
1386 struct ath_hw *ah = sc->sc_ah;
1387 struct ath_btcoex *btcoex = &sc->btcoex;
1388 struct ath_btcoex_info *btinfo = &ah->btcoex_info;
1390 ath_detect_bt_priority(sc);
1392 spin_lock_bh(&btcoex->btcoex_lock);
1394 ath_btcoex_bt_stomp(sc, btinfo, btcoex->bt_stomp_type);
1396 spin_unlock_bh(&btcoex->btcoex_lock);
1398 if (btcoex->btcoex_period != btcoex->btcoex_no_stomp) {
1399 if (btcoex->hw_timer_enabled)
1400 ath_gen_timer_stop(ah, btcoex->no_stomp_timer);
1402 ath_gen_timer_start(ah,
1403 btcoex->no_stomp_timer,
1404 (ath9k_hw_gettsf32(ah) +
1405 btcoex->btcoex_no_stomp),
1406 btcoex->btcoex_no_stomp * 10);
1407 btcoex->hw_timer_enabled = true;
1410 mod_timer(&btcoex->period_timer, jiffies +
1411 msecs_to_jiffies(ATH_BTCOEX_DEF_BT_PERIOD));
1415 * Generic tsf based hw timer which configures weight
1416 * registers to time slice between wlan and bt traffic
1418 static void ath_btcoex_no_stomp_timer(void *arg)
1420 struct ath_softc *sc = (struct ath_softc *)arg;
1421 struct ath_hw *ah = sc->sc_ah;
1422 struct ath_btcoex *btcoex = &sc->btcoex;
1423 struct ath_btcoex_info *btinfo = &ah->btcoex_info;
1425 DPRINTF(ah, ATH_DBG_BTCOEX, "no stomp timer running \n");
1427 spin_lock_bh(&btcoex->btcoex_lock);
1429 if (btcoex->bt_stomp_type == ATH_BTCOEX_STOMP_LOW)
1430 ath_btcoex_bt_stomp(sc, btinfo, ATH_BTCOEX_STOMP_NONE);
1431 else if (btcoex->bt_stomp_type == ATH_BTCOEX_STOMP_ALL)
1432 ath_btcoex_bt_stomp(sc, btinfo, ATH_BTCOEX_STOMP_LOW);
1434 spin_unlock_bh(&btcoex->btcoex_lock);
1437 static int ath_init_btcoex_timer(struct ath_softc *sc)
1439 struct ath_btcoex *btcoex = &sc->btcoex;
1441 btcoex->btcoex_period = ATH_BTCOEX_DEF_BT_PERIOD * 1000;
1442 btcoex->btcoex_no_stomp = (100 - ATH_BTCOEX_DEF_DUTY_CYCLE) *
1443 btcoex->btcoex_period / 100;
1445 setup_timer(&btcoex->period_timer, ath_btcoex_period_timer,
1446 (unsigned long) sc);
1448 spin_lock_init(&btcoex->btcoex_lock);
1450 btcoex->no_stomp_timer = ath_gen_timer_alloc(sc->sc_ah,
1451 ath_btcoex_no_stomp_timer,
1452 ath_btcoex_no_stomp_timer,
1453 (void *) sc, AR_FIRST_NDP_TIMER);
1455 if (!btcoex->no_stomp_timer)
1462 * Initialize and fill ath_softc, ath_sofct is the
1463 * "Software Carrier" struct. Historically it has existed
1464 * to allow the separation between hardware specific
1465 * variables (now in ath_hw) and driver specific variables.
1467 static int ath_init_softc(u16 devid, struct ath_softc *sc, u16 subsysid)
1469 struct ath_hw *ah = NULL;
1474 /* XXX: hardware will not be ready until ath_open() being called */
1475 sc->sc_flags |= SC_OP_INVALID;
1477 spin_lock_init(&sc->wiphy_lock);
1478 spin_lock_init(&sc->sc_resetlock);
1479 spin_lock_init(&sc->sc_serial_rw);
1480 spin_lock_init(&sc->ani_lock);
1481 spin_lock_init(&sc->sc_pm_lock);
1482 mutex_init(&sc->mutex);
1483 tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
1484 tasklet_init(&sc->bcon_tasklet, ath_beacon_tasklet,
1488 * Cache line size is used to size and align various
1489 * structures used to communicate with the hardware.
1491 ath_read_cachesize(sc, &csz);
1492 /* XXX assert csz is non-zero */
1493 sc->common.cachelsz = csz << 2; /* convert to bytes */
1495 ah = kzalloc(sizeof(struct ath_hw), GFP_KERNEL);
1502 ah->hw_version.devid = devid;
1503 ah->hw_version.subsysid = subsysid;
1506 if (ath9k_init_debug(ah) < 0)
1507 dev_err(sc->dev, "Unable to create debugfs files\n");
1509 r = ath9k_hw_init(ah);
1511 DPRINTF(ah, ATH_DBG_FATAL,
1512 "Unable to initialize hardware; "
1513 "initialization status: %d\n", r);
1517 /* Get the hardware key cache size. */
1518 sc->keymax = ah->caps.keycache_size;
1519 if (sc->keymax > ATH_KEYMAX) {
1520 DPRINTF(ah, ATH_DBG_ANY,
1521 "Warning, using only %u entries in %u key cache\n",
1522 ATH_KEYMAX, sc->keymax);
1523 sc->keymax = ATH_KEYMAX;
1527 * Reset the key cache since some parts do not
1528 * reset the contents on initial power up.
1530 for (i = 0; i < sc->keymax; i++)
1531 ath9k_hw_keyreset(ah, (u16) i);
1533 /* default to MONITOR mode */
1534 sc->sc_ah->opmode = NL80211_IFTYPE_MONITOR;
1536 /* Setup rate tables */
1538 ath_rate_attach(sc);
1539 ath_setup_rates(sc, IEEE80211_BAND_2GHZ);
1540 ath_setup_rates(sc, IEEE80211_BAND_5GHZ);
1543 * Allocate hardware transmit queues: one queue for
1544 * beacon frames and one data queue for each QoS
1545 * priority. Note that the hal handles reseting
1546 * these queues at the needed time.
1548 sc->beacon.beaconq = ath_beaconq_setup(ah);
1549 if (sc->beacon.beaconq == -1) {
1550 DPRINTF(ah, ATH_DBG_FATAL,
1551 "Unable to setup a beacon xmit queue\n");
1555 sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
1556 if (sc->beacon.cabq == NULL) {
1557 DPRINTF(ah, ATH_DBG_FATAL,
1558 "Unable to setup CAB xmit queue\n");
1563 sc->config.cabqReadytime = ATH_CABQ_READY_TIME;
1564 ath_cabq_update(sc);
1566 for (i = 0; i < ARRAY_SIZE(sc->tx.hwq_map); i++)
1567 sc->tx.hwq_map[i] = -1;
1569 /* Setup data queues */
1570 /* NB: ensure BK queue is the lowest priority h/w queue */
1571 if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) {
1572 DPRINTF(ah, ATH_DBG_FATAL,
1573 "Unable to setup xmit queue for BK traffic\n");
1578 if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) {
1579 DPRINTF(ah, ATH_DBG_FATAL,
1580 "Unable to setup xmit queue for BE traffic\n");
1584 if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) {
1585 DPRINTF(ah, ATH_DBG_FATAL,
1586 "Unable to setup xmit queue for VI traffic\n");
1590 if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) {
1591 DPRINTF(ah, ATH_DBG_FATAL,
1592 "Unable to setup xmit queue for VO traffic\n");
1597 /* Initializes the noise floor to a reasonable default value.
1598 * Later on this will be updated during ANI processing. */
1600 sc->ani.noise_floor = ATH_DEFAULT_NOISE_FLOOR;
1601 setup_timer(&sc->ani.timer, ath_ani_calibrate, (unsigned long)sc);
1603 if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1604 ATH9K_CIPHER_TKIP, NULL)) {
1606 * Whether we should enable h/w TKIP MIC.
1607 * XXX: if we don't support WME TKIP MIC, then we wouldn't
1608 * report WMM capable, so it's always safe to turn on
1609 * TKIP MIC in this case.
1611 ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC,
1616 * Check whether the separate key cache entries
1617 * are required to handle both tx+rx MIC keys.
1618 * With split mic keys the number of stations is limited
1619 * to 27 otherwise 59.
1621 if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1622 ATH9K_CIPHER_TKIP, NULL)
1623 && ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1624 ATH9K_CIPHER_MIC, NULL)
1625 && ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT,
1629 /* turn on mcast key search if possible */
1630 if (!ath9k_hw_getcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL))
1631 (void)ath9k_hw_setcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 1,
1634 sc->config.txpowlimit = ATH_TXPOWER_MAX;
1636 /* 11n Capabilities */
1637 if (ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1638 sc->sc_flags |= SC_OP_TXAGGR;
1639 sc->sc_flags |= SC_OP_RXAGGR;
1642 sc->tx_chainmask = ah->caps.tx_chainmask;
1643 sc->rx_chainmask = ah->caps.rx_chainmask;
1645 ath9k_hw_setcapability(ah, ATH9K_CAP_DIVERSITY, 1, true, NULL);
1646 sc->rx.defant = ath9k_hw_getdefantenna(ah);
1648 if (ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
1649 memcpy(sc->bssidmask, ath_bcast_mac, ETH_ALEN);
1651 sc->beacon.slottime = ATH9K_SLOT_TIME_9; /* default to short slot time */
1653 /* initialize beacon slots */
1654 for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
1655 sc->beacon.bslot[i] = NULL;
1656 sc->beacon.bslot_aphy[i] = NULL;
1659 /* setup channels and rates */
1661 sc->sbands[IEEE80211_BAND_2GHZ].channels = ath9k_2ghz_chantable;
1662 sc->sbands[IEEE80211_BAND_2GHZ].bitrates =
1663 sc->rates[IEEE80211_BAND_2GHZ];
1664 sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
1665 sc->sbands[IEEE80211_BAND_2GHZ].n_channels =
1666 ARRAY_SIZE(ath9k_2ghz_chantable);
1668 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes)) {
1669 sc->sbands[IEEE80211_BAND_5GHZ].channels = ath9k_5ghz_chantable;
1670 sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
1671 sc->rates[IEEE80211_BAND_5GHZ];
1672 sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
1673 sc->sbands[IEEE80211_BAND_5GHZ].n_channels =
1674 ARRAY_SIZE(ath9k_5ghz_chantable);
1677 switch (ah->btcoex_info.btcoex_scheme) {
1678 case ATH_BTCOEX_CFG_NONE:
1680 case ATH_BTCOEX_CFG_2WIRE:
1681 ath9k_hw_btcoex_init_2wire(ah);
1683 case ATH_BTCOEX_CFG_3WIRE:
1684 ath9k_hw_btcoex_init_3wire(ah);
1685 r = ath_init_btcoex_timer(sc);
1688 qnum = ath_tx_get_qnum(sc, ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BE);
1689 ath9k_hw_init_btcoex_hw_info(ah, qnum);
1690 sc->btcoex.bt_stomp_type = ATH_BTCOEX_STOMP_LOW;
1699 /* cleanup tx queues */
1700 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1701 if (ATH_TXQ_SETUP(sc, i))
1702 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1704 ath9k_hw_detach(ah);
1706 ath9k_exit_debug(sc->sc_ah);
1712 void ath_set_hw_capab(struct ath_softc *sc, struct ieee80211_hw *hw)
1714 hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
1715 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1716 IEEE80211_HW_SIGNAL_DBM |
1717 IEEE80211_HW_AMPDU_AGGREGATION |
1718 IEEE80211_HW_SUPPORTS_PS |
1719 IEEE80211_HW_PS_NULLFUNC_STACK |
1720 IEEE80211_HW_SPECTRUM_MGMT;
1722 if (AR_SREV_9160_10_OR_LATER(sc->sc_ah) || modparam_nohwcrypt)
1723 hw->flags |= IEEE80211_HW_MFP_CAPABLE;
1725 hw->wiphy->interface_modes =
1726 BIT(NL80211_IFTYPE_AP) |
1727 BIT(NL80211_IFTYPE_STATION) |
1728 BIT(NL80211_IFTYPE_ADHOC) |
1729 BIT(NL80211_IFTYPE_MESH_POINT);
1733 hw->channel_change_time = 5000;
1734 hw->max_listen_interval = 10;
1735 /* Hardware supports 10 but we use 4 */
1736 hw->max_rate_tries = 4;
1737 hw->sta_data_size = sizeof(struct ath_node);
1738 hw->vif_data_size = sizeof(struct ath_vif);
1740 hw->rate_control_algorithm = "ath9k_rate_control";
1742 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
1743 &sc->sbands[IEEE80211_BAND_2GHZ];
1744 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
1745 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
1746 &sc->sbands[IEEE80211_BAND_5GHZ];
1749 /* Device driver core initialization */
1750 int ath_init_device(u16 devid, struct ath_softc *sc, u16 subsysid)
1752 struct ieee80211_hw *hw = sc->hw;
1755 struct ath_regulatory *reg;
1757 dev_dbg(sc->dev, "Attach ATH hw\n");
1759 error = ath_init_softc(devid, sc, subsysid);
1765 /* get mac address from hardware and set in mac80211 */
1767 SET_IEEE80211_PERM_ADDR(hw, ah->macaddr);
1769 ath_set_hw_capab(sc, hw);
1771 error = ath_regd_init(&sc->common.regulatory, sc->hw->wiphy,
1772 ath9k_reg_notifier);
1776 reg = &sc->common.regulatory;
1778 if (ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1779 setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
1780 if (test_bit(ATH9K_MODE_11A, ah->caps.wireless_modes))
1781 setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
1784 /* initialize tx/rx engine */
1785 error = ath_tx_init(sc, ATH_TXBUF);
1789 error = ath_rx_init(sc, ATH_RXBUF);
1793 INIT_WORK(&sc->chan_work, ath9k_wiphy_chan_work);
1794 INIT_DELAYED_WORK(&sc->wiphy_work, ath9k_wiphy_work);
1795 sc->wiphy_scheduler_int = msecs_to_jiffies(500);
1797 error = ieee80211_register_hw(hw);
1799 if (!ath_is_world_regd(reg)) {
1800 error = regulatory_hint(hw->wiphy, reg->alpha2);
1805 /* Initialize LED control */
1808 ath_start_rfkill_poll(sc);
1813 /* cleanup tx queues */
1814 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1815 if (ATH_TXQ_SETUP(sc, i))
1816 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1818 ath9k_hw_detach(ah);
1819 ath9k_exit_debug(ah);
1825 int ath_reset(struct ath_softc *sc, bool retry_tx)
1827 struct ath_hw *ah = sc->sc_ah;
1828 struct ieee80211_hw *hw = sc->hw;
1831 ath9k_hw_set_interrupts(ah, 0);
1832 ath_drain_all_txq(sc, retry_tx);
1836 spin_lock_bh(&sc->sc_resetlock);
1837 r = ath9k_hw_reset(ah, sc->sc_ah->curchan, false);
1839 DPRINTF(ah, ATH_DBG_FATAL,
1840 "Unable to reset hardware; reset status %d\n", r);
1841 spin_unlock_bh(&sc->sc_resetlock);
1843 if (ath_startrecv(sc) != 0)
1844 DPRINTF(ah, ATH_DBG_FATAL, "Unable to start recv logic\n");
1847 * We may be doing a reset in response to a request
1848 * that changes the channel so update any state that
1849 * might change as a result.
1851 ath_cache_conf_rate(sc, &hw->conf);
1853 ath_update_txpow(sc);
1855 if (sc->sc_flags & SC_OP_BEACONS)
1856 ath_beacon_config(sc, NULL); /* restart beacons */
1858 ath9k_hw_set_interrupts(ah, sc->imask);
1862 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1863 if (ATH_TXQ_SETUP(sc, i)) {
1864 spin_lock_bh(&sc->tx.txq[i].axq_lock);
1865 ath_txq_schedule(sc, &sc->tx.txq[i]);
1866 spin_unlock_bh(&sc->tx.txq[i].axq_lock);
1875 * This function will allocate both the DMA descriptor structure, and the
1876 * buffers it contains. These are used to contain the descriptors used
1879 int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
1880 struct list_head *head, const char *name,
1881 int nbuf, int ndesc)
1883 #define DS2PHYS(_dd, _ds) \
1884 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
1885 #define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
1886 #define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
1888 struct ath_desc *ds;
1890 int i, bsize, error;
1892 DPRINTF(sc->sc_ah, ATH_DBG_CONFIG, "%s DMA: %u buffers %u desc/buf\n",
1895 INIT_LIST_HEAD(head);
1896 /* ath_desc must be a multiple of DWORDs */
1897 if ((sizeof(struct ath_desc) % 4) != 0) {
1898 DPRINTF(sc->sc_ah, ATH_DBG_FATAL, "ath_desc not DWORD aligned\n");
1899 ASSERT((sizeof(struct ath_desc) % 4) == 0);
1904 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
1907 * Need additional DMA memory because we can't use
1908 * descriptors that cross the 4K page boundary. Assume
1909 * one skipped descriptor per 4K page.
1911 if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1913 ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
1916 while (ndesc_skipped) {
1917 dma_len = ndesc_skipped * sizeof(struct ath_desc);
1918 dd->dd_desc_len += dma_len;
1920 ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
1924 /* allocate descriptors */
1925 dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
1926 &dd->dd_desc_paddr, GFP_KERNEL);
1927 if (dd->dd_desc == NULL) {
1932 DPRINTF(sc->sc_ah, ATH_DBG_CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
1933 name, ds, (u32) dd->dd_desc_len,
1934 ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
1936 /* allocate buffers */
1937 bsize = sizeof(struct ath_buf) * nbuf;
1938 bf = kzalloc(bsize, GFP_KERNEL);
1945 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
1947 bf->bf_daddr = DS2PHYS(dd, ds);
1949 if (!(sc->sc_ah->caps.hw_caps &
1950 ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1952 * Skip descriptor addresses which can cause 4KB
1953 * boundary crossing (addr + length) with a 32 dword
1956 while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
1957 ASSERT((caddr_t) bf->bf_desc <
1958 ((caddr_t) dd->dd_desc +
1963 bf->bf_daddr = DS2PHYS(dd, ds);
1966 list_add_tail(&bf->list, head);
1970 dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
1973 memset(dd, 0, sizeof(*dd));
1975 #undef ATH_DESC_4KB_BOUND_CHECK
1976 #undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
1980 void ath_descdma_cleanup(struct ath_softc *sc,
1981 struct ath_descdma *dd,
1982 struct list_head *head)
1984 dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
1987 INIT_LIST_HEAD(head);
1988 kfree(dd->dd_bufptr);
1989 memset(dd, 0, sizeof(*dd));
1992 int ath_get_hal_qnum(u16 queue, struct ath_softc *sc)
1998 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VO];
2001 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VI];
2004 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
2007 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BK];
2010 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
2017 int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc)
2022 case ATH9K_WME_AC_VO:
2025 case ATH9K_WME_AC_VI:
2028 case ATH9K_WME_AC_BE:
2031 case ATH9K_WME_AC_BK:
2042 /* XXX: Remove me once we don't depend on ath9k_channel for all
2043 * this redundant data */
2044 void ath9k_update_ichannel(struct ath_softc *sc, struct ieee80211_hw *hw,
2045 struct ath9k_channel *ichan)
2047 struct ieee80211_channel *chan = hw->conf.channel;
2048 struct ieee80211_conf *conf = &hw->conf;
2050 ichan->channel = chan->center_freq;
2053 if (chan->band == IEEE80211_BAND_2GHZ) {
2054 ichan->chanmode = CHANNEL_G;
2055 ichan->channelFlags = CHANNEL_2GHZ | CHANNEL_OFDM | CHANNEL_G;
2057 ichan->chanmode = CHANNEL_A;
2058 ichan->channelFlags = CHANNEL_5GHZ | CHANNEL_OFDM;
2061 sc->tx_chan_width = ATH9K_HT_MACMODE_20;
2063 if (conf_is_ht(conf)) {
2064 if (conf_is_ht40(conf))
2065 sc->tx_chan_width = ATH9K_HT_MACMODE_2040;
2067 ichan->chanmode = ath_get_extchanmode(sc, chan,
2068 conf->channel_type);
2072 /**********************/
2073 /* mac80211 callbacks */
2074 /**********************/
2077 * (Re)start btcoex timers
2079 static void ath9k_btcoex_timer_resume(struct ath_softc *sc)
2081 struct ath_btcoex *btcoex = &sc->btcoex;
2082 struct ath_hw *ah = sc->sc_ah;
2084 DPRINTF(ah, ATH_DBG_BTCOEX, "Starting btcoex timers");
2086 /* make sure duty cycle timer is also stopped when resuming */
2087 if (btcoex->hw_timer_enabled)
2088 ath_gen_timer_stop(sc->sc_ah, btcoex->no_stomp_timer);
2090 btcoex->bt_priority_cnt = 0;
2091 btcoex->bt_priority_time = jiffies;
2092 sc->sc_flags &= ~SC_OP_BT_PRIORITY_DETECTED;
2094 mod_timer(&btcoex->period_timer, jiffies);
2097 static int ath9k_start(struct ieee80211_hw *hw)
2099 struct ath_wiphy *aphy = hw->priv;
2100 struct ath_softc *sc = aphy->sc;
2101 struct ath_hw *ah = sc->sc_ah;
2102 struct ieee80211_channel *curchan = hw->conf.channel;
2103 struct ath9k_channel *init_channel;
2106 DPRINTF(ah, ATH_DBG_CONFIG, "Starting driver with "
2107 "initial channel: %d MHz\n", curchan->center_freq);
2109 mutex_lock(&sc->mutex);
2111 if (ath9k_wiphy_started(sc)) {
2112 if (sc->chan_idx == curchan->hw_value) {
2114 * Already on the operational channel, the new wiphy
2115 * can be marked active.
2117 aphy->state = ATH_WIPHY_ACTIVE;
2118 ieee80211_wake_queues(hw);
2121 * Another wiphy is on another channel, start the new
2122 * wiphy in paused state.
2124 aphy->state = ATH_WIPHY_PAUSED;
2125 ieee80211_stop_queues(hw);
2127 mutex_unlock(&sc->mutex);
2130 aphy->state = ATH_WIPHY_ACTIVE;
2132 /* setup initial channel */
2134 sc->chan_idx = curchan->hw_value;
2136 init_channel = ath_get_curchannel(sc, hw);
2138 /* Reset SERDES registers */
2139 ath9k_hw_configpcipowersave(ah, 0, 0);
2142 * The basic interface to setting the hardware in a good
2143 * state is ``reset''. On return the hardware is known to
2144 * be powered up and with interrupts disabled. This must
2145 * be followed by initialization of the appropriate bits
2146 * and then setup of the interrupt mask.
2148 spin_lock_bh(&sc->sc_resetlock);
2149 r = ath9k_hw_reset(ah, init_channel, false);
2151 DPRINTF(ah, ATH_DBG_FATAL,
2152 "Unable to reset hardware; reset status %d "
2153 "(freq %u MHz)\n", r,
2154 curchan->center_freq);
2155 spin_unlock_bh(&sc->sc_resetlock);
2158 spin_unlock_bh(&sc->sc_resetlock);
2161 * This is needed only to setup initial state
2162 * but it's best done after a reset.
2164 ath_update_txpow(sc);
2167 * Setup the hardware after reset:
2168 * The receive engine is set going.
2169 * Frame transmit is handled entirely
2170 * in the frame output path; there's nothing to do
2171 * here except setup the interrupt mask.
2173 if (ath_startrecv(sc) != 0) {
2174 DPRINTF(ah, ATH_DBG_FATAL, "Unable to start recv logic\n");
2179 /* Setup our intr mask. */
2180 sc->imask = ATH9K_INT_RX | ATH9K_INT_TX
2181 | ATH9K_INT_RXEOL | ATH9K_INT_RXORN
2182 | ATH9K_INT_FATAL | ATH9K_INT_GLOBAL;
2184 if (ah->caps.hw_caps & ATH9K_HW_CAP_GTT)
2185 sc->imask |= ATH9K_INT_GTT;
2187 if (ah->caps.hw_caps & ATH9K_HW_CAP_HT)
2188 sc->imask |= ATH9K_INT_CST;
2190 ath_cache_conf_rate(sc, &hw->conf);
2192 sc->sc_flags &= ~SC_OP_INVALID;
2194 /* Disable BMISS interrupt when we're not associated */
2195 sc->imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
2196 ath9k_hw_set_interrupts(ah, sc->imask);
2198 ieee80211_wake_queues(hw);
2200 ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work, 0);
2202 if ((ah->btcoex_info.btcoex_scheme != ATH_BTCOEX_CFG_NONE) &&
2203 !ah->btcoex_info.enabled) {
2204 ath9k_hw_btcoex_init_weight(ah);
2205 ath9k_hw_btcoex_enable(ah);
2207 ath_pcie_aspm_disable(sc);
2208 if (ah->btcoex_info.btcoex_scheme == ATH_BTCOEX_CFG_3WIRE)
2209 ath9k_btcoex_timer_resume(sc);
2213 mutex_unlock(&sc->mutex);
2218 static int ath9k_tx(struct ieee80211_hw *hw,
2219 struct sk_buff *skb)
2221 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2222 struct ath_wiphy *aphy = hw->priv;
2223 struct ath_softc *sc = aphy->sc;
2224 struct ath_tx_control txctl;
2225 int hdrlen, padsize;
2227 if (aphy->state != ATH_WIPHY_ACTIVE && aphy->state != ATH_WIPHY_SCAN) {
2228 printk(KERN_DEBUG "ath9k: %s: TX in unexpected wiphy state "
2229 "%d\n", wiphy_name(hw->wiphy), aphy->state);
2233 if (sc->ps_enabled) {
2234 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2236 * mac80211 does not set PM field for normal data frames, so we
2237 * need to update that based on the current PS mode.
2239 if (ieee80211_is_data(hdr->frame_control) &&
2240 !ieee80211_is_nullfunc(hdr->frame_control) &&
2241 !ieee80211_has_pm(hdr->frame_control)) {
2242 DPRINTF(sc->sc_ah, ATH_DBG_PS, "Add PM=1 for a TX frame "
2243 "while in PS mode\n");
2244 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM);
2248 if (unlikely(sc->sc_ah->power_mode != ATH9K_PM_AWAKE)) {
2250 * We are using PS-Poll and mac80211 can request TX while in
2251 * power save mode. Need to wake up hardware for the TX to be
2252 * completed and if needed, also for RX of buffered frames.
2254 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2255 ath9k_ps_wakeup(sc);
2256 ath9k_hw_setrxabort(sc->sc_ah, 0);
2257 if (ieee80211_is_pspoll(hdr->frame_control)) {
2258 DPRINTF(sc->sc_ah, ATH_DBG_PS, "Sending PS-Poll to pick a "
2259 "buffered frame\n");
2260 sc->sc_flags |= SC_OP_WAIT_FOR_PSPOLL_DATA;
2262 DPRINTF(sc->sc_ah, ATH_DBG_PS, "Wake up to complete TX\n");
2263 sc->sc_flags |= SC_OP_WAIT_FOR_TX_ACK;
2266 * The actual restore operation will happen only after
2267 * the sc_flags bit is cleared. We are just dropping
2268 * the ps_usecount here.
2270 ath9k_ps_restore(sc);
2273 memset(&txctl, 0, sizeof(struct ath_tx_control));
2276 * As a temporary workaround, assign seq# here; this will likely need
2277 * to be cleaned up to work better with Beacon transmission and virtual
2280 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
2281 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2282 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2283 sc->tx.seq_no += 0x10;
2284 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2285 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
2288 /* Add the padding after the header if this is not already done */
2289 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
2291 padsize = hdrlen % 4;
2292 if (skb_headroom(skb) < padsize)
2294 skb_push(skb, padsize);
2295 memmove(skb->data, skb->data + padsize, hdrlen);
2298 /* Check if a tx queue is available */
2300 txctl.txq = ath_test_get_txq(sc, skb);
2304 DPRINTF(sc->sc_ah, ATH_DBG_XMIT, "transmitting packet, skb: %p\n", skb);
2306 if (ath_tx_start(hw, skb, &txctl) != 0) {
2307 DPRINTF(sc->sc_ah, ATH_DBG_XMIT, "TX failed\n");
2313 dev_kfree_skb_any(skb);
2318 * Pause btcoex timer and bt duty cycle timer
2320 static void ath9k_btcoex_timer_pause(struct ath_softc *sc)
2322 struct ath_btcoex *btcoex = &sc->btcoex;
2323 struct ath_hw *ah = sc->sc_ah;
2325 del_timer_sync(&btcoex->period_timer);
2327 if (btcoex->hw_timer_enabled)
2328 ath_gen_timer_stop(ah, btcoex->no_stomp_timer);
2330 btcoex->hw_timer_enabled = false;
2333 static void ath9k_stop(struct ieee80211_hw *hw)
2335 struct ath_wiphy *aphy = hw->priv;
2336 struct ath_softc *sc = aphy->sc;
2337 struct ath_hw *ah = sc->sc_ah;
2339 mutex_lock(&sc->mutex);
2341 aphy->state = ATH_WIPHY_INACTIVE;
2343 cancel_delayed_work_sync(&sc->ath_led_blink_work);
2344 cancel_delayed_work_sync(&sc->tx_complete_work);
2346 if (!sc->num_sec_wiphy) {
2347 cancel_delayed_work_sync(&sc->wiphy_work);
2348 cancel_work_sync(&sc->chan_work);
2351 if (sc->sc_flags & SC_OP_INVALID) {
2352 DPRINTF(ah, ATH_DBG_ANY, "Device not present\n");
2353 mutex_unlock(&sc->mutex);
2357 if (ath9k_wiphy_started(sc)) {
2358 mutex_unlock(&sc->mutex);
2359 return; /* another wiphy still in use */
2362 if (ah->btcoex_info.enabled) {
2363 ath9k_hw_btcoex_disable(ah);
2364 if (ah->btcoex_info.btcoex_scheme == ATH_BTCOEX_CFG_3WIRE)
2365 ath9k_btcoex_timer_pause(sc);
2368 /* make sure h/w will not generate any interrupt
2369 * before setting the invalid flag. */
2370 ath9k_hw_set_interrupts(ah, 0);
2372 if (!(sc->sc_flags & SC_OP_INVALID)) {
2373 ath_drain_all_txq(sc, false);
2375 ath9k_hw_phy_disable(ah);
2377 sc->rx.rxlink = NULL;
2379 /* disable HAL and put h/w to sleep */
2380 ath9k_hw_disable(ah);
2381 ath9k_hw_configpcipowersave(ah, 1, 1);
2382 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
2384 sc->sc_flags |= SC_OP_INVALID;
2386 mutex_unlock(&sc->mutex);
2388 DPRINTF(ah, ATH_DBG_CONFIG, "Driver halt\n");
2391 static int ath9k_add_interface(struct ieee80211_hw *hw,
2392 struct ieee80211_if_init_conf *conf)
2394 struct ath_wiphy *aphy = hw->priv;
2395 struct ath_softc *sc = aphy->sc;
2396 struct ath_vif *avp = (void *)conf->vif->drv_priv;
2397 enum nl80211_iftype ic_opmode = NL80211_IFTYPE_UNSPECIFIED;
2400 mutex_lock(&sc->mutex);
2402 if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) &&
2408 switch (conf->type) {
2409 case NL80211_IFTYPE_STATION:
2410 ic_opmode = NL80211_IFTYPE_STATION;
2412 case NL80211_IFTYPE_ADHOC:
2413 case NL80211_IFTYPE_AP:
2414 case NL80211_IFTYPE_MESH_POINT:
2415 if (sc->nbcnvifs >= ATH_BCBUF) {
2419 ic_opmode = conf->type;
2422 DPRINTF(sc->sc_ah, ATH_DBG_FATAL,
2423 "Interface type %d not yet supported\n", conf->type);
2428 DPRINTF(sc->sc_ah, ATH_DBG_CONFIG, "Attach a VIF of type: %d\n", ic_opmode);
2430 /* Set the VIF opmode */
2431 avp->av_opmode = ic_opmode;
2436 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
2437 ath9k_set_bssid_mask(hw);
2440 goto out; /* skip global settings for secondary vif */
2442 if (ic_opmode == NL80211_IFTYPE_AP) {
2443 ath9k_hw_set_tsfadjust(sc->sc_ah, 1);
2444 sc->sc_flags |= SC_OP_TSF_RESET;
2447 /* Set the device opmode */
2448 sc->sc_ah->opmode = ic_opmode;
2451 * Enable MIB interrupts when there are hardware phy counters.
2452 * Note we only do this (at the moment) for station mode.
2454 if ((conf->type == NL80211_IFTYPE_STATION) ||
2455 (conf->type == NL80211_IFTYPE_ADHOC) ||
2456 (conf->type == NL80211_IFTYPE_MESH_POINT)) {
2457 sc->imask |= ATH9K_INT_MIB;
2458 sc->imask |= ATH9K_INT_TSFOOR;
2461 ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
2463 if (conf->type == NL80211_IFTYPE_AP ||
2464 conf->type == NL80211_IFTYPE_ADHOC ||
2465 conf->type == NL80211_IFTYPE_MONITOR)
2469 mutex_unlock(&sc->mutex);
2473 static void ath9k_remove_interface(struct ieee80211_hw *hw,
2474 struct ieee80211_if_init_conf *conf)
2476 struct ath_wiphy *aphy = hw->priv;
2477 struct ath_softc *sc = aphy->sc;
2478 struct ath_vif *avp = (void *)conf->vif->drv_priv;
2481 DPRINTF(sc->sc_ah, ATH_DBG_CONFIG, "Detach Interface\n");
2483 mutex_lock(&sc->mutex);
2486 del_timer_sync(&sc->ani.timer);
2488 /* Reclaim beacon resources */
2489 if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) ||
2490 (sc->sc_ah->opmode == NL80211_IFTYPE_ADHOC) ||
2491 (sc->sc_ah->opmode == NL80211_IFTYPE_MESH_POINT)) {
2492 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2493 ath_beacon_return(sc, avp);
2496 sc->sc_flags &= ~SC_OP_BEACONS;
2498 for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
2499 if (sc->beacon.bslot[i] == conf->vif) {
2500 printk(KERN_DEBUG "%s: vif had allocated beacon "
2501 "slot\n", __func__);
2502 sc->beacon.bslot[i] = NULL;
2503 sc->beacon.bslot_aphy[i] = NULL;
2509 mutex_unlock(&sc->mutex);
2512 static int ath9k_config(struct ieee80211_hw *hw, u32 changed)
2514 struct ath_wiphy *aphy = hw->priv;
2515 struct ath_softc *sc = aphy->sc;
2516 struct ieee80211_conf *conf = &hw->conf;
2517 struct ath_hw *ah = sc->sc_ah;
2518 bool all_wiphys_idle = false, disable_radio = false;
2520 mutex_lock(&sc->mutex);
2522 /* Leave this as the first check */
2523 if (changed & IEEE80211_CONF_CHANGE_IDLE) {
2525 spin_lock_bh(&sc->wiphy_lock);
2526 all_wiphys_idle = ath9k_all_wiphys_idle(sc);
2527 spin_unlock_bh(&sc->wiphy_lock);
2529 if (conf->flags & IEEE80211_CONF_IDLE){
2530 if (all_wiphys_idle)
2531 disable_radio = true;
2533 else if (all_wiphys_idle) {
2534 ath_radio_enable(sc);
2535 DPRINTF(sc->sc_ah, ATH_DBG_CONFIG,
2536 "not-idle: enabling radio\n");
2540 if (changed & IEEE80211_CONF_CHANGE_PS) {
2541 if (conf->flags & IEEE80211_CONF_PS) {
2542 if (!(ah->caps.hw_caps &
2543 ATH9K_HW_CAP_AUTOSLEEP)) {
2544 if ((sc->imask & ATH9K_INT_TIM_TIMER) == 0) {
2545 sc->imask |= ATH9K_INT_TIM_TIMER;
2546 ath9k_hw_set_interrupts(sc->sc_ah,
2549 ath9k_hw_setrxabort(sc->sc_ah, 1);
2551 sc->ps_enabled = true;
2553 sc->ps_enabled = false;
2554 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
2555 if (!(ah->caps.hw_caps &
2556 ATH9K_HW_CAP_AUTOSLEEP)) {
2557 ath9k_hw_setrxabort(sc->sc_ah, 0);
2558 sc->sc_flags &= ~(SC_OP_WAIT_FOR_BEACON |
2559 SC_OP_WAIT_FOR_CAB |
2560 SC_OP_WAIT_FOR_PSPOLL_DATA |
2561 SC_OP_WAIT_FOR_TX_ACK);
2562 if (sc->imask & ATH9K_INT_TIM_TIMER) {
2563 sc->imask &= ~ATH9K_INT_TIM_TIMER;
2564 ath9k_hw_set_interrupts(sc->sc_ah,
2571 if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
2572 struct ieee80211_channel *curchan = hw->conf.channel;
2573 int pos = curchan->hw_value;
2575 aphy->chan_idx = pos;
2576 aphy->chan_is_ht = conf_is_ht(conf);
2578 if (aphy->state == ATH_WIPHY_SCAN ||
2579 aphy->state == ATH_WIPHY_ACTIVE)
2580 ath9k_wiphy_pause_all_forced(sc, aphy);
2583 * Do not change operational channel based on a paused
2586 goto skip_chan_change;
2589 DPRINTF(sc->sc_ah, ATH_DBG_CONFIG, "Set channel: %d MHz\n",
2590 curchan->center_freq);
2592 /* XXX: remove me eventualy */
2593 ath9k_update_ichannel(sc, hw, &sc->sc_ah->channels[pos]);
2595 ath_update_chainmask(sc, conf_is_ht(conf));
2597 if (ath_set_channel(sc, hw, &sc->sc_ah->channels[pos]) < 0) {
2598 DPRINTF(sc->sc_ah, ATH_DBG_FATAL, "Unable to set channel\n");
2599 mutex_unlock(&sc->mutex);
2605 if (changed & IEEE80211_CONF_CHANGE_POWER)
2606 sc->config.txpowlimit = 2 * conf->power_level;
2608 if (disable_radio) {
2609 DPRINTF(sc->sc_ah, ATH_DBG_CONFIG, "idle: disabling radio\n");
2610 ath_radio_disable(sc);
2613 mutex_unlock(&sc->mutex);
2618 #define SUPPORTED_FILTERS \
2619 (FIF_PROMISC_IN_BSS | \
2624 FIF_BCN_PRBRESP_PROMISC | \
2627 /* FIXME: sc->sc_full_reset ? */
2628 static void ath9k_configure_filter(struct ieee80211_hw *hw,
2629 unsigned int changed_flags,
2630 unsigned int *total_flags,
2633 struct ath_wiphy *aphy = hw->priv;
2634 struct ath_softc *sc = aphy->sc;
2637 changed_flags &= SUPPORTED_FILTERS;
2638 *total_flags &= SUPPORTED_FILTERS;
2640 sc->rx.rxfilter = *total_flags;
2641 ath9k_ps_wakeup(sc);
2642 rfilt = ath_calcrxfilter(sc);
2643 ath9k_hw_setrxfilter(sc->sc_ah, rfilt);
2644 ath9k_ps_restore(sc);
2646 DPRINTF(sc->sc_ah, ATH_DBG_CONFIG, "Set HW RX filter: 0x%x\n", rfilt);
2649 static void ath9k_sta_notify(struct ieee80211_hw *hw,
2650 struct ieee80211_vif *vif,
2651 enum sta_notify_cmd cmd,
2652 struct ieee80211_sta *sta)
2654 struct ath_wiphy *aphy = hw->priv;
2655 struct ath_softc *sc = aphy->sc;
2658 case STA_NOTIFY_ADD:
2659 ath_node_attach(sc, sta);
2661 case STA_NOTIFY_REMOVE:
2662 ath_node_detach(sc, sta);
2669 static int ath9k_conf_tx(struct ieee80211_hw *hw, u16 queue,
2670 const struct ieee80211_tx_queue_params *params)
2672 struct ath_wiphy *aphy = hw->priv;
2673 struct ath_softc *sc = aphy->sc;
2674 struct ath9k_tx_queue_info qi;
2677 if (queue >= WME_NUM_AC)
2680 mutex_lock(&sc->mutex);
2682 memset(&qi, 0, sizeof(struct ath9k_tx_queue_info));
2684 qi.tqi_aifs = params->aifs;
2685 qi.tqi_cwmin = params->cw_min;
2686 qi.tqi_cwmax = params->cw_max;
2687 qi.tqi_burstTime = params->txop;
2688 qnum = ath_get_hal_qnum(queue, sc);
2690 DPRINTF(sc->sc_ah, ATH_DBG_CONFIG,
2691 "Configure tx [queue/halq] [%d/%d], "
2692 "aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
2693 queue, qnum, params->aifs, params->cw_min,
2694 params->cw_max, params->txop);
2696 ret = ath_txq_update(sc, qnum, &qi);
2698 DPRINTF(sc->sc_ah, ATH_DBG_FATAL, "TXQ Update failed\n");
2700 mutex_unlock(&sc->mutex);
2705 static int ath9k_set_key(struct ieee80211_hw *hw,
2706 enum set_key_cmd cmd,
2707 struct ieee80211_vif *vif,
2708 struct ieee80211_sta *sta,
2709 struct ieee80211_key_conf *key)
2711 struct ath_wiphy *aphy = hw->priv;
2712 struct ath_softc *sc = aphy->sc;
2715 if (modparam_nohwcrypt)
2718 mutex_lock(&sc->mutex);
2719 ath9k_ps_wakeup(sc);
2720 DPRINTF(sc->sc_ah, ATH_DBG_CONFIG, "Set HW Key\n");
2724 ret = ath_key_config(sc, vif, sta, key);
2726 key->hw_key_idx = ret;
2727 /* push IV and Michael MIC generation to stack */
2728 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2729 if (key->alg == ALG_TKIP)
2730 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
2731 if (sc->sc_ah->sw_mgmt_crypto && key->alg == ALG_CCMP)
2732 key->flags |= IEEE80211_KEY_FLAG_SW_MGMT;
2737 ath_key_delete(sc, key);
2743 ath9k_ps_restore(sc);
2744 mutex_unlock(&sc->mutex);
2749 static void ath9k_bss_info_changed(struct ieee80211_hw *hw,
2750 struct ieee80211_vif *vif,
2751 struct ieee80211_bss_conf *bss_conf,
2754 struct ath_wiphy *aphy = hw->priv;
2755 struct ath_softc *sc = aphy->sc;
2756 struct ath_hw *ah = sc->sc_ah;
2757 struct ath_vif *avp = (void *)vif->drv_priv;
2761 mutex_lock(&sc->mutex);
2764 * TODO: Need to decide which hw opmode to use for
2765 * multi-interface cases
2766 * XXX: This belongs into add_interface!
2768 if (vif->type == NL80211_IFTYPE_AP &&
2769 ah->opmode != NL80211_IFTYPE_AP) {
2770 ah->opmode = NL80211_IFTYPE_STATION;
2771 ath9k_hw_setopmode(ah);
2772 memcpy(sc->curbssid, sc->sc_ah->macaddr, ETH_ALEN);
2774 ath9k_hw_write_associd(sc);
2775 /* Request full reset to get hw opmode changed properly */
2776 sc->sc_flags |= SC_OP_FULL_RESET;
2779 if ((changed & BSS_CHANGED_BSSID) &&
2780 !is_zero_ether_addr(bss_conf->bssid)) {
2781 switch (vif->type) {
2782 case NL80211_IFTYPE_STATION:
2783 case NL80211_IFTYPE_ADHOC:
2784 case NL80211_IFTYPE_MESH_POINT:
2786 memcpy(sc->curbssid, bss_conf->bssid, ETH_ALEN);
2787 memcpy(avp->bssid, bss_conf->bssid, ETH_ALEN);
2789 ath9k_hw_write_associd(sc);
2791 /* Set aggregation protection mode parameters */
2792 sc->config.ath_aggr_prot = 0;
2794 DPRINTF(sc->sc_ah, ATH_DBG_CONFIG,
2795 "RX filter 0x%x bssid %pM aid 0x%x\n",
2796 rfilt, sc->curbssid, sc->curaid);
2798 /* need to reconfigure the beacon */
2799 sc->sc_flags &= ~SC_OP_BEACONS ;
2807 if ((vif->type == NL80211_IFTYPE_ADHOC) ||
2808 (vif->type == NL80211_IFTYPE_AP) ||
2809 (vif->type == NL80211_IFTYPE_MESH_POINT)) {
2810 if ((changed & BSS_CHANGED_BEACON) ||
2811 (changed & BSS_CHANGED_BEACON_ENABLED &&
2812 bss_conf->enable_beacon)) {
2814 * Allocate and setup the beacon frame.
2816 * Stop any previous beacon DMA. This may be
2817 * necessary, for example, when an ibss merge
2818 * causes reconfiguration; we may be called
2819 * with beacon transmission active.
2821 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2823 error = ath_beacon_alloc(aphy, vif);
2825 ath_beacon_config(sc, vif);
2829 /* Check for WLAN_CAPABILITY_PRIVACY ? */
2830 if ((avp->av_opmode != NL80211_IFTYPE_STATION)) {
2831 for (i = 0; i < IEEE80211_WEP_NKID; i++)
2832 if (ath9k_hw_keyisvalid(sc->sc_ah, (u16)i))
2833 ath9k_hw_keysetmac(sc->sc_ah,
2838 /* Only legacy IBSS for now */
2839 if (vif->type == NL80211_IFTYPE_ADHOC)
2840 ath_update_chainmask(sc, 0);
2842 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
2843 DPRINTF(sc->sc_ah, ATH_DBG_CONFIG, "BSS Changed PREAMBLE %d\n",
2844 bss_conf->use_short_preamble);
2845 if (bss_conf->use_short_preamble)
2846 sc->sc_flags |= SC_OP_PREAMBLE_SHORT;
2848 sc->sc_flags &= ~SC_OP_PREAMBLE_SHORT;
2851 if (changed & BSS_CHANGED_ERP_CTS_PROT) {
2852 DPRINTF(sc->sc_ah, ATH_DBG_CONFIG, "BSS Changed CTS PROT %d\n",
2853 bss_conf->use_cts_prot);
2854 if (bss_conf->use_cts_prot &&
2855 hw->conf.channel->band != IEEE80211_BAND_5GHZ)
2856 sc->sc_flags |= SC_OP_PROTECT_ENABLE;
2858 sc->sc_flags &= ~SC_OP_PROTECT_ENABLE;
2861 if (changed & BSS_CHANGED_ASSOC) {
2862 DPRINTF(sc->sc_ah, ATH_DBG_CONFIG, "BSS Changed ASSOC %d\n",
2864 ath9k_bss_assoc_info(sc, vif, bss_conf);
2868 * The HW TSF has to be reset when the beacon interval changes.
2869 * We set the flag here, and ath_beacon_config_ap() would take this
2870 * into account when it gets called through the subsequent
2871 * config_interface() call - with IFCC_BEACON in the changed field.
2874 if (changed & BSS_CHANGED_BEACON_INT) {
2875 sc->sc_flags |= SC_OP_TSF_RESET;
2876 sc->beacon_interval = bss_conf->beacon_int;
2879 mutex_unlock(&sc->mutex);
2882 static u64 ath9k_get_tsf(struct ieee80211_hw *hw)
2885 struct ath_wiphy *aphy = hw->priv;
2886 struct ath_softc *sc = aphy->sc;
2888 mutex_lock(&sc->mutex);
2889 tsf = ath9k_hw_gettsf64(sc->sc_ah);
2890 mutex_unlock(&sc->mutex);
2895 static void ath9k_set_tsf(struct ieee80211_hw *hw, u64 tsf)
2897 struct ath_wiphy *aphy = hw->priv;
2898 struct ath_softc *sc = aphy->sc;
2900 mutex_lock(&sc->mutex);
2901 ath9k_hw_settsf64(sc->sc_ah, tsf);
2902 mutex_unlock(&sc->mutex);
2905 static void ath9k_reset_tsf(struct ieee80211_hw *hw)
2907 struct ath_wiphy *aphy = hw->priv;
2908 struct ath_softc *sc = aphy->sc;
2910 mutex_lock(&sc->mutex);
2911 ath9k_hw_reset_tsf(sc->sc_ah);
2912 mutex_unlock(&sc->mutex);
2915 static int ath9k_ampdu_action(struct ieee80211_hw *hw,
2916 enum ieee80211_ampdu_mlme_action action,
2917 struct ieee80211_sta *sta,
2920 struct ath_wiphy *aphy = hw->priv;
2921 struct ath_softc *sc = aphy->sc;
2925 case IEEE80211_AMPDU_RX_START:
2926 if (!(sc->sc_flags & SC_OP_RXAGGR))
2929 case IEEE80211_AMPDU_RX_STOP:
2931 case IEEE80211_AMPDU_TX_START:
2932 ath_tx_aggr_start(sc, sta, tid, ssn);
2933 ieee80211_start_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2935 case IEEE80211_AMPDU_TX_STOP:
2936 ath_tx_aggr_stop(sc, sta, tid);
2937 ieee80211_stop_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2939 case IEEE80211_AMPDU_TX_OPERATIONAL:
2940 ath_tx_aggr_resume(sc, sta, tid);
2943 DPRINTF(sc->sc_ah, ATH_DBG_FATAL, "Unknown AMPDU action\n");
2949 static void ath9k_sw_scan_start(struct ieee80211_hw *hw)
2951 struct ath_wiphy *aphy = hw->priv;
2952 struct ath_softc *sc = aphy->sc;
2954 mutex_lock(&sc->mutex);
2955 if (ath9k_wiphy_scanning(sc)) {
2956 printk(KERN_DEBUG "ath9k: Two wiphys trying to scan at the "
2959 * Do not allow the concurrent scanning state for now. This
2960 * could be improved with scanning control moved into ath9k.
2962 mutex_unlock(&sc->mutex);
2966 aphy->state = ATH_WIPHY_SCAN;
2967 ath9k_wiphy_pause_all_forced(sc, aphy);
2969 spin_lock_bh(&sc->ani_lock);
2970 sc->sc_flags |= SC_OP_SCANNING;
2971 spin_unlock_bh(&sc->ani_lock);
2972 mutex_unlock(&sc->mutex);
2975 static void ath9k_sw_scan_complete(struct ieee80211_hw *hw)
2977 struct ath_wiphy *aphy = hw->priv;
2978 struct ath_softc *sc = aphy->sc;
2980 mutex_lock(&sc->mutex);
2981 spin_lock_bh(&sc->ani_lock);
2982 aphy->state = ATH_WIPHY_ACTIVE;
2983 sc->sc_flags &= ~SC_OP_SCANNING;
2984 sc->sc_flags |= SC_OP_FULL_RESET;
2985 spin_unlock_bh(&sc->ani_lock);
2986 ath_beacon_config(sc, NULL);
2987 mutex_unlock(&sc->mutex);
2990 struct ieee80211_ops ath9k_ops = {
2992 .start = ath9k_start,
2994 .add_interface = ath9k_add_interface,
2995 .remove_interface = ath9k_remove_interface,
2996 .config = ath9k_config,
2997 .configure_filter = ath9k_configure_filter,
2998 .sta_notify = ath9k_sta_notify,
2999 .conf_tx = ath9k_conf_tx,
3000 .bss_info_changed = ath9k_bss_info_changed,
3001 .set_key = ath9k_set_key,
3002 .get_tsf = ath9k_get_tsf,
3003 .set_tsf = ath9k_set_tsf,
3004 .reset_tsf = ath9k_reset_tsf,
3005 .ampdu_action = ath9k_ampdu_action,
3006 .sw_scan_start = ath9k_sw_scan_start,
3007 .sw_scan_complete = ath9k_sw_scan_complete,
3008 .rfkill_poll = ath9k_rfkill_poll_state,
3014 } ath_mac_bb_names[] = {
3015 { AR_SREV_VERSION_5416_PCI, "5416" },
3016 { AR_SREV_VERSION_5416_PCIE, "5418" },
3017 { AR_SREV_VERSION_9100, "9100" },
3018 { AR_SREV_VERSION_9160, "9160" },
3019 { AR_SREV_VERSION_9280, "9280" },
3020 { AR_SREV_VERSION_9285, "9285" },
3021 { AR_SREV_VERSION_9287, "9287" }
3027 } ath_rf_names[] = {
3029 { AR_RAD5133_SREV_MAJOR, "5133" },
3030 { AR_RAD5122_SREV_MAJOR, "5122" },
3031 { AR_RAD2133_SREV_MAJOR, "2133" },
3032 { AR_RAD2122_SREV_MAJOR, "2122" }
3036 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3039 ath_mac_bb_name(u32 mac_bb_version)
3043 for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3044 if (ath_mac_bb_names[i].version == mac_bb_version) {
3045 return ath_mac_bb_names[i].name;
3053 * Return the RF name. "????" is returned if the RF is unknown.
3056 ath_rf_name(u16 rf_version)
3060 for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3061 if (ath_rf_names[i].version == rf_version) {
3062 return ath_rf_names[i].name;
3069 static int __init ath9k_init(void)
3073 /* Register rate control algorithm */
3074 error = ath_rate_control_register();
3077 "ath9k: Unable to register rate control "
3083 error = ath9k_debug_create_root();
3086 "ath9k: Unable to create debugfs root: %d\n",
3088 goto err_rate_unregister;
3091 error = ath_pci_init();
3094 "ath9k: No PCI devices found, driver not installed.\n");
3096 goto err_remove_root;
3099 error = ath_ahb_init();
3111 ath9k_debug_remove_root();
3112 err_rate_unregister:
3113 ath_rate_control_unregister();
3117 module_init(ath9k_init);
3119 static void __exit ath9k_exit(void)
3123 ath9k_debug_remove_root();
3124 ath_rate_control_unregister();
3125 printk(KERN_INFO "%s: Driver unloaded\n", dev_info);
3127 module_exit(ath9k_exit);