2 * Copyright (c) 2008-2009 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include <linux/nl80211.h>
21 static char *dev_info = "ath9k";
23 MODULE_AUTHOR("Atheros Communications");
24 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
25 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
26 MODULE_LICENSE("Dual BSD/GPL");
28 static int modparam_nohwcrypt;
29 module_param_named(nohwcrypt, modparam_nohwcrypt, int, 0444);
30 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption");
32 /* We use the hw_value as an index into our private channel structure */
34 #define CHAN2G(_freq, _idx) { \
35 .center_freq = (_freq), \
40 #define CHAN5G(_freq, _idx) { \
41 .band = IEEE80211_BAND_5GHZ, \
42 .center_freq = (_freq), \
47 /* Some 2 GHz radios are actually tunable on 2312-2732
48 * on 5 MHz steps, we support the channels which we know
49 * we have calibration data for all cards though to make
51 static struct ieee80211_channel ath9k_2ghz_chantable[] = {
52 CHAN2G(2412, 0), /* Channel 1 */
53 CHAN2G(2417, 1), /* Channel 2 */
54 CHAN2G(2422, 2), /* Channel 3 */
55 CHAN2G(2427, 3), /* Channel 4 */
56 CHAN2G(2432, 4), /* Channel 5 */
57 CHAN2G(2437, 5), /* Channel 6 */
58 CHAN2G(2442, 6), /* Channel 7 */
59 CHAN2G(2447, 7), /* Channel 8 */
60 CHAN2G(2452, 8), /* Channel 9 */
61 CHAN2G(2457, 9), /* Channel 10 */
62 CHAN2G(2462, 10), /* Channel 11 */
63 CHAN2G(2467, 11), /* Channel 12 */
64 CHAN2G(2472, 12), /* Channel 13 */
65 CHAN2G(2484, 13), /* Channel 14 */
68 /* Some 5 GHz radios are actually tunable on XXXX-YYYY
69 * on 5 MHz steps, we support the channels which we know
70 * we have calibration data for all cards though to make
72 static struct ieee80211_channel ath9k_5ghz_chantable[] = {
73 /* _We_ call this UNII 1 */
74 CHAN5G(5180, 14), /* Channel 36 */
75 CHAN5G(5200, 15), /* Channel 40 */
76 CHAN5G(5220, 16), /* Channel 44 */
77 CHAN5G(5240, 17), /* Channel 48 */
78 /* _We_ call this UNII 2 */
79 CHAN5G(5260, 18), /* Channel 52 */
80 CHAN5G(5280, 19), /* Channel 56 */
81 CHAN5G(5300, 20), /* Channel 60 */
82 CHAN5G(5320, 21), /* Channel 64 */
83 /* _We_ call this "Middle band" */
84 CHAN5G(5500, 22), /* Channel 100 */
85 CHAN5G(5520, 23), /* Channel 104 */
86 CHAN5G(5540, 24), /* Channel 108 */
87 CHAN5G(5560, 25), /* Channel 112 */
88 CHAN5G(5580, 26), /* Channel 116 */
89 CHAN5G(5600, 27), /* Channel 120 */
90 CHAN5G(5620, 28), /* Channel 124 */
91 CHAN5G(5640, 29), /* Channel 128 */
92 CHAN5G(5660, 30), /* Channel 132 */
93 CHAN5G(5680, 31), /* Channel 136 */
94 CHAN5G(5700, 32), /* Channel 140 */
95 /* _We_ call this UNII 3 */
96 CHAN5G(5745, 33), /* Channel 149 */
97 CHAN5G(5765, 34), /* Channel 153 */
98 CHAN5G(5785, 35), /* Channel 157 */
99 CHAN5G(5805, 36), /* Channel 161 */
100 CHAN5G(5825, 37), /* Channel 165 */
103 static void ath_cache_conf_rate(struct ath_softc *sc,
104 struct ieee80211_conf *conf)
106 switch (conf->channel->band) {
107 case IEEE80211_BAND_2GHZ:
108 if (conf_is_ht20(conf))
110 sc->hw_rate_table[ATH9K_MODE_11NG_HT20];
111 else if (conf_is_ht40_minus(conf))
113 sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS];
114 else if (conf_is_ht40_plus(conf))
116 sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS];
119 sc->hw_rate_table[ATH9K_MODE_11G];
121 case IEEE80211_BAND_5GHZ:
122 if (conf_is_ht20(conf))
124 sc->hw_rate_table[ATH9K_MODE_11NA_HT20];
125 else if (conf_is_ht40_minus(conf))
127 sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS];
128 else if (conf_is_ht40_plus(conf))
130 sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS];
133 sc->hw_rate_table[ATH9K_MODE_11A];
141 static void ath_update_txpow(struct ath_softc *sc)
143 struct ath_hw *ah = sc->sc_ah;
146 if (sc->curtxpow != sc->config.txpowlimit) {
147 ath9k_hw_set_txpowerlimit(ah, sc->config.txpowlimit);
148 /* read back in case value is clamped */
149 ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow);
150 sc->curtxpow = txpow;
154 static u8 parse_mpdudensity(u8 mpdudensity)
157 * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
158 * 0 for no restriction
167 switch (mpdudensity) {
173 /* Our lower layer calculations limit our precision to
189 static void ath_setup_rates(struct ath_softc *sc, enum ieee80211_band band)
191 const struct ath_rate_table *rate_table = NULL;
192 struct ieee80211_supported_band *sband;
193 struct ieee80211_rate *rate;
197 case IEEE80211_BAND_2GHZ:
198 rate_table = sc->hw_rate_table[ATH9K_MODE_11G];
200 case IEEE80211_BAND_5GHZ:
201 rate_table = sc->hw_rate_table[ATH9K_MODE_11A];
207 if (rate_table == NULL)
210 sband = &sc->sbands[band];
211 rate = sc->rates[band];
213 if (rate_table->rate_cnt > ATH_RATE_MAX)
214 maxrates = ATH_RATE_MAX;
216 maxrates = rate_table->rate_cnt;
218 for (i = 0; i < maxrates; i++) {
219 rate[i].bitrate = rate_table->info[i].ratekbps / 100;
220 rate[i].hw_value = rate_table->info[i].ratecode;
221 if (rate_table->info[i].short_preamble) {
222 rate[i].hw_value_short = rate_table->info[i].ratecode |
223 rate_table->info[i].short_preamble;
224 rate[i].flags = IEEE80211_RATE_SHORT_PREAMBLE;
228 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_CONFIG,
229 "Rate: %2dMbps, ratecode: %2d\n",
230 rate[i].bitrate / 10, rate[i].hw_value);
234 static struct ath9k_channel *ath_get_curchannel(struct ath_softc *sc,
235 struct ieee80211_hw *hw)
237 struct ieee80211_channel *curchan = hw->conf.channel;
238 struct ath9k_channel *channel;
241 chan_idx = curchan->hw_value;
242 channel = &sc->sc_ah->channels[chan_idx];
243 ath9k_update_ichannel(sc, hw, channel);
247 static bool ath9k_setpower(struct ath_softc *sc, enum ath9k_power_mode mode)
252 spin_lock_irqsave(&sc->sc_pm_lock, flags);
253 ret = ath9k_hw_setpower(sc->sc_ah, mode);
254 spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
259 void ath9k_ps_wakeup(struct ath_softc *sc)
263 spin_lock_irqsave(&sc->sc_pm_lock, flags);
264 if (++sc->ps_usecount != 1)
267 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
270 spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
273 void ath9k_ps_restore(struct ath_softc *sc)
277 spin_lock_irqsave(&sc->sc_pm_lock, flags);
278 if (--sc->ps_usecount != 0)
281 if (sc->ps_enabled &&
282 !(sc->sc_flags & (SC_OP_WAIT_FOR_BEACON |
284 SC_OP_WAIT_FOR_PSPOLL_DATA |
285 SC_OP_WAIT_FOR_TX_ACK)))
286 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_NETWORK_SLEEP);
289 spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
293 * Set/change channels. If the channel is really being changed, it's done
294 * by reseting the chip. To accomplish this we must first cleanup any pending
295 * DMA, then restart stuff.
297 int ath_set_channel(struct ath_softc *sc, struct ieee80211_hw *hw,
298 struct ath9k_channel *hchan)
300 struct ath_hw *ah = sc->sc_ah;
301 struct ath_common *common = ath9k_hw_common(ah);
302 struct ieee80211_conf *conf = &common->hw->conf;
303 bool fastcc = true, stopped;
304 struct ieee80211_channel *channel = hw->conf.channel;
307 if (sc->sc_flags & SC_OP_INVALID)
313 * This is only performed if the channel settings have
316 * To switch channels clear any pending DMA operations;
317 * wait long enough for the RX fifo to drain, reset the
318 * hardware at the new frequency, and then re-enable
319 * the relevant bits of the h/w.
321 ath9k_hw_set_interrupts(ah, 0);
322 ath_drain_all_txq(sc, false);
323 stopped = ath_stoprecv(sc);
325 /* XXX: do not flush receive queue here. We don't want
326 * to flush data frames already in queue because of
327 * changing channel. */
329 if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET))
332 ath_print(common, ATH_DBG_CONFIG,
333 "(%u MHz) -> (%u MHz), conf_is_ht40: %d\n",
334 sc->sc_ah->curchan->channel,
335 channel->center_freq, conf_is_ht40(conf));
337 spin_lock_bh(&sc->sc_resetlock);
339 r = ath9k_hw_reset(ah, hchan, fastcc);
341 ath_print(common, ATH_DBG_FATAL,
342 "Unable to reset channel (%u Mhz) "
344 channel->center_freq, r);
345 spin_unlock_bh(&sc->sc_resetlock);
348 spin_unlock_bh(&sc->sc_resetlock);
350 sc->sc_flags &= ~SC_OP_FULL_RESET;
352 if (ath_startrecv(sc) != 0) {
353 ath_print(common, ATH_DBG_FATAL,
354 "Unable to restart recv logic\n");
359 ath_cache_conf_rate(sc, &hw->conf);
360 ath_update_txpow(sc);
361 ath9k_hw_set_interrupts(ah, sc->imask);
364 ath9k_ps_restore(sc);
369 * This routine performs the periodic noise floor calibration function
370 * that is used to adjust and optimize the chip performance. This
371 * takes environmental changes (location, temperature) into account.
372 * When the task is complete, it reschedules itself depending on the
373 * appropriate interval that was calculated.
375 static void ath_ani_calibrate(unsigned long data)
377 struct ath_softc *sc = (struct ath_softc *)data;
378 struct ath_hw *ah = sc->sc_ah;
379 struct ath_common *common = ath9k_hw_common(ah);
380 bool longcal = false;
381 bool shortcal = false;
382 bool aniflag = false;
383 unsigned int timestamp = jiffies_to_msecs(jiffies);
384 u32 cal_interval, short_cal_interval;
386 short_cal_interval = (ah->opmode == NL80211_IFTYPE_AP) ?
387 ATH_AP_SHORT_CALINTERVAL : ATH_STA_SHORT_CALINTERVAL;
390 * don't calibrate when we're scanning.
391 * we are most likely not on our home channel.
393 spin_lock(&sc->ani_lock);
394 if (sc->sc_flags & SC_OP_SCANNING)
397 /* Only calibrate if awake */
398 if (sc->sc_ah->power_mode != ATH9K_PM_AWAKE)
403 /* Long calibration runs independently of short calibration. */
404 if ((timestamp - sc->ani.longcal_timer) >= ATH_LONG_CALINTERVAL) {
406 ath_print(common, ATH_DBG_ANI, "longcal @%lu\n", jiffies);
407 sc->ani.longcal_timer = timestamp;
410 /* Short calibration applies only while caldone is false */
411 if (!sc->ani.caldone) {
412 if ((timestamp - sc->ani.shortcal_timer) >= short_cal_interval) {
414 ath_print(common, ATH_DBG_ANI,
415 "shortcal @%lu\n", jiffies);
416 sc->ani.shortcal_timer = timestamp;
417 sc->ani.resetcal_timer = timestamp;
420 if ((timestamp - sc->ani.resetcal_timer) >=
421 ATH_RESTART_CALINTERVAL) {
422 sc->ani.caldone = ath9k_hw_reset_calvalid(ah);
424 sc->ani.resetcal_timer = timestamp;
428 /* Verify whether we must check ANI */
429 if ((timestamp - sc->ani.checkani_timer) >= ATH_ANI_POLLINTERVAL) {
431 sc->ani.checkani_timer = timestamp;
434 /* Skip all processing if there's nothing to do. */
435 if (longcal || shortcal || aniflag) {
436 /* Call ANI routine if necessary */
438 ath9k_hw_ani_monitor(ah, ah->curchan);
440 /* Perform calibration if necessary */
441 if (longcal || shortcal) {
443 ath9k_hw_calibrate(ah,
445 common->rx_chainmask,
449 sc->ani.noise_floor = ath9k_hw_getchan_noise(ah,
452 ath_print(common, ATH_DBG_ANI,
453 " calibrate chan %u/%x nf: %d\n",
454 ah->curchan->channel,
455 ah->curchan->channelFlags,
456 sc->ani.noise_floor);
460 ath9k_ps_restore(sc);
463 spin_unlock(&sc->ani_lock);
465 * Set timer interval based on previous results.
466 * The interval must be the shortest necessary to satisfy ANI,
467 * short calibration and long calibration.
469 cal_interval = ATH_LONG_CALINTERVAL;
470 if (sc->sc_ah->config.enable_ani)
471 cal_interval = min(cal_interval, (u32)ATH_ANI_POLLINTERVAL);
472 if (!sc->ani.caldone)
473 cal_interval = min(cal_interval, (u32)short_cal_interval);
475 mod_timer(&sc->ani.timer, jiffies + msecs_to_jiffies(cal_interval));
478 static void ath_start_ani(struct ath_softc *sc)
480 unsigned long timestamp = jiffies_to_msecs(jiffies);
482 sc->ani.longcal_timer = timestamp;
483 sc->ani.shortcal_timer = timestamp;
484 sc->ani.checkani_timer = timestamp;
486 mod_timer(&sc->ani.timer,
487 jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
491 * Update tx/rx chainmask. For legacy association,
492 * hard code chainmask to 1x1, for 11n association, use
493 * the chainmask configuration, for bt coexistence, use
494 * the chainmask configuration even in legacy mode.
496 void ath_update_chainmask(struct ath_softc *sc, int is_ht)
498 struct ath_hw *ah = sc->sc_ah;
499 struct ath_common *common = ath9k_hw_common(ah);
501 if ((sc->sc_flags & SC_OP_SCANNING) || is_ht ||
502 (ah->btcoex_hw.scheme != ATH_BTCOEX_CFG_NONE)) {
503 common->tx_chainmask = ah->caps.tx_chainmask;
504 common->rx_chainmask = ah->caps.rx_chainmask;
506 common->tx_chainmask = 1;
507 common->rx_chainmask = 1;
510 ath_print(common, ATH_DBG_CONFIG,
511 "tx chmask: %d, rx chmask: %d\n",
512 common->tx_chainmask,
513 common->rx_chainmask);
516 static void ath_node_attach(struct ath_softc *sc, struct ieee80211_sta *sta)
520 an = (struct ath_node *)sta->drv_priv;
522 if (sc->sc_flags & SC_OP_TXAGGR) {
523 ath_tx_node_init(sc, an);
524 an->maxampdu = 1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
525 sta->ht_cap.ampdu_factor);
526 an->mpdudensity = parse_mpdudensity(sta->ht_cap.ampdu_density);
527 an->last_rssi = ATH_RSSI_DUMMY_MARKER;
531 static void ath_node_detach(struct ath_softc *sc, struct ieee80211_sta *sta)
533 struct ath_node *an = (struct ath_node *)sta->drv_priv;
535 if (sc->sc_flags & SC_OP_TXAGGR)
536 ath_tx_node_cleanup(sc, an);
539 static void ath9k_tasklet(unsigned long data)
541 struct ath_softc *sc = (struct ath_softc *)data;
542 struct ath_hw *ah = sc->sc_ah;
543 struct ath_common *common = ath9k_hw_common(ah);
545 u32 status = sc->intrstatus;
549 if (status & ATH9K_INT_FATAL) {
550 ath_reset(sc, false);
551 ath9k_ps_restore(sc);
555 if (status & (ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) {
556 spin_lock_bh(&sc->rx.rxflushlock);
557 ath_rx_tasklet(sc, 0);
558 spin_unlock_bh(&sc->rx.rxflushlock);
561 if (status & ATH9K_INT_TX)
564 if ((status & ATH9K_INT_TSFOOR) && sc->ps_enabled) {
566 * TSF sync does not look correct; remain awake to sync with
569 ath_print(common, ATH_DBG_PS,
570 "TSFOOR - Sync with next Beacon\n");
571 sc->sc_flags |= SC_OP_WAIT_FOR_BEACON | SC_OP_BEACON_SYNC;
574 if (ah->btcoex_hw.scheme == ATH_BTCOEX_CFG_3WIRE)
575 if (status & ATH9K_INT_GENTIMER)
576 ath_gen_timer_isr(sc->sc_ah);
578 /* re-enable hardware interrupt */
579 ath9k_hw_set_interrupts(ah, sc->imask);
580 ath9k_ps_restore(sc);
583 irqreturn_t ath_isr(int irq, void *dev)
585 #define SCHED_INTR ( \
596 struct ath_softc *sc = dev;
597 struct ath_hw *ah = sc->sc_ah;
598 enum ath9k_int status;
602 * The hardware is not ready/present, don't
603 * touch anything. Note this can happen early
604 * on if the IRQ is shared.
606 if (sc->sc_flags & SC_OP_INVALID)
610 /* shared irq, not for us */
612 if (!ath9k_hw_intrpend(ah))
616 * Figure out the reason(s) for the interrupt. Note
617 * that the hal returns a pseudo-ISR that may include
618 * bits we haven't explicitly enabled so we mask the
619 * value to insure we only process bits we requested.
621 ath9k_hw_getisr(ah, &status); /* NB: clears ISR too */
622 status &= sc->imask; /* discard unasked-for bits */
625 * If there are no status bits set, then this interrupt was not
626 * for me (should have been caught above).
631 /* Cache the status */
632 sc->intrstatus = status;
634 if (status & SCHED_INTR)
638 * If a FATAL or RXORN interrupt is received, we have to reset the
641 if (status & (ATH9K_INT_FATAL | ATH9K_INT_RXORN))
644 if (status & ATH9K_INT_SWBA)
645 tasklet_schedule(&sc->bcon_tasklet);
647 if (status & ATH9K_INT_TXURN)
648 ath9k_hw_updatetxtriglevel(ah, true);
650 if (status & ATH9K_INT_MIB) {
652 * Disable interrupts until we service the MIB
653 * interrupt; otherwise it will continue to
656 ath9k_hw_set_interrupts(ah, 0);
658 * Let the hal handle the event. We assume
659 * it will clear whatever condition caused
662 ath9k_hw_procmibevent(ah);
663 ath9k_hw_set_interrupts(ah, sc->imask);
666 if (!(ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
667 if (status & ATH9K_INT_TIM_TIMER) {
668 /* Clear RxAbort bit so that we can
670 ath9k_setpower(sc, ATH9K_PM_AWAKE);
671 ath9k_hw_setrxabort(sc->sc_ah, 0);
672 sc->sc_flags |= SC_OP_WAIT_FOR_BEACON;
677 ath_debug_stat_interrupt(sc, status);
680 /* turn off every interrupt except SWBA */
681 ath9k_hw_set_interrupts(ah, (sc->imask & ATH9K_INT_SWBA));
682 tasklet_schedule(&sc->intr_tq);
690 static u32 ath_get_extchanmode(struct ath_softc *sc,
691 struct ieee80211_channel *chan,
692 enum nl80211_channel_type channel_type)
696 switch (chan->band) {
697 case IEEE80211_BAND_2GHZ:
698 switch(channel_type) {
699 case NL80211_CHAN_NO_HT:
700 case NL80211_CHAN_HT20:
701 chanmode = CHANNEL_G_HT20;
703 case NL80211_CHAN_HT40PLUS:
704 chanmode = CHANNEL_G_HT40PLUS;
706 case NL80211_CHAN_HT40MINUS:
707 chanmode = CHANNEL_G_HT40MINUS;
711 case IEEE80211_BAND_5GHZ:
712 switch(channel_type) {
713 case NL80211_CHAN_NO_HT:
714 case NL80211_CHAN_HT20:
715 chanmode = CHANNEL_A_HT20;
717 case NL80211_CHAN_HT40PLUS:
718 chanmode = CHANNEL_A_HT40PLUS;
720 case NL80211_CHAN_HT40MINUS:
721 chanmode = CHANNEL_A_HT40MINUS;
732 static int ath_setkey_tkip(struct ath_softc *sc, u16 keyix, const u8 *key,
733 struct ath9k_keyval *hk, const u8 *addr,
739 key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
740 key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
744 * Group key installation - only two key cache entries are used
745 * regardless of splitmic capability since group key is only
746 * used either for TX or RX.
749 memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
750 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_mic));
752 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
753 memcpy(hk->kv_txmic, key_rxmic, sizeof(hk->kv_mic));
755 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
758 /* TX and RX keys share the same key cache entry. */
759 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
760 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
761 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
764 /* Separate key cache entries for TX and RX */
766 /* TX key goes at first index, RX key at +32. */
767 memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
768 if (!ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, NULL)) {
769 /* TX MIC entry failed. No need to proceed further */
770 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
771 "Setting TX MIC Key Failed\n");
775 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
776 /* XXX delete tx key on failure? */
777 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix + 32, hk, addr);
780 static int ath_reserve_key_cache_slot_tkip(struct ath_softc *sc)
784 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
785 if (test_bit(i, sc->keymap) ||
786 test_bit(i + 64, sc->keymap))
787 continue; /* At least one part of TKIP key allocated */
789 (test_bit(i + 32, sc->keymap) ||
790 test_bit(i + 64 + 32, sc->keymap)))
791 continue; /* At least one part of TKIP key allocated */
793 /* Found a free slot for a TKIP key */
799 static int ath_reserve_key_cache_slot(struct ath_softc *sc)
803 /* First, try to find slots that would not be available for TKIP. */
805 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 4; i++) {
806 if (!test_bit(i, sc->keymap) &&
807 (test_bit(i + 32, sc->keymap) ||
808 test_bit(i + 64, sc->keymap) ||
809 test_bit(i + 64 + 32, sc->keymap)))
811 if (!test_bit(i + 32, sc->keymap) &&
812 (test_bit(i, sc->keymap) ||
813 test_bit(i + 64, sc->keymap) ||
814 test_bit(i + 64 + 32, sc->keymap)))
816 if (!test_bit(i + 64, sc->keymap) &&
817 (test_bit(i , sc->keymap) ||
818 test_bit(i + 32, sc->keymap) ||
819 test_bit(i + 64 + 32, sc->keymap)))
821 if (!test_bit(i + 64 + 32, sc->keymap) &&
822 (test_bit(i, sc->keymap) ||
823 test_bit(i + 32, sc->keymap) ||
824 test_bit(i + 64, sc->keymap)))
828 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
829 if (!test_bit(i, sc->keymap) &&
830 test_bit(i + 64, sc->keymap))
832 if (test_bit(i, sc->keymap) &&
833 !test_bit(i + 64, sc->keymap))
838 /* No partially used TKIP slots, pick any available slot */
839 for (i = IEEE80211_WEP_NKID; i < sc->keymax; i++) {
840 /* Do not allow slots that could be needed for TKIP group keys
841 * to be used. This limitation could be removed if we know that
842 * TKIP will not be used. */
843 if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
846 if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
848 if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
852 if (!test_bit(i, sc->keymap))
853 return i; /* Found a free slot for a key */
856 /* No free slot found */
860 static int ath_key_config(struct ath_softc *sc,
861 struct ieee80211_vif *vif,
862 struct ieee80211_sta *sta,
863 struct ieee80211_key_conf *key)
865 struct ath9k_keyval hk;
866 const u8 *mac = NULL;
870 memset(&hk, 0, sizeof(hk));
874 hk.kv_type = ATH9K_CIPHER_WEP;
877 hk.kv_type = ATH9K_CIPHER_TKIP;
880 hk.kv_type = ATH9K_CIPHER_AES_CCM;
886 hk.kv_len = key->keylen;
887 memcpy(hk.kv_val, key->key, key->keylen);
889 if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
890 /* For now, use the default keys for broadcast keys. This may
891 * need to change with virtual interfaces. */
893 } else if (key->keyidx) {
898 if (vif->type != NL80211_IFTYPE_AP) {
899 /* Only keyidx 0 should be used with unicast key, but
900 * allow this for client mode for now. */
909 if (key->alg == ALG_TKIP)
910 idx = ath_reserve_key_cache_slot_tkip(sc);
912 idx = ath_reserve_key_cache_slot(sc);
914 return -ENOSPC; /* no free key cache entries */
917 if (key->alg == ALG_TKIP)
918 ret = ath_setkey_tkip(sc, idx, key->key, &hk, mac,
919 vif->type == NL80211_IFTYPE_AP);
921 ret = ath9k_hw_set_keycache_entry(sc->sc_ah, idx, &hk, mac);
926 set_bit(idx, sc->keymap);
927 if (key->alg == ALG_TKIP) {
928 set_bit(idx + 64, sc->keymap);
930 set_bit(idx + 32, sc->keymap);
931 set_bit(idx + 64 + 32, sc->keymap);
938 static void ath_key_delete(struct ath_softc *sc, struct ieee80211_key_conf *key)
940 ath9k_hw_keyreset(sc->sc_ah, key->hw_key_idx);
941 if (key->hw_key_idx < IEEE80211_WEP_NKID)
944 clear_bit(key->hw_key_idx, sc->keymap);
945 if (key->alg != ALG_TKIP)
948 clear_bit(key->hw_key_idx + 64, sc->keymap);
950 clear_bit(key->hw_key_idx + 32, sc->keymap);
951 clear_bit(key->hw_key_idx + 64 + 32, sc->keymap);
955 static void setup_ht_cap(struct ath_softc *sc,
956 struct ieee80211_sta_ht_cap *ht_info)
958 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
959 u8 tx_streams, rx_streams;
961 ht_info->ht_supported = true;
962 ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
963 IEEE80211_HT_CAP_SM_PS |
964 IEEE80211_HT_CAP_SGI_40 |
965 IEEE80211_HT_CAP_DSSSCCK40;
967 ht_info->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
968 ht_info->ampdu_density = IEEE80211_HT_MPDU_DENSITY_8;
970 /* set up supported mcs set */
971 memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
972 tx_streams = !(common->tx_chainmask & (common->tx_chainmask - 1)) ?
974 rx_streams = !(common->rx_chainmask & (common->rx_chainmask - 1)) ?
977 if (tx_streams != rx_streams) {
978 ath_print(common, ATH_DBG_CONFIG,
979 "TX streams %d, RX streams: %d\n",
980 tx_streams, rx_streams);
981 ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_RX_DIFF;
982 ht_info->mcs.tx_params |= ((tx_streams - 1) <<
983 IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT);
986 ht_info->mcs.rx_mask[0] = 0xff;
988 ht_info->mcs.rx_mask[1] = 0xff;
990 ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_DEFINED;
993 static void ath9k_bss_assoc_info(struct ath_softc *sc,
994 struct ieee80211_vif *vif,
995 struct ieee80211_bss_conf *bss_conf)
997 struct ath_hw *ah = sc->sc_ah;
998 struct ath_common *common = ath9k_hw_common(ah);
1000 if (bss_conf->assoc) {
1001 ath_print(common, ATH_DBG_CONFIG,
1002 "Bss Info ASSOC %d, bssid: %pM\n",
1003 bss_conf->aid, common->curbssid);
1005 /* New association, store aid */
1006 common->curaid = bss_conf->aid;
1007 ath9k_hw_write_associd(ah);
1010 * Request a re-configuration of Beacon related timers
1011 * on the receipt of the first Beacon frame (i.e.,
1012 * after time sync with the AP).
1014 sc->sc_flags |= SC_OP_BEACON_SYNC;
1016 /* Configure the beacon */
1017 ath_beacon_config(sc, vif);
1019 /* Reset rssi stats */
1020 sc->sc_ah->stats.avgbrssi = ATH_RSSI_DUMMY_MARKER;
1024 ath_print(common, ATH_DBG_CONFIG, "Bss Info DISASSOC\n");
1027 del_timer_sync(&sc->ani.timer);
1031 /********************************/
1033 /********************************/
1035 static void ath_led_blink_work(struct work_struct *work)
1037 struct ath_softc *sc = container_of(work, struct ath_softc,
1038 ath_led_blink_work.work);
1040 if (!(sc->sc_flags & SC_OP_LED_ASSOCIATED))
1043 if ((sc->led_on_duration == ATH_LED_ON_DURATION_IDLE) ||
1044 (sc->led_off_duration == ATH_LED_OFF_DURATION_IDLE))
1045 ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin, 0);
1047 ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin,
1048 (sc->sc_flags & SC_OP_LED_ON) ? 1 : 0);
1050 ieee80211_queue_delayed_work(sc->hw,
1051 &sc->ath_led_blink_work,
1052 (sc->sc_flags & SC_OP_LED_ON) ?
1053 msecs_to_jiffies(sc->led_off_duration) :
1054 msecs_to_jiffies(sc->led_on_duration));
1056 sc->led_on_duration = sc->led_on_cnt ?
1057 max((ATH_LED_ON_DURATION_IDLE - sc->led_on_cnt), 25) :
1058 ATH_LED_ON_DURATION_IDLE;
1059 sc->led_off_duration = sc->led_off_cnt ?
1060 max((ATH_LED_OFF_DURATION_IDLE - sc->led_off_cnt), 10) :
1061 ATH_LED_OFF_DURATION_IDLE;
1062 sc->led_on_cnt = sc->led_off_cnt = 0;
1063 if (sc->sc_flags & SC_OP_LED_ON)
1064 sc->sc_flags &= ~SC_OP_LED_ON;
1066 sc->sc_flags |= SC_OP_LED_ON;
1069 static void ath_led_brightness(struct led_classdev *led_cdev,
1070 enum led_brightness brightness)
1072 struct ath_led *led = container_of(led_cdev, struct ath_led, led_cdev);
1073 struct ath_softc *sc = led->sc;
1075 switch (brightness) {
1077 if (led->led_type == ATH_LED_ASSOC ||
1078 led->led_type == ATH_LED_RADIO) {
1079 ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin,
1080 (led->led_type == ATH_LED_RADIO));
1081 sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
1082 if (led->led_type == ATH_LED_RADIO)
1083 sc->sc_flags &= ~SC_OP_LED_ON;
1089 if (led->led_type == ATH_LED_ASSOC) {
1090 sc->sc_flags |= SC_OP_LED_ASSOCIATED;
1091 ieee80211_queue_delayed_work(sc->hw,
1092 &sc->ath_led_blink_work, 0);
1093 } else if (led->led_type == ATH_LED_RADIO) {
1094 ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin, 0);
1095 sc->sc_flags |= SC_OP_LED_ON;
1105 static int ath_register_led(struct ath_softc *sc, struct ath_led *led,
1111 led->led_cdev.name = led->name;
1112 led->led_cdev.default_trigger = trigger;
1113 led->led_cdev.brightness_set = ath_led_brightness;
1115 ret = led_classdev_register(wiphy_dev(sc->hw->wiphy), &led->led_cdev);
1117 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
1118 "Failed to register led:%s", led->name);
1120 led->registered = 1;
1124 static void ath_unregister_led(struct ath_led *led)
1126 if (led->registered) {
1127 led_classdev_unregister(&led->led_cdev);
1128 led->registered = 0;
1132 static void ath_deinit_leds(struct ath_softc *sc)
1134 ath_unregister_led(&sc->assoc_led);
1135 sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
1136 ath_unregister_led(&sc->tx_led);
1137 ath_unregister_led(&sc->rx_led);
1138 ath_unregister_led(&sc->radio_led);
1139 ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin, 1);
1142 static void ath_init_leds(struct ath_softc *sc)
1147 if (AR_SREV_9287(sc->sc_ah))
1148 sc->sc_ah->led_pin = ATH_LED_PIN_9287;
1150 sc->sc_ah->led_pin = ATH_LED_PIN_DEF;
1152 /* Configure gpio 1 for output */
1153 ath9k_hw_cfg_output(sc->sc_ah, sc->sc_ah->led_pin,
1154 AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1155 /* LED off, active low */
1156 ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin, 1);
1158 INIT_DELAYED_WORK(&sc->ath_led_blink_work, ath_led_blink_work);
1160 trigger = ieee80211_get_radio_led_name(sc->hw);
1161 snprintf(sc->radio_led.name, sizeof(sc->radio_led.name),
1162 "ath9k-%s::radio", wiphy_name(sc->hw->wiphy));
1163 ret = ath_register_led(sc, &sc->radio_led, trigger);
1164 sc->radio_led.led_type = ATH_LED_RADIO;
1168 trigger = ieee80211_get_assoc_led_name(sc->hw);
1169 snprintf(sc->assoc_led.name, sizeof(sc->assoc_led.name),
1170 "ath9k-%s::assoc", wiphy_name(sc->hw->wiphy));
1171 ret = ath_register_led(sc, &sc->assoc_led, trigger);
1172 sc->assoc_led.led_type = ATH_LED_ASSOC;
1176 trigger = ieee80211_get_tx_led_name(sc->hw);
1177 snprintf(sc->tx_led.name, sizeof(sc->tx_led.name),
1178 "ath9k-%s::tx", wiphy_name(sc->hw->wiphy));
1179 ret = ath_register_led(sc, &sc->tx_led, trigger);
1180 sc->tx_led.led_type = ATH_LED_TX;
1184 trigger = ieee80211_get_rx_led_name(sc->hw);
1185 snprintf(sc->rx_led.name, sizeof(sc->rx_led.name),
1186 "ath9k-%s::rx", wiphy_name(sc->hw->wiphy));
1187 ret = ath_register_led(sc, &sc->rx_led, trigger);
1188 sc->rx_led.led_type = ATH_LED_RX;
1195 cancel_delayed_work_sync(&sc->ath_led_blink_work);
1196 ath_deinit_leds(sc);
1199 void ath_radio_enable(struct ath_softc *sc)
1201 struct ath_hw *ah = sc->sc_ah;
1202 struct ath_common *common = ath9k_hw_common(ah);
1203 struct ieee80211_channel *channel = sc->hw->conf.channel;
1206 ath9k_ps_wakeup(sc);
1207 ath9k_hw_configpcipowersave(ah, 0, 0);
1210 ah->curchan = ath_get_curchannel(sc, sc->hw);
1212 spin_lock_bh(&sc->sc_resetlock);
1213 r = ath9k_hw_reset(ah, ah->curchan, false);
1215 ath_print(common, ATH_DBG_FATAL,
1216 "Unable to reset channel %u (%uMhz) ",
1217 "reset status %d\n",
1218 channel->center_freq, r);
1220 spin_unlock_bh(&sc->sc_resetlock);
1222 ath_update_txpow(sc);
1223 if (ath_startrecv(sc) != 0) {
1224 ath_print(common, ATH_DBG_FATAL,
1225 "Unable to restart recv logic\n");
1229 if (sc->sc_flags & SC_OP_BEACONS)
1230 ath_beacon_config(sc, NULL); /* restart beacons */
1232 /* Re-Enable interrupts */
1233 ath9k_hw_set_interrupts(ah, sc->imask);
1236 ath9k_hw_cfg_output(ah, ah->led_pin,
1237 AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1238 ath9k_hw_set_gpio(ah, ah->led_pin, 0);
1240 ieee80211_wake_queues(sc->hw);
1241 ath9k_ps_restore(sc);
1244 void ath_radio_disable(struct ath_softc *sc)
1246 struct ath_hw *ah = sc->sc_ah;
1247 struct ieee80211_channel *channel = sc->hw->conf.channel;
1250 ath9k_ps_wakeup(sc);
1251 ieee80211_stop_queues(sc->hw);
1254 ath9k_hw_set_gpio(ah, ah->led_pin, 1);
1255 ath9k_hw_cfg_gpio_input(ah, ah->led_pin);
1257 /* Disable interrupts */
1258 ath9k_hw_set_interrupts(ah, 0);
1260 ath_drain_all_txq(sc, false); /* clear pending tx frames */
1261 ath_stoprecv(sc); /* turn off frame recv */
1262 ath_flushrecv(sc); /* flush recv queue */
1265 ah->curchan = ath_get_curchannel(sc, sc->hw);
1267 spin_lock_bh(&sc->sc_resetlock);
1268 r = ath9k_hw_reset(ah, ah->curchan, false);
1270 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
1271 "Unable to reset channel %u (%uMhz) "
1272 "reset status %d\n",
1273 channel->center_freq, r);
1275 spin_unlock_bh(&sc->sc_resetlock);
1277 ath9k_hw_phy_disable(ah);
1278 ath9k_hw_configpcipowersave(ah, 1, 1);
1279 ath9k_ps_restore(sc);
1280 ath9k_setpower(sc, ATH9K_PM_FULL_SLEEP);
1283 /*******************/
1285 /*******************/
1287 static bool ath_is_rfkill_set(struct ath_softc *sc)
1289 struct ath_hw *ah = sc->sc_ah;
1291 return ath9k_hw_gpio_get(ah, ah->rfkill_gpio) ==
1292 ah->rfkill_polarity;
1295 static void ath9k_rfkill_poll_state(struct ieee80211_hw *hw)
1297 struct ath_wiphy *aphy = hw->priv;
1298 struct ath_softc *sc = aphy->sc;
1299 bool blocked = !!ath_is_rfkill_set(sc);
1301 wiphy_rfkill_set_hw_state(hw->wiphy, blocked);
1304 static void ath_start_rfkill_poll(struct ath_softc *sc)
1306 struct ath_hw *ah = sc->sc_ah;
1308 if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1309 wiphy_rfkill_start_polling(sc->hw->wiphy);
1312 void ath_cleanup(struct ath_softc *sc)
1315 free_irq(sc->irq, sc);
1316 ath_bus_cleanup(sc);
1317 kfree(sc->sec_wiphy);
1318 ieee80211_free_hw(sc->hw);
1321 void ath_detach(struct ath_softc *sc)
1323 struct ieee80211_hw *hw = sc->hw;
1324 struct ath_hw *ah = sc->sc_ah;
1327 ath9k_ps_wakeup(sc);
1329 dev_dbg(sc->dev, "Detach ATH hw\n");
1331 ath_deinit_leds(sc);
1332 wiphy_rfkill_stop_polling(sc->hw->wiphy);
1334 for (i = 0; i < sc->num_sec_wiphy; i++) {
1335 struct ath_wiphy *aphy = sc->sec_wiphy[i];
1338 sc->sec_wiphy[i] = NULL;
1339 ieee80211_unregister_hw(aphy->hw);
1340 ieee80211_free_hw(aphy->hw);
1342 ieee80211_unregister_hw(hw);
1346 tasklet_kill(&sc->intr_tq);
1347 tasklet_kill(&sc->bcon_tasklet);
1349 if (!(sc->sc_flags & SC_OP_INVALID))
1350 ath9k_setpower(sc, ATH9K_PM_AWAKE);
1352 /* cleanup tx queues */
1353 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1354 if (ATH_TXQ_SETUP(sc, i))
1355 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1357 if ((sc->btcoex.no_stomp_timer) &&
1358 ah->btcoex_hw.scheme == ATH_BTCOEX_CFG_3WIRE)
1359 ath_gen_timer_free(ah, sc->btcoex.no_stomp_timer);
1361 ath9k_hw_detach(ah);
1362 ath9k_exit_debug(ah);
1366 static int ath9k_reg_notifier(struct wiphy *wiphy,
1367 struct regulatory_request *request)
1369 struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
1370 struct ath_wiphy *aphy = hw->priv;
1371 struct ath_softc *sc = aphy->sc;
1372 struct ath_regulatory *reg = ath9k_hw_regulatory(sc->sc_ah);
1374 return ath_reg_notifier_apply(wiphy, request, reg);
1378 * Detects if there is any priority bt traffic
1380 static void ath_detect_bt_priority(struct ath_softc *sc)
1382 struct ath_btcoex *btcoex = &sc->btcoex;
1383 struct ath_hw *ah = sc->sc_ah;
1385 if (ath9k_hw_gpio_get(sc->sc_ah, ah->btcoex_hw.btpriority_gpio))
1386 btcoex->bt_priority_cnt++;
1388 if (time_after(jiffies, btcoex->bt_priority_time +
1389 msecs_to_jiffies(ATH_BT_PRIORITY_TIME_THRESHOLD))) {
1390 if (btcoex->bt_priority_cnt >= ATH_BT_CNT_THRESHOLD) {
1391 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_BTCOEX,
1392 "BT priority traffic detected");
1393 sc->sc_flags |= SC_OP_BT_PRIORITY_DETECTED;
1395 sc->sc_flags &= ~SC_OP_BT_PRIORITY_DETECTED;
1398 btcoex->bt_priority_cnt = 0;
1399 btcoex->bt_priority_time = jiffies;
1404 * Configures appropriate weight based on stomp type.
1406 static void ath9k_btcoex_bt_stomp(struct ath_softc *sc,
1407 enum ath_stomp_type stomp_type)
1409 struct ath_hw *ah = sc->sc_ah;
1411 switch (stomp_type) {
1412 case ATH_BTCOEX_STOMP_ALL:
1413 ath9k_hw_btcoex_set_weight(ah, AR_BT_COEX_WGHT,
1414 AR_STOMP_ALL_WLAN_WGHT);
1416 case ATH_BTCOEX_STOMP_LOW:
1417 ath9k_hw_btcoex_set_weight(ah, AR_BT_COEX_WGHT,
1418 AR_STOMP_LOW_WLAN_WGHT);
1420 case ATH_BTCOEX_STOMP_NONE:
1421 ath9k_hw_btcoex_set_weight(ah, AR_BT_COEX_WGHT,
1422 AR_STOMP_NONE_WLAN_WGHT);
1425 ath_print(ath9k_hw_common(ah), ATH_DBG_BTCOEX,
1426 "Invalid Stomptype\n");
1430 ath9k_hw_btcoex_enable(ah);
1433 static void ath9k_gen_timer_start(struct ath_hw *ah,
1434 struct ath_gen_timer *timer,
1438 ath9k_hw_gen_timer_start(ah, timer, timer_next, timer_period);
1440 if ((ah->ah_sc->imask & ATH9K_INT_GENTIMER) == 0) {
1441 ath9k_hw_set_interrupts(ah, 0);
1442 ah->ah_sc->imask |= ATH9K_INT_GENTIMER;
1443 ath9k_hw_set_interrupts(ah, ah->ah_sc->imask);
1447 static void ath9k_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
1449 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
1451 ath9k_hw_gen_timer_stop(ah, timer);
1453 /* if no timer is enabled, turn off interrupt mask */
1454 if (timer_table->timer_mask.val == 0) {
1455 ath9k_hw_set_interrupts(ah, 0);
1456 ah->ah_sc->imask &= ~ATH9K_INT_GENTIMER;
1457 ath9k_hw_set_interrupts(ah, ah->ah_sc->imask);
1462 * This is the master bt coex timer which runs for every
1463 * 45ms, bt traffic will be given priority during 55% of this
1464 * period while wlan gets remaining 45%
1466 static void ath_btcoex_period_timer(unsigned long data)
1468 struct ath_softc *sc = (struct ath_softc *) data;
1469 struct ath_hw *ah = sc->sc_ah;
1470 struct ath_btcoex *btcoex = &sc->btcoex;
1472 ath_detect_bt_priority(sc);
1474 spin_lock_bh(&btcoex->btcoex_lock);
1476 ath9k_btcoex_bt_stomp(sc, btcoex->bt_stomp_type);
1478 spin_unlock_bh(&btcoex->btcoex_lock);
1480 if (btcoex->btcoex_period != btcoex->btcoex_no_stomp) {
1481 if (btcoex->hw_timer_enabled)
1482 ath9k_gen_timer_stop(ah, btcoex->no_stomp_timer);
1484 ath9k_gen_timer_start(ah,
1485 btcoex->no_stomp_timer,
1486 (ath9k_hw_gettsf32(ah) +
1487 btcoex->btcoex_no_stomp),
1488 btcoex->btcoex_no_stomp * 10);
1489 btcoex->hw_timer_enabled = true;
1492 mod_timer(&btcoex->period_timer, jiffies +
1493 msecs_to_jiffies(ATH_BTCOEX_DEF_BT_PERIOD));
1497 * Generic tsf based hw timer which configures weight
1498 * registers to time slice between wlan and bt traffic
1500 static void ath_btcoex_no_stomp_timer(void *arg)
1502 struct ath_softc *sc = (struct ath_softc *)arg;
1503 struct ath_hw *ah = sc->sc_ah;
1504 struct ath_btcoex *btcoex = &sc->btcoex;
1506 ath_print(ath9k_hw_common(ah), ATH_DBG_BTCOEX,
1507 "no stomp timer running \n");
1509 spin_lock_bh(&btcoex->btcoex_lock);
1511 if (btcoex->bt_stomp_type == ATH_BTCOEX_STOMP_LOW)
1512 ath9k_btcoex_bt_stomp(sc, ATH_BTCOEX_STOMP_NONE);
1513 else if (btcoex->bt_stomp_type == ATH_BTCOEX_STOMP_ALL)
1514 ath9k_btcoex_bt_stomp(sc, ATH_BTCOEX_STOMP_LOW);
1516 spin_unlock_bh(&btcoex->btcoex_lock);
1519 static int ath_init_btcoex_timer(struct ath_softc *sc)
1521 struct ath_btcoex *btcoex = &sc->btcoex;
1523 btcoex->btcoex_period = ATH_BTCOEX_DEF_BT_PERIOD * 1000;
1524 btcoex->btcoex_no_stomp = (100 - ATH_BTCOEX_DEF_DUTY_CYCLE) *
1525 btcoex->btcoex_period / 100;
1527 setup_timer(&btcoex->period_timer, ath_btcoex_period_timer,
1528 (unsigned long) sc);
1530 spin_lock_init(&btcoex->btcoex_lock);
1532 btcoex->no_stomp_timer = ath_gen_timer_alloc(sc->sc_ah,
1533 ath_btcoex_no_stomp_timer,
1534 ath_btcoex_no_stomp_timer,
1535 (void *) sc, AR_FIRST_NDP_TIMER);
1537 if (!btcoex->no_stomp_timer)
1544 * Read and write, they both share the same lock. We do this to serialize
1545 * reads and writes on Atheros 802.11n PCI devices only. This is required
1546 * as the FIFO on these devices can only accept sanely 2 requests. After
1547 * that the device goes bananas. Serializing the reads/writes prevents this
1551 static void ath9k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
1553 struct ath_hw *ah = (struct ath_hw *) hw_priv;
1555 if (ah->config.serialize_regmode == SER_REG_MODE_ON) {
1556 unsigned long flags;
1557 spin_lock_irqsave(&ah->ah_sc->sc_serial_rw, flags);
1558 iowrite32(val, ah->ah_sc->mem + reg_offset);
1559 spin_unlock_irqrestore(&ah->ah_sc->sc_serial_rw, flags);
1561 iowrite32(val, ah->ah_sc->mem + reg_offset);
1564 static unsigned int ath9k_ioread32(void *hw_priv, u32 reg_offset)
1566 struct ath_hw *ah = (struct ath_hw *) hw_priv;
1569 if (ah->config.serialize_regmode == SER_REG_MODE_ON) {
1570 unsigned long flags;
1571 spin_lock_irqsave(&ah->ah_sc->sc_serial_rw, flags);
1572 val = ioread32(ah->ah_sc->mem + reg_offset);
1573 spin_unlock_irqrestore(&ah->ah_sc->sc_serial_rw, flags);
1575 val = ioread32(ah->ah_sc->mem + reg_offset);
1579 static struct ath_ops ath9k_common_ops = {
1580 .read = ath9k_ioread32,
1581 .write = ath9k_iowrite32,
1585 * Initialize and fill ath_softc, ath_sofct is the
1586 * "Software Carrier" struct. Historically it has existed
1587 * to allow the separation between hardware specific
1588 * variables (now in ath_hw) and driver specific variables.
1590 static int ath_init_softc(u16 devid, struct ath_softc *sc, u16 subsysid)
1592 struct ath_hw *ah = NULL;
1593 struct ath_common *common;
1598 /* XXX: hardware will not be ready until ath_open() being called */
1599 sc->sc_flags |= SC_OP_INVALID;
1601 spin_lock_init(&sc->wiphy_lock);
1602 spin_lock_init(&sc->sc_resetlock);
1603 spin_lock_init(&sc->sc_serial_rw);
1604 spin_lock_init(&sc->ani_lock);
1605 spin_lock_init(&sc->sc_pm_lock);
1606 mutex_init(&sc->mutex);
1607 tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
1608 tasklet_init(&sc->bcon_tasklet, ath_beacon_tasklet,
1611 ah = kzalloc(sizeof(struct ath_hw), GFP_KERNEL);
1618 ah->hw_version.devid = devid;
1619 ah->hw_version.subsysid = subsysid;
1622 common = ath9k_hw_common(ah);
1623 common->ops = &ath9k_common_ops;
1625 common->hw = sc->hw;
1628 * Cache line size is used to size and align various
1629 * structures used to communicate with the hardware.
1631 ath_read_cachesize(sc, &csz);
1632 /* XXX assert csz is non-zero */
1633 common->cachelsz = csz << 2; /* convert to bytes */
1635 if (ath9k_init_debug(ah) < 0)
1636 dev_err(sc->dev, "Unable to create debugfs files\n");
1638 r = ath9k_hw_init(ah);
1640 ath_print(common, ATH_DBG_FATAL,
1641 "Unable to initialize hardware; "
1642 "initialization status: %d\n", r);
1646 /* Get the hardware key cache size. */
1647 sc->keymax = ah->caps.keycache_size;
1648 if (sc->keymax > ATH_KEYMAX) {
1649 ath_print(common, ATH_DBG_ANY,
1650 "Warning, using only %u entries in %u key cache\n",
1651 ATH_KEYMAX, sc->keymax);
1652 sc->keymax = ATH_KEYMAX;
1656 * Reset the key cache since some parts do not
1657 * reset the contents on initial power up.
1659 for (i = 0; i < sc->keymax; i++)
1660 ath9k_hw_keyreset(ah, (u16) i);
1662 /* default to MONITOR mode */
1663 sc->sc_ah->opmode = NL80211_IFTYPE_MONITOR;
1665 /* Setup rate tables */
1667 ath_rate_attach(sc);
1668 ath_setup_rates(sc, IEEE80211_BAND_2GHZ);
1669 ath_setup_rates(sc, IEEE80211_BAND_5GHZ);
1672 * Allocate hardware transmit queues: one queue for
1673 * beacon frames and one data queue for each QoS
1674 * priority. Note that the hal handles reseting
1675 * these queues at the needed time.
1677 sc->beacon.beaconq = ath_beaconq_setup(ah);
1678 if (sc->beacon.beaconq == -1) {
1679 ath_print(common, ATH_DBG_FATAL,
1680 "Unable to setup a beacon xmit queue\n");
1684 sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
1685 if (sc->beacon.cabq == NULL) {
1686 ath_print(common, ATH_DBG_FATAL,
1687 "Unable to setup CAB xmit queue\n");
1692 sc->config.cabqReadytime = ATH_CABQ_READY_TIME;
1693 ath_cabq_update(sc);
1695 for (i = 0; i < ARRAY_SIZE(sc->tx.hwq_map); i++)
1696 sc->tx.hwq_map[i] = -1;
1698 /* Setup data queues */
1699 /* NB: ensure BK queue is the lowest priority h/w queue */
1700 if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) {
1701 ath_print(common, ATH_DBG_FATAL,
1702 "Unable to setup xmit queue for BK traffic\n");
1707 if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) {
1708 ath_print(common, ATH_DBG_FATAL,
1709 "Unable to setup xmit queue for BE traffic\n");
1713 if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) {
1714 ath_print(common, ATH_DBG_FATAL,
1715 "Unable to setup xmit queue for VI traffic\n");
1719 if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) {
1720 ath_print(common, ATH_DBG_FATAL,
1721 "Unable to setup xmit queue for VO traffic\n");
1726 /* Initializes the noise floor to a reasonable default value.
1727 * Later on this will be updated during ANI processing. */
1729 sc->ani.noise_floor = ATH_DEFAULT_NOISE_FLOOR;
1730 setup_timer(&sc->ani.timer, ath_ani_calibrate, (unsigned long)sc);
1732 if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1733 ATH9K_CIPHER_TKIP, NULL)) {
1735 * Whether we should enable h/w TKIP MIC.
1736 * XXX: if we don't support WME TKIP MIC, then we wouldn't
1737 * report WMM capable, so it's always safe to turn on
1738 * TKIP MIC in this case.
1740 ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC,
1745 * Check whether the separate key cache entries
1746 * are required to handle both tx+rx MIC keys.
1747 * With split mic keys the number of stations is limited
1748 * to 27 otherwise 59.
1750 if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1751 ATH9K_CIPHER_TKIP, NULL)
1752 && ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1753 ATH9K_CIPHER_MIC, NULL)
1754 && ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT,
1758 /* turn on mcast key search if possible */
1759 if (!ath9k_hw_getcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL))
1760 (void)ath9k_hw_setcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 1,
1763 sc->config.txpowlimit = ATH_TXPOWER_MAX;
1765 /* 11n Capabilities */
1766 if (ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1767 sc->sc_flags |= SC_OP_TXAGGR;
1768 sc->sc_flags |= SC_OP_RXAGGR;
1771 common->tx_chainmask = ah->caps.tx_chainmask;
1772 common->rx_chainmask = ah->caps.rx_chainmask;
1774 ath9k_hw_setcapability(ah, ATH9K_CAP_DIVERSITY, 1, true, NULL);
1775 sc->rx.defant = ath9k_hw_getdefantenna(ah);
1777 if (ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
1778 memcpy(common->bssidmask, ath_bcast_mac, ETH_ALEN);
1780 sc->beacon.slottime = ATH9K_SLOT_TIME_9; /* default to short slot time */
1782 /* initialize beacon slots */
1783 for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
1784 sc->beacon.bslot[i] = NULL;
1785 sc->beacon.bslot_aphy[i] = NULL;
1788 /* setup channels and rates */
1790 sc->sbands[IEEE80211_BAND_2GHZ].channels = ath9k_2ghz_chantable;
1791 sc->sbands[IEEE80211_BAND_2GHZ].bitrates =
1792 sc->rates[IEEE80211_BAND_2GHZ];
1793 sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
1794 sc->sbands[IEEE80211_BAND_2GHZ].n_channels =
1795 ARRAY_SIZE(ath9k_2ghz_chantable);
1797 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes)) {
1798 sc->sbands[IEEE80211_BAND_5GHZ].channels = ath9k_5ghz_chantable;
1799 sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
1800 sc->rates[IEEE80211_BAND_5GHZ];
1801 sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
1802 sc->sbands[IEEE80211_BAND_5GHZ].n_channels =
1803 ARRAY_SIZE(ath9k_5ghz_chantable);
1806 switch (ah->btcoex_hw.scheme) {
1807 case ATH_BTCOEX_CFG_NONE:
1809 case ATH_BTCOEX_CFG_2WIRE:
1810 ath9k_hw_btcoex_init_2wire(ah);
1812 case ATH_BTCOEX_CFG_3WIRE:
1813 ath9k_hw_btcoex_init_3wire(ah);
1814 r = ath_init_btcoex_timer(sc);
1817 qnum = ath_tx_get_qnum(sc, ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BE);
1818 ath9k_hw_init_btcoex_hw(ah, qnum);
1819 sc->btcoex.bt_stomp_type = ATH_BTCOEX_STOMP_LOW;
1828 /* cleanup tx queues */
1829 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1830 if (ATH_TXQ_SETUP(sc, i))
1831 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1833 ath9k_hw_detach(ah);
1835 ath9k_exit_debug(sc->sc_ah);
1841 void ath_set_hw_capab(struct ath_softc *sc, struct ieee80211_hw *hw)
1843 hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
1844 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1845 IEEE80211_HW_SIGNAL_DBM |
1846 IEEE80211_HW_AMPDU_AGGREGATION |
1847 IEEE80211_HW_SUPPORTS_PS |
1848 IEEE80211_HW_PS_NULLFUNC_STACK |
1849 IEEE80211_HW_SPECTRUM_MGMT;
1851 if (AR_SREV_9160_10_OR_LATER(sc->sc_ah) || modparam_nohwcrypt)
1852 hw->flags |= IEEE80211_HW_MFP_CAPABLE;
1854 hw->wiphy->interface_modes =
1855 BIT(NL80211_IFTYPE_AP) |
1856 BIT(NL80211_IFTYPE_STATION) |
1857 BIT(NL80211_IFTYPE_ADHOC) |
1858 BIT(NL80211_IFTYPE_MESH_POINT);
1862 hw->channel_change_time = 5000;
1863 hw->max_listen_interval = 10;
1864 /* Hardware supports 10 but we use 4 */
1865 hw->max_rate_tries = 4;
1866 hw->sta_data_size = sizeof(struct ath_node);
1867 hw->vif_data_size = sizeof(struct ath_vif);
1869 hw->rate_control_algorithm = "ath9k_rate_control";
1871 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
1872 &sc->sbands[IEEE80211_BAND_2GHZ];
1873 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
1874 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
1875 &sc->sbands[IEEE80211_BAND_5GHZ];
1878 /* Device driver core initialization */
1879 int ath_init_device(u16 devid, struct ath_softc *sc, u16 subsysid)
1881 struct ieee80211_hw *hw = sc->hw;
1882 struct ath_common *common;
1885 struct ath_regulatory *reg;
1887 dev_dbg(sc->dev, "Attach ATH hw\n");
1889 error = ath_init_softc(devid, sc, subsysid);
1894 common = ath9k_hw_common(ah);
1896 /* get mac address from hardware and set in mac80211 */
1898 SET_IEEE80211_PERM_ADDR(hw, common->macaddr);
1900 ath_set_hw_capab(sc, hw);
1902 error = ath_regd_init(&common->regulatory, sc->hw->wiphy,
1903 ath9k_reg_notifier);
1907 reg = &common->regulatory;
1909 if (ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1910 setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
1911 if (test_bit(ATH9K_MODE_11A, ah->caps.wireless_modes))
1912 setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
1915 /* initialize tx/rx engine */
1916 error = ath_tx_init(sc, ATH_TXBUF);
1920 error = ath_rx_init(sc, ATH_RXBUF);
1924 INIT_WORK(&sc->chan_work, ath9k_wiphy_chan_work);
1925 INIT_DELAYED_WORK(&sc->wiphy_work, ath9k_wiphy_work);
1926 sc->wiphy_scheduler_int = msecs_to_jiffies(500);
1928 error = ieee80211_register_hw(hw);
1930 if (!ath_is_world_regd(reg)) {
1931 error = regulatory_hint(hw->wiphy, reg->alpha2);
1936 /* Initialize LED control */
1939 ath_start_rfkill_poll(sc);
1944 /* cleanup tx queues */
1945 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1946 if (ATH_TXQ_SETUP(sc, i))
1947 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1949 ath9k_hw_detach(ah);
1950 ath9k_exit_debug(ah);
1956 int ath_reset(struct ath_softc *sc, bool retry_tx)
1958 struct ath_hw *ah = sc->sc_ah;
1959 struct ath_common *common = ath9k_hw_common(ah);
1960 struct ieee80211_hw *hw = sc->hw;
1963 ath9k_hw_set_interrupts(ah, 0);
1964 ath_drain_all_txq(sc, retry_tx);
1968 spin_lock_bh(&sc->sc_resetlock);
1969 r = ath9k_hw_reset(ah, sc->sc_ah->curchan, false);
1971 ath_print(common, ATH_DBG_FATAL,
1972 "Unable to reset hardware; reset status %d\n", r);
1973 spin_unlock_bh(&sc->sc_resetlock);
1975 if (ath_startrecv(sc) != 0)
1976 ath_print(common, ATH_DBG_FATAL,
1977 "Unable to start recv logic\n");
1980 * We may be doing a reset in response to a request
1981 * that changes the channel so update any state that
1982 * might change as a result.
1984 ath_cache_conf_rate(sc, &hw->conf);
1986 ath_update_txpow(sc);
1988 if (sc->sc_flags & SC_OP_BEACONS)
1989 ath_beacon_config(sc, NULL); /* restart beacons */
1991 ath9k_hw_set_interrupts(ah, sc->imask);
1995 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1996 if (ATH_TXQ_SETUP(sc, i)) {
1997 spin_lock_bh(&sc->tx.txq[i].axq_lock);
1998 ath_txq_schedule(sc, &sc->tx.txq[i]);
1999 spin_unlock_bh(&sc->tx.txq[i].axq_lock);
2008 * This function will allocate both the DMA descriptor structure, and the
2009 * buffers it contains. These are used to contain the descriptors used
2012 int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
2013 struct list_head *head, const char *name,
2014 int nbuf, int ndesc)
2016 #define DS2PHYS(_dd, _ds) \
2017 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2018 #define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
2019 #define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
2020 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2021 struct ath_desc *ds;
2023 int i, bsize, error;
2025 ath_print(common, ATH_DBG_CONFIG, "%s DMA: %u buffers %u desc/buf\n",
2028 INIT_LIST_HEAD(head);
2029 /* ath_desc must be a multiple of DWORDs */
2030 if ((sizeof(struct ath_desc) % 4) != 0) {
2031 ath_print(common, ATH_DBG_FATAL,
2032 "ath_desc not DWORD aligned\n");
2033 BUG_ON((sizeof(struct ath_desc) % 4) != 0);
2038 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2041 * Need additional DMA memory because we can't use
2042 * descriptors that cross the 4K page boundary. Assume
2043 * one skipped descriptor per 4K page.
2045 if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
2047 ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
2050 while (ndesc_skipped) {
2051 dma_len = ndesc_skipped * sizeof(struct ath_desc);
2052 dd->dd_desc_len += dma_len;
2054 ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
2058 /* allocate descriptors */
2059 dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
2060 &dd->dd_desc_paddr, GFP_KERNEL);
2061 if (dd->dd_desc == NULL) {
2066 ath_print(common, ATH_DBG_CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
2067 name, ds, (u32) dd->dd_desc_len,
2068 ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
2070 /* allocate buffers */
2071 bsize = sizeof(struct ath_buf) * nbuf;
2072 bf = kzalloc(bsize, GFP_KERNEL);
2079 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2081 bf->bf_daddr = DS2PHYS(dd, ds);
2083 if (!(sc->sc_ah->caps.hw_caps &
2084 ATH9K_HW_CAP_4KB_SPLITTRANS)) {
2086 * Skip descriptor addresses which can cause 4KB
2087 * boundary crossing (addr + length) with a 32 dword
2090 while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
2091 BUG_ON((caddr_t) bf->bf_desc >=
2092 ((caddr_t) dd->dd_desc +
2097 bf->bf_daddr = DS2PHYS(dd, ds);
2100 list_add_tail(&bf->list, head);
2104 dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
2107 memset(dd, 0, sizeof(*dd));
2109 #undef ATH_DESC_4KB_BOUND_CHECK
2110 #undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
2114 void ath_descdma_cleanup(struct ath_softc *sc,
2115 struct ath_descdma *dd,
2116 struct list_head *head)
2118 dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
2121 INIT_LIST_HEAD(head);
2122 kfree(dd->dd_bufptr);
2123 memset(dd, 0, sizeof(*dd));
2126 int ath_get_hal_qnum(u16 queue, struct ath_softc *sc)
2132 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VO];
2135 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VI];
2138 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
2141 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BK];
2144 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
2151 int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc)
2156 case ATH9K_WME_AC_VO:
2159 case ATH9K_WME_AC_VI:
2162 case ATH9K_WME_AC_BE:
2165 case ATH9K_WME_AC_BK:
2176 /* XXX: Remove me once we don't depend on ath9k_channel for all
2177 * this redundant data */
2178 void ath9k_update_ichannel(struct ath_softc *sc, struct ieee80211_hw *hw,
2179 struct ath9k_channel *ichan)
2181 struct ieee80211_channel *chan = hw->conf.channel;
2182 struct ieee80211_conf *conf = &hw->conf;
2184 ichan->channel = chan->center_freq;
2187 if (chan->band == IEEE80211_BAND_2GHZ) {
2188 ichan->chanmode = CHANNEL_G;
2189 ichan->channelFlags = CHANNEL_2GHZ | CHANNEL_OFDM | CHANNEL_G;
2191 ichan->chanmode = CHANNEL_A;
2192 ichan->channelFlags = CHANNEL_5GHZ | CHANNEL_OFDM;
2195 if (conf_is_ht(conf))
2196 ichan->chanmode = ath_get_extchanmode(sc, chan,
2197 conf->channel_type);
2200 /**********************/
2201 /* mac80211 callbacks */
2202 /**********************/
2205 * (Re)start btcoex timers
2207 static void ath9k_btcoex_timer_resume(struct ath_softc *sc)
2209 struct ath_btcoex *btcoex = &sc->btcoex;
2210 struct ath_hw *ah = sc->sc_ah;
2212 ath_print(ath9k_hw_common(ah), ATH_DBG_BTCOEX,
2213 "Starting btcoex timers");
2215 /* make sure duty cycle timer is also stopped when resuming */
2216 if (btcoex->hw_timer_enabled)
2217 ath9k_gen_timer_stop(sc->sc_ah, btcoex->no_stomp_timer);
2219 btcoex->bt_priority_cnt = 0;
2220 btcoex->bt_priority_time = jiffies;
2221 sc->sc_flags &= ~SC_OP_BT_PRIORITY_DETECTED;
2223 mod_timer(&btcoex->period_timer, jiffies);
2226 static int ath9k_start(struct ieee80211_hw *hw)
2228 struct ath_wiphy *aphy = hw->priv;
2229 struct ath_softc *sc = aphy->sc;
2230 struct ath_hw *ah = sc->sc_ah;
2231 struct ath_common *common = ath9k_hw_common(ah);
2232 struct ieee80211_channel *curchan = hw->conf.channel;
2233 struct ath9k_channel *init_channel;
2236 ath_print(common, ATH_DBG_CONFIG,
2237 "Starting driver with initial channel: %d MHz\n",
2238 curchan->center_freq);
2240 mutex_lock(&sc->mutex);
2242 if (ath9k_wiphy_started(sc)) {
2243 if (sc->chan_idx == curchan->hw_value) {
2245 * Already on the operational channel, the new wiphy
2246 * can be marked active.
2248 aphy->state = ATH_WIPHY_ACTIVE;
2249 ieee80211_wake_queues(hw);
2252 * Another wiphy is on another channel, start the new
2253 * wiphy in paused state.
2255 aphy->state = ATH_WIPHY_PAUSED;
2256 ieee80211_stop_queues(hw);
2258 mutex_unlock(&sc->mutex);
2261 aphy->state = ATH_WIPHY_ACTIVE;
2263 /* setup initial channel */
2265 sc->chan_idx = curchan->hw_value;
2267 init_channel = ath_get_curchannel(sc, hw);
2269 /* Reset SERDES registers */
2270 ath9k_hw_configpcipowersave(ah, 0, 0);
2273 * The basic interface to setting the hardware in a good
2274 * state is ``reset''. On return the hardware is known to
2275 * be powered up and with interrupts disabled. This must
2276 * be followed by initialization of the appropriate bits
2277 * and then setup of the interrupt mask.
2279 spin_lock_bh(&sc->sc_resetlock);
2280 r = ath9k_hw_reset(ah, init_channel, false);
2282 ath_print(common, ATH_DBG_FATAL,
2283 "Unable to reset hardware; reset status %d "
2284 "(freq %u MHz)\n", r,
2285 curchan->center_freq);
2286 spin_unlock_bh(&sc->sc_resetlock);
2289 spin_unlock_bh(&sc->sc_resetlock);
2292 * This is needed only to setup initial state
2293 * but it's best done after a reset.
2295 ath_update_txpow(sc);
2298 * Setup the hardware after reset:
2299 * The receive engine is set going.
2300 * Frame transmit is handled entirely
2301 * in the frame output path; there's nothing to do
2302 * here except setup the interrupt mask.
2304 if (ath_startrecv(sc) != 0) {
2305 ath_print(common, ATH_DBG_FATAL,
2306 "Unable to start recv logic\n");
2311 /* Setup our intr mask. */
2312 sc->imask = ATH9K_INT_RX | ATH9K_INT_TX
2313 | ATH9K_INT_RXEOL | ATH9K_INT_RXORN
2314 | ATH9K_INT_FATAL | ATH9K_INT_GLOBAL;
2316 if (ah->caps.hw_caps & ATH9K_HW_CAP_GTT)
2317 sc->imask |= ATH9K_INT_GTT;
2319 if (ah->caps.hw_caps & ATH9K_HW_CAP_HT)
2320 sc->imask |= ATH9K_INT_CST;
2322 ath_cache_conf_rate(sc, &hw->conf);
2324 sc->sc_flags &= ~SC_OP_INVALID;
2326 /* Disable BMISS interrupt when we're not associated */
2327 sc->imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
2328 ath9k_hw_set_interrupts(ah, sc->imask);
2330 ieee80211_wake_queues(hw);
2332 ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work, 0);
2334 if ((ah->btcoex_hw.scheme != ATH_BTCOEX_CFG_NONE) &&
2335 !ah->btcoex_hw.enabled) {
2336 ath9k_hw_btcoex_set_weight(ah, AR_BT_COEX_WGHT,
2337 AR_STOMP_LOW_WLAN_WGHT);
2338 ath9k_hw_btcoex_enable(ah);
2340 if (sc->bus_ops->bt_coex_prep)
2341 sc->bus_ops->bt_coex_prep(sc);
2342 if (ah->btcoex_hw.scheme == ATH_BTCOEX_CFG_3WIRE)
2343 ath9k_btcoex_timer_resume(sc);
2347 mutex_unlock(&sc->mutex);
2352 static int ath9k_tx(struct ieee80211_hw *hw,
2353 struct sk_buff *skb)
2355 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2356 struct ath_wiphy *aphy = hw->priv;
2357 struct ath_softc *sc = aphy->sc;
2358 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2359 struct ath_tx_control txctl;
2360 int hdrlen, padsize;
2362 if (aphy->state != ATH_WIPHY_ACTIVE && aphy->state != ATH_WIPHY_SCAN) {
2363 ath_print(common, ATH_DBG_XMIT,
2364 "ath9k: %s: TX in unexpected wiphy state "
2365 "%d\n", wiphy_name(hw->wiphy), aphy->state);
2369 if (sc->ps_enabled) {
2370 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2372 * mac80211 does not set PM field for normal data frames, so we
2373 * need to update that based on the current PS mode.
2375 if (ieee80211_is_data(hdr->frame_control) &&
2376 !ieee80211_is_nullfunc(hdr->frame_control) &&
2377 !ieee80211_has_pm(hdr->frame_control)) {
2378 ath_print(common, ATH_DBG_PS, "Add PM=1 for a TX frame "
2379 "while in PS mode\n");
2380 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM);
2384 if (unlikely(sc->sc_ah->power_mode != ATH9K_PM_AWAKE)) {
2386 * We are using PS-Poll and mac80211 can request TX while in
2387 * power save mode. Need to wake up hardware for the TX to be
2388 * completed and if needed, also for RX of buffered frames.
2390 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2391 ath9k_ps_wakeup(sc);
2392 ath9k_hw_setrxabort(sc->sc_ah, 0);
2393 if (ieee80211_is_pspoll(hdr->frame_control)) {
2394 ath_print(common, ATH_DBG_PS,
2395 "Sending PS-Poll to pick a buffered frame\n");
2396 sc->sc_flags |= SC_OP_WAIT_FOR_PSPOLL_DATA;
2398 ath_print(common, ATH_DBG_PS,
2399 "Wake up to complete TX\n");
2400 sc->sc_flags |= SC_OP_WAIT_FOR_TX_ACK;
2403 * The actual restore operation will happen only after
2404 * the sc_flags bit is cleared. We are just dropping
2405 * the ps_usecount here.
2407 ath9k_ps_restore(sc);
2410 memset(&txctl, 0, sizeof(struct ath_tx_control));
2413 * As a temporary workaround, assign seq# here; this will likely need
2414 * to be cleaned up to work better with Beacon transmission and virtual
2417 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
2418 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2419 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2420 sc->tx.seq_no += 0x10;
2421 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2422 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
2425 /* Add the padding after the header if this is not already done */
2426 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
2428 padsize = hdrlen % 4;
2429 if (skb_headroom(skb) < padsize)
2431 skb_push(skb, padsize);
2432 memmove(skb->data, skb->data + padsize, hdrlen);
2435 /* Check if a tx queue is available */
2437 txctl.txq = ath_test_get_txq(sc, skb);
2441 ath_print(common, ATH_DBG_XMIT, "transmitting packet, skb: %p\n", skb);
2443 if (ath_tx_start(hw, skb, &txctl) != 0) {
2444 ath_print(common, ATH_DBG_XMIT, "TX failed\n");
2450 dev_kfree_skb_any(skb);
2455 * Pause btcoex timer and bt duty cycle timer
2457 static void ath9k_btcoex_timer_pause(struct ath_softc *sc)
2459 struct ath_btcoex *btcoex = &sc->btcoex;
2460 struct ath_hw *ah = sc->sc_ah;
2462 del_timer_sync(&btcoex->period_timer);
2464 if (btcoex->hw_timer_enabled)
2465 ath9k_gen_timer_stop(ah, btcoex->no_stomp_timer);
2467 btcoex->hw_timer_enabled = false;
2470 static void ath9k_stop(struct ieee80211_hw *hw)
2472 struct ath_wiphy *aphy = hw->priv;
2473 struct ath_softc *sc = aphy->sc;
2474 struct ath_hw *ah = sc->sc_ah;
2475 struct ath_common *common = ath9k_hw_common(ah);
2477 mutex_lock(&sc->mutex);
2479 aphy->state = ATH_WIPHY_INACTIVE;
2481 cancel_delayed_work_sync(&sc->ath_led_blink_work);
2482 cancel_delayed_work_sync(&sc->tx_complete_work);
2484 if (!sc->num_sec_wiphy) {
2485 cancel_delayed_work_sync(&sc->wiphy_work);
2486 cancel_work_sync(&sc->chan_work);
2489 if (sc->sc_flags & SC_OP_INVALID) {
2490 ath_print(common, ATH_DBG_ANY, "Device not present\n");
2491 mutex_unlock(&sc->mutex);
2495 if (ath9k_wiphy_started(sc)) {
2496 mutex_unlock(&sc->mutex);
2497 return; /* another wiphy still in use */
2500 if (ah->btcoex_hw.enabled) {
2501 ath9k_hw_btcoex_disable(ah);
2502 if (ah->btcoex_hw.scheme == ATH_BTCOEX_CFG_3WIRE)
2503 ath9k_btcoex_timer_pause(sc);
2506 /* make sure h/w will not generate any interrupt
2507 * before setting the invalid flag. */
2508 ath9k_hw_set_interrupts(ah, 0);
2510 if (!(sc->sc_flags & SC_OP_INVALID)) {
2511 ath_drain_all_txq(sc, false);
2513 ath9k_hw_phy_disable(ah);
2515 sc->rx.rxlink = NULL;
2517 /* disable HAL and put h/w to sleep */
2518 ath9k_hw_disable(ah);
2519 ath9k_hw_configpcipowersave(ah, 1, 1);
2520 ath9k_setpower(sc, ATH9K_PM_FULL_SLEEP);
2522 sc->sc_flags |= SC_OP_INVALID;
2524 mutex_unlock(&sc->mutex);
2526 ath_print(common, ATH_DBG_CONFIG, "Driver halt\n");
2529 static int ath9k_add_interface(struct ieee80211_hw *hw,
2530 struct ieee80211_if_init_conf *conf)
2532 struct ath_wiphy *aphy = hw->priv;
2533 struct ath_softc *sc = aphy->sc;
2534 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2535 struct ath_vif *avp = (void *)conf->vif->drv_priv;
2536 enum nl80211_iftype ic_opmode = NL80211_IFTYPE_UNSPECIFIED;
2539 mutex_lock(&sc->mutex);
2541 if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) &&
2547 switch (conf->type) {
2548 case NL80211_IFTYPE_STATION:
2549 ic_opmode = NL80211_IFTYPE_STATION;
2551 case NL80211_IFTYPE_ADHOC:
2552 case NL80211_IFTYPE_AP:
2553 case NL80211_IFTYPE_MESH_POINT:
2554 if (sc->nbcnvifs >= ATH_BCBUF) {
2558 ic_opmode = conf->type;
2561 ath_print(common, ATH_DBG_FATAL,
2562 "Interface type %d not yet supported\n", conf->type);
2567 ath_print(common, ATH_DBG_CONFIG,
2568 "Attach a VIF of type: %d\n", ic_opmode);
2570 /* Set the VIF opmode */
2571 avp->av_opmode = ic_opmode;
2576 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
2577 ath9k_set_bssid_mask(hw);
2580 goto out; /* skip global settings for secondary vif */
2582 if (ic_opmode == NL80211_IFTYPE_AP) {
2583 ath9k_hw_set_tsfadjust(sc->sc_ah, 1);
2584 sc->sc_flags |= SC_OP_TSF_RESET;
2587 /* Set the device opmode */
2588 sc->sc_ah->opmode = ic_opmode;
2591 * Enable MIB interrupts when there are hardware phy counters.
2592 * Note we only do this (at the moment) for station mode.
2594 if ((conf->type == NL80211_IFTYPE_STATION) ||
2595 (conf->type == NL80211_IFTYPE_ADHOC) ||
2596 (conf->type == NL80211_IFTYPE_MESH_POINT)) {
2597 sc->imask |= ATH9K_INT_MIB;
2598 sc->imask |= ATH9K_INT_TSFOOR;
2601 ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
2603 if (conf->type == NL80211_IFTYPE_AP ||
2604 conf->type == NL80211_IFTYPE_ADHOC ||
2605 conf->type == NL80211_IFTYPE_MONITOR)
2609 mutex_unlock(&sc->mutex);
2613 static void ath9k_remove_interface(struct ieee80211_hw *hw,
2614 struct ieee80211_if_init_conf *conf)
2616 struct ath_wiphy *aphy = hw->priv;
2617 struct ath_softc *sc = aphy->sc;
2618 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2619 struct ath_vif *avp = (void *)conf->vif->drv_priv;
2622 ath_print(common, ATH_DBG_CONFIG, "Detach Interface\n");
2624 mutex_lock(&sc->mutex);
2627 del_timer_sync(&sc->ani.timer);
2629 /* Reclaim beacon resources */
2630 if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) ||
2631 (sc->sc_ah->opmode == NL80211_IFTYPE_ADHOC) ||
2632 (sc->sc_ah->opmode == NL80211_IFTYPE_MESH_POINT)) {
2633 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2634 ath_beacon_return(sc, avp);
2637 sc->sc_flags &= ~SC_OP_BEACONS;
2639 for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
2640 if (sc->beacon.bslot[i] == conf->vif) {
2641 printk(KERN_DEBUG "%s: vif had allocated beacon "
2642 "slot\n", __func__);
2643 sc->beacon.bslot[i] = NULL;
2644 sc->beacon.bslot_aphy[i] = NULL;
2650 mutex_unlock(&sc->mutex);
2653 static int ath9k_config(struct ieee80211_hw *hw, u32 changed)
2655 struct ath_wiphy *aphy = hw->priv;
2656 struct ath_softc *sc = aphy->sc;
2657 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2658 struct ieee80211_conf *conf = &hw->conf;
2659 struct ath_hw *ah = sc->sc_ah;
2660 bool all_wiphys_idle = false, disable_radio = false;
2662 mutex_lock(&sc->mutex);
2664 /* Leave this as the first check */
2665 if (changed & IEEE80211_CONF_CHANGE_IDLE) {
2667 spin_lock_bh(&sc->wiphy_lock);
2668 all_wiphys_idle = ath9k_all_wiphys_idle(sc);
2669 spin_unlock_bh(&sc->wiphy_lock);
2671 if (conf->flags & IEEE80211_CONF_IDLE){
2672 if (all_wiphys_idle)
2673 disable_radio = true;
2675 else if (all_wiphys_idle) {
2676 ath_radio_enable(sc);
2677 ath_print(common, ATH_DBG_CONFIG,
2678 "not-idle: enabling radio\n");
2682 if (changed & IEEE80211_CONF_CHANGE_PS) {
2683 if (conf->flags & IEEE80211_CONF_PS) {
2684 if (!(ah->caps.hw_caps &
2685 ATH9K_HW_CAP_AUTOSLEEP)) {
2686 if ((sc->imask & ATH9K_INT_TIM_TIMER) == 0) {
2687 sc->imask |= ATH9K_INT_TIM_TIMER;
2688 ath9k_hw_set_interrupts(sc->sc_ah,
2691 ath9k_hw_setrxabort(sc->sc_ah, 1);
2693 sc->ps_enabled = true;
2695 sc->ps_enabled = false;
2696 ath9k_setpower(sc, ATH9K_PM_AWAKE);
2697 if (!(ah->caps.hw_caps &
2698 ATH9K_HW_CAP_AUTOSLEEP)) {
2699 ath9k_hw_setrxabort(sc->sc_ah, 0);
2700 sc->sc_flags &= ~(SC_OP_WAIT_FOR_BEACON |
2701 SC_OP_WAIT_FOR_CAB |
2702 SC_OP_WAIT_FOR_PSPOLL_DATA |
2703 SC_OP_WAIT_FOR_TX_ACK);
2704 if (sc->imask & ATH9K_INT_TIM_TIMER) {
2705 sc->imask &= ~ATH9K_INT_TIM_TIMER;
2706 ath9k_hw_set_interrupts(sc->sc_ah,
2713 if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
2714 struct ieee80211_channel *curchan = hw->conf.channel;
2715 int pos = curchan->hw_value;
2717 aphy->chan_idx = pos;
2718 aphy->chan_is_ht = conf_is_ht(conf);
2720 if (aphy->state == ATH_WIPHY_SCAN ||
2721 aphy->state == ATH_WIPHY_ACTIVE)
2722 ath9k_wiphy_pause_all_forced(sc, aphy);
2725 * Do not change operational channel based on a paused
2728 goto skip_chan_change;
2731 ath_print(common, ATH_DBG_CONFIG, "Set channel: %d MHz\n",
2732 curchan->center_freq);
2734 /* XXX: remove me eventualy */
2735 ath9k_update_ichannel(sc, hw, &sc->sc_ah->channels[pos]);
2737 ath_update_chainmask(sc, conf_is_ht(conf));
2739 if (ath_set_channel(sc, hw, &sc->sc_ah->channels[pos]) < 0) {
2740 ath_print(common, ATH_DBG_FATAL,
2741 "Unable to set channel\n");
2742 mutex_unlock(&sc->mutex);
2748 if (changed & IEEE80211_CONF_CHANGE_POWER)
2749 sc->config.txpowlimit = 2 * conf->power_level;
2751 if (disable_radio) {
2752 ath_print(common, ATH_DBG_CONFIG, "idle: disabling radio\n");
2753 ath_radio_disable(sc);
2756 mutex_unlock(&sc->mutex);
2761 #define SUPPORTED_FILTERS \
2762 (FIF_PROMISC_IN_BSS | \
2767 FIF_BCN_PRBRESP_PROMISC | \
2770 /* FIXME: sc->sc_full_reset ? */
2771 static void ath9k_configure_filter(struct ieee80211_hw *hw,
2772 unsigned int changed_flags,
2773 unsigned int *total_flags,
2776 struct ath_wiphy *aphy = hw->priv;
2777 struct ath_softc *sc = aphy->sc;
2780 changed_flags &= SUPPORTED_FILTERS;
2781 *total_flags &= SUPPORTED_FILTERS;
2783 sc->rx.rxfilter = *total_flags;
2784 ath9k_ps_wakeup(sc);
2785 rfilt = ath_calcrxfilter(sc);
2786 ath9k_hw_setrxfilter(sc->sc_ah, rfilt);
2787 ath9k_ps_restore(sc);
2789 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_CONFIG,
2790 "Set HW RX filter: 0x%x\n", rfilt);
2793 static void ath9k_sta_notify(struct ieee80211_hw *hw,
2794 struct ieee80211_vif *vif,
2795 enum sta_notify_cmd cmd,
2796 struct ieee80211_sta *sta)
2798 struct ath_wiphy *aphy = hw->priv;
2799 struct ath_softc *sc = aphy->sc;
2802 case STA_NOTIFY_ADD:
2803 ath_node_attach(sc, sta);
2805 case STA_NOTIFY_REMOVE:
2806 ath_node_detach(sc, sta);
2813 static int ath9k_conf_tx(struct ieee80211_hw *hw, u16 queue,
2814 const struct ieee80211_tx_queue_params *params)
2816 struct ath_wiphy *aphy = hw->priv;
2817 struct ath_softc *sc = aphy->sc;
2818 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2819 struct ath9k_tx_queue_info qi;
2822 if (queue >= WME_NUM_AC)
2825 mutex_lock(&sc->mutex);
2827 memset(&qi, 0, sizeof(struct ath9k_tx_queue_info));
2829 qi.tqi_aifs = params->aifs;
2830 qi.tqi_cwmin = params->cw_min;
2831 qi.tqi_cwmax = params->cw_max;
2832 qi.tqi_burstTime = params->txop;
2833 qnum = ath_get_hal_qnum(queue, sc);
2835 ath_print(common, ATH_DBG_CONFIG,
2836 "Configure tx [queue/halq] [%d/%d], "
2837 "aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
2838 queue, qnum, params->aifs, params->cw_min,
2839 params->cw_max, params->txop);
2841 ret = ath_txq_update(sc, qnum, &qi);
2843 ath_print(common, ATH_DBG_FATAL, "TXQ Update failed\n");
2845 mutex_unlock(&sc->mutex);
2850 static int ath9k_set_key(struct ieee80211_hw *hw,
2851 enum set_key_cmd cmd,
2852 struct ieee80211_vif *vif,
2853 struct ieee80211_sta *sta,
2854 struct ieee80211_key_conf *key)
2856 struct ath_wiphy *aphy = hw->priv;
2857 struct ath_softc *sc = aphy->sc;
2858 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2861 if (modparam_nohwcrypt)
2864 mutex_lock(&sc->mutex);
2865 ath9k_ps_wakeup(sc);
2866 ath_print(common, ATH_DBG_CONFIG, "Set HW Key\n");
2870 ret = ath_key_config(sc, vif, sta, key);
2872 key->hw_key_idx = ret;
2873 /* push IV and Michael MIC generation to stack */
2874 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2875 if (key->alg == ALG_TKIP)
2876 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
2877 if (sc->sc_ah->sw_mgmt_crypto && key->alg == ALG_CCMP)
2878 key->flags |= IEEE80211_KEY_FLAG_SW_MGMT;
2883 ath_key_delete(sc, key);
2889 ath9k_ps_restore(sc);
2890 mutex_unlock(&sc->mutex);
2895 static void ath9k_bss_info_changed(struct ieee80211_hw *hw,
2896 struct ieee80211_vif *vif,
2897 struct ieee80211_bss_conf *bss_conf,
2900 struct ath_wiphy *aphy = hw->priv;
2901 struct ath_softc *sc = aphy->sc;
2902 struct ath_hw *ah = sc->sc_ah;
2903 struct ath_common *common = ath9k_hw_common(ah);
2904 struct ath_vif *avp = (void *)vif->drv_priv;
2908 mutex_lock(&sc->mutex);
2911 * TODO: Need to decide which hw opmode to use for
2912 * multi-interface cases
2913 * XXX: This belongs into add_interface!
2915 if (vif->type == NL80211_IFTYPE_AP &&
2916 ah->opmode != NL80211_IFTYPE_AP) {
2917 ah->opmode = NL80211_IFTYPE_STATION;
2918 ath9k_hw_setopmode(ah);
2919 memcpy(common->curbssid, common->macaddr, ETH_ALEN);
2921 ath9k_hw_write_associd(ah);
2922 /* Request full reset to get hw opmode changed properly */
2923 sc->sc_flags |= SC_OP_FULL_RESET;
2926 if ((changed & BSS_CHANGED_BSSID) &&
2927 !is_zero_ether_addr(bss_conf->bssid)) {
2928 switch (vif->type) {
2929 case NL80211_IFTYPE_STATION:
2930 case NL80211_IFTYPE_ADHOC:
2931 case NL80211_IFTYPE_MESH_POINT:
2933 memcpy(common->curbssid, bss_conf->bssid, ETH_ALEN);
2934 memcpy(avp->bssid, bss_conf->bssid, ETH_ALEN);
2936 ath9k_hw_write_associd(ah);
2938 /* Set aggregation protection mode parameters */
2939 sc->config.ath_aggr_prot = 0;
2941 ath_print(common, ATH_DBG_CONFIG,
2942 "RX filter 0x%x bssid %pM aid 0x%x\n",
2943 rfilt, common->curbssid, common->curaid);
2945 /* need to reconfigure the beacon */
2946 sc->sc_flags &= ~SC_OP_BEACONS ;
2954 if ((vif->type == NL80211_IFTYPE_ADHOC) ||
2955 (vif->type == NL80211_IFTYPE_AP) ||
2956 (vif->type == NL80211_IFTYPE_MESH_POINT)) {
2957 if ((changed & BSS_CHANGED_BEACON) ||
2958 (changed & BSS_CHANGED_BEACON_ENABLED &&
2959 bss_conf->enable_beacon)) {
2961 * Allocate and setup the beacon frame.
2963 * Stop any previous beacon DMA. This may be
2964 * necessary, for example, when an ibss merge
2965 * causes reconfiguration; we may be called
2966 * with beacon transmission active.
2968 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2970 error = ath_beacon_alloc(aphy, vif);
2972 ath_beacon_config(sc, vif);
2976 /* Check for WLAN_CAPABILITY_PRIVACY ? */
2977 if ((avp->av_opmode != NL80211_IFTYPE_STATION)) {
2978 for (i = 0; i < IEEE80211_WEP_NKID; i++)
2979 if (ath9k_hw_keyisvalid(sc->sc_ah, (u16)i))
2980 ath9k_hw_keysetmac(sc->sc_ah,
2985 /* Only legacy IBSS for now */
2986 if (vif->type == NL80211_IFTYPE_ADHOC)
2987 ath_update_chainmask(sc, 0);
2989 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
2990 ath_print(common, ATH_DBG_CONFIG, "BSS Changed PREAMBLE %d\n",
2991 bss_conf->use_short_preamble);
2992 if (bss_conf->use_short_preamble)
2993 sc->sc_flags |= SC_OP_PREAMBLE_SHORT;
2995 sc->sc_flags &= ~SC_OP_PREAMBLE_SHORT;
2998 if (changed & BSS_CHANGED_ERP_CTS_PROT) {
2999 ath_print(common, ATH_DBG_CONFIG, "BSS Changed CTS PROT %d\n",
3000 bss_conf->use_cts_prot);
3001 if (bss_conf->use_cts_prot &&
3002 hw->conf.channel->band != IEEE80211_BAND_5GHZ)
3003 sc->sc_flags |= SC_OP_PROTECT_ENABLE;
3005 sc->sc_flags &= ~SC_OP_PROTECT_ENABLE;
3008 if (changed & BSS_CHANGED_ASSOC) {
3009 ath_print(common, ATH_DBG_CONFIG, "BSS Changed ASSOC %d\n",
3011 ath9k_bss_assoc_info(sc, vif, bss_conf);
3015 * The HW TSF has to be reset when the beacon interval changes.
3016 * We set the flag here, and ath_beacon_config_ap() would take this
3017 * into account when it gets called through the subsequent
3018 * config_interface() call - with IFCC_BEACON in the changed field.
3021 if (changed & BSS_CHANGED_BEACON_INT) {
3022 sc->sc_flags |= SC_OP_TSF_RESET;
3023 sc->beacon_interval = bss_conf->beacon_int;
3026 mutex_unlock(&sc->mutex);
3029 static u64 ath9k_get_tsf(struct ieee80211_hw *hw)
3032 struct ath_wiphy *aphy = hw->priv;
3033 struct ath_softc *sc = aphy->sc;
3035 mutex_lock(&sc->mutex);
3036 tsf = ath9k_hw_gettsf64(sc->sc_ah);
3037 mutex_unlock(&sc->mutex);
3042 static void ath9k_set_tsf(struct ieee80211_hw *hw, u64 tsf)
3044 struct ath_wiphy *aphy = hw->priv;
3045 struct ath_softc *sc = aphy->sc;
3047 mutex_lock(&sc->mutex);
3048 ath9k_hw_settsf64(sc->sc_ah, tsf);
3049 mutex_unlock(&sc->mutex);
3052 static void ath9k_reset_tsf(struct ieee80211_hw *hw)
3054 struct ath_wiphy *aphy = hw->priv;
3055 struct ath_softc *sc = aphy->sc;
3057 mutex_lock(&sc->mutex);
3059 ath9k_ps_wakeup(sc);
3060 ath9k_hw_reset_tsf(sc->sc_ah);
3061 ath9k_ps_restore(sc);
3063 mutex_unlock(&sc->mutex);
3066 static int ath9k_ampdu_action(struct ieee80211_hw *hw,
3067 enum ieee80211_ampdu_mlme_action action,
3068 struct ieee80211_sta *sta,
3071 struct ath_wiphy *aphy = hw->priv;
3072 struct ath_softc *sc = aphy->sc;
3076 case IEEE80211_AMPDU_RX_START:
3077 if (!(sc->sc_flags & SC_OP_RXAGGR))
3080 case IEEE80211_AMPDU_RX_STOP:
3082 case IEEE80211_AMPDU_TX_START:
3083 ath_tx_aggr_start(sc, sta, tid, ssn);
3084 ieee80211_start_tx_ba_cb_irqsafe(hw, sta->addr, tid);
3086 case IEEE80211_AMPDU_TX_STOP:
3087 ath_tx_aggr_stop(sc, sta, tid);
3088 ieee80211_stop_tx_ba_cb_irqsafe(hw, sta->addr, tid);
3090 case IEEE80211_AMPDU_TX_OPERATIONAL:
3091 ath_tx_aggr_resume(sc, sta, tid);
3094 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
3095 "Unknown AMPDU action\n");
3101 static void ath9k_sw_scan_start(struct ieee80211_hw *hw)
3103 struct ath_wiphy *aphy = hw->priv;
3104 struct ath_softc *sc = aphy->sc;
3106 mutex_lock(&sc->mutex);
3107 if (ath9k_wiphy_scanning(sc)) {
3108 printk(KERN_DEBUG "ath9k: Two wiphys trying to scan at the "
3111 * Do not allow the concurrent scanning state for now. This
3112 * could be improved with scanning control moved into ath9k.
3114 mutex_unlock(&sc->mutex);
3118 aphy->state = ATH_WIPHY_SCAN;
3119 ath9k_wiphy_pause_all_forced(sc, aphy);
3121 spin_lock_bh(&sc->ani_lock);
3122 sc->sc_flags |= SC_OP_SCANNING;
3123 spin_unlock_bh(&sc->ani_lock);
3124 mutex_unlock(&sc->mutex);
3127 static void ath9k_sw_scan_complete(struct ieee80211_hw *hw)
3129 struct ath_wiphy *aphy = hw->priv;
3130 struct ath_softc *sc = aphy->sc;
3132 mutex_lock(&sc->mutex);
3133 spin_lock_bh(&sc->ani_lock);
3134 aphy->state = ATH_WIPHY_ACTIVE;
3135 sc->sc_flags &= ~SC_OP_SCANNING;
3136 sc->sc_flags |= SC_OP_FULL_RESET;
3137 spin_unlock_bh(&sc->ani_lock);
3138 ath_beacon_config(sc, NULL);
3139 mutex_unlock(&sc->mutex);
3142 struct ieee80211_ops ath9k_ops = {
3144 .start = ath9k_start,