2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 * This version of the driver is specific to the FADS implementation,
6 * since the board contains control registers external to the processor
7 * for the control of the LevelOne LXT970 transceiver. The MPC860T manual
8 * describes connections using the internal parallel port I/O, which
9 * is basically all of Port D.
11 * Right now, I am very wasteful with the buffers. I allocate memory
12 * pages and then divide them into 2K frame buffers. This way I know I
13 * have buffers large enough to hold one frame within one buffer descriptor.
14 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
15 * will be much more memory efficient and will easily handle lots of
18 * Much better multiple PHY support by Magnus Damm.
19 * Copyright (c) 2000 Ericsson Radio Systems AB.
21 * Support for FEC controller of ColdFire processors.
22 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
24 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
25 * Copyright (c) 2004-2006 Macq Electronique SA.
28 #include <linux/module.h>
29 #include <linux/kernel.h>
30 #include <linux/string.h>
31 #include <linux/ptrace.h>
32 #include <linux/errno.h>
33 #include <linux/ioport.h>
34 #include <linux/slab.h>
35 #include <linux/interrupt.h>
36 #include <linux/pci.h>
37 #include <linux/init.h>
38 #include <linux/delay.h>
39 #include <linux/netdevice.h>
40 #include <linux/etherdevice.h>
41 #include <linux/skbuff.h>
42 #include <linux/spinlock.h>
43 #include <linux/workqueue.h>
44 #include <linux/bitops.h>
47 #include <asm/uaccess.h>
49 #include <asm/pgtable.h>
50 #include <asm/cacheflush.h>
52 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || \
53 defined(CONFIG_M5272) || defined(CONFIG_M528x) || \
54 defined(CONFIG_M520x) || defined(CONFIG_M532x)
55 #include <asm/coldfire.h>
56 #include <asm/mcfsim.h>
59 #include <asm/8xx_immap.h>
60 #include <asm/mpc8xx.h>
64 #if defined(CONFIG_FEC2)
65 #define FEC_MAX_PORTS 2
67 #define FEC_MAX_PORTS 1
71 * Define the fixed address of the FEC hardware.
73 static unsigned int fec_hw[] = {
74 #if defined(CONFIG_M5272)
76 #elif defined(CONFIG_M527x)
79 #elif defined(CONFIG_M523x) || defined(CONFIG_M528x)
81 #elif defined(CONFIG_M520x)
83 #elif defined(CONFIG_M532x)
84 (MCF_MBAR+0xfc030000),
86 &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec),
90 static unsigned char fec_mac_default[] = {
91 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
95 * Some hardware gets it MAC address out of local flash memory.
96 * if this is non-zero then assume it is the address to get MAC from.
98 #if defined(CONFIG_NETtel)
99 #define FEC_FLASHMAC 0xf0006006
100 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
101 #define FEC_FLASHMAC 0xf0006000
102 #elif defined(CONFIG_CANCam)
103 #define FEC_FLASHMAC 0xf0020000
104 #elif defined (CONFIG_M5272C3)
105 #define FEC_FLASHMAC (0xffe04000 + 4)
106 #elif defined(CONFIG_MOD5272)
107 #define FEC_FLASHMAC 0xffc0406b
109 #define FEC_FLASHMAC 0
112 /* Forward declarations of some structures to support different PHYs
117 void (*funct)(uint mii_reg, struct net_device *dev);
124 const phy_cmd_t *config;
125 const phy_cmd_t *startup;
126 const phy_cmd_t *ack_int;
127 const phy_cmd_t *shutdown;
130 /* The number of Tx and Rx buffers. These are allocated from the page
131 * pool. The code may assume these are power of two, so it it best
132 * to keep them that size.
133 * We don't need to allocate pages for the transmitter. We just use
134 * the skbuffer directly.
136 #define FEC_ENET_RX_PAGES 8
137 #define FEC_ENET_RX_FRSIZE 2048
138 #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
139 #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
140 #define FEC_ENET_TX_FRSIZE 2048
141 #define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
142 #define TX_RING_SIZE 16 /* Must be power of two */
143 #define TX_RING_MOD_MASK 15 /* for this to work */
145 #if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
146 #error "FEC: descriptor ring size constants too large"
149 /* Interrupt events/masks.
151 #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
152 #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
153 #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
154 #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
155 #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
156 #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
157 #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
158 #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
159 #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
160 #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
162 /* The FEC stores dest/src/type, data, and checksum for receive packets.
164 #define PKT_MAXBUF_SIZE 1518
165 #define PKT_MINBUF_SIZE 64
166 #define PKT_MAXBLR_SIZE 1520
170 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
171 * size bits. Other FEC hardware does not, so we need to take that into
172 * account when setting it.
174 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
175 defined(CONFIG_M520x) || defined(CONFIG_M532x)
176 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
178 #define OPT_FRAME_SIZE 0
181 /* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
182 * tx_bd_base always point to the base of the buffer descriptors. The
183 * cur_rx and cur_tx point to the currently available buffer.
184 * The dirty_tx tracks the current buffer that is being sent by the
185 * controller. The cur_tx and dirty_tx are equal under both completely
186 * empty and completely full conditions. The empty/ready indicator in
187 * the buffer descriptor determines the actual condition.
189 struct fec_enet_private {
190 /* Hardware registers of the FEC device */
193 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
194 unsigned char *tx_bounce[TX_RING_SIZE];
195 struct sk_buff* tx_skbuff[TX_RING_SIZE];
199 /* CPM dual port RAM relative addresses.
201 cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */
203 cbd_t *cur_rx, *cur_tx; /* The next free ring entry */
204 cbd_t *dirty_tx; /* The ring entries to be free()ed. */
205 struct net_device_stats stats;
213 phy_info_t const *phy;
214 struct work_struct phy_task;
217 uint mii_phy_task_queued;
228 static int fec_enet_open(struct net_device *dev);
229 static int fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);
230 static void fec_enet_mii(struct net_device *dev);
231 static irqreturn_t fec_enet_interrupt(int irq, void * dev_id);
232 static void fec_enet_tx(struct net_device *dev);
233 static void fec_enet_rx(struct net_device *dev);
234 static int fec_enet_close(struct net_device *dev);
235 static struct net_device_stats *fec_enet_get_stats(struct net_device *dev);
236 static void set_multicast_list(struct net_device *dev);
237 static void fec_restart(struct net_device *dev, int duplex);
238 static void fec_stop(struct net_device *dev);
239 static void fec_set_mac_address(struct net_device *dev);
242 /* MII processing. We keep this as simple as possible. Requests are
243 * placed on the list (if there is room). When the request is finished
244 * by the MII, an optional function may be called.
246 typedef struct mii_list {
248 void (*mii_func)(uint val, struct net_device *dev);
249 struct mii_list *mii_next;
253 static mii_list_t mii_cmds[NMII];
254 static mii_list_t *mii_free;
255 static mii_list_t *mii_head;
256 static mii_list_t *mii_tail;
258 static int mii_queue(struct net_device *dev, int request,
259 void (*func)(uint, struct net_device *));
261 /* Make MII read/write commands for the FEC.
263 #define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
264 #define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \
268 /* Transmitter timeout.
270 #define TX_TIMEOUT (2*HZ)
272 /* Register definitions for the PHY.
275 #define MII_REG_CR 0 /* Control Register */
276 #define MII_REG_SR 1 /* Status Register */
277 #define MII_REG_PHYIR1 2 /* PHY Identification Register 1 */
278 #define MII_REG_PHYIR2 3 /* PHY Identification Register 2 */
279 #define MII_REG_ANAR 4 /* A-N Advertisement Register */
280 #define MII_REG_ANLPAR 5 /* A-N Link Partner Ability Register */
281 #define MII_REG_ANER 6 /* A-N Expansion Register */
282 #define MII_REG_ANNPTR 7 /* A-N Next Page Transmit Register */
283 #define MII_REG_ANLPRNPR 8 /* A-N Link Partner Received Next Page Reg. */
285 /* values for phy_status */
287 #define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */
288 #define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */
289 #define PHY_CONF_SPMASK 0x00f0 /* mask for speed */
290 #define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */
291 #define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */
292 #define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */
293 #define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */
295 #define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */
296 #define PHY_STAT_FAULT 0x0200 /* 1 remote fault */
297 #define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */
298 #define PHY_STAT_SPMASK 0xf000 /* mask for speed */
299 #define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */
300 #define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */
301 #define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */
302 #define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */
306 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
308 struct fec_enet_private *fep;
309 volatile fec_t *fecp;
311 unsigned short status;
313 fep = netdev_priv(dev);
314 fecp = (volatile fec_t*)dev->base_addr;
317 /* Link is down or autonegotiation is in progress. */
321 /* Fill in a Tx ring entry */
324 status = bdp->cbd_sc;
325 #ifndef final_version
326 if (status & BD_ENET_TX_READY) {
327 /* Ooops. All transmit buffers are full. Bail out.
328 * This should not happen, since dev->tbusy should be set.
330 printk("%s: tx queue full!.\n", dev->name);
335 /* Clear all of the status flags.
337 status &= ~BD_ENET_TX_STATS;
339 /* Set buffer length and buffer pointer.
341 bdp->cbd_bufaddr = __pa(skb->data);
342 bdp->cbd_datlen = skb->len;
345 * On some FEC implementations data must be aligned on
346 * 4-byte boundaries. Use bounce buffers to copy data
347 * and get it aligned. Ugh.
349 if (bdp->cbd_bufaddr & 0x3) {
351 index = bdp - fep->tx_bd_base;
352 memcpy(fep->tx_bounce[index], (void *) bdp->cbd_bufaddr, bdp->cbd_datlen);
353 bdp->cbd_bufaddr = __pa(fep->tx_bounce[index]);
358 fep->tx_skbuff[fep->skb_cur] = skb;
360 fep->stats.tx_bytes += skb->len;
361 fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
363 /* Push the data cache so the CPM does not get stale memory
366 flush_dcache_range((unsigned long)skb->data,
367 (unsigned long)skb->data + skb->len);
369 spin_lock_irq(&fep->lock);
371 /* Send it on its way. Tell FEC it's ready, interrupt when done,
372 * it's the last BD of the frame, and to put the CRC on the end.
375 status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
376 | BD_ENET_TX_LAST | BD_ENET_TX_TC);
377 bdp->cbd_sc = status;
379 dev->trans_start = jiffies;
381 /* Trigger transmission start */
382 fecp->fec_x_des_active = 0;
384 /* If this was the last BD in the ring, start at the beginning again.
386 if (status & BD_ENET_TX_WRAP) {
387 bdp = fep->tx_bd_base;
392 if (bdp == fep->dirty_tx) {
394 netif_stop_queue(dev);
397 fep->cur_tx = (cbd_t *)bdp;
399 spin_unlock_irq(&fep->lock);
405 fec_timeout(struct net_device *dev)
407 struct fec_enet_private *fep = netdev_priv(dev);
409 printk("%s: transmit timed out.\n", dev->name);
410 fep->stats.tx_errors++;
411 #ifndef final_version
416 printk("Ring data dump: cur_tx %lx%s, dirty_tx %lx cur_rx: %lx\n",
417 (unsigned long)fep->cur_tx, fep->tx_full ? " (full)" : "",
418 (unsigned long)fep->dirty_tx,
419 (unsigned long)fep->cur_rx);
421 bdp = fep->tx_bd_base;
422 printk(" tx: %u buffers\n", TX_RING_SIZE);
423 for (i = 0 ; i < TX_RING_SIZE; i++) {
424 printk(" %08x: %04x %04x %08x\n",
428 (int) bdp->cbd_bufaddr);
432 bdp = fep->rx_bd_base;
433 printk(" rx: %lu buffers\n", (unsigned long) RX_RING_SIZE);
434 for (i = 0 ; i < RX_RING_SIZE; i++) {
435 printk(" %08x: %04x %04x %08x\n",
439 (int) bdp->cbd_bufaddr);
444 fec_restart(dev, fep->full_duplex);
445 netif_wake_queue(dev);
448 /* The interrupt handler.
449 * This is called from the MPC core interrupt.
452 fec_enet_interrupt(int irq, void * dev_id)
454 struct net_device *dev = dev_id;
455 volatile fec_t *fecp;
459 fecp = (volatile fec_t*)dev->base_addr;
461 /* Get the interrupt events that caused us to be here.
463 while ((int_events = fecp->fec_ievent) != 0) {
464 fecp->fec_ievent = int_events;
466 /* Handle receive event in its own function.
468 if (int_events & FEC_ENET_RXF) {
473 /* Transmit OK, or non-fatal error. Update the buffer
474 descriptors. FEC handles all errors, we just discover
475 them as part of the transmit process.
477 if (int_events & FEC_ENET_TXF) {
482 if (int_events & FEC_ENET_MII) {
488 return IRQ_RETVAL(handled);
493 fec_enet_tx(struct net_device *dev)
495 struct fec_enet_private *fep;
497 unsigned short status;
500 fep = netdev_priv(dev);
501 spin_lock(&fep->lock);
504 while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
505 if (bdp == fep->cur_tx && fep->tx_full == 0) break;
507 skb = fep->tx_skbuff[fep->skb_dirty];
508 /* Check for errors. */
509 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
510 BD_ENET_TX_RL | BD_ENET_TX_UN |
512 fep->stats.tx_errors++;
513 if (status & BD_ENET_TX_HB) /* No heartbeat */
514 fep->stats.tx_heartbeat_errors++;
515 if (status & BD_ENET_TX_LC) /* Late collision */
516 fep->stats.tx_window_errors++;
517 if (status & BD_ENET_TX_RL) /* Retrans limit */
518 fep->stats.tx_aborted_errors++;
519 if (status & BD_ENET_TX_UN) /* Underrun */
520 fep->stats.tx_fifo_errors++;
521 if (status & BD_ENET_TX_CSL) /* Carrier lost */
522 fep->stats.tx_carrier_errors++;
524 fep->stats.tx_packets++;
527 #ifndef final_version
528 if (status & BD_ENET_TX_READY)
529 printk("HEY! Enet xmit interrupt and TX_READY.\n");
531 /* Deferred means some collisions occurred during transmit,
532 * but we eventually sent the packet OK.
534 if (status & BD_ENET_TX_DEF)
535 fep->stats.collisions++;
537 /* Free the sk buffer associated with this last transmit.
539 dev_kfree_skb_any(skb);
540 fep->tx_skbuff[fep->skb_dirty] = NULL;
541 fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
543 /* Update pointer to next buffer descriptor to be transmitted.
545 if (status & BD_ENET_TX_WRAP)
546 bdp = fep->tx_bd_base;
550 /* Since we have freed up a buffer, the ring is no longer
555 if (netif_queue_stopped(dev))
556 netif_wake_queue(dev);
559 fep->dirty_tx = (cbd_t *)bdp;
560 spin_unlock(&fep->lock);
564 /* During a receive, the cur_rx points to the current incoming buffer.
565 * When we update through the ring, if the next incoming buffer has
566 * not been given to the system, we just set the empty indicator,
567 * effectively tossing the packet.
570 fec_enet_rx(struct net_device *dev)
572 struct fec_enet_private *fep;
573 volatile fec_t *fecp;
575 unsigned short status;
584 fep = netdev_priv(dev);
585 fecp = (volatile fec_t*)dev->base_addr;
587 /* First, grab all of the stats for the incoming packet.
588 * These get messed up if we get called due to a busy condition.
592 while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
594 #ifndef final_version
595 /* Since we have allocated space to hold a complete frame,
596 * the last indicator should be set.
598 if ((status & BD_ENET_RX_LAST) == 0)
599 printk("FEC ENET: rcv is not +last\n");
603 goto rx_processing_done;
605 /* Check for errors. */
606 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
607 BD_ENET_RX_CR | BD_ENET_RX_OV)) {
608 fep->stats.rx_errors++;
609 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
610 /* Frame too long or too short. */
611 fep->stats.rx_length_errors++;
613 if (status & BD_ENET_RX_NO) /* Frame alignment */
614 fep->stats.rx_frame_errors++;
615 if (status & BD_ENET_RX_CR) /* CRC Error */
616 fep->stats.rx_crc_errors++;
617 if (status & BD_ENET_RX_OV) /* FIFO overrun */
618 fep->stats.rx_fifo_errors++;
621 /* Report late collisions as a frame error.
622 * On this error, the BD is closed, but we don't know what we
623 * have in the buffer. So, just drop this frame on the floor.
625 if (status & BD_ENET_RX_CL) {
626 fep->stats.rx_errors++;
627 fep->stats.rx_frame_errors++;
628 goto rx_processing_done;
631 /* Process the incoming frame.
633 fep->stats.rx_packets++;
634 pkt_len = bdp->cbd_datlen;
635 fep->stats.rx_bytes += pkt_len;
636 data = (__u8*)__va(bdp->cbd_bufaddr);
638 /* This does 16 byte alignment, exactly what we need.
639 * The packet length includes FCS, but we don't want to
640 * include that when passing upstream as it messes up
641 * bridging applications.
643 skb = dev_alloc_skb(pkt_len-4);
646 printk("%s: Memory squeeze, dropping packet.\n", dev->name);
647 fep->stats.rx_dropped++;
649 skb_put(skb,pkt_len-4); /* Make room */
650 skb_copy_to_linear_data(skb, data, pkt_len-4);
651 skb->protocol=eth_type_trans(skb,dev);
656 /* Clear the status flags for this buffer.
658 status &= ~BD_ENET_RX_STATS;
660 /* Mark the buffer empty.
662 status |= BD_ENET_RX_EMPTY;
663 bdp->cbd_sc = status;
665 /* Update BD pointer to next entry.
667 if (status & BD_ENET_RX_WRAP)
668 bdp = fep->rx_bd_base;
673 /* Doing this here will keep the FEC running while we process
674 * incoming frames. On a heavily loaded network, we should be
675 * able to keep up at the expense of system resources.
677 fecp->fec_r_des_active = 0;
679 } /* while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) */
680 fep->cur_rx = (cbd_t *)bdp;
683 /* Doing this here will allow us to process all frames in the
684 * ring before the FEC is allowed to put more there. On a heavily
685 * loaded network, some frames may be lost. Unfortunately, this
686 * increases the interrupt overhead since we can potentially work
687 * our way back to the interrupt return only to come right back
690 fecp->fec_r_des_active = 0;
695 /* called from interrupt context */
697 fec_enet_mii(struct net_device *dev)
699 struct fec_enet_private *fep;
704 fep = netdev_priv(dev);
706 mii_reg = ep->fec_mii_data;
708 spin_lock(&fep->lock);
710 if ((mip = mii_head) == NULL) {
711 printk("MII and no head!\n");
715 if (mip->mii_func != NULL)
716 (*(mip->mii_func))(mii_reg, dev);
718 mii_head = mip->mii_next;
719 mip->mii_next = mii_free;
722 if ((mip = mii_head) != NULL)
723 ep->fec_mii_data = mip->mii_regval;
726 spin_unlock(&fep->lock);
730 mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *))
732 struct fec_enet_private *fep;
737 /* Add PHY address to register command.
739 fep = netdev_priv(dev);
740 regval |= fep->phy_addr << 23;
744 spin_lock_irqsave(&fep->lock,flags);
746 if ((mip = mii_free) != NULL) {
747 mii_free = mip->mii_next;
748 mip->mii_regval = regval;
749 mip->mii_func = func;
750 mip->mii_next = NULL;
752 mii_tail->mii_next = mip;
756 mii_head = mii_tail = mip;
757 fep->hwp->fec_mii_data = regval;
764 spin_unlock_irqrestore(&fep->lock,flags);
769 static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c)
776 for(k = 0; (c+k)->mii_data != mk_mii_end; k++) {
777 mii_queue(dev, (c+k)->mii_data, (c+k)->funct);
781 static void mii_parse_sr(uint mii_reg, struct net_device *dev)
783 struct fec_enet_private *fep = netdev_priv(dev);
784 volatile uint *s = &(fep->phy_status);
787 status = *s & ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC);
789 if (mii_reg & 0x0004)
790 status |= PHY_STAT_LINK;
791 if (mii_reg & 0x0010)
792 status |= PHY_STAT_FAULT;
793 if (mii_reg & 0x0020)
794 status |= PHY_STAT_ANC;
799 static void mii_parse_cr(uint mii_reg, struct net_device *dev)
801 struct fec_enet_private *fep = netdev_priv(dev);
802 volatile uint *s = &(fep->phy_status);
805 status = *s & ~(PHY_CONF_ANE | PHY_CONF_LOOP);
807 if (mii_reg & 0x1000)
808 status |= PHY_CONF_ANE;
809 if (mii_reg & 0x4000)
810 status |= PHY_CONF_LOOP;
814 static void mii_parse_anar(uint mii_reg, struct net_device *dev)
816 struct fec_enet_private *fep = netdev_priv(dev);
817 volatile uint *s = &(fep->phy_status);
820 status = *s & ~(PHY_CONF_SPMASK);
822 if (mii_reg & 0x0020)
823 status |= PHY_CONF_10HDX;
824 if (mii_reg & 0x0040)
825 status |= PHY_CONF_10FDX;
826 if (mii_reg & 0x0080)
827 status |= PHY_CONF_100HDX;
828 if (mii_reg & 0x00100)
829 status |= PHY_CONF_100FDX;
833 /* ------------------------------------------------------------------------- */
834 /* The Level one LXT970 is used by many boards */
836 #define MII_LXT970_MIRROR 16 /* Mirror register */
837 #define MII_LXT970_IER 17 /* Interrupt Enable Register */
838 #define MII_LXT970_ISR 18 /* Interrupt Status Register */
839 #define MII_LXT970_CONFIG 19 /* Configuration Register */
840 #define MII_LXT970_CSR 20 /* Chip Status Register */
842 static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev)
844 struct fec_enet_private *fep = netdev_priv(dev);
845 volatile uint *s = &(fep->phy_status);
848 status = *s & ~(PHY_STAT_SPMASK);
849 if (mii_reg & 0x0800) {
850 if (mii_reg & 0x1000)
851 status |= PHY_STAT_100FDX;
853 status |= PHY_STAT_100HDX;
855 if (mii_reg & 0x1000)
856 status |= PHY_STAT_10FDX;
858 status |= PHY_STAT_10HDX;
863 static phy_cmd_t const phy_cmd_lxt970_config[] = {
864 { mk_mii_read(MII_REG_CR), mii_parse_cr },
865 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
868 static phy_cmd_t const phy_cmd_lxt970_startup[] = { /* enable interrupts */
869 { mk_mii_write(MII_LXT970_IER, 0x0002), NULL },
870 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
873 static phy_cmd_t const phy_cmd_lxt970_ack_int[] = {
874 /* read SR and ISR to acknowledge */
875 { mk_mii_read(MII_REG_SR), mii_parse_sr },
876 { mk_mii_read(MII_LXT970_ISR), NULL },
878 /* find out the current status */
879 { mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr },
882 static phy_cmd_t const phy_cmd_lxt970_shutdown[] = { /* disable interrupts */
883 { mk_mii_write(MII_LXT970_IER, 0x0000), NULL },
886 static phy_info_t const phy_info_lxt970 = {
889 .config = phy_cmd_lxt970_config,
890 .startup = phy_cmd_lxt970_startup,
891 .ack_int = phy_cmd_lxt970_ack_int,
892 .shutdown = phy_cmd_lxt970_shutdown
895 /* ------------------------------------------------------------------------- */
896 /* The Level one LXT971 is used on some of my custom boards */
898 /* register definitions for the 971 */
900 #define MII_LXT971_PCR 16 /* Port Control Register */
901 #define MII_LXT971_SR2 17 /* Status Register 2 */
902 #define MII_LXT971_IER 18 /* Interrupt Enable Register */
903 #define MII_LXT971_ISR 19 /* Interrupt Status Register */
904 #define MII_LXT971_LCR 20 /* LED Control Register */
905 #define MII_LXT971_TCR 30 /* Transmit Control Register */
908 * I had some nice ideas of running the MDIO faster...
909 * The 971 should support 8MHz and I tried it, but things acted really
910 * weird, so 2.5 MHz ought to be enough for anyone...
913 static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev)
915 struct fec_enet_private *fep = netdev_priv(dev);
916 volatile uint *s = &(fep->phy_status);
919 status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
921 if (mii_reg & 0x0400) {
923 status |= PHY_STAT_LINK;
927 if (mii_reg & 0x0080)
928 status |= PHY_STAT_ANC;
929 if (mii_reg & 0x4000) {
930 if (mii_reg & 0x0200)
931 status |= PHY_STAT_100FDX;
933 status |= PHY_STAT_100HDX;
935 if (mii_reg & 0x0200)
936 status |= PHY_STAT_10FDX;
938 status |= PHY_STAT_10HDX;
940 if (mii_reg & 0x0008)
941 status |= PHY_STAT_FAULT;
946 static phy_cmd_t const phy_cmd_lxt971_config[] = {
947 /* limit to 10MBit because my prototype board
948 * doesn't work with 100. */
949 { mk_mii_read(MII_REG_CR), mii_parse_cr },
950 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
951 { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
954 static phy_cmd_t const phy_cmd_lxt971_startup[] = { /* enable interrupts */
955 { mk_mii_write(MII_LXT971_IER, 0x00f2), NULL },
956 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
957 { mk_mii_write(MII_LXT971_LCR, 0xd422), NULL }, /* LED config */
958 /* Somehow does the 971 tell me that the link is down
959 * the first read after power-up.
960 * read here to get a valid value in ack_int */
961 { mk_mii_read(MII_REG_SR), mii_parse_sr },
964 static phy_cmd_t const phy_cmd_lxt971_ack_int[] = {
965 /* acknowledge the int before reading status ! */
966 { mk_mii_read(MII_LXT971_ISR), NULL },
967 /* find out the current status */
968 { mk_mii_read(MII_REG_SR), mii_parse_sr },
969 { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
972 static phy_cmd_t const phy_cmd_lxt971_shutdown[] = { /* disable interrupts */
973 { mk_mii_write(MII_LXT971_IER, 0x0000), NULL },
976 static phy_info_t const phy_info_lxt971 = {
979 .config = phy_cmd_lxt971_config,
980 .startup = phy_cmd_lxt971_startup,
981 .ack_int = phy_cmd_lxt971_ack_int,
982 .shutdown = phy_cmd_lxt971_shutdown
985 /* ------------------------------------------------------------------------- */
986 /* The Quality Semiconductor QS6612 is used on the RPX CLLF */
988 /* register definitions */
990 #define MII_QS6612_MCR 17 /* Mode Control Register */
991 #define MII_QS6612_FTR 27 /* Factory Test Register */
992 #define MII_QS6612_MCO 28 /* Misc. Control Register */
993 #define MII_QS6612_ISR 29 /* Interrupt Source Register */
994 #define MII_QS6612_IMR 30 /* Interrupt Mask Register */
995 #define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */
997 static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev)
999 struct fec_enet_private *fep = netdev_priv(dev);
1000 volatile uint *s = &(fep->phy_status);
1003 status = *s & ~(PHY_STAT_SPMASK);
1005 switch((mii_reg >> 2) & 7) {
1006 case 1: status |= PHY_STAT_10HDX; break;
1007 case 2: status |= PHY_STAT_100HDX; break;
1008 case 5: status |= PHY_STAT_10FDX; break;
1009 case 6: status |= PHY_STAT_100FDX; break;
1015 static phy_cmd_t const phy_cmd_qs6612_config[] = {
1016 /* The PHY powers up isolated on the RPX,
1017 * so send a command to allow operation.
1019 { mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL },
1021 /* parse cr and anar to get some info */
1022 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1023 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1026 static phy_cmd_t const phy_cmd_qs6612_startup[] = { /* enable interrupts */
1027 { mk_mii_write(MII_QS6612_IMR, 0x003a), NULL },
1028 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1031 static phy_cmd_t const phy_cmd_qs6612_ack_int[] = {
1032 /* we need to read ISR, SR and ANER to acknowledge */
1033 { mk_mii_read(MII_QS6612_ISR), NULL },
1034 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1035 { mk_mii_read(MII_REG_ANER), NULL },
1037 /* read pcr to get info */
1038 { mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr },
1041 static phy_cmd_t const phy_cmd_qs6612_shutdown[] = { /* disable interrupts */
1042 { mk_mii_write(MII_QS6612_IMR, 0x0000), NULL },
1045 static phy_info_t const phy_info_qs6612 = {
1048 .config = phy_cmd_qs6612_config,
1049 .startup = phy_cmd_qs6612_startup,
1050 .ack_int = phy_cmd_qs6612_ack_int,
1051 .shutdown = phy_cmd_qs6612_shutdown
1054 /* ------------------------------------------------------------------------- */
1055 /* AMD AM79C874 phy */
1057 /* register definitions for the 874 */
1059 #define MII_AM79C874_MFR 16 /* Miscellaneous Feature Register */
1060 #define MII_AM79C874_ICSR 17 /* Interrupt/Status Register */
1061 #define MII_AM79C874_DR 18 /* Diagnostic Register */
1062 #define MII_AM79C874_PMLR 19 /* Power and Loopback Register */
1063 #define MII_AM79C874_MCR 21 /* ModeControl Register */
1064 #define MII_AM79C874_DC 23 /* Disconnect Counter */
1065 #define MII_AM79C874_REC 24 /* Recieve Error Counter */
1067 static void mii_parse_am79c874_dr(uint mii_reg, struct net_device *dev)
1069 struct fec_enet_private *fep = netdev_priv(dev);
1070 volatile uint *s = &(fep->phy_status);
1073 status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_ANC);
1075 if (mii_reg & 0x0080)
1076 status |= PHY_STAT_ANC;
1077 if (mii_reg & 0x0400)
1078 status |= ((mii_reg & 0x0800) ? PHY_STAT_100FDX : PHY_STAT_100HDX);
1080 status |= ((mii_reg & 0x0800) ? PHY_STAT_10FDX : PHY_STAT_10HDX);
1085 static phy_cmd_t const phy_cmd_am79c874_config[] = {
1086 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1087 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1088 { mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
1091 static phy_cmd_t const phy_cmd_am79c874_startup[] = { /* enable interrupts */
1092 { mk_mii_write(MII_AM79C874_ICSR, 0xff00), NULL },
1093 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1094 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1097 static phy_cmd_t const phy_cmd_am79c874_ack_int[] = {
1098 /* find out the current status */
1099 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1100 { mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
1101 /* we only need to read ISR to acknowledge */
1102 { mk_mii_read(MII_AM79C874_ICSR), NULL },
1105 static phy_cmd_t const phy_cmd_am79c874_shutdown[] = { /* disable interrupts */
1106 { mk_mii_write(MII_AM79C874_ICSR, 0x0000), NULL },
1109 static phy_info_t const phy_info_am79c874 = {
1112 .config = phy_cmd_am79c874_config,
1113 .startup = phy_cmd_am79c874_startup,
1114 .ack_int = phy_cmd_am79c874_ack_int,
1115 .shutdown = phy_cmd_am79c874_shutdown
1119 /* ------------------------------------------------------------------------- */
1120 /* Kendin KS8721BL phy */
1122 /* register definitions for the 8721 */
1124 #define MII_KS8721BL_RXERCR 21
1125 #define MII_KS8721BL_ICSR 22
1126 #define MII_KS8721BL_PHYCR 31
1128 static phy_cmd_t const phy_cmd_ks8721bl_config[] = {
1129 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1130 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1133 static phy_cmd_t const phy_cmd_ks8721bl_startup[] = { /* enable interrupts */
1134 { mk_mii_write(MII_KS8721BL_ICSR, 0xff00), NULL },
1135 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1136 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1139 static phy_cmd_t const phy_cmd_ks8721bl_ack_int[] = {
1140 /* find out the current status */
1141 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1142 /* we only need to read ISR to acknowledge */
1143 { mk_mii_read(MII_KS8721BL_ICSR), NULL },
1146 static phy_cmd_t const phy_cmd_ks8721bl_shutdown[] = { /* disable interrupts */
1147 { mk_mii_write(MII_KS8721BL_ICSR, 0x0000), NULL },
1150 static phy_info_t const phy_info_ks8721bl = {
1153 .config = phy_cmd_ks8721bl_config,
1154 .startup = phy_cmd_ks8721bl_startup,
1155 .ack_int = phy_cmd_ks8721bl_ack_int,
1156 .shutdown = phy_cmd_ks8721bl_shutdown
1159 /* ------------------------------------------------------------------------- */
1160 /* register definitions for the DP83848 */
1162 #define MII_DP8384X_PHYSTST 16 /* PHY Status Register */
1164 static void mii_parse_dp8384x_sr2(uint mii_reg, struct net_device *dev)
1166 struct fec_enet_private *fep = dev->priv;
1167 volatile uint *s = &(fep->phy_status);
1169 *s &= ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
1172 if (mii_reg & 0x0001) {
1174 *s |= PHY_STAT_LINK;
1177 /* Status of link */
1178 if (mii_reg & 0x0010) /* Autonegotioation complete */
1180 if (mii_reg & 0x0002) { /* 10MBps? */
1181 if (mii_reg & 0x0004) /* Full Duplex? */
1182 *s |= PHY_STAT_10FDX;
1184 *s |= PHY_STAT_10HDX;
1185 } else { /* 100 Mbps? */
1186 if (mii_reg & 0x0004) /* Full Duplex? */
1187 *s |= PHY_STAT_100FDX;
1189 *s |= PHY_STAT_100HDX;
1191 if (mii_reg & 0x0008)
1192 *s |= PHY_STAT_FAULT;
1195 static phy_info_t phy_info_dp83848= {
1199 (const phy_cmd_t []) { /* config */
1200 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1201 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1202 { mk_mii_read(MII_DP8384X_PHYSTST), mii_parse_dp8384x_sr2 },
1205 (const phy_cmd_t []) { /* startup - enable interrupts */
1206 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1207 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1210 (const phy_cmd_t []) { /* ack_int - never happens, no interrupt */
1213 (const phy_cmd_t []) { /* shutdown */
1218 /* ------------------------------------------------------------------------- */
1220 static phy_info_t const * const phy_info[] = {
1230 /* ------------------------------------------------------------------------- */
1231 #if !defined(CONFIG_M532x)
1232 #ifdef CONFIG_RPXCLASSIC
1234 mii_link_interrupt(void *dev_id);
1237 mii_link_interrupt(int irq, void * dev_id);
1241 #if defined(CONFIG_M5272)
1244 * Code specific to Coldfire 5272 setup.
1246 static void __inline__ fec_request_intrs(struct net_device *dev)
1248 volatile unsigned long *icrp;
1249 static const struct idesc {
1252 irq_handler_t handler;
1254 { "fec(RX)", 86, fec_enet_interrupt },
1255 { "fec(TX)", 87, fec_enet_interrupt },
1256 { "fec(OTHER)", 88, fec_enet_interrupt },
1257 { "fec(MII)", 66, mii_link_interrupt },
1261 /* Setup interrupt handlers. */
1262 for (idp = id; idp->name; idp++) {
1263 if (request_irq(idp->irq, idp->handler, 0, idp->name, dev) != 0)
1264 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, idp->irq);
1267 /* Unmask interrupt at ColdFire 5272 SIM */
1268 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR3);
1270 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1271 *icrp = (*icrp & 0x70777777) | 0x0d000000;
1274 static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1276 volatile fec_t *fecp;
1279 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1280 fecp->fec_x_cntrl = 0x00;
1283 * Set MII speed to 2.5 MHz
1284 * See 5272 manual section 11.5.8: MSCR
1286 fep->phy_speed = ((((MCF_CLK / 4) / (2500000 / 10)) + 5) / 10) * 2;
1287 fecp->fec_mii_speed = fep->phy_speed;
1289 fec_restart(dev, 0);
1292 static void __inline__ fec_get_mac(struct net_device *dev)
1294 struct fec_enet_private *fep = netdev_priv(dev);
1295 volatile fec_t *fecp;
1296 unsigned char *iap, tmpaddr[ETH_ALEN];
1302 * Get MAC address from FLASH.
1303 * If it is all 1's or 0's, use the default.
1305 iap = (unsigned char *)FEC_FLASHMAC;
1306 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1307 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1308 iap = fec_mac_default;
1309 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1310 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1311 iap = fec_mac_default;
1313 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1314 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1318 memcpy(dev->dev_addr, iap, ETH_ALEN);
1320 /* Adjust MAC if using default MAC address */
1321 if (iap == fec_mac_default)
1322 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1325 static void __inline__ fec_enable_phy_intr(void)
1329 static void __inline__ fec_disable_phy_intr(void)
1331 volatile unsigned long *icrp;
1332 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1333 *icrp = (*icrp & 0x70777777) | 0x08000000;
1336 static void __inline__ fec_phy_ack_intr(void)
1338 volatile unsigned long *icrp;
1339 /* Acknowledge the interrupt */
1340 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1341 *icrp = (*icrp & 0x77777777) | 0x08000000;
1344 static void __inline__ fec_localhw_setup(void)
1349 * Do not need to make region uncached on 5272.
1351 static void __inline__ fec_uncache(unsigned long addr)
1355 /* ------------------------------------------------------------------------- */
1357 #elif defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x)
1360 * Code specific to Coldfire 5230/5231/5232/5234/5235,
1361 * the 5270/5271/5274/5275 and 5280/5282 setups.
1363 static void __inline__ fec_request_intrs(struct net_device *dev)
1365 struct fec_enet_private *fep;
1367 static const struct idesc {
1373 { "fec(TXFIFO)", 25 },
1374 { "fec(TXCR)", 26 },
1379 { "fec(HBERR)", 31 },
1381 { "fec(EBERR)", 33 },
1382 { "fec(BABT)", 34 },
1383 { "fec(BABR)", 35 },
1387 fep = netdev_priv(dev);
1388 b = (fep->index) ? 128 : 64;
1390 /* Setup interrupt handlers. */
1391 for (idp = id; idp->name; idp++) {
1392 if (request_irq(b+idp->irq, fec_enet_interrupt, 0, idp->name, dev) != 0)
1393 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, b+idp->irq);
1396 /* Unmask interrupts at ColdFire 5280/5282 interrupt controller */
1398 volatile unsigned char *icrp;
1399 volatile unsigned long *imrp;
1402 b = (fep->index) ? MCFICM_INTC1 : MCFICM_INTC0;
1403 icrp = (volatile unsigned char *) (MCF_IPSBAR + b +
1405 for (i = 23, ilip = 0x28; (i < 36); i++)
1408 imrp = (volatile unsigned long *) (MCF_IPSBAR + b +
1410 *imrp &= ~0x0000000f;
1411 imrp = (volatile unsigned long *) (MCF_IPSBAR + b +
1413 *imrp &= ~0xff800001;
1416 #if defined(CONFIG_M528x)
1417 /* Set up gpio outputs for MII lines */
1419 volatile u16 *gpio_paspar;
1420 volatile u8 *gpio_pehlpar;
1422 gpio_paspar = (volatile u16 *) (MCF_IPSBAR + 0x100056);
1423 gpio_pehlpar = (volatile u16 *) (MCF_IPSBAR + 0x100058);
1424 *gpio_paspar |= 0x0f00;
1425 *gpio_pehlpar = 0xc0;
1430 static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1432 volatile fec_t *fecp;
1435 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1436 fecp->fec_x_cntrl = 0x00;
1439 * Set MII speed to 2.5 MHz
1440 * See 5282 manual section 17.5.4.7: MSCR
1442 fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
1443 fecp->fec_mii_speed = fep->phy_speed;
1445 fec_restart(dev, 0);
1448 static void __inline__ fec_get_mac(struct net_device *dev)
1450 struct fec_enet_private *fep = netdev_priv(dev);
1451 volatile fec_t *fecp;
1452 unsigned char *iap, tmpaddr[ETH_ALEN];
1458 * Get MAC address from FLASH.
1459 * If it is all 1's or 0's, use the default.
1462 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1463 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1464 iap = fec_mac_default;
1465 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1466 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1467 iap = fec_mac_default;
1469 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1470 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1474 memcpy(dev->dev_addr, iap, ETH_ALEN);
1476 /* Adjust MAC if using default MAC address */
1477 if (iap == fec_mac_default)
1478 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1481 static void __inline__ fec_enable_phy_intr(void)
1485 static void __inline__ fec_disable_phy_intr(void)
1489 static void __inline__ fec_phy_ack_intr(void)
1493 static void __inline__ fec_localhw_setup(void)
1498 * Do not need to make region uncached on 5272.
1500 static void __inline__ fec_uncache(unsigned long addr)
1504 /* ------------------------------------------------------------------------- */
1506 #elif defined(CONFIG_M520x)
1509 * Code specific to Coldfire 520x
1511 static void __inline__ fec_request_intrs(struct net_device *dev)
1513 struct fec_enet_private *fep;
1515 static const struct idesc {
1521 { "fec(TXFIFO)", 25 },
1522 { "fec(TXCR)", 26 },
1527 { "fec(HBERR)", 31 },
1529 { "fec(EBERR)", 33 },
1530 { "fec(BABT)", 34 },
1531 { "fec(BABR)", 35 },
1535 fep = netdev_priv(dev);
1538 /* Setup interrupt handlers. */
1539 for (idp = id; idp->name; idp++) {
1540 if (request_irq(b+idp->irq,fec_enet_interrupt,0,idp->name,dev)!=0)
1541 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, b+idp->irq);
1544 /* Unmask interrupts at ColdFire interrupt controller */
1546 volatile unsigned char *icrp;
1547 volatile unsigned long *imrp;
1549 icrp = (volatile unsigned char *) (MCF_IPSBAR + MCFICM_INTC0 +
1551 for (b = 36; (b < 49); b++)
1553 imrp = (volatile unsigned long *) (MCF_IPSBAR + MCFICM_INTC0 +
1555 *imrp &= ~0x0001FFF0;
1557 *(volatile unsigned char *)(MCF_IPSBAR + MCF_GPIO_PAR_FEC) |= 0xf0;
1558 *(volatile unsigned char *)(MCF_IPSBAR + MCF_GPIO_PAR_FECI2C) |= 0x0f;
1561 static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1563 volatile fec_t *fecp;
1566 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1567 fecp->fec_x_cntrl = 0x00;
1570 * Set MII speed to 2.5 MHz
1571 * See 5282 manual section 17.5.4.7: MSCR
1573 fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
1574 fecp->fec_mii_speed = fep->phy_speed;
1576 fec_restart(dev, 0);
1579 static void __inline__ fec_get_mac(struct net_device *dev)
1581 struct fec_enet_private *fep = netdev_priv(dev);
1582 volatile fec_t *fecp;
1583 unsigned char *iap, tmpaddr[ETH_ALEN];
1589 * Get MAC address from FLASH.
1590 * If it is all 1's or 0's, use the default.
1593 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1594 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1595 iap = fec_mac_default;
1596 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1597 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1598 iap = fec_mac_default;
1600 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1601 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1605 memcpy(dev->dev_addr, iap, ETH_ALEN);
1607 /* Adjust MAC if using default MAC address */
1608 if (iap == fec_mac_default)
1609 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1612 static void __inline__ fec_enable_phy_intr(void)
1616 static void __inline__ fec_disable_phy_intr(void)
1620 static void __inline__ fec_phy_ack_intr(void)
1624 static void __inline__ fec_localhw_setup(void)
1628 static void __inline__ fec_uncache(unsigned long addr)
1632 /* ------------------------------------------------------------------------- */
1634 #elif defined(CONFIG_M532x)
1636 * Code specific for M532x
1638 static void __inline__ fec_request_intrs(struct net_device *dev)
1640 struct fec_enet_private *fep;
1642 static const struct idesc {
1648 { "fec(TXFIFO)", 38 },
1649 { "fec(TXCR)", 39 },
1654 { "fec(HBERR)", 44 },
1656 { "fec(EBERR)", 46 },
1657 { "fec(BABT)", 47 },
1658 { "fec(BABR)", 48 },
1662 fep = netdev_priv(dev);
1663 b = (fep->index) ? 128 : 64;
1665 /* Setup interrupt handlers. */
1666 for (idp = id; idp->name; idp++) {
1667 if (request_irq(b+idp->irq,fec_enet_interrupt,0,idp->name,dev)!=0)
1668 printk("FEC: Could not allocate %s IRQ(%d)!\n",
1669 idp->name, b+idp->irq);
1672 /* Unmask interrupts */
1673 MCF_INTC0_ICR36 = 0x2;
1674 MCF_INTC0_ICR37 = 0x2;
1675 MCF_INTC0_ICR38 = 0x2;
1676 MCF_INTC0_ICR39 = 0x2;
1677 MCF_INTC0_ICR40 = 0x2;
1678 MCF_INTC0_ICR41 = 0x2;
1679 MCF_INTC0_ICR42 = 0x2;
1680 MCF_INTC0_ICR43 = 0x2;
1681 MCF_INTC0_ICR44 = 0x2;
1682 MCF_INTC0_ICR45 = 0x2;
1683 MCF_INTC0_ICR46 = 0x2;
1684 MCF_INTC0_ICR47 = 0x2;
1685 MCF_INTC0_ICR48 = 0x2;
1687 MCF_INTC0_IMRH &= ~(
1688 MCF_INTC_IMRH_INT_MASK36 |
1689 MCF_INTC_IMRH_INT_MASK37 |
1690 MCF_INTC_IMRH_INT_MASK38 |
1691 MCF_INTC_IMRH_INT_MASK39 |
1692 MCF_INTC_IMRH_INT_MASK40 |
1693 MCF_INTC_IMRH_INT_MASK41 |
1694 MCF_INTC_IMRH_INT_MASK42 |
1695 MCF_INTC_IMRH_INT_MASK43 |
1696 MCF_INTC_IMRH_INT_MASK44 |
1697 MCF_INTC_IMRH_INT_MASK45 |
1698 MCF_INTC_IMRH_INT_MASK46 |
1699 MCF_INTC_IMRH_INT_MASK47 |
1700 MCF_INTC_IMRH_INT_MASK48 );
1702 /* Set up gpio outputs for MII lines */
1703 MCF_GPIO_PAR_FECI2C |= (0 |
1704 MCF_GPIO_PAR_FECI2C_PAR_MDC_EMDC |
1705 MCF_GPIO_PAR_FECI2C_PAR_MDIO_EMDIO);
1706 MCF_GPIO_PAR_FEC = (0 |
1707 MCF_GPIO_PAR_FEC_PAR_FEC_7W_FEC |
1708 MCF_GPIO_PAR_FEC_PAR_FEC_MII_FEC);
1711 static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1713 volatile fec_t *fecp;
1716 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1717 fecp->fec_x_cntrl = 0x00;
1720 * Set MII speed to 2.5 MHz
1722 fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
1723 fecp->fec_mii_speed = fep->phy_speed;
1725 fec_restart(dev, 0);
1728 static void __inline__ fec_get_mac(struct net_device *dev)
1730 struct fec_enet_private *fep = netdev_priv(dev);
1731 volatile fec_t *fecp;
1732 unsigned char *iap, tmpaddr[ETH_ALEN];
1738 * Get MAC address from FLASH.
1739 * If it is all 1's or 0's, use the default.
1742 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1743 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1744 iap = fec_mac_default;
1745 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1746 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1747 iap = fec_mac_default;
1749 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1750 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1754 memcpy(dev->dev_addr, iap, ETH_ALEN);
1756 /* Adjust MAC if using default MAC address */
1757 if (iap == fec_mac_default)
1758 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1761 static void __inline__ fec_enable_phy_intr(void)
1765 static void __inline__ fec_disable_phy_intr(void)
1769 static void __inline__ fec_phy_ack_intr(void)
1773 static void __inline__ fec_localhw_setup(void)
1778 * Do not need to make region uncached on 532x.
1780 static void __inline__ fec_uncache(unsigned long addr)
1784 /* ------------------------------------------------------------------------- */
1790 * Code specific to the MPC860T setup.
1792 static void __inline__ fec_request_intrs(struct net_device *dev)
1794 volatile immap_t *immap;
1796 immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */
1798 if (request_8xxirq(FEC_INTERRUPT, fec_enet_interrupt, 0, "fec", dev) != 0)
1799 panic("Could not allocate FEC IRQ!");
1801 #ifdef CONFIG_RPXCLASSIC
1802 /* Make Port C, bit 15 an input that causes interrupts.
1804 immap->im_ioport.iop_pcpar &= ~0x0001;
1805 immap->im_ioport.iop_pcdir &= ~0x0001;
1806 immap->im_ioport.iop_pcso &= ~0x0001;
1807 immap->im_ioport.iop_pcint |= 0x0001;
1808 cpm_install_handler(CPMVEC_PIO_PC15, mii_link_interrupt, dev);
1810 /* Make LEDS reflect Link status.
1812 *((uint *) RPX_CSR_ADDR) &= ~BCSR2_FETHLEDMODE;
1815 if (request_8xxirq(SIU_IRQ2, mii_link_interrupt, 0, "mii", dev) != 0)
1816 panic("Could not allocate MII IRQ!");
1820 static void __inline__ fec_get_mac(struct net_device *dev)
1825 memcpy(dev->dev_addr, bd->bi_enetaddr, ETH_ALEN);
1827 #ifdef CONFIG_RPXCLASSIC
1828 /* The Embedded Planet boards have only one MAC address in
1829 * the EEPROM, but can have two Ethernet ports. For the
1830 * FEC port, we create another address by setting one of
1831 * the address bits above something that would have (up to
1832 * now) been allocated.
1834 dev->dev_adrd[3] |= 0x80;
1838 static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1840 extern uint _get_IMMR(void);
1841 volatile immap_t *immap;
1842 volatile fec_t *fecp;
1845 immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */
1847 /* Configure all of port D for MII.
1849 immap->im_ioport.iop_pdpar = 0x1fff;
1851 /* Bits moved from Rev. D onward.
1853 if ((_get_IMMR() & 0xffff) < 0x0501)
1854 immap->im_ioport.iop_pddir = 0x1c58; /* Pre rev. D */
1856 immap->im_ioport.iop_pddir = 0x1fff; /* Rev. D and later */
1858 /* Set MII speed to 2.5 MHz
1860 fecp->fec_mii_speed = fep->phy_speed =
1861 ((bd->bi_busfreq * 1000000) / 2500000) & 0x7e;
1864 static void __inline__ fec_enable_phy_intr(void)
1866 volatile fec_t *fecp;
1870 /* Enable MII command finished interrupt
1872 fecp->fec_ivec = (FEC_INTERRUPT/2) << 29;
1875 static void __inline__ fec_disable_phy_intr(void)
1879 static void __inline__ fec_phy_ack_intr(void)
1883 static void __inline__ fec_localhw_setup(void)
1885 volatile fec_t *fecp;
1888 fecp->fec_r_hash = PKT_MAXBUF_SIZE;
1889 /* Enable big endian and don't care about SDMA FC.
1891 fecp->fec_fun_code = 0x78000000;
1894 static void __inline__ fec_uncache(unsigned long addr)
1897 pte = va_to_pte(mem_addr);
1898 pte_val(*pte) |= _PAGE_NO_CACHE;
1899 flush_tlb_page(init_mm.mmap, mem_addr);
1904 /* ------------------------------------------------------------------------- */
1906 static void mii_display_status(struct net_device *dev)
1908 struct fec_enet_private *fep = netdev_priv(dev);
1909 volatile uint *s = &(fep->phy_status);
1911 if (!fep->link && !fep->old_link) {
1912 /* Link is still down - don't print anything */
1916 printk("%s: status: ", dev->name);
1919 printk("link down");
1923 switch(*s & PHY_STAT_SPMASK) {
1924 case PHY_STAT_100FDX: printk(", 100MBit Full Duplex"); break;
1925 case PHY_STAT_100HDX: printk(", 100MBit Half Duplex"); break;
1926 case PHY_STAT_10FDX: printk(", 10MBit Full Duplex"); break;
1927 case PHY_STAT_10HDX: printk(", 10MBit Half Duplex"); break;
1929 printk(", Unknown speed/duplex");
1932 if (*s & PHY_STAT_ANC)
1933 printk(", auto-negotiation complete");
1936 if (*s & PHY_STAT_FAULT)
1937 printk(", remote fault");
1942 static void mii_display_config(struct net_device *dev)
1944 struct fec_enet_private *fep = netdev_priv(dev);
1945 uint status = fep->phy_status;
1948 ** When we get here, phy_task is already removed from
1949 ** the workqueue. It is thus safe to allow to reuse it.
1951 fep->mii_phy_task_queued = 0;
1952 printk("%s: config: auto-negotiation ", dev->name);
1954 if (status & PHY_CONF_ANE)
1959 if (status & PHY_CONF_100FDX)
1961 if (status & PHY_CONF_100HDX)
1963 if (status & PHY_CONF_10FDX)
1965 if (status & PHY_CONF_10HDX)
1967 if (!(status & PHY_CONF_SPMASK))
1968 printk(", No speed/duplex selected?");
1970 if (status & PHY_CONF_LOOP)
1971 printk(", loopback enabled");
1975 fep->sequence_done = 1;
1978 static void mii_relink(struct net_device *dev)
1980 struct fec_enet_private *fep = netdev_priv(dev);
1984 ** When we get here, phy_task is already removed from
1985 ** the workqueue. It is thus safe to allow to reuse it.
1987 fep->mii_phy_task_queued = 0;
1988 fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0;
1989 mii_display_status(dev);
1990 fep->old_link = fep->link;
1995 & (PHY_STAT_100FDX | PHY_STAT_10FDX))
1997 fec_restart(dev, duplex);
2003 enable_irq(fep->mii_irq);
2008 /* mii_queue_relink is called in interrupt context from mii_link_interrupt */
2009 static void mii_queue_relink(uint mii_reg, struct net_device *dev)
2011 struct fec_enet_private *fep = netdev_priv(dev);
2014 ** We cannot queue phy_task twice in the workqueue. It
2015 ** would cause an endless loop in the workqueue.
2016 ** Fortunately, if the last mii_relink entry has not yet been
2017 ** executed now, it will do the job for the current interrupt,
2018 ** which is just what we want.
2020 if (fep->mii_phy_task_queued)
2023 fep->mii_phy_task_queued = 1;
2024 INIT_WORK(&fep->phy_task, (void*)mii_relink, dev);
2025 schedule_work(&fep->phy_task);
2028 /* mii_queue_config is called in interrupt context from fec_enet_mii */
2029 static void mii_queue_config(uint mii_reg, struct net_device *dev)
2031 struct fec_enet_private *fep = netdev_priv(dev);
2033 if (fep->mii_phy_task_queued)
2036 fep->mii_phy_task_queued = 1;
2037 INIT_WORK(&fep->phy_task, (void*)mii_display_config, dev);
2038 schedule_work(&fep->phy_task);
2041 phy_cmd_t const phy_cmd_relink[] = {
2042 { mk_mii_read(MII_REG_CR), mii_queue_relink },
2045 phy_cmd_t const phy_cmd_config[] = {
2046 { mk_mii_read(MII_REG_CR), mii_queue_config },
2050 /* Read remainder of PHY ID.
2053 mii_discover_phy3(uint mii_reg, struct net_device *dev)
2055 struct fec_enet_private *fep;
2058 fep = netdev_priv(dev);
2059 fep->phy_id |= (mii_reg & 0xffff);
2060 printk("fec: PHY @ 0x%x, ID 0x%08x", fep->phy_addr, fep->phy_id);
2062 for(i = 0; phy_info[i]; i++) {
2063 if(phy_info[i]->id == (fep->phy_id >> 4))
2068 printk(" -- %s\n", phy_info[i]->name);
2070 printk(" -- unknown PHY!\n");
2072 fep->phy = phy_info[i];
2073 fep->phy_id_done = 1;
2076 /* Scan all of the MII PHY addresses looking for someone to respond
2077 * with a valid ID. This usually happens quickly.
2080 mii_discover_phy(uint mii_reg, struct net_device *dev)
2082 struct fec_enet_private *fep;
2083 volatile fec_t *fecp;
2086 fep = netdev_priv(dev);
2089 if (fep->phy_addr < 32) {
2090 if ((phytype = (mii_reg & 0xffff)) != 0xffff && phytype != 0) {
2092 /* Got first part of ID, now get remainder.
2094 fep->phy_id = phytype << 16;
2095 mii_queue(dev, mk_mii_read(MII_REG_PHYIR2),
2100 mii_queue(dev, mk_mii_read(MII_REG_PHYIR1),
2104 printk("FEC: No PHY device found.\n");
2105 /* Disable external MII interface */
2106 fecp->fec_mii_speed = fep->phy_speed = 0;
2107 fec_disable_phy_intr();
2111 /* This interrupt occurs when the PHY detects a link change.
2113 #ifdef CONFIG_RPXCLASSIC
2115 mii_link_interrupt(void *dev_id)
2118 mii_link_interrupt(int irq, void * dev_id)
2121 struct net_device *dev = dev_id;
2122 struct fec_enet_private *fep = netdev_priv(dev);
2127 disable_irq(fep->mii_irq); /* disable now, enable later */
2130 mii_do_cmd(dev, fep->phy->ack_int);
2131 mii_do_cmd(dev, phy_cmd_relink); /* restart and display status */
2137 fec_enet_open(struct net_device *dev)
2139 struct fec_enet_private *fep = netdev_priv(dev);
2141 /* I should reset the ring buffers here, but I don't yet know
2142 * a simple way to do that.
2144 fec_set_mac_address(dev);
2146 fep->sequence_done = 0;
2150 mii_do_cmd(dev, fep->phy->ack_int);
2151 mii_do_cmd(dev, fep->phy->config);
2152 mii_do_cmd(dev, phy_cmd_config); /* display configuration */
2154 /* Poll until the PHY tells us its configuration
2156 * Request is initiated by mii_do_cmd above, but answer
2157 * comes by interrupt.
2158 * This should take about 25 usec per register at 2.5 MHz,
2159 * and we read approximately 5 registers.
2161 while(!fep->sequence_done)
2164 mii_do_cmd(dev, fep->phy->startup);
2166 /* Set the initial link state to true. A lot of hardware
2167 * based on this device does not implement a PHY interrupt,
2168 * so we are never notified of link change.
2172 fep->link = 1; /* lets just try it and see */
2173 /* no phy, go full duplex, it's most likely a hub chip */
2174 fec_restart(dev, 1);
2177 netif_start_queue(dev);
2179 return 0; /* Success */
2183 fec_enet_close(struct net_device *dev)
2185 struct fec_enet_private *fep = netdev_priv(dev);
2187 /* Don't know what to do yet.
2190 netif_stop_queue(dev);
2196 static struct net_device_stats *fec_enet_get_stats(struct net_device *dev)
2198 struct fec_enet_private *fep = netdev_priv(dev);
2203 /* Set or clear the multicast filter for this adaptor.
2204 * Skeleton taken from sunlance driver.
2205 * The CPM Ethernet implementation allows Multicast as well as individual
2206 * MAC address filtering. Some of the drivers check to make sure it is
2207 * a group multicast address, and discard those that are not. I guess I
2208 * will do the same for now, but just remove the test if you want
2209 * individual filtering as well (do the upper net layers want or support
2210 * this kind of feature?).
2213 #define HASH_BITS 6 /* #bits in hash */
2214 #define CRC32_POLY 0xEDB88320
2216 static void set_multicast_list(struct net_device *dev)
2218 struct fec_enet_private *fep;
2220 struct dev_mc_list *dmi;
2221 unsigned int i, j, bit, data, crc;
2224 fep = netdev_priv(dev);
2227 if (dev->flags&IFF_PROMISC) {
2228 ep->fec_r_cntrl |= 0x0008;
2231 ep->fec_r_cntrl &= ~0x0008;
2233 if (dev->flags & IFF_ALLMULTI) {
2234 /* Catch all multicast addresses, so set the
2235 * filter to all 1's.
2237 ep->fec_hash_table_high = 0xffffffff;
2238 ep->fec_hash_table_low = 0xffffffff;
2240 /* Clear filter and add the addresses in hash register.
2242 ep->fec_hash_table_high = 0;
2243 ep->fec_hash_table_low = 0;
2247 for (j = 0; j < dev->mc_count; j++, dmi = dmi->next)
2249 /* Only support group multicast for now.
2251 if (!(dmi->dmi_addr[0] & 1))
2254 /* calculate crc32 value of mac address
2258 for (i = 0; i < dmi->dmi_addrlen; i++)
2260 data = dmi->dmi_addr[i];
2261 for (bit = 0; bit < 8; bit++, data >>= 1)
2264 (((crc ^ data) & 1) ? CRC32_POLY : 0);
2268 /* only upper 6 bits (HASH_BITS) are used
2269 which point to specific bit in he hash registers
2271 hash = (crc >> (32 - HASH_BITS)) & 0x3f;
2274 ep->fec_hash_table_high |= 1 << (hash - 32);
2276 ep->fec_hash_table_low |= 1 << hash;
2282 /* Set a MAC change in hardware.
2285 fec_set_mac_address(struct net_device *dev)
2287 volatile fec_t *fecp;
2289 fecp = ((struct fec_enet_private *)netdev_priv(dev))->hwp;
2291 /* Set station address. */
2292 fecp->fec_addr_low = dev->dev_addr[3] | (dev->dev_addr[2] << 8) |
2293 (dev->dev_addr[1] << 16) | (dev->dev_addr[0] << 24);
2294 fecp->fec_addr_high = (dev->dev_addr[5] << 16) |
2295 (dev->dev_addr[4] << 24);
2299 /* Initialize the FEC Ethernet on 860T (or ColdFire 5272).
2302 * XXX: We need to clean up on failure exits here.
2304 int __init fec_enet_init(struct net_device *dev)
2306 struct fec_enet_private *fep = netdev_priv(dev);
2307 unsigned long mem_addr;
2308 volatile cbd_t *bdp;
2310 volatile fec_t *fecp;
2312 static int index = 0;
2314 /* Only allow us to be probed once. */
2315 if (index >= FEC_MAX_PORTS)
2318 /* Allocate memory for buffer descriptors.
2320 mem_addr = __get_free_page(GFP_KERNEL);
2321 if (mem_addr == 0) {
2322 printk("FEC: allocate descriptor memory failed?\n");
2326 /* Create an Ethernet device instance.
2328 fecp = (volatile fec_t *) fec_hw[index];
2333 /* Whack a reset. We should wait for this.
2335 fecp->fec_ecntrl = 1;
2338 /* Set the Ethernet address. If using multiple Enets on the 8xx,
2339 * this needs some work to get unique addresses.
2341 * This is our default MAC address unless the user changes
2342 * it via eth_mac_addr (our dev->set_mac_addr handler).
2346 cbd_base = (cbd_t *)mem_addr;
2347 /* XXX: missing check for allocation failure */
2349 fec_uncache(mem_addr);
2351 /* Set receive and transmit descriptor base.
2353 fep->rx_bd_base = cbd_base;
2354 fep->tx_bd_base = cbd_base + RX_RING_SIZE;
2356 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
2357 fep->cur_rx = fep->rx_bd_base;
2359 fep->skb_cur = fep->skb_dirty = 0;
2361 /* Initialize the receive buffer descriptors.
2363 bdp = fep->rx_bd_base;
2364 for (i=0; i<FEC_ENET_RX_PAGES; i++) {
2368 mem_addr = __get_free_page(GFP_KERNEL);
2369 /* XXX: missing check for allocation failure */
2371 fec_uncache(mem_addr);
2373 /* Initialize the BD for every fragment in the page.
2375 for (j=0; j<FEC_ENET_RX_FRPPG; j++) {
2376 bdp->cbd_sc = BD_ENET_RX_EMPTY;
2377 bdp->cbd_bufaddr = __pa(mem_addr);
2378 mem_addr += FEC_ENET_RX_FRSIZE;
2383 /* Set the last buffer to wrap.
2386 bdp->cbd_sc |= BD_SC_WRAP;
2388 /* ...and the same for transmmit.
2390 bdp = fep->tx_bd_base;
2391 for (i=0, j=FEC_ENET_TX_FRPPG; i<TX_RING_SIZE; i++) {
2392 if (j >= FEC_ENET_TX_FRPPG) {
2393 mem_addr = __get_free_page(GFP_KERNEL);
2396 mem_addr += FEC_ENET_TX_FRSIZE;
2399 fep->tx_bounce[i] = (unsigned char *) mem_addr;
2401 /* Initialize the BD for every fragment in the page.
2404 bdp->cbd_bufaddr = 0;
2408 /* Set the last buffer to wrap.
2411 bdp->cbd_sc |= BD_SC_WRAP;
2413 /* Set receive and transmit descriptor base.
2415 fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base));
2416 fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base));
2418 /* Install our interrupt handlers. This varies depending on
2421 fec_request_intrs(dev);
2423 fecp->fec_hash_table_high = 0;
2424 fecp->fec_hash_table_low = 0;
2425 fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
2426 fecp->fec_ecntrl = 2;
2427 fecp->fec_r_des_active = 0;
2429 dev->base_addr = (unsigned long)fecp;
2431 /* The FEC Ethernet specific entries in the device structure. */
2432 dev->open = fec_enet_open;
2433 dev->hard_start_xmit = fec_enet_start_xmit;
2434 dev->tx_timeout = fec_timeout;
2435 dev->watchdog_timeo = TX_TIMEOUT;
2436 dev->stop = fec_enet_close;
2437 dev->get_stats = fec_enet_get_stats;
2438 dev->set_multicast_list = set_multicast_list;
2440 for (i=0; i<NMII-1; i++)
2441 mii_cmds[i].mii_next = &mii_cmds[i+1];
2442 mii_free = mii_cmds;
2444 /* setup MII interface */
2445 fec_set_mii(dev, fep);
2447 /* Clear and enable interrupts */
2448 fecp->fec_ievent = 0xffc00000;
2449 fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_TXB |
2450 FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII);
2452 /* Queue up command to detect the PHY and initialize the
2453 * remainder of the interface.
2455 fep->phy_id_done = 0;
2457 mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy);
2463 /* This function is called to start or restart the FEC during a link
2464 * change. This only happens when switching between half and full
2468 fec_restart(struct net_device *dev, int duplex)
2470 struct fec_enet_private *fep;
2471 volatile cbd_t *bdp;
2472 volatile fec_t *fecp;
2475 fep = netdev_priv(dev);
2478 /* Whack a reset. We should wait for this.
2480 fecp->fec_ecntrl = 1;
2483 /* Clear any outstanding interrupt.
2485 fecp->fec_ievent = 0xffc00000;
2486 fec_enable_phy_intr();
2488 /* Set station address.
2490 fec_set_mac_address(dev);
2492 /* Reset all multicast.
2494 fecp->fec_hash_table_high = 0;
2495 fecp->fec_hash_table_low = 0;
2497 /* Set maximum receive buffer size.
2499 fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
2501 fec_localhw_setup();
2503 /* Set receive and transmit descriptor base.
2505 fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base));
2506 fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base));
2508 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
2509 fep->cur_rx = fep->rx_bd_base;
2511 /* Reset SKB transmit buffers.
2513 fep->skb_cur = fep->skb_dirty = 0;
2514 for (i=0; i<=TX_RING_MOD_MASK; i++) {
2515 if (fep->tx_skbuff[i] != NULL) {
2516 dev_kfree_skb_any(fep->tx_skbuff[i]);
2517 fep->tx_skbuff[i] = NULL;
2521 /* Initialize the receive buffer descriptors.
2523 bdp = fep->rx_bd_base;
2524 for (i=0; i<RX_RING_SIZE; i++) {
2526 /* Initialize the BD for every fragment in the page.
2528 bdp->cbd_sc = BD_ENET_RX_EMPTY;
2532 /* Set the last buffer to wrap.
2535 bdp->cbd_sc |= BD_SC_WRAP;
2537 /* ...and the same for transmmit.
2539 bdp = fep->tx_bd_base;
2540 for (i=0; i<TX_RING_SIZE; i++) {
2542 /* Initialize the BD for every fragment in the page.
2545 bdp->cbd_bufaddr = 0;
2549 /* Set the last buffer to wrap.
2552 bdp->cbd_sc |= BD_SC_WRAP;
2557 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;/* MII enable */
2558 fecp->fec_x_cntrl = 0x04; /* FD enable */
2561 /* MII enable|No Rcv on Xmit */
2562 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x06;
2563 fecp->fec_x_cntrl = 0x00;
2565 fep->full_duplex = duplex;
2569 fecp->fec_mii_speed = fep->phy_speed;
2571 /* And last, enable the transmit and receive processing.
2573 fecp->fec_ecntrl = 2;
2574 fecp->fec_r_des_active = 0;
2576 /* Enable interrupts we wish to service.
2578 fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_TXB |
2579 FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII);
2583 fec_stop(struct net_device *dev)
2585 volatile fec_t *fecp;
2586 struct fec_enet_private *fep;
2588 fep = netdev_priv(dev);
2592 ** We cannot expect a graceful transmit stop without link !!!
2596 fecp->fec_x_cntrl = 0x01; /* Graceful transmit stop */
2598 if (!(fecp->fec_ievent & FEC_ENET_GRA))
2599 printk("fec_stop : Graceful transmit stop did not complete !\n");
2602 /* Whack a reset. We should wait for this.
2604 fecp->fec_ecntrl = 1;
2607 /* Clear outstanding MII command interrupts.
2609 fecp->fec_ievent = FEC_ENET_MII;
2610 fec_enable_phy_intr();
2612 fecp->fec_imask = FEC_ENET_MII;
2613 fecp->fec_mii_speed = fep->phy_speed;
2616 static int __init fec_enet_module_init(void)
2618 struct net_device *dev;
2621 printk("FEC ENET Version 0.2\n");
2623 for (i = 0; (i < FEC_MAX_PORTS); i++) {
2624 dev = alloc_etherdev(sizeof(struct fec_enet_private));
2627 err = fec_enet_init(dev);
2632 if (register_netdev(dev) != 0) {
2633 /* XXX: missing cleanup here */
2638 printk("%s: ethernet ", dev->name);
2639 for (j = 0; (j < 5); j++)
2640 printk("%02x:", dev->dev_addr[j]);
2641 printk("%02x\n", dev->dev_addr[5]);
2646 module_init(fec_enet_module_init);
2648 MODULE_LICENSE("GPL");