2 * drivers/net/gianfar.c
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
10 * Maintainer: Kumar Gala
12 * Copyright (c) 2002-2006 Freescale Semiconductor, Inc.
13 * Copyright (c) 2007 MontaVista Software, Inc.
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
20 * Gianfar: AKA Lambda Draconis, "Dragon"
28 * The driver is initialized through of_device. Configuration information
29 * is therefore conveyed through an OF-style device tree.
31 * The Gianfar Ethernet Controller uses a ring of buffer
32 * descriptors. The beginning is indicated by a register
33 * pointing to the physical address of the start of the ring.
34 * The end is determined by a "wrap" bit being set in the
35 * last descriptor of the ring.
37 * When a packet is received, the RXF bit in the
38 * IEVENT register is set, triggering an interrupt when the
39 * corresponding bit in the IMASK register is also set (if
40 * interrupt coalescing is active, then the interrupt may not
41 * happen immediately, but will wait until either a set number
42 * of frames or amount of time have passed). In NAPI, the
43 * interrupt handler will signal there is work to be done, and
44 * exit. This method will start at the last known empty
45 * descriptor, and process every subsequent descriptor until there
46 * are none left with data (NAPI will stop after a set number of
47 * packets to give time to other tasks, but will eventually
48 * process all the packets). The data arrives inside a
49 * pre-allocated skb, and so after the skb is passed up to the
50 * stack, a new skb must be allocated, and the address field in
51 * the buffer descriptor must be updated to indicate this new
54 * When the kernel requests that a packet be transmitted, the
55 * driver starts where it left off last time, and points the
56 * descriptor at the buffer which was passed in. The driver
57 * then informs the DMA engine that there are packets ready to
58 * be transmitted. Once the controller is finished transmitting
59 * the packet, an interrupt may be triggered (under the same
60 * conditions as for reception, but depending on the TXF bit).
61 * The driver then cleans up the buffer.
64 #include <linux/kernel.h>
65 #include <linux/string.h>
66 #include <linux/errno.h>
67 #include <linux/unistd.h>
68 #include <linux/slab.h>
69 #include <linux/interrupt.h>
70 #include <linux/init.h>
71 #include <linux/delay.h>
72 #include <linux/netdevice.h>
73 #include <linux/etherdevice.h>
74 #include <linux/skbuff.h>
75 #include <linux/if_vlan.h>
76 #include <linux/spinlock.h>
78 #include <linux/of_mdio.h>
79 #include <linux/of_platform.h>
81 #include <linux/tcp.h>
82 #include <linux/udp.h>
87 #include <asm/uaccess.h>
88 #include <linux/module.h>
89 #include <linux/dma-mapping.h>
90 #include <linux/crc32.h>
91 #include <linux/mii.h>
92 #include <linux/phy.h>
93 #include <linux/phy_fixed.h>
97 #include "fsl_pq_mdio.h"
99 #define TX_TIMEOUT (1*HZ)
100 #undef BRIEF_GFAR_ERRORS
101 #undef VERBOSE_GFAR_ERRORS
103 const char gfar_driver_name[] = "Gianfar Ethernet";
104 const char gfar_driver_version[] = "1.3";
106 static int gfar_enet_open(struct net_device *dev);
107 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
108 static void gfar_reset_task(struct work_struct *work);
109 static void gfar_timeout(struct net_device *dev);
110 static int gfar_close(struct net_device *dev);
111 struct sk_buff *gfar_new_skb(struct net_device *dev);
112 static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
113 struct sk_buff *skb);
114 static int gfar_set_mac_address(struct net_device *dev);
115 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
116 static irqreturn_t gfar_error(int irq, void *dev_id);
117 static irqreturn_t gfar_transmit(int irq, void *dev_id);
118 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
119 static void adjust_link(struct net_device *dev);
120 static void init_registers(struct net_device *dev);
121 static int init_phy(struct net_device *dev);
122 static int gfar_probe(struct of_device *ofdev,
123 const struct of_device_id *match);
124 static int gfar_remove(struct of_device *ofdev);
125 static void free_skb_resources(struct gfar_private *priv);
126 static void gfar_set_multi(struct net_device *dev);
127 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
128 static void gfar_configure_serdes(struct net_device *dev);
129 static int gfar_poll(struct napi_struct *napi, int budget);
130 #ifdef CONFIG_NET_POLL_CONTROLLER
131 static void gfar_netpoll(struct net_device *dev);
133 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit);
134 static int gfar_clean_tx_ring(struct net_device *dev);
135 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
137 static void gfar_vlan_rx_register(struct net_device *netdev,
138 struct vlan_group *grp);
139 void gfar_halt(struct net_device *dev);
140 static void gfar_halt_nodisable(struct net_device *dev);
141 void gfar_start(struct net_device *dev);
142 static void gfar_clear_exact_match(struct net_device *dev);
143 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
144 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
146 MODULE_AUTHOR("Freescale Semiconductor, Inc");
147 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
148 MODULE_LICENSE("GPL");
150 static void gfar_init_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
153 struct gfar_private *priv = netdev_priv(dev);
158 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
159 if (bdp == priv->rx_bd_base + priv->rx_ring_size - 1)
160 lstatus |= BD_LFLAG(RXBD_WRAP);
164 bdp->lstatus = lstatus;
167 static int gfar_init_bds(struct net_device *ndev)
169 struct gfar_private *priv = netdev_priv(ndev);
174 /* Initialize some variables in our dev structure */
175 priv->num_txbdfree = priv->tx_ring_size;
176 priv->dirty_tx = priv->cur_tx = priv->tx_bd_base;
177 priv->cur_rx = priv->rx_bd_base;
178 priv->skb_curtx = priv->skb_dirtytx = 0;
181 /* Initialize Transmit Descriptor Ring */
182 txbdp = priv->tx_bd_base;
183 for (i = 0; i < priv->tx_ring_size; i++) {
189 /* Set the last descriptor in the ring to indicate wrap */
191 txbdp->status |= TXBD_WRAP;
193 rxbdp = priv->rx_bd_base;
194 for (i = 0; i < priv->rx_ring_size; i++) {
195 struct sk_buff *skb = priv->rx_skbuff[i];
198 gfar_init_rxbdp(ndev, rxbdp, rxbdp->bufPtr);
200 skb = gfar_new_skb(ndev);
202 pr_err("%s: Can't allocate RX buffers\n",
206 priv->rx_skbuff[i] = skb;
208 gfar_new_rxbdp(ndev, rxbdp, skb);
217 static int gfar_alloc_skb_resources(struct net_device *ndev)
221 struct gfar_private *priv = netdev_priv(ndev);
222 struct device *dev = &priv->ofdev->dev;
224 /* Allocate memory for the buffer descriptors */
225 vaddr = dma_alloc_coherent(dev,
226 sizeof(*priv->tx_bd_base) * priv->tx_ring_size +
227 sizeof(*priv->rx_bd_base) * priv->rx_ring_size,
228 &priv->tx_bd_dma_base, GFP_KERNEL);
230 if (netif_msg_ifup(priv))
231 pr_err("%s: Could not allocate buffer descriptors!\n",
236 priv->tx_bd_base = vaddr;
238 /* Start the rx descriptor ring where the tx ring leaves off */
239 vaddr = vaddr + sizeof(*priv->tx_bd_base) * priv->tx_ring_size;
240 priv->rx_bd_base = vaddr;
242 /* Setup the skbuff rings */
243 priv->tx_skbuff = kmalloc(sizeof(*priv->tx_skbuff) *
244 priv->tx_ring_size, GFP_KERNEL);
245 if (!priv->tx_skbuff) {
246 if (netif_msg_ifup(priv))
247 pr_err("%s: Could not allocate tx_skbuff\n",
252 for (i = 0; i < priv->tx_ring_size; i++)
253 priv->tx_skbuff[i] = NULL;
255 priv->rx_skbuff = kmalloc(sizeof(*priv->rx_skbuff) *
256 priv->rx_ring_size, GFP_KERNEL);
257 if (!priv->rx_skbuff) {
258 if (netif_msg_ifup(priv))
259 pr_err("%s: Could not allocate rx_skbuff\n",
264 for (i = 0; i < priv->rx_ring_size; i++)
265 priv->rx_skbuff[i] = NULL;
267 if (gfar_init_bds(ndev))
273 free_skb_resources(priv);
277 static void gfar_init_mac(struct net_device *ndev)
279 struct gfar_private *priv = netdev_priv(ndev);
280 struct gfar __iomem *regs = priv->regs;
285 /* enet DMA only understands physical addresses */
286 gfar_write(®s->tbase0, priv->tx_bd_dma_base);
287 gfar_write(®s->rbase0, priv->tx_bd_dma_base +
288 sizeof(*priv->tx_bd_base) *
291 /* Configure the coalescing support */
292 gfar_write(®s->txic, 0);
293 if (priv->txcoalescing)
294 gfar_write(®s->txic, priv->txic);
296 gfar_write(®s->rxic, 0);
297 if (priv->rxcoalescing)
298 gfar_write(®s->rxic, priv->rxic);
300 if (priv->rx_csum_enable)
301 rctrl |= RCTRL_CHECKSUMMING;
303 if (priv->extended_hash) {
304 rctrl |= RCTRL_EXTHASH;
306 gfar_clear_exact_match(ndev);
311 rctrl &= ~RCTRL_PAL_MASK;
312 rctrl |= RCTRL_PADDING(priv->padding);
315 /* keep vlan related bits if it's enabled */
317 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
318 tctrl |= TCTRL_VLINS;
321 /* Init rctrl based on our settings */
322 gfar_write(®s->rctrl, rctrl);
324 if (ndev->features & NETIF_F_IP_CSUM)
325 tctrl |= TCTRL_INIT_CSUM;
327 gfar_write(®s->tctrl, tctrl);
329 /* Set the extraction length and index */
330 attrs = ATTRELI_EL(priv->rx_stash_size) |
331 ATTRELI_EI(priv->rx_stash_index);
333 gfar_write(®s->attreli, attrs);
335 /* Start with defaults, and add stashing or locking
336 * depending on the approprate variables */
337 attrs = ATTR_INIT_SETTINGS;
339 if (priv->bd_stash_en)
340 attrs |= ATTR_BDSTASH;
342 if (priv->rx_stash_size != 0)
343 attrs |= ATTR_BUFSTASH;
345 gfar_write(®s->attr, attrs);
347 gfar_write(®s->fifo_tx_thr, priv->fifo_threshold);
348 gfar_write(®s->fifo_tx_starve, priv->fifo_starve);
349 gfar_write(®s->fifo_tx_starve_shutoff, priv->fifo_starve_off);
352 static const struct net_device_ops gfar_netdev_ops = {
353 .ndo_open = gfar_enet_open,
354 .ndo_start_xmit = gfar_start_xmit,
355 .ndo_stop = gfar_close,
356 .ndo_change_mtu = gfar_change_mtu,
357 .ndo_set_multicast_list = gfar_set_multi,
358 .ndo_tx_timeout = gfar_timeout,
359 .ndo_do_ioctl = gfar_ioctl,
360 .ndo_vlan_rx_register = gfar_vlan_rx_register,
361 .ndo_set_mac_address = eth_mac_addr,
362 .ndo_validate_addr = eth_validate_addr,
363 #ifdef CONFIG_NET_POLL_CONTROLLER
364 .ndo_poll_controller = gfar_netpoll,
368 /* Returns 1 if incoming frames use an FCB */
369 static inline int gfar_uses_fcb(struct gfar_private *priv)
371 return priv->vlgrp || priv->rx_csum_enable;
374 static int gfar_of_init(struct net_device *dev)
378 const void *mac_addr;
381 struct gfar_private *priv = netdev_priv(dev);
382 struct device_node *np = priv->node;
384 const u32 *stash_len;
385 const u32 *stash_idx;
387 if (!np || !of_device_is_available(np))
390 /* get a pointer to the register memory */
391 addr = of_translate_address(np, of_get_address(np, 0, &size, NULL));
392 priv->regs = ioremap(addr, size);
394 if (priv->regs == NULL)
397 priv->interruptTransmit = irq_of_parse_and_map(np, 0);
399 model = of_get_property(np, "model", NULL);
401 /* If we aren't the FEC we have multiple interrupts */
402 if (model && strcasecmp(model, "FEC")) {
403 priv->interruptReceive = irq_of_parse_and_map(np, 1);
405 priv->interruptError = irq_of_parse_and_map(np, 2);
407 if (priv->interruptTransmit < 0 ||
408 priv->interruptReceive < 0 ||
409 priv->interruptError < 0) {
415 stash = of_get_property(np, "bd-stash", NULL);
418 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
419 priv->bd_stash_en = 1;
422 stash_len = of_get_property(np, "rx-stash-len", NULL);
425 priv->rx_stash_size = *stash_len;
427 stash_idx = of_get_property(np, "rx-stash-idx", NULL);
430 priv->rx_stash_index = *stash_idx;
432 if (stash_len || stash_idx)
433 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
435 mac_addr = of_get_mac_address(np);
437 memcpy(dev->dev_addr, mac_addr, MAC_ADDR_LEN);
439 if (model && !strcasecmp(model, "TSEC"))
441 FSL_GIANFAR_DEV_HAS_GIGABIT |
442 FSL_GIANFAR_DEV_HAS_COALESCE |
443 FSL_GIANFAR_DEV_HAS_RMON |
444 FSL_GIANFAR_DEV_HAS_MULTI_INTR;
445 if (model && !strcasecmp(model, "eTSEC"))
447 FSL_GIANFAR_DEV_HAS_GIGABIT |
448 FSL_GIANFAR_DEV_HAS_COALESCE |
449 FSL_GIANFAR_DEV_HAS_RMON |
450 FSL_GIANFAR_DEV_HAS_MULTI_INTR |
451 FSL_GIANFAR_DEV_HAS_PADDING |
452 FSL_GIANFAR_DEV_HAS_CSUM |
453 FSL_GIANFAR_DEV_HAS_VLAN |
454 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
455 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH;
457 ctype = of_get_property(np, "phy-connection-type", NULL);
459 /* We only care about rgmii-id. The rest are autodetected */
460 if (ctype && !strcmp(ctype, "rgmii-id"))
461 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
463 priv->interface = PHY_INTERFACE_MODE_MII;
465 if (of_get_property(np, "fsl,magic-packet", NULL))
466 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
468 priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
470 /* Find the TBI PHY. If it's not there, we don't support SGMII */
471 priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
480 /* Ioctl MII Interface */
481 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
483 struct gfar_private *priv = netdev_priv(dev);
485 if (!netif_running(dev))
491 return phy_mii_ioctl(priv->phydev, if_mii(rq), cmd);
494 /* Set up the ethernet device structure, private data,
495 * and anything else we need before we start */
496 static int gfar_probe(struct of_device *ofdev,
497 const struct of_device_id *match)
500 struct net_device *dev = NULL;
501 struct gfar_private *priv = NULL;
505 /* Create an ethernet device instance */
506 dev = alloc_etherdev(sizeof (*priv));
511 priv = netdev_priv(dev);
514 priv->node = ofdev->node;
515 SET_NETDEV_DEV(dev, &ofdev->dev);
517 err = gfar_of_init(dev);
522 spin_lock_init(&priv->txlock);
523 spin_lock_init(&priv->rxlock);
524 spin_lock_init(&priv->bflock);
525 INIT_WORK(&priv->reset_task, gfar_reset_task);
527 dev_set_drvdata(&ofdev->dev, priv);
529 /* Stop the DMA engine now, in case it was running before */
530 /* (The firmware could have used it, and left it running). */
533 /* Reset MAC layer */
534 gfar_write(&priv->regs->maccfg1, MACCFG1_SOFT_RESET);
536 /* We need to delay at least 3 TX clocks */
539 tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
540 gfar_write(&priv->regs->maccfg1, tempval);
542 /* Initialize MACCFG2. */
543 gfar_write(&priv->regs->maccfg2, MACCFG2_INIT_SETTINGS);
545 /* Initialize ECNTRL */
546 gfar_write(&priv->regs->ecntrl, ECNTRL_INIT_SETTINGS);
548 /* Set the dev->base_addr to the gfar reg region */
549 dev->base_addr = (unsigned long) (priv->regs);
551 SET_NETDEV_DEV(dev, &ofdev->dev);
553 /* Fill in the dev structure */
554 dev->watchdog_timeo = TX_TIMEOUT;
555 netif_napi_add(dev, &priv->napi, gfar_poll, GFAR_DEV_WEIGHT);
558 dev->netdev_ops = &gfar_netdev_ops;
559 dev->ethtool_ops = &gfar_ethtool_ops;
561 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
562 priv->rx_csum_enable = 1;
563 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_HIGHDMA;
565 priv->rx_csum_enable = 0;
569 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN)
570 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
572 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
573 priv->extended_hash = 1;
574 priv->hash_width = 9;
576 priv->hash_regs[0] = &priv->regs->igaddr0;
577 priv->hash_regs[1] = &priv->regs->igaddr1;
578 priv->hash_regs[2] = &priv->regs->igaddr2;
579 priv->hash_regs[3] = &priv->regs->igaddr3;
580 priv->hash_regs[4] = &priv->regs->igaddr4;
581 priv->hash_regs[5] = &priv->regs->igaddr5;
582 priv->hash_regs[6] = &priv->regs->igaddr6;
583 priv->hash_regs[7] = &priv->regs->igaddr7;
584 priv->hash_regs[8] = &priv->regs->gaddr0;
585 priv->hash_regs[9] = &priv->regs->gaddr1;
586 priv->hash_regs[10] = &priv->regs->gaddr2;
587 priv->hash_regs[11] = &priv->regs->gaddr3;
588 priv->hash_regs[12] = &priv->regs->gaddr4;
589 priv->hash_regs[13] = &priv->regs->gaddr5;
590 priv->hash_regs[14] = &priv->regs->gaddr6;
591 priv->hash_regs[15] = &priv->regs->gaddr7;
594 priv->extended_hash = 0;
595 priv->hash_width = 8;
597 priv->hash_regs[0] = &priv->regs->gaddr0;
598 priv->hash_regs[1] = &priv->regs->gaddr1;
599 priv->hash_regs[2] = &priv->regs->gaddr2;
600 priv->hash_regs[3] = &priv->regs->gaddr3;
601 priv->hash_regs[4] = &priv->regs->gaddr4;
602 priv->hash_regs[5] = &priv->regs->gaddr5;
603 priv->hash_regs[6] = &priv->regs->gaddr6;
604 priv->hash_regs[7] = &priv->regs->gaddr7;
607 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
608 priv->padding = DEFAULT_PADDING;
612 if (dev->features & NETIF_F_IP_CSUM)
613 dev->hard_header_len += GMAC_FCB_LEN;
615 priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
616 priv->tx_ring_size = DEFAULT_TX_RING_SIZE;
617 priv->rx_ring_size = DEFAULT_RX_RING_SIZE;
618 priv->num_txbdfree = DEFAULT_TX_RING_SIZE;
620 priv->txcoalescing = DEFAULT_TX_COALESCE;
621 priv->txic = DEFAULT_TXIC;
622 priv->rxcoalescing = DEFAULT_RX_COALESCE;
623 priv->rxic = DEFAULT_RXIC;
625 /* Enable most messages by default */
626 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
628 /* Carrier starts down, phylib will bring it up */
629 netif_carrier_off(dev);
631 err = register_netdev(dev);
634 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
639 device_init_wakeup(&dev->dev,
640 priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
642 /* fill out IRQ number and name fields */
643 len_devname = strlen(dev->name);
644 strncpy(&priv->int_name_tx[0], dev->name, len_devname);
645 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
646 strncpy(&priv->int_name_tx[len_devname],
647 "_tx", sizeof("_tx") + 1);
649 strncpy(&priv->int_name_rx[0], dev->name, len_devname);
650 strncpy(&priv->int_name_rx[len_devname],
651 "_rx", sizeof("_rx") + 1);
653 strncpy(&priv->int_name_er[0], dev->name, len_devname);
654 strncpy(&priv->int_name_er[len_devname],
655 "_er", sizeof("_er") + 1);
657 priv->int_name_tx[len_devname] = '\0';
659 /* Create all the sysfs files */
660 gfar_init_sysfs(dev);
662 /* Print out the device info */
663 printk(KERN_INFO DEVICE_NAME "%pM\n", dev->name, dev->dev_addr);
665 /* Even more device info helps when determining which kernel */
666 /* provided which set of benchmarks. */
667 printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
668 printk(KERN_INFO "%s: %d/%d RX/TX BD ring size\n",
669 dev->name, priv->rx_ring_size, priv->tx_ring_size);
677 of_node_put(priv->phy_node);
679 of_node_put(priv->tbi_node);
684 static int gfar_remove(struct of_device *ofdev)
686 struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
689 of_node_put(priv->phy_node);
691 of_node_put(priv->tbi_node);
693 dev_set_drvdata(&ofdev->dev, NULL);
695 unregister_netdev(priv->ndev);
697 free_netdev(priv->ndev);
703 static int gfar_suspend(struct of_device *ofdev, pm_message_t state)
705 struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
706 struct net_device *dev = priv->ndev;
710 int magic_packet = priv->wol_en &&
711 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
713 netif_device_detach(dev);
715 if (netif_running(dev)) {
716 spin_lock_irqsave(&priv->txlock, flags);
717 spin_lock(&priv->rxlock);
719 gfar_halt_nodisable(dev);
721 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
722 tempval = gfar_read(&priv->regs->maccfg1);
724 tempval &= ~MACCFG1_TX_EN;
727 tempval &= ~MACCFG1_RX_EN;
729 gfar_write(&priv->regs->maccfg1, tempval);
731 spin_unlock(&priv->rxlock);
732 spin_unlock_irqrestore(&priv->txlock, flags);
734 napi_disable(&priv->napi);
737 /* Enable interrupt on Magic Packet */
738 gfar_write(&priv->regs->imask, IMASK_MAG);
740 /* Enable Magic Packet mode */
741 tempval = gfar_read(&priv->regs->maccfg2);
742 tempval |= MACCFG2_MPEN;
743 gfar_write(&priv->regs->maccfg2, tempval);
745 phy_stop(priv->phydev);
752 static int gfar_resume(struct of_device *ofdev)
754 struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
755 struct net_device *dev = priv->ndev;
758 int magic_packet = priv->wol_en &&
759 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
761 if (!netif_running(dev)) {
762 netif_device_attach(dev);
766 if (!magic_packet && priv->phydev)
767 phy_start(priv->phydev);
769 /* Disable Magic Packet mode, in case something
773 spin_lock_irqsave(&priv->txlock, flags);
774 spin_lock(&priv->rxlock);
776 tempval = gfar_read(&priv->regs->maccfg2);
777 tempval &= ~MACCFG2_MPEN;
778 gfar_write(&priv->regs->maccfg2, tempval);
782 spin_unlock(&priv->rxlock);
783 spin_unlock_irqrestore(&priv->txlock, flags);
785 netif_device_attach(dev);
787 napi_enable(&priv->napi);
792 #define gfar_suspend NULL
793 #define gfar_resume NULL
796 /* Reads the controller's registers to determine what interface
797 * connects it to the PHY.
799 static phy_interface_t gfar_get_interface(struct net_device *dev)
801 struct gfar_private *priv = netdev_priv(dev);
802 u32 ecntrl = gfar_read(&priv->regs->ecntrl);
804 if (ecntrl & ECNTRL_SGMII_MODE)
805 return PHY_INTERFACE_MODE_SGMII;
807 if (ecntrl & ECNTRL_TBI_MODE) {
808 if (ecntrl & ECNTRL_REDUCED_MODE)
809 return PHY_INTERFACE_MODE_RTBI;
811 return PHY_INTERFACE_MODE_TBI;
814 if (ecntrl & ECNTRL_REDUCED_MODE) {
815 if (ecntrl & ECNTRL_REDUCED_MII_MODE)
816 return PHY_INTERFACE_MODE_RMII;
818 phy_interface_t interface = priv->interface;
821 * This isn't autodetected right now, so it must
822 * be set by the device tree or platform code.
824 if (interface == PHY_INTERFACE_MODE_RGMII_ID)
825 return PHY_INTERFACE_MODE_RGMII_ID;
827 return PHY_INTERFACE_MODE_RGMII;
831 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
832 return PHY_INTERFACE_MODE_GMII;
834 return PHY_INTERFACE_MODE_MII;
838 /* Initializes driver's PHY state, and attaches to the PHY.
839 * Returns 0 on success.
841 static int init_phy(struct net_device *dev)
843 struct gfar_private *priv = netdev_priv(dev);
844 uint gigabit_support =
845 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
846 SUPPORTED_1000baseT_Full : 0;
847 phy_interface_t interface;
851 priv->oldduplex = -1;
853 interface = gfar_get_interface(dev);
855 priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
858 priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
861 dev_err(&dev->dev, "could not attach to PHY\n");
865 if (interface == PHY_INTERFACE_MODE_SGMII)
866 gfar_configure_serdes(dev);
868 /* Remove any features not supported by the controller */
869 priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
870 priv->phydev->advertising = priv->phydev->supported;
876 * Initialize TBI PHY interface for communicating with the
877 * SERDES lynx PHY on the chip. We communicate with this PHY
878 * through the MDIO bus on each controller, treating it as a
879 * "normal" PHY at the address found in the TBIPA register. We assume
880 * that the TBIPA register is valid. Either the MDIO bus code will set
881 * it to a value that doesn't conflict with other PHYs on the bus, or the
882 * value doesn't matter, as there are no other PHYs on the bus.
884 static void gfar_configure_serdes(struct net_device *dev)
886 struct gfar_private *priv = netdev_priv(dev);
887 struct phy_device *tbiphy;
889 if (!priv->tbi_node) {
890 dev_warn(&dev->dev, "error: SGMII mode requires that the "
891 "device tree specify a tbi-handle\n");
895 tbiphy = of_phy_find_device(priv->tbi_node);
897 dev_err(&dev->dev, "error: Could not get TBI device\n");
902 * If the link is already up, we must already be ok, and don't need to
903 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
904 * everything for us? Resetting it takes the link down and requires
905 * several seconds for it to come back.
907 if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
910 /* Single clk mode, mii mode off(for serdes communication) */
911 phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
913 phy_write(tbiphy, MII_ADVERTISE,
914 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
915 ADVERTISE_1000XPSE_ASYM);
917 phy_write(tbiphy, MII_BMCR, BMCR_ANENABLE |
918 BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
921 static void init_registers(struct net_device *dev)
923 struct gfar_private *priv = netdev_priv(dev);
926 gfar_write(&priv->regs->ievent, IEVENT_INIT_CLEAR);
928 /* Initialize IMASK */
929 gfar_write(&priv->regs->imask, IMASK_INIT_CLEAR);
931 /* Init hash registers to zero */
932 gfar_write(&priv->regs->igaddr0, 0);
933 gfar_write(&priv->regs->igaddr1, 0);
934 gfar_write(&priv->regs->igaddr2, 0);
935 gfar_write(&priv->regs->igaddr3, 0);
936 gfar_write(&priv->regs->igaddr4, 0);
937 gfar_write(&priv->regs->igaddr5, 0);
938 gfar_write(&priv->regs->igaddr6, 0);
939 gfar_write(&priv->regs->igaddr7, 0);
941 gfar_write(&priv->regs->gaddr0, 0);
942 gfar_write(&priv->regs->gaddr1, 0);
943 gfar_write(&priv->regs->gaddr2, 0);
944 gfar_write(&priv->regs->gaddr3, 0);
945 gfar_write(&priv->regs->gaddr4, 0);
946 gfar_write(&priv->regs->gaddr5, 0);
947 gfar_write(&priv->regs->gaddr6, 0);
948 gfar_write(&priv->regs->gaddr7, 0);
950 /* Zero out the rmon mib registers if it has them */
951 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
952 memset_io(&(priv->regs->rmon), 0, sizeof (struct rmon_mib));
954 /* Mask off the CAM interrupts */
955 gfar_write(&priv->regs->rmon.cam1, 0xffffffff);
956 gfar_write(&priv->regs->rmon.cam2, 0xffffffff);
959 /* Initialize the max receive buffer length */
960 gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
962 /* Initialize the Minimum Frame Length Register */
963 gfar_write(&priv->regs->minflr, MINFLR_INIT_SETTINGS);
967 /* Halt the receive and transmit queues */
968 static void gfar_halt_nodisable(struct net_device *dev)
970 struct gfar_private *priv = netdev_priv(dev);
971 struct gfar __iomem *regs = priv->regs;
974 /* Mask all interrupts */
975 gfar_write(®s->imask, IMASK_INIT_CLEAR);
977 /* Clear all interrupts */
978 gfar_write(®s->ievent, IEVENT_INIT_CLEAR);
980 /* Stop the DMA, and wait for it to stop */
981 tempval = gfar_read(&priv->regs->dmactrl);
982 if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
983 != (DMACTRL_GRS | DMACTRL_GTS)) {
984 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
985 gfar_write(&priv->regs->dmactrl, tempval);
987 while (!(gfar_read(&priv->regs->ievent) &
988 (IEVENT_GRSC | IEVENT_GTSC)))
993 /* Halt the receive and transmit queues */
994 void gfar_halt(struct net_device *dev)
996 struct gfar_private *priv = netdev_priv(dev);
997 struct gfar __iomem *regs = priv->regs;
1000 gfar_halt_nodisable(dev);
1002 /* Disable Rx and Tx */
1003 tempval = gfar_read(®s->maccfg1);
1004 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1005 gfar_write(®s->maccfg1, tempval);
1008 void stop_gfar(struct net_device *dev)
1010 struct gfar_private *priv = netdev_priv(dev);
1011 unsigned long flags;
1013 phy_stop(priv->phydev);
1016 spin_lock_irqsave(&priv->txlock, flags);
1017 spin_lock(&priv->rxlock);
1021 spin_unlock(&priv->rxlock);
1022 spin_unlock_irqrestore(&priv->txlock, flags);
1025 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1026 free_irq(priv->interruptError, dev);
1027 free_irq(priv->interruptTransmit, dev);
1028 free_irq(priv->interruptReceive, dev);
1030 free_irq(priv->interruptTransmit, dev);
1033 free_skb_resources(priv);
1036 /* If there are any tx skbs or rx skbs still around, free them.
1037 * Then free tx_skbuff and rx_skbuff */
1038 static void free_skb_resources(struct gfar_private *priv)
1040 struct device *dev = &priv->ofdev->dev;
1041 struct rxbd8 *rxbdp;
1042 struct txbd8 *txbdp;
1045 /* Go through all the buffer descriptors and free their data buffers */
1046 txbdp = priv->tx_bd_base;
1048 if (!priv->tx_skbuff)
1049 goto skip_tx_skbuff;
1051 for (i = 0; i < priv->tx_ring_size; i++) {
1052 if (!priv->tx_skbuff[i])
1055 dma_unmap_single(&priv->ofdev->dev, txbdp->bufPtr,
1056 txbdp->length, DMA_TO_DEVICE);
1058 for (j = 0; j < skb_shinfo(priv->tx_skbuff[i])->nr_frags; j++) {
1060 dma_unmap_page(&priv->ofdev->dev, txbdp->bufPtr,
1061 txbdp->length, DMA_TO_DEVICE);
1064 dev_kfree_skb_any(priv->tx_skbuff[i]);
1065 priv->tx_skbuff[i] = NULL;
1068 kfree(priv->tx_skbuff);
1071 rxbdp = priv->rx_bd_base;
1073 if (!priv->rx_skbuff)
1074 goto skip_rx_skbuff;
1076 for (i = 0; i < priv->rx_ring_size; i++) {
1077 if (priv->rx_skbuff[i]) {
1078 dma_unmap_single(&priv->ofdev->dev, rxbdp->bufPtr,
1079 priv->rx_buffer_size,
1081 dev_kfree_skb_any(priv->rx_skbuff[i]);
1082 priv->rx_skbuff[i] = NULL;
1090 kfree(priv->rx_skbuff);
1093 dma_free_coherent(dev, sizeof(*txbdp) * priv->tx_ring_size +
1094 sizeof(*rxbdp) * priv->rx_ring_size,
1095 priv->tx_bd_base, priv->tx_bd_dma_base);
1098 void gfar_start(struct net_device *dev)
1100 struct gfar_private *priv = netdev_priv(dev);
1101 struct gfar __iomem *regs = priv->regs;
1104 /* Enable Rx and Tx in MACCFG1 */
1105 tempval = gfar_read(®s->maccfg1);
1106 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1107 gfar_write(®s->maccfg1, tempval);
1109 /* Initialize DMACTRL to have WWR and WOP */
1110 tempval = gfar_read(&priv->regs->dmactrl);
1111 tempval |= DMACTRL_INIT_SETTINGS;
1112 gfar_write(&priv->regs->dmactrl, tempval);
1114 /* Make sure we aren't stopped */
1115 tempval = gfar_read(&priv->regs->dmactrl);
1116 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1117 gfar_write(&priv->regs->dmactrl, tempval);
1119 /* Clear THLT/RHLT, so that the DMA starts polling now */
1120 gfar_write(®s->tstat, TSTAT_CLEAR_THALT);
1121 gfar_write(®s->rstat, RSTAT_CLEAR_RHALT);
1123 /* Unmask the interrupts we look for */
1124 gfar_write(®s->imask, IMASK_DEFAULT);
1126 dev->trans_start = jiffies;
1129 /* Bring the controller up and running */
1130 int startup_gfar(struct net_device *ndev)
1132 struct gfar_private *priv = netdev_priv(ndev);
1133 struct gfar __iomem *regs = priv->regs;
1136 gfar_write(®s->imask, IMASK_INIT_CLEAR);
1138 err = gfar_alloc_skb_resources(ndev);
1142 gfar_init_mac(ndev);
1144 /* If the device has multiple interrupts, register for
1145 * them. Otherwise, only register for the one */
1146 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1147 /* Install our interrupt handlers for Error,
1148 * Transmit, and Receive */
1149 err = request_irq(priv->interruptError, gfar_error, 0,
1150 priv->int_name_er, ndev);
1152 if (netif_msg_intr(priv))
1153 pr_err("%s: Can't get IRQ %d\n", ndev->name,
1154 priv->interruptError);
1158 err = request_irq(priv->interruptTransmit, gfar_transmit, 0,
1159 priv->int_name_tx, ndev);
1161 if (netif_msg_intr(priv))
1162 pr_err("%s: Can't get IRQ %d\n", ndev->name,
1163 priv->interruptTransmit);
1167 err = request_irq(priv->interruptReceive, gfar_receive, 0,
1168 priv->int_name_rx, ndev);
1170 if (netif_msg_intr(priv))
1171 pr_err("%s: Can't get IRQ %d (receive0)\n",
1172 ndev->name, priv->interruptReceive);
1176 err = request_irq(priv->interruptTransmit, gfar_interrupt,
1177 0, priv->int_name_tx, ndev);
1179 if (netif_msg_intr(priv))
1180 pr_err("%s: Can't get IRQ %d\n", ndev->name,
1181 priv->interruptTransmit);
1186 /* Start the controller */
1189 phy_start(priv->phydev);
1194 free_irq(priv->interruptTransmit, ndev);
1196 free_irq(priv->interruptError, ndev);
1198 free_skb_resources(priv);
1202 /* Called when something needs to use the ethernet device */
1203 /* Returns 0 for success. */
1204 static int gfar_enet_open(struct net_device *dev)
1206 struct gfar_private *priv = netdev_priv(dev);
1209 napi_enable(&priv->napi);
1211 skb_queue_head_init(&priv->rx_recycle);
1213 /* Initialize a bunch of registers */
1214 init_registers(dev);
1216 gfar_set_mac_address(dev);
1218 err = init_phy(dev);
1221 napi_disable(&priv->napi);
1225 err = startup_gfar(dev);
1227 napi_disable(&priv->napi);
1231 netif_start_queue(dev);
1233 device_set_wakeup_enable(&dev->dev, priv->wol_en);
1238 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1240 struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
1242 memset(fcb, 0, GMAC_FCB_LEN);
1247 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
1251 /* If we're here, it's a IP packet with a TCP or UDP
1252 * payload. We set it to checksum, using a pseudo-header
1255 flags = TXFCB_DEFAULT;
1257 /* Tell the controller what the protocol is */
1258 /* And provide the already calculated phcs */
1259 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1261 fcb->phcs = udp_hdr(skb)->check;
1263 fcb->phcs = tcp_hdr(skb)->check;
1265 /* l3os is the distance between the start of the
1266 * frame (skb->data) and the start of the IP hdr.
1267 * l4os is the distance between the start of the
1268 * l3 hdr and the l4 hdr */
1269 fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
1270 fcb->l4os = skb_network_header_len(skb);
1275 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1277 fcb->flags |= TXFCB_VLN;
1278 fcb->vlctl = vlan_tx_tag_get(skb);
1281 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1282 struct txbd8 *base, int ring_size)
1284 struct txbd8 *new_bd = bdp + stride;
1286 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
1289 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
1292 return skip_txbd(bdp, 1, base, ring_size);
1295 /* This is called by the kernel when a frame is ready for transmission. */
1296 /* It is pointed to by the dev->hard_start_xmit function pointer */
1297 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1299 struct gfar_private *priv = netdev_priv(dev);
1300 struct txfcb *fcb = NULL;
1301 struct txbd8 *txbdp, *txbdp_start, *base;
1305 unsigned long flags;
1306 unsigned int nr_frags, length;
1308 base = priv->tx_bd_base;
1310 /* make space for additional header when fcb is needed */
1311 if (((skb->ip_summed == CHECKSUM_PARTIAL) ||
1312 (priv->vlgrp && vlan_tx_tag_present(skb))) &&
1313 (skb_headroom(skb) < GMAC_FCB_LEN)) {
1314 struct sk_buff *skb_new;
1316 skb_new = skb_realloc_headroom(skb, GMAC_FCB_LEN);
1318 dev->stats.tx_errors++;
1320 return NETDEV_TX_OK;
1326 /* total number of fragments in the SKB */
1327 nr_frags = skb_shinfo(skb)->nr_frags;
1329 spin_lock_irqsave(&priv->txlock, flags);
1331 /* check if there is space to queue this packet */
1332 if ((nr_frags+1) > priv->num_txbdfree) {
1333 /* no space, stop the queue */
1334 netif_stop_queue(dev);
1335 dev->stats.tx_fifo_errors++;
1336 spin_unlock_irqrestore(&priv->txlock, flags);
1337 return NETDEV_TX_BUSY;
1340 /* Update transmit stats */
1341 dev->stats.tx_bytes += skb->len;
1343 txbdp = txbdp_start = priv->cur_tx;
1345 if (nr_frags == 0) {
1346 lstatus = txbdp->lstatus | BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1348 /* Place the fragment addresses and lengths into the TxBDs */
1349 for (i = 0; i < nr_frags; i++) {
1350 /* Point at the next BD, wrapping as needed */
1351 txbdp = next_txbd(txbdp, base, priv->tx_ring_size);
1353 length = skb_shinfo(skb)->frags[i].size;
1355 lstatus = txbdp->lstatus | length |
1356 BD_LFLAG(TXBD_READY);
1358 /* Handle the last BD specially */
1359 if (i == nr_frags - 1)
1360 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1362 bufaddr = dma_map_page(&priv->ofdev->dev,
1363 skb_shinfo(skb)->frags[i].page,
1364 skb_shinfo(skb)->frags[i].page_offset,
1368 /* set the TxBD length and buffer pointer */
1369 txbdp->bufPtr = bufaddr;
1370 txbdp->lstatus = lstatus;
1373 lstatus = txbdp_start->lstatus;
1376 /* Set up checksumming */
1377 if (CHECKSUM_PARTIAL == skb->ip_summed) {
1378 fcb = gfar_add_fcb(skb);
1379 lstatus |= BD_LFLAG(TXBD_TOE);
1380 gfar_tx_checksum(skb, fcb);
1383 if (priv->vlgrp && vlan_tx_tag_present(skb)) {
1384 if (unlikely(NULL == fcb)) {
1385 fcb = gfar_add_fcb(skb);
1386 lstatus |= BD_LFLAG(TXBD_TOE);
1389 gfar_tx_vlan(skb, fcb);
1392 /* setup the TxBD length and buffer pointer for the first BD */
1393 priv->tx_skbuff[priv->skb_curtx] = skb;
1394 txbdp_start->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
1395 skb_headlen(skb), DMA_TO_DEVICE);
1397 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
1400 * The powerpc-specific eieio() is used, as wmb() has too strong
1401 * semantics (it requires synchronization between cacheable and
1402 * uncacheable mappings, which eieio doesn't provide and which we
1403 * don't need), thus requiring a more expensive sync instruction. At
1404 * some point, the set of architecture-independent barrier functions
1405 * should be expanded to include weaker barriers.
1409 txbdp_start->lstatus = lstatus;
1411 /* Update the current skb pointer to the next entry we will use
1412 * (wrapping if necessary) */
1413 priv->skb_curtx = (priv->skb_curtx + 1) &
1414 TX_RING_MOD_MASK(priv->tx_ring_size);
1416 priv->cur_tx = next_txbd(txbdp, base, priv->tx_ring_size);
1418 /* reduce TxBD free count */
1419 priv->num_txbdfree -= (nr_frags + 1);
1421 dev->trans_start = jiffies;
1423 /* If the next BD still needs to be cleaned up, then the bds
1424 are full. We need to tell the kernel to stop sending us stuff. */
1425 if (!priv->num_txbdfree) {
1426 netif_stop_queue(dev);
1428 dev->stats.tx_fifo_errors++;
1431 /* Tell the DMA to go go go */
1432 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1435 spin_unlock_irqrestore(&priv->txlock, flags);
1437 return NETDEV_TX_OK;
1440 /* Stops the kernel queue, and halts the controller */
1441 static int gfar_close(struct net_device *dev)
1443 struct gfar_private *priv = netdev_priv(dev);
1445 napi_disable(&priv->napi);
1447 skb_queue_purge(&priv->rx_recycle);
1448 cancel_work_sync(&priv->reset_task);
1451 /* Disconnect from the PHY */
1452 phy_disconnect(priv->phydev);
1453 priv->phydev = NULL;
1455 netif_stop_queue(dev);
1460 /* Changes the mac address if the controller is not running. */
1461 static int gfar_set_mac_address(struct net_device *dev)
1463 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
1469 /* Enables and disables VLAN insertion/extraction */
1470 static void gfar_vlan_rx_register(struct net_device *dev,
1471 struct vlan_group *grp)
1473 struct gfar_private *priv = netdev_priv(dev);
1474 unsigned long flags;
1477 spin_lock_irqsave(&priv->rxlock, flags);
1482 /* Enable VLAN tag insertion */
1483 tempval = gfar_read(&priv->regs->tctrl);
1484 tempval |= TCTRL_VLINS;
1486 gfar_write(&priv->regs->tctrl, tempval);
1488 /* Enable VLAN tag extraction */
1489 tempval = gfar_read(&priv->regs->rctrl);
1490 tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
1491 gfar_write(&priv->regs->rctrl, tempval);
1493 /* Disable VLAN tag insertion */
1494 tempval = gfar_read(&priv->regs->tctrl);
1495 tempval &= ~TCTRL_VLINS;
1496 gfar_write(&priv->regs->tctrl, tempval);
1498 /* Disable VLAN tag extraction */
1499 tempval = gfar_read(&priv->regs->rctrl);
1500 tempval &= ~RCTRL_VLEX;
1501 /* If parse is no longer required, then disable parser */
1502 if (tempval & RCTRL_REQ_PARSER)
1503 tempval |= RCTRL_PRSDEP_INIT;
1505 tempval &= ~RCTRL_PRSDEP_INIT;
1506 gfar_write(&priv->regs->rctrl, tempval);
1509 gfar_change_mtu(dev, dev->mtu);
1511 spin_unlock_irqrestore(&priv->rxlock, flags);
1514 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
1516 int tempsize, tempval;
1517 struct gfar_private *priv = netdev_priv(dev);
1518 int oldsize = priv->rx_buffer_size;
1519 int frame_size = new_mtu + ETH_HLEN;
1522 frame_size += VLAN_HLEN;
1524 if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
1525 if (netif_msg_drv(priv))
1526 printk(KERN_ERR "%s: Invalid MTU setting\n",
1531 if (gfar_uses_fcb(priv))
1532 frame_size += GMAC_FCB_LEN;
1534 frame_size += priv->padding;
1537 (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
1538 INCREMENTAL_BUFFER_SIZE;
1540 /* Only stop and start the controller if it isn't already
1541 * stopped, and we changed something */
1542 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1545 priv->rx_buffer_size = tempsize;
1549 gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
1550 gfar_write(&priv->regs->maxfrm, priv->rx_buffer_size);
1552 /* If the mtu is larger than the max size for standard
1553 * ethernet frames (ie, a jumbo frame), then set maccfg2
1554 * to allow huge frames, and to check the length */
1555 tempval = gfar_read(&priv->regs->maccfg2);
1557 if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
1558 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1560 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1562 gfar_write(&priv->regs->maccfg2, tempval);
1564 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1570 /* gfar_reset_task gets scheduled when a packet has not been
1571 * transmitted after a set amount of time.
1572 * For now, assume that clearing out all the structures, and
1573 * starting over will fix the problem.
1575 static void gfar_reset_task(struct work_struct *work)
1577 struct gfar_private *priv = container_of(work, struct gfar_private,
1579 struct net_device *dev = priv->ndev;
1581 if (dev->flags & IFF_UP) {
1582 netif_stop_queue(dev);
1585 netif_start_queue(dev);
1588 netif_tx_schedule_all(dev);
1591 static void gfar_timeout(struct net_device *dev)
1593 struct gfar_private *priv = netdev_priv(dev);
1595 dev->stats.tx_errors++;
1596 schedule_work(&priv->reset_task);
1599 /* Interrupt Handler for Transmit complete */
1600 static int gfar_clean_tx_ring(struct net_device *dev)
1602 struct gfar_private *priv = netdev_priv(dev);
1604 struct txbd8 *lbdp = NULL;
1605 struct txbd8 *base = priv->tx_bd_base;
1606 struct sk_buff *skb;
1608 int tx_ring_size = priv->tx_ring_size;
1614 bdp = priv->dirty_tx;
1615 skb_dirtytx = priv->skb_dirtytx;
1617 while ((skb = priv->tx_skbuff[skb_dirtytx])) {
1618 frags = skb_shinfo(skb)->nr_frags;
1619 lbdp = skip_txbd(bdp, frags, base, tx_ring_size);
1621 lstatus = lbdp->lstatus;
1623 /* Only clean completed frames */
1624 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
1625 (lstatus & BD_LENGTH_MASK))
1628 dma_unmap_single(&priv->ofdev->dev,
1633 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
1634 bdp = next_txbd(bdp, base, tx_ring_size);
1636 for (i = 0; i < frags; i++) {
1637 dma_unmap_page(&priv->ofdev->dev,
1641 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
1642 bdp = next_txbd(bdp, base, tx_ring_size);
1646 * If there's room in the queue (limit it to rx_buffer_size)
1647 * we add this skb back into the pool, if it's the right size
1649 if (skb_queue_len(&priv->rx_recycle) < priv->rx_ring_size &&
1650 skb_recycle_check(skb, priv->rx_buffer_size +
1652 __skb_queue_head(&priv->rx_recycle, skb);
1654 dev_kfree_skb_any(skb);
1656 priv->tx_skbuff[skb_dirtytx] = NULL;
1658 skb_dirtytx = (skb_dirtytx + 1) &
1659 TX_RING_MOD_MASK(tx_ring_size);
1662 priv->num_txbdfree += frags + 1;
1665 /* If we freed a buffer, we can restart transmission, if necessary */
1666 if (netif_queue_stopped(dev) && priv->num_txbdfree)
1667 netif_wake_queue(dev);
1669 /* Update dirty indicators */
1670 priv->skb_dirtytx = skb_dirtytx;
1671 priv->dirty_tx = bdp;
1673 dev->stats.tx_packets += howmany;
1678 static void gfar_schedule_cleanup(struct net_device *dev)
1680 struct gfar_private *priv = netdev_priv(dev);
1681 unsigned long flags;
1683 spin_lock_irqsave(&priv->txlock, flags);
1684 spin_lock(&priv->rxlock);
1686 if (napi_schedule_prep(&priv->napi)) {
1687 gfar_write(&priv->regs->imask, IMASK_RTX_DISABLED);
1688 __napi_schedule(&priv->napi);
1691 * Clear IEVENT, so interrupts aren't called again
1692 * because of the packets that have already arrived.
1694 gfar_write(&priv->regs->ievent, IEVENT_RTX_MASK);
1697 spin_unlock(&priv->rxlock);
1698 spin_unlock_irqrestore(&priv->txlock, flags);
1701 /* Interrupt Handler for Transmit complete */
1702 static irqreturn_t gfar_transmit(int irq, void *dev_id)
1704 gfar_schedule_cleanup((struct net_device *)dev_id);
1708 static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
1709 struct sk_buff *skb)
1711 struct gfar_private *priv = netdev_priv(dev);
1714 buf = dma_map_single(&priv->ofdev->dev, skb->data,
1715 priv->rx_buffer_size, DMA_FROM_DEVICE);
1716 gfar_init_rxbdp(dev, bdp, buf);
1720 struct sk_buff * gfar_new_skb(struct net_device *dev)
1722 unsigned int alignamount;
1723 struct gfar_private *priv = netdev_priv(dev);
1724 struct sk_buff *skb = NULL;
1726 skb = __skb_dequeue(&priv->rx_recycle);
1728 skb = netdev_alloc_skb(dev,
1729 priv->rx_buffer_size + RXBUF_ALIGNMENT);
1734 alignamount = RXBUF_ALIGNMENT -
1735 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1));
1737 /* We need the data buffer to be aligned properly. We will reserve
1738 * as many bytes as needed to align the data properly
1740 skb_reserve(skb, alignamount);
1745 static inline void count_errors(unsigned short status, struct net_device *dev)
1747 struct gfar_private *priv = netdev_priv(dev);
1748 struct net_device_stats *stats = &dev->stats;
1749 struct gfar_extra_stats *estats = &priv->extra_stats;
1751 /* If the packet was truncated, none of the other errors
1753 if (status & RXBD_TRUNCATED) {
1754 stats->rx_length_errors++;
1760 /* Count the errors, if there were any */
1761 if (status & (RXBD_LARGE | RXBD_SHORT)) {
1762 stats->rx_length_errors++;
1764 if (status & RXBD_LARGE)
1769 if (status & RXBD_NONOCTET) {
1770 stats->rx_frame_errors++;
1771 estats->rx_nonoctet++;
1773 if (status & RXBD_CRCERR) {
1774 estats->rx_crcerr++;
1775 stats->rx_crc_errors++;
1777 if (status & RXBD_OVERRUN) {
1778 estats->rx_overrun++;
1779 stats->rx_crc_errors++;
1783 irqreturn_t gfar_receive(int irq, void *dev_id)
1785 gfar_schedule_cleanup((struct net_device *)dev_id);
1789 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
1791 /* If valid headers were found, and valid sums
1792 * were verified, then we tell the kernel that no
1793 * checksumming is necessary. Otherwise, it is */
1794 if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
1795 skb->ip_summed = CHECKSUM_UNNECESSARY;
1797 skb->ip_summed = CHECKSUM_NONE;
1801 /* gfar_process_frame() -- handle one incoming packet if skb
1803 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
1806 struct gfar_private *priv = netdev_priv(dev);
1807 struct rxfcb *fcb = NULL;
1811 /* fcb is at the beginning if exists */
1812 fcb = (struct rxfcb *)skb->data;
1814 /* Remove the FCB from the skb */
1815 /* Remove the padded bytes, if there are any */
1817 skb_pull(skb, amount_pull);
1819 if (priv->rx_csum_enable)
1820 gfar_rx_checksum(skb, fcb);
1822 /* Tell the skb what kind of packet this is */
1823 skb->protocol = eth_type_trans(skb, dev);
1825 /* Send the packet up the stack */
1826 if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
1827 ret = vlan_hwaccel_receive_skb(skb, priv->vlgrp, fcb->vlctl);
1829 ret = netif_receive_skb(skb);
1831 if (NET_RX_DROP == ret)
1832 priv->extra_stats.kernel_dropped++;
1837 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1838 * until the budget/quota has been reached. Returns the number
1841 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit)
1843 struct rxbd8 *bdp, *base;
1844 struct sk_buff *skb;
1848 struct gfar_private *priv = netdev_priv(dev);
1850 /* Get the first full descriptor */
1852 base = priv->rx_bd_base;
1854 amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0) +
1857 while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
1858 struct sk_buff *newskb;
1861 /* Add another skb for the future */
1862 newskb = gfar_new_skb(dev);
1864 skb = priv->rx_skbuff[priv->skb_currx];
1866 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
1867 priv->rx_buffer_size, DMA_FROM_DEVICE);
1869 /* We drop the frame if we failed to allocate a new buffer */
1870 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
1871 bdp->status & RXBD_ERR)) {
1872 count_errors(bdp->status, dev);
1874 if (unlikely(!newskb))
1878 * We need to reset ->data to what it
1879 * was before gfar_new_skb() re-aligned
1880 * it to an RXBUF_ALIGNMENT boundary
1881 * before we put the skb back on the
1884 skb->data = skb->head + NET_SKB_PAD;
1885 __skb_queue_head(&priv->rx_recycle, skb);
1888 /* Increment the number of packets */
1889 dev->stats.rx_packets++;
1893 pkt_len = bdp->length - ETH_FCS_LEN;
1894 /* Remove the FCS from the packet length */
1895 skb_put(skb, pkt_len);
1896 dev->stats.rx_bytes += pkt_len;
1898 if (in_irq() || irqs_disabled())
1899 printk("Interrupt problem!\n");
1900 gfar_process_frame(dev, skb, amount_pull);
1903 if (netif_msg_rx_err(priv))
1905 "%s: Missing skb!\n", dev->name);
1906 dev->stats.rx_dropped++;
1907 priv->extra_stats.rx_skbmissing++;
1912 priv->rx_skbuff[priv->skb_currx] = newskb;
1914 /* Setup the new bdp */
1915 gfar_new_rxbdp(dev, bdp, newskb);
1917 /* Update to the next pointer */
1918 bdp = next_bd(bdp, base, priv->rx_ring_size);
1920 /* update to point at the next skb */
1922 (priv->skb_currx + 1) &
1923 RX_RING_MOD_MASK(priv->rx_ring_size);
1926 /* Update the current rxbd pointer to be the next one */
1932 static int gfar_poll(struct napi_struct *napi, int budget)
1934 struct gfar_private *priv = container_of(napi, struct gfar_private, napi);
1935 struct net_device *dev = priv->ndev;
1938 unsigned long flags;
1940 /* Clear IEVENT, so interrupts aren't called again
1941 * because of the packets that have already arrived */
1942 gfar_write(&priv->regs->ievent, IEVENT_RTX_MASK);
1944 /* If we fail to get the lock, don't bother with the TX BDs */
1945 if (spin_trylock_irqsave(&priv->txlock, flags)) {
1946 tx_cleaned = gfar_clean_tx_ring(dev);
1947 spin_unlock_irqrestore(&priv->txlock, flags);
1950 rx_cleaned = gfar_clean_rx_ring(dev, budget);
1955 if (rx_cleaned < budget) {
1956 napi_complete(napi);
1958 /* Clear the halt bit in RSTAT */
1959 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1961 gfar_write(&priv->regs->imask, IMASK_DEFAULT);
1963 /* If we are coalescing interrupts, update the timer */
1964 /* Otherwise, clear it */
1965 if (likely(priv->rxcoalescing)) {
1966 gfar_write(&priv->regs->rxic, 0);
1967 gfar_write(&priv->regs->rxic, priv->rxic);
1969 if (likely(priv->txcoalescing)) {
1970 gfar_write(&priv->regs->txic, 0);
1971 gfar_write(&priv->regs->txic, priv->txic);
1978 #ifdef CONFIG_NET_POLL_CONTROLLER
1980 * Polling 'interrupt' - used by things like netconsole to send skbs
1981 * without having to re-enable interrupts. It's not called while
1982 * the interrupt routine is executing.
1984 static void gfar_netpoll(struct net_device *dev)
1986 struct gfar_private *priv = netdev_priv(dev);
1988 /* If the device has multiple interrupts, run tx/rx */
1989 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1990 disable_irq(priv->interruptTransmit);
1991 disable_irq(priv->interruptReceive);
1992 disable_irq(priv->interruptError);
1993 gfar_interrupt(priv->interruptTransmit, dev);
1994 enable_irq(priv->interruptError);
1995 enable_irq(priv->interruptReceive);
1996 enable_irq(priv->interruptTransmit);
1998 disable_irq(priv->interruptTransmit);
1999 gfar_interrupt(priv->interruptTransmit, dev);
2000 enable_irq(priv->interruptTransmit);
2005 /* The interrupt handler for devices with one interrupt */
2006 static irqreturn_t gfar_interrupt(int irq, void *dev_id)
2008 struct net_device *dev = dev_id;
2009 struct gfar_private *priv = netdev_priv(dev);
2011 /* Save ievent for future reference */
2012 u32 events = gfar_read(&priv->regs->ievent);
2014 /* Check for reception */
2015 if (events & IEVENT_RX_MASK)
2016 gfar_receive(irq, dev_id);
2018 /* Check for transmit completion */
2019 if (events & IEVENT_TX_MASK)
2020 gfar_transmit(irq, dev_id);
2022 /* Check for errors */
2023 if (events & IEVENT_ERR_MASK)
2024 gfar_error(irq, dev_id);
2029 /* Called every time the controller might need to be made
2030 * aware of new link state. The PHY code conveys this
2031 * information through variables in the phydev structure, and this
2032 * function converts those variables into the appropriate
2033 * register values, and can bring down the device if needed.
2035 static void adjust_link(struct net_device *dev)
2037 struct gfar_private *priv = netdev_priv(dev);
2038 struct gfar __iomem *regs = priv->regs;
2039 unsigned long flags;
2040 struct phy_device *phydev = priv->phydev;
2043 spin_lock_irqsave(&priv->txlock, flags);
2045 u32 tempval = gfar_read(®s->maccfg2);
2046 u32 ecntrl = gfar_read(®s->ecntrl);
2048 /* Now we make sure that we can be in full duplex mode.
2049 * If not, we operate in half-duplex mode. */
2050 if (phydev->duplex != priv->oldduplex) {
2052 if (!(phydev->duplex))
2053 tempval &= ~(MACCFG2_FULL_DUPLEX);
2055 tempval |= MACCFG2_FULL_DUPLEX;
2057 priv->oldduplex = phydev->duplex;
2060 if (phydev->speed != priv->oldspeed) {
2062 switch (phydev->speed) {
2065 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
2067 ecntrl &= ~(ECNTRL_R100);
2072 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
2074 /* Reduced mode distinguishes
2075 * between 10 and 100 */
2076 if (phydev->speed == SPEED_100)
2077 ecntrl |= ECNTRL_R100;
2079 ecntrl &= ~(ECNTRL_R100);
2082 if (netif_msg_link(priv))
2084 "%s: Ack! Speed (%d) is not 10/100/1000!\n",
2085 dev->name, phydev->speed);
2089 priv->oldspeed = phydev->speed;
2092 gfar_write(®s->maccfg2, tempval);
2093 gfar_write(®s->ecntrl, ecntrl);
2095 if (!priv->oldlink) {
2099 } else if (priv->oldlink) {
2103 priv->oldduplex = -1;
2106 if (new_state && netif_msg_link(priv))
2107 phy_print_status(phydev);
2109 spin_unlock_irqrestore(&priv->txlock, flags);
2112 /* Update the hash table based on the current list of multicast
2113 * addresses we subscribe to. Also, change the promiscuity of
2114 * the device based on the flags (this function is called
2115 * whenever dev->flags is changed */
2116 static void gfar_set_multi(struct net_device *dev)
2118 struct dev_mc_list *mc_ptr;
2119 struct gfar_private *priv = netdev_priv(dev);
2120 struct gfar __iomem *regs = priv->regs;
2123 if(dev->flags & IFF_PROMISC) {
2124 /* Set RCTRL to PROM */
2125 tempval = gfar_read(®s->rctrl);
2126 tempval |= RCTRL_PROM;
2127 gfar_write(®s->rctrl, tempval);
2129 /* Set RCTRL to not PROM */
2130 tempval = gfar_read(®s->rctrl);
2131 tempval &= ~(RCTRL_PROM);
2132 gfar_write(®s->rctrl, tempval);
2135 if(dev->flags & IFF_ALLMULTI) {
2136 /* Set the hash to rx all multicast frames */
2137 gfar_write(®s->igaddr0, 0xffffffff);
2138 gfar_write(®s->igaddr1, 0xffffffff);
2139 gfar_write(®s->igaddr2, 0xffffffff);
2140 gfar_write(®s->igaddr3, 0xffffffff);
2141 gfar_write(®s->igaddr4, 0xffffffff);
2142 gfar_write(®s->igaddr5, 0xffffffff);
2143 gfar_write(®s->igaddr6, 0xffffffff);
2144 gfar_write(®s->igaddr7, 0xffffffff);
2145 gfar_write(®s->gaddr0, 0xffffffff);
2146 gfar_write(®s->gaddr1, 0xffffffff);
2147 gfar_write(®s->gaddr2, 0xffffffff);
2148 gfar_write(®s->gaddr3, 0xffffffff);
2149 gfar_write(®s->gaddr4, 0xffffffff);
2150 gfar_write(®s->gaddr5, 0xffffffff);
2151 gfar_write(®s->gaddr6, 0xffffffff);
2152 gfar_write(®s->gaddr7, 0xffffffff);
2157 /* zero out the hash */
2158 gfar_write(®s->igaddr0, 0x0);
2159 gfar_write(®s->igaddr1, 0x0);
2160 gfar_write(®s->igaddr2, 0x0);
2161 gfar_write(®s->igaddr3, 0x0);
2162 gfar_write(®s->igaddr4, 0x0);
2163 gfar_write(®s->igaddr5, 0x0);
2164 gfar_write(®s->igaddr6, 0x0);
2165 gfar_write(®s->igaddr7, 0x0);
2166 gfar_write(®s->gaddr0, 0x0);
2167 gfar_write(®s->gaddr1, 0x0);
2168 gfar_write(®s->gaddr2, 0x0);
2169 gfar_write(®s->gaddr3, 0x0);
2170 gfar_write(®s->gaddr4, 0x0);
2171 gfar_write(®s->gaddr5, 0x0);
2172 gfar_write(®s->gaddr6, 0x0);
2173 gfar_write(®s->gaddr7, 0x0);
2175 /* If we have extended hash tables, we need to
2176 * clear the exact match registers to prepare for
2178 if (priv->extended_hash) {
2179 em_num = GFAR_EM_NUM + 1;
2180 gfar_clear_exact_match(dev);
2187 if(dev->mc_count == 0)
2190 /* Parse the list, and set the appropriate bits */
2191 for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
2193 gfar_set_mac_for_addr(dev, idx,
2197 gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
2205 /* Clears each of the exact match registers to zero, so they
2206 * don't interfere with normal reception */
2207 static void gfar_clear_exact_match(struct net_device *dev)
2210 u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
2212 for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
2213 gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
2216 /* Set the appropriate hash bit for the given addr */
2217 /* The algorithm works like so:
2218 * 1) Take the Destination Address (ie the multicast address), and
2219 * do a CRC on it (little endian), and reverse the bits of the
2221 * 2) Use the 8 most significant bits as a hash into a 256-entry
2222 * table. The table is controlled through 8 32-bit registers:
2223 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
2224 * gaddr7. This means that the 3 most significant bits in the
2225 * hash index which gaddr register to use, and the 5 other bits
2226 * indicate which bit (assuming an IBM numbering scheme, which
2227 * for PowerPC (tm) is usually the case) in the register holds
2229 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
2232 struct gfar_private *priv = netdev_priv(dev);
2233 u32 result = ether_crc(MAC_ADDR_LEN, addr);
2234 int width = priv->hash_width;
2235 u8 whichbit = (result >> (32 - width)) & 0x1f;
2236 u8 whichreg = result >> (32 - width + 5);
2237 u32 value = (1 << (31-whichbit));
2239 tempval = gfar_read(priv->hash_regs[whichreg]);
2241 gfar_write(priv->hash_regs[whichreg], tempval);
2247 /* There are multiple MAC Address register pairs on some controllers
2248 * This function sets the numth pair to a given address
2250 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
2252 struct gfar_private *priv = netdev_priv(dev);
2254 char tmpbuf[MAC_ADDR_LEN];
2256 u32 __iomem *macptr = &priv->regs->macstnaddr1;
2260 /* Now copy it into the mac registers backwards, cuz */
2261 /* little endian is silly */
2262 for (idx = 0; idx < MAC_ADDR_LEN; idx++)
2263 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
2265 gfar_write(macptr, *((u32 *) (tmpbuf)));
2267 tempval = *((u32 *) (tmpbuf + 4));
2269 gfar_write(macptr+1, tempval);
2272 /* GFAR error interrupt handler */
2273 static irqreturn_t gfar_error(int irq, void *dev_id)
2275 struct net_device *dev = dev_id;
2276 struct gfar_private *priv = netdev_priv(dev);
2278 /* Save ievent for future reference */
2279 u32 events = gfar_read(&priv->regs->ievent);
2282 gfar_write(&priv->regs->ievent, events & IEVENT_ERR_MASK);
2284 /* Magic Packet is not an error. */
2285 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2286 (events & IEVENT_MAG))
2287 events &= ~IEVENT_MAG;
2290 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2291 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
2292 dev->name, events, gfar_read(&priv->regs->imask));
2294 /* Update the error counters */
2295 if (events & IEVENT_TXE) {
2296 dev->stats.tx_errors++;
2298 if (events & IEVENT_LC)
2299 dev->stats.tx_window_errors++;
2300 if (events & IEVENT_CRL)
2301 dev->stats.tx_aborted_errors++;
2302 if (events & IEVENT_XFUN) {
2303 if (netif_msg_tx_err(priv))
2304 printk(KERN_DEBUG "%s: TX FIFO underrun, "
2305 "packet dropped.\n", dev->name);
2306 dev->stats.tx_dropped++;
2307 priv->extra_stats.tx_underrun++;
2309 /* Reactivate the Tx Queues */
2310 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
2312 if (netif_msg_tx_err(priv))
2313 printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
2315 if (events & IEVENT_BSY) {
2316 dev->stats.rx_errors++;
2317 priv->extra_stats.rx_bsy++;
2319 gfar_receive(irq, dev_id);
2321 if (netif_msg_rx_err(priv))
2322 printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
2323 dev->name, gfar_read(&priv->regs->rstat));
2325 if (events & IEVENT_BABR) {
2326 dev->stats.rx_errors++;
2327 priv->extra_stats.rx_babr++;
2329 if (netif_msg_rx_err(priv))
2330 printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
2332 if (events & IEVENT_EBERR) {
2333 priv->extra_stats.eberr++;
2334 if (netif_msg_rx_err(priv))
2335 printk(KERN_DEBUG "%s: bus error\n", dev->name);
2337 if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
2338 printk(KERN_DEBUG "%s: control frame\n", dev->name);
2340 if (events & IEVENT_BABT) {
2341 priv->extra_stats.tx_babt++;
2342 if (netif_msg_tx_err(priv))
2343 printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
2348 /* work with hotplug and coldplug */
2349 MODULE_ALIAS("platform:fsl-gianfar");
2351 static struct of_device_id gfar_match[] =
2355 .compatible = "gianfar",
2360 /* Structure for a device driver */
2361 static struct of_platform_driver gfar_driver = {
2362 .name = "fsl-gianfar",
2363 .match_table = gfar_match,
2365 .probe = gfar_probe,
2366 .remove = gfar_remove,
2367 .suspend = gfar_suspend,
2368 .resume = gfar_resume,
2371 static int __init gfar_init(void)
2373 return of_register_platform_driver(&gfar_driver);
2376 static void __exit gfar_exit(void)
2378 of_unregister_platform_driver(&gfar_driver);
2381 module_init(gfar_init);
2382 module_exit(gfar_exit);