2 * QLogic qlge NIC HBA Driver
3 * Copyright (c) 2003-2008 QLogic Corporation
4 * See LICENSE.qlge for copyright and licensing details.
5 * Author: Linux qlge network device driver by
6 * Ron Mercer <ron.mercer@qlogic.com>
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/types.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/pagemap.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/dmapool.h>
19 #include <linux/mempool.h>
20 #include <linux/spinlock.h>
21 #include <linux/kthread.h>
22 #include <linux/interrupt.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
27 #include <linux/ipv6.h>
29 #include <linux/tcp.h>
30 #include <linux/udp.h>
31 #include <linux/if_arp.h>
32 #include <linux/if_ether.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/skbuff.h>
37 #include <linux/if_vlan.h>
38 #include <linux/delay.h>
40 #include <linux/vmalloc.h>
41 #include <net/ip6_checksum.h>
45 char qlge_driver_name[] = DRV_NAME;
46 const char qlge_driver_version[] = DRV_VERSION;
48 MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
49 MODULE_DESCRIPTION(DRV_STRING " ");
50 MODULE_LICENSE("GPL");
51 MODULE_VERSION(DRV_VERSION);
53 static const u32 default_msg =
54 NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
55 /* NETIF_MSG_TIMER | */
60 /* NETIF_MSG_TX_QUEUED | */
61 /* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
62 /* NETIF_MSG_PKTDATA | */
63 NETIF_MSG_HW | NETIF_MSG_WOL | 0;
65 static int debug = 0x00007fff; /* defaults above */
66 module_param(debug, int, 0);
67 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
72 static int irq_type = MSIX_IRQ;
73 module_param(irq_type, int, MSIX_IRQ);
74 MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
76 static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
77 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
78 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
79 /* required last entry */
83 MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
85 /* This hardware semaphore causes exclusive access to
86 * resources shared between the NIC driver, MPI firmware,
87 * FCOE firmware and the FC driver.
89 static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
95 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
98 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
101 sem_bits = SEM_SET << SEM_ICB_SHIFT;
103 case SEM_MAC_ADDR_MASK:
104 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
107 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
110 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
112 case SEM_RT_IDX_MASK:
113 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
115 case SEM_PROC_REG_MASK:
116 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
119 QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
123 ql_write32(qdev, SEM, sem_bits | sem_mask);
124 return !(ql_read32(qdev, SEM) & sem_bits);
127 int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
129 unsigned int wait_count = 30;
131 if (!ql_sem_trylock(qdev, sem_mask))
134 } while (--wait_count);
138 void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
140 ql_write32(qdev, SEM, sem_mask);
141 ql_read32(qdev, SEM); /* flush */
144 /* This function waits for a specific bit to come ready
145 * in a given register. It is used mostly by the initialize
146 * process, but is also used in kernel thread API such as
147 * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
149 int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
152 int count = UDELAY_COUNT;
155 temp = ql_read32(qdev, reg);
157 /* check for errors */
158 if (temp & err_bit) {
159 QPRINTK(qdev, PROBE, ALERT,
160 "register 0x%.08x access error, value = 0x%.08x!.\n",
163 } else if (temp & bit)
165 udelay(UDELAY_DELAY);
168 QPRINTK(qdev, PROBE, ALERT,
169 "Timed out waiting for reg %x to come ready.\n", reg);
173 /* The CFG register is used to download TX and RX control blocks
174 * to the chip. This function waits for an operation to complete.
176 static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
178 int count = UDELAY_COUNT;
182 temp = ql_read32(qdev, CFG);
187 udelay(UDELAY_DELAY);
194 /* Used to issue init control blocks to hw. Maps control block,
195 * sets address, triggers download, waits for completion.
197 int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
207 (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
210 map = pci_map_single(qdev->pdev, ptr, size, direction);
211 if (pci_dma_mapping_error(qdev->pdev, map)) {
212 QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
216 status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
220 status = ql_wait_cfg(qdev, bit);
222 QPRINTK(qdev, IFUP, ERR,
223 "Timed out waiting for CFG to come ready.\n");
227 ql_write32(qdev, ICB_L, (u32) map);
228 ql_write32(qdev, ICB_H, (u32) (map >> 32));
230 mask = CFG_Q_MASK | (bit << 16);
231 value = bit | (q_id << CFG_Q_SHIFT);
232 ql_write32(qdev, CFG, (mask | value));
235 * Wait for the bit to clear after signaling hw.
237 status = ql_wait_cfg(qdev, bit);
239 ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
240 pci_unmap_single(qdev->pdev, map, size, direction);
244 /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
245 int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
252 case MAC_ADDR_TYPE_MULTI_MAC:
253 case MAC_ADDR_TYPE_CAM_MAC:
256 ql_wait_reg_rdy(qdev,
257 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
260 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
261 (index << MAC_ADDR_IDX_SHIFT) | /* index */
262 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
264 ql_wait_reg_rdy(qdev,
265 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
268 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
270 ql_wait_reg_rdy(qdev,
271 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
274 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
275 (index << MAC_ADDR_IDX_SHIFT) | /* index */
276 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
278 ql_wait_reg_rdy(qdev,
279 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
282 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
283 if (type == MAC_ADDR_TYPE_CAM_MAC) {
285 ql_wait_reg_rdy(qdev,
286 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
289 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
290 (index << MAC_ADDR_IDX_SHIFT) | /* index */
291 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
293 ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
297 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
301 case MAC_ADDR_TYPE_VLAN:
302 case MAC_ADDR_TYPE_MULTI_FLTR:
304 QPRINTK(qdev, IFUP, CRIT,
305 "Address type %d not yet supported.\n", type);
312 /* Set up a MAC, multicast or VLAN address for the
313 * inbound frame matching.
315 static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
322 case MAC_ADDR_TYPE_MULTI_MAC:
324 u32 upper = (addr[0] << 8) | addr[1];
325 u32 lower = (addr[2] << 24) | (addr[3] << 16) |
326 (addr[4] << 8) | (addr[5]);
329 ql_wait_reg_rdy(qdev,
330 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
333 ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
334 (index << MAC_ADDR_IDX_SHIFT) |
336 ql_write32(qdev, MAC_ADDR_DATA, lower);
338 ql_wait_reg_rdy(qdev,
339 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
342 ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
343 (index << MAC_ADDR_IDX_SHIFT) |
346 ql_write32(qdev, MAC_ADDR_DATA, upper);
348 ql_wait_reg_rdy(qdev,
349 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
354 case MAC_ADDR_TYPE_CAM_MAC:
357 u32 upper = (addr[0] << 8) | addr[1];
359 (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
362 QPRINTK(qdev, IFUP, DEBUG,
363 "Adding %s address %pM"
364 " at index %d in the CAM.\n",
366 MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
367 "UNICAST"), addr, index);
370 ql_wait_reg_rdy(qdev,
371 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
374 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
375 (index << MAC_ADDR_IDX_SHIFT) | /* index */
377 ql_write32(qdev, MAC_ADDR_DATA, lower);
379 ql_wait_reg_rdy(qdev,
380 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
383 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
384 (index << MAC_ADDR_IDX_SHIFT) | /* index */
386 ql_write32(qdev, MAC_ADDR_DATA, upper);
388 ql_wait_reg_rdy(qdev,
389 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
392 ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
393 (index << MAC_ADDR_IDX_SHIFT) | /* index */
395 /* This field should also include the queue id
396 and possibly the function id. Right now we hardcode
397 the route field to NIC core.
399 cam_output = (CAM_OUT_ROUTE_NIC |
401 func << CAM_OUT_FUNC_SHIFT) |
402 (0 << CAM_OUT_CQ_ID_SHIFT));
404 cam_output |= CAM_OUT_RV;
405 /* route to NIC core */
406 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
409 case MAC_ADDR_TYPE_VLAN:
411 u32 enable_bit = *((u32 *) &addr[0]);
412 /* For VLAN, the addr actually holds a bit that
413 * either enables or disables the vlan id we are
414 * addressing. It's either MAC_ADDR_E on or off.
415 * That's bit-27 we're talking about.
417 QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
418 (enable_bit ? "Adding" : "Removing"),
419 index, (enable_bit ? "to" : "from"));
422 ql_wait_reg_rdy(qdev,
423 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
426 ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
427 (index << MAC_ADDR_IDX_SHIFT) | /* index */
429 enable_bit); /* enable/disable */
432 case MAC_ADDR_TYPE_MULTI_FLTR:
434 QPRINTK(qdev, IFUP, CRIT,
435 "Address type %d not yet supported.\n", type);
442 /* Set or clear MAC address in hardware. We sometimes
443 * have to clear it to prevent wrong frame routing
444 * especially in a bonding environment.
446 static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
449 char zero_mac_addr[ETH_ALEN];
453 addr = &qdev->ndev->dev_addr[0];
454 QPRINTK(qdev, IFUP, DEBUG,
455 "Set Mac addr %02x:%02x:%02x:%02x:%02x:%02x\n",
456 addr[0], addr[1], addr[2], addr[3],
459 memset(zero_mac_addr, 0, ETH_ALEN);
460 addr = &zero_mac_addr[0];
461 QPRINTK(qdev, IFUP, DEBUG,
462 "Clearing MAC address on %s\n",
465 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
468 status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
469 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
470 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
472 QPRINTK(qdev, IFUP, ERR, "Failed to init mac "
477 void ql_link_on(struct ql_adapter *qdev)
479 QPRINTK(qdev, LINK, ERR, "%s: Link is up.\n",
481 netif_carrier_on(qdev->ndev);
482 ql_set_mac_addr(qdev, 1);
485 void ql_link_off(struct ql_adapter *qdev)
487 QPRINTK(qdev, LINK, ERR, "%s: Link is down.\n",
489 netif_carrier_off(qdev->ndev);
490 ql_set_mac_addr(qdev, 0);
493 /* Get a specific frame routing value from the CAM.
494 * Used for debug and reg dump.
496 int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
500 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
504 ql_write32(qdev, RT_IDX,
505 RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
506 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
509 *value = ql_read32(qdev, RT_DATA);
514 /* The NIC function for this chip has 16 routing indexes. Each one can be used
515 * to route different frame types to various inbound queues. We send broadcast/
516 * multicast/error frames to the default queue for slow handling,
517 * and CAM hit/RSS frames to the fast handling queues.
519 static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
522 int status = -EINVAL; /* Return error if no mask match. */
525 QPRINTK(qdev, IFUP, DEBUG,
526 "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
527 (enable ? "Adding" : "Removing"),
528 ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
529 ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
531 RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
532 ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
533 ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
534 ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
535 ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
536 ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
537 ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
538 ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
539 ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
540 ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
541 ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
542 ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
543 ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
544 ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
545 (enable ? "to" : "from"));
550 value = RT_IDX_DST_CAM_Q | /* dest */
551 RT_IDX_TYPE_NICQ | /* type */
552 (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
555 case RT_IDX_VALID: /* Promiscuous Mode frames. */
557 value = RT_IDX_DST_DFLT_Q | /* dest */
558 RT_IDX_TYPE_NICQ | /* type */
559 (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
562 case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
564 value = RT_IDX_DST_DFLT_Q | /* dest */
565 RT_IDX_TYPE_NICQ | /* type */
566 (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
569 case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
571 value = RT_IDX_DST_DFLT_Q | /* dest */
572 RT_IDX_TYPE_NICQ | /* type */
573 (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
576 case RT_IDX_MCAST: /* Pass up All Multicast frames. */
578 value = RT_IDX_DST_DFLT_Q | /* dest */
579 RT_IDX_TYPE_NICQ | /* type */
580 (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
583 case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
585 value = RT_IDX_DST_DFLT_Q | /* dest */
586 RT_IDX_TYPE_NICQ | /* type */
587 (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
590 case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
592 value = RT_IDX_DST_RSS | /* dest */
593 RT_IDX_TYPE_NICQ | /* type */
594 (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
597 case 0: /* Clear the E-bit on an entry. */
599 value = RT_IDX_DST_DFLT_Q | /* dest */
600 RT_IDX_TYPE_NICQ | /* type */
601 (index << RT_IDX_IDX_SHIFT);/* index */
605 QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
612 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
615 value |= (enable ? RT_IDX_E : 0);
616 ql_write32(qdev, RT_IDX, value);
617 ql_write32(qdev, RT_DATA, enable ? mask : 0);
623 static void ql_enable_interrupts(struct ql_adapter *qdev)
625 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
628 static void ql_disable_interrupts(struct ql_adapter *qdev)
630 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
633 /* If we're running with multiple MSI-X vectors then we enable on the fly.
634 * Otherwise, we may have multiple outstanding workers and don't want to
635 * enable until the last one finishes. In this case, the irq_cnt gets
636 * incremented everytime we queue a worker and decremented everytime
637 * a worker finishes. Once it hits zero we enable the interrupt.
639 u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
642 unsigned long hw_flags = 0;
643 struct intr_context *ctx = qdev->intr_context + intr;
645 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
646 /* Always enable if we're MSIX multi interrupts and
647 * it's not the default (zeroeth) interrupt.
649 ql_write32(qdev, INTR_EN,
651 var = ql_read32(qdev, STS);
655 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
656 if (atomic_dec_and_test(&ctx->irq_cnt)) {
657 ql_write32(qdev, INTR_EN,
659 var = ql_read32(qdev, STS);
661 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
665 static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
668 struct intr_context *ctx;
670 /* HW disables for us if we're MSIX multi interrupts and
671 * it's not the default (zeroeth) interrupt.
673 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
676 ctx = qdev->intr_context + intr;
677 spin_lock(&qdev->hw_lock);
678 if (!atomic_read(&ctx->irq_cnt)) {
679 ql_write32(qdev, INTR_EN,
681 var = ql_read32(qdev, STS);
683 atomic_inc(&ctx->irq_cnt);
684 spin_unlock(&qdev->hw_lock);
688 static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
691 for (i = 0; i < qdev->intr_count; i++) {
692 /* The enable call does a atomic_dec_and_test
693 * and enables only if the result is zero.
694 * So we precharge it here.
696 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
698 atomic_set(&qdev->intr_context[i].irq_cnt, 1);
699 ql_enable_completion_interrupt(qdev, i);
704 static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
708 __le16 *flash = (__le16 *)&qdev->flash;
710 status = strncmp((char *)&qdev->flash, str, 4);
712 QPRINTK(qdev, IFUP, ERR, "Invalid flash signature.\n");
716 for (i = 0; i < size; i++)
717 csum += le16_to_cpu(*flash++);
720 QPRINTK(qdev, IFUP, ERR,
721 "Invalid flash checksum, csum = 0x%.04x.\n", csum);
726 static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
729 /* wait for reg to come ready */
730 status = ql_wait_reg_rdy(qdev,
731 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
734 /* set up for reg read */
735 ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
736 /* wait for reg to come ready */
737 status = ql_wait_reg_rdy(qdev,
738 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
741 /* This data is stored on flash as an array of
742 * __le32. Since ql_read32() returns cpu endian
743 * we need to swap it back.
745 *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
750 static int ql_get_8000_flash_params(struct ql_adapter *qdev)
754 __le32 *p = (__le32 *)&qdev->flash;
758 /* Get flash offset for function and adjust
762 offset = FUNC0_FLASH_OFFSET / sizeof(u32);
764 offset = FUNC1_FLASH_OFFSET / sizeof(u32);
766 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
769 size = sizeof(struct flash_params_8000) / sizeof(u32);
770 for (i = 0; i < size; i++, p++) {
771 status = ql_read_flash_word(qdev, i+offset, p);
773 QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
778 status = ql_validate_flash(qdev,
779 sizeof(struct flash_params_8000) / sizeof(u16),
782 QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
787 /* Extract either manufacturer or BOFM modified
790 if (qdev->flash.flash_params_8000.data_type1 == 2)
792 qdev->flash.flash_params_8000.mac_addr1,
793 qdev->ndev->addr_len);
796 qdev->flash.flash_params_8000.mac_addr,
797 qdev->ndev->addr_len);
799 if (!is_valid_ether_addr(mac_addr)) {
800 QPRINTK(qdev, IFUP, ERR, "Invalid MAC address.\n");
805 memcpy(qdev->ndev->dev_addr,
807 qdev->ndev->addr_len);
810 ql_sem_unlock(qdev, SEM_FLASH_MASK);
814 static int ql_get_8012_flash_params(struct ql_adapter *qdev)
818 __le32 *p = (__le32 *)&qdev->flash;
820 u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
822 /* Second function's parameters follow the first
828 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
831 for (i = 0; i < size; i++, p++) {
832 status = ql_read_flash_word(qdev, i+offset, p);
834 QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
840 status = ql_validate_flash(qdev,
841 sizeof(struct flash_params_8012) / sizeof(u16),
844 QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
849 if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
854 memcpy(qdev->ndev->dev_addr,
855 qdev->flash.flash_params_8012.mac_addr,
856 qdev->ndev->addr_len);
859 ql_sem_unlock(qdev, SEM_FLASH_MASK);
863 /* xgmac register are located behind the xgmac_addr and xgmac_data
864 * register pair. Each read/write requires us to wait for the ready
865 * bit before reading/writing the data.
867 static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
870 /* wait for reg to come ready */
871 status = ql_wait_reg_rdy(qdev,
872 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
875 /* write the data to the data reg */
876 ql_write32(qdev, XGMAC_DATA, data);
877 /* trigger the write */
878 ql_write32(qdev, XGMAC_ADDR, reg);
882 /* xgmac register are located behind the xgmac_addr and xgmac_data
883 * register pair. Each read/write requires us to wait for the ready
884 * bit before reading/writing the data.
886 int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
889 /* wait for reg to come ready */
890 status = ql_wait_reg_rdy(qdev,
891 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
894 /* set up for reg read */
895 ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
896 /* wait for reg to come ready */
897 status = ql_wait_reg_rdy(qdev,
898 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
902 *data = ql_read32(qdev, XGMAC_DATA);
907 /* This is used for reading the 64-bit statistics regs. */
908 int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
914 status = ql_read_xgmac_reg(qdev, reg, &lo);
918 status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
922 *data = (u64) lo | ((u64) hi << 32);
928 static int ql_8000_port_initialize(struct ql_adapter *qdev)
932 * Get MPI firmware version for driver banner
935 status = ql_mb_about_fw(qdev);
938 status = ql_mb_get_fw_state(qdev);
941 /* Wake up a worker to get/set the TX/RX frame sizes. */
942 queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
947 /* Take the MAC Core out of reset.
948 * Enable statistics counting.
949 * Take the transmitter/receiver out of reset.
950 * This functionality may be done in the MPI firmware at a
953 static int ql_8012_port_initialize(struct ql_adapter *qdev)
958 if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
959 /* Another function has the semaphore, so
960 * wait for the port init bit to come ready.
962 QPRINTK(qdev, LINK, INFO,
963 "Another function has the semaphore, so wait for the port init bit to come ready.\n");
964 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
966 QPRINTK(qdev, LINK, CRIT,
967 "Port initialize timed out.\n");
972 QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
973 /* Set the core reset. */
974 status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
977 data |= GLOBAL_CFG_RESET;
978 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
982 /* Clear the core reset and turn on jumbo for receiver. */
983 data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
984 data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
985 data |= GLOBAL_CFG_TX_STAT_EN;
986 data |= GLOBAL_CFG_RX_STAT_EN;
987 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
991 /* Enable transmitter, and clear it's reset. */
992 status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
995 data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
996 data |= TX_CFG_EN; /* Enable the transmitter. */
997 status = ql_write_xgmac_reg(qdev, TX_CFG, data);
1001 /* Enable receiver and clear it's reset. */
1002 status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
1005 data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
1006 data |= RX_CFG_EN; /* Enable the receiver. */
1007 status = ql_write_xgmac_reg(qdev, RX_CFG, data);
1011 /* Turn on jumbo. */
1013 ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
1017 ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
1021 /* Signal to the world that the port is enabled. */
1022 ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
1024 ql_sem_unlock(qdev, qdev->xg_sem_mask);
1028 /* Get the next large buffer. */
1029 static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
1031 struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
1032 rx_ring->lbq_curr_idx++;
1033 if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
1034 rx_ring->lbq_curr_idx = 0;
1035 rx_ring->lbq_free_cnt++;
1039 /* Get the next small buffer. */
1040 static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
1042 struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
1043 rx_ring->sbq_curr_idx++;
1044 if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
1045 rx_ring->sbq_curr_idx = 0;
1046 rx_ring->sbq_free_cnt++;
1050 /* Update an rx ring index. */
1051 static void ql_update_cq(struct rx_ring *rx_ring)
1053 rx_ring->cnsmr_idx++;
1054 rx_ring->curr_entry++;
1055 if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
1056 rx_ring->cnsmr_idx = 0;
1057 rx_ring->curr_entry = rx_ring->cq_base;
1061 static void ql_write_cq_idx(struct rx_ring *rx_ring)
1063 ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
1066 /* Process (refill) a large buffer queue. */
1067 static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1069 u32 clean_idx = rx_ring->lbq_clean_idx;
1070 u32 start_idx = clean_idx;
1071 struct bq_desc *lbq_desc;
1075 while (rx_ring->lbq_free_cnt > 16) {
1076 for (i = 0; i < 16; i++) {
1077 QPRINTK(qdev, RX_STATUS, DEBUG,
1078 "lbq: try cleaning clean_idx = %d.\n",
1080 lbq_desc = &rx_ring->lbq[clean_idx];
1081 if (lbq_desc->p.lbq_page == NULL) {
1082 QPRINTK(qdev, RX_STATUS, DEBUG,
1083 "lbq: getting new page for index %d.\n",
1085 lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
1086 if (lbq_desc->p.lbq_page == NULL) {
1087 rx_ring->lbq_clean_idx = clean_idx;
1088 QPRINTK(qdev, RX_STATUS, ERR,
1089 "Couldn't get a page.\n");
1092 map = pci_map_page(qdev->pdev,
1093 lbq_desc->p.lbq_page,
1095 PCI_DMA_FROMDEVICE);
1096 if (pci_dma_mapping_error(qdev->pdev, map)) {
1097 rx_ring->lbq_clean_idx = clean_idx;
1098 put_page(lbq_desc->p.lbq_page);
1099 lbq_desc->p.lbq_page = NULL;
1100 QPRINTK(qdev, RX_STATUS, ERR,
1101 "PCI mapping failed.\n");
1104 pci_unmap_addr_set(lbq_desc, mapaddr, map);
1105 pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
1106 *lbq_desc->addr = cpu_to_le64(map);
1109 if (clean_idx == rx_ring->lbq_len)
1113 rx_ring->lbq_clean_idx = clean_idx;
1114 rx_ring->lbq_prod_idx += 16;
1115 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
1116 rx_ring->lbq_prod_idx = 0;
1117 rx_ring->lbq_free_cnt -= 16;
1120 if (start_idx != clean_idx) {
1121 QPRINTK(qdev, RX_STATUS, DEBUG,
1122 "lbq: updating prod idx = %d.\n",
1123 rx_ring->lbq_prod_idx);
1124 ql_write_db_reg(rx_ring->lbq_prod_idx,
1125 rx_ring->lbq_prod_idx_db_reg);
1129 /* Process (refill) a small buffer queue. */
1130 static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1132 u32 clean_idx = rx_ring->sbq_clean_idx;
1133 u32 start_idx = clean_idx;
1134 struct bq_desc *sbq_desc;
1138 while (rx_ring->sbq_free_cnt > 16) {
1139 for (i = 0; i < 16; i++) {
1140 sbq_desc = &rx_ring->sbq[clean_idx];
1141 QPRINTK(qdev, RX_STATUS, DEBUG,
1142 "sbq: try cleaning clean_idx = %d.\n",
1144 if (sbq_desc->p.skb == NULL) {
1145 QPRINTK(qdev, RX_STATUS, DEBUG,
1146 "sbq: getting new skb for index %d.\n",
1149 netdev_alloc_skb(qdev->ndev,
1150 rx_ring->sbq_buf_size);
1151 if (sbq_desc->p.skb == NULL) {
1152 QPRINTK(qdev, PROBE, ERR,
1153 "Couldn't get an skb.\n");
1154 rx_ring->sbq_clean_idx = clean_idx;
1157 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
1158 map = pci_map_single(qdev->pdev,
1159 sbq_desc->p.skb->data,
1160 rx_ring->sbq_buf_size /
1161 2, PCI_DMA_FROMDEVICE);
1162 if (pci_dma_mapping_error(qdev->pdev, map)) {
1163 QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
1164 rx_ring->sbq_clean_idx = clean_idx;
1165 dev_kfree_skb_any(sbq_desc->p.skb);
1166 sbq_desc->p.skb = NULL;
1169 pci_unmap_addr_set(sbq_desc, mapaddr, map);
1170 pci_unmap_len_set(sbq_desc, maplen,
1171 rx_ring->sbq_buf_size / 2);
1172 *sbq_desc->addr = cpu_to_le64(map);
1176 if (clean_idx == rx_ring->sbq_len)
1179 rx_ring->sbq_clean_idx = clean_idx;
1180 rx_ring->sbq_prod_idx += 16;
1181 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
1182 rx_ring->sbq_prod_idx = 0;
1183 rx_ring->sbq_free_cnt -= 16;
1186 if (start_idx != clean_idx) {
1187 QPRINTK(qdev, RX_STATUS, DEBUG,
1188 "sbq: updating prod idx = %d.\n",
1189 rx_ring->sbq_prod_idx);
1190 ql_write_db_reg(rx_ring->sbq_prod_idx,
1191 rx_ring->sbq_prod_idx_db_reg);
1195 static void ql_update_buffer_queues(struct ql_adapter *qdev,
1196 struct rx_ring *rx_ring)
1198 ql_update_sbq(qdev, rx_ring);
1199 ql_update_lbq(qdev, rx_ring);
1202 /* Unmaps tx buffers. Can be called from send() if a pci mapping
1203 * fails at some stage, or from the interrupt when a tx completes.
1205 static void ql_unmap_send(struct ql_adapter *qdev,
1206 struct tx_ring_desc *tx_ring_desc, int mapped)
1209 for (i = 0; i < mapped; i++) {
1210 if (i == 0 || (i == 7 && mapped > 7)) {
1212 * Unmap the skb->data area, or the
1213 * external sglist (AKA the Outbound
1214 * Address List (OAL)).
1215 * If its the zeroeth element, then it's
1216 * the skb->data area. If it's the 7th
1217 * element and there is more than 6 frags,
1221 QPRINTK(qdev, TX_DONE, DEBUG,
1222 "unmapping OAL area.\n");
1224 pci_unmap_single(qdev->pdev,
1225 pci_unmap_addr(&tx_ring_desc->map[i],
1227 pci_unmap_len(&tx_ring_desc->map[i],
1231 QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
1233 pci_unmap_page(qdev->pdev,
1234 pci_unmap_addr(&tx_ring_desc->map[i],
1236 pci_unmap_len(&tx_ring_desc->map[i],
1237 maplen), PCI_DMA_TODEVICE);
1243 /* Map the buffers for this transmit. This will return
1244 * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1246 static int ql_map_send(struct ql_adapter *qdev,
1247 struct ob_mac_iocb_req *mac_iocb_ptr,
1248 struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1250 int len = skb_headlen(skb);
1252 int frag_idx, err, map_idx = 0;
1253 struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1254 int frag_cnt = skb_shinfo(skb)->nr_frags;
1257 QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
1260 * Map the skb buffer first.
1262 map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1264 err = pci_dma_mapping_error(qdev->pdev, map);
1266 QPRINTK(qdev, TX_QUEUED, ERR,
1267 "PCI mapping failed with error: %d\n", err);
1269 return NETDEV_TX_BUSY;
1272 tbd->len = cpu_to_le32(len);
1273 tbd->addr = cpu_to_le64(map);
1274 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1275 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1279 * This loop fills the remainder of the 8 address descriptors
1280 * in the IOCB. If there are more than 7 fragments, then the
1281 * eighth address desc will point to an external list (OAL).
1282 * When this happens, the remainder of the frags will be stored
1285 for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1286 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1288 if (frag_idx == 6 && frag_cnt > 7) {
1289 /* Let's tack on an sglist.
1290 * Our control block will now
1292 * iocb->seg[0] = skb->data
1293 * iocb->seg[1] = frag[0]
1294 * iocb->seg[2] = frag[1]
1295 * iocb->seg[3] = frag[2]
1296 * iocb->seg[4] = frag[3]
1297 * iocb->seg[5] = frag[4]
1298 * iocb->seg[6] = frag[5]
1299 * iocb->seg[7] = ptr to OAL (external sglist)
1300 * oal->seg[0] = frag[6]
1301 * oal->seg[1] = frag[7]
1302 * oal->seg[2] = frag[8]
1303 * oal->seg[3] = frag[9]
1304 * oal->seg[4] = frag[10]
1307 /* Tack on the OAL in the eighth segment of IOCB. */
1308 map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1311 err = pci_dma_mapping_error(qdev->pdev, map);
1313 QPRINTK(qdev, TX_QUEUED, ERR,
1314 "PCI mapping outbound address list with error: %d\n",
1319 tbd->addr = cpu_to_le64(map);
1321 * The length is the number of fragments
1322 * that remain to be mapped times the length
1323 * of our sglist (OAL).
1326 cpu_to_le32((sizeof(struct tx_buf_desc) *
1327 (frag_cnt - frag_idx)) | TX_DESC_C);
1328 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1330 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1331 sizeof(struct oal));
1332 tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1337 pci_map_page(qdev->pdev, frag->page,
1338 frag->page_offset, frag->size,
1341 err = pci_dma_mapping_error(qdev->pdev, map);
1343 QPRINTK(qdev, TX_QUEUED, ERR,
1344 "PCI mapping frags failed with error: %d.\n",
1349 tbd->addr = cpu_to_le64(map);
1350 tbd->len = cpu_to_le32(frag->size);
1351 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1352 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1356 /* Save the number of segments we've mapped. */
1357 tx_ring_desc->map_cnt = map_idx;
1358 /* Terminate the last segment. */
1359 tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1360 return NETDEV_TX_OK;
1364 * If the first frag mapping failed, then i will be zero.
1365 * This causes the unmap of the skb->data area. Otherwise
1366 * we pass in the number of frags that mapped successfully
1367 * so they can be umapped.
1369 ql_unmap_send(qdev, tx_ring_desc, map_idx);
1370 return NETDEV_TX_BUSY;
1373 static void ql_realign_skb(struct sk_buff *skb, int len)
1375 void *temp_addr = skb->data;
1377 /* Undo the skb_reserve(skb,32) we did before
1378 * giving to hardware, and realign data on
1379 * a 2-byte boundary.
1381 skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1382 skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1383 skb_copy_to_linear_data(skb, temp_addr,
1388 * This function builds an skb for the given inbound
1389 * completion. It will be rewritten for readability in the near
1390 * future, but for not it works well.
1392 static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1393 struct rx_ring *rx_ring,
1394 struct ib_mac_iocb_rsp *ib_mac_rsp)
1396 struct bq_desc *lbq_desc;
1397 struct bq_desc *sbq_desc;
1398 struct sk_buff *skb = NULL;
1399 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1400 u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1403 * Handle the header buffer if present.
1405 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1406 ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1407 QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
1409 * Headers fit nicely into a small buffer.
1411 sbq_desc = ql_get_curr_sbuf(rx_ring);
1412 pci_unmap_single(qdev->pdev,
1413 pci_unmap_addr(sbq_desc, mapaddr),
1414 pci_unmap_len(sbq_desc, maplen),
1415 PCI_DMA_FROMDEVICE);
1416 skb = sbq_desc->p.skb;
1417 ql_realign_skb(skb, hdr_len);
1418 skb_put(skb, hdr_len);
1419 sbq_desc->p.skb = NULL;
1423 * Handle the data buffer(s).
1425 if (unlikely(!length)) { /* Is there data too? */
1426 QPRINTK(qdev, RX_STATUS, DEBUG,
1427 "No Data buffer in this packet.\n");
1431 if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1432 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1433 QPRINTK(qdev, RX_STATUS, DEBUG,
1434 "Headers in small, data of %d bytes in small, combine them.\n", length);
1436 * Data is less than small buffer size so it's
1437 * stuffed in a small buffer.
1438 * For this case we append the data
1439 * from the "data" small buffer to the "header" small
1442 sbq_desc = ql_get_curr_sbuf(rx_ring);
1443 pci_dma_sync_single_for_cpu(qdev->pdev,
1445 (sbq_desc, mapaddr),
1448 PCI_DMA_FROMDEVICE);
1449 memcpy(skb_put(skb, length),
1450 sbq_desc->p.skb->data, length);
1451 pci_dma_sync_single_for_device(qdev->pdev,
1458 PCI_DMA_FROMDEVICE);
1460 QPRINTK(qdev, RX_STATUS, DEBUG,
1461 "%d bytes in a single small buffer.\n", length);
1462 sbq_desc = ql_get_curr_sbuf(rx_ring);
1463 skb = sbq_desc->p.skb;
1464 ql_realign_skb(skb, length);
1465 skb_put(skb, length);
1466 pci_unmap_single(qdev->pdev,
1467 pci_unmap_addr(sbq_desc,
1469 pci_unmap_len(sbq_desc,
1471 PCI_DMA_FROMDEVICE);
1472 sbq_desc->p.skb = NULL;
1474 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1475 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1476 QPRINTK(qdev, RX_STATUS, DEBUG,
1477 "Header in small, %d bytes in large. Chain large to small!\n", length);
1479 * The data is in a single large buffer. We
1480 * chain it to the header buffer's skb and let
1483 lbq_desc = ql_get_curr_lbuf(rx_ring);
1484 pci_unmap_page(qdev->pdev,
1485 pci_unmap_addr(lbq_desc,
1487 pci_unmap_len(lbq_desc, maplen),
1488 PCI_DMA_FROMDEVICE);
1489 QPRINTK(qdev, RX_STATUS, DEBUG,
1490 "Chaining page to skb.\n");
1491 skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1494 skb->data_len += length;
1495 skb->truesize += length;
1496 lbq_desc->p.lbq_page = NULL;
1499 * The headers and data are in a single large buffer. We
1500 * copy it to a new skb and let it go. This can happen with
1501 * jumbo mtu on a non-TCP/UDP frame.
1503 lbq_desc = ql_get_curr_lbuf(rx_ring);
1504 skb = netdev_alloc_skb(qdev->ndev, length);
1506 QPRINTK(qdev, PROBE, DEBUG,
1507 "No skb available, drop the packet.\n");
1510 pci_unmap_page(qdev->pdev,
1511 pci_unmap_addr(lbq_desc,
1513 pci_unmap_len(lbq_desc, maplen),
1514 PCI_DMA_FROMDEVICE);
1515 skb_reserve(skb, NET_IP_ALIGN);
1516 QPRINTK(qdev, RX_STATUS, DEBUG,
1517 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
1518 skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1521 skb->data_len += length;
1522 skb->truesize += length;
1524 lbq_desc->p.lbq_page = NULL;
1525 __pskb_pull_tail(skb,
1526 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1527 VLAN_ETH_HLEN : ETH_HLEN);
1531 * The data is in a chain of large buffers
1532 * pointed to by a small buffer. We loop
1533 * thru and chain them to the our small header
1535 * frags: There are 18 max frags and our small
1536 * buffer will hold 32 of them. The thing is,
1537 * we'll use 3 max for our 9000 byte jumbo
1538 * frames. If the MTU goes up we could
1539 * eventually be in trouble.
1541 int size, offset, i = 0;
1542 __le64 *bq, bq_array[8];
1543 sbq_desc = ql_get_curr_sbuf(rx_ring);
1544 pci_unmap_single(qdev->pdev,
1545 pci_unmap_addr(sbq_desc, mapaddr),
1546 pci_unmap_len(sbq_desc, maplen),
1547 PCI_DMA_FROMDEVICE);
1548 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1550 * This is an non TCP/UDP IP frame, so
1551 * the headers aren't split into a small
1552 * buffer. We have to use the small buffer
1553 * that contains our sg list as our skb to
1554 * send upstairs. Copy the sg list here to
1555 * a local buffer and use it to find the
1558 QPRINTK(qdev, RX_STATUS, DEBUG,
1559 "%d bytes of headers & data in chain of large.\n", length);
1560 skb = sbq_desc->p.skb;
1562 memcpy(bq, skb->data, sizeof(bq_array));
1563 sbq_desc->p.skb = NULL;
1564 skb_reserve(skb, NET_IP_ALIGN);
1566 QPRINTK(qdev, RX_STATUS, DEBUG,
1567 "Headers in small, %d bytes of data in chain of large.\n", length);
1568 bq = (__le64 *)sbq_desc->p.skb->data;
1570 while (length > 0) {
1571 lbq_desc = ql_get_curr_lbuf(rx_ring);
1572 pci_unmap_page(qdev->pdev,
1573 pci_unmap_addr(lbq_desc,
1575 pci_unmap_len(lbq_desc,
1577 PCI_DMA_FROMDEVICE);
1578 size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
1581 QPRINTK(qdev, RX_STATUS, DEBUG,
1582 "Adding page %d to skb for %d bytes.\n",
1584 skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
1587 skb->data_len += size;
1588 skb->truesize += size;
1590 lbq_desc->p.lbq_page = NULL;
1594 __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1595 VLAN_ETH_HLEN : ETH_HLEN);
1600 /* Process an inbound completion from an rx ring. */
1601 static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
1602 struct rx_ring *rx_ring,
1603 struct ib_mac_iocb_rsp *ib_mac_rsp)
1605 struct net_device *ndev = qdev->ndev;
1606 struct sk_buff *skb = NULL;
1607 u16 vlan_id = (le16_to_cpu(ib_mac_rsp->vlan_id) &
1608 IB_MAC_IOCB_RSP_VLAN_MASK)
1610 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1612 skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1613 if (unlikely(!skb)) {
1614 QPRINTK(qdev, RX_STATUS, DEBUG,
1615 "No skb available, drop packet.\n");
1619 /* Frame error, so drop the packet. */
1620 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1621 QPRINTK(qdev, DRV, ERR, "Receive error, flags2 = 0x%x\n",
1622 ib_mac_rsp->flags2);
1623 dev_kfree_skb_any(skb);
1627 /* The max framesize filter on this chip is set higher than
1628 * MTU since FCoE uses 2k frames.
1630 if (skb->len > ndev->mtu + ETH_HLEN) {
1631 dev_kfree_skb_any(skb);
1635 prefetch(skb->data);
1637 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1638 QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
1639 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1640 IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
1641 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1642 IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
1643 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1644 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1646 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
1647 QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
1650 skb->protocol = eth_type_trans(skb, ndev);
1651 skb->ip_summed = CHECKSUM_NONE;
1653 /* If rx checksum is on, and there are no
1654 * csum or frame errors.
1656 if (qdev->rx_csum &&
1657 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1659 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1660 QPRINTK(qdev, RX_STATUS, DEBUG,
1661 "TCP checksum done!\n");
1662 skb->ip_summed = CHECKSUM_UNNECESSARY;
1663 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1664 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1665 /* Unfragmented ipv4 UDP frame. */
1666 struct iphdr *iph = (struct iphdr *) skb->data;
1667 if (!(iph->frag_off &
1668 cpu_to_be16(IP_MF|IP_OFFSET))) {
1669 skb->ip_summed = CHECKSUM_UNNECESSARY;
1670 QPRINTK(qdev, RX_STATUS, DEBUG,
1671 "TCP checksum done!\n");
1676 qdev->stats.rx_packets++;
1677 qdev->stats.rx_bytes += skb->len;
1678 skb_record_rx_queue(skb, rx_ring->cq_id);
1679 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
1681 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
1683 vlan_gro_receive(&rx_ring->napi, qdev->vlgrp,
1686 napi_gro_receive(&rx_ring->napi, skb);
1689 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
1691 vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
1693 netif_receive_skb(skb);
1697 /* Process an outbound completion from an rx ring. */
1698 static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
1699 struct ob_mac_iocb_rsp *mac_rsp)
1701 struct tx_ring *tx_ring;
1702 struct tx_ring_desc *tx_ring_desc;
1704 QL_DUMP_OB_MAC_RSP(mac_rsp);
1705 tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
1706 tx_ring_desc = &tx_ring->q[mac_rsp->tid];
1707 ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
1708 qdev->stats.tx_bytes += (tx_ring_desc->skb)->len;
1709 qdev->stats.tx_packets++;
1710 dev_kfree_skb(tx_ring_desc->skb);
1711 tx_ring_desc->skb = NULL;
1713 if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
1716 OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
1717 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
1718 QPRINTK(qdev, TX_DONE, WARNING,
1719 "Total descriptor length did not match transfer length.\n");
1721 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
1722 QPRINTK(qdev, TX_DONE, WARNING,
1723 "Frame too short to be legal, not sent.\n");
1725 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
1726 QPRINTK(qdev, TX_DONE, WARNING,
1727 "Frame too long, but sent anyway.\n");
1729 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
1730 QPRINTK(qdev, TX_DONE, WARNING,
1731 "PCI backplane error. Frame not sent.\n");
1734 atomic_inc(&tx_ring->tx_count);
1737 /* Fire up a handler to reset the MPI processor. */
1738 void ql_queue_fw_error(struct ql_adapter *qdev)
1741 queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
1744 void ql_queue_asic_error(struct ql_adapter *qdev)
1747 ql_disable_interrupts(qdev);
1748 /* Clear adapter up bit to signal the recovery
1749 * process that it shouldn't kill the reset worker
1752 clear_bit(QL_ADAPTER_UP, &qdev->flags);
1753 queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
1756 static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
1757 struct ib_ae_iocb_rsp *ib_ae_rsp)
1759 switch (ib_ae_rsp->event) {
1760 case MGMT_ERR_EVENT:
1761 QPRINTK(qdev, RX_ERR, ERR,
1762 "Management Processor Fatal Error.\n");
1763 ql_queue_fw_error(qdev);
1766 case CAM_LOOKUP_ERR_EVENT:
1767 QPRINTK(qdev, LINK, ERR,
1768 "Multiple CAM hits lookup occurred.\n");
1769 QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
1770 ql_queue_asic_error(qdev);
1773 case SOFT_ECC_ERROR_EVENT:
1774 QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
1775 ql_queue_asic_error(qdev);
1778 case PCI_ERR_ANON_BUF_RD:
1779 QPRINTK(qdev, RX_ERR, ERR,
1780 "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
1782 ql_queue_asic_error(qdev);
1786 QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
1788 ql_queue_asic_error(qdev);
1793 static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
1795 struct ql_adapter *qdev = rx_ring->qdev;
1796 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1797 struct ob_mac_iocb_rsp *net_rsp = NULL;
1800 struct tx_ring *tx_ring;
1801 /* While there are entries in the completion queue. */
1802 while (prod != rx_ring->cnsmr_idx) {
1804 QPRINTK(qdev, RX_STATUS, DEBUG,
1805 "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1806 prod, rx_ring->cnsmr_idx);
1808 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
1810 switch (net_rsp->opcode) {
1812 case OPCODE_OB_MAC_TSO_IOCB:
1813 case OPCODE_OB_MAC_IOCB:
1814 ql_process_mac_tx_intr(qdev, net_rsp);
1817 QPRINTK(qdev, RX_STATUS, DEBUG,
1818 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1822 ql_update_cq(rx_ring);
1823 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1825 ql_write_cq_idx(rx_ring);
1826 tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
1827 if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id) &&
1829 if (atomic_read(&tx_ring->queue_stopped) &&
1830 (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
1832 * The queue got stopped because the tx_ring was full.
1833 * Wake it up, because it's now at least 25% empty.
1835 netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
1841 static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
1843 struct ql_adapter *qdev = rx_ring->qdev;
1844 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1845 struct ql_net_rsp_iocb *net_rsp;
1848 /* While there are entries in the completion queue. */
1849 while (prod != rx_ring->cnsmr_idx) {
1851 QPRINTK(qdev, RX_STATUS, DEBUG,
1852 "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1853 prod, rx_ring->cnsmr_idx);
1855 net_rsp = rx_ring->curr_entry;
1857 switch (net_rsp->opcode) {
1858 case OPCODE_IB_MAC_IOCB:
1859 ql_process_mac_rx_intr(qdev, rx_ring,
1860 (struct ib_mac_iocb_rsp *)
1864 case OPCODE_IB_AE_IOCB:
1865 ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
1870 QPRINTK(qdev, RX_STATUS, DEBUG,
1871 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1876 ql_update_cq(rx_ring);
1877 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1878 if (count == budget)
1881 ql_update_buffer_queues(qdev, rx_ring);
1882 ql_write_cq_idx(rx_ring);
1886 static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
1888 struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
1889 struct ql_adapter *qdev = rx_ring->qdev;
1890 struct rx_ring *trx_ring;
1891 int i, work_done = 0;
1892 struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
1894 QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
1897 /* Service the TX rings first. They start
1898 * right after the RSS rings. */
1899 for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
1900 trx_ring = &qdev->rx_ring[i];
1901 /* If this TX completion ring belongs to this vector and
1902 * it's not empty then service it.
1904 if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
1905 (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
1906 trx_ring->cnsmr_idx)) {
1907 QPRINTK(qdev, INTR, DEBUG,
1908 "%s: Servicing TX completion ring %d.\n",
1909 __func__, trx_ring->cq_id);
1910 ql_clean_outbound_rx_ring(trx_ring);
1915 * Now service the RSS ring if it's active.
1917 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
1918 rx_ring->cnsmr_idx) {
1919 QPRINTK(qdev, INTR, DEBUG,
1920 "%s: Servicing RX completion ring %d.\n",
1921 __func__, rx_ring->cq_id);
1922 work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
1925 if (work_done < budget) {
1926 napi_complete(napi);
1927 ql_enable_completion_interrupt(qdev, rx_ring->irq);
1932 static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
1934 struct ql_adapter *qdev = netdev_priv(ndev);
1938 QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
1939 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
1940 NIC_RCV_CFG_VLAN_MATCH_AND_NON);
1942 QPRINTK(qdev, IFUP, DEBUG,
1943 "Turning off VLAN in NIC_RCV_CFG.\n");
1944 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
1948 static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
1950 struct ql_adapter *qdev = netdev_priv(ndev);
1951 u32 enable_bit = MAC_ADDR_E;
1954 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
1957 if (ql_set_mac_addr_reg
1958 (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1959 QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
1961 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
1964 static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
1966 struct ql_adapter *qdev = netdev_priv(ndev);
1970 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
1974 if (ql_set_mac_addr_reg
1975 (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1976 QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
1978 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
1982 /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
1983 static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
1985 struct rx_ring *rx_ring = dev_id;
1986 napi_schedule(&rx_ring->napi);
1990 /* This handles a fatal error, MPI activity, and the default
1991 * rx_ring in an MSI-X multiple vector environment.
1992 * In MSI/Legacy environment it also process the rest of
1995 static irqreturn_t qlge_isr(int irq, void *dev_id)
1997 struct rx_ring *rx_ring = dev_id;
1998 struct ql_adapter *qdev = rx_ring->qdev;
1999 struct intr_context *intr_context = &qdev->intr_context[0];
2003 spin_lock(&qdev->hw_lock);
2004 if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
2005 QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
2006 spin_unlock(&qdev->hw_lock);
2009 spin_unlock(&qdev->hw_lock);
2011 var = ql_disable_completion_interrupt(qdev, intr_context->intr);
2014 * Check for fatal error.
2017 ql_queue_asic_error(qdev);
2018 QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
2019 var = ql_read32(qdev, ERR_STS);
2020 QPRINTK(qdev, INTR, ERR,
2021 "Resetting chip. Error Status Register = 0x%x\n", var);
2026 * Check MPI processor activity.
2028 if ((var & STS_PI) &&
2029 (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
2031 * We've got an async event or mailbox completion.
2032 * Handle it and clear the source of the interrupt.
2034 QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
2035 ql_disable_completion_interrupt(qdev, intr_context->intr);
2036 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
2037 queue_delayed_work_on(smp_processor_id(),
2038 qdev->workqueue, &qdev->mpi_work, 0);
2043 * Get the bit-mask that shows the active queues for this
2044 * pass. Compare it to the queues that this irq services
2045 * and call napi if there's a match.
2047 var = ql_read32(qdev, ISR1);
2048 if (var & intr_context->irq_mask) {
2049 QPRINTK(qdev, INTR, INFO,
2050 "Waking handler for rx_ring[0].\n");
2051 ql_disable_completion_interrupt(qdev, intr_context->intr);
2052 napi_schedule(&rx_ring->napi);
2055 ql_enable_completion_interrupt(qdev, intr_context->intr);
2056 return work_done ? IRQ_HANDLED : IRQ_NONE;
2059 static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2062 if (skb_is_gso(skb)) {
2064 if (skb_header_cloned(skb)) {
2065 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2070 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2071 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
2072 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2073 mac_iocb_ptr->total_hdrs_len =
2074 cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
2075 mac_iocb_ptr->net_trans_offset =
2076 cpu_to_le16(skb_network_offset(skb) |
2077 skb_transport_offset(skb)
2078 << OB_MAC_TRANSPORT_HDR_SHIFT);
2079 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
2080 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
2081 if (likely(skb->protocol == htons(ETH_P_IP))) {
2082 struct iphdr *iph = ip_hdr(skb);
2084 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2085 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2089 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2090 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
2091 tcp_hdr(skb)->check =
2092 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2093 &ipv6_hdr(skb)->daddr,
2101 static void ql_hw_csum_setup(struct sk_buff *skb,
2102 struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2105 struct iphdr *iph = ip_hdr(skb);
2107 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2108 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2109 mac_iocb_ptr->net_trans_offset =
2110 cpu_to_le16(skb_network_offset(skb) |
2111 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
2113 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2114 len = (ntohs(iph->tot_len) - (iph->ihl << 2));
2115 if (likely(iph->protocol == IPPROTO_TCP)) {
2116 check = &(tcp_hdr(skb)->check);
2117 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
2118 mac_iocb_ptr->total_hdrs_len =
2119 cpu_to_le16(skb_transport_offset(skb) +
2120 (tcp_hdr(skb)->doff << 2));
2122 check = &(udp_hdr(skb)->check);
2123 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
2124 mac_iocb_ptr->total_hdrs_len =
2125 cpu_to_le16(skb_transport_offset(skb) +
2126 sizeof(struct udphdr));
2128 *check = ~csum_tcpudp_magic(iph->saddr,
2129 iph->daddr, len, iph->protocol, 0);
2132 static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
2134 struct tx_ring_desc *tx_ring_desc;
2135 struct ob_mac_iocb_req *mac_iocb_ptr;
2136 struct ql_adapter *qdev = netdev_priv(ndev);
2138 struct tx_ring *tx_ring;
2139 u32 tx_ring_idx = (u32) skb->queue_mapping;
2141 tx_ring = &qdev->tx_ring[tx_ring_idx];
2143 if (skb_padto(skb, ETH_ZLEN))
2144 return NETDEV_TX_OK;
2146 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2147 QPRINTK(qdev, TX_QUEUED, INFO,
2148 "%s: shutting down tx queue %d du to lack of resources.\n",
2149 __func__, tx_ring_idx);
2150 netif_stop_subqueue(ndev, tx_ring->wq_id);
2151 atomic_inc(&tx_ring->queue_stopped);
2152 return NETDEV_TX_BUSY;
2154 tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
2155 mac_iocb_ptr = tx_ring_desc->queue_entry;
2156 memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
2158 mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
2159 mac_iocb_ptr->tid = tx_ring_desc->index;
2160 /* We use the upper 32-bits to store the tx queue for this IO.
2161 * When we get the completion we can use it to establish the context.
2163 mac_iocb_ptr->txq_idx = tx_ring_idx;
2164 tx_ring_desc->skb = skb;
2166 mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
2168 if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
2169 QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
2170 vlan_tx_tag_get(skb));
2171 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
2172 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
2174 tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2176 dev_kfree_skb_any(skb);
2177 return NETDEV_TX_OK;
2178 } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2179 ql_hw_csum_setup(skb,
2180 (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2182 if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
2184 QPRINTK(qdev, TX_QUEUED, ERR,
2185 "Could not map the segments.\n");
2186 return NETDEV_TX_BUSY;
2188 QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
2189 tx_ring->prod_idx++;
2190 if (tx_ring->prod_idx == tx_ring->wq_len)
2191 tx_ring->prod_idx = 0;
2194 ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
2195 QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
2196 tx_ring->prod_idx, skb->len);
2198 atomic_dec(&tx_ring->tx_count);
2199 return NETDEV_TX_OK;
2202 static void ql_free_shadow_space(struct ql_adapter *qdev)
2204 if (qdev->rx_ring_shadow_reg_area) {
2205 pci_free_consistent(qdev->pdev,
2207 qdev->rx_ring_shadow_reg_area,
2208 qdev->rx_ring_shadow_reg_dma);
2209 qdev->rx_ring_shadow_reg_area = NULL;
2211 if (qdev->tx_ring_shadow_reg_area) {
2212 pci_free_consistent(qdev->pdev,
2214 qdev->tx_ring_shadow_reg_area,
2215 qdev->tx_ring_shadow_reg_dma);
2216 qdev->tx_ring_shadow_reg_area = NULL;
2220 static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2222 qdev->rx_ring_shadow_reg_area =
2223 pci_alloc_consistent(qdev->pdev,
2224 PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
2225 if (qdev->rx_ring_shadow_reg_area == NULL) {
2226 QPRINTK(qdev, IFUP, ERR,
2227 "Allocation of RX shadow space failed.\n");
2230 memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
2231 qdev->tx_ring_shadow_reg_area =
2232 pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
2233 &qdev->tx_ring_shadow_reg_dma);
2234 if (qdev->tx_ring_shadow_reg_area == NULL) {
2235 QPRINTK(qdev, IFUP, ERR,
2236 "Allocation of TX shadow space failed.\n");
2237 goto err_wqp_sh_area;
2239 memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
2243 pci_free_consistent(qdev->pdev,
2245 qdev->rx_ring_shadow_reg_area,
2246 qdev->rx_ring_shadow_reg_dma);
2250 static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2252 struct tx_ring_desc *tx_ring_desc;
2254 struct ob_mac_iocb_req *mac_iocb_ptr;
2256 mac_iocb_ptr = tx_ring->wq_base;
2257 tx_ring_desc = tx_ring->q;
2258 for (i = 0; i < tx_ring->wq_len; i++) {
2259 tx_ring_desc->index = i;
2260 tx_ring_desc->skb = NULL;
2261 tx_ring_desc->queue_entry = mac_iocb_ptr;
2265 atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2266 atomic_set(&tx_ring->queue_stopped, 0);
2269 static void ql_free_tx_resources(struct ql_adapter *qdev,
2270 struct tx_ring *tx_ring)
2272 if (tx_ring->wq_base) {
2273 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2274 tx_ring->wq_base, tx_ring->wq_base_dma);
2275 tx_ring->wq_base = NULL;
2281 static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2282 struct tx_ring *tx_ring)
2285 pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2286 &tx_ring->wq_base_dma);
2288 if ((tx_ring->wq_base == NULL)
2289 || tx_ring->wq_base_dma & WQ_ADDR_ALIGN) {
2290 QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
2294 kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2295 if (tx_ring->q == NULL)
2300 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2301 tx_ring->wq_base, tx_ring->wq_base_dma);
2305 static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2308 struct bq_desc *lbq_desc;
2310 for (i = 0; i < rx_ring->lbq_len; i++) {
2311 lbq_desc = &rx_ring->lbq[i];
2312 if (lbq_desc->p.lbq_page) {
2313 pci_unmap_page(qdev->pdev,
2314 pci_unmap_addr(lbq_desc, mapaddr),
2315 pci_unmap_len(lbq_desc, maplen),
2316 PCI_DMA_FROMDEVICE);
2318 put_page(lbq_desc->p.lbq_page);
2319 lbq_desc->p.lbq_page = NULL;
2324 static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2327 struct bq_desc *sbq_desc;
2329 for (i = 0; i < rx_ring->sbq_len; i++) {
2330 sbq_desc = &rx_ring->sbq[i];
2331 if (sbq_desc == NULL) {
2332 QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
2335 if (sbq_desc->p.skb) {
2336 pci_unmap_single(qdev->pdev,
2337 pci_unmap_addr(sbq_desc, mapaddr),
2338 pci_unmap_len(sbq_desc, maplen),
2339 PCI_DMA_FROMDEVICE);
2340 dev_kfree_skb(sbq_desc->p.skb);
2341 sbq_desc->p.skb = NULL;
2346 /* Free all large and small rx buffers associated
2347 * with the completion queues for this device.
2349 static void ql_free_rx_buffers(struct ql_adapter *qdev)
2352 struct rx_ring *rx_ring;
2354 for (i = 0; i < qdev->rx_ring_count; i++) {
2355 rx_ring = &qdev->rx_ring[i];
2357 ql_free_lbq_buffers(qdev, rx_ring);
2359 ql_free_sbq_buffers(qdev, rx_ring);
2363 static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2365 struct rx_ring *rx_ring;
2368 for (i = 0; i < qdev->rx_ring_count; i++) {
2369 rx_ring = &qdev->rx_ring[i];
2370 if (rx_ring->type != TX_Q)
2371 ql_update_buffer_queues(qdev, rx_ring);
2375 static void ql_init_lbq_ring(struct ql_adapter *qdev,
2376 struct rx_ring *rx_ring)
2379 struct bq_desc *lbq_desc;
2380 __le64 *bq = rx_ring->lbq_base;
2382 memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2383 for (i = 0; i < rx_ring->lbq_len; i++) {
2384 lbq_desc = &rx_ring->lbq[i];
2385 memset(lbq_desc, 0, sizeof(*lbq_desc));
2386 lbq_desc->index = i;
2387 lbq_desc->addr = bq;
2392 static void ql_init_sbq_ring(struct ql_adapter *qdev,
2393 struct rx_ring *rx_ring)
2396 struct bq_desc *sbq_desc;
2397 __le64 *bq = rx_ring->sbq_base;
2399 memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
2400 for (i = 0; i < rx_ring->sbq_len; i++) {
2401 sbq_desc = &rx_ring->sbq[i];
2402 memset(sbq_desc, 0, sizeof(*sbq_desc));
2403 sbq_desc->index = i;
2404 sbq_desc->addr = bq;
2409 static void ql_free_rx_resources(struct ql_adapter *qdev,
2410 struct rx_ring *rx_ring)
2412 /* Free the small buffer queue. */
2413 if (rx_ring->sbq_base) {
2414 pci_free_consistent(qdev->pdev,
2416 rx_ring->sbq_base, rx_ring->sbq_base_dma);
2417 rx_ring->sbq_base = NULL;
2420 /* Free the small buffer queue control blocks. */
2421 kfree(rx_ring->sbq);
2422 rx_ring->sbq = NULL;
2424 /* Free the large buffer queue. */
2425 if (rx_ring->lbq_base) {
2426 pci_free_consistent(qdev->pdev,
2428 rx_ring->lbq_base, rx_ring->lbq_base_dma);
2429 rx_ring->lbq_base = NULL;
2432 /* Free the large buffer queue control blocks. */
2433 kfree(rx_ring->lbq);
2434 rx_ring->lbq = NULL;
2436 /* Free the rx queue. */
2437 if (rx_ring->cq_base) {
2438 pci_free_consistent(qdev->pdev,
2440 rx_ring->cq_base, rx_ring->cq_base_dma);
2441 rx_ring->cq_base = NULL;
2445 /* Allocate queues and buffers for this completions queue based
2446 * on the values in the parameter structure. */
2447 static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2448 struct rx_ring *rx_ring)
2452 * Allocate the completion queue for this rx_ring.
2455 pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2456 &rx_ring->cq_base_dma);
2458 if (rx_ring->cq_base == NULL) {
2459 QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
2463 if (rx_ring->sbq_len) {
2465 * Allocate small buffer queue.
2468 pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2469 &rx_ring->sbq_base_dma);
2471 if (rx_ring->sbq_base == NULL) {
2472 QPRINTK(qdev, IFUP, ERR,
2473 "Small buffer queue allocation failed.\n");
2478 * Allocate small buffer queue control blocks.
2481 kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
2483 if (rx_ring->sbq == NULL) {
2484 QPRINTK(qdev, IFUP, ERR,
2485 "Small buffer queue control block allocation failed.\n");
2489 ql_init_sbq_ring(qdev, rx_ring);
2492 if (rx_ring->lbq_len) {
2494 * Allocate large buffer queue.
2497 pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
2498 &rx_ring->lbq_base_dma);
2500 if (rx_ring->lbq_base == NULL) {
2501 QPRINTK(qdev, IFUP, ERR,
2502 "Large buffer queue allocation failed.\n");
2506 * Allocate large buffer queue control blocks.
2509 kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
2511 if (rx_ring->lbq == NULL) {
2512 QPRINTK(qdev, IFUP, ERR,
2513 "Large buffer queue control block allocation failed.\n");
2517 ql_init_lbq_ring(qdev, rx_ring);
2523 ql_free_rx_resources(qdev, rx_ring);
2527 static void ql_tx_ring_clean(struct ql_adapter *qdev)
2529 struct tx_ring *tx_ring;
2530 struct tx_ring_desc *tx_ring_desc;
2534 * Loop through all queues and free
2537 for (j = 0; j < qdev->tx_ring_count; j++) {
2538 tx_ring = &qdev->tx_ring[j];
2539 for (i = 0; i < tx_ring->wq_len; i++) {
2540 tx_ring_desc = &tx_ring->q[i];
2541 if (tx_ring_desc && tx_ring_desc->skb) {
2542 QPRINTK(qdev, IFDOWN, ERR,
2543 "Freeing lost SKB %p, from queue %d, index %d.\n",
2544 tx_ring_desc->skb, j,
2545 tx_ring_desc->index);
2546 ql_unmap_send(qdev, tx_ring_desc,
2547 tx_ring_desc->map_cnt);
2548 dev_kfree_skb(tx_ring_desc->skb);
2549 tx_ring_desc->skb = NULL;
2555 static void ql_free_mem_resources(struct ql_adapter *qdev)
2559 for (i = 0; i < qdev->tx_ring_count; i++)
2560 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
2561 for (i = 0; i < qdev->rx_ring_count; i++)
2562 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
2563 ql_free_shadow_space(qdev);
2566 static int ql_alloc_mem_resources(struct ql_adapter *qdev)
2570 /* Allocate space for our shadow registers and such. */
2571 if (ql_alloc_shadow_space(qdev))
2574 for (i = 0; i < qdev->rx_ring_count; i++) {
2575 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
2576 QPRINTK(qdev, IFUP, ERR,
2577 "RX resource allocation failed.\n");
2581 /* Allocate tx queue resources */
2582 for (i = 0; i < qdev->tx_ring_count; i++) {
2583 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
2584 QPRINTK(qdev, IFUP, ERR,
2585 "TX resource allocation failed.\n");
2592 ql_free_mem_resources(qdev);
2596 /* Set up the rx ring control block and pass it to the chip.
2597 * The control block is defined as
2598 * "Completion Queue Initialization Control Block", or cqicb.
2600 static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2602 struct cqicb *cqicb = &rx_ring->cqicb;
2603 void *shadow_reg = qdev->rx_ring_shadow_reg_area +
2604 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
2605 u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
2606 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
2607 void __iomem *doorbell_area =
2608 qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
2612 __le64 *base_indirect_ptr;
2615 /* Set up the shadow registers for this ring. */
2616 rx_ring->prod_idx_sh_reg = shadow_reg;
2617 rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
2618 shadow_reg += sizeof(u64);
2619 shadow_reg_dma += sizeof(u64);
2620 rx_ring->lbq_base_indirect = shadow_reg;
2621 rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
2622 shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
2623 shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
2624 rx_ring->sbq_base_indirect = shadow_reg;
2625 rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
2627 /* PCI doorbell mem area + 0x00 for consumer index register */
2628 rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
2629 rx_ring->cnsmr_idx = 0;
2630 rx_ring->curr_entry = rx_ring->cq_base;
2632 /* PCI doorbell mem area + 0x04 for valid register */
2633 rx_ring->valid_db_reg = doorbell_area + 0x04;
2635 /* PCI doorbell mem area + 0x18 for large buffer consumer */
2636 rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
2638 /* PCI doorbell mem area + 0x1c */
2639 rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
2641 memset((void *)cqicb, 0, sizeof(struct cqicb));
2642 cqicb->msix_vect = rx_ring->irq;
2644 bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
2645 cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
2647 cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
2649 cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
2652 * Set up the control block load flags.
2654 cqicb->flags = FLAGS_LC | /* Load queue base address */
2655 FLAGS_LV | /* Load MSI-X vector */
2656 FLAGS_LI; /* Load irq delay values */
2657 if (rx_ring->lbq_len) {
2658 cqicb->flags |= FLAGS_LL; /* Load lbq values */
2659 tmp = (u64)rx_ring->lbq_base_dma;
2660 base_indirect_ptr = (__le64 *) rx_ring->lbq_base_indirect;
2663 *base_indirect_ptr = cpu_to_le64(tmp);
2664 tmp += DB_PAGE_SIZE;
2665 base_indirect_ptr++;
2667 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
2669 cpu_to_le64(rx_ring->lbq_base_indirect_dma);
2670 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
2671 (u16) rx_ring->lbq_buf_size;
2672 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
2673 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
2674 (u16) rx_ring->lbq_len;
2675 cqicb->lbq_len = cpu_to_le16(bq_len);
2676 rx_ring->lbq_prod_idx = 0;
2677 rx_ring->lbq_curr_idx = 0;
2678 rx_ring->lbq_clean_idx = 0;
2679 rx_ring->lbq_free_cnt = rx_ring->lbq_len;
2681 if (rx_ring->sbq_len) {
2682 cqicb->flags |= FLAGS_LS; /* Load sbq values */
2683 tmp = (u64)rx_ring->sbq_base_dma;
2684 base_indirect_ptr = (__le64 *) rx_ring->sbq_base_indirect;
2687 *base_indirect_ptr = cpu_to_le64(tmp);
2688 tmp += DB_PAGE_SIZE;
2689 base_indirect_ptr++;
2691 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
2693 cpu_to_le64(rx_ring->sbq_base_indirect_dma);
2694 cqicb->sbq_buf_size =
2695 cpu_to_le16((u16)(rx_ring->sbq_buf_size/2));
2696 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
2697 (u16) rx_ring->sbq_len;
2698 cqicb->sbq_len = cpu_to_le16(bq_len);
2699 rx_ring->sbq_prod_idx = 0;
2700 rx_ring->sbq_curr_idx = 0;
2701 rx_ring->sbq_clean_idx = 0;
2702 rx_ring->sbq_free_cnt = rx_ring->sbq_len;
2704 switch (rx_ring->type) {
2706 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
2707 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
2710 /* Inbound completion handling rx_rings run in
2711 * separate NAPI contexts.
2713 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
2715 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
2716 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
2719 QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
2722 QPRINTK(qdev, IFUP, DEBUG, "Initializing rx work queue.\n");
2723 err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
2724 CFG_LCQ, rx_ring->cq_id);
2726 QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
2732 static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2734 struct wqicb *wqicb = (struct wqicb *)tx_ring;
2735 void __iomem *doorbell_area =
2736 qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
2737 void *shadow_reg = qdev->tx_ring_shadow_reg_area +
2738 (tx_ring->wq_id * sizeof(u64));
2739 u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
2740 (tx_ring->wq_id * sizeof(u64));
2744 * Assign doorbell registers for this tx_ring.
2746 /* TX PCI doorbell mem area for tx producer index */
2747 tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
2748 tx_ring->prod_idx = 0;
2749 /* TX PCI doorbell mem area + 0x04 */
2750 tx_ring->valid_db_reg = doorbell_area + 0x04;
2753 * Assign shadow registers for this tx_ring.
2755 tx_ring->cnsmr_idx_sh_reg = shadow_reg;
2756 tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
2758 wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
2759 wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
2760 Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
2761 wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
2763 wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
2765 wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
2767 ql_init_tx_ring(qdev, tx_ring);
2769 err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
2770 (u16) tx_ring->wq_id);
2772 QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
2775 QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded WQICB.\n");
2779 static void ql_disable_msix(struct ql_adapter *qdev)
2781 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2782 pci_disable_msix(qdev->pdev);
2783 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
2784 kfree(qdev->msi_x_entry);
2785 qdev->msi_x_entry = NULL;
2786 } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
2787 pci_disable_msi(qdev->pdev);
2788 clear_bit(QL_MSI_ENABLED, &qdev->flags);
2792 /* We start by trying to get the number of vectors
2793 * stored in qdev->intr_count. If we don't get that
2794 * many then we reduce the count and try again.
2796 static void ql_enable_msix(struct ql_adapter *qdev)
2800 /* Get the MSIX vectors. */
2801 if (irq_type == MSIX_IRQ) {
2802 /* Try to alloc space for the msix struct,
2803 * if it fails then go to MSI/legacy.
2805 qdev->msi_x_entry = kcalloc(qdev->intr_count,
2806 sizeof(struct msix_entry),
2808 if (!qdev->msi_x_entry) {
2813 for (i = 0; i < qdev->intr_count; i++)
2814 qdev->msi_x_entry[i].entry = i;
2816 /* Loop to get our vectors. We start with
2817 * what we want and settle for what we get.
2820 err = pci_enable_msix(qdev->pdev,
2821 qdev->msi_x_entry, qdev->intr_count);
2823 qdev->intr_count = err;
2827 kfree(qdev->msi_x_entry);
2828 qdev->msi_x_entry = NULL;
2829 QPRINTK(qdev, IFUP, WARNING,
2830 "MSI-X Enable failed, trying MSI.\n");
2831 qdev->intr_count = 1;
2833 } else if (err == 0) {
2834 set_bit(QL_MSIX_ENABLED, &qdev->flags);
2835 QPRINTK(qdev, IFUP, INFO,
2836 "MSI-X Enabled, got %d vectors.\n",
2842 qdev->intr_count = 1;
2843 if (irq_type == MSI_IRQ) {
2844 if (!pci_enable_msi(qdev->pdev)) {
2845 set_bit(QL_MSI_ENABLED, &qdev->flags);
2846 QPRINTK(qdev, IFUP, INFO,
2847 "Running with MSI interrupts.\n");
2852 QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
2855 /* Each vector services 1 RSS ring and and 1 or more
2856 * TX completion rings. This function loops through
2857 * the TX completion rings and assigns the vector that
2858 * will service it. An example would be if there are
2859 * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
2860 * This would mean that vector 0 would service RSS ring 0
2861 * and TX competion rings 0,1,2 and 3. Vector 1 would
2862 * service RSS ring 1 and TX completion rings 4,5,6 and 7.
2864 static void ql_set_tx_vect(struct ql_adapter *qdev)
2867 u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
2869 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
2870 /* Assign irq vectors to TX rx_rings.*/
2871 for (vect = 0, j = 0, i = qdev->rss_ring_count;
2872 i < qdev->rx_ring_count; i++) {
2873 if (j == tx_rings_per_vector) {
2877 qdev->rx_ring[i].irq = vect;
2881 /* For single vector all rings have an irq
2884 for (i = 0; i < qdev->rx_ring_count; i++)
2885 qdev->rx_ring[i].irq = 0;
2889 /* Set the interrupt mask for this vector. Each vector
2890 * will service 1 RSS ring and 1 or more TX completion
2891 * rings. This function sets up a bit mask per vector
2892 * that indicates which rings it services.
2894 static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
2896 int j, vect = ctx->intr;
2897 u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
2899 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
2900 /* Add the RSS ring serviced by this vector
2903 ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
2904 /* Add the TX ring(s) serviced by this vector
2906 for (j = 0; j < tx_rings_per_vector; j++) {
2908 (1 << qdev->rx_ring[qdev->rss_ring_count +
2909 (vect * tx_rings_per_vector) + j].cq_id);
2912 /* For single vector we just shift each queue's
2915 for (j = 0; j < qdev->rx_ring_count; j++)
2916 ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
2921 * Here we build the intr_context structures based on
2922 * our rx_ring count and intr vector count.
2923 * The intr_context structure is used to hook each vector
2924 * to possibly different handlers.
2926 static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
2929 struct intr_context *intr_context = &qdev->intr_context[0];
2931 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
2932 /* Each rx_ring has it's
2933 * own intr_context since we have separate
2934 * vectors for each queue.
2936 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2937 qdev->rx_ring[i].irq = i;
2938 intr_context->intr = i;
2939 intr_context->qdev = qdev;
2940 /* Set up this vector's bit-mask that indicates
2941 * which queues it services.
2943 ql_set_irq_mask(qdev, intr_context);
2945 * We set up each vectors enable/disable/read bits so
2946 * there's no bit/mask calculations in the critical path.
2948 intr_context->intr_en_mask =
2949 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2950 INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
2952 intr_context->intr_dis_mask =
2953 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2954 INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
2956 intr_context->intr_read_mask =
2957 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2958 INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
2961 /* The first vector/queue handles
2962 * broadcast/multicast, fatal errors,
2963 * and firmware events. This in addition
2964 * to normal inbound NAPI processing.
2966 intr_context->handler = qlge_isr;
2967 sprintf(intr_context->name, "%s-rx-%d",
2968 qdev->ndev->name, i);
2971 * Inbound queues handle unicast frames only.
2973 intr_context->handler = qlge_msix_rx_isr;
2974 sprintf(intr_context->name, "%s-rx-%d",
2975 qdev->ndev->name, i);
2980 * All rx_rings use the same intr_context since
2981 * there is only one vector.
2983 intr_context->intr = 0;
2984 intr_context->qdev = qdev;
2986 * We set up each vectors enable/disable/read bits so
2987 * there's no bit/mask calculations in the critical path.
2989 intr_context->intr_en_mask =
2990 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
2991 intr_context->intr_dis_mask =
2992 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2993 INTR_EN_TYPE_DISABLE;
2994 intr_context->intr_read_mask =
2995 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
2997 * Single interrupt means one handler for all rings.
2999 intr_context->handler = qlge_isr;
3000 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
3001 /* Set up this vector's bit-mask that indicates
3002 * which queues it services. In this case there is
3003 * a single vector so it will service all RSS and
3004 * TX completion rings.
3006 ql_set_irq_mask(qdev, intr_context);