1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2008 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
11 #include <linux/socket.h>
14 #include <linux/tcp.h>
15 #include <linux/udp.h>
17 #include <net/checksum.h>
18 #include "net_driver.h"
23 #include "workarounds.h"
25 /* Number of RX descriptors pushed at once. */
26 #define EFX_RX_BATCH 8
28 /* Size of buffer allocated for skb header area. */
29 #define EFX_SKB_HEADERS 64u
32 * rx_alloc_method - RX buffer allocation method
34 * This driver supports two methods for allocating and using RX buffers:
35 * each RX buffer may be backed by an skb or by an order-n page.
37 * When LRO is in use then the second method has a lower overhead,
38 * since we don't have to allocate then free skbs on reassembled frames.
41 * - RX_ALLOC_METHOD_AUTO = 0
42 * - RX_ALLOC_METHOD_SKB = 1
43 * - RX_ALLOC_METHOD_PAGE = 2
45 * The heuristic for %RX_ALLOC_METHOD_AUTO is a simple hysteresis count
46 * controlled by the parameters below.
48 * - Since pushing and popping descriptors are separated by the rx_queue
49 * size, so the watermarks should be ~rxd_size.
50 * - The performance win by using page-based allocation for LRO is less
51 * than the performance hit of using page-based allocation of non-LRO,
52 * so the watermarks should reflect this.
54 * Per channel we maintain a single variable, updated by each channel:
56 * rx_alloc_level += (lro_performed ? RX_ALLOC_FACTOR_LRO :
57 * RX_ALLOC_FACTOR_SKB)
58 * Per NAPI poll interval, we constrain rx_alloc_level to 0..MAX (which
59 * limits the hysteresis), and update the allocation strategy:
61 * rx_alloc_method = (rx_alloc_level > RX_ALLOC_LEVEL_LRO ?
62 * RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB)
64 static int rx_alloc_method = RX_ALLOC_METHOD_PAGE;
66 #define RX_ALLOC_LEVEL_LRO 0x2000
67 #define RX_ALLOC_LEVEL_MAX 0x3000
68 #define RX_ALLOC_FACTOR_LRO 1
69 #define RX_ALLOC_FACTOR_SKB (-2)
71 /* This is the percentage fill level below which new RX descriptors
72 * will be added to the RX descriptor ring.
74 static unsigned int rx_refill_threshold = 90;
76 /* This is the percentage fill level to which an RX queue will be refilled
77 * when the "RX refill threshold" is reached.
79 static unsigned int rx_refill_limit = 95;
82 * RX maximum head room required.
84 * This must be at least 1 to prevent overflow and at least 2 to allow
87 #define EFX_RXD_HEAD_ROOM 2
89 static inline unsigned int efx_rx_buf_offset(struct efx_rx_buffer *buf)
91 /* Offset is always within one page, so we don't need to consider
94 return (__force unsigned long) buf->data & (PAGE_SIZE - 1);
96 static inline unsigned int efx_rx_buf_size(struct efx_nic *efx)
98 return PAGE_SIZE << efx->rx_buffer_order;
103 * efx_init_rx_buffer_skb - create new RX buffer using skb-based allocation
105 * @rx_queue: Efx RX queue
106 * @rx_buf: RX buffer structure to populate
108 * This allocates memory for a new receive buffer, maps it for DMA,
109 * and populates a struct efx_rx_buffer with the relevant
110 * information. Return a negative error code or 0 on success.
112 static int efx_init_rx_buffer_skb(struct efx_rx_queue *rx_queue,
113 struct efx_rx_buffer *rx_buf)
115 struct efx_nic *efx = rx_queue->efx;
116 struct net_device *net_dev = efx->net_dev;
117 int skb_len = efx->rx_buffer_len;
119 rx_buf->skb = netdev_alloc_skb(net_dev, skb_len);
120 if (unlikely(!rx_buf->skb))
123 /* Adjust the SKB for padding and checksum */
124 skb_reserve(rx_buf->skb, NET_IP_ALIGN);
125 rx_buf->len = skb_len - NET_IP_ALIGN;
126 rx_buf->data = (char *)rx_buf->skb->data;
127 rx_buf->skb->ip_summed = CHECKSUM_UNNECESSARY;
129 rx_buf->dma_addr = pci_map_single(efx->pci_dev,
130 rx_buf->data, rx_buf->len,
133 if (unlikely(pci_dma_mapping_error(efx->pci_dev, rx_buf->dma_addr))) {
134 dev_kfree_skb_any(rx_buf->skb);
143 * efx_init_rx_buffer_page - create new RX buffer using page-based allocation
145 * @rx_queue: Efx RX queue
146 * @rx_buf: RX buffer structure to populate
148 * This allocates memory for a new receive buffer, maps it for DMA,
149 * and populates a struct efx_rx_buffer with the relevant
150 * information. Return a negative error code or 0 on success.
152 static int efx_init_rx_buffer_page(struct efx_rx_queue *rx_queue,
153 struct efx_rx_buffer *rx_buf)
155 struct efx_nic *efx = rx_queue->efx;
156 int bytes, space, offset;
158 bytes = efx->rx_buffer_len - EFX_PAGE_IP_ALIGN;
160 /* If there is space left in the previously allocated page,
161 * then use it. Otherwise allocate a new one */
162 rx_buf->page = rx_queue->buf_page;
163 if (rx_buf->page == NULL) {
166 rx_buf->page = alloc_pages(__GFP_COLD | __GFP_COMP | GFP_ATOMIC,
167 efx->rx_buffer_order);
168 if (unlikely(rx_buf->page == NULL))
171 dma_addr = pci_map_page(efx->pci_dev, rx_buf->page,
172 0, efx_rx_buf_size(efx),
175 if (unlikely(pci_dma_mapping_error(efx->pci_dev, dma_addr))) {
176 __free_pages(rx_buf->page, efx->rx_buffer_order);
181 rx_queue->buf_page = rx_buf->page;
182 rx_queue->buf_dma_addr = dma_addr;
183 rx_queue->buf_data = (page_address(rx_buf->page) +
188 rx_buf->data = rx_queue->buf_data;
189 offset = efx_rx_buf_offset(rx_buf);
190 rx_buf->dma_addr = rx_queue->buf_dma_addr + offset;
192 /* Try to pack multiple buffers per page */
193 if (efx->rx_buffer_order == 0) {
194 /* The next buffer starts on the next 512 byte boundary */
195 rx_queue->buf_data += ((bytes + 0x1ff) & ~0x1ff);
196 offset += ((bytes + 0x1ff) & ~0x1ff);
198 space = efx_rx_buf_size(efx) - offset;
199 if (space >= bytes) {
200 /* Refs dropped on kernel releasing each skb */
201 get_page(rx_queue->buf_page);
206 /* This is the final RX buffer for this page, so mark it for
208 rx_queue->buf_page = NULL;
209 rx_buf->unmap_addr = rx_queue->buf_dma_addr;
215 /* This allocates memory for a new receive buffer, maps it for DMA,
216 * and populates a struct efx_rx_buffer with the relevant
219 static int efx_init_rx_buffer(struct efx_rx_queue *rx_queue,
220 struct efx_rx_buffer *new_rx_buf)
224 if (rx_queue->channel->rx_alloc_push_pages) {
225 new_rx_buf->skb = NULL;
226 rc = efx_init_rx_buffer_page(rx_queue, new_rx_buf);
227 rx_queue->alloc_page_count++;
229 new_rx_buf->page = NULL;
230 rc = efx_init_rx_buffer_skb(rx_queue, new_rx_buf);
231 rx_queue->alloc_skb_count++;
234 if (unlikely(rc < 0))
235 EFX_LOG_RL(rx_queue->efx, "%s RXQ[%d] =%d\n", __func__,
236 rx_queue->queue, rc);
240 static void efx_unmap_rx_buffer(struct efx_nic *efx,
241 struct efx_rx_buffer *rx_buf)
244 EFX_BUG_ON_PARANOID(rx_buf->skb);
245 if (rx_buf->unmap_addr) {
246 pci_unmap_page(efx->pci_dev, rx_buf->unmap_addr,
247 efx_rx_buf_size(efx),
249 rx_buf->unmap_addr = 0;
251 } else if (likely(rx_buf->skb)) {
252 pci_unmap_single(efx->pci_dev, rx_buf->dma_addr,
253 rx_buf->len, PCI_DMA_FROMDEVICE);
257 static void efx_free_rx_buffer(struct efx_nic *efx,
258 struct efx_rx_buffer *rx_buf)
261 __free_pages(rx_buf->page, efx->rx_buffer_order);
263 } else if (likely(rx_buf->skb)) {
264 dev_kfree_skb_any(rx_buf->skb);
269 static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
270 struct efx_rx_buffer *rx_buf)
272 efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
273 efx_free_rx_buffer(rx_queue->efx, rx_buf);
277 * efx_fast_push_rx_descriptors - push new RX descriptors quickly
278 * @rx_queue: RX descriptor queue
279 * @retry: Recheck the fill level
280 * This will aim to fill the RX descriptor queue up to
281 * @rx_queue->@fast_fill_limit. If there is insufficient atomic
282 * memory to do so, the caller should retry.
284 static int __efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue,
287 struct efx_rx_buffer *rx_buf;
288 unsigned fill_level, index;
289 int i, space, rc = 0;
291 /* Calculate current fill level. Do this outside the lock,
292 * because most of the time we'll end up not wanting to do the
295 fill_level = (rx_queue->added_count - rx_queue->removed_count);
296 EFX_BUG_ON_PARANOID(fill_level > EFX_RXQ_SIZE);
298 /* Don't fill if we don't need to */
299 if (fill_level >= rx_queue->fast_fill_trigger)
302 /* Record minimum fill level */
303 if (unlikely(fill_level < rx_queue->min_fill)) {
305 rx_queue->min_fill = fill_level;
308 /* Acquire RX add lock. If this lock is contended, then a fast
309 * fill must already be in progress (e.g. in the refill
310 * tasklet), so we don't need to do anything
312 if (!spin_trylock_bh(&rx_queue->add_lock))
316 /* Recalculate current fill level now that we have the lock */
317 fill_level = (rx_queue->added_count - rx_queue->removed_count);
318 EFX_BUG_ON_PARANOID(fill_level > EFX_RXQ_SIZE);
319 space = rx_queue->fast_fill_limit - fill_level;
320 if (space < EFX_RX_BATCH)
323 EFX_TRACE(rx_queue->efx, "RX queue %d fast-filling descriptor ring from"
324 " level %d to level %d using %s allocation\n",
325 rx_queue->queue, fill_level, rx_queue->fast_fill_limit,
326 rx_queue->channel->rx_alloc_push_pages ? "page" : "skb");
329 for (i = 0; i < EFX_RX_BATCH; ++i) {
330 index = rx_queue->added_count & EFX_RXQ_MASK;
331 rx_buf = efx_rx_buffer(rx_queue, index);
332 rc = efx_init_rx_buffer(rx_queue, rx_buf);
335 ++rx_queue->added_count;
337 } while ((space -= EFX_RX_BATCH) >= EFX_RX_BATCH);
339 EFX_TRACE(rx_queue->efx, "RX queue %d fast-filled descriptor ring "
340 "to level %d\n", rx_queue->queue,
341 rx_queue->added_count - rx_queue->removed_count);
344 /* Send write pointer to card. */
345 falcon_notify_rx_desc(rx_queue);
347 /* If the fast fill is running inside from the refill tasklet, then
348 * for SMP systems it may be running on a different CPU to
349 * RX event processing, which means that the fill level may now be
351 if (unlikely(retry && (rc == 0)))
355 spin_unlock_bh(&rx_queue->add_lock);
361 * efx_fast_push_rx_descriptors - push new RX descriptors quickly
362 * @rx_queue: RX descriptor queue
364 * This will aim to fill the RX descriptor queue up to
365 * @rx_queue->@fast_fill_limit. If there is insufficient memory to do so,
366 * it will schedule a work item to immediately continue the fast fill
368 void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue)
372 rc = __efx_fast_push_rx_descriptors(rx_queue, 0);
374 /* Schedule the work item to run immediately. The hope is
375 * that work is immediately pending to free some memory
376 * (e.g. an RX event or TX completion)
378 efx_schedule_slow_fill(rx_queue, 0);
382 void efx_rx_work(struct work_struct *data)
384 struct efx_rx_queue *rx_queue;
387 rx_queue = container_of(data, struct efx_rx_queue, work.work);
389 if (unlikely(!rx_queue->channel->enabled))
392 EFX_TRACE(rx_queue->efx, "RX queue %d worker thread executing on CPU "
393 "%d\n", rx_queue->queue, raw_smp_processor_id());
395 ++rx_queue->slow_fill_count;
396 /* Push new RX descriptors, allowing at least 1 jiffy for
397 * the kernel to free some more memory. */
398 rc = __efx_fast_push_rx_descriptors(rx_queue, 1);
400 efx_schedule_slow_fill(rx_queue, 1);
403 static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
404 struct efx_rx_buffer *rx_buf,
405 int len, bool *discard,
408 struct efx_nic *efx = rx_queue->efx;
409 unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;
411 if (likely(len <= max_len))
414 /* The packet must be discarded, but this is only a fatal error
415 * if the caller indicated it was
419 if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) {
420 EFX_ERR_RL(efx, " RX queue %d seriously overlength "
421 "RX event (0x%x > 0x%x+0x%x). Leaking\n",
422 rx_queue->queue, len, max_len,
423 efx->type->rx_buffer_padding);
424 /* If this buffer was skb-allocated, then the meta
425 * data at the end of the skb will be trashed. So
426 * we have no choice but to leak the fragment.
428 *leak_packet = (rx_buf->skb != NULL);
429 efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY);
431 EFX_ERR_RL(efx, " RX queue %d overlength RX event "
432 "(0x%x > 0x%x)\n", rx_queue->queue, len, max_len);
435 rx_queue->channel->n_rx_overlength++;
438 /* Pass a received packet up through the generic LRO stack
440 * Handles driverlink veto, and passes the fragment up via
441 * the appropriate LRO method
443 static void efx_rx_packet_lro(struct efx_channel *channel,
444 struct efx_rx_buffer *rx_buf)
446 struct napi_struct *napi = &channel->napi_str;
448 /* Pass the skb/page into the LRO engine */
450 struct sk_buff *skb = napi_get_frags(napi);
453 put_page(rx_buf->page);
457 skb_shinfo(skb)->frags[0].page = rx_buf->page;
458 skb_shinfo(skb)->frags[0].page_offset =
459 efx_rx_buf_offset(rx_buf);
460 skb_shinfo(skb)->frags[0].size = rx_buf->len;
461 skb_shinfo(skb)->nr_frags = 1;
463 skb->len = rx_buf->len;
464 skb->data_len = rx_buf->len;
465 skb->truesize += rx_buf->len;
466 skb->ip_summed = CHECKSUM_UNNECESSARY;
468 napi_gro_frags(napi);
471 EFX_BUG_ON_PARANOID(rx_buf->skb);
474 EFX_BUG_ON_PARANOID(!rx_buf->skb);
476 napi_gro_receive(napi, rx_buf->skb);
481 void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
482 unsigned int len, bool checksummed, bool discard)
484 struct efx_nic *efx = rx_queue->efx;
485 struct efx_rx_buffer *rx_buf;
486 bool leak_packet = false;
488 rx_buf = efx_rx_buffer(rx_queue, index);
489 EFX_BUG_ON_PARANOID(!rx_buf->data);
490 EFX_BUG_ON_PARANOID(rx_buf->skb && rx_buf->page);
491 EFX_BUG_ON_PARANOID(!(rx_buf->skb || rx_buf->page));
493 /* This allows the refill path to post another buffer.
494 * EFX_RXD_HEAD_ROOM ensures that the slot we are using
495 * isn't overwritten yet.
497 rx_queue->removed_count++;
499 /* Validate the length encoded in the event vs the descriptor pushed */
500 efx_rx_packet__check_len(rx_queue, rx_buf, len,
501 &discard, &leak_packet);
503 EFX_TRACE(efx, "RX queue %d received id %x at %llx+%x %s%s\n",
504 rx_queue->queue, index,
505 (unsigned long long)rx_buf->dma_addr, len,
506 (checksummed ? " [SUMMED]" : ""),
507 (discard ? " [DISCARD]" : ""));
509 /* Discard packet, if instructed to do so */
510 if (unlikely(discard)) {
511 if (unlikely(leak_packet))
512 rx_queue->channel->n_skbuff_leaks++;
514 /* We haven't called efx_unmap_rx_buffer yet,
515 * so fini the entire rx_buffer here */
516 efx_fini_rx_buffer(rx_queue, rx_buf);
520 /* Release card resources - assumes all RX buffers consumed in-order
523 efx_unmap_rx_buffer(efx, rx_buf);
525 /* Prefetch nice and early so data will (hopefully) be in cache by
526 * the time we look at it.
528 prefetch(rx_buf->data);
530 /* Pipeline receives so that we give time for packet headers to be
531 * prefetched into cache.
534 if (rx_queue->channel->rx_pkt)
535 __efx_rx_packet(rx_queue->channel,
536 rx_queue->channel->rx_pkt,
537 rx_queue->channel->rx_pkt_csummed);
538 rx_queue->channel->rx_pkt = rx_buf;
539 rx_queue->channel->rx_pkt_csummed = checksummed;
542 /* Handle a received packet. Second half: Touches packet payload. */
543 void __efx_rx_packet(struct efx_channel *channel,
544 struct efx_rx_buffer *rx_buf, bool checksummed)
546 struct efx_nic *efx = channel->efx;
549 /* If we're in loopback test, then pass the packet directly to the
550 * loopback layer, and free the rx_buf here
552 if (unlikely(efx->loopback_selftest)) {
553 efx_loopback_rx_packet(efx, rx_buf->data, rx_buf->len);
554 efx_free_rx_buffer(efx, rx_buf);
559 prefetch(skb_shinfo(rx_buf->skb));
561 skb_put(rx_buf->skb, rx_buf->len);
563 /* Move past the ethernet header. rx_buf->data still points
564 * at the ethernet header */
565 rx_buf->skb->protocol = eth_type_trans(rx_buf->skb,
569 if (likely(checksummed || rx_buf->page)) {
570 efx_rx_packet_lro(channel, rx_buf);
574 /* We now own the SKB */
578 EFX_BUG_ON_PARANOID(rx_buf->page);
579 EFX_BUG_ON_PARANOID(rx_buf->skb);
580 EFX_BUG_ON_PARANOID(!skb);
582 /* Set the SKB flags */
583 skb->ip_summed = CHECKSUM_NONE;
585 skb_record_rx_queue(skb, channel->channel);
587 /* Pass the packet up */
588 netif_receive_skb(skb);
590 /* Update allocation strategy method */
591 channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB;
597 void efx_rx_strategy(struct efx_channel *channel)
599 enum efx_rx_alloc_method method = rx_alloc_method;
601 /* Only makes sense to use page based allocation if LRO is enabled */
602 if (!(channel->efx->net_dev->features & NETIF_F_GRO)) {
603 method = RX_ALLOC_METHOD_SKB;
604 } else if (method == RX_ALLOC_METHOD_AUTO) {
605 /* Constrain the rx_alloc_level */
606 if (channel->rx_alloc_level < 0)
607 channel->rx_alloc_level = 0;
608 else if (channel->rx_alloc_level > RX_ALLOC_LEVEL_MAX)
609 channel->rx_alloc_level = RX_ALLOC_LEVEL_MAX;
611 /* Decide on the allocation method */
612 method = ((channel->rx_alloc_level > RX_ALLOC_LEVEL_LRO) ?
613 RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB);
616 /* Push the option */
617 channel->rx_alloc_push_pages = (method == RX_ALLOC_METHOD_PAGE);
620 int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
622 struct efx_nic *efx = rx_queue->efx;
623 unsigned int rxq_size;
626 EFX_LOG(efx, "creating RX queue %d\n", rx_queue->queue);
628 /* Allocate RX buffers */
629 rxq_size = EFX_RXQ_SIZE * sizeof(*rx_queue->buffer);
630 rx_queue->buffer = kzalloc(rxq_size, GFP_KERNEL);
631 if (!rx_queue->buffer)
634 rc = falcon_probe_rx(rx_queue);
636 kfree(rx_queue->buffer);
637 rx_queue->buffer = NULL;
642 void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
644 unsigned int max_fill, trigger, limit;
646 EFX_LOG(rx_queue->efx, "initialising RX queue %d\n", rx_queue->queue);
648 /* Initialise ptr fields */
649 rx_queue->added_count = 0;
650 rx_queue->notified_count = 0;
651 rx_queue->removed_count = 0;
652 rx_queue->min_fill = -1U;
653 rx_queue->min_overfill = -1U;
655 /* Initialise limit fields */
656 max_fill = EFX_RXQ_SIZE - EFX_RXD_HEAD_ROOM;
657 trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
658 limit = max_fill * min(rx_refill_limit, 100U) / 100U;
660 rx_queue->max_fill = max_fill;
661 rx_queue->fast_fill_trigger = trigger;
662 rx_queue->fast_fill_limit = limit;
664 /* Set up RX descriptor ring */
665 falcon_init_rx(rx_queue);
668 void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
671 struct efx_rx_buffer *rx_buf;
673 EFX_LOG(rx_queue->efx, "shutting down RX queue %d\n", rx_queue->queue);
675 falcon_fini_rx(rx_queue);
677 /* Release RX buffers NB start at index 0 not current HW ptr */
678 if (rx_queue->buffer) {
679 for (i = 0; i <= EFX_RXQ_MASK; i++) {
680 rx_buf = efx_rx_buffer(rx_queue, i);
681 efx_fini_rx_buffer(rx_queue, rx_buf);
685 /* For a page that is part-way through splitting into RX buffers */
686 if (rx_queue->buf_page != NULL) {
687 pci_unmap_page(rx_queue->efx->pci_dev, rx_queue->buf_dma_addr,
688 efx_rx_buf_size(rx_queue->efx),
690 __free_pages(rx_queue->buf_page,
691 rx_queue->efx->rx_buffer_order);
692 rx_queue->buf_page = NULL;
696 void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
698 EFX_LOG(rx_queue->efx, "destroying RX queue %d\n", rx_queue->queue);
700 falcon_remove_rx(rx_queue);
702 kfree(rx_queue->buffer);
703 rx_queue->buffer = NULL;
707 module_param(rx_alloc_method, int, 0644);
708 MODULE_PARM_DESC(rx_alloc_method, "Allocation method used for RX buffers");
710 module_param(rx_refill_threshold, uint, 0444);
711 MODULE_PARM_DESC(rx_refill_threshold,
712 "RX descriptor ring fast/slow fill threshold (%)");