qlge: Fix chip reset process.
[linux-2.6.git] / drivers / net / qlge / qlge_main.c
1 /*
2  * QLogic qlge NIC HBA Driver
3  * Copyright (c)  2003-2008 QLogic Corporation
4  * See LICENSE.qlge for copyright and licensing details.
5  * Author:     Linux qlge network device driver by
6  *                      Ron Mercer <ron.mercer@qlogic.com>
7  */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/types.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/pagemap.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/dmapool.h>
19 #include <linux/mempool.h>
20 #include <linux/spinlock.h>
21 #include <linux/kthread.h>
22 #include <linux/interrupt.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/in.h>
26 #include <linux/ip.h>
27 #include <linux/ipv6.h>
28 #include <net/ipv6.h>
29 #include <linux/tcp.h>
30 #include <linux/udp.h>
31 #include <linux/if_arp.h>
32 #include <linux/if_ether.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/skbuff.h>
37 #include <linux/if_vlan.h>
38 #include <linux/delay.h>
39 #include <linux/mm.h>
40 #include <linux/vmalloc.h>
41 #include <net/ip6_checksum.h>
42
43 #include "qlge.h"
44
45 char qlge_driver_name[] = DRV_NAME;
46 const char qlge_driver_version[] = DRV_VERSION;
47
48 MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
49 MODULE_DESCRIPTION(DRV_STRING " ");
50 MODULE_LICENSE("GPL");
51 MODULE_VERSION(DRV_VERSION);
52
53 static const u32 default_msg =
54     NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
55 /* NETIF_MSG_TIMER |    */
56     NETIF_MSG_IFDOWN |
57     NETIF_MSG_IFUP |
58     NETIF_MSG_RX_ERR |
59     NETIF_MSG_TX_ERR |
60 /*  NETIF_MSG_TX_QUEUED | */
61 /*  NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
62 /* NETIF_MSG_PKTDATA | */
63     NETIF_MSG_HW | NETIF_MSG_WOL | 0;
64
65 static int debug = 0x00007fff;  /* defaults above */
66 module_param(debug, int, 0);
67 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
68
69 #define MSIX_IRQ 0
70 #define MSI_IRQ 1
71 #define LEG_IRQ 2
72 static int irq_type = MSIX_IRQ;
73 module_param(irq_type, int, MSIX_IRQ);
74 MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
75
76 static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
77         {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
78         {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
79         /* required last entry */
80         {0,}
81 };
82
83 MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
84
85 /* This hardware semaphore causes exclusive access to
86  * resources shared between the NIC driver, MPI firmware,
87  * FCOE firmware and the FC driver.
88  */
89 static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
90 {
91         u32 sem_bits = 0;
92
93         switch (sem_mask) {
94         case SEM_XGMAC0_MASK:
95                 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
96                 break;
97         case SEM_XGMAC1_MASK:
98                 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
99                 break;
100         case SEM_ICB_MASK:
101                 sem_bits = SEM_SET << SEM_ICB_SHIFT;
102                 break;
103         case SEM_MAC_ADDR_MASK:
104                 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
105                 break;
106         case SEM_FLASH_MASK:
107                 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
108                 break;
109         case SEM_PROBE_MASK:
110                 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
111                 break;
112         case SEM_RT_IDX_MASK:
113                 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
114                 break;
115         case SEM_PROC_REG_MASK:
116                 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
117                 break;
118         default:
119                 QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
120                 return -EINVAL;
121         }
122
123         ql_write32(qdev, SEM, sem_bits | sem_mask);
124         return !(ql_read32(qdev, SEM) & sem_bits);
125 }
126
127 int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
128 {
129         unsigned int wait_count = 30;
130         do {
131                 if (!ql_sem_trylock(qdev, sem_mask))
132                         return 0;
133                 udelay(100);
134         } while (--wait_count);
135         return -ETIMEDOUT;
136 }
137
138 void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
139 {
140         ql_write32(qdev, SEM, sem_mask);
141         ql_read32(qdev, SEM);   /* flush */
142 }
143
144 /* This function waits for a specific bit to come ready
145  * in a given register.  It is used mostly by the initialize
146  * process, but is also used in kernel thread API such as
147  * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
148  */
149 int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
150 {
151         u32 temp;
152         int count = UDELAY_COUNT;
153
154         while (count) {
155                 temp = ql_read32(qdev, reg);
156
157                 /* check for errors */
158                 if (temp & err_bit) {
159                         QPRINTK(qdev, PROBE, ALERT,
160                                 "register 0x%.08x access error, value = 0x%.08x!.\n",
161                                 reg, temp);
162                         return -EIO;
163                 } else if (temp & bit)
164                         return 0;
165                 udelay(UDELAY_DELAY);
166                 count--;
167         }
168         QPRINTK(qdev, PROBE, ALERT,
169                 "Timed out waiting for reg %x to come ready.\n", reg);
170         return -ETIMEDOUT;
171 }
172
173 /* The CFG register is used to download TX and RX control blocks
174  * to the chip. This function waits for an operation to complete.
175  */
176 static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
177 {
178         int count = UDELAY_COUNT;
179         u32 temp;
180
181         while (count) {
182                 temp = ql_read32(qdev, CFG);
183                 if (temp & CFG_LE)
184                         return -EIO;
185                 if (!(temp & bit))
186                         return 0;
187                 udelay(UDELAY_DELAY);
188                 count--;
189         }
190         return -ETIMEDOUT;
191 }
192
193
194 /* Used to issue init control blocks to hw. Maps control block,
195  * sets address, triggers download, waits for completion.
196  */
197 int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
198                  u16 q_id)
199 {
200         u64 map;
201         int status = 0;
202         int direction;
203         u32 mask;
204         u32 value;
205
206         direction =
207             (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
208             PCI_DMA_FROMDEVICE;
209
210         map = pci_map_single(qdev->pdev, ptr, size, direction);
211         if (pci_dma_mapping_error(qdev->pdev, map)) {
212                 QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
213                 return -ENOMEM;
214         }
215
216         status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
217         if (status)
218                 return status;
219
220         status = ql_wait_cfg(qdev, bit);
221         if (status) {
222                 QPRINTK(qdev, IFUP, ERR,
223                         "Timed out waiting for CFG to come ready.\n");
224                 goto exit;
225         }
226
227         ql_write32(qdev, ICB_L, (u32) map);
228         ql_write32(qdev, ICB_H, (u32) (map >> 32));
229
230         mask = CFG_Q_MASK | (bit << 16);
231         value = bit | (q_id << CFG_Q_SHIFT);
232         ql_write32(qdev, CFG, (mask | value));
233
234         /*
235          * Wait for the bit to clear after signaling hw.
236          */
237         status = ql_wait_cfg(qdev, bit);
238 exit:
239         ql_sem_unlock(qdev, SEM_ICB_MASK);      /* does flush too */
240         pci_unmap_single(qdev->pdev, map, size, direction);
241         return status;
242 }
243
244 /* Get a specific MAC address from the CAM.  Used for debug and reg dump. */
245 int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
246                         u32 *value)
247 {
248         u32 offset = 0;
249         int status;
250
251         switch (type) {
252         case MAC_ADDR_TYPE_MULTI_MAC:
253         case MAC_ADDR_TYPE_CAM_MAC:
254                 {
255                         status =
256                             ql_wait_reg_rdy(qdev,
257                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
258                         if (status)
259                                 goto exit;
260                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
261                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
262                                    MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
263                         status =
264                             ql_wait_reg_rdy(qdev,
265                                 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
266                         if (status)
267                                 goto exit;
268                         *value++ = ql_read32(qdev, MAC_ADDR_DATA);
269                         status =
270                             ql_wait_reg_rdy(qdev,
271                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
272                         if (status)
273                                 goto exit;
274                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
275                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
276                                    MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
277                         status =
278                             ql_wait_reg_rdy(qdev,
279                                 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
280                         if (status)
281                                 goto exit;
282                         *value++ = ql_read32(qdev, MAC_ADDR_DATA);
283                         if (type == MAC_ADDR_TYPE_CAM_MAC) {
284                                 status =
285                                     ql_wait_reg_rdy(qdev,
286                                         MAC_ADDR_IDX, MAC_ADDR_MW, 0);
287                                 if (status)
288                                         goto exit;
289                                 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
290                                            (index << MAC_ADDR_IDX_SHIFT) | /* index */
291                                            MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
292                                 status =
293                                     ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
294                                                     MAC_ADDR_MR, 0);
295                                 if (status)
296                                         goto exit;
297                                 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
298                         }
299                         break;
300                 }
301         case MAC_ADDR_TYPE_VLAN:
302         case MAC_ADDR_TYPE_MULTI_FLTR:
303         default:
304                 QPRINTK(qdev, IFUP, CRIT,
305                         "Address type %d not yet supported.\n", type);
306                 status = -EPERM;
307         }
308 exit:
309         return status;
310 }
311
312 /* Set up a MAC, multicast or VLAN address for the
313  * inbound frame matching.
314  */
315 static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
316                                u16 index)
317 {
318         u32 offset = 0;
319         int status = 0;
320
321         switch (type) {
322         case MAC_ADDR_TYPE_MULTI_MAC:
323                 {
324                         u32 upper = (addr[0] << 8) | addr[1];
325                         u32 lower = (addr[2] << 24) | (addr[3] << 16) |
326                                         (addr[4] << 8) | (addr[5]);
327
328                         status =
329                                 ql_wait_reg_rdy(qdev,
330                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
331                         if (status)
332                                 goto exit;
333                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
334                                 (index << MAC_ADDR_IDX_SHIFT) |
335                                 type | MAC_ADDR_E);
336                         ql_write32(qdev, MAC_ADDR_DATA, lower);
337                         status =
338                                 ql_wait_reg_rdy(qdev,
339                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
340                         if (status)
341                                 goto exit;
342                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
343                                 (index << MAC_ADDR_IDX_SHIFT) |
344                                 type | MAC_ADDR_E);
345
346                         ql_write32(qdev, MAC_ADDR_DATA, upper);
347                         status =
348                                 ql_wait_reg_rdy(qdev,
349                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
350                         if (status)
351                                 goto exit;
352                         break;
353                 }
354         case MAC_ADDR_TYPE_CAM_MAC:
355                 {
356                         u32 cam_output;
357                         u32 upper = (addr[0] << 8) | addr[1];
358                         u32 lower =
359                             (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
360                             (addr[5]);
361
362                         QPRINTK(qdev, IFUP, DEBUG,
363                                 "Adding %s address %pM"
364                                 " at index %d in the CAM.\n",
365                                 ((type ==
366                                   MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
367                                  "UNICAST"), addr, index);
368
369                         status =
370                             ql_wait_reg_rdy(qdev,
371                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
372                         if (status)
373                                 goto exit;
374                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
375                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
376                                    type);       /* type */
377                         ql_write32(qdev, MAC_ADDR_DATA, lower);
378                         status =
379                             ql_wait_reg_rdy(qdev,
380                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
381                         if (status)
382                                 goto exit;
383                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
384                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
385                                    type);       /* type */
386                         ql_write32(qdev, MAC_ADDR_DATA, upper);
387                         status =
388                             ql_wait_reg_rdy(qdev,
389                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
390                         if (status)
391                                 goto exit;
392                         ql_write32(qdev, MAC_ADDR_IDX, (offset) |       /* offset */
393                                    (index << MAC_ADDR_IDX_SHIFT) |      /* index */
394                                    type);       /* type */
395                         /* This field should also include the queue id
396                            and possibly the function id.  Right now we hardcode
397                            the route field to NIC core.
398                          */
399                         cam_output = (CAM_OUT_ROUTE_NIC |
400                                       (qdev->
401                                        func << CAM_OUT_FUNC_SHIFT) |
402                                         (0 << CAM_OUT_CQ_ID_SHIFT));
403                         if (qdev->vlgrp)
404                                 cam_output |= CAM_OUT_RV;
405                         /* route to NIC core */
406                         ql_write32(qdev, MAC_ADDR_DATA, cam_output);
407                         break;
408                 }
409         case MAC_ADDR_TYPE_VLAN:
410                 {
411                         u32 enable_bit = *((u32 *) &addr[0]);
412                         /* For VLAN, the addr actually holds a bit that
413                          * either enables or disables the vlan id we are
414                          * addressing. It's either MAC_ADDR_E on or off.
415                          * That's bit-27 we're talking about.
416                          */
417                         QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
418                                 (enable_bit ? "Adding" : "Removing"),
419                                 index, (enable_bit ? "to" : "from"));
420
421                         status =
422                             ql_wait_reg_rdy(qdev,
423                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
424                         if (status)
425                                 goto exit;
426                         ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
427                                    (index << MAC_ADDR_IDX_SHIFT) |      /* index */
428                                    type |       /* type */
429                                    enable_bit); /* enable/disable */
430                         break;
431                 }
432         case MAC_ADDR_TYPE_MULTI_FLTR:
433         default:
434                 QPRINTK(qdev, IFUP, CRIT,
435                         "Address type %d not yet supported.\n", type);
436                 status = -EPERM;
437         }
438 exit:
439         return status;
440 }
441
442 /* Set or clear MAC address in hardware. We sometimes
443  * have to clear it to prevent wrong frame routing
444  * especially in a bonding environment.
445  */
446 static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
447 {
448         int status;
449         char zero_mac_addr[ETH_ALEN];
450         char *addr;
451
452         if (set) {
453                 addr = &qdev->ndev->dev_addr[0];
454                 QPRINTK(qdev, IFUP, DEBUG,
455                         "Set Mac addr %02x:%02x:%02x:%02x:%02x:%02x\n",
456                         addr[0], addr[1], addr[2], addr[3],
457                         addr[4], addr[5]);
458         } else {
459                 memset(zero_mac_addr, 0, ETH_ALEN);
460                 addr = &zero_mac_addr[0];
461                 QPRINTK(qdev, IFUP, DEBUG,
462                                 "Clearing MAC address on %s\n",
463                                 qdev->ndev->name);
464         }
465         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
466         if (status)
467                 return status;
468         status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
469                         MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
470         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
471         if (status)
472                 QPRINTK(qdev, IFUP, ERR, "Failed to init mac "
473                         "address.\n");
474         return status;
475 }
476
477 void ql_link_on(struct ql_adapter *qdev)
478 {
479         QPRINTK(qdev, LINK, ERR, "%s: Link is up.\n",
480                                  qdev->ndev->name);
481         netif_carrier_on(qdev->ndev);
482         ql_set_mac_addr(qdev, 1);
483 }
484
485 void ql_link_off(struct ql_adapter *qdev)
486 {
487         QPRINTK(qdev, LINK, ERR, "%s: Link is down.\n",
488                                  qdev->ndev->name);
489         netif_carrier_off(qdev->ndev);
490         ql_set_mac_addr(qdev, 0);
491 }
492
493 /* Get a specific frame routing value from the CAM.
494  * Used for debug and reg dump.
495  */
496 int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
497 {
498         int status = 0;
499
500         status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
501         if (status)
502                 goto exit;
503
504         ql_write32(qdev, RT_IDX,
505                    RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
506         status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
507         if (status)
508                 goto exit;
509         *value = ql_read32(qdev, RT_DATA);
510 exit:
511         return status;
512 }
513
514 /* The NIC function for this chip has 16 routing indexes.  Each one can be used
515  * to route different frame types to various inbound queues.  We send broadcast/
516  * multicast/error frames to the default queue for slow handling,
517  * and CAM hit/RSS frames to the fast handling queues.
518  */
519 static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
520                               int enable)
521 {
522         int status = -EINVAL; /* Return error if no mask match. */
523         u32 value = 0;
524
525         QPRINTK(qdev, IFUP, DEBUG,
526                 "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
527                 (enable ? "Adding" : "Removing"),
528                 ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
529                 ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
530                 ((index ==
531                   RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
532                 ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
533                 ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
534                 ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
535                 ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
536                 ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
537                 ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
538                 ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
539                 ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
540                 ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
541                 ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
542                 ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
543                 ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
544                 ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
545                 (enable ? "to" : "from"));
546
547         switch (mask) {
548         case RT_IDX_CAM_HIT:
549                 {
550                         value = RT_IDX_DST_CAM_Q |      /* dest */
551                             RT_IDX_TYPE_NICQ |  /* type */
552                             (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
553                         break;
554                 }
555         case RT_IDX_VALID:      /* Promiscuous Mode frames. */
556                 {
557                         value = RT_IDX_DST_DFLT_Q |     /* dest */
558                             RT_IDX_TYPE_NICQ |  /* type */
559                             (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
560                         break;
561                 }
562         case RT_IDX_ERR:        /* Pass up MAC,IP,TCP/UDP error frames. */
563                 {
564                         value = RT_IDX_DST_DFLT_Q |     /* dest */
565                             RT_IDX_TYPE_NICQ |  /* type */
566                             (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
567                         break;
568                 }
569         case RT_IDX_BCAST:      /* Pass up Broadcast frames to default Q. */
570                 {
571                         value = RT_IDX_DST_DFLT_Q |     /* dest */
572                             RT_IDX_TYPE_NICQ |  /* type */
573                             (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
574                         break;
575                 }
576         case RT_IDX_MCAST:      /* Pass up All Multicast frames. */
577                 {
578                         value = RT_IDX_DST_DFLT_Q |     /* dest */
579                             RT_IDX_TYPE_NICQ |  /* type */
580                             (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
581                         break;
582                 }
583         case RT_IDX_MCAST_MATCH:        /* Pass up matched Multicast frames. */
584                 {
585                         value = RT_IDX_DST_DFLT_Q |     /* dest */
586                             RT_IDX_TYPE_NICQ |  /* type */
587                             (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
588                         break;
589                 }
590         case RT_IDX_RSS_MATCH:  /* Pass up matched RSS frames. */
591                 {
592                         value = RT_IDX_DST_RSS |        /* dest */
593                             RT_IDX_TYPE_NICQ |  /* type */
594                             (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
595                         break;
596                 }
597         case 0:         /* Clear the E-bit on an entry. */
598                 {
599                         value = RT_IDX_DST_DFLT_Q |     /* dest */
600                             RT_IDX_TYPE_NICQ |  /* type */
601                             (index << RT_IDX_IDX_SHIFT);/* index */
602                         break;
603                 }
604         default:
605                 QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
606                         mask);
607                 status = -EPERM;
608                 goto exit;
609         }
610
611         if (value) {
612                 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
613                 if (status)
614                         goto exit;
615                 value |= (enable ? RT_IDX_E : 0);
616                 ql_write32(qdev, RT_IDX, value);
617                 ql_write32(qdev, RT_DATA, enable ? mask : 0);
618         }
619 exit:
620         return status;
621 }
622
623 static void ql_enable_interrupts(struct ql_adapter *qdev)
624 {
625         ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
626 }
627
628 static void ql_disable_interrupts(struct ql_adapter *qdev)
629 {
630         ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
631 }
632
633 /* If we're running with multiple MSI-X vectors then we enable on the fly.
634  * Otherwise, we may have multiple outstanding workers and don't want to
635  * enable until the last one finishes. In this case, the irq_cnt gets
636  * incremented everytime we queue a worker and decremented everytime
637  * a worker finishes.  Once it hits zero we enable the interrupt.
638  */
639 u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
640 {
641         u32 var = 0;
642         unsigned long hw_flags = 0;
643         struct intr_context *ctx = qdev->intr_context + intr;
644
645         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
646                 /* Always enable if we're MSIX multi interrupts and
647                  * it's not the default (zeroeth) interrupt.
648                  */
649                 ql_write32(qdev, INTR_EN,
650                            ctx->intr_en_mask);
651                 var = ql_read32(qdev, STS);
652                 return var;
653         }
654
655         spin_lock_irqsave(&qdev->hw_lock, hw_flags);
656         if (atomic_dec_and_test(&ctx->irq_cnt)) {
657                 ql_write32(qdev, INTR_EN,
658                            ctx->intr_en_mask);
659                 var = ql_read32(qdev, STS);
660         }
661         spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
662         return var;
663 }
664
665 static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
666 {
667         u32 var = 0;
668         struct intr_context *ctx;
669
670         /* HW disables for us if we're MSIX multi interrupts and
671          * it's not the default (zeroeth) interrupt.
672          */
673         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
674                 return 0;
675
676         ctx = qdev->intr_context + intr;
677         spin_lock(&qdev->hw_lock);
678         if (!atomic_read(&ctx->irq_cnt)) {
679                 ql_write32(qdev, INTR_EN,
680                 ctx->intr_dis_mask);
681                 var = ql_read32(qdev, STS);
682         }
683         atomic_inc(&ctx->irq_cnt);
684         spin_unlock(&qdev->hw_lock);
685         return var;
686 }
687
688 static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
689 {
690         int i;
691         for (i = 0; i < qdev->intr_count; i++) {
692                 /* The enable call does a atomic_dec_and_test
693                  * and enables only if the result is zero.
694                  * So we precharge it here.
695                  */
696                 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
697                         i == 0))
698                         atomic_set(&qdev->intr_context[i].irq_cnt, 1);
699                 ql_enable_completion_interrupt(qdev, i);
700         }
701
702 }
703
704 static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
705 {
706         int status, i;
707         u16 csum = 0;
708         __le16 *flash = (__le16 *)&qdev->flash;
709
710         status = strncmp((char *)&qdev->flash, str, 4);
711         if (status) {
712                 QPRINTK(qdev, IFUP, ERR, "Invalid flash signature.\n");
713                 return  status;
714         }
715
716         for (i = 0; i < size; i++)
717                 csum += le16_to_cpu(*flash++);
718
719         if (csum)
720                 QPRINTK(qdev, IFUP, ERR,
721                         "Invalid flash checksum, csum = 0x%.04x.\n", csum);
722
723         return csum;
724 }
725
726 static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
727 {
728         int status = 0;
729         /* wait for reg to come ready */
730         status = ql_wait_reg_rdy(qdev,
731                         FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
732         if (status)
733                 goto exit;
734         /* set up for reg read */
735         ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
736         /* wait for reg to come ready */
737         status = ql_wait_reg_rdy(qdev,
738                         FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
739         if (status)
740                 goto exit;
741          /* This data is stored on flash as an array of
742          * __le32.  Since ql_read32() returns cpu endian
743          * we need to swap it back.
744          */
745         *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
746 exit:
747         return status;
748 }
749
750 static int ql_get_8000_flash_params(struct ql_adapter *qdev)
751 {
752         u32 i, size;
753         int status;
754         __le32 *p = (__le32 *)&qdev->flash;
755         u32 offset;
756         u8 mac_addr[6];
757
758         /* Get flash offset for function and adjust
759          * for dword access.
760          */
761         if (!qdev->port)
762                 offset = FUNC0_FLASH_OFFSET / sizeof(u32);
763         else
764                 offset = FUNC1_FLASH_OFFSET / sizeof(u32);
765
766         if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
767                 return -ETIMEDOUT;
768
769         size = sizeof(struct flash_params_8000) / sizeof(u32);
770         for (i = 0; i < size; i++, p++) {
771                 status = ql_read_flash_word(qdev, i+offset, p);
772                 if (status) {
773                         QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
774                         goto exit;
775                 }
776         }
777
778         status = ql_validate_flash(qdev,
779                         sizeof(struct flash_params_8000) / sizeof(u16),
780                         "8000");
781         if (status) {
782                 QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
783                 status = -EINVAL;
784                 goto exit;
785         }
786
787         /* Extract either manufacturer or BOFM modified
788          * MAC address.
789          */
790         if (qdev->flash.flash_params_8000.data_type1 == 2)
791                 memcpy(mac_addr,
792                         qdev->flash.flash_params_8000.mac_addr1,
793                         qdev->ndev->addr_len);
794         else
795                 memcpy(mac_addr,
796                         qdev->flash.flash_params_8000.mac_addr,
797                         qdev->ndev->addr_len);
798
799         if (!is_valid_ether_addr(mac_addr)) {
800                 QPRINTK(qdev, IFUP, ERR, "Invalid MAC address.\n");
801                 status = -EINVAL;
802                 goto exit;
803         }
804
805         memcpy(qdev->ndev->dev_addr,
806                 mac_addr,
807                 qdev->ndev->addr_len);
808
809 exit:
810         ql_sem_unlock(qdev, SEM_FLASH_MASK);
811         return status;
812 }
813
814 static int ql_get_8012_flash_params(struct ql_adapter *qdev)
815 {
816         int i;
817         int status;
818         __le32 *p = (__le32 *)&qdev->flash;
819         u32 offset = 0;
820         u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
821
822         /* Second function's parameters follow the first
823          * function's.
824          */
825         if (qdev->port)
826                 offset = size;
827
828         if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
829                 return -ETIMEDOUT;
830
831         for (i = 0; i < size; i++, p++) {
832                 status = ql_read_flash_word(qdev, i+offset, p);
833                 if (status) {
834                         QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
835                         goto exit;
836                 }
837
838         }
839
840         status = ql_validate_flash(qdev,
841                         sizeof(struct flash_params_8012) / sizeof(u16),
842                         "8012");
843         if (status) {
844                 QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
845                 status = -EINVAL;
846                 goto exit;
847         }
848
849         if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
850                 status = -EINVAL;
851                 goto exit;
852         }
853
854         memcpy(qdev->ndev->dev_addr,
855                 qdev->flash.flash_params_8012.mac_addr,
856                 qdev->ndev->addr_len);
857
858 exit:
859         ql_sem_unlock(qdev, SEM_FLASH_MASK);
860         return status;
861 }
862
863 /* xgmac register are located behind the xgmac_addr and xgmac_data
864  * register pair.  Each read/write requires us to wait for the ready
865  * bit before reading/writing the data.
866  */
867 static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
868 {
869         int status;
870         /* wait for reg to come ready */
871         status = ql_wait_reg_rdy(qdev,
872                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
873         if (status)
874                 return status;
875         /* write the data to the data reg */
876         ql_write32(qdev, XGMAC_DATA, data);
877         /* trigger the write */
878         ql_write32(qdev, XGMAC_ADDR, reg);
879         return status;
880 }
881
882 /* xgmac register are located behind the xgmac_addr and xgmac_data
883  * register pair.  Each read/write requires us to wait for the ready
884  * bit before reading/writing the data.
885  */
886 int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
887 {
888         int status = 0;
889         /* wait for reg to come ready */
890         status = ql_wait_reg_rdy(qdev,
891                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
892         if (status)
893                 goto exit;
894         /* set up for reg read */
895         ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
896         /* wait for reg to come ready */
897         status = ql_wait_reg_rdy(qdev,
898                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
899         if (status)
900                 goto exit;
901         /* get the data */
902         *data = ql_read32(qdev, XGMAC_DATA);
903 exit:
904         return status;
905 }
906
907 /* This is used for reading the 64-bit statistics regs. */
908 int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
909 {
910         int status = 0;
911         u32 hi = 0;
912         u32 lo = 0;
913
914         status = ql_read_xgmac_reg(qdev, reg, &lo);
915         if (status)
916                 goto exit;
917
918         status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
919         if (status)
920                 goto exit;
921
922         *data = (u64) lo | ((u64) hi << 32);
923
924 exit:
925         return status;
926 }
927
928 static int ql_8000_port_initialize(struct ql_adapter *qdev)
929 {
930         int status;
931         /*
932          * Get MPI firmware version for driver banner
933          * and ethool info.
934          */
935         status = ql_mb_about_fw(qdev);
936         if (status)
937                 goto exit;
938         status = ql_mb_get_fw_state(qdev);
939         if (status)
940                 goto exit;
941         /* Wake up a worker to get/set the TX/RX frame sizes. */
942         queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
943 exit:
944         return status;
945 }
946
947 /* Take the MAC Core out of reset.
948  * Enable statistics counting.
949  * Take the transmitter/receiver out of reset.
950  * This functionality may be done in the MPI firmware at a
951  * later date.
952  */
953 static int ql_8012_port_initialize(struct ql_adapter *qdev)
954 {
955         int status = 0;
956         u32 data;
957
958         if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
959                 /* Another function has the semaphore, so
960                  * wait for the port init bit to come ready.
961                  */
962                 QPRINTK(qdev, LINK, INFO,
963                         "Another function has the semaphore, so wait for the port init bit to come ready.\n");
964                 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
965                 if (status) {
966                         QPRINTK(qdev, LINK, CRIT,
967                                 "Port initialize timed out.\n");
968                 }
969                 return status;
970         }
971
972         QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
973         /* Set the core reset. */
974         status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
975         if (status)
976                 goto end;
977         data |= GLOBAL_CFG_RESET;
978         status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
979         if (status)
980                 goto end;
981
982         /* Clear the core reset and turn on jumbo for receiver. */
983         data &= ~GLOBAL_CFG_RESET;      /* Clear core reset. */
984         data |= GLOBAL_CFG_JUMBO;       /* Turn on jumbo. */
985         data |= GLOBAL_CFG_TX_STAT_EN;
986         data |= GLOBAL_CFG_RX_STAT_EN;
987         status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
988         if (status)
989                 goto end;
990
991         /* Enable transmitter, and clear it's reset. */
992         status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
993         if (status)
994                 goto end;
995         data &= ~TX_CFG_RESET;  /* Clear the TX MAC reset. */
996         data |= TX_CFG_EN;      /* Enable the transmitter. */
997         status = ql_write_xgmac_reg(qdev, TX_CFG, data);
998         if (status)
999                 goto end;
1000
1001         /* Enable receiver and clear it's reset. */
1002         status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
1003         if (status)
1004                 goto end;
1005         data &= ~RX_CFG_RESET;  /* Clear the RX MAC reset. */
1006         data |= RX_CFG_EN;      /* Enable the receiver. */
1007         status = ql_write_xgmac_reg(qdev, RX_CFG, data);
1008         if (status)
1009                 goto end;
1010
1011         /* Turn on jumbo. */
1012         status =
1013             ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
1014         if (status)
1015                 goto end;
1016         status =
1017             ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
1018         if (status)
1019                 goto end;
1020
1021         /* Signal to the world that the port is enabled.        */
1022         ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
1023 end:
1024         ql_sem_unlock(qdev, qdev->xg_sem_mask);
1025         return status;
1026 }
1027
1028 /* Get the next large buffer. */
1029 static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
1030 {
1031         struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
1032         rx_ring->lbq_curr_idx++;
1033         if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
1034                 rx_ring->lbq_curr_idx = 0;
1035         rx_ring->lbq_free_cnt++;
1036         return lbq_desc;
1037 }
1038
1039 /* Get the next small buffer. */
1040 static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
1041 {
1042         struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
1043         rx_ring->sbq_curr_idx++;
1044         if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
1045                 rx_ring->sbq_curr_idx = 0;
1046         rx_ring->sbq_free_cnt++;
1047         return sbq_desc;
1048 }
1049
1050 /* Update an rx ring index. */
1051 static void ql_update_cq(struct rx_ring *rx_ring)
1052 {
1053         rx_ring->cnsmr_idx++;
1054         rx_ring->curr_entry++;
1055         if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
1056                 rx_ring->cnsmr_idx = 0;
1057                 rx_ring->curr_entry = rx_ring->cq_base;
1058         }
1059 }
1060
1061 static void ql_write_cq_idx(struct rx_ring *rx_ring)
1062 {
1063         ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
1064 }
1065
1066 /* Process (refill) a large buffer queue. */
1067 static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1068 {
1069         u32 clean_idx = rx_ring->lbq_clean_idx;
1070         u32 start_idx = clean_idx;
1071         struct bq_desc *lbq_desc;
1072         u64 map;
1073         int i;
1074
1075         while (rx_ring->lbq_free_cnt > 16) {
1076                 for (i = 0; i < 16; i++) {
1077                         QPRINTK(qdev, RX_STATUS, DEBUG,
1078                                 "lbq: try cleaning clean_idx = %d.\n",
1079                                 clean_idx);
1080                         lbq_desc = &rx_ring->lbq[clean_idx];
1081                         if (lbq_desc->p.lbq_page == NULL) {
1082                                 QPRINTK(qdev, RX_STATUS, DEBUG,
1083                                         "lbq: getting new page for index %d.\n",
1084                                         lbq_desc->index);
1085                                 lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
1086                                 if (lbq_desc->p.lbq_page == NULL) {
1087                                         rx_ring->lbq_clean_idx = clean_idx;
1088                                         QPRINTK(qdev, RX_STATUS, ERR,
1089                                                 "Couldn't get a page.\n");
1090                                         return;
1091                                 }
1092                                 map = pci_map_page(qdev->pdev,
1093                                                    lbq_desc->p.lbq_page,
1094                                                    0, PAGE_SIZE,
1095                                                    PCI_DMA_FROMDEVICE);
1096                                 if (pci_dma_mapping_error(qdev->pdev, map)) {
1097                                         rx_ring->lbq_clean_idx = clean_idx;
1098                                         put_page(lbq_desc->p.lbq_page);
1099                                         lbq_desc->p.lbq_page = NULL;
1100                                         QPRINTK(qdev, RX_STATUS, ERR,
1101                                                 "PCI mapping failed.\n");
1102                                         return;
1103                                 }
1104                                 pci_unmap_addr_set(lbq_desc, mapaddr, map);
1105                                 pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
1106                                 *lbq_desc->addr = cpu_to_le64(map);
1107                         }
1108                         clean_idx++;
1109                         if (clean_idx == rx_ring->lbq_len)
1110                                 clean_idx = 0;
1111                 }
1112
1113                 rx_ring->lbq_clean_idx = clean_idx;
1114                 rx_ring->lbq_prod_idx += 16;
1115                 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
1116                         rx_ring->lbq_prod_idx = 0;
1117                 rx_ring->lbq_free_cnt -= 16;
1118         }
1119
1120         if (start_idx != clean_idx) {
1121                 QPRINTK(qdev, RX_STATUS, DEBUG,
1122                         "lbq: updating prod idx = %d.\n",
1123                         rx_ring->lbq_prod_idx);
1124                 ql_write_db_reg(rx_ring->lbq_prod_idx,
1125                                 rx_ring->lbq_prod_idx_db_reg);
1126         }
1127 }
1128
1129 /* Process (refill) a small buffer queue. */
1130 static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1131 {
1132         u32 clean_idx = rx_ring->sbq_clean_idx;
1133         u32 start_idx = clean_idx;
1134         struct bq_desc *sbq_desc;
1135         u64 map;
1136         int i;
1137
1138         while (rx_ring->sbq_free_cnt > 16) {
1139                 for (i = 0; i < 16; i++) {
1140                         sbq_desc = &rx_ring->sbq[clean_idx];
1141                         QPRINTK(qdev, RX_STATUS, DEBUG,
1142                                 "sbq: try cleaning clean_idx = %d.\n",
1143                                 clean_idx);
1144                         if (sbq_desc->p.skb == NULL) {
1145                                 QPRINTK(qdev, RX_STATUS, DEBUG,
1146                                         "sbq: getting new skb for index %d.\n",
1147                                         sbq_desc->index);
1148                                 sbq_desc->p.skb =
1149                                     netdev_alloc_skb(qdev->ndev,
1150                                                      rx_ring->sbq_buf_size);
1151                                 if (sbq_desc->p.skb == NULL) {
1152                                         QPRINTK(qdev, PROBE, ERR,
1153                                                 "Couldn't get an skb.\n");
1154                                         rx_ring->sbq_clean_idx = clean_idx;
1155                                         return;
1156                                 }
1157                                 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
1158                                 map = pci_map_single(qdev->pdev,
1159                                                      sbq_desc->p.skb->data,
1160                                                      rx_ring->sbq_buf_size /
1161                                                      2, PCI_DMA_FROMDEVICE);
1162                                 if (pci_dma_mapping_error(qdev->pdev, map)) {
1163                                         QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
1164                                         rx_ring->sbq_clean_idx = clean_idx;
1165                                         dev_kfree_skb_any(sbq_desc->p.skb);
1166                                         sbq_desc->p.skb = NULL;
1167                                         return;
1168                                 }
1169                                 pci_unmap_addr_set(sbq_desc, mapaddr, map);
1170                                 pci_unmap_len_set(sbq_desc, maplen,
1171                                                   rx_ring->sbq_buf_size / 2);
1172                                 *sbq_desc->addr = cpu_to_le64(map);
1173                         }
1174
1175                         clean_idx++;
1176                         if (clean_idx == rx_ring->sbq_len)
1177                                 clean_idx = 0;
1178                 }
1179                 rx_ring->sbq_clean_idx = clean_idx;
1180                 rx_ring->sbq_prod_idx += 16;
1181                 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
1182                         rx_ring->sbq_prod_idx = 0;
1183                 rx_ring->sbq_free_cnt -= 16;
1184         }
1185
1186         if (start_idx != clean_idx) {
1187                 QPRINTK(qdev, RX_STATUS, DEBUG,
1188                         "sbq: updating prod idx = %d.\n",
1189                         rx_ring->sbq_prod_idx);
1190                 ql_write_db_reg(rx_ring->sbq_prod_idx,
1191                                 rx_ring->sbq_prod_idx_db_reg);
1192         }
1193 }
1194
1195 static void ql_update_buffer_queues(struct ql_adapter *qdev,
1196                                     struct rx_ring *rx_ring)
1197 {
1198         ql_update_sbq(qdev, rx_ring);
1199         ql_update_lbq(qdev, rx_ring);
1200 }
1201
1202 /* Unmaps tx buffers.  Can be called from send() if a pci mapping
1203  * fails at some stage, or from the interrupt when a tx completes.
1204  */
1205 static void ql_unmap_send(struct ql_adapter *qdev,
1206                           struct tx_ring_desc *tx_ring_desc, int mapped)
1207 {
1208         int i;
1209         for (i = 0; i < mapped; i++) {
1210                 if (i == 0 || (i == 7 && mapped > 7)) {
1211                         /*
1212                          * Unmap the skb->data area, or the
1213                          * external sglist (AKA the Outbound
1214                          * Address List (OAL)).
1215                          * If its the zeroeth element, then it's
1216                          * the skb->data area.  If it's the 7th
1217                          * element and there is more than 6 frags,
1218                          * then its an OAL.
1219                          */
1220                         if (i == 7) {
1221                                 QPRINTK(qdev, TX_DONE, DEBUG,
1222                                         "unmapping OAL area.\n");
1223                         }
1224                         pci_unmap_single(qdev->pdev,
1225                                          pci_unmap_addr(&tx_ring_desc->map[i],
1226                                                         mapaddr),
1227                                          pci_unmap_len(&tx_ring_desc->map[i],
1228                                                        maplen),
1229                                          PCI_DMA_TODEVICE);
1230                 } else {
1231                         QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
1232                                 i);
1233                         pci_unmap_page(qdev->pdev,
1234                                        pci_unmap_addr(&tx_ring_desc->map[i],
1235                                                       mapaddr),
1236                                        pci_unmap_len(&tx_ring_desc->map[i],
1237                                                      maplen), PCI_DMA_TODEVICE);
1238                 }
1239         }
1240
1241 }
1242
1243 /* Map the buffers for this transmit.  This will return
1244  * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1245  */
1246 static int ql_map_send(struct ql_adapter *qdev,
1247                        struct ob_mac_iocb_req *mac_iocb_ptr,
1248                        struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1249 {
1250         int len = skb_headlen(skb);
1251         dma_addr_t map;
1252         int frag_idx, err, map_idx = 0;
1253         struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1254         int frag_cnt = skb_shinfo(skb)->nr_frags;
1255
1256         if (frag_cnt) {
1257                 QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
1258         }
1259         /*
1260          * Map the skb buffer first.
1261          */
1262         map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1263
1264         err = pci_dma_mapping_error(qdev->pdev, map);
1265         if (err) {
1266                 QPRINTK(qdev, TX_QUEUED, ERR,
1267                         "PCI mapping failed with error: %d\n", err);
1268
1269                 return NETDEV_TX_BUSY;
1270         }
1271
1272         tbd->len = cpu_to_le32(len);
1273         tbd->addr = cpu_to_le64(map);
1274         pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1275         pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1276         map_idx++;
1277
1278         /*
1279          * This loop fills the remainder of the 8 address descriptors
1280          * in the IOCB.  If there are more than 7 fragments, then the
1281          * eighth address desc will point to an external list (OAL).
1282          * When this happens, the remainder of the frags will be stored
1283          * in this list.
1284          */
1285         for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1286                 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1287                 tbd++;
1288                 if (frag_idx == 6 && frag_cnt > 7) {
1289                         /* Let's tack on an sglist.
1290                          * Our control block will now
1291                          * look like this:
1292                          * iocb->seg[0] = skb->data
1293                          * iocb->seg[1] = frag[0]
1294                          * iocb->seg[2] = frag[1]
1295                          * iocb->seg[3] = frag[2]
1296                          * iocb->seg[4] = frag[3]
1297                          * iocb->seg[5] = frag[4]
1298                          * iocb->seg[6] = frag[5]
1299                          * iocb->seg[7] = ptr to OAL (external sglist)
1300                          * oal->seg[0] = frag[6]
1301                          * oal->seg[1] = frag[7]
1302                          * oal->seg[2] = frag[8]
1303                          * oal->seg[3] = frag[9]
1304                          * oal->seg[4] = frag[10]
1305                          *      etc...
1306                          */
1307                         /* Tack on the OAL in the eighth segment of IOCB. */
1308                         map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1309                                              sizeof(struct oal),
1310                                              PCI_DMA_TODEVICE);
1311                         err = pci_dma_mapping_error(qdev->pdev, map);
1312                         if (err) {
1313                                 QPRINTK(qdev, TX_QUEUED, ERR,
1314                                         "PCI mapping outbound address list with error: %d\n",
1315                                         err);
1316                                 goto map_error;
1317                         }
1318
1319                         tbd->addr = cpu_to_le64(map);
1320                         /*
1321                          * The length is the number of fragments
1322                          * that remain to be mapped times the length
1323                          * of our sglist (OAL).
1324                          */
1325                         tbd->len =
1326                             cpu_to_le32((sizeof(struct tx_buf_desc) *
1327                                          (frag_cnt - frag_idx)) | TX_DESC_C);
1328                         pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1329                                            map);
1330                         pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1331                                           sizeof(struct oal));
1332                         tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1333                         map_idx++;
1334                 }
1335
1336                 map =
1337                     pci_map_page(qdev->pdev, frag->page,
1338                                  frag->page_offset, frag->size,
1339                                  PCI_DMA_TODEVICE);
1340
1341                 err = pci_dma_mapping_error(qdev->pdev, map);
1342                 if (err) {
1343                         QPRINTK(qdev, TX_QUEUED, ERR,
1344                                 "PCI mapping frags failed with error: %d.\n",
1345                                 err);
1346                         goto map_error;
1347                 }
1348
1349                 tbd->addr = cpu_to_le64(map);
1350                 tbd->len = cpu_to_le32(frag->size);
1351                 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1352                 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1353                                   frag->size);
1354
1355         }
1356         /* Save the number of segments we've mapped. */
1357         tx_ring_desc->map_cnt = map_idx;
1358         /* Terminate the last segment. */
1359         tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1360         return NETDEV_TX_OK;
1361
1362 map_error:
1363         /*
1364          * If the first frag mapping failed, then i will be zero.
1365          * This causes the unmap of the skb->data area.  Otherwise
1366          * we pass in the number of frags that mapped successfully
1367          * so they can be umapped.
1368          */
1369         ql_unmap_send(qdev, tx_ring_desc, map_idx);
1370         return NETDEV_TX_BUSY;
1371 }
1372
1373 static void ql_realign_skb(struct sk_buff *skb, int len)
1374 {
1375         void *temp_addr = skb->data;
1376
1377         /* Undo the skb_reserve(skb,32) we did before
1378          * giving to hardware, and realign data on
1379          * a 2-byte boundary.
1380          */
1381         skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1382         skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1383         skb_copy_to_linear_data(skb, temp_addr,
1384                 (unsigned int)len);
1385 }
1386
1387 /*
1388  * This function builds an skb for the given inbound
1389  * completion.  It will be rewritten for readability in the near
1390  * future, but for not it works well.
1391  */
1392 static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1393                                        struct rx_ring *rx_ring,
1394                                        struct ib_mac_iocb_rsp *ib_mac_rsp)
1395 {
1396         struct bq_desc *lbq_desc;
1397         struct bq_desc *sbq_desc;
1398         struct sk_buff *skb = NULL;
1399         u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1400        u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1401
1402         /*
1403          * Handle the header buffer if present.
1404          */
1405         if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1406             ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1407                 QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
1408                 /*
1409                  * Headers fit nicely into a small buffer.
1410                  */
1411                 sbq_desc = ql_get_curr_sbuf(rx_ring);
1412                 pci_unmap_single(qdev->pdev,
1413                                 pci_unmap_addr(sbq_desc, mapaddr),
1414                                 pci_unmap_len(sbq_desc, maplen),
1415                                 PCI_DMA_FROMDEVICE);
1416                 skb = sbq_desc->p.skb;
1417                 ql_realign_skb(skb, hdr_len);
1418                 skb_put(skb, hdr_len);
1419                 sbq_desc->p.skb = NULL;
1420         }
1421
1422         /*
1423          * Handle the data buffer(s).
1424          */
1425         if (unlikely(!length)) {        /* Is there data too? */
1426                 QPRINTK(qdev, RX_STATUS, DEBUG,
1427                         "No Data buffer in this packet.\n");
1428                 return skb;
1429         }
1430
1431         if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1432                 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1433                         QPRINTK(qdev, RX_STATUS, DEBUG,
1434                                 "Headers in small, data of %d bytes in small, combine them.\n", length);
1435                         /*
1436                          * Data is less than small buffer size so it's
1437                          * stuffed in a small buffer.
1438                          * For this case we append the data
1439                          * from the "data" small buffer to the "header" small
1440                          * buffer.
1441                          */
1442                         sbq_desc = ql_get_curr_sbuf(rx_ring);
1443                         pci_dma_sync_single_for_cpu(qdev->pdev,
1444                                                     pci_unmap_addr
1445                                                     (sbq_desc, mapaddr),
1446                                                     pci_unmap_len
1447                                                     (sbq_desc, maplen),
1448                                                     PCI_DMA_FROMDEVICE);
1449                         memcpy(skb_put(skb, length),
1450                                sbq_desc->p.skb->data, length);
1451                         pci_dma_sync_single_for_device(qdev->pdev,
1452                                                        pci_unmap_addr
1453                                                        (sbq_desc,
1454                                                         mapaddr),
1455                                                        pci_unmap_len
1456                                                        (sbq_desc,
1457                                                         maplen),
1458                                                        PCI_DMA_FROMDEVICE);
1459                 } else {
1460                         QPRINTK(qdev, RX_STATUS, DEBUG,
1461                                 "%d bytes in a single small buffer.\n", length);
1462                         sbq_desc = ql_get_curr_sbuf(rx_ring);
1463                         skb = sbq_desc->p.skb;
1464                         ql_realign_skb(skb, length);
1465                         skb_put(skb, length);
1466                         pci_unmap_single(qdev->pdev,
1467                                          pci_unmap_addr(sbq_desc,
1468                                                         mapaddr),
1469                                          pci_unmap_len(sbq_desc,
1470                                                        maplen),
1471                                          PCI_DMA_FROMDEVICE);
1472                         sbq_desc->p.skb = NULL;
1473                 }
1474         } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1475                 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1476                         QPRINTK(qdev, RX_STATUS, DEBUG,
1477                                 "Header in small, %d bytes in large. Chain large to small!\n", length);
1478                         /*
1479                          * The data is in a single large buffer.  We
1480                          * chain it to the header buffer's skb and let
1481                          * it rip.
1482                          */
1483                         lbq_desc = ql_get_curr_lbuf(rx_ring);
1484                         pci_unmap_page(qdev->pdev,
1485                                        pci_unmap_addr(lbq_desc,
1486                                                       mapaddr),
1487                                        pci_unmap_len(lbq_desc, maplen),
1488                                        PCI_DMA_FROMDEVICE);
1489                         QPRINTK(qdev, RX_STATUS, DEBUG,
1490                                 "Chaining page to skb.\n");
1491                         skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1492                                            0, length);
1493                         skb->len += length;
1494                         skb->data_len += length;
1495                         skb->truesize += length;
1496                         lbq_desc->p.lbq_page = NULL;
1497                 } else {
1498                         /*
1499                          * The headers and data are in a single large buffer. We
1500                          * copy it to a new skb and let it go. This can happen with
1501                          * jumbo mtu on a non-TCP/UDP frame.
1502                          */
1503                         lbq_desc = ql_get_curr_lbuf(rx_ring);
1504                         skb = netdev_alloc_skb(qdev->ndev, length);
1505                         if (skb == NULL) {
1506                                 QPRINTK(qdev, PROBE, DEBUG,
1507                                         "No skb available, drop the packet.\n");
1508                                 return NULL;
1509                         }
1510                         pci_unmap_page(qdev->pdev,
1511                                        pci_unmap_addr(lbq_desc,
1512                                                       mapaddr),
1513                                        pci_unmap_len(lbq_desc, maplen),
1514                                        PCI_DMA_FROMDEVICE);
1515                         skb_reserve(skb, NET_IP_ALIGN);
1516                         QPRINTK(qdev, RX_STATUS, DEBUG,
1517                                 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
1518                         skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1519                                            0, length);
1520                         skb->len += length;
1521                         skb->data_len += length;
1522                         skb->truesize += length;
1523                         length -= length;
1524                         lbq_desc->p.lbq_page = NULL;
1525                         __pskb_pull_tail(skb,
1526                                 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1527                                 VLAN_ETH_HLEN : ETH_HLEN);
1528                 }
1529         } else {
1530                 /*
1531                  * The data is in a chain of large buffers
1532                  * pointed to by a small buffer.  We loop
1533                  * thru and chain them to the our small header
1534                  * buffer's skb.
1535                  * frags:  There are 18 max frags and our small
1536                  *         buffer will hold 32 of them. The thing is,
1537                  *         we'll use 3 max for our 9000 byte jumbo
1538                  *         frames.  If the MTU goes up we could
1539                  *          eventually be in trouble.
1540                  */
1541                 int size, offset, i = 0;
1542                 __le64 *bq, bq_array[8];
1543                 sbq_desc = ql_get_curr_sbuf(rx_ring);
1544                 pci_unmap_single(qdev->pdev,
1545                                  pci_unmap_addr(sbq_desc, mapaddr),
1546                                  pci_unmap_len(sbq_desc, maplen),
1547                                  PCI_DMA_FROMDEVICE);
1548                 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1549                         /*
1550                          * This is an non TCP/UDP IP frame, so
1551                          * the headers aren't split into a small
1552                          * buffer.  We have to use the small buffer
1553                          * that contains our sg list as our skb to
1554                          * send upstairs. Copy the sg list here to
1555                          * a local buffer and use it to find the
1556                          * pages to chain.
1557                          */
1558                         QPRINTK(qdev, RX_STATUS, DEBUG,
1559                                 "%d bytes of headers & data in chain of large.\n", length);
1560                         skb = sbq_desc->p.skb;
1561                         bq = &bq_array[0];
1562                         memcpy(bq, skb->data, sizeof(bq_array));
1563                         sbq_desc->p.skb = NULL;
1564                         skb_reserve(skb, NET_IP_ALIGN);
1565                 } else {
1566                         QPRINTK(qdev, RX_STATUS, DEBUG,
1567                                 "Headers in small, %d bytes of data in chain of large.\n", length);
1568                         bq = (__le64 *)sbq_desc->p.skb->data;
1569                 }
1570                 while (length > 0) {
1571                         lbq_desc = ql_get_curr_lbuf(rx_ring);
1572                         pci_unmap_page(qdev->pdev,
1573                                        pci_unmap_addr(lbq_desc,
1574                                                       mapaddr),
1575                                        pci_unmap_len(lbq_desc,
1576                                                      maplen),
1577                                        PCI_DMA_FROMDEVICE);
1578                         size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
1579                         offset = 0;
1580
1581                         QPRINTK(qdev, RX_STATUS, DEBUG,
1582                                 "Adding page %d to skb for %d bytes.\n",
1583                                 i, size);
1584                         skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
1585                                            offset, size);
1586                         skb->len += size;
1587                         skb->data_len += size;
1588                         skb->truesize += size;
1589                         length -= size;
1590                         lbq_desc->p.lbq_page = NULL;
1591                         bq++;
1592                         i++;
1593                 }
1594                 __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1595                                 VLAN_ETH_HLEN : ETH_HLEN);
1596         }
1597         return skb;
1598 }
1599
1600 /* Process an inbound completion from an rx ring. */
1601 static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
1602                                    struct rx_ring *rx_ring,
1603                                    struct ib_mac_iocb_rsp *ib_mac_rsp)
1604 {
1605         struct net_device *ndev = qdev->ndev;
1606         struct sk_buff *skb = NULL;
1607         u16 vlan_id = (le16_to_cpu(ib_mac_rsp->vlan_id) &
1608                         IB_MAC_IOCB_RSP_VLAN_MASK)
1609
1610         QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1611
1612         skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1613         if (unlikely(!skb)) {
1614                 QPRINTK(qdev, RX_STATUS, DEBUG,
1615                         "No skb available, drop packet.\n");
1616                 return;
1617         }
1618
1619         /* Frame error, so drop the packet. */
1620         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1621                 QPRINTK(qdev, DRV, ERR, "Receive error, flags2 = 0x%x\n",
1622                                         ib_mac_rsp->flags2);
1623                 dev_kfree_skb_any(skb);
1624                 return;
1625         }
1626
1627         /* The max framesize filter on this chip is set higher than
1628          * MTU since FCoE uses 2k frames.
1629          */
1630         if (skb->len > ndev->mtu + ETH_HLEN) {
1631                 dev_kfree_skb_any(skb);
1632                 return;
1633         }
1634
1635         prefetch(skb->data);
1636         skb->dev = ndev;
1637         if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1638                 QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
1639                         (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1640                         IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
1641                         (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1642                         IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
1643                         (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1644                         IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1645         }
1646         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
1647                 QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
1648         }
1649
1650         skb->protocol = eth_type_trans(skb, ndev);
1651         skb->ip_summed = CHECKSUM_NONE;
1652
1653         /* If rx checksum is on, and there are no
1654          * csum or frame errors.
1655          */
1656         if (qdev->rx_csum &&
1657                 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1658                 /* TCP frame. */
1659                 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1660                         QPRINTK(qdev, RX_STATUS, DEBUG,
1661                                         "TCP checksum done!\n");
1662                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1663                 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1664                                 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1665                 /* Unfragmented ipv4 UDP frame. */
1666                         struct iphdr *iph = (struct iphdr *) skb->data;
1667                         if (!(iph->frag_off &
1668                                 cpu_to_be16(IP_MF|IP_OFFSET))) {
1669                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1670                                 QPRINTK(qdev, RX_STATUS, DEBUG,
1671                                                 "TCP checksum done!\n");
1672                         }
1673                 }
1674         }
1675
1676         qdev->stats.rx_packets++;
1677         qdev->stats.rx_bytes += skb->len;
1678         skb_record_rx_queue(skb, rx_ring->cq_id);
1679         if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
1680                 if (qdev->vlgrp &&
1681                         (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
1682                         (vlan_id != 0))
1683                         vlan_gro_receive(&rx_ring->napi, qdev->vlgrp,
1684                                 vlan_id, skb);
1685                 else
1686                         napi_gro_receive(&rx_ring->napi, skb);
1687         } else {
1688                 if (qdev->vlgrp &&
1689                         (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
1690                         (vlan_id != 0))
1691                         vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
1692                 else
1693                         netif_receive_skb(skb);
1694         }
1695 }
1696
1697 /* Process an outbound completion from an rx ring. */
1698 static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
1699                                    struct ob_mac_iocb_rsp *mac_rsp)
1700 {
1701         struct tx_ring *tx_ring;
1702         struct tx_ring_desc *tx_ring_desc;
1703
1704         QL_DUMP_OB_MAC_RSP(mac_rsp);
1705         tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
1706         tx_ring_desc = &tx_ring->q[mac_rsp->tid];
1707         ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
1708         qdev->stats.tx_bytes += (tx_ring_desc->skb)->len;
1709         qdev->stats.tx_packets++;
1710         dev_kfree_skb(tx_ring_desc->skb);
1711         tx_ring_desc->skb = NULL;
1712
1713         if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
1714                                         OB_MAC_IOCB_RSP_S |
1715                                         OB_MAC_IOCB_RSP_L |
1716                                         OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
1717                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
1718                         QPRINTK(qdev, TX_DONE, WARNING,
1719                                 "Total descriptor length did not match transfer length.\n");
1720                 }
1721                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
1722                         QPRINTK(qdev, TX_DONE, WARNING,
1723                                 "Frame too short to be legal, not sent.\n");
1724                 }
1725                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
1726                         QPRINTK(qdev, TX_DONE, WARNING,
1727                                 "Frame too long, but sent anyway.\n");
1728                 }
1729                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
1730                         QPRINTK(qdev, TX_DONE, WARNING,
1731                                 "PCI backplane error. Frame not sent.\n");
1732                 }
1733         }
1734         atomic_inc(&tx_ring->tx_count);
1735 }
1736
1737 /* Fire up a handler to reset the MPI processor. */
1738 void ql_queue_fw_error(struct ql_adapter *qdev)
1739 {
1740         ql_link_off(qdev);
1741         queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
1742 }
1743
1744 void ql_queue_asic_error(struct ql_adapter *qdev)
1745 {
1746         ql_link_off(qdev);
1747         ql_disable_interrupts(qdev);
1748         /* Clear adapter up bit to signal the recovery
1749          * process that it shouldn't kill the reset worker
1750          * thread
1751          */
1752         clear_bit(QL_ADAPTER_UP, &qdev->flags);
1753         queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
1754 }
1755
1756 static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
1757                                     struct ib_ae_iocb_rsp *ib_ae_rsp)
1758 {
1759         switch (ib_ae_rsp->event) {
1760         case MGMT_ERR_EVENT:
1761                 QPRINTK(qdev, RX_ERR, ERR,
1762                         "Management Processor Fatal Error.\n");
1763                 ql_queue_fw_error(qdev);
1764                 return;
1765
1766         case CAM_LOOKUP_ERR_EVENT:
1767                 QPRINTK(qdev, LINK, ERR,
1768                         "Multiple CAM hits lookup occurred.\n");
1769                 QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
1770                 ql_queue_asic_error(qdev);
1771                 return;
1772
1773         case SOFT_ECC_ERROR_EVENT:
1774                 QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
1775                 ql_queue_asic_error(qdev);
1776                 break;
1777
1778         case PCI_ERR_ANON_BUF_RD:
1779                 QPRINTK(qdev, RX_ERR, ERR,
1780                         "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
1781                         ib_ae_rsp->q_id);
1782                 ql_queue_asic_error(qdev);
1783                 break;
1784
1785         default:
1786                 QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
1787                         ib_ae_rsp->event);
1788                 ql_queue_asic_error(qdev);
1789                 break;
1790         }
1791 }
1792
1793 static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
1794 {
1795         struct ql_adapter *qdev = rx_ring->qdev;
1796         u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1797         struct ob_mac_iocb_rsp *net_rsp = NULL;
1798         int count = 0;
1799
1800         struct tx_ring *tx_ring;
1801         /* While there are entries in the completion queue. */
1802         while (prod != rx_ring->cnsmr_idx) {
1803
1804                 QPRINTK(qdev, RX_STATUS, DEBUG,
1805                         "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1806                         prod, rx_ring->cnsmr_idx);
1807
1808                 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
1809                 rmb();
1810                 switch (net_rsp->opcode) {
1811
1812                 case OPCODE_OB_MAC_TSO_IOCB:
1813                 case OPCODE_OB_MAC_IOCB:
1814                         ql_process_mac_tx_intr(qdev, net_rsp);
1815                         break;
1816                 default:
1817                         QPRINTK(qdev, RX_STATUS, DEBUG,
1818                                 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1819                                 net_rsp->opcode);
1820                 }
1821                 count++;
1822                 ql_update_cq(rx_ring);
1823                 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1824         }
1825         ql_write_cq_idx(rx_ring);
1826         tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
1827         if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id) &&
1828                                         net_rsp != NULL) {
1829                 if (atomic_read(&tx_ring->queue_stopped) &&
1830                     (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
1831                         /*
1832                          * The queue got stopped because the tx_ring was full.
1833                          * Wake it up, because it's now at least 25% empty.
1834                          */
1835                         netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
1836         }
1837
1838         return count;
1839 }
1840
1841 static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
1842 {
1843         struct ql_adapter *qdev = rx_ring->qdev;
1844         u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1845         struct ql_net_rsp_iocb *net_rsp;
1846         int count = 0;
1847
1848         /* While there are entries in the completion queue. */
1849         while (prod != rx_ring->cnsmr_idx) {
1850
1851                 QPRINTK(qdev, RX_STATUS, DEBUG,
1852                         "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1853                         prod, rx_ring->cnsmr_idx);
1854
1855                 net_rsp = rx_ring->curr_entry;
1856                 rmb();
1857                 switch (net_rsp->opcode) {
1858                 case OPCODE_IB_MAC_IOCB:
1859                         ql_process_mac_rx_intr(qdev, rx_ring,
1860                                                (struct ib_mac_iocb_rsp *)
1861                                                net_rsp);
1862                         break;
1863
1864                 case OPCODE_IB_AE_IOCB:
1865                         ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
1866                                                 net_rsp);
1867                         break;
1868                 default:
1869                         {
1870                                 QPRINTK(qdev, RX_STATUS, DEBUG,
1871                                         "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1872                                         net_rsp->opcode);
1873                         }
1874                 }
1875                 count++;
1876                 ql_update_cq(rx_ring);
1877                 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1878                 if (count == budget)
1879                         break;
1880         }
1881         ql_update_buffer_queues(qdev, rx_ring);
1882         ql_write_cq_idx(rx_ring);
1883         return count;
1884 }
1885
1886 static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
1887 {
1888         struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
1889         struct ql_adapter *qdev = rx_ring->qdev;
1890         struct rx_ring *trx_ring;
1891         int i, work_done = 0;
1892         struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
1893
1894         QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
1895                 rx_ring->cq_id);
1896
1897         /* Service the TX rings first.  They start
1898          * right after the RSS rings. */
1899         for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
1900                 trx_ring = &qdev->rx_ring[i];
1901                 /* If this TX completion ring belongs to this vector and
1902                  * it's not empty then service it.
1903                  */
1904                 if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
1905                         (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
1906                                         trx_ring->cnsmr_idx)) {
1907                         QPRINTK(qdev, INTR, DEBUG,
1908                                 "%s: Servicing TX completion ring %d.\n",
1909                                 __func__, trx_ring->cq_id);
1910                         ql_clean_outbound_rx_ring(trx_ring);
1911                 }
1912         }
1913
1914         /*
1915          * Now service the RSS ring if it's active.
1916          */
1917         if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
1918                                         rx_ring->cnsmr_idx) {
1919                 QPRINTK(qdev, INTR, DEBUG,
1920                         "%s: Servicing RX completion ring %d.\n",
1921                         __func__, rx_ring->cq_id);
1922                 work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
1923         }
1924
1925         if (work_done < budget) {
1926                 napi_complete(napi);
1927                 ql_enable_completion_interrupt(qdev, rx_ring->irq);
1928         }
1929         return work_done;
1930 }
1931
1932 static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
1933 {
1934         struct ql_adapter *qdev = netdev_priv(ndev);
1935
1936         qdev->vlgrp = grp;
1937         if (grp) {
1938                 QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
1939                 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
1940                            NIC_RCV_CFG_VLAN_MATCH_AND_NON);
1941         } else {
1942                 QPRINTK(qdev, IFUP, DEBUG,
1943                         "Turning off VLAN in NIC_RCV_CFG.\n");
1944                 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
1945         }
1946 }
1947
1948 static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
1949 {
1950         struct ql_adapter *qdev = netdev_priv(ndev);
1951         u32 enable_bit = MAC_ADDR_E;
1952         int status;
1953
1954         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
1955         if (status)
1956                 return;
1957         if (ql_set_mac_addr_reg
1958             (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1959                 QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
1960         }
1961         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
1962 }
1963
1964 static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
1965 {
1966         struct ql_adapter *qdev = netdev_priv(ndev);
1967         u32 enable_bit = 0;
1968         int status;
1969
1970         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
1971         if (status)
1972                 return;
1973
1974         if (ql_set_mac_addr_reg
1975             (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1976                 QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
1977         }
1978         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
1979
1980 }
1981
1982 /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
1983 static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
1984 {
1985         struct rx_ring *rx_ring = dev_id;
1986         napi_schedule(&rx_ring->napi);
1987         return IRQ_HANDLED;
1988 }
1989
1990 /* This handles a fatal error, MPI activity, and the default
1991  * rx_ring in an MSI-X multiple vector environment.
1992  * In MSI/Legacy environment it also process the rest of
1993  * the rx_rings.
1994  */
1995 static irqreturn_t qlge_isr(int irq, void *dev_id)
1996 {
1997         struct rx_ring *rx_ring = dev_id;
1998         struct ql_adapter *qdev = rx_ring->qdev;
1999         struct intr_context *intr_context = &qdev->intr_context[0];
2000         u32 var;
2001         int work_done = 0;
2002
2003         spin_lock(&qdev->hw_lock);
2004         if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
2005                 QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
2006                 spin_unlock(&qdev->hw_lock);
2007                 return IRQ_NONE;
2008         }
2009         spin_unlock(&qdev->hw_lock);
2010
2011         var = ql_disable_completion_interrupt(qdev, intr_context->intr);
2012
2013         /*
2014          * Check for fatal error.
2015          */
2016         if (var & STS_FE) {
2017                 ql_queue_asic_error(qdev);
2018                 QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
2019                 var = ql_read32(qdev, ERR_STS);
2020                 QPRINTK(qdev, INTR, ERR,
2021                         "Resetting chip. Error Status Register = 0x%x\n", var);
2022                 return IRQ_HANDLED;
2023         }
2024
2025         /*
2026          * Check MPI processor activity.
2027          */
2028         if ((var & STS_PI) &&
2029                 (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
2030                 /*
2031                  * We've got an async event or mailbox completion.
2032                  * Handle it and clear the source of the interrupt.
2033                  */
2034                 QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
2035                 ql_disable_completion_interrupt(qdev, intr_context->intr);
2036                 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
2037                 queue_delayed_work_on(smp_processor_id(),
2038                                 qdev->workqueue, &qdev->mpi_work, 0);
2039                 work_done++;
2040         }
2041
2042         /*
2043          * Get the bit-mask that shows the active queues for this
2044          * pass.  Compare it to the queues that this irq services
2045          * and call napi if there's a match.
2046          */
2047         var = ql_read32(qdev, ISR1);
2048         if (var & intr_context->irq_mask) {
2049                                 QPRINTK(qdev, INTR, INFO,
2050                         "Waking handler for rx_ring[0].\n");
2051                 ql_disable_completion_interrupt(qdev, intr_context->intr);
2052                                         napi_schedule(&rx_ring->napi);
2053                                 work_done++;
2054                         }
2055         ql_enable_completion_interrupt(qdev, intr_context->intr);
2056         return work_done ? IRQ_HANDLED : IRQ_NONE;
2057 }
2058
2059 static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2060 {
2061
2062         if (skb_is_gso(skb)) {
2063                 int err;
2064                 if (skb_header_cloned(skb)) {
2065                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2066                         if (err)
2067                                 return err;
2068                 }
2069
2070                 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2071                 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
2072                 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2073                 mac_iocb_ptr->total_hdrs_len =
2074                     cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
2075                 mac_iocb_ptr->net_trans_offset =
2076                     cpu_to_le16(skb_network_offset(skb) |
2077                                 skb_transport_offset(skb)
2078                                 << OB_MAC_TRANSPORT_HDR_SHIFT);
2079                 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
2080                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
2081                 if (likely(skb->protocol == htons(ETH_P_IP))) {
2082                         struct iphdr *iph = ip_hdr(skb);
2083                         iph->check = 0;
2084                         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2085                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2086                                                                  iph->daddr, 0,
2087                                                                  IPPROTO_TCP,
2088                                                                  0);
2089                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2090                         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
2091                         tcp_hdr(skb)->check =
2092                             ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2093                                              &ipv6_hdr(skb)->daddr,
2094                                              0, IPPROTO_TCP, 0);
2095                 }
2096                 return 1;
2097         }
2098         return 0;
2099 }
2100
2101 static void ql_hw_csum_setup(struct sk_buff *skb,
2102                              struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2103 {
2104         int len;
2105         struct iphdr *iph = ip_hdr(skb);
2106         __sum16 *check;
2107         mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2108         mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2109         mac_iocb_ptr->net_trans_offset =
2110                 cpu_to_le16(skb_network_offset(skb) |
2111                 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
2112
2113         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2114         len = (ntohs(iph->tot_len) - (iph->ihl << 2));
2115         if (likely(iph->protocol == IPPROTO_TCP)) {
2116                 check = &(tcp_hdr(skb)->check);
2117                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
2118                 mac_iocb_ptr->total_hdrs_len =
2119                     cpu_to_le16(skb_transport_offset(skb) +
2120                                 (tcp_hdr(skb)->doff << 2));
2121         } else {
2122                 check = &(udp_hdr(skb)->check);
2123                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
2124                 mac_iocb_ptr->total_hdrs_len =
2125                     cpu_to_le16(skb_transport_offset(skb) +
2126                                 sizeof(struct udphdr));
2127         }
2128         *check = ~csum_tcpudp_magic(iph->saddr,
2129                                     iph->daddr, len, iph->protocol, 0);
2130 }
2131
2132 static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
2133 {
2134         struct tx_ring_desc *tx_ring_desc;
2135         struct ob_mac_iocb_req *mac_iocb_ptr;
2136         struct ql_adapter *qdev = netdev_priv(ndev);
2137         int tso;
2138         struct tx_ring *tx_ring;
2139         u32 tx_ring_idx = (u32) skb->queue_mapping;
2140
2141         tx_ring = &qdev->tx_ring[tx_ring_idx];
2142
2143         if (skb_padto(skb, ETH_ZLEN))
2144                 return NETDEV_TX_OK;
2145
2146         if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2147                 QPRINTK(qdev, TX_QUEUED, INFO,
2148                         "%s: shutting down tx queue %d du to lack of resources.\n",
2149                         __func__, tx_ring_idx);
2150                 netif_stop_subqueue(ndev, tx_ring->wq_id);
2151                 atomic_inc(&tx_ring->queue_stopped);
2152                 return NETDEV_TX_BUSY;
2153         }
2154         tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
2155         mac_iocb_ptr = tx_ring_desc->queue_entry;
2156         memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
2157
2158         mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
2159         mac_iocb_ptr->tid = tx_ring_desc->index;
2160         /* We use the upper 32-bits to store the tx queue for this IO.
2161          * When we get the completion we can use it to establish the context.
2162          */
2163         mac_iocb_ptr->txq_idx = tx_ring_idx;
2164         tx_ring_desc->skb = skb;
2165
2166         mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
2167
2168         if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
2169                 QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
2170                         vlan_tx_tag_get(skb));
2171                 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
2172                 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
2173         }
2174         tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2175         if (tso < 0) {
2176                 dev_kfree_skb_any(skb);
2177                 return NETDEV_TX_OK;
2178         } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2179                 ql_hw_csum_setup(skb,
2180                                  (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2181         }
2182         if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
2183                         NETDEV_TX_OK) {
2184                 QPRINTK(qdev, TX_QUEUED, ERR,
2185                                 "Could not map the segments.\n");
2186                 return NETDEV_TX_BUSY;
2187         }
2188         QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
2189         tx_ring->prod_idx++;
2190         if (tx_ring->prod_idx == tx_ring->wq_len)
2191                 tx_ring->prod_idx = 0;
2192         wmb();
2193
2194         ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
2195         QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
2196                 tx_ring->prod_idx, skb->len);
2197
2198         atomic_dec(&tx_ring->tx_count);
2199         return NETDEV_TX_OK;
2200 }
2201
2202 static void ql_free_shadow_space(struct ql_adapter *qdev)
2203 {
2204         if (qdev->rx_ring_shadow_reg_area) {
2205                 pci_free_consistent(qdev->pdev,
2206                                     PAGE_SIZE,
2207                                     qdev->rx_ring_shadow_reg_area,
2208                                     qdev->rx_ring_shadow_reg_dma);
2209                 qdev->rx_ring_shadow_reg_area = NULL;
2210         }
2211         if (qdev->tx_ring_shadow_reg_area) {
2212                 pci_free_consistent(qdev->pdev,
2213                                     PAGE_SIZE,
2214                                     qdev->tx_ring_shadow_reg_area,
2215                                     qdev->tx_ring_shadow_reg_dma);
2216                 qdev->tx_ring_shadow_reg_area = NULL;
2217         }
2218 }
2219
2220 static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2221 {
2222         qdev->rx_ring_shadow_reg_area =
2223             pci_alloc_consistent(qdev->pdev,
2224                                  PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
2225         if (qdev->rx_ring_shadow_reg_area == NULL) {
2226                 QPRINTK(qdev, IFUP, ERR,
2227                         "Allocation of RX shadow space failed.\n");
2228                 return -ENOMEM;
2229         }
2230         memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
2231         qdev->tx_ring_shadow_reg_area =
2232             pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
2233                                  &qdev->tx_ring_shadow_reg_dma);
2234         if (qdev->tx_ring_shadow_reg_area == NULL) {
2235                 QPRINTK(qdev, IFUP, ERR,
2236                         "Allocation of TX shadow space failed.\n");
2237                 goto err_wqp_sh_area;
2238         }
2239         memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
2240         return 0;
2241
2242 err_wqp_sh_area:
2243         pci_free_consistent(qdev->pdev,
2244                             PAGE_SIZE,
2245                             qdev->rx_ring_shadow_reg_area,
2246                             qdev->rx_ring_shadow_reg_dma);
2247         return -ENOMEM;
2248 }
2249
2250 static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2251 {
2252         struct tx_ring_desc *tx_ring_desc;
2253         int i;
2254         struct ob_mac_iocb_req *mac_iocb_ptr;
2255
2256         mac_iocb_ptr = tx_ring->wq_base;
2257         tx_ring_desc = tx_ring->q;
2258         for (i = 0; i < tx_ring->wq_len; i++) {
2259                 tx_ring_desc->index = i;
2260                 tx_ring_desc->skb = NULL;
2261                 tx_ring_desc->queue_entry = mac_iocb_ptr;
2262                 mac_iocb_ptr++;
2263                 tx_ring_desc++;
2264         }
2265         atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2266         atomic_set(&tx_ring->queue_stopped, 0);
2267 }
2268
2269 static void ql_free_tx_resources(struct ql_adapter *qdev,
2270                                  struct tx_ring *tx_ring)
2271 {
2272         if (tx_ring->wq_base) {
2273                 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2274                                     tx_ring->wq_base, tx_ring->wq_base_dma);
2275                 tx_ring->wq_base = NULL;
2276         }
2277         kfree(tx_ring->q);
2278         tx_ring->q = NULL;
2279 }
2280
2281 static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2282                                  struct tx_ring *tx_ring)
2283 {
2284         tx_ring->wq_base =
2285             pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2286                                  &tx_ring->wq_base_dma);
2287
2288         if ((tx_ring->wq_base == NULL)
2289                 || tx_ring->wq_base_dma & WQ_ADDR_ALIGN) {
2290                 QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
2291                 return -ENOMEM;
2292         }
2293         tx_ring->q =
2294             kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2295         if (tx_ring->q == NULL)
2296                 goto err;
2297
2298         return 0;
2299 err:
2300         pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2301                             tx_ring->wq_base, tx_ring->wq_base_dma);
2302         return -ENOMEM;
2303 }
2304
2305 static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2306 {
2307         int i;
2308         struct bq_desc *lbq_desc;
2309
2310         for (i = 0; i < rx_ring->lbq_len; i++) {
2311                 lbq_desc = &rx_ring->lbq[i];
2312                 if (lbq_desc->p.lbq_page) {
2313                         pci_unmap_page(qdev->pdev,
2314                                        pci_unmap_addr(lbq_desc, mapaddr),
2315                                        pci_unmap_len(lbq_desc, maplen),
2316                                        PCI_DMA_FROMDEVICE);
2317
2318                         put_page(lbq_desc->p.lbq_page);
2319                         lbq_desc->p.lbq_page = NULL;
2320                 }
2321         }
2322 }
2323
2324 static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2325 {
2326         int i;
2327         struct bq_desc *sbq_desc;
2328
2329         for (i = 0; i < rx_ring->sbq_len; i++) {
2330                 sbq_desc = &rx_ring->sbq[i];
2331                 if (sbq_desc == NULL) {
2332                         QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
2333                         return;
2334                 }
2335                 if (sbq_desc->p.skb) {
2336                         pci_unmap_single(qdev->pdev,
2337                                          pci_unmap_addr(sbq_desc, mapaddr),
2338                                          pci_unmap_len(sbq_desc, maplen),
2339                                          PCI_DMA_FROMDEVICE);
2340                         dev_kfree_skb(sbq_desc->p.skb);
2341                         sbq_desc->p.skb = NULL;
2342                 }
2343         }
2344 }
2345
2346 /* Free all large and small rx buffers associated
2347  * with the completion queues for this device.
2348  */
2349 static void ql_free_rx_buffers(struct ql_adapter *qdev)
2350 {
2351         int i;
2352         struct rx_ring *rx_ring;
2353
2354         for (i = 0; i < qdev->rx_ring_count; i++) {
2355                 rx_ring = &qdev->rx_ring[i];
2356                 if (rx_ring->lbq)
2357                         ql_free_lbq_buffers(qdev, rx_ring);
2358                 if (rx_ring->sbq)
2359                         ql_free_sbq_buffers(qdev, rx_ring);
2360         }
2361 }
2362
2363 static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2364 {
2365         struct rx_ring *rx_ring;
2366         int i;
2367
2368         for (i = 0; i < qdev->rx_ring_count; i++) {
2369                 rx_ring = &qdev->rx_ring[i];
2370                 if (rx_ring->type != TX_Q)
2371                         ql_update_buffer_queues(qdev, rx_ring);
2372         }
2373 }
2374
2375 static void ql_init_lbq_ring(struct ql_adapter *qdev,
2376                                 struct rx_ring *rx_ring)
2377 {
2378         int i;
2379         struct bq_desc *lbq_desc;
2380         __le64 *bq = rx_ring->lbq_base;
2381
2382         memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2383         for (i = 0; i < rx_ring->lbq_len; i++) {
2384                 lbq_desc = &rx_ring->lbq[i];
2385                 memset(lbq_desc, 0, sizeof(*lbq_desc));
2386                 lbq_desc->index = i;
2387                 lbq_desc->addr = bq;
2388                 bq++;
2389         }
2390 }
2391
2392 static void ql_init_sbq_ring(struct ql_adapter *qdev,
2393                                 struct rx_ring *rx_ring)
2394 {
2395         int i;
2396         struct bq_desc *sbq_desc;
2397         __le64 *bq = rx_ring->sbq_base;
2398
2399         memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
2400         for (i = 0; i < rx_ring->sbq_len; i++) {
2401                 sbq_desc = &rx_ring->sbq[i];
2402                 memset(sbq_desc, 0, sizeof(*sbq_desc));
2403                 sbq_desc->index = i;
2404                 sbq_desc->addr = bq;
2405                 bq++;
2406         }
2407 }
2408
2409 static void ql_free_rx_resources(struct ql_adapter *qdev,
2410                                  struct rx_ring *rx_ring)
2411 {
2412         /* Free the small buffer queue. */
2413         if (rx_ring->sbq_base) {
2414                 pci_free_consistent(qdev->pdev,
2415                                     rx_ring->sbq_size,
2416                                     rx_ring->sbq_base, rx_ring->sbq_base_dma);
2417                 rx_ring->sbq_base = NULL;
2418         }
2419
2420         /* Free the small buffer queue control blocks. */
2421         kfree(rx_ring->sbq);
2422         rx_ring->sbq = NULL;
2423
2424         /* Free the large buffer queue. */
2425         if (rx_ring->lbq_base) {
2426                 pci_free_consistent(qdev->pdev,
2427                                     rx_ring->lbq_size,
2428                                     rx_ring->lbq_base, rx_ring->lbq_base_dma);
2429                 rx_ring->lbq_base = NULL;
2430         }
2431
2432         /* Free the large buffer queue control blocks. */
2433         kfree(rx_ring->lbq);
2434         rx_ring->lbq = NULL;
2435
2436         /* Free the rx queue. */
2437         if (rx_ring->cq_base) {
2438                 pci_free_consistent(qdev->pdev,
2439                                     rx_ring->cq_size,
2440                                     rx_ring->cq_base, rx_ring->cq_base_dma);
2441                 rx_ring->cq_base = NULL;
2442         }
2443 }
2444
2445 /* Allocate queues and buffers for this completions queue based
2446  * on the values in the parameter structure. */
2447 static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2448                                  struct rx_ring *rx_ring)
2449 {
2450
2451         /*
2452          * Allocate the completion queue for this rx_ring.
2453          */
2454         rx_ring->cq_base =
2455             pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2456                                  &rx_ring->cq_base_dma);
2457
2458         if (rx_ring->cq_base == NULL) {
2459                 QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
2460                 return -ENOMEM;
2461         }
2462
2463         if (rx_ring->sbq_len) {
2464                 /*
2465                  * Allocate small buffer queue.
2466                  */
2467                 rx_ring->sbq_base =
2468                     pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2469                                          &rx_ring->sbq_base_dma);
2470
2471                 if (rx_ring->sbq_base == NULL) {
2472                         QPRINTK(qdev, IFUP, ERR,
2473                                 "Small buffer queue allocation failed.\n");
2474                         goto err_mem;
2475                 }
2476
2477                 /*
2478                  * Allocate small buffer queue control blocks.
2479                  */
2480                 rx_ring->sbq =
2481                     kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
2482                             GFP_KERNEL);
2483                 if (rx_ring->sbq == NULL) {
2484                         QPRINTK(qdev, IFUP, ERR,
2485                                 "Small buffer queue control block allocation failed.\n");
2486                         goto err_mem;
2487                 }
2488
2489                 ql_init_sbq_ring(qdev, rx_ring);
2490         }
2491
2492         if (rx_ring->lbq_len) {
2493                 /*
2494                  * Allocate large buffer queue.
2495                  */
2496                 rx_ring->lbq_base =
2497                     pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
2498                                          &rx_ring->lbq_base_dma);
2499
2500                 if (rx_ring->lbq_base == NULL) {
2501                         QPRINTK(qdev, IFUP, ERR,
2502                                 "Large buffer queue allocation failed.\n");
2503                         goto err_mem;
2504                 }
2505                 /*
2506                  * Allocate large buffer queue control blocks.
2507                  */
2508                 rx_ring->lbq =
2509                     kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
2510                             GFP_KERNEL);
2511                 if (rx_ring->lbq == NULL) {
2512                         QPRINTK(qdev, IFUP, ERR,
2513                                 "Large buffer queue control block allocation failed.\n");
2514                         goto err_mem;
2515                 }
2516
2517                 ql_init_lbq_ring(qdev, rx_ring);
2518         }
2519
2520         return 0;
2521
2522 err_mem:
2523         ql_free_rx_resources(qdev, rx_ring);
2524         return -ENOMEM;
2525 }
2526
2527 static void ql_tx_ring_clean(struct ql_adapter *qdev)
2528 {
2529         struct tx_ring *tx_ring;
2530         struct tx_ring_desc *tx_ring_desc;
2531         int i, j;
2532
2533         /*
2534          * Loop through all queues and free
2535          * any resources.
2536          */
2537         for (j = 0; j < qdev->tx_ring_count; j++) {
2538                 tx_ring = &qdev->tx_ring[j];
2539                 for (i = 0; i < tx_ring->wq_len; i++) {
2540                         tx_ring_desc = &tx_ring->q[i];
2541                         if (tx_ring_desc && tx_ring_desc->skb) {
2542                                 QPRINTK(qdev, IFDOWN, ERR,
2543                                 "Freeing lost SKB %p, from queue %d, index %d.\n",
2544                                         tx_ring_desc->skb, j,
2545                                         tx_ring_desc->index);
2546                                 ql_unmap_send(qdev, tx_ring_desc,
2547                                               tx_ring_desc->map_cnt);
2548                                 dev_kfree_skb(tx_ring_desc->skb);
2549                                 tx_ring_desc->skb = NULL;
2550                         }
2551                 }
2552         }
2553 }
2554
2555 static void ql_free_mem_resources(struct ql_adapter *qdev)
2556 {
2557         int i;
2558
2559         for (i = 0; i < qdev->tx_ring_count; i++)
2560                 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
2561         for (i = 0; i < qdev->rx_ring_count; i++)
2562                 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
2563         ql_free_shadow_space(qdev);
2564 }
2565
2566 static int ql_alloc_mem_resources(struct ql_adapter *qdev)
2567 {
2568         int i;
2569
2570         /* Allocate space for our shadow registers and such. */
2571         if (ql_alloc_shadow_space(qdev))
2572                 return -ENOMEM;
2573
2574         for (i = 0; i < qdev->rx_ring_count; i++) {
2575                 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
2576                         QPRINTK(qdev, IFUP, ERR,
2577                                 "RX resource allocation failed.\n");
2578                         goto err_mem;
2579                 }
2580         }
2581         /* Allocate tx queue resources */
2582         for (i = 0; i < qdev->tx_ring_count; i++) {
2583                 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
2584                         QPRINTK(qdev, IFUP, ERR,
2585                                 "TX resource allocation failed.\n");
2586                         goto err_mem;
2587                 }
2588         }
2589         return 0;
2590
2591 err_mem:
2592         ql_free_mem_resources(qdev);
2593         return -ENOMEM;
2594 }
2595
2596 /* Set up the rx ring control block and pass it to the chip.
2597  * The control block is defined as
2598  * "Completion Queue Initialization Control Block", or cqicb.
2599  */
2600 static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2601 {
2602         struct cqicb *cqicb = &rx_ring->cqicb;
2603         void *shadow_reg = qdev->rx_ring_shadow_reg_area +
2604                 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
2605         u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
2606                 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
2607         void __iomem *doorbell_area =
2608             qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
2609         int err = 0;
2610         u16 bq_len;
2611         u64 tmp;
2612         __le64 *base_indirect_ptr;
2613         int page_entries;
2614
2615         /* Set up the shadow registers for this ring. */
2616         rx_ring->prod_idx_sh_reg = shadow_reg;
2617         rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
2618         shadow_reg += sizeof(u64);
2619         shadow_reg_dma += sizeof(u64);
2620         rx_ring->lbq_base_indirect = shadow_reg;
2621         rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
2622         shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
2623         shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
2624         rx_ring->sbq_base_indirect = shadow_reg;
2625         rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
2626
2627         /* PCI doorbell mem area + 0x00 for consumer index register */
2628         rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
2629         rx_ring->cnsmr_idx = 0;
2630         rx_ring->curr_entry = rx_ring->cq_base;
2631
2632         /* PCI doorbell mem area + 0x04 for valid register */
2633         rx_ring->valid_db_reg = doorbell_area + 0x04;
2634
2635         /* PCI doorbell mem area + 0x18 for large buffer consumer */
2636         rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
2637
2638         /* PCI doorbell mem area + 0x1c */
2639         rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
2640
2641         memset((void *)cqicb, 0, sizeof(struct cqicb));
2642         cqicb->msix_vect = rx_ring->irq;
2643
2644         bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
2645         cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
2646
2647         cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
2648
2649         cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
2650
2651         /*
2652          * Set up the control block load flags.
2653          */
2654         cqicb->flags = FLAGS_LC |       /* Load queue base address */
2655             FLAGS_LV |          /* Load MSI-X vector */
2656             FLAGS_LI;           /* Load irq delay values */
2657         if (rx_ring->lbq_len) {
2658                 cqicb->flags |= FLAGS_LL;       /* Load lbq values */
2659                 tmp = (u64)rx_ring->lbq_base_dma;
2660                 base_indirect_ptr = (__le64 *) rx_ring->lbq_base_indirect;
2661                 page_entries = 0;
2662                 do {
2663                         *base_indirect_ptr = cpu_to_le64(tmp);
2664                         tmp += DB_PAGE_SIZE;
2665                         base_indirect_ptr++;
2666                         page_entries++;
2667                 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
2668                 cqicb->lbq_addr =
2669                     cpu_to_le64(rx_ring->lbq_base_indirect_dma);
2670                 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
2671                         (u16) rx_ring->lbq_buf_size;
2672                 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
2673                 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
2674                         (u16) rx_ring->lbq_len;
2675                 cqicb->lbq_len = cpu_to_le16(bq_len);
2676                 rx_ring->lbq_prod_idx = 0;
2677                 rx_ring->lbq_curr_idx = 0;
2678                 rx_ring->lbq_clean_idx = 0;
2679                 rx_ring->lbq_free_cnt = rx_ring->lbq_len;
2680         }
2681         if (rx_ring->sbq_len) {
2682                 cqicb->flags |= FLAGS_LS;       /* Load sbq values */
2683                 tmp = (u64)rx_ring->sbq_base_dma;
2684                 base_indirect_ptr = (__le64 *) rx_ring->sbq_base_indirect;
2685                 page_entries = 0;
2686                 do {
2687                         *base_indirect_ptr = cpu_to_le64(tmp);
2688                         tmp += DB_PAGE_SIZE;
2689                         base_indirect_ptr++;
2690                         page_entries++;
2691                 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
2692                 cqicb->sbq_addr =
2693                     cpu_to_le64(rx_ring->sbq_base_indirect_dma);
2694                 cqicb->sbq_buf_size =
2695                     cpu_to_le16((u16)(rx_ring->sbq_buf_size/2));
2696                 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
2697                         (u16) rx_ring->sbq_len;
2698                 cqicb->sbq_len = cpu_to_le16(bq_len);
2699                 rx_ring->sbq_prod_idx = 0;
2700                 rx_ring->sbq_curr_idx = 0;
2701                 rx_ring->sbq_clean_idx = 0;
2702                 rx_ring->sbq_free_cnt = rx_ring->sbq_len;
2703         }
2704         switch (rx_ring->type) {
2705         case TX_Q:
2706                 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
2707                 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
2708                 break;
2709         case RX_Q:
2710                 /* Inbound completion handling rx_rings run in
2711                  * separate NAPI contexts.
2712                  */
2713                 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
2714                                64);
2715                 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
2716                 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
2717                 break;
2718         default:
2719                 QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
2720                         rx_ring->type);
2721         }
2722         QPRINTK(qdev, IFUP, DEBUG, "Initializing rx work queue.\n");
2723         err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
2724                            CFG_LCQ, rx_ring->cq_id);
2725         if (err) {
2726                 QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
2727                 return err;
2728         }
2729         return err;
2730 }
2731
2732 static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2733 {
2734         struct wqicb *wqicb = (struct wqicb *)tx_ring;
2735         void __iomem *doorbell_area =
2736             qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
2737         void *shadow_reg = qdev->tx_ring_shadow_reg_area +
2738             (tx_ring->wq_id * sizeof(u64));
2739         u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
2740             (tx_ring->wq_id * sizeof(u64));
2741         int err = 0;
2742
2743         /*
2744          * Assign doorbell registers for this tx_ring.
2745          */
2746         /* TX PCI doorbell mem area for tx producer index */
2747         tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
2748         tx_ring->prod_idx = 0;
2749         /* TX PCI doorbell mem area + 0x04 */
2750         tx_ring->valid_db_reg = doorbell_area + 0x04;
2751
2752         /*
2753          * Assign shadow registers for this tx_ring.
2754          */
2755         tx_ring->cnsmr_idx_sh_reg = shadow_reg;
2756         tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
2757
2758         wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
2759         wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
2760                                    Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
2761         wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
2762         wqicb->rid = 0;
2763         wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
2764
2765         wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
2766
2767         ql_init_tx_ring(qdev, tx_ring);
2768
2769         err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
2770                            (u16) tx_ring->wq_id);
2771         if (err) {
2772                 QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
2773                 return err;
2774         }
2775         QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded WQICB.\n");
2776         return err;
2777 }
2778
2779 static void ql_disable_msix(struct ql_adapter *qdev)
2780 {
2781         if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2782                 pci_disable_msix(qdev->pdev);
2783                 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
2784                 kfree(qdev->msi_x_entry);
2785                 qdev->msi_x_entry = NULL;
2786         } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
2787                 pci_disable_msi(qdev->pdev);
2788                 clear_bit(QL_MSI_ENABLED, &qdev->flags);
2789         }
2790 }
2791
2792 /* We start by trying to get the number of vectors
2793  * stored in qdev->intr_count. If we don't get that
2794  * many then we reduce the count and try again.
2795  */
2796 static void ql_enable_msix(struct ql_adapter *qdev)
2797 {
2798         int i, err;
2799
2800         /* Get the MSIX vectors. */
2801         if (irq_type == MSIX_IRQ) {
2802                 /* Try to alloc space for the msix struct,
2803                  * if it fails then go to MSI/legacy.
2804                  */
2805                 qdev->msi_x_entry = kcalloc(qdev->intr_count,
2806                                             sizeof(struct msix_entry),
2807                                             GFP_KERNEL);
2808                 if (!qdev->msi_x_entry) {
2809                         irq_type = MSI_IRQ;
2810                         goto msi;
2811                 }
2812
2813                 for (i = 0; i < qdev->intr_count; i++)
2814                         qdev->msi_x_entry[i].entry = i;
2815
2816                 /* Loop to get our vectors.  We start with
2817                  * what we want and settle for what we get.
2818                  */
2819                 do {
2820                         err = pci_enable_msix(qdev->pdev,
2821                                 qdev->msi_x_entry, qdev->intr_count);
2822                         if (err > 0)
2823                                 qdev->intr_count = err;
2824                 } while (err > 0);
2825
2826                 if (err < 0) {
2827                         kfree(qdev->msi_x_entry);
2828                         qdev->msi_x_entry = NULL;
2829                         QPRINTK(qdev, IFUP, WARNING,
2830                                 "MSI-X Enable failed, trying MSI.\n");
2831                         qdev->intr_count = 1;
2832                         irq_type = MSI_IRQ;
2833                 } else if (err == 0) {
2834                         set_bit(QL_MSIX_ENABLED, &qdev->flags);
2835                         QPRINTK(qdev, IFUP, INFO,
2836                                 "MSI-X Enabled, got %d vectors.\n",
2837                                 qdev->intr_count);
2838                         return;
2839                 }
2840         }
2841 msi:
2842         qdev->intr_count = 1;
2843         if (irq_type == MSI_IRQ) {
2844                 if (!pci_enable_msi(qdev->pdev)) {
2845                         set_bit(QL_MSI_ENABLED, &qdev->flags);
2846                         QPRINTK(qdev, IFUP, INFO,
2847                                 "Running with MSI interrupts.\n");
2848                         return;
2849                 }
2850         }
2851         irq_type = LEG_IRQ;
2852         QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
2853 }
2854
2855 /* Each vector services 1 RSS ring and and 1 or more
2856  * TX completion rings.  This function loops through
2857  * the TX completion rings and assigns the vector that
2858  * will service it.  An example would be if there are
2859  * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
2860  * This would mean that vector 0 would service RSS ring 0
2861  * and TX competion rings 0,1,2 and 3.  Vector 1 would
2862  * service RSS ring 1 and TX completion rings 4,5,6 and 7.
2863  */
2864 static void ql_set_tx_vect(struct ql_adapter *qdev)
2865 {
2866         int i, j, vect;
2867         u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
2868
2869         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
2870                 /* Assign irq vectors to TX rx_rings.*/
2871                 for (vect = 0, j = 0, i = qdev->rss_ring_count;
2872                                          i < qdev->rx_ring_count; i++) {
2873                         if (j == tx_rings_per_vector) {
2874                                 vect++;
2875                                 j = 0;
2876                         }
2877                         qdev->rx_ring[i].irq = vect;
2878                         j++;
2879                 }
2880         } else {
2881                 /* For single vector all rings have an irq
2882                  * of zero.
2883                  */
2884                 for (i = 0; i < qdev->rx_ring_count; i++)
2885                         qdev->rx_ring[i].irq = 0;
2886         }
2887 }
2888
2889 /* Set the interrupt mask for this vector.  Each vector
2890  * will service 1 RSS ring and 1 or more TX completion
2891  * rings.  This function sets up a bit mask per vector
2892  * that indicates which rings it services.
2893  */
2894 static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
2895 {
2896         int j, vect = ctx->intr;
2897         u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
2898
2899         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
2900                 /* Add the RSS ring serviced by this vector
2901                  * to the mask.
2902                  */
2903                 ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
2904                 /* Add the TX ring(s) serviced by this vector
2905                  * to the mask. */
2906                 for (j = 0; j < tx_rings_per_vector; j++) {
2907                         ctx->irq_mask |=
2908                         (1 << qdev->rx_ring[qdev->rss_ring_count +
2909                         (vect * tx_rings_per_vector) + j].cq_id);
2910                 }
2911         } else {
2912                 /* For single vector we just shift each queue's
2913                  * ID into the mask.
2914                  */
2915                 for (j = 0; j < qdev->rx_ring_count; j++)
2916                         ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
2917         }
2918 }
2919
2920 /*
2921  * Here we build the intr_context structures based on
2922  * our rx_ring count and intr vector count.
2923  * The intr_context structure is used to hook each vector
2924  * to possibly different handlers.
2925  */
2926 static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
2927 {
2928         int i = 0;
2929         struct intr_context *intr_context = &qdev->intr_context[0];
2930
2931         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
2932                 /* Each rx_ring has it's
2933                  * own intr_context since we have separate
2934                  * vectors for each queue.
2935                  */
2936                 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2937                         qdev->rx_ring[i].irq = i;
2938                         intr_context->intr = i;
2939                         intr_context->qdev = qdev;
2940                         /* Set up this vector's bit-mask that indicates
2941                          * which queues it services.
2942                          */
2943                         ql_set_irq_mask(qdev, intr_context);
2944                         /*
2945                          * We set up each vectors enable/disable/read bits so
2946                          * there's no bit/mask calculations in the critical path.
2947                          */
2948                         intr_context->intr_en_mask =
2949                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2950                             INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
2951                             | i;
2952                         intr_context->intr_dis_mask =
2953                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2954                             INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
2955                             INTR_EN_IHD | i;
2956                         intr_context->intr_read_mask =
2957                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2958                             INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
2959                             i;
2960                         if (i == 0) {
2961                                 /* The first vector/queue handles
2962                                  * broadcast/multicast, fatal errors,
2963                                  * and firmware events.  This in addition
2964                                  * to normal inbound NAPI processing.
2965                                  */
2966                                 intr_context->handler = qlge_isr;
2967                                 sprintf(intr_context->name, "%s-rx-%d",
2968                                         qdev->ndev->name, i);
2969                         } else {
2970                                 /*
2971                                  * Inbound queues handle unicast frames only.
2972                                  */
2973                                 intr_context->handler = qlge_msix_rx_isr;
2974                                 sprintf(intr_context->name, "%s-rx-%d",
2975                                         qdev->ndev->name, i);
2976                         }
2977                 }
2978         } else {
2979                 /*
2980                  * All rx_rings use the same intr_context since
2981                  * there is only one vector.
2982                  */
2983                 intr_context->intr = 0;
2984                 intr_context->qdev = qdev;
2985                 /*
2986                  * We set up each vectors enable/disable/read bits so
2987                  * there's no bit/mask calculations in the critical path.
2988                  */
2989                 intr_context->intr_en_mask =
2990                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
2991                 intr_context->intr_dis_mask =
2992                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2993                     INTR_EN_TYPE_DISABLE;
2994                 intr_context->intr_read_mask =
2995                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
2996                 /*
2997                  * Single interrupt means one handler for all rings.
2998                  */
2999                 intr_context->handler = qlge_isr;
3000                 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
3001                 /* Set up this vector's bit-mask that indicates
3002                  * which queues it services. In this case there is
3003                  * a single vector so it will service all RSS and
3004                  * TX completion rings.
3005                  */
3006                 ql_set_irq_mask(qdev, intr_context);
3007         }