2 * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
4 * Note: This driver is a cleanroom reimplementation based on reverse
5 * engineered documentation written by Carl-Daniel Hailfinger
6 * and Andrew de Quincey. It's neither supported nor endorsed
7 * by NVIDIA Corp. Use at your own risk.
9 * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
10 * trademarks of NVIDIA Corporation in the United States and other
13 * Copyright (C) 2003,4,5 Manfred Spraul
14 * Copyright (C) 2004 Andrew de Quincey (wol support)
15 * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
16 * IRQ rate fixes, bigendian fixes, cleanups, verification)
17 * Copyright (c) 2004 NVIDIA Corporation
19 * This program is free software; you can redistribute it and/or modify
20 * it under the terms of the GNU General Public License as published by
21 * the Free Software Foundation; either version 2 of the License, or
22 * (at your option) any later version.
24 * This program is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27 * GNU General Public License for more details.
29 * You should have received a copy of the GNU General Public License
30 * along with this program; if not, write to the Free Software
31 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
34 * 0.01: 05 Oct 2003: First release that compiles without warnings.
35 * 0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs.
36 * Check all PCI BARs for the register window.
37 * udelay added to mii_rw.
38 * 0.03: 06 Oct 2003: Initialize dev->irq.
39 * 0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks.
40 * 0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout.
41 * 0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated,
43 * 0.07: 14 Oct 2003: Further irq mask updates.
44 * 0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill
45 * added into irq handler, NULL check for drain_ring.
46 * 0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the
47 * requested interrupt sources.
48 * 0.10: 20 Oct 2003: First cleanup for release.
49 * 0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased.
50 * MAC Address init fix, set_multicast cleanup.
51 * 0.12: 23 Oct 2003: Cleanups for release.
52 * 0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10.
53 * Set link speed correctly. start rx before starting
54 * tx (nv_start_rx sets the link speed).
55 * 0.14: 25 Oct 2003: Nic dependant irq mask.
56 * 0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during
58 * 0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size
59 * increased to 1628 bytes.
60 * 0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from
62 * 0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats
63 * 0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac
64 * addresses, really stop rx if already running
65 * in nv_start_rx, clean up a bit.
66 * 0.20: 07 Dec 2003: alloc fixes
67 * 0.21: 12 Jan 2004: additional alloc fix, nic polling fix.
68 * 0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup
70 * 0.23: 26 Jan 2004: various small cleanups
71 * 0.24: 27 Feb 2004: make driver even less anonymous in backtraces
72 * 0.25: 09 Mar 2004: wol support
73 * 0.26: 03 Jun 2004: netdriver specific annotation, sparse-related fixes
74 * 0.27: 19 Jun 2004: Gigabit support, new descriptor rings,
75 * added CK804/MCP04 device IDs, code fixes
76 * for registers, link status and other minor fixes.
77 * 0.28: 21 Jun 2004: Big cleanup, making driver mostly endian safe
78 * 0.29: 31 Aug 2004: Add backup timer for link change notification.
79 * 0.30: 25 Sep 2004: rx checksum support for nf 250 Gb. Add rx reset
80 * into nv_close, otherwise reenabling for wol can
81 * cause DMA to kfree'd memory.
82 * 0.31: 14 Nov 2004: ethtool support for getting/setting link
84 * 0.32: 16 Apr 2005: RX_ERROR4 handling added.
85 * 0.33: 16 May 2005: Support for MCP51 added.
86 * 0.34: 18 Jun 2005: Add DEV_NEED_LINKTIMER to all nForce nics.
87 * 0.35: 26 Jun 2005: Support for MCP55 added.
88 * 0.36: 28 Jun 2005: Add jumbo frame support.
89 * 0.37: 10 Jul 2005: Additional ethtool support, cleanup of pci id list
90 * 0.38: 16 Jul 2005: tx irq rewrite: Use global flags instead of
92 * 0.39: 18 Jul 2005: Add 64bit descriptor support.
93 * 0.40: 19 Jul 2005: Add support for mac address change.
94 * 0.41: 30 Jul 2005: Write back original MAC in nv_close instead
96 * 0.42: 06 Aug 2005: Fix lack of link speed initialization
97 * in the second (and later) nv_open call
98 * 0.43: 10 Aug 2005: Add support for tx checksum.
99 * 0.44: 20 Aug 2005: Add support for scatter gather and segmentation.
100 * 0.45: 18 Sep 2005: Remove nv_stop/start_rx from every link check
101 * 0.46: 20 Oct 2005: Add irq optimization modes.
102 * 0.47: 26 Oct 2005: Add phyaddr 0 in phy scan.
103 * 0.48: 24 Dec 2005: Disable TSO, bugfix for pci_map_single
104 * 0.49: 10 Dec 2005: Fix tso for large buffers.
105 * 0.50: 20 Jan 2006: Add 8021pq tagging support.
106 * 0.51: 20 Jan 2006: Add 64bit consistent memory allocation for rings.
107 * 0.52: 20 Jan 2006: Add MSI/MSIX support.
108 * 0.53: 19 Mar 2006: Fix init from low power mode and add hw reset.
109 * 0.54: 21 Mar 2006: Fix spin locks for multi irqs and cleanup.
110 * 0.55: 22 Mar 2006: Add flow control (pause frame).
111 * 0.56: 22 Mar 2006: Additional ethtool config and moduleparam support.
114 * We suspect that on some hardware no TX done interrupts are generated.
115 * This means recovery from netif_stop_queue only happens if the hw timer
116 * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
117 * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
118 * If your hardware reliably generates tx done interrupts, then you can remove
119 * DEV_NEED_TIMERIRQ from the driver_data flags.
120 * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
121 * superfluous timer interrupts from the nic.
123 #define FORCEDETH_VERSION "0.56"
124 #define DRV_NAME "forcedeth"
126 #include <linux/module.h>
127 #include <linux/types.h>
128 #include <linux/pci.h>
129 #include <linux/interrupt.h>
130 #include <linux/netdevice.h>
131 #include <linux/etherdevice.h>
132 #include <linux/delay.h>
133 #include <linux/spinlock.h>
134 #include <linux/ethtool.h>
135 #include <linux/timer.h>
136 #include <linux/skbuff.h>
137 #include <linux/mii.h>
138 #include <linux/random.h>
139 #include <linux/init.h>
140 #include <linux/if_vlan.h>
141 #include <linux/dma-mapping.h>
145 #include <asm/uaccess.h>
146 #include <asm/system.h>
149 #define dprintk printk
151 #define dprintk(x...) do { } while (0)
159 #define DEV_NEED_TIMERIRQ 0x0001 /* set the timer irq flag in the irq mask */
160 #define DEV_NEED_LINKTIMER 0x0002 /* poll link settings. Relies on the timer irq */
161 #define DEV_HAS_LARGEDESC 0x0004 /* device supports jumbo frames and needs packet format 2 */
162 #define DEV_HAS_HIGH_DMA 0x0008 /* device supports 64bit dma */
163 #define DEV_HAS_CHECKSUM 0x0010 /* device supports tx and rx checksum offloads */
164 #define DEV_HAS_VLAN 0x0020 /* device supports vlan tagging and striping */
165 #define DEV_HAS_MSI 0x0040 /* device supports MSI */
166 #define DEV_HAS_MSI_X 0x0080 /* device supports MSI-X */
167 #define DEV_HAS_POWER_CNTRL 0x0100 /* device supports power savings */
168 #define DEV_HAS_PAUSEFRAME_TX 0x0200 /* device supports tx pause frames */
169 #define DEV_HAS_STATISTICS 0x0400 /* device supports hw statistics */
170 #define DEV_HAS_TEST_EXTENDED 0x0800 /* device supports extended diagnostic test */
173 NvRegIrqStatus = 0x000,
174 #define NVREG_IRQSTAT_MIIEVENT 0x040
175 #define NVREG_IRQSTAT_MASK 0x1ff
176 NvRegIrqMask = 0x004,
177 #define NVREG_IRQ_RX_ERROR 0x0001
178 #define NVREG_IRQ_RX 0x0002
179 #define NVREG_IRQ_RX_NOBUF 0x0004
180 #define NVREG_IRQ_TX_ERR 0x0008
181 #define NVREG_IRQ_TX_OK 0x0010
182 #define NVREG_IRQ_TIMER 0x0020
183 #define NVREG_IRQ_LINK 0x0040
184 #define NVREG_IRQ_RX_FORCED 0x0080
185 #define NVREG_IRQ_TX_FORCED 0x0100
186 #define NVREG_IRQMASK_THROUGHPUT 0x00df
187 #define NVREG_IRQMASK_CPU 0x0040
188 #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
189 #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
190 #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK)
192 #define NVREG_IRQ_UNKNOWN (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
193 NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RX_FORCED| \
194 NVREG_IRQ_TX_FORCED))
196 NvRegUnknownSetupReg6 = 0x008,
197 #define NVREG_UNKSETUP6_VAL 3
200 * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
201 * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
203 NvRegPollingInterval = 0x00c,
204 #define NVREG_POLL_DEFAULT_THROUGHPUT 970
205 #define NVREG_POLL_DEFAULT_CPU 13
206 NvRegMSIMap0 = 0x020,
207 NvRegMSIMap1 = 0x024,
208 NvRegMSIIrqMask = 0x030,
209 #define NVREG_MSI_VECTOR_0_ENABLED 0x01
211 #define NVREG_MISC1_PAUSE_TX 0x01
212 #define NVREG_MISC1_HD 0x02
213 #define NVREG_MISC1_FORCE 0x3b0f3c
215 NvRegMacReset = 0x3c,
216 #define NVREG_MAC_RESET_ASSERT 0x0F3
217 NvRegTransmitterControl = 0x084,
218 #define NVREG_XMITCTL_START 0x01
219 NvRegTransmitterStatus = 0x088,
220 #define NVREG_XMITSTAT_BUSY 0x01
222 NvRegPacketFilterFlags = 0x8c,
223 #define NVREG_PFF_PAUSE_RX 0x08
224 #define NVREG_PFF_ALWAYS 0x7F0000
225 #define NVREG_PFF_PROMISC 0x80
226 #define NVREG_PFF_MYADDR 0x20
227 #define NVREG_PFF_LOOPBACK 0x10
229 NvRegOffloadConfig = 0x90,
230 #define NVREG_OFFLOAD_HOMEPHY 0x601
231 #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
232 NvRegReceiverControl = 0x094,
233 #define NVREG_RCVCTL_START 0x01
234 NvRegReceiverStatus = 0x98,
235 #define NVREG_RCVSTAT_BUSY 0x01
237 NvRegRandomSeed = 0x9c,
238 #define NVREG_RNDSEED_MASK 0x00ff
239 #define NVREG_RNDSEED_FORCE 0x7f00
240 #define NVREG_RNDSEED_FORCE2 0x2d00
241 #define NVREG_RNDSEED_FORCE3 0x7400
243 NvRegUnknownSetupReg1 = 0xA0,
244 #define NVREG_UNKSETUP1_VAL 0x16070f
245 NvRegUnknownSetupReg2 = 0xA4,
246 #define NVREG_UNKSETUP2_VAL 0x16
247 NvRegMacAddrA = 0xA8,
248 NvRegMacAddrB = 0xAC,
249 NvRegMulticastAddrA = 0xB0,
250 #define NVREG_MCASTADDRA_FORCE 0x01
251 NvRegMulticastAddrB = 0xB4,
252 NvRegMulticastMaskA = 0xB8,
253 NvRegMulticastMaskB = 0xBC,
255 NvRegPhyInterface = 0xC0,
256 #define PHY_RGMII 0x10000000
258 NvRegTxRingPhysAddr = 0x100,
259 NvRegRxRingPhysAddr = 0x104,
260 NvRegRingSizes = 0x108,
261 #define NVREG_RINGSZ_TXSHIFT 0
262 #define NVREG_RINGSZ_RXSHIFT 16
263 NvRegUnknownTransmitterReg = 0x10c,
264 NvRegLinkSpeed = 0x110,
265 #define NVREG_LINKSPEED_FORCE 0x10000
266 #define NVREG_LINKSPEED_10 1000
267 #define NVREG_LINKSPEED_100 100
268 #define NVREG_LINKSPEED_1000 50
269 #define NVREG_LINKSPEED_MASK (0xFFF)
270 NvRegUnknownSetupReg5 = 0x130,
271 #define NVREG_UNKSETUP5_BIT31 (1<<31)
272 NvRegUnknownSetupReg3 = 0x13c,
273 #define NVREG_UNKSETUP3_VAL1 0x200010
274 NvRegTxRxControl = 0x144,
275 #define NVREG_TXRXCTL_KICK 0x0001
276 #define NVREG_TXRXCTL_BIT1 0x0002
277 #define NVREG_TXRXCTL_BIT2 0x0004
278 #define NVREG_TXRXCTL_IDLE 0x0008
279 #define NVREG_TXRXCTL_RESET 0x0010
280 #define NVREG_TXRXCTL_RXCHECK 0x0400
281 #define NVREG_TXRXCTL_DESC_1 0
282 #define NVREG_TXRXCTL_DESC_2 0x02100
283 #define NVREG_TXRXCTL_DESC_3 0x02200
284 #define NVREG_TXRXCTL_VLANSTRIP 0x00040
285 #define NVREG_TXRXCTL_VLANINS 0x00080
286 NvRegTxRingPhysAddrHigh = 0x148,
287 NvRegRxRingPhysAddrHigh = 0x14C,
288 NvRegTxPauseFrame = 0x170,
289 #define NVREG_TX_PAUSEFRAME_DISABLE 0x1ff0080
290 #define NVREG_TX_PAUSEFRAME_ENABLE 0x0c00030
291 NvRegMIIStatus = 0x180,
292 #define NVREG_MIISTAT_ERROR 0x0001
293 #define NVREG_MIISTAT_LINKCHANGE 0x0008
294 #define NVREG_MIISTAT_MASK 0x000f
295 #define NVREG_MIISTAT_MASK2 0x000f
296 NvRegUnknownSetupReg4 = 0x184,
297 #define NVREG_UNKSETUP4_VAL 8
299 NvRegAdapterControl = 0x188,
300 #define NVREG_ADAPTCTL_START 0x02
301 #define NVREG_ADAPTCTL_LINKUP 0x04
302 #define NVREG_ADAPTCTL_PHYVALID 0x40000
303 #define NVREG_ADAPTCTL_RUNNING 0x100000
304 #define NVREG_ADAPTCTL_PHYSHIFT 24
305 NvRegMIISpeed = 0x18c,
306 #define NVREG_MIISPEED_BIT8 (1<<8)
307 #define NVREG_MIIDELAY 5
308 NvRegMIIControl = 0x190,
309 #define NVREG_MIICTL_INUSE 0x08000
310 #define NVREG_MIICTL_WRITE 0x00400
311 #define NVREG_MIICTL_ADDRSHIFT 5
312 NvRegMIIData = 0x194,
313 NvRegWakeUpFlags = 0x200,
314 #define NVREG_WAKEUPFLAGS_VAL 0x7770
315 #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
316 #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
317 #define NVREG_WAKEUPFLAGS_D3SHIFT 12
318 #define NVREG_WAKEUPFLAGS_D2SHIFT 8
319 #define NVREG_WAKEUPFLAGS_D1SHIFT 4
320 #define NVREG_WAKEUPFLAGS_D0SHIFT 0
321 #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
322 #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
323 #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
324 #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
326 NvRegPatternCRC = 0x204,
327 NvRegPatternMask = 0x208,
328 NvRegPowerCap = 0x268,
329 #define NVREG_POWERCAP_D3SUPP (1<<30)
330 #define NVREG_POWERCAP_D2SUPP (1<<26)
331 #define NVREG_POWERCAP_D1SUPP (1<<25)
332 NvRegPowerState = 0x26c,
333 #define NVREG_POWERSTATE_POWEREDUP 0x8000
334 #define NVREG_POWERSTATE_VALID 0x0100
335 #define NVREG_POWERSTATE_MASK 0x0003
336 #define NVREG_POWERSTATE_D0 0x0000
337 #define NVREG_POWERSTATE_D1 0x0001
338 #define NVREG_POWERSTATE_D2 0x0002
339 #define NVREG_POWERSTATE_D3 0x0003
341 NvRegTxZeroReXmt = 0x284,
342 NvRegTxOneReXmt = 0x288,
343 NvRegTxManyReXmt = 0x28c,
344 NvRegTxLateCol = 0x290,
345 NvRegTxUnderflow = 0x294,
346 NvRegTxLossCarrier = 0x298,
347 NvRegTxExcessDef = 0x29c,
348 NvRegTxRetryErr = 0x2a0,
349 NvRegRxFrameErr = 0x2a4,
350 NvRegRxExtraByte = 0x2a8,
351 NvRegRxLateCol = 0x2ac,
353 NvRegRxFrameTooLong = 0x2b4,
354 NvRegRxOverflow = 0x2b8,
355 NvRegRxFCSErr = 0x2bc,
356 NvRegRxFrameAlignErr = 0x2c0,
357 NvRegRxLenErr = 0x2c4,
358 NvRegRxUnicast = 0x2c8,
359 NvRegRxMulticast = 0x2cc,
360 NvRegRxBroadcast = 0x2d0,
362 NvRegTxFrame = 0x2d8,
364 NvRegTxPause = 0x2e0,
365 NvRegRxPause = 0x2e4,
366 NvRegRxDropFrame = 0x2e8,
367 NvRegVlanControl = 0x300,
368 #define NVREG_VLANCONTROL_ENABLE 0x2000
369 NvRegMSIXMap0 = 0x3e0,
370 NvRegMSIXMap1 = 0x3e4,
371 NvRegMSIXIrqStatus = 0x3f0,
373 NvRegPowerState2 = 0x600,
374 #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F11
375 #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
378 /* Big endian: should work, but is untested */
384 struct ring_desc_ex {
385 u32 PacketBufferHigh;
391 typedef union _ring_type {
392 struct ring_desc* orig;
393 struct ring_desc_ex* ex;
396 #define FLAG_MASK_V1 0xffff0000
397 #define FLAG_MASK_V2 0xffffc000
398 #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
399 #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
401 #define NV_TX_LASTPACKET (1<<16)
402 #define NV_TX_RETRYERROR (1<<19)
403 #define NV_TX_FORCED_INTERRUPT (1<<24)
404 #define NV_TX_DEFERRED (1<<26)
405 #define NV_TX_CARRIERLOST (1<<27)
406 #define NV_TX_LATECOLLISION (1<<28)
407 #define NV_TX_UNDERFLOW (1<<29)
408 #define NV_TX_ERROR (1<<30)
409 #define NV_TX_VALID (1<<31)
411 #define NV_TX2_LASTPACKET (1<<29)
412 #define NV_TX2_RETRYERROR (1<<18)
413 #define NV_TX2_FORCED_INTERRUPT (1<<30)
414 #define NV_TX2_DEFERRED (1<<25)
415 #define NV_TX2_CARRIERLOST (1<<26)
416 #define NV_TX2_LATECOLLISION (1<<27)
417 #define NV_TX2_UNDERFLOW (1<<28)
418 /* error and valid are the same for both */
419 #define NV_TX2_ERROR (1<<30)
420 #define NV_TX2_VALID (1<<31)
421 #define NV_TX2_TSO (1<<28)
422 #define NV_TX2_TSO_SHIFT 14
423 #define NV_TX2_TSO_MAX_SHIFT 14
424 #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
425 #define NV_TX2_CHECKSUM_L3 (1<<27)
426 #define NV_TX2_CHECKSUM_L4 (1<<26)
428 #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
430 #define NV_RX_DESCRIPTORVALID (1<<16)
431 #define NV_RX_MISSEDFRAME (1<<17)
432 #define NV_RX_SUBSTRACT1 (1<<18)
433 #define NV_RX_ERROR1 (1<<23)
434 #define NV_RX_ERROR2 (1<<24)
435 #define NV_RX_ERROR3 (1<<25)
436 #define NV_RX_ERROR4 (1<<26)
437 #define NV_RX_CRCERR (1<<27)
438 #define NV_RX_OVERFLOW (1<<28)
439 #define NV_RX_FRAMINGERR (1<<29)
440 #define NV_RX_ERROR (1<<30)
441 #define NV_RX_AVAIL (1<<31)
443 #define NV_RX2_CHECKSUMMASK (0x1C000000)
444 #define NV_RX2_CHECKSUMOK1 (0x10000000)
445 #define NV_RX2_CHECKSUMOK2 (0x14000000)
446 #define NV_RX2_CHECKSUMOK3 (0x18000000)
447 #define NV_RX2_DESCRIPTORVALID (1<<29)
448 #define NV_RX2_SUBSTRACT1 (1<<25)
449 #define NV_RX2_ERROR1 (1<<18)
450 #define NV_RX2_ERROR2 (1<<19)
451 #define NV_RX2_ERROR3 (1<<20)
452 #define NV_RX2_ERROR4 (1<<21)
453 #define NV_RX2_CRCERR (1<<22)
454 #define NV_RX2_OVERFLOW (1<<23)
455 #define NV_RX2_FRAMINGERR (1<<24)
456 /* error and avail are the same for both */
457 #define NV_RX2_ERROR (1<<30)
458 #define NV_RX2_AVAIL (1<<31)
460 #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
461 #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
463 /* Miscelaneous hardware related defines: */
464 #define NV_PCI_REGSZ_VER1 0x270
465 #define NV_PCI_REGSZ_VER2 0x604
467 /* various timeout delays: all in usec */
468 #define NV_TXRX_RESET_DELAY 4
469 #define NV_TXSTOP_DELAY1 10
470 #define NV_TXSTOP_DELAY1MAX 500000
471 #define NV_TXSTOP_DELAY2 100
472 #define NV_RXSTOP_DELAY1 10
473 #define NV_RXSTOP_DELAY1MAX 500000
474 #define NV_RXSTOP_DELAY2 100
475 #define NV_SETUP5_DELAY 5
476 #define NV_SETUP5_DELAYMAX 50000
477 #define NV_POWERUP_DELAY 5
478 #define NV_POWERUP_DELAYMAX 5000
479 #define NV_MIIBUSY_DELAY 50
480 #define NV_MIIPHY_DELAY 10
481 #define NV_MIIPHY_DELAYMAX 10000
482 #define NV_MAC_RESET_DELAY 64
484 #define NV_WAKEUPPATTERNS 5
485 #define NV_WAKEUPMASKENTRIES 4
487 /* General driver defaults */
488 #define NV_WATCHDOG_TIMEO (5*HZ)
490 #define RX_RING_DEFAULT 128
491 #define TX_RING_DEFAULT 256
492 #define RX_RING_MIN 128
493 #define TX_RING_MIN 64
494 #define RING_MAX_DESC_VER_1 1024
495 #define RING_MAX_DESC_VER_2_3 16384
497 * Difference between the get and put pointers for the tx ring.
498 * This is used to throttle the amount of data outstanding in the
501 #define TX_LIMIT_DIFFERENCE 1
503 /* rx/tx mac addr + type + vlan + align + slack*/
504 #define NV_RX_HEADERS (64)
505 /* even more slack. */
506 #define NV_RX_ALLOC_PAD (64)
508 /* maximum mtu size */
509 #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
510 #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
512 #define OOM_REFILL (1+HZ/20)
513 #define POLL_WAIT (1+HZ/100)
514 #define LINK_TIMEOUT (3*HZ)
515 #define STATS_INTERVAL (10*HZ)
519 * The nic supports three different descriptor types:
520 * - DESC_VER_1: Original
521 * - DESC_VER_2: support for jumbo frames.
522 * - DESC_VER_3: 64-bit format.
529 #define PHY_OUI_MARVELL 0x5043
530 #define PHY_OUI_CICADA 0x03f1
531 #define PHYID1_OUI_MASK 0x03ff
532 #define PHYID1_OUI_SHFT 6
533 #define PHYID2_OUI_MASK 0xfc00
534 #define PHYID2_OUI_SHFT 10
535 #define PHY_INIT1 0x0f000
536 #define PHY_INIT2 0x0e00
537 #define PHY_INIT3 0x01000
538 #define PHY_INIT4 0x0200
539 #define PHY_INIT5 0x0004
540 #define PHY_INIT6 0x02000
541 #define PHY_GIGABIT 0x0100
543 #define PHY_TIMEOUT 0x1
544 #define PHY_ERROR 0x2
548 #define PHY_HALF 0x100
550 #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
551 #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
552 #define NV_PAUSEFRAME_RX_ENABLE 0x0004
553 #define NV_PAUSEFRAME_TX_ENABLE 0x0008
554 #define NV_PAUSEFRAME_RX_REQ 0x0010
555 #define NV_PAUSEFRAME_TX_REQ 0x0020
556 #define NV_PAUSEFRAME_AUTONEG 0x0040
558 /* MSI/MSI-X defines */
559 #define NV_MSI_X_MAX_VECTORS 8
560 #define NV_MSI_X_VECTORS_MASK 0x000f
561 #define NV_MSI_CAPABLE 0x0010
562 #define NV_MSI_X_CAPABLE 0x0020
563 #define NV_MSI_ENABLED 0x0040
564 #define NV_MSI_X_ENABLED 0x0080
566 #define NV_MSI_X_VECTOR_ALL 0x0
567 #define NV_MSI_X_VECTOR_RX 0x0
568 #define NV_MSI_X_VECTOR_TX 0x1
569 #define NV_MSI_X_VECTOR_OTHER 0x2
572 struct nv_ethtool_str {
573 char name[ETH_GSTRING_LEN];
576 static const struct nv_ethtool_str nv_estats_str[] = {
581 { "tx_late_collision" },
582 { "tx_fifo_errors" },
583 { "tx_carrier_errors" },
584 { "tx_excess_deferral" },
585 { "tx_retry_error" },
589 { "rx_frame_error" },
591 { "rx_late_collision" },
593 { "rx_frame_too_long" },
594 { "rx_over_errors" },
596 { "rx_frame_align_error" },
597 { "rx_length_error" },
605 { "rx_errors_total" }
608 struct nv_ethtool_stats {
613 u64 tx_late_collision;
615 u64 tx_carrier_errors;
616 u64 tx_excess_deferral;
623 u64 rx_late_collision;
625 u64 rx_frame_too_long;
628 u64 rx_frame_align_error;
641 #define NV_TEST_COUNT_BASE 3
642 #define NV_TEST_COUNT_EXTENDED 4
644 static const struct nv_ethtool_str nv_etests_str[] = {
645 { "link (online/offline)" },
646 { "register (offline) " },
647 { "interrupt (offline) " },
648 { "loopback (offline) " }
651 struct register_test {
656 static const struct register_test nv_registers_test[] = {
657 { NvRegUnknownSetupReg6, 0x01 },
658 { NvRegMisc1, 0x03c },
659 { NvRegOffloadConfig, 0x03ff },
660 { NvRegMulticastAddrA, 0xffffffff },
661 { NvRegUnknownSetupReg3, 0x0ff },
662 { NvRegWakeUpFlags, 0x07777 },
668 * All hardware access under dev->priv->lock, except the performance
670 * - rx is (pseudo-) lockless: it relies on the single-threading provided
671 * by the arch code for interrupts.
672 * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
673 * needs dev->priv->lock :-(
674 * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
677 /* in dev: base, irq */
682 * Locking: spin_lock(&np->lock); */
683 struct net_device_stats stats;
684 struct nv_ethtool_stats estats;
692 unsigned int phy_oui;
696 /* General data: RO fields */
697 dma_addr_t ring_addr;
698 struct pci_dev *pci_dev;
709 /* rx specific fields.
710 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
713 unsigned int cur_rx, refill_rx;
714 struct sk_buff **rx_skbuff;
716 unsigned int rx_buf_sz;
717 unsigned int pkt_limit;
718 struct timer_list oom_kick;
719 struct timer_list nic_poll;
720 struct timer_list stats_poll;
724 /* media detection workaround.
725 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
728 unsigned long link_timeout;
730 * tx specific fields.
733 unsigned int next_tx, nic_tx;
734 struct sk_buff **tx_skbuff;
736 unsigned int *tx_dma_len;
743 struct vlan_group *vlangrp;
745 /* msi/msi-x fields */
747 struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
754 * Maximum number of loops until we assume that a bit in the irq mask
755 * is stuck. Overridable with module param.
757 static int max_interrupt_work = 5;
760 * Optimization can be either throuput mode or cpu mode
762 * Throughput Mode: Every tx and rx packet will generate an interrupt.
763 * CPU Mode: Interrupts are controlled by a timer.
766 NV_OPTIMIZATION_MODE_THROUGHPUT,
767 NV_OPTIMIZATION_MODE_CPU
769 static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
772 * Poll interval for timer irq
774 * This interval determines how frequent an interrupt is generated.
775 * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
776 * Min = 0, and Max = 65535
778 static int poll_interval = -1;
787 static int msi = NV_MSI_INT_ENABLED;
793 NV_MSIX_INT_DISABLED,
796 static int msix = NV_MSIX_INT_ENABLED;
802 NV_DMA_64BIT_DISABLED,
805 static int dma_64bit = NV_DMA_64BIT_ENABLED;
807 static inline struct fe_priv *get_nvpriv(struct net_device *dev)
809 return netdev_priv(dev);
812 static inline u8 __iomem *get_hwbase(struct net_device *dev)
814 return ((struct fe_priv *)netdev_priv(dev))->base;
817 static inline void pci_push(u8 __iomem *base)
819 /* force out pending posted writes */
823 static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
825 return le32_to_cpu(prd->FlagLen)
826 & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
829 static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
831 return le32_to_cpu(prd->FlagLen) & LEN_MASK_V2;
834 static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
835 int delay, int delaymax, const char *msg)
837 u8 __iomem *base = get_hwbase(dev);
848 } while ((readl(base + offset) & mask) != target);
852 #define NV_SETUP_RX_RING 0x01
853 #define NV_SETUP_TX_RING 0x02
855 static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
857 struct fe_priv *np = get_nvpriv(dev);
858 u8 __iomem *base = get_hwbase(dev);
860 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
861 if (rxtx_flags & NV_SETUP_RX_RING) {
862 writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
864 if (rxtx_flags & NV_SETUP_TX_RING) {
865 writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
868 if (rxtx_flags & NV_SETUP_RX_RING) {
869 writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
870 writel((u32) (cpu_to_le64(np->ring_addr) >> 32), base + NvRegRxRingPhysAddrHigh);
872 if (rxtx_flags & NV_SETUP_TX_RING) {
873 writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
874 writel((u32) (cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)) >> 32), base + NvRegTxRingPhysAddrHigh);
879 static void free_rings(struct net_device *dev)
881 struct fe_priv *np = get_nvpriv(dev);
883 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
885 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
886 np->rx_ring.orig, np->ring_addr);
889 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
890 np->rx_ring.ex, np->ring_addr);
893 kfree(np->rx_skbuff);
897 kfree(np->tx_skbuff);
901 kfree(np->tx_dma_len);
904 static int using_multi_irqs(struct net_device *dev)
906 struct fe_priv *np = get_nvpriv(dev);
908 if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
909 ((np->msi_flags & NV_MSI_X_ENABLED) &&
910 ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
916 static void nv_enable_irq(struct net_device *dev)
918 struct fe_priv *np = get_nvpriv(dev);
920 if (!using_multi_irqs(dev)) {
921 if (np->msi_flags & NV_MSI_X_ENABLED)
922 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
924 enable_irq(dev->irq);
926 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
927 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
928 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
932 static void nv_disable_irq(struct net_device *dev)
934 struct fe_priv *np = get_nvpriv(dev);
936 if (!using_multi_irqs(dev)) {
937 if (np->msi_flags & NV_MSI_X_ENABLED)
938 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
940 disable_irq(dev->irq);
942 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
943 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
944 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
948 /* In MSIX mode, a write to irqmask behaves as XOR */
949 static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
951 u8 __iomem *base = get_hwbase(dev);
953 writel(mask, base + NvRegIrqMask);
956 static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
958 struct fe_priv *np = get_nvpriv(dev);
959 u8 __iomem *base = get_hwbase(dev);
961 if (np->msi_flags & NV_MSI_X_ENABLED) {
962 writel(mask, base + NvRegIrqMask);
964 if (np->msi_flags & NV_MSI_ENABLED)
965 writel(0, base + NvRegMSIIrqMask);
966 writel(0, base + NvRegIrqMask);
970 #define MII_READ (-1)
971 /* mii_rw: read/write a register on the PHY.
973 * Caller must guarantee serialization
975 static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
977 u8 __iomem *base = get_hwbase(dev);
981 writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
983 reg = readl(base + NvRegMIIControl);
984 if (reg & NVREG_MIICTL_INUSE) {
985 writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
986 udelay(NV_MIIBUSY_DELAY);
989 reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
990 if (value != MII_READ) {
991 writel(value, base + NvRegMIIData);
992 reg |= NVREG_MIICTL_WRITE;
994 writel(reg, base + NvRegMIIControl);
996 if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
997 NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
998 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
999 dev->name, miireg, addr);
1001 } else if (value != MII_READ) {
1002 /* it was a write operation - fewer failures are detectable */
1003 dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
1004 dev->name, value, miireg, addr);
1006 } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
1007 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
1008 dev->name, miireg, addr);
1011 retval = readl(base + NvRegMIIData);
1012 dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
1013 dev->name, miireg, addr, retval);
1019 static int phy_reset(struct net_device *dev)
1021 struct fe_priv *np = netdev_priv(dev);
1023 unsigned int tries = 0;
1025 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1026 miicontrol |= BMCR_RESET;
1027 if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
1031 /* wait for 500ms */
1034 /* must wait till reset is deasserted */
1035 while (miicontrol & BMCR_RESET) {
1037 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1038 /* FIXME: 100 tries seem excessive */
1045 static int phy_init(struct net_device *dev)
1047 struct fe_priv *np = get_nvpriv(dev);
1048 u8 __iomem *base = get_hwbase(dev);
1049 u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
1051 /* set advertise register */
1052 reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
1053 reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
1054 if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
1055 printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
1059 /* get phy interface type */
1060 phyinterface = readl(base + NvRegPhyInterface);
1062 /* see if gigabit phy */
1063 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
1064 if (mii_status & PHY_GIGABIT) {
1065 np->gigabit = PHY_GIGABIT;
1066 mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
1067 mii_control_1000 &= ~ADVERTISE_1000HALF;
1068 if (phyinterface & PHY_RGMII)
1069 mii_control_1000 |= ADVERTISE_1000FULL;
1071 mii_control_1000 &= ~ADVERTISE_1000FULL;
1073 if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
1074 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1082 if (phy_reset(dev)) {
1083 printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
1087 /* phy vendor specific configuration */
1088 if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
1089 phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
1090 phy_reserved &= ~(PHY_INIT1 | PHY_INIT2);
1091 phy_reserved |= (PHY_INIT3 | PHY_INIT4);
1092 if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
1093 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1096 phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
1097 phy_reserved |= PHY_INIT5;
1098 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
1099 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1103 if (np->phy_oui == PHY_OUI_CICADA) {
1104 phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
1105 phy_reserved |= PHY_INIT6;
1106 if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
1107 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1111 /* some phys clear out pause advertisment on reset, set it back */
1112 mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
1114 /* restart auto negotiation */
1115 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1116 mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
1117 if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
1124 static void nv_start_rx(struct net_device *dev)
1126 struct fe_priv *np = netdev_priv(dev);
1127 u8 __iomem *base = get_hwbase(dev);
1129 dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
1130 /* Already running? Stop it. */
1131 if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
1132 writel(0, base + NvRegReceiverControl);
1135 writel(np->linkspeed, base + NvRegLinkSpeed);
1137 writel(NVREG_RCVCTL_START, base + NvRegReceiverControl);
1138 dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
1139 dev->name, np->duplex, np->linkspeed);
1143 static void nv_stop_rx(struct net_device *dev)
1145 u8 __iomem *base = get_hwbase(dev);
1147 dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
1148 writel(0, base + NvRegReceiverControl);
1149 reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
1150 NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
1151 KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
1153 udelay(NV_RXSTOP_DELAY2);
1154 writel(0, base + NvRegLinkSpeed);
1157 static void nv_start_tx(struct net_device *dev)
1159 u8 __iomem *base = get_hwbase(dev);
1161 dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
1162 writel(NVREG_XMITCTL_START, base + NvRegTransmitterControl);
1166 static void nv_stop_tx(struct net_device *dev)
1168 u8 __iomem *base = get_hwbase(dev);
1170 dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
1171 writel(0, base + NvRegTransmitterControl);
1172 reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
1173 NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
1174 KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
1176 udelay(NV_TXSTOP_DELAY2);
1177 writel(0, base + NvRegUnknownTransmitterReg);
1180 static void nv_txrx_reset(struct net_device *dev)
1182 struct fe_priv *np = netdev_priv(dev);
1183 u8 __iomem *base = get_hwbase(dev);
1185 dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
1186 writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1188 udelay(NV_TXRX_RESET_DELAY);
1189 writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1193 static void nv_mac_reset(struct net_device *dev)
1195 struct fe_priv *np = netdev_priv(dev);
1196 u8 __iomem *base = get_hwbase(dev);
1198 dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
1199 writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1201 writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
1203 udelay(NV_MAC_RESET_DELAY);
1204 writel(0, base + NvRegMacReset);
1206 udelay(NV_MAC_RESET_DELAY);
1207 writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1212 * nv_get_stats: dev->get_stats function
1213 * Get latest stats value from the nic.
1214 * Called with read_lock(&dev_base_lock) held for read -
1215 * only synchronized against unregister_netdevice.
1217 static struct net_device_stats *nv_get_stats(struct net_device *dev)
1219 struct fe_priv *np = netdev_priv(dev);
1221 /* It seems that the nic always generates interrupts and doesn't
1222 * accumulate errors internally. Thus the current values in np->stats
1223 * are already up to date.
1229 * nv_alloc_rx: fill rx ring entries.
1230 * Return 1 if the allocations for the skbs failed and the
1231 * rx engine is without Available descriptors
1233 static int nv_alloc_rx(struct net_device *dev)
1235 struct fe_priv *np = netdev_priv(dev);
1236 unsigned int refill_rx = np->refill_rx;
1239 while (np->cur_rx != refill_rx) {
1240 struct sk_buff *skb;
1242 nr = refill_rx % np->rx_ring_size;
1243 if (np->rx_skbuff[nr] == NULL) {
1245 skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
1250 np->rx_skbuff[nr] = skb;
1252 skb = np->rx_skbuff[nr];
1254 np->rx_dma[nr] = pci_map_single(np->pci_dev, skb->data,
1255 skb->end-skb->data, PCI_DMA_FROMDEVICE);
1256 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1257 np->rx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->rx_dma[nr]);
1259 np->rx_ring.orig[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
1261 np->rx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->rx_dma[nr]) >> 32;
1262 np->rx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->rx_dma[nr]) & 0x0FFFFFFFF;
1264 np->rx_ring.ex[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
1266 dprintk(KERN_DEBUG "%s: nv_alloc_rx: Packet %d marked as Available\n",
1267 dev->name, refill_rx);
1270 np->refill_rx = refill_rx;
1271 if (np->cur_rx - refill_rx == np->rx_ring_size)
1276 static void nv_do_rx_refill(unsigned long data)
1278 struct net_device *dev = (struct net_device *) data;
1279 struct fe_priv *np = netdev_priv(dev);
1281 if (!using_multi_irqs(dev)) {
1282 if (np->msi_flags & NV_MSI_X_ENABLED)
1283 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1285 disable_irq(dev->irq);
1287 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1289 if (nv_alloc_rx(dev)) {
1290 spin_lock_irq(&np->lock);
1291 if (!np->in_shutdown)
1292 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
1293 spin_unlock_irq(&np->lock);
1295 if (!using_multi_irqs(dev)) {
1296 if (np->msi_flags & NV_MSI_X_ENABLED)
1297 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1299 enable_irq(dev->irq);
1301 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1305 static void nv_init_rx(struct net_device *dev)
1307 struct fe_priv *np = netdev_priv(dev);
1310 np->cur_rx = np->rx_ring_size;
1312 for (i = 0; i < np->rx_ring_size; i++)
1313 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1314 np->rx_ring.orig[i].FlagLen = 0;
1316 np->rx_ring.ex[i].FlagLen = 0;
1319 static void nv_init_tx(struct net_device *dev)
1321 struct fe_priv *np = netdev_priv(dev);
1324 np->next_tx = np->nic_tx = 0;
1325 for (i = 0; i < np->tx_ring_size; i++) {
1326 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1327 np->tx_ring.orig[i].FlagLen = 0;
1329 np->tx_ring.ex[i].FlagLen = 0;
1330 np->tx_skbuff[i] = NULL;
1335 static int nv_init_ring(struct net_device *dev)
1339 return nv_alloc_rx(dev);
1342 static int nv_release_txskb(struct net_device *dev, unsigned int skbnr)
1344 struct fe_priv *np = netdev_priv(dev);
1346 dprintk(KERN_INFO "%s: nv_release_txskb for skbnr %d\n",
1349 if (np->tx_dma[skbnr]) {
1350 pci_unmap_page(np->pci_dev, np->tx_dma[skbnr],
1351 np->tx_dma_len[skbnr],
1353 np->tx_dma[skbnr] = 0;
1356 if (np->tx_skbuff[skbnr]) {
1357 dev_kfree_skb_any(np->tx_skbuff[skbnr]);
1358 np->tx_skbuff[skbnr] = NULL;
1365 static void nv_drain_tx(struct net_device *dev)
1367 struct fe_priv *np = netdev_priv(dev);
1370 for (i = 0; i < np->tx_ring_size; i++) {
1371 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1372 np->tx_ring.orig[i].FlagLen = 0;
1374 np->tx_ring.ex[i].FlagLen = 0;
1375 if (nv_release_txskb(dev, i))
1376 np->stats.tx_dropped++;
1380 static void nv_drain_rx(struct net_device *dev)
1382 struct fe_priv *np = netdev_priv(dev);
1384 for (i = 0; i < np->rx_ring_size; i++) {
1385 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1386 np->rx_ring.orig[i].FlagLen = 0;
1388 np->rx_ring.ex[i].FlagLen = 0;
1390 if (np->rx_skbuff[i]) {
1391 pci_unmap_single(np->pci_dev, np->rx_dma[i],
1392 np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
1393 PCI_DMA_FROMDEVICE);
1394 dev_kfree_skb(np->rx_skbuff[i]);
1395 np->rx_skbuff[i] = NULL;
1400 static void drain_ring(struct net_device *dev)
1407 * nv_start_xmit: dev->hard_start_xmit function
1408 * Called with netif_tx_lock held.
1410 static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
1412 struct fe_priv *np = netdev_priv(dev);
1414 u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
1415 unsigned int fragments = skb_shinfo(skb)->nr_frags;
1416 unsigned int nr = (np->next_tx - 1) % np->tx_ring_size;
1417 unsigned int start_nr = np->next_tx % np->tx_ring_size;
1421 u32 size = skb->len-skb->data_len;
1422 u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1423 u32 tx_flags_vlan = 0;
1425 /* add fragments to entries count */
1426 for (i = 0; i < fragments; i++) {
1427 entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
1428 ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1431 spin_lock_irq(&np->lock);
1433 if ((np->next_tx - np->nic_tx + entries - 1) > np->tx_limit_stop) {
1434 spin_unlock_irq(&np->lock);
1435 netif_stop_queue(dev);
1436 return NETDEV_TX_BUSY;
1439 /* setup the header buffer */
1441 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1442 nr = (nr + 1) % np->tx_ring_size;
1444 np->tx_dma[nr] = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
1446 np->tx_dma_len[nr] = bcnt;
1448 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1449 np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]);
1450 np->tx_ring.orig[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
1452 np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
1453 np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
1454 np->tx_ring.ex[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
1456 tx_flags = np->tx_flags;
1461 /* setup the fragments */
1462 for (i = 0; i < fragments; i++) {
1463 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1464 u32 size = frag->size;
1468 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1469 nr = (nr + 1) % np->tx_ring_size;
1471 np->tx_dma[nr] = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
1473 np->tx_dma_len[nr] = bcnt;
1475 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1476 np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]);
1477 np->tx_ring.orig[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
1479 np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
1480 np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
1481 np->tx_ring.ex[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
1488 /* set last fragment flag */
1489 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1490 np->tx_ring.orig[nr].FlagLen |= cpu_to_le32(tx_flags_extra);
1492 np->tx_ring.ex[nr].FlagLen |= cpu_to_le32(tx_flags_extra);
1495 np->tx_skbuff[nr] = skb;
1498 if (skb_shinfo(skb)->tso_size)
1499 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->tso_size << NV_TX2_TSO_SHIFT);
1502 tx_flags_extra = (skb->ip_summed == CHECKSUM_HW ? (NV_TX2_CHECKSUM_L3|NV_TX2_CHECKSUM_L4) : 0);
1505 if (np->vlangrp && vlan_tx_tag_present(skb)) {
1506 tx_flags_vlan = NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb);
1510 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1511 np->tx_ring.orig[start_nr].FlagLen |= cpu_to_le32(tx_flags | tx_flags_extra);
1513 np->tx_ring.ex[start_nr].TxVlan = cpu_to_le32(tx_flags_vlan);
1514 np->tx_ring.ex[start_nr].FlagLen |= cpu_to_le32(tx_flags | tx_flags_extra);
1517 dprintk(KERN_DEBUG "%s: nv_start_xmit: packet %d (entries %d) queued for transmission. tx_flags_extra: %x\n",
1518 dev->name, np->next_tx, entries, tx_flags_extra);
1521 for (j=0; j<64; j++) {
1523 dprintk("\n%03x:", j);
1524 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
1529 np->next_tx += entries;
1531 dev->trans_start = jiffies;
1532 spin_unlock_irq(&np->lock);
1533 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
1534 pci_push(get_hwbase(dev));
1535 return NETDEV_TX_OK;
1539 * nv_tx_done: check for completed packets, release the skbs.
1541 * Caller must own np->lock.
1543 static void nv_tx_done(struct net_device *dev)
1545 struct fe_priv *np = netdev_priv(dev);
1548 struct sk_buff *skb;
1550 while (np->nic_tx != np->next_tx) {
1551 i = np->nic_tx % np->tx_ring_size;
1553 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1554 Flags = le32_to_cpu(np->tx_ring.orig[i].FlagLen);
1556 Flags = le32_to_cpu(np->tx_ring.ex[i].FlagLen);
1558 dprintk(KERN_DEBUG "%s: nv_tx_done: looking at packet %d, Flags 0x%x.\n",
1559 dev->name, np->nic_tx, Flags);
1560 if (Flags & NV_TX_VALID)
1562 if (np->desc_ver == DESC_VER_1) {
1563 if (Flags & NV_TX_LASTPACKET) {
1564 skb = np->tx_skbuff[i];
1565 if (Flags & (NV_TX_RETRYERROR|NV_TX_CARRIERLOST|NV_TX_LATECOLLISION|
1566 NV_TX_UNDERFLOW|NV_TX_ERROR)) {
1567 if (Flags & NV_TX_UNDERFLOW)
1568 np->stats.tx_fifo_errors++;
1569 if (Flags & NV_TX_CARRIERLOST)
1570 np->stats.tx_carrier_errors++;
1571 np->stats.tx_errors++;
1573 np->stats.tx_packets++;
1574 np->stats.tx_bytes += skb->len;
1578 if (Flags & NV_TX2_LASTPACKET) {
1579 skb = np->tx_skbuff[i];
1580 if (Flags & (NV_TX2_RETRYERROR|NV_TX2_CARRIERLOST|NV_TX2_LATECOLLISION|
1581 NV_TX2_UNDERFLOW|NV_TX2_ERROR)) {
1582 if (Flags & NV_TX2_UNDERFLOW)
1583 np->stats.tx_fifo_errors++;
1584 if (Flags & NV_TX2_CARRIERLOST)
1585 np->stats.tx_carrier_errors++;
1586 np->stats.tx_errors++;
1588 np->stats.tx_packets++;
1589 np->stats.tx_bytes += skb->len;
1593 nv_release_txskb(dev, i);
1596 if (np->next_tx - np->nic_tx < np->tx_limit_start)
1597 netif_wake_queue(dev);
1601 * nv_tx_timeout: dev->tx_timeout function
1602 * Called with netif_tx_lock held.
1604 static void nv_tx_timeout(struct net_device *dev)
1606 struct fe_priv *np = netdev_priv(dev);
1607 u8 __iomem *base = get_hwbase(dev);
1610 if (np->msi_flags & NV_MSI_X_ENABLED)
1611 status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
1613 status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
1615 printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
1620 printk(KERN_INFO "%s: Ring at %lx: next %d nic %d\n",
1621 dev->name, (unsigned long)np->ring_addr,
1622 np->next_tx, np->nic_tx);
1623 printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
1624 for (i=0;i<=np->register_size;i+= 32) {
1625 printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
1627 readl(base + i + 0), readl(base + i + 4),
1628 readl(base + i + 8), readl(base + i + 12),
1629 readl(base + i + 16), readl(base + i + 20),
1630 readl(base + i + 24), readl(base + i + 28));
1632 printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
1633 for (i=0;i<np->tx_ring_size;i+= 4) {
1634 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1635 printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
1637 le32_to_cpu(np->tx_ring.orig[i].PacketBuffer),
1638 le32_to_cpu(np->tx_ring.orig[i].FlagLen),
1639 le32_to_cpu(np->tx_ring.orig[i+1].PacketBuffer),
1640 le32_to_cpu(np->tx_ring.orig[i+1].FlagLen),
1641 le32_to_cpu(np->tx_ring.orig[i+2].PacketBuffer),
1642 le32_to_cpu(np->tx_ring.orig[i+2].FlagLen),
1643 le32_to_cpu(np->tx_ring.orig[i+3].PacketBuffer),
1644 le32_to_cpu(np->tx_ring.orig[i+3].FlagLen));
1646 printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
1648 le32_to_cpu(np->tx_ring.ex[i].PacketBufferHigh),
1649 le32_to_cpu(np->tx_ring.ex[i].PacketBufferLow),
1650 le32_to_cpu(np->tx_ring.ex[i].FlagLen),
1651 le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferHigh),
1652 le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferLow),
1653 le32_to_cpu(np->tx_ring.ex[i+1].FlagLen),
1654 le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferHigh),
1655 le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferLow),
1656 le32_to_cpu(np->tx_ring.ex[i+2].FlagLen),
1657 le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferHigh),
1658 le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferLow),
1659 le32_to_cpu(np->tx_ring.ex[i+3].FlagLen));
1664 spin_lock_irq(&np->lock);
1666 /* 1) stop tx engine */
1669 /* 2) check that the packets were not sent already: */
1672 /* 3) if there are dead entries: clear everything */
1673 if (np->next_tx != np->nic_tx) {
1674 printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
1676 np->next_tx = np->nic_tx = 0;
1677 setup_hw_rings(dev, NV_SETUP_TX_RING);
1678 netif_wake_queue(dev);
1681 /* 4) restart tx engine */
1683 spin_unlock_irq(&np->lock);
1687 * Called when the nic notices a mismatch between the actual data len on the
1688 * wire and the len indicated in the 802 header
1690 static int nv_getlen(struct net_device *dev, void *packet, int datalen)
1692 int hdrlen; /* length of the 802 header */
1693 int protolen; /* length as stored in the proto field */
1695 /* 1) calculate len according to header */
1696 if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == __constant_htons(ETH_P_8021Q)) {
1697 protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
1700 protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
1703 dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
1704 dev->name, datalen, protolen, hdrlen);
1705 if (protolen > ETH_DATA_LEN)
1706 return datalen; /* Value in proto field not a len, no checks possible */
1709 /* consistency checks: */
1710 if (datalen > ETH_ZLEN) {
1711 if (datalen >= protolen) {
1712 /* more data on wire than in 802 header, trim of
1715 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
1716 dev->name, protolen);
1719 /* less data on wire than mentioned in header.
1720 * Discard the packet.
1722 dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
1727 /* short packet. Accept only if 802 values are also short */
1728 if (protolen > ETH_ZLEN) {
1729 dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
1733 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
1734 dev->name, datalen);
1739 static void nv_rx_process(struct net_device *dev)
1741 struct fe_priv *np = netdev_priv(dev);
1746 struct sk_buff *skb;
1749 if (np->cur_rx - np->refill_rx >= np->rx_ring_size)
1750 break; /* we scanned the whole ring - do not continue */
1752 i = np->cur_rx % np->rx_ring_size;
1753 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1754 Flags = le32_to_cpu(np->rx_ring.orig[i].FlagLen);
1755 len = nv_descr_getlength(&np->rx_ring.orig[i], np->desc_ver);
1757 Flags = le32_to_cpu(np->rx_ring.ex[i].FlagLen);
1758 len = nv_descr_getlength_ex(&np->rx_ring.ex[i], np->desc_ver);
1759 vlanflags = le32_to_cpu(np->rx_ring.ex[i].PacketBufferLow);
1762 dprintk(KERN_DEBUG "%s: nv_rx_process: looking at packet %d, Flags 0x%x.\n",
1763 dev->name, np->cur_rx, Flags);
1765 if (Flags & NV_RX_AVAIL)
1766 break; /* still owned by hardware, */
1769 * the packet is for us - immediately tear down the pci mapping.
1770 * TODO: check if a prefetch of the first cacheline improves
1773 pci_unmap_single(np->pci_dev, np->rx_dma[i],
1774 np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
1775 PCI_DMA_FROMDEVICE);
1779 dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",Flags);
1780 for (j=0; j<64; j++) {
1782 dprintk("\n%03x:", j);
1783 dprintk(" %02x", ((unsigned char*)np->rx_skbuff[i]->data)[j]);
1787 /* look at what we actually got: */
1788 if (np->desc_ver == DESC_VER_1) {
1789 if (!(Flags & NV_RX_DESCRIPTORVALID))
1792 if (Flags & NV_RX_ERROR) {
1793 if (Flags & NV_RX_MISSEDFRAME) {
1794 np->stats.rx_missed_errors++;
1795 np->stats.rx_errors++;
1798 if (Flags & (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3)) {
1799 np->stats.rx_errors++;
1802 if (Flags & NV_RX_CRCERR) {
1803 np->stats.rx_crc_errors++;
1804 np->stats.rx_errors++;
1807 if (Flags & NV_RX_OVERFLOW) {
1808 np->stats.rx_over_errors++;
1809 np->stats.rx_errors++;
1812 if (Flags & NV_RX_ERROR4) {
1813 len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
1815 np->stats.rx_errors++;
1819 /* framing errors are soft errors. */
1820 if (Flags & NV_RX_FRAMINGERR) {
1821 if (Flags & NV_RX_SUBSTRACT1) {
1827 if (!(Flags & NV_RX2_DESCRIPTORVALID))
1830 if (Flags & NV_RX2_ERROR) {
1831 if (Flags & (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3)) {
1832 np->stats.rx_errors++;
1835 if (Flags & NV_RX2_CRCERR) {
1836 np->stats.rx_crc_errors++;
1837 np->stats.rx_errors++;
1840 if (Flags & NV_RX2_OVERFLOW) {
1841 np->stats.rx_over_errors++;
1842 np->stats.rx_errors++;
1845 if (Flags & NV_RX2_ERROR4) {
1846 len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
1848 np->stats.rx_errors++;
1852 /* framing errors are soft errors */
1853 if (Flags & NV_RX2_FRAMINGERR) {
1854 if (Flags & NV_RX2_SUBSTRACT1) {
1859 if (np->txrxctl_bits & NVREG_TXRXCTL_RXCHECK) {
1860 Flags &= NV_RX2_CHECKSUMMASK;
1861 if (Flags == NV_RX2_CHECKSUMOK1 ||
1862 Flags == NV_RX2_CHECKSUMOK2 ||
1863 Flags == NV_RX2_CHECKSUMOK3) {
1864 dprintk(KERN_DEBUG "%s: hw checksum hit!.\n", dev->name);
1865 np->rx_skbuff[i]->ip_summed = CHECKSUM_UNNECESSARY;
1867 dprintk(KERN_DEBUG "%s: hwchecksum miss!.\n", dev->name);
1871 /* got a valid packet - forward it to the network core */
1872 skb = np->rx_skbuff[i];
1873 np->rx_skbuff[i] = NULL;
1876 skb->protocol = eth_type_trans(skb, dev);
1877 dprintk(KERN_DEBUG "%s: nv_rx_process: packet %d with %d bytes, proto %d accepted.\n",
1878 dev->name, np->cur_rx, len, skb->protocol);
1879 if (np->vlangrp && (vlanflags & NV_RX3_VLAN_TAG_PRESENT)) {
1880 vlan_hwaccel_rx(skb, np->vlangrp, vlanflags & NV_RX3_VLAN_TAG_MASK);
1884 dev->last_rx = jiffies;
1885 np->stats.rx_packets++;
1886 np->stats.rx_bytes += len;
1892 static void set_bufsize(struct net_device *dev)
1894 struct fe_priv *np = netdev_priv(dev);
1896 if (dev->mtu <= ETH_DATA_LEN)
1897 np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
1899 np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
1903 * nv_change_mtu: dev->change_mtu function
1904 * Called with dev_base_lock held for read.
1906 static int nv_change_mtu(struct net_device *dev, int new_mtu)
1908 struct fe_priv *np = netdev_priv(dev);
1911 if (new_mtu < 64 || new_mtu > np->pkt_limit)
1917 /* return early if the buffer sizes will not change */
1918 if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
1920 if (old_mtu == new_mtu)
1923 /* synchronized against open : rtnl_lock() held by caller */
1924 if (netif_running(dev)) {
1925 u8 __iomem *base = get_hwbase(dev);
1927 * It seems that the nic preloads valid ring entries into an
1928 * internal buffer. The procedure for flushing everything is
1929 * guessed, there is probably a simpler approach.
1930 * Changing the MTU is a rare event, it shouldn't matter.
1932 nv_disable_irq(dev);
1933 netif_tx_lock_bh(dev);
1934 spin_lock(&np->lock);
1939 /* drain rx queue */
1942 /* reinit driver view of the rx queue */
1944 if (nv_init_ring(dev)) {
1945 if (!np->in_shutdown)
1946 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
1948 /* reinit nic view of the rx queue */
1949 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
1950 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
1951 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
1952 base + NvRegRingSizes);
1954 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
1957 /* restart rx engine */
1960 spin_unlock(&np->lock);
1961 netif_tx_unlock_bh(dev);
1967 static void nv_copy_mac_to_hw(struct net_device *dev)
1969 u8 __iomem *base = get_hwbase(dev);
1972 mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
1973 (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
1974 mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
1976 writel(mac[0], base + NvRegMacAddrA);
1977 writel(mac[1], base + NvRegMacAddrB);
1981 * nv_set_mac_address: dev->set_mac_address function
1982 * Called with rtnl_lock() held.
1984 static int nv_set_mac_address(struct net_device *dev, void *addr)
1986 struct fe_priv *np = netdev_priv(dev);
1987 struct sockaddr *macaddr = (struct sockaddr*)addr;
1989 if(!is_valid_ether_addr(macaddr->sa_data))
1990 return -EADDRNOTAVAIL;
1992 /* synchronized against open : rtnl_lock() held by caller */
1993 memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
1995 if (netif_running(dev)) {
1996 netif_tx_lock_bh(dev);
1997 spin_lock_irq(&np->lock);
1999 /* stop rx engine */
2002 /* set mac address */
2003 nv_copy_mac_to_hw(dev);
2005 /* restart rx engine */
2007 spin_unlock_irq(&np->lock);
2008 netif_tx_unlock_bh(dev);
2010 nv_copy_mac_to_hw(dev);
2016 * nv_set_multicast: dev->set_multicast function
2017 * Called with netif_tx_lock held.
2019 static void nv_set_multicast(struct net_device *dev)
2021 struct fe_priv *np = netdev_priv(dev);
2022 u8 __iomem *base = get_hwbase(dev);
2025 u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
2027 memset(addr, 0, sizeof(addr));
2028 memset(mask, 0, sizeof(mask));
2030 if (dev->flags & IFF_PROMISC) {
2031 printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name);
2032 pff |= NVREG_PFF_PROMISC;
2034 pff |= NVREG_PFF_MYADDR;
2036 if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
2040 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
2041 if (dev->flags & IFF_ALLMULTI) {
2042 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
2044 struct dev_mc_list *walk;
2046 walk = dev->mc_list;
2047 while (walk != NULL) {
2049 a = le32_to_cpu(*(u32 *) walk->dmi_addr);
2050 b = le16_to_cpu(*(u16 *) (&walk->dmi_addr[4]));
2058 addr[0] = alwaysOn[0];
2059 addr[1] = alwaysOn[1];
2060 mask[0] = alwaysOn[0] | alwaysOff[0];
2061 mask[1] = alwaysOn[1] | alwaysOff[1];
2064 addr[0] |= NVREG_MCASTADDRA_FORCE;
2065 pff |= NVREG_PFF_ALWAYS;
2066 spin_lock_irq(&np->lock);
2068 writel(addr[0], base + NvRegMulticastAddrA);
2069 writel(addr[1], base + NvRegMulticastAddrB);
2070 writel(mask[0], base + NvRegMulticastMaskA);
2071 writel(mask[1], base + NvRegMulticastMaskB);
2072 writel(pff, base + NvRegPacketFilterFlags);
2073 dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
2076 spin_unlock_irq(&np->lock);
2079 void nv_update_pause(struct net_device *dev, u32 pause_flags)
2081 struct fe_priv *np = netdev_priv(dev);
2082 u8 __iomem *base = get_hwbase(dev);
2084 np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
2086 if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
2087 u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
2088 if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
2089 writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
2090 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2092 writel(pff, base + NvRegPacketFilterFlags);
2095 if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
2096 u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
2097 if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
2098 writel(NVREG_TX_PAUSEFRAME_ENABLE, base + NvRegTxPauseFrame);
2099 writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
2100 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2102 writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
2103 writel(regmisc, base + NvRegMisc1);
2109 * nv_update_linkspeed: Setup the MAC according to the link partner
2110 * @dev: Network device to be configured
2112 * The function queries the PHY and checks if there is a link partner.
2113 * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
2114 * set to 10 MBit HD.
2116 * The function returns 0 if there is no link partner and 1 if there is
2117 * a good link partner.
2119 static int nv_update_linkspeed(struct net_device *dev)
2121 struct fe_priv *np = netdev_priv(dev);
2122 u8 __iomem *base = get_hwbase(dev);
2125 int adv_lpa, adv_pause, lpa_pause;
2126 int newls = np->linkspeed;
2127 int newdup = np->duplex;
2130 u32 control_1000, status_1000, phyreg, pause_flags;
2132 /* BMSR_LSTATUS is latched, read it twice:
2133 * we want the current value.
2135 mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
2136 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
2138 if (!(mii_status & BMSR_LSTATUS)) {
2139 dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
2141 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2147 if (np->autoneg == 0) {
2148 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
2149 dev->name, np->fixed_mode);
2150 if (np->fixed_mode & LPA_100FULL) {
2151 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2153 } else if (np->fixed_mode & LPA_100HALF) {
2154 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2156 } else if (np->fixed_mode & LPA_10FULL) {
2157 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2160 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2166 /* check auto negotiation is complete */
2167 if (!(mii_status & BMSR_ANEGCOMPLETE)) {
2168 /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
2169 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2172 dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
2176 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2177 lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
2178 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
2179 dev->name, adv, lpa);
2182 if (np->gigabit == PHY_GIGABIT) {
2183 control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
2184 status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
2186 if ((control_1000 & ADVERTISE_1000FULL) &&
2187 (status_1000 & LPA_1000FULL)) {
2188 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
2190 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
2196 /* FIXME: handle parallel detection properly */
2197 adv_lpa = lpa & adv;
2198 if (adv_lpa & LPA_100FULL) {
2199 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2201 } else if (adv_lpa & LPA_100HALF) {
2202 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2204 } else if (adv_lpa & LPA_10FULL) {
2205 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2207 } else if (adv_lpa & LPA_10HALF) {
2208 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2211 dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
2212 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2217 if (np->duplex == newdup && np->linkspeed == newls)
2220 dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
2221 dev->name, np->linkspeed, np->duplex, newls, newdup);
2223 np->duplex = newdup;
2224 np->linkspeed = newls;
2226 if (np->gigabit == PHY_GIGABIT) {
2227 phyreg = readl(base + NvRegRandomSeed);
2228 phyreg &= ~(0x3FF00);
2229 if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
2230 phyreg |= NVREG_RNDSEED_FORCE3;
2231 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
2232 phyreg |= NVREG_RNDSEED_FORCE2;
2233 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
2234 phyreg |= NVREG_RNDSEED_FORCE;
2235 writel(phyreg, base + NvRegRandomSeed);
2238 phyreg = readl(base + NvRegPhyInterface);
2239 phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
2240 if (np->duplex == 0)
2242 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
2244 else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
2246 writel(phyreg, base + NvRegPhyInterface);
2248 writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
2251 writel(np->linkspeed, base + NvRegLinkSpeed);
2255 /* setup pause frame */
2256 if (np->duplex != 0) {
2257 if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
2258 adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
2259 lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
2261 switch (adv_pause) {
2262 case (ADVERTISE_PAUSE_CAP):
2263 if (lpa_pause & LPA_PAUSE_CAP) {
2264 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2265 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
2266 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2269 case (ADVERTISE_PAUSE_ASYM):
2270 if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
2272 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2275 case (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM):
2276 if (lpa_pause & LPA_PAUSE_CAP)
2278 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2279 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
2280 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2282 if (lpa_pause == LPA_PAUSE_ASYM)
2284 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2289 pause_flags = np->pause_flags;
2292 nv_update_pause(dev, pause_flags);
2297 static void nv_linkchange(struct net_device *dev)
2299 if (nv_update_linkspeed(dev)) {
2300 if (!netif_carrier_ok(dev)) {
2301 netif_carrier_on(dev);
2302 printk(KERN_INFO "%s: link up.\n", dev->name);
2306 if (netif_carrier_ok(dev)) {
2307 netif_carrier_off(dev);
2308 printk(KERN_INFO "%s: link down.\n", dev->name);
2314 static void nv_link_irq(struct net_device *dev)
2316 u8 __iomem *base = get_hwbase(dev);
2319 miistat = readl(base + NvRegMIIStatus);
2320 writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
2321 dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
2323 if (miistat & (NVREG_MIISTAT_LINKCHANGE))
2325 dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
2328 static irqreturn_t nv_nic_irq(int foo, void *data, struct pt_regs *regs)
2330 struct net_device *dev = (struct net_device *) data;
2331 struct fe_priv *np = netdev_priv(dev);
2332 u8 __iomem *base = get_hwbase(dev);
2336 dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
2339 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
2340 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
2341 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
2343 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
2344 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
2347 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
2348 if (!(events & np->irqmask))
2351 spin_lock(&np->lock);
2353 spin_unlock(&np->lock);
2356 if (nv_alloc_rx(dev)) {
2357 spin_lock(&np->lock);
2358 if (!np->in_shutdown)
2359 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2360 spin_unlock(&np->lock);
2363 if (events & NVREG_IRQ_LINK) {
2364 spin_lock(&np->lock);
2366 spin_unlock(&np->lock);
2368 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
2369 spin_lock(&np->lock);
2371 spin_unlock(&np->lock);
2372 np->link_timeout = jiffies + LINK_TIMEOUT;
2374 if (events & (NVREG_IRQ_TX_ERR)) {
2375 dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
2378 if (events & (NVREG_IRQ_UNKNOWN)) {
2379 printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
2382 if (i > max_interrupt_work) {
2383 spin_lock(&np->lock);
2384 /* disable interrupts on the nic */
2385 if (!(np->msi_flags & NV_MSI_X_ENABLED))
2386 writel(0, base + NvRegIrqMask);
2388 writel(np->irqmask, base + NvRegIrqMask);
2391 if (!np->in_shutdown) {
2392 np->nic_poll_irq = np->irqmask;
2393 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2395 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
2396 spin_unlock(&np->lock);
2401 dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
2403 return IRQ_RETVAL(i);
2406 static irqreturn_t nv_nic_irq_tx(int foo, void *data, struct pt_regs *regs)
2408 struct net_device *dev = (struct net_device *) data;
2409 struct fe_priv *np = netdev_priv(dev);
2410 u8 __iomem *base = get_hwbase(dev);
2414 dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
2417 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
2418 writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
2420 dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
2421 if (!(events & np->irqmask))
2424 spin_lock_irq(&np->lock);
2426 spin_unlock_irq(&np->lock);
2428 if (events & (NVREG_IRQ_TX_ERR)) {
2429 dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
2432 if (i > max_interrupt_work) {
2433 spin_lock_irq(&np->lock);
2434 /* disable interrupts on the nic */
2435 writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
2438 if (!np->in_shutdown) {
2439 np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
2440 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2442 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
2443 spin_unlock_irq(&np->lock);
2448 dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
2450 return IRQ_RETVAL(i);
2453 static irqreturn_t nv_nic_irq_rx(int foo, void *data, struct pt_regs *regs)
2455 struct net_device *dev = (struct net_device *) data;
2456 struct fe_priv *np = netdev_priv(dev);
2457 u8 __iomem *base = get_hwbase(dev);
2461 dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
2464 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
2465 writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
2467 dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
2468 if (!(events & np->irqmask))
2472 if (nv_alloc_rx(dev)) {
2473 spin_lock_irq(&np->lock);
2474 if (!np->in_shutdown)
2475 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2476 spin_unlock_irq(&np->lock);
2479 if (i > max_interrupt_work) {
2480 spin_lock_irq(&np->lock);
2481 /* disable interrupts on the nic */
2482 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
2485 if (!np->in_shutdown) {
2486 np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
2487 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2489 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
2490 spin_unlock_irq(&np->lock);
2495 dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
2497 return IRQ_RETVAL(i);
2500 static irqreturn_t nv_nic_irq_other(int foo, void *data, struct pt_regs *regs)
2502 struct net_device *dev = (struct net_device *) data;
2503 struct fe_priv *np = netdev_priv(dev);
2504 u8 __iomem *base = get_hwbase(dev);
2508 dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
2511 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
2512 writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
2514 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
2515 if (!(events & np->irqmask))
2518 if (events & NVREG_IRQ_LINK) {
2519 spin_lock_irq(&np->lock);
2521 spin_unlock_irq(&np->lock);
2523 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
2524 spin_lock_irq(&np->lock);
2526 spin_unlock_irq(&np->lock);
2527 np->link_timeout = jiffies + LINK_TIMEOUT;
2529 if (events & (NVREG_IRQ_UNKNOWN)) {
2530 printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
2533 if (i > max_interrupt_work) {
2534 spin_lock_irq(&np->lock);
2535 /* disable interrupts on the nic */
2536 writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
2539 if (!np->in_shutdown) {
2540 np->nic_poll_irq |= NVREG_IRQ_OTHER;
2541 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2543 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
2544 spin_unlock_irq(&np->lock);
2549 dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
2551 return IRQ_RETVAL(i);
2554 static irqreturn_t nv_nic_irq_test(int foo, void *data, struct pt_regs *regs)
2556 struct net_device *dev = (struct net_device *) data;
2557 struct fe_priv *np = netdev_priv(dev);
2558 u8 __iomem *base = get_hwbase(dev);
2561 dprintk(KERN_DEBUG "%s: nv_nic_irq_test\n", dev->name);
2563 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
2564 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
2565 writel(NVREG_IRQ_TIMER, base + NvRegIrqStatus);
2567 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
2568 writel(NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
2571 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
2572 if (!(events & NVREG_IRQ_TIMER))
2573 return IRQ_RETVAL(0);
2575 spin_lock(&np->lock);
2577 spin_unlock(&np->lock);
2579 dprintk(KERN_DEBUG "%s: nv_nic_irq_test completed\n", dev->name);
2581 return IRQ_RETVAL(1);
2584 static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
2586 u8 __iomem *base = get_hwbase(dev);
2590 /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
2591 * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
2592 * the remaining 8 interrupts.
2594 for (i = 0; i < 8; i++) {
2595 if ((irqmask >> i) & 0x1) {
2596 msixmap |= vector << (i << 2);
2599 writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
2602 for (i = 0; i < 8; i++) {
2603 if ((irqmask >> (i + 8)) & 0x1) {
2604 msixmap |= vector << (i << 2);
2607 writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
2610 static int nv_request_irq(struct net_device *dev, int intr_test)
2612 struct fe_priv *np = get_nvpriv(dev);
2613 u8 __iomem *base = get_hwbase(dev);
2617 if (np->msi_flags & NV_MSI_X_CAPABLE) {
2618 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
2619 np->msi_x_entry[i].entry = i;
2621 if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
2622 np->msi_flags |= NV_MSI_X_ENABLED;
2623 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
2624 /* Request irq for rx handling */
2625 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, &nv_nic_irq_rx, SA_SHIRQ, dev->name, dev) != 0) {
2626 printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
2627 pci_disable_msix(np->pci_dev);
2628 np->msi_flags &= ~NV_MSI_X_ENABLED;
2631 /* Request irq for tx handling */
2632 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, &nv_nic_irq_tx, SA_SHIRQ, dev->name, dev) != 0) {
2633 printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
2634 pci_disable_msix(np->pci_dev);
2635 np->msi_flags &= ~NV_MSI_X_ENABLED;
2638 /* Request irq for link and timer handling */
2639 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, &nv_nic_irq_other, SA_SHIRQ, dev->name, dev) != 0) {
2640 printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
2641 pci_disable_msix(np->pci_dev);
2642 np->msi_flags &= ~NV_MSI_X_ENABLED;
2645 /* map interrupts to their respective vector */
2646 writel(0, base + NvRegMSIXMap0);
2647 writel(0, base + NvRegMSIXMap1);
2648 set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
2649 set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
2650 set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
2652 /* Request irq for all interrupts */
2654 request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, &nv_nic_irq, SA_SHIRQ, dev->name, dev) != 0) ||
2656 request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, &nv_nic_irq_test, SA_SHIRQ, dev->name, dev) != 0)) {
2657 printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
2658 pci_disable_msix(np->pci_dev);
2659 np->msi_flags &= ~NV_MSI_X_ENABLED;
2663 /* map interrupts to vector 0 */
2664 writel(0, base + NvRegMSIXMap0);
2665 writel(0, base + NvRegMSIXMap1);
2669 if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
2670 if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
2671 np->msi_flags |= NV_MSI_ENABLED;
2672 if ((!intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq, SA_SHIRQ, dev->name, dev) != 0) ||
2673 (intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq_test, SA_SHIRQ, dev->name, dev) != 0)) {
2674 printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
2675 pci_disable_msi(np->pci_dev);
2676 np->msi_flags &= ~NV_MSI_ENABLED;
2680 /* map interrupts to vector 0 */
2681 writel(0, base + NvRegMSIMap0);
2682 writel(0, base + NvRegMSIMap1);
2683 /* enable msi vector 0 */
2684 writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
2688 if ((!intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq, SA_SHIRQ, dev->name, dev) != 0) ||
2689 (intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq_test, SA_SHIRQ, dev->name, dev) != 0))
2696 free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
2698 free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
2703 static void nv_free_irq(struct net_device *dev)
2705 struct fe_priv *np = get_nvpriv(dev);
2708 if (np->msi_flags & NV_MSI_X_ENABLED) {
2709 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
2710 free_irq(np->msi_x_entry[i].vector, dev);
2712 pci_disable_msix(np->pci_dev);
2713 np->msi_flags &= ~NV_MSI_X_ENABLED;
2715 free_irq(np->pci_dev->irq, dev);
2716 if (np->msi_flags & NV_MSI_ENABLED) {
2717 pci_disable_msi(np->pci_dev);
2718 np->msi_flags &= ~NV_MSI_ENABLED;
2723 static void nv_do_nic_poll(unsigned long data)
2725 struct net_device *dev = (struct net_device *) data;
2726 struct fe_priv *np = netdev_priv(dev);
2727 u8 __iomem *base = get_hwbase(dev);
2731 * First disable irq(s) and then
2732 * reenable interrupts on the nic, we have to do this before calling
2733 * nv_nic_irq because that may decide to do otherwise
2736 if (!using_multi_irqs(dev)) {
2737 if (np->msi_flags & NV_MSI_X_ENABLED)
2738 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
2740 disable_irq(dev->irq);
2743 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
2744 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
2745 mask |= NVREG_IRQ_RX_ALL;
2747 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
2748 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
2749 mask |= NVREG_IRQ_TX_ALL;
2751 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
2752 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
2753 mask |= NVREG_IRQ_OTHER;
2756 np->nic_poll_irq = 0;
2758 /* FIXME: Do we need synchronize_irq(dev->irq) here? */
2760 writel(mask, base + NvRegIrqMask);
2763 if (!using_multi_irqs(dev)) {
2764 nv_nic_irq((int) 0, (void *) data, (struct pt_regs *) NULL);
2765 if (np->msi_flags & NV_MSI_X_ENABLED)
2766 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
2768 enable_irq(dev->irq);
2770 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
2771 nv_nic_irq_rx((int) 0, (void *) data, (struct pt_regs *) NULL);
2772 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
2774 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
2775 nv_nic_irq_tx((int) 0, (void *) data, (struct pt_regs *) NULL);
2776 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
2778 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
2779 nv_nic_irq_other((int) 0, (void *) data, (struct pt_regs *) NULL);
2780 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
2785 #ifdef CONFIG_NET_POLL_CONTROLLER
2786 static void nv_poll_controller(struct net_device *dev)
2788 nv_do_nic_poll((unsigned long) dev);
2792 static void nv_do_stats_poll(unsigned long data)
2794 struct net_device *dev = (struct net_device *) data;
2795 struct fe_priv *np = netdev_priv(dev);
2796 u8 __iomem *base = get_hwbase(dev);
2798 np->estats.tx_bytes += readl(base + NvRegTxCnt);
2799 np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
2800 np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
2801 np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
2802 np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
2803 np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
2804 np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
2805 np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
2806 np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
2807 np->estats.tx_deferral += readl(base + NvRegTxDef);
2808 np->estats.tx_packets += readl(base + NvRegTxFrame);
2809 np->estats.tx_pause += readl(base + NvRegTxPause);
2810 np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
2811 np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
2812 np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
2813 np->estats.rx_runt += readl(base + NvRegRxRunt);
2814 np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
2815 np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
2816 np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
2817 np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
2818 np->estats.rx_length_error += readl(base + NvRegRxLenErr);
2819 np->estats.rx_unicast += readl(base + NvRegRxUnicast);
2820 np->estats.rx_multicast += readl(base + NvRegRxMulticast);
2821 np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
2822 np->estats.rx_bytes += readl(base + NvRegRxCnt);
2823 np->estats.rx_pause += readl(base + NvRegRxPause);
2824 np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
2825 np->estats.rx_packets =
2826 np->estats.rx_unicast +
2827 np->estats.rx_multicast +
2828 np->estats.rx_broadcast;
2829 np->estats.rx_errors_total =
2830 np->estats.rx_crc_errors +
2831 np->estats.rx_over_errors +
2832 np->estats.rx_frame_error +
2833 (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
2834 np->estats.rx_late_collision +
2835 np->estats.rx_runt +
2836 np->estats.rx_frame_too_long;
2838 if (!np->in_shutdown)
2839 mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
2842 static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2844 struct fe_priv *np = netdev_priv(dev);
2845 strcpy(info->driver, "forcedeth");
2846 strcpy(info->version, FORCEDETH_VERSION);
2847 strcpy(info->bus_info, pci_name(np->pci_dev));
2850 static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
2852 struct fe_priv *np = netdev_priv(dev);
2853 wolinfo->supported = WAKE_MAGIC;
2855 spin_lock_irq(&np->lock);
2857 wolinfo->wolopts = WAKE_MAGIC;
2858 spin_unlock_irq(&np->lock);
2861 static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
2863 struct fe_priv *np = netdev_priv(dev);
2864 u8 __iomem *base = get_hwbase(dev);
2867 if (wolinfo->wolopts == 0) {
2869 } else if (wolinfo->wolopts & WAKE_MAGIC) {
2871 flags = NVREG_WAKEUPFLAGS_ENABLE;
2873 if (netif_running(dev)) {
2874 spin_lock_irq(&np->lock);
2875 writel(flags, base + NvRegWakeUpFlags);
2876 spin_unlock_irq(&np->lock);
2881 static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2883 struct fe_priv *np = netdev_priv(dev);
2886 spin_lock_irq(&np->lock);
2887 ecmd->port = PORT_MII;
2888 if (!netif_running(dev)) {
2889 /* We do not track link speed / duplex setting if the
2890 * interface is disabled. Force a link check */
2891 if (nv_update_linkspeed(dev)) {
2892 if (!netif_carrier_ok(dev))
2893 netif_carrier_on(dev);
2895 if (netif_carrier_ok(dev))
2896 netif_carrier_off(dev);
2900 if (netif_carrier_ok(dev)) {
2901 switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
2902 case NVREG_LINKSPEED_10:
2903 ecmd->speed = SPEED_10;
2905 case NVREG_LINKSPEED_100:
2906 ecmd->speed = SPEED_100;
2908 case NVREG_LINKSPEED_1000:
2909 ecmd->speed = SPEED_1000;
2912 ecmd->duplex = DUPLEX_HALF;
2914 ecmd->duplex = DUPLEX_FULL;
2920 ecmd->autoneg = np->autoneg;
2922 ecmd->advertising = ADVERTISED_MII;
2924 ecmd->advertising |= ADVERTISED_Autoneg;
2925 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2926 if (adv & ADVERTISE_10HALF)
2927 ecmd->advertising |= ADVERTISED_10baseT_Half;
2928 if (adv & ADVERTISE_10FULL)
2929 ecmd->advertising |= ADVERTISED_10baseT_Full;
2930 if (adv & ADVERTISE_100HALF)
2931 ecmd->advertising |= ADVERTISED_100baseT_Half;
2932 if (adv & ADVERTISE_100FULL)
2933 ecmd->advertising |= ADVERTISED_100baseT_Full;
2934 if (np->gigabit == PHY_GIGABIT) {
2935 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
2936 if (adv & ADVERTISE_1000FULL)
2937 ecmd->advertising |= ADVERTISED_1000baseT_Full;
2940 ecmd->supported = (SUPPORTED_Autoneg |
2941 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2942 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2944 if (np->gigabit == PHY_GIGABIT)
2945 ecmd->supported |= SUPPORTED_1000baseT_Full;
2947 ecmd->phy_address = np->phyaddr;
2948 ecmd->transceiver = XCVR_EXTERNAL;
2950 /* ignore maxtxpkt, maxrxpkt for now */
2951 spin_unlock_irq(&np->lock);
2955 static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2957 struct fe_priv *np = netdev_priv(dev);
2959 if (ecmd->port != PORT_MII)
2961 if (ecmd->transceiver != XCVR_EXTERNAL)
2963 if (ecmd->phy_address != np->phyaddr) {
2964 /* TODO: support switching between multiple phys. Should be
2965 * trivial, but not enabled due to lack of test hardware. */
2968 if (ecmd->autoneg == AUTONEG_ENABLE) {
2971 mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
2972 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
2973 if (np->gigabit == PHY_GIGABIT)
2974 mask |= ADVERTISED_1000baseT_Full;
2976 if ((ecmd->advertising & mask) == 0)
2979 } else if (ecmd->autoneg == AUTONEG_DISABLE) {
2980 /* Note: autonegotiation disable, speed 1000 intentionally
2981 * forbidden - noone should need that. */
2983 if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
2985 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
2991 netif_carrier_off(dev);
2992 if (netif_running(dev)) {
2993 nv_disable_irq(dev);
2994 spin_lock_bh(&dev->xmit_lock);
2995 spin_lock(&np->lock);
2999 spin_unlock(&np->lock);
3000 spin_unlock_bh(&dev->xmit_lock);
3003 if (ecmd->autoneg == AUTONEG_ENABLE) {
3008 /* advertise only what has been requested */
3009 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3010 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
3011 if (ecmd->advertising & ADVERTISED_10baseT_Half)
3012 adv |= ADVERTISE_10HALF;
3013 if (ecmd->advertising & ADVERTISED_10baseT_Full)
3014 adv |= ADVERTISE_10FULL;
3015 if (ecmd->advertising & ADVERTISED_100baseT_Half)
3016 adv |= ADVERTISE_100HALF;
3017 if (ecmd->advertising & ADVERTISED_100baseT_Full)
3018 adv |= ADVERTISE_100FULL;
3019 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
3020 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
3021 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
3022 adv |= ADVERTISE_PAUSE_ASYM;
3023 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
3025 if (np->gigabit == PHY_GIGABIT) {
3026 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
3027 adv &= ~ADVERTISE_1000FULL;
3028 if (ecmd->advertising & ADVERTISED_1000baseT_Full)
3029 adv |= ADVERTISE_1000FULL;
3030 mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
3033 if (netif_running(dev))
3034 printk(KERN_INFO "%s: link down.\n", dev->name);
3035 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
3036 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
3037 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
3044 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3045 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
3046 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
3047 adv |= ADVERTISE_10HALF;
3048 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
3049 adv |= ADVERTISE_10FULL;
3050 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
3051 adv |= ADVERTISE_100HALF;
3052 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
3053 adv |= ADVERTISE_100FULL;
3054 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
3055 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
3056 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
3057 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3059 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
3060 adv |= ADVERTISE_PAUSE_ASYM;
3061 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3063 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
3064 np->fixed_mode = adv;
3066 if (np->gigabit == PHY_GIGABIT) {
3067 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
3068 adv &= ~ADVERTISE_1000FULL;
3069 mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
3072 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
3073 bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
3074 if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
3075 bmcr |= BMCR_FULLDPLX;
3076 if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
3077 bmcr |= BMCR_SPEED100;
3078 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
3079 if (np->phy_oui == PHY_OUI_MARVELL) {
3081 if (phy_reset(dev)) {
3082 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
3085 } else if (netif_running(dev)) {
3086 /* Wait a bit and then reconfigure the nic. */
3092 if (netif_running(dev)) {
3101 #define FORCEDETH_REGS_VER 1
3103 static int nv_get_regs_len(struct net_device *dev)
3105 struct fe_priv *np = netdev_priv(dev);
3106 return np->register_size;
3109 static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
3111 struct fe_priv *np = netdev_priv(dev);
3112 u8 __iomem *base = get_hwbase(dev);
3116 regs->version = FORCEDETH_REGS_VER;
3117 spin_lock_irq(&np->lock);
3118 for (i = 0;i <= np->register_size/sizeof(u32); i++)
3119 rbuf[i] = readl(base + i*sizeof(u32));
3120 spin_unlock_irq(&np->lock);
3123 static int nv_nway_reset(struct net_device *dev)
3125 struct fe_priv *np = netdev_priv(dev);
3131 netif_carrier_off(dev);
3132 if (netif_running(dev)) {
3133 nv_disable_irq(dev);
3134 spin_lock_bh(&dev->xmit_lock);
3135 spin_lock(&np->lock);
3139 spin_unlock(&np->lock);
3140 spin_unlock_bh(&dev->xmit_lock);
3141 printk(KERN_INFO "%s: link down.\n", dev->name);
3144 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
3145 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
3146 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
3148 if (netif_running(dev)) {