e1000e: enhance frame fragment detection
[linux-2.6.git] / drivers / net / e1000e / netdev.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2009 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/delay.h>
36 #include <linux/netdevice.h>
37 #include <linux/tcp.h>
38 #include <linux/ipv6.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/mii.h>
42 #include <linux/ethtool.h>
43 #include <linux/if_vlan.h>
44 #include <linux/cpu.h>
45 #include <linux/smp.h>
46 #include <linux/pm_qos_params.h>
47 #include <linux/aer.h>
48
49 #include "e1000.h"
50
51 #define DRV_VERSION "1.0.2-k2"
52 char e1000e_driver_name[] = "e1000e";
53 const char e1000e_driver_version[] = DRV_VERSION;
54
55 static const struct e1000_info *e1000_info_tbl[] = {
56         [board_82571]           = &e1000_82571_info,
57         [board_82572]           = &e1000_82572_info,
58         [board_82573]           = &e1000_82573_info,
59         [board_82574]           = &e1000_82574_info,
60         [board_82583]           = &e1000_82583_info,
61         [board_80003es2lan]     = &e1000_es2_info,
62         [board_ich8lan]         = &e1000_ich8_info,
63         [board_ich9lan]         = &e1000_ich9_info,
64         [board_ich10lan]        = &e1000_ich10_info,
65         [board_pchlan]          = &e1000_pch_info,
66 };
67
68 /**
69  * e1000_desc_unused - calculate if we have unused descriptors
70  **/
71 static int e1000_desc_unused(struct e1000_ring *ring)
72 {
73         if (ring->next_to_clean > ring->next_to_use)
74                 return ring->next_to_clean - ring->next_to_use - 1;
75
76         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
77 }
78
79 /**
80  * e1000_receive_skb - helper function to handle Rx indications
81  * @adapter: board private structure
82  * @status: descriptor status field as written by hardware
83  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
84  * @skb: pointer to sk_buff to be indicated to stack
85  **/
86 static void e1000_receive_skb(struct e1000_adapter *adapter,
87                               struct net_device *netdev,
88                               struct sk_buff *skb,
89                               u8 status, __le16 vlan)
90 {
91         skb->protocol = eth_type_trans(skb, netdev);
92
93         if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
94                 vlan_gro_receive(&adapter->napi, adapter->vlgrp,
95                                  le16_to_cpu(vlan), skb);
96         else
97                 napi_gro_receive(&adapter->napi, skb);
98 }
99
100 /**
101  * e1000_rx_checksum - Receive Checksum Offload for 82543
102  * @adapter:     board private structure
103  * @status_err:  receive descriptor status and error fields
104  * @csum:       receive descriptor csum field
105  * @sk_buff:     socket buffer with received data
106  **/
107 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
108                               u32 csum, struct sk_buff *skb)
109 {
110         u16 status = (u16)status_err;
111         u8 errors = (u8)(status_err >> 24);
112         skb->ip_summed = CHECKSUM_NONE;
113
114         /* Ignore Checksum bit is set */
115         if (status & E1000_RXD_STAT_IXSM)
116                 return;
117         /* TCP/UDP checksum error bit is set */
118         if (errors & E1000_RXD_ERR_TCPE) {
119                 /* let the stack verify checksum errors */
120                 adapter->hw_csum_err++;
121                 return;
122         }
123
124         /* TCP/UDP Checksum has not been calculated */
125         if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
126                 return;
127
128         /* It must be a TCP or UDP packet with a valid checksum */
129         if (status & E1000_RXD_STAT_TCPCS) {
130                 /* TCP checksum is good */
131                 skb->ip_summed = CHECKSUM_UNNECESSARY;
132         } else {
133                 /*
134                  * IP fragment with UDP payload
135                  * Hardware complements the payload checksum, so we undo it
136                  * and then put the value in host order for further stack use.
137                  */
138                 __sum16 sum = (__force __sum16)htons(csum);
139                 skb->csum = csum_unfold(~sum);
140                 skb->ip_summed = CHECKSUM_COMPLETE;
141         }
142         adapter->hw_csum_good++;
143 }
144
145 /**
146  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
147  * @adapter: address of board private structure
148  **/
149 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
150                                    int cleaned_count)
151 {
152         struct net_device *netdev = adapter->netdev;
153         struct pci_dev *pdev = adapter->pdev;
154         struct e1000_ring *rx_ring = adapter->rx_ring;
155         struct e1000_rx_desc *rx_desc;
156         struct e1000_buffer *buffer_info;
157         struct sk_buff *skb;
158         unsigned int i;
159         unsigned int bufsz = adapter->rx_buffer_len;
160
161         i = rx_ring->next_to_use;
162         buffer_info = &rx_ring->buffer_info[i];
163
164         while (cleaned_count--) {
165                 skb = buffer_info->skb;
166                 if (skb) {
167                         skb_trim(skb, 0);
168                         goto map_skb;
169                 }
170
171                 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
172                 if (!skb) {
173                         /* Better luck next round */
174                         adapter->alloc_rx_buff_failed++;
175                         break;
176                 }
177
178                 buffer_info->skb = skb;
179 map_skb:
180                 buffer_info->dma = pci_map_single(pdev, skb->data,
181                                                   adapter->rx_buffer_len,
182                                                   PCI_DMA_FROMDEVICE);
183                 if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
184                         dev_err(&pdev->dev, "RX DMA map failed\n");
185                         adapter->rx_dma_failed++;
186                         break;
187                 }
188
189                 rx_desc = E1000_RX_DESC(*rx_ring, i);
190                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
191
192                 i++;
193                 if (i == rx_ring->count)
194                         i = 0;
195                 buffer_info = &rx_ring->buffer_info[i];
196         }
197
198         if (rx_ring->next_to_use != i) {
199                 rx_ring->next_to_use = i;
200                 if (i-- == 0)
201                         i = (rx_ring->count - 1);
202
203                 /*
204                  * Force memory writes to complete before letting h/w
205                  * know there are new descriptors to fetch.  (Only
206                  * applicable for weak-ordered memory model archs,
207                  * such as IA-64).
208                  */
209                 wmb();
210                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
211         }
212 }
213
214 /**
215  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
216  * @adapter: address of board private structure
217  **/
218 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
219                                       int cleaned_count)
220 {
221         struct net_device *netdev = adapter->netdev;
222         struct pci_dev *pdev = adapter->pdev;
223         union e1000_rx_desc_packet_split *rx_desc;
224         struct e1000_ring *rx_ring = adapter->rx_ring;
225         struct e1000_buffer *buffer_info;
226         struct e1000_ps_page *ps_page;
227         struct sk_buff *skb;
228         unsigned int i, j;
229
230         i = rx_ring->next_to_use;
231         buffer_info = &rx_ring->buffer_info[i];
232
233         while (cleaned_count--) {
234                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
235
236                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
237                         ps_page = &buffer_info->ps_pages[j];
238                         if (j >= adapter->rx_ps_pages) {
239                                 /* all unused desc entries get hw null ptr */
240                                 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
241                                 continue;
242                         }
243                         if (!ps_page->page) {
244                                 ps_page->page = alloc_page(GFP_ATOMIC);
245                                 if (!ps_page->page) {
246                                         adapter->alloc_rx_buff_failed++;
247                                         goto no_buffers;
248                                 }
249                                 ps_page->dma = pci_map_page(pdev,
250                                                    ps_page->page,
251                                                    0, PAGE_SIZE,
252                                                    PCI_DMA_FROMDEVICE);
253                                 if (pci_dma_mapping_error(pdev, ps_page->dma)) {
254                                         dev_err(&adapter->pdev->dev,
255                                           "RX DMA page map failed\n");
256                                         adapter->rx_dma_failed++;
257                                         goto no_buffers;
258                                 }
259                         }
260                         /*
261                          * Refresh the desc even if buffer_addrs
262                          * didn't change because each write-back
263                          * erases this info.
264                          */
265                         rx_desc->read.buffer_addr[j+1] =
266                              cpu_to_le64(ps_page->dma);
267                 }
268
269                 skb = netdev_alloc_skb_ip_align(netdev,
270                                                 adapter->rx_ps_bsize0);
271
272                 if (!skb) {
273                         adapter->alloc_rx_buff_failed++;
274                         break;
275                 }
276
277                 buffer_info->skb = skb;
278                 buffer_info->dma = pci_map_single(pdev, skb->data,
279                                                   adapter->rx_ps_bsize0,
280                                                   PCI_DMA_FROMDEVICE);
281                 if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
282                         dev_err(&pdev->dev, "RX DMA map failed\n");
283                         adapter->rx_dma_failed++;
284                         /* cleanup skb */
285                         dev_kfree_skb_any(skb);
286                         buffer_info->skb = NULL;
287                         break;
288                 }
289
290                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
291
292                 i++;
293                 if (i == rx_ring->count)
294                         i = 0;
295                 buffer_info = &rx_ring->buffer_info[i];
296         }
297
298 no_buffers:
299         if (rx_ring->next_to_use != i) {
300                 rx_ring->next_to_use = i;
301
302                 if (!(i--))
303                         i = (rx_ring->count - 1);
304
305                 /*
306                  * Force memory writes to complete before letting h/w
307                  * know there are new descriptors to fetch.  (Only
308                  * applicable for weak-ordered memory model archs,
309                  * such as IA-64).
310                  */
311                 wmb();
312                 /*
313                  * Hardware increments by 16 bytes, but packet split
314                  * descriptors are 32 bytes...so we increment tail
315                  * twice as much.
316                  */
317                 writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
318         }
319 }
320
321 /**
322  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
323  * @adapter: address of board private structure
324  * @cleaned_count: number of buffers to allocate this pass
325  **/
326
327 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
328                                          int cleaned_count)
329 {
330         struct net_device *netdev = adapter->netdev;
331         struct pci_dev *pdev = adapter->pdev;
332         struct e1000_rx_desc *rx_desc;
333         struct e1000_ring *rx_ring = adapter->rx_ring;
334         struct e1000_buffer *buffer_info;
335         struct sk_buff *skb;
336         unsigned int i;
337         unsigned int bufsz = 256 - 16 /* for skb_reserve */;
338
339         i = rx_ring->next_to_use;
340         buffer_info = &rx_ring->buffer_info[i];
341
342         while (cleaned_count--) {
343                 skb = buffer_info->skb;
344                 if (skb) {
345                         skb_trim(skb, 0);
346                         goto check_page;
347                 }
348
349                 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
350                 if (unlikely(!skb)) {
351                         /* Better luck next round */
352                         adapter->alloc_rx_buff_failed++;
353                         break;
354                 }
355
356                 buffer_info->skb = skb;
357 check_page:
358                 /* allocate a new page if necessary */
359                 if (!buffer_info->page) {
360                         buffer_info->page = alloc_page(GFP_ATOMIC);
361                         if (unlikely(!buffer_info->page)) {
362                                 adapter->alloc_rx_buff_failed++;
363                                 break;
364                         }
365                 }
366
367                 if (!buffer_info->dma)
368                         buffer_info->dma = pci_map_page(pdev,
369                                                         buffer_info->page, 0,
370                                                         PAGE_SIZE,
371                                                         PCI_DMA_FROMDEVICE);
372
373                 rx_desc = E1000_RX_DESC(*rx_ring, i);
374                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
375
376                 if (unlikely(++i == rx_ring->count))
377                         i = 0;
378                 buffer_info = &rx_ring->buffer_info[i];
379         }
380
381         if (likely(rx_ring->next_to_use != i)) {
382                 rx_ring->next_to_use = i;
383                 if (unlikely(i-- == 0))
384                         i = (rx_ring->count - 1);
385
386                 /* Force memory writes to complete before letting h/w
387                  * know there are new descriptors to fetch.  (Only
388                  * applicable for weak-ordered memory model archs,
389                  * such as IA-64). */
390                 wmb();
391                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
392         }
393 }
394
395 /**
396  * e1000_clean_rx_irq - Send received data up the network stack; legacy
397  * @adapter: board private structure
398  *
399  * the return value indicates whether actual cleaning was done, there
400  * is no guarantee that everything was cleaned
401  **/
402 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
403                                int *work_done, int work_to_do)
404 {
405         struct net_device *netdev = adapter->netdev;
406         struct pci_dev *pdev = adapter->pdev;
407         struct e1000_hw *hw = &adapter->hw;
408         struct e1000_ring *rx_ring = adapter->rx_ring;
409         struct e1000_rx_desc *rx_desc, *next_rxd;
410         struct e1000_buffer *buffer_info, *next_buffer;
411         u32 length;
412         unsigned int i;
413         int cleaned_count = 0;
414         bool cleaned = 0;
415         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
416
417         i = rx_ring->next_to_clean;
418         rx_desc = E1000_RX_DESC(*rx_ring, i);
419         buffer_info = &rx_ring->buffer_info[i];
420
421         while (rx_desc->status & E1000_RXD_STAT_DD) {
422                 struct sk_buff *skb;
423                 u8 status;
424
425                 if (*work_done >= work_to_do)
426                         break;
427                 (*work_done)++;
428
429                 status = rx_desc->status;
430                 skb = buffer_info->skb;
431                 buffer_info->skb = NULL;
432
433                 prefetch(skb->data - NET_IP_ALIGN);
434
435                 i++;
436                 if (i == rx_ring->count)
437                         i = 0;
438                 next_rxd = E1000_RX_DESC(*rx_ring, i);
439                 prefetch(next_rxd);
440
441                 next_buffer = &rx_ring->buffer_info[i];
442
443                 cleaned = 1;
444                 cleaned_count++;
445                 pci_unmap_single(pdev,
446                                  buffer_info->dma,
447                                  adapter->rx_buffer_len,
448                                  PCI_DMA_FROMDEVICE);
449                 buffer_info->dma = 0;
450
451                 length = le16_to_cpu(rx_desc->length);
452
453                 /*
454                  * !EOP means multiple descriptors were used to store a single
455                  * packet, if that's the case we need to toss it.  In fact, we
456                  * need to toss every packet with the EOP bit clear and the
457                  * next frame that _does_ have the EOP bit set, as it is by
458                  * definition only a frame fragment
459                  */
460                 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
461                         adapter->flags2 |= FLAG2_IS_DISCARDING;
462
463                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
464                         /* All receives must fit into a single buffer */
465                         e_dbg("Receive packet consumed multiple buffers\n");
466                         /* recycle */
467                         buffer_info->skb = skb;
468                         if (status & E1000_RXD_STAT_EOP)
469                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
470                         goto next_desc;
471                 }
472
473                 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
474                         /* recycle */
475                         buffer_info->skb = skb;
476                         goto next_desc;
477                 }
478
479                 /* adjust length to remove Ethernet CRC */
480                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
481                         length -= 4;
482
483                 total_rx_bytes += length;
484                 total_rx_packets++;
485
486                 /*
487                  * code added for copybreak, this should improve
488                  * performance for small packets with large amounts
489                  * of reassembly being done in the stack
490                  */
491                 if (length < copybreak) {
492                         struct sk_buff *new_skb =
493                             netdev_alloc_skb_ip_align(netdev, length);
494                         if (new_skb) {
495                                 skb_copy_to_linear_data_offset(new_skb,
496                                                                -NET_IP_ALIGN,
497                                                                (skb->data -
498                                                                 NET_IP_ALIGN),
499                                                                (length +
500                                                                 NET_IP_ALIGN));
501                                 /* save the skb in buffer_info as good */
502                                 buffer_info->skb = skb;
503                                 skb = new_skb;
504                         }
505                         /* else just continue with the old one */
506                 }
507                 /* end copybreak code */
508                 skb_put(skb, length);
509
510                 /* Receive Checksum Offload */
511                 e1000_rx_checksum(adapter,
512                                   (u32)(status) |
513                                   ((u32)(rx_desc->errors) << 24),
514                                   le16_to_cpu(rx_desc->csum), skb);
515
516                 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
517
518 next_desc:
519                 rx_desc->status = 0;
520
521                 /* return some buffers to hardware, one at a time is too slow */
522                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
523                         adapter->alloc_rx_buf(adapter, cleaned_count);
524                         cleaned_count = 0;
525                 }
526
527                 /* use prefetched values */
528                 rx_desc = next_rxd;
529                 buffer_info = next_buffer;
530         }
531         rx_ring->next_to_clean = i;
532
533         cleaned_count = e1000_desc_unused(rx_ring);
534         if (cleaned_count)
535                 adapter->alloc_rx_buf(adapter, cleaned_count);
536
537         adapter->total_rx_bytes += total_rx_bytes;
538         adapter->total_rx_packets += total_rx_packets;
539         netdev->stats.rx_bytes += total_rx_bytes;
540         netdev->stats.rx_packets += total_rx_packets;
541         return cleaned;
542 }
543
544 static void e1000_put_txbuf(struct e1000_adapter *adapter,
545                              struct e1000_buffer *buffer_info)
546 {
547         if (buffer_info->dma) {
548                 if (buffer_info->mapped_as_page)
549                         pci_unmap_page(adapter->pdev, buffer_info->dma,
550                                        buffer_info->length, PCI_DMA_TODEVICE);
551                 else
552                         pci_unmap_single(adapter->pdev, buffer_info->dma,
553                                          buffer_info->length,
554                                          PCI_DMA_TODEVICE);
555                 buffer_info->dma = 0;
556         }
557         if (buffer_info->skb) {
558                 dev_kfree_skb_any(buffer_info->skb);
559                 buffer_info->skb = NULL;
560         }
561         buffer_info->time_stamp = 0;
562 }
563
564 static void e1000_print_hw_hang(struct work_struct *work)
565 {
566         struct e1000_adapter *adapter = container_of(work,
567                                                      struct e1000_adapter,
568                                                      print_hang_task);
569         struct e1000_ring *tx_ring = adapter->tx_ring;
570         unsigned int i = tx_ring->next_to_clean;
571         unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
572         struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
573         struct e1000_hw *hw = &adapter->hw;
574         u16 phy_status, phy_1000t_status, phy_ext_status;
575         u16 pci_status;
576
577         e1e_rphy(hw, PHY_STATUS, &phy_status);
578         e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
579         e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
580
581         pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
582
583         /* detected Hardware unit hang */
584         e_err("Detected Hardware Unit Hang:\n"
585               "  TDH                  <%x>\n"
586               "  TDT                  <%x>\n"
587               "  next_to_use          <%x>\n"
588               "  next_to_clean        <%x>\n"
589               "buffer_info[next_to_clean]:\n"
590               "  time_stamp           <%lx>\n"
591               "  next_to_watch        <%x>\n"
592               "  jiffies              <%lx>\n"
593               "  next_to_watch.status <%x>\n"
594               "MAC Status             <%x>\n"
595               "PHY Status             <%x>\n"
596               "PHY 1000BASE-T Status  <%x>\n"
597               "PHY Extended Status    <%x>\n"
598               "PCI Status             <%x>\n",
599               readl(adapter->hw.hw_addr + tx_ring->head),
600               readl(adapter->hw.hw_addr + tx_ring->tail),
601               tx_ring->next_to_use,
602               tx_ring->next_to_clean,
603               tx_ring->buffer_info[eop].time_stamp,
604               eop,
605               jiffies,
606               eop_desc->upper.fields.status,
607               er32(STATUS),
608               phy_status,
609               phy_1000t_status,
610               phy_ext_status,
611               pci_status);
612 }
613
614 /**
615  * e1000_clean_tx_irq - Reclaim resources after transmit completes
616  * @adapter: board private structure
617  *
618  * the return value indicates whether actual cleaning was done, there
619  * is no guarantee that everything was cleaned
620  **/
621 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
622 {
623         struct net_device *netdev = adapter->netdev;
624         struct e1000_hw *hw = &adapter->hw;
625         struct e1000_ring *tx_ring = adapter->tx_ring;
626         struct e1000_tx_desc *tx_desc, *eop_desc;
627         struct e1000_buffer *buffer_info;
628         unsigned int i, eop;
629         unsigned int count = 0;
630         unsigned int total_tx_bytes = 0, total_tx_packets = 0;
631
632         i = tx_ring->next_to_clean;
633         eop = tx_ring->buffer_info[i].next_to_watch;
634         eop_desc = E1000_TX_DESC(*tx_ring, eop);
635
636         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
637                (count < tx_ring->count)) {
638                 bool cleaned = false;
639                 for (; !cleaned; count++) {
640                         tx_desc = E1000_TX_DESC(*tx_ring, i);
641                         buffer_info = &tx_ring->buffer_info[i];
642                         cleaned = (i == eop);
643
644                         if (cleaned) {
645                                 struct sk_buff *skb = buffer_info->skb;
646                                 unsigned int segs, bytecount;
647                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
648                                 /* multiply data chunks by size of headers */
649                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
650                                             skb->len;
651                                 total_tx_packets += segs;
652                                 total_tx_bytes += bytecount;
653                         }
654
655                         e1000_put_txbuf(adapter, buffer_info);
656                         tx_desc->upper.data = 0;
657
658                         i++;
659                         if (i == tx_ring->count)
660                                 i = 0;
661                 }
662
663                 eop = tx_ring->buffer_info[i].next_to_watch;
664                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
665         }
666
667         tx_ring->next_to_clean = i;
668
669 #define TX_WAKE_THRESHOLD 32
670         if (count && netif_carrier_ok(netdev) &&
671             e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
672                 /* Make sure that anybody stopping the queue after this
673                  * sees the new next_to_clean.
674                  */
675                 smp_mb();
676
677                 if (netif_queue_stopped(netdev) &&
678                     !(test_bit(__E1000_DOWN, &adapter->state))) {
679                         netif_wake_queue(netdev);
680                         ++adapter->restart_queue;
681                 }
682         }
683
684         if (adapter->detect_tx_hung) {
685                 /*
686                  * Detect a transmit hang in hardware, this serializes the
687                  * check with the clearing of time_stamp and movement of i
688                  */
689                 adapter->detect_tx_hung = 0;
690                 if (tx_ring->buffer_info[i].time_stamp &&
691                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp
692                                + (adapter->tx_timeout_factor * HZ)) &&
693                     !(er32(STATUS) & E1000_STATUS_TXOFF)) {
694                         schedule_work(&adapter->print_hang_task);
695                         netif_stop_queue(netdev);
696                 }
697         }
698         adapter->total_tx_bytes += total_tx_bytes;
699         adapter->total_tx_packets += total_tx_packets;
700         netdev->stats.tx_bytes += total_tx_bytes;
701         netdev->stats.tx_packets += total_tx_packets;
702         return (count < tx_ring->count);
703 }
704
705 /**
706  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
707  * @adapter: board private structure
708  *
709  * the return value indicates whether actual cleaning was done, there
710  * is no guarantee that everything was cleaned
711  **/
712 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
713                                   int *work_done, int work_to_do)
714 {
715         struct e1000_hw *hw = &adapter->hw;
716         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
717         struct net_device *netdev = adapter->netdev;
718         struct pci_dev *pdev = adapter->pdev;
719         struct e1000_ring *rx_ring = adapter->rx_ring;
720         struct e1000_buffer *buffer_info, *next_buffer;
721         struct e1000_ps_page *ps_page;
722         struct sk_buff *skb;
723         unsigned int i, j;
724         u32 length, staterr;
725         int cleaned_count = 0;
726         bool cleaned = 0;
727         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
728
729         i = rx_ring->next_to_clean;
730         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
731         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
732         buffer_info = &rx_ring->buffer_info[i];
733
734         while (staterr & E1000_RXD_STAT_DD) {
735                 if (*work_done >= work_to_do)
736                         break;
737                 (*work_done)++;
738                 skb = buffer_info->skb;
739
740                 /* in the packet split case this is header only */
741                 prefetch(skb->data - NET_IP_ALIGN);
742
743                 i++;
744                 if (i == rx_ring->count)
745                         i = 0;
746                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
747                 prefetch(next_rxd);
748
749                 next_buffer = &rx_ring->buffer_info[i];
750
751                 cleaned = 1;
752                 cleaned_count++;
753                 pci_unmap_single(pdev, buffer_info->dma,
754                                  adapter->rx_ps_bsize0,
755                                  PCI_DMA_FROMDEVICE);
756                 buffer_info->dma = 0;
757
758                 /* see !EOP comment in other rx routine */
759                 if (!(staterr & E1000_RXD_STAT_EOP))
760                         adapter->flags2 |= FLAG2_IS_DISCARDING;
761
762                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
763                         e_dbg("Packet Split buffers didn't pick up the full "
764                               "packet\n");
765                         dev_kfree_skb_irq(skb);
766                         if (staterr & E1000_RXD_STAT_EOP)
767                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
768                         goto next_desc;
769                 }
770
771                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
772                         dev_kfree_skb_irq(skb);
773                         goto next_desc;
774                 }
775
776                 length = le16_to_cpu(rx_desc->wb.middle.length0);
777
778                 if (!length) {
779                         e_dbg("Last part of the packet spanning multiple "
780                               "descriptors\n");
781                         dev_kfree_skb_irq(skb);
782                         goto next_desc;
783                 }
784
785                 /* Good Receive */
786                 skb_put(skb, length);
787
788                 {
789                 /*
790                  * this looks ugly, but it seems compiler issues make it
791                  * more efficient than reusing j
792                  */
793                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
794
795                 /*
796                  * page alloc/put takes too long and effects small packet
797                  * throughput, so unsplit small packets and save the alloc/put
798                  * only valid in softirq (napi) context to call kmap_*
799                  */
800                 if (l1 && (l1 <= copybreak) &&
801                     ((length + l1) <= adapter->rx_ps_bsize0)) {
802                         u8 *vaddr;
803
804                         ps_page = &buffer_info->ps_pages[0];
805
806                         /*
807                          * there is no documentation about how to call
808                          * kmap_atomic, so we can't hold the mapping
809                          * very long
810                          */
811                         pci_dma_sync_single_for_cpu(pdev, ps_page->dma,
812                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
813                         vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
814                         memcpy(skb_tail_pointer(skb), vaddr, l1);
815                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
816                         pci_dma_sync_single_for_device(pdev, ps_page->dma,
817                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
818
819                         /* remove the CRC */
820                         if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
821                                 l1 -= 4;
822
823                         skb_put(skb, l1);
824                         goto copydone;
825                 } /* if */
826                 }
827
828                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
829                         length = le16_to_cpu(rx_desc->wb.upper.length[j]);
830                         if (!length)
831                                 break;
832
833                         ps_page = &buffer_info->ps_pages[j];
834                         pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
835                                        PCI_DMA_FROMDEVICE);
836                         ps_page->dma = 0;
837                         skb_fill_page_desc(skb, j, ps_page->page, 0, length);
838                         ps_page->page = NULL;
839                         skb->len += length;
840                         skb->data_len += length;
841                         skb->truesize += length;
842                 }
843
844                 /* strip the ethernet crc, problem is we're using pages now so
845                  * this whole operation can get a little cpu intensive
846                  */
847                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
848                         pskb_trim(skb, skb->len - 4);
849
850 copydone:
851                 total_rx_bytes += skb->len;
852                 total_rx_packets++;
853
854                 e1000_rx_checksum(adapter, staterr, le16_to_cpu(
855                         rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
856
857                 if (rx_desc->wb.upper.header_status &
858                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
859                         adapter->rx_hdr_split++;
860
861                 e1000_receive_skb(adapter, netdev, skb,
862                                   staterr, rx_desc->wb.middle.vlan);
863
864 next_desc:
865                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
866                 buffer_info->skb = NULL;
867
868                 /* return some buffers to hardware, one at a time is too slow */
869                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
870                         adapter->alloc_rx_buf(adapter, cleaned_count);
871                         cleaned_count = 0;
872                 }
873
874                 /* use prefetched values */
875                 rx_desc = next_rxd;
876                 buffer_info = next_buffer;
877
878                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
879         }
880         rx_ring->next_to_clean = i;
881
882         cleaned_count = e1000_desc_unused(rx_ring);
883         if (cleaned_count)
884                 adapter->alloc_rx_buf(adapter, cleaned_count);
885
886         adapter->total_rx_bytes += total_rx_bytes;
887         adapter->total_rx_packets += total_rx_packets;
888         netdev->stats.rx_bytes += total_rx_bytes;
889         netdev->stats.rx_packets += total_rx_packets;
890         return cleaned;
891 }
892
893 /**
894  * e1000_consume_page - helper function
895  **/
896 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
897                                u16 length)
898 {
899         bi->page = NULL;
900         skb->len += length;
901         skb->data_len += length;
902         skb->truesize += length;
903 }
904
905 /**
906  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
907  * @adapter: board private structure
908  *
909  * the return value indicates whether actual cleaning was done, there
910  * is no guarantee that everything was cleaned
911  **/
912
913 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
914                                      int *work_done, int work_to_do)
915 {
916         struct net_device *netdev = adapter->netdev;
917         struct pci_dev *pdev = adapter->pdev;
918         struct e1000_ring *rx_ring = adapter->rx_ring;
919         struct e1000_rx_desc *rx_desc, *next_rxd;
920         struct e1000_buffer *buffer_info, *next_buffer;
921         u32 length;
922         unsigned int i;
923         int cleaned_count = 0;
924         bool cleaned = false;
925         unsigned int total_rx_bytes=0, total_rx_packets=0;
926
927         i = rx_ring->next_to_clean;
928         rx_desc = E1000_RX_DESC(*rx_ring, i);
929         buffer_info = &rx_ring->buffer_info[i];
930
931         while (rx_desc->status & E1000_RXD_STAT_DD) {
932                 struct sk_buff *skb;
933                 u8 status;
934
935                 if (*work_done >= work_to_do)
936                         break;
937                 (*work_done)++;
938
939                 status = rx_desc->status;
940                 skb = buffer_info->skb;
941                 buffer_info->skb = NULL;
942
943                 ++i;
944                 if (i == rx_ring->count)
945                         i = 0;
946                 next_rxd = E1000_RX_DESC(*rx_ring, i);
947                 prefetch(next_rxd);
948
949                 next_buffer = &rx_ring->buffer_info[i];
950
951                 cleaned = true;
952                 cleaned_count++;
953                 pci_unmap_page(pdev, buffer_info->dma, PAGE_SIZE,
954                                PCI_DMA_FROMDEVICE);
955                 buffer_info->dma = 0;
956
957                 length = le16_to_cpu(rx_desc->length);
958
959                 /* errors is only valid for DD + EOP descriptors */
960                 if (unlikely((status & E1000_RXD_STAT_EOP) &&
961                     (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
962                                 /* recycle both page and skb */
963                                 buffer_info->skb = skb;
964                                 /* an error means any chain goes out the window
965                                  * too */
966                                 if (rx_ring->rx_skb_top)
967                                         dev_kfree_skb(rx_ring->rx_skb_top);
968                                 rx_ring->rx_skb_top = NULL;
969                                 goto next_desc;
970                 }
971
972 #define rxtop rx_ring->rx_skb_top
973                 if (!(status & E1000_RXD_STAT_EOP)) {
974                         /* this descriptor is only the beginning (or middle) */
975                         if (!rxtop) {
976                                 /* this is the beginning of a chain */
977                                 rxtop = skb;
978                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
979                                                    0, length);
980                         } else {
981                                 /* this is the middle of a chain */
982                                 skb_fill_page_desc(rxtop,
983                                     skb_shinfo(rxtop)->nr_frags,
984                                     buffer_info->page, 0, length);
985                                 /* re-use the skb, only consumed the page */
986                                 buffer_info->skb = skb;
987                         }
988                         e1000_consume_page(buffer_info, rxtop, length);
989                         goto next_desc;
990                 } else {
991                         if (rxtop) {
992                                 /* end of the chain */
993                                 skb_fill_page_desc(rxtop,
994                                     skb_shinfo(rxtop)->nr_frags,
995                                     buffer_info->page, 0, length);
996                                 /* re-use the current skb, we only consumed the
997                                  * page */
998                                 buffer_info->skb = skb;
999                                 skb = rxtop;
1000                                 rxtop = NULL;
1001                                 e1000_consume_page(buffer_info, skb, length);
1002                         } else {
1003                                 /* no chain, got EOP, this buf is the packet
1004                                  * copybreak to save the put_page/alloc_page */
1005                                 if (length <= copybreak &&
1006                                     skb_tailroom(skb) >= length) {
1007                                         u8 *vaddr;
1008                                         vaddr = kmap_atomic(buffer_info->page,
1009                                                            KM_SKB_DATA_SOFTIRQ);
1010                                         memcpy(skb_tail_pointer(skb), vaddr,
1011                                                length);
1012                                         kunmap_atomic(vaddr,
1013                                                       KM_SKB_DATA_SOFTIRQ);
1014                                         /* re-use the page, so don't erase
1015                                          * buffer_info->page */
1016                                         skb_put(skb, length);
1017                                 } else {
1018                                         skb_fill_page_desc(skb, 0,
1019                                                            buffer_info->page, 0,
1020                                                            length);
1021                                         e1000_consume_page(buffer_info, skb,
1022                                                            length);
1023                                 }
1024                         }
1025                 }
1026
1027                 /* Receive Checksum Offload XXX recompute due to CRC strip? */
1028                 e1000_rx_checksum(adapter,
1029                                   (u32)(status) |
1030                                   ((u32)(rx_desc->errors) << 24),
1031                                   le16_to_cpu(rx_desc->csum), skb);
1032
1033                 /* probably a little skewed due to removing CRC */
1034                 total_rx_bytes += skb->len;
1035                 total_rx_packets++;
1036
1037                 /* eth type trans needs skb->data to point to something */
1038                 if (!pskb_may_pull(skb, ETH_HLEN)) {
1039                         e_err("pskb_may_pull failed.\n");
1040                         dev_kfree_skb(skb);
1041                         goto next_desc;
1042                 }
1043
1044                 e1000_receive_skb(adapter, netdev, skb, status,
1045                                   rx_desc->special);
1046
1047 next_desc:
1048                 rx_desc->status = 0;
1049
1050                 /* return some buffers to hardware, one at a time is too slow */
1051                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1052                         adapter->alloc_rx_buf(adapter, cleaned_count);
1053                         cleaned_count = 0;
1054                 }
1055
1056                 /* use prefetched values */
1057                 rx_desc = next_rxd;
1058                 buffer_info = next_buffer;
1059         }
1060         rx_ring->next_to_clean = i;
1061
1062         cleaned_count = e1000_desc_unused(rx_ring);
1063         if (cleaned_count)
1064                 adapter->alloc_rx_buf(adapter, cleaned_count);
1065
1066         adapter->total_rx_bytes += total_rx_bytes;
1067         adapter->total_rx_packets += total_rx_packets;
1068         netdev->stats.rx_bytes += total_rx_bytes;
1069         netdev->stats.rx_packets += total_rx_packets;
1070         return cleaned;
1071 }
1072
1073 /**
1074  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1075  * @adapter: board private structure
1076  **/
1077 static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
1078 {
1079         struct e1000_ring *rx_ring = adapter->rx_ring;
1080         struct e1000_buffer *buffer_info;
1081         struct e1000_ps_page *ps_page;
1082         struct pci_dev *pdev = adapter->pdev;
1083         unsigned int i, j;
1084
1085         /* Free all the Rx ring sk_buffs */
1086         for (i = 0; i < rx_ring->count; i++) {
1087                 buffer_info = &rx_ring->buffer_info[i];
1088                 if (buffer_info->dma) {
1089                         if (adapter->clean_rx == e1000_clean_rx_irq)
1090                                 pci_unmap_single(pdev, buffer_info->dma,
1091                                                  adapter->rx_buffer_len,
1092                                                  PCI_DMA_FROMDEVICE);
1093                         else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1094                                 pci_unmap_page(pdev, buffer_info->dma,
1095                                                PAGE_SIZE,
1096                                                PCI_DMA_FROMDEVICE);
1097                         else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1098                                 pci_unmap_single(pdev, buffer_info->dma,
1099                                                  adapter->rx_ps_bsize0,
1100                                                  PCI_DMA_FROMDEVICE);
1101                         buffer_info->dma = 0;
1102                 }
1103
1104                 if (buffer_info->page) {
1105                         put_page(buffer_info->page);
1106                         buffer_info->page = NULL;
1107                 }
1108
1109                 if (buffer_info->skb) {
1110                         dev_kfree_skb(buffer_info->skb);
1111                         buffer_info->skb = NULL;
1112                 }
1113
1114                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1115                         ps_page = &buffer_info->ps_pages[j];
1116                         if (!ps_page->page)
1117                                 break;
1118                         pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
1119                                        PCI_DMA_FROMDEVICE);
1120                         ps_page->dma = 0;
1121                         put_page(ps_page->page);
1122                         ps_page->page = NULL;
1123                 }
1124         }
1125
1126         /* there also may be some cached data from a chained receive */
1127         if (rx_ring->rx_skb_top) {
1128                 dev_kfree_skb(rx_ring->rx_skb_top);
1129                 rx_ring->rx_skb_top = NULL;
1130         }
1131
1132         /* Zero out the descriptor ring */
1133         memset(rx_ring->desc, 0, rx_ring->size);
1134
1135         rx_ring->next_to_clean = 0;
1136         rx_ring->next_to_use = 0;
1137         adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1138
1139         writel(0, adapter->hw.hw_addr + rx_ring->head);
1140         writel(0, adapter->hw.hw_addr + rx_ring->tail);
1141 }
1142
1143 static void e1000e_downshift_workaround(struct work_struct *work)
1144 {
1145         struct e1000_adapter *adapter = container_of(work,
1146                                         struct e1000_adapter, downshift_task);
1147
1148         e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1149 }
1150
1151 /**
1152  * e1000_intr_msi - Interrupt Handler
1153  * @irq: interrupt number
1154  * @data: pointer to a network interface device structure
1155  **/
1156 static irqreturn_t e1000_intr_msi(int irq, void *data)
1157 {
1158         struct net_device *netdev = data;
1159         struct e1000_adapter *adapter = netdev_priv(netdev);
1160         struct e1000_hw *hw = &adapter->hw;
1161         u32 icr = er32(ICR);
1162
1163         /*
1164          * read ICR disables interrupts using IAM
1165          */
1166
1167         if (icr & E1000_ICR_LSC) {
1168                 hw->mac.get_link_status = 1;
1169                 /*
1170                  * ICH8 workaround-- Call gig speed drop workaround on cable
1171                  * disconnect (LSC) before accessing any PHY registers
1172                  */
1173                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1174                     (!(er32(STATUS) & E1000_STATUS_LU)))
1175                         schedule_work(&adapter->downshift_task);
1176
1177                 /*
1178                  * 80003ES2LAN workaround-- For packet buffer work-around on
1179                  * link down event; disable receives here in the ISR and reset
1180                  * adapter in watchdog
1181                  */
1182                 if (netif_carrier_ok(netdev) &&
1183                     adapter->flags & FLAG_RX_NEEDS_RESTART) {
1184                         /* disable receives */
1185                         u32 rctl = er32(RCTL);
1186                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1187                         adapter->flags |= FLAG_RX_RESTART_NOW;
1188                 }
1189                 /* guard against interrupt when we're going down */
1190                 if (!test_bit(__E1000_DOWN, &adapter->state))
1191                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1192         }
1193
1194         if (napi_schedule_prep(&adapter->napi)) {
1195                 adapter->total_tx_bytes = 0;
1196                 adapter->total_tx_packets = 0;
1197                 adapter->total_rx_bytes = 0;
1198                 adapter->total_rx_packets = 0;
1199                 __napi_schedule(&adapter->napi);
1200         }
1201
1202         return IRQ_HANDLED;
1203 }
1204
1205 /**
1206  * e1000_intr - Interrupt Handler
1207  * @irq: interrupt number
1208  * @data: pointer to a network interface device structure
1209  **/
1210 static irqreturn_t e1000_intr(int irq, void *data)
1211 {
1212         struct net_device *netdev = data;
1213         struct e1000_adapter *adapter = netdev_priv(netdev);
1214         struct e1000_hw *hw = &adapter->hw;
1215         u32 rctl, icr = er32(ICR);
1216
1217         if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1218                 return IRQ_NONE;  /* Not our interrupt */
1219
1220         /*
1221          * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1222          * not set, then the adapter didn't send an interrupt
1223          */
1224         if (!(icr & E1000_ICR_INT_ASSERTED))
1225                 return IRQ_NONE;
1226
1227         /*
1228          * Interrupt Auto-Mask...upon reading ICR,
1229          * interrupts are masked.  No need for the
1230          * IMC write
1231          */
1232
1233         if (icr & E1000_ICR_LSC) {
1234                 hw->mac.get_link_status = 1;
1235                 /*
1236                  * ICH8 workaround-- Call gig speed drop workaround on cable
1237                  * disconnect (LSC) before accessing any PHY registers
1238                  */
1239                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1240                     (!(er32(STATUS) & E1000_STATUS_LU)))
1241                         schedule_work(&adapter->downshift_task);
1242
1243                 /*
1244                  * 80003ES2LAN workaround--
1245                  * For packet buffer work-around on link down event;
1246                  * disable receives here in the ISR and
1247                  * reset adapter in watchdog
1248                  */
1249                 if (netif_carrier_ok(netdev) &&
1250                     (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1251                         /* disable receives */
1252                         rctl = er32(RCTL);
1253                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1254                         adapter->flags |= FLAG_RX_RESTART_NOW;
1255                 }
1256                 /* guard against interrupt when we're going down */
1257                 if (!test_bit(__E1000_DOWN, &adapter->state))
1258                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1259         }
1260
1261         if (napi_schedule_prep(&adapter->napi)) {
1262                 adapter->total_tx_bytes = 0;
1263                 adapter->total_tx_packets = 0;
1264                 adapter->total_rx_bytes = 0;
1265                 adapter->total_rx_packets = 0;
1266                 __napi_schedule(&adapter->napi);
1267         }
1268
1269         return IRQ_HANDLED;
1270 }
1271
1272 static irqreturn_t e1000_msix_other(int irq, void *data)
1273 {
1274         struct net_device *netdev = data;
1275         struct e1000_adapter *adapter = netdev_priv(netdev);
1276         struct e1000_hw *hw = &adapter->hw;
1277         u32 icr = er32(ICR);
1278
1279         if (!(icr & E1000_ICR_INT_ASSERTED)) {
1280                 if (!test_bit(__E1000_DOWN, &adapter->state))
1281                         ew32(IMS, E1000_IMS_OTHER);
1282                 return IRQ_NONE;
1283         }
1284
1285         if (icr & adapter->eiac_mask)
1286                 ew32(ICS, (icr & adapter->eiac_mask));
1287
1288         if (icr & E1000_ICR_OTHER) {
1289                 if (!(icr & E1000_ICR_LSC))
1290                         goto no_link_interrupt;
1291                 hw->mac.get_link_status = 1;
1292                 /* guard against interrupt when we're going down */
1293                 if (!test_bit(__E1000_DOWN, &adapter->state))
1294                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1295         }
1296
1297 no_link_interrupt:
1298         if (!test_bit(__E1000_DOWN, &adapter->state))
1299                 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1300
1301         return IRQ_HANDLED;
1302 }
1303
1304
1305 static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
1306 {
1307         struct net_device *netdev = data;
1308         struct e1000_adapter *adapter = netdev_priv(netdev);
1309         struct e1000_hw *hw = &adapter->hw;
1310         struct e1000_ring *tx_ring = adapter->tx_ring;
1311
1312
1313         adapter->total_tx_bytes = 0;
1314         adapter->total_tx_packets = 0;
1315
1316         if (!e1000_clean_tx_irq(adapter))
1317                 /* Ring was not completely cleaned, so fire another interrupt */
1318                 ew32(ICS, tx_ring->ims_val);
1319
1320         return IRQ_HANDLED;
1321 }
1322
1323 static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
1324 {
1325         struct net_device *netdev = data;
1326         struct e1000_adapter *adapter = netdev_priv(netdev);
1327
1328         /* Write the ITR value calculated at the end of the
1329          * previous interrupt.
1330          */
1331         if (adapter->rx_ring->set_itr) {
1332                 writel(1000000000 / (adapter->rx_ring->itr_val * 256),
1333                        adapter->hw.hw_addr + adapter->rx_ring->itr_register);
1334                 adapter->rx_ring->set_itr = 0;
1335         }
1336
1337         if (napi_schedule_prep(&adapter->napi)) {
1338                 adapter->total_rx_bytes = 0;
1339                 adapter->total_rx_packets = 0;
1340                 __napi_schedule(&adapter->napi);
1341         }
1342         return IRQ_HANDLED;
1343 }
1344
1345 /**
1346  * e1000_configure_msix - Configure MSI-X hardware
1347  *
1348  * e1000_configure_msix sets up the hardware to properly
1349  * generate MSI-X interrupts.
1350  **/
1351 static void e1000_configure_msix(struct e1000_adapter *adapter)
1352 {
1353         struct e1000_hw *hw = &adapter->hw;
1354         struct e1000_ring *rx_ring = adapter->rx_ring;
1355         struct e1000_ring *tx_ring = adapter->tx_ring;
1356         int vector = 0;
1357         u32 ctrl_ext, ivar = 0;
1358
1359         adapter->eiac_mask = 0;
1360
1361         /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1362         if (hw->mac.type == e1000_82574) {
1363                 u32 rfctl = er32(RFCTL);
1364                 rfctl |= E1000_RFCTL_ACK_DIS;
1365                 ew32(RFCTL, rfctl);
1366         }
1367
1368 #define E1000_IVAR_INT_ALLOC_VALID      0x8
1369         /* Configure Rx vector */
1370         rx_ring->ims_val = E1000_IMS_RXQ0;
1371         adapter->eiac_mask |= rx_ring->ims_val;
1372         if (rx_ring->itr_val)
1373                 writel(1000000000 / (rx_ring->itr_val * 256),
1374                        hw->hw_addr + rx_ring->itr_register);
1375         else
1376                 writel(1, hw->hw_addr + rx_ring->itr_register);
1377         ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1378
1379         /* Configure Tx vector */
1380         tx_ring->ims_val = E1000_IMS_TXQ0;
1381         vector++;
1382         if (tx_ring->itr_val)
1383                 writel(1000000000 / (tx_ring->itr_val * 256),
1384                        hw->hw_addr + tx_ring->itr_register);
1385         else
1386                 writel(1, hw->hw_addr + tx_ring->itr_register);
1387         adapter->eiac_mask |= tx_ring->ims_val;
1388         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1389
1390         /* set vector for Other Causes, e.g. link changes */
1391         vector++;
1392         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1393         if (rx_ring->itr_val)
1394                 writel(1000000000 / (rx_ring->itr_val * 256),
1395                        hw->hw_addr + E1000_EITR_82574(vector));
1396         else
1397                 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1398
1399         /* Cause Tx interrupts on every write back */
1400         ivar |= (1 << 31);
1401
1402         ew32(IVAR, ivar);
1403
1404         /* enable MSI-X PBA support */
1405         ctrl_ext = er32(CTRL_EXT);
1406         ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
1407
1408         /* Auto-Mask Other interrupts upon ICR read */
1409 #define E1000_EIAC_MASK_82574   0x01F00000
1410         ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
1411         ctrl_ext |= E1000_CTRL_EXT_EIAME;
1412         ew32(CTRL_EXT, ctrl_ext);
1413         e1e_flush();
1414 }
1415
1416 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
1417 {
1418         if (adapter->msix_entries) {
1419                 pci_disable_msix(adapter->pdev);
1420                 kfree(adapter->msix_entries);
1421                 adapter->msix_entries = NULL;
1422         } else if (adapter->flags & FLAG_MSI_ENABLED) {
1423                 pci_disable_msi(adapter->pdev);
1424                 adapter->flags &= ~FLAG_MSI_ENABLED;
1425         }
1426
1427         return;
1428 }
1429
1430 /**
1431  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1432  *
1433  * Attempt to configure interrupts using the best available
1434  * capabilities of the hardware and kernel.
1435  **/
1436 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
1437 {
1438         int err;
1439         int numvecs, i;
1440
1441
1442         switch (adapter->int_mode) {
1443         case E1000E_INT_MODE_MSIX:
1444                 if (adapter->flags & FLAG_HAS_MSIX) {
1445                         numvecs = 3; /* RxQ0, TxQ0 and other */
1446                         adapter->msix_entries = kcalloc(numvecs,
1447                                                       sizeof(struct msix_entry),
1448                                                       GFP_KERNEL);
1449                         if (adapter->msix_entries) {
1450                                 for (i = 0; i < numvecs; i++)
1451                                         adapter->msix_entries[i].entry = i;
1452
1453                                 err = pci_enable_msix(adapter->pdev,
1454                                                       adapter->msix_entries,
1455                                                       numvecs);
1456                                 if (err == 0)
1457                                         return;
1458                         }
1459                         /* MSI-X failed, so fall through and try MSI */
1460                         e_err("Failed to initialize MSI-X interrupts.  "
1461                               "Falling back to MSI interrupts.\n");
1462                         e1000e_reset_interrupt_capability(adapter);
1463                 }
1464                 adapter->int_mode = E1000E_INT_MODE_MSI;
1465                 /* Fall through */
1466         case E1000E_INT_MODE_MSI:
1467                 if (!pci_enable_msi(adapter->pdev)) {
1468                         adapter->flags |= FLAG_MSI_ENABLED;
1469                 } else {
1470                         adapter->int_mode = E1000E_INT_MODE_LEGACY;
1471                         e_err("Failed to initialize MSI interrupts.  Falling "
1472                               "back to legacy interrupts.\n");
1473                 }
1474                 /* Fall through */
1475         case E1000E_INT_MODE_LEGACY:
1476                 /* Don't do anything; this is the system default */
1477                 break;
1478         }
1479
1480         return;
1481 }
1482
1483 /**
1484  * e1000_request_msix - Initialize MSI-X interrupts
1485  *
1486  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1487  * kernel.
1488  **/
1489 static int e1000_request_msix(struct e1000_adapter *adapter)
1490 {
1491         struct net_device *netdev = adapter->netdev;
1492         int err = 0, vector = 0;
1493
1494         if (strlen(netdev->name) < (IFNAMSIZ - 5))
1495                 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1496         else
1497                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1498         err = request_irq(adapter->msix_entries[vector].vector,
1499                           e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1500                           netdev);
1501         if (err)
1502                 goto out;
1503         adapter->rx_ring->itr_register = E1000_EITR_82574(vector);
1504         adapter->rx_ring->itr_val = adapter->itr;
1505         vector++;
1506
1507         if (strlen(netdev->name) < (IFNAMSIZ - 5))
1508                 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1509         else
1510                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1511         err = request_irq(adapter->msix_entries[vector].vector,
1512                           e1000_intr_msix_tx, 0, adapter->tx_ring->name,
1513                           netdev);
1514         if (err)
1515                 goto out;
1516         adapter->tx_ring->itr_register = E1000_EITR_82574(vector);
1517         adapter->tx_ring->itr_val = adapter->itr;
1518         vector++;
1519
1520         err = request_irq(adapter->msix_entries[vector].vector,
1521                           e1000_msix_other, 0, netdev->name, netdev);
1522         if (err)
1523                 goto out;
1524
1525         e1000_configure_msix(adapter);
1526         return 0;
1527 out:
1528         return err;
1529 }
1530
1531 /**
1532  * e1000_request_irq - initialize interrupts
1533  *
1534  * Attempts to configure interrupts using the best available
1535  * capabilities of the hardware and kernel.
1536  **/
1537 static int e1000_request_irq(struct e1000_adapter *adapter)
1538 {
1539         struct net_device *netdev = adapter->netdev;
1540         int err;
1541
1542         if (adapter->msix_entries) {
1543                 err = e1000_request_msix(adapter);
1544                 if (!err)
1545                         return err;
1546                 /* fall back to MSI */
1547                 e1000e_reset_interrupt_capability(adapter);
1548                 adapter->int_mode = E1000E_INT_MODE_MSI;
1549                 e1000e_set_interrupt_capability(adapter);
1550         }
1551         if (adapter->flags & FLAG_MSI_ENABLED) {
1552                 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
1553                                   netdev->name, netdev);
1554                 if (!err)
1555                         return err;
1556
1557                 /* fall back to legacy interrupt */
1558                 e1000e_reset_interrupt_capability(adapter);
1559                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1560         }
1561
1562         err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
1563                           netdev->name, netdev);
1564         if (err)
1565                 e_err("Unable to allocate interrupt, Error: %d\n", err);
1566
1567         return err;
1568 }
1569
1570 static void e1000_free_irq(struct e1000_adapter *adapter)
1571 {
1572         struct net_device *netdev = adapter->netdev;
1573
1574         if (adapter->msix_entries) {
1575                 int vector = 0;
1576
1577                 free_irq(adapter->msix_entries[vector].vector, netdev);
1578                 vector++;
1579
1580                 free_irq(adapter->msix_entries[vector].vector, netdev);
1581                 vector++;
1582
1583                 /* Other Causes interrupt vector */
1584                 free_irq(adapter->msix_entries[vector].vector, netdev);
1585                 return;
1586         }
1587
1588         free_irq(adapter->pdev->irq, netdev);
1589 }
1590
1591 /**
1592  * e1000_irq_disable - Mask off interrupt generation on the NIC
1593  **/
1594 static void e1000_irq_disable(struct e1000_adapter *adapter)
1595 {
1596         struct e1000_hw *hw = &adapter->hw;
1597
1598         ew32(IMC, ~0);
1599         if (adapter->msix_entries)
1600                 ew32(EIAC_82574, 0);
1601         e1e_flush();
1602         synchronize_irq(adapter->pdev->irq);
1603 }
1604
1605 /**
1606  * e1000_irq_enable - Enable default interrupt generation settings
1607  **/
1608 static void e1000_irq_enable(struct e1000_adapter *adapter)
1609 {
1610         struct e1000_hw *hw = &adapter->hw;
1611
1612         if (adapter->msix_entries) {
1613                 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
1614                 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
1615         } else {
1616                 ew32(IMS, IMS_ENABLE_MASK);
1617         }
1618         e1e_flush();
1619 }
1620
1621 /**
1622  * e1000_get_hw_control - get control of the h/w from f/w
1623  * @adapter: address of board private structure
1624  *
1625  * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1626  * For ASF and Pass Through versions of f/w this means that
1627  * the driver is loaded. For AMT version (only with 82573)
1628  * of the f/w this means that the network i/f is open.
1629  **/
1630 static void e1000_get_hw_control(struct e1000_adapter *adapter)
1631 {
1632         struct e1000_hw *hw = &adapter->hw;
1633         u32 ctrl_ext;
1634         u32 swsm;
1635
1636         /* Let firmware know the driver has taken over */
1637         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1638                 swsm = er32(SWSM);
1639                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
1640         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1641                 ctrl_ext = er32(CTRL_EXT);
1642                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1643         }
1644 }
1645
1646 /**
1647  * e1000_release_hw_control - release control of the h/w to f/w
1648  * @adapter: address of board private structure
1649  *
1650  * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1651  * For ASF and Pass Through versions of f/w this means that the
1652  * driver is no longer loaded. For AMT version (only with 82573) i
1653  * of the f/w this means that the network i/f is closed.
1654  *
1655  **/
1656 static void e1000_release_hw_control(struct e1000_adapter *adapter)
1657 {
1658         struct e1000_hw *hw = &adapter->hw;
1659         u32 ctrl_ext;
1660         u32 swsm;
1661
1662         /* Let firmware taken over control of h/w */
1663         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1664                 swsm = er32(SWSM);
1665                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1666         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1667                 ctrl_ext = er32(CTRL_EXT);
1668                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1669         }
1670 }
1671
1672 /**
1673  * @e1000_alloc_ring - allocate memory for a ring structure
1674  **/
1675 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
1676                                 struct e1000_ring *ring)
1677 {
1678         struct pci_dev *pdev = adapter->pdev;
1679
1680         ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
1681                                         GFP_KERNEL);
1682         if (!ring->desc)
1683                 return -ENOMEM;
1684
1685         return 0;
1686 }
1687
1688 /**
1689  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
1690  * @adapter: board private structure
1691  *
1692  * Return 0 on success, negative on failure
1693  **/
1694 int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
1695 {
1696         struct e1000_ring *tx_ring = adapter->tx_ring;
1697         int err = -ENOMEM, size;
1698
1699         size = sizeof(struct e1000_buffer) * tx_ring->count;
1700         tx_ring->buffer_info = vmalloc(size);
1701         if (!tx_ring->buffer_info)
1702                 goto err;
1703         memset(tx_ring->buffer_info, 0, size);
1704
1705         /* round up to nearest 4K */
1706         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1707         tx_ring->size = ALIGN(tx_ring->size, 4096);
1708
1709         err = e1000_alloc_ring_dma(adapter, tx_ring);
1710         if (err)
1711                 goto err;
1712
1713         tx_ring->next_to_use = 0;
1714         tx_ring->next_to_clean = 0;
1715
1716         return 0;
1717 err:
1718         vfree(tx_ring->buffer_info);
1719         e_err("Unable to allocate memory for the transmit descriptor ring\n");
1720         return err;
1721 }
1722
1723 /**
1724  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
1725  * @adapter: board private structure
1726  *
1727  * Returns 0 on success, negative on failure
1728  **/
1729 int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
1730 {
1731         struct e1000_ring *rx_ring = adapter->rx_ring;
1732         struct e1000_buffer *buffer_info;
1733         int i, size, desc_len, err = -ENOMEM;
1734
1735         size = sizeof(struct e1000_buffer) * rx_ring->count;
1736         rx_ring->buffer_info = vmalloc(size);
1737         if (!rx_ring->buffer_info)
1738                 goto err;
1739         memset(rx_ring->buffer_info, 0, size);
1740
1741         for (i = 0; i < rx_ring->count; i++) {
1742                 buffer_info = &rx_ring->buffer_info[i];
1743                 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
1744                                                 sizeof(struct e1000_ps_page),
1745                                                 GFP_KERNEL);
1746                 if (!buffer_info->ps_pages)
1747                         goto err_pages;
1748         }
1749
1750         desc_len = sizeof(union e1000_rx_desc_packet_split);
1751
1752         /* Round up to nearest 4K */
1753         rx_ring->size = rx_ring->count * desc_len;
1754         rx_ring->size = ALIGN(rx_ring->size, 4096);
1755
1756         err = e1000_alloc_ring_dma(adapter, rx_ring);
1757         if (err)
1758                 goto err_pages;
1759
1760         rx_ring->next_to_clean = 0;
1761         rx_ring->next_to_use = 0;
1762         rx_ring->rx_skb_top = NULL;
1763
1764         return 0;
1765
1766 err_pages:
1767         for (i = 0; i < rx_ring->count; i++) {
1768                 buffer_info = &rx_ring->buffer_info[i];
1769                 kfree(buffer_info->ps_pages);
1770         }
1771 err:
1772         vfree(rx_ring->buffer_info);
1773         e_err("Unable to allocate memory for the transmit descriptor ring\n");
1774         return err;
1775 }
1776
1777 /**
1778  * e1000_clean_tx_ring - Free Tx Buffers
1779  * @adapter: board private structure
1780  **/
1781 static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
1782 {
1783         struct e1000_ring *tx_ring = adapter->tx_ring;
1784         struct e1000_buffer *buffer_info;
1785         unsigned long size;
1786         unsigned int i;
1787
1788         for (i = 0; i < tx_ring->count; i++) {
1789                 buffer_info = &tx_ring->buffer_info[i];
1790                 e1000_put_txbuf(adapter, buffer_info);
1791         }
1792
1793         size = sizeof(struct e1000_buffer) * tx_ring->count;
1794         memset(tx_ring->buffer_info, 0, size);
1795
1796         memset(tx_ring->desc, 0, tx_ring->size);
1797
1798         tx_ring->next_to_use = 0;
1799         tx_ring->next_to_clean = 0;
1800
1801         writel(0, adapter->hw.hw_addr + tx_ring->head);
1802         writel(0, adapter->hw.hw_addr + tx_ring->tail);
1803 }
1804
1805 /**
1806  * e1000e_free_tx_resources - Free Tx Resources per Queue
1807  * @adapter: board private structure
1808  *
1809  * Free all transmit software resources
1810  **/
1811 void e1000e_free_tx_resources(struct e1000_adapter *adapter)
1812 {
1813         struct pci_dev *pdev = adapter->pdev;
1814         struct e1000_ring *tx_ring = adapter->tx_ring;
1815
1816         e1000_clean_tx_ring(adapter);
1817
1818         vfree(tx_ring->buffer_info);
1819         tx_ring->buffer_info = NULL;
1820
1821         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1822                           tx_ring->dma);
1823         tx_ring->desc = NULL;
1824 }
1825
1826 /**
1827  * e1000e_free_rx_resources - Free Rx Resources
1828  * @adapter: board private structure
1829  *
1830  * Free all receive software resources
1831  **/
1832
1833 void e1000e_free_rx_resources(struct e1000_adapter *adapter)
1834 {
1835         struct pci_dev *pdev = adapter->pdev;
1836         struct e1000_ring *rx_ring = adapter->rx_ring;
1837         int i;
1838
1839         e1000_clean_rx_ring(adapter);
1840
1841         for (i = 0; i < rx_ring->count; i++) {
1842                 kfree(rx_ring->buffer_info[i].ps_pages);
1843         }
1844
1845         vfree(rx_ring->buffer_info);
1846         rx_ring->buffer_info = NULL;
1847
1848         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1849                           rx_ring->dma);
1850         rx_ring->desc = NULL;
1851 }
1852
1853 /**
1854  * e1000_update_itr - update the dynamic ITR value based on statistics
1855  * @adapter: pointer to adapter
1856  * @itr_setting: current adapter->itr
1857  * @packets: the number of packets during this measurement interval
1858  * @bytes: the number of bytes during this measurement interval
1859  *
1860  *      Stores a new ITR value based on packets and byte
1861  *      counts during the last interrupt.  The advantage of per interrupt
1862  *      computation is faster updates and more accurate ITR for the current
1863  *      traffic pattern.  Constants in this function were computed
1864  *      based on theoretical maximum wire speed and thresholds were set based
1865  *      on testing data as well as attempting to minimize response time
1866  *      while increasing bulk throughput.  This functionality is controlled
1867  *      by the InterruptThrottleRate module parameter.
1868  **/
1869 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
1870                                      u16 itr_setting, int packets,
1871                                      int bytes)
1872 {
1873         unsigned int retval = itr_setting;
1874
1875         if (packets == 0)
1876                 goto update_itr_done;
1877
1878         switch (itr_setting) {
1879         case lowest_latency:
1880                 /* handle TSO and jumbo frames */
1881                 if (bytes/packets > 8000)
1882                         retval = bulk_latency;
1883                 else if ((packets < 5) && (bytes > 512)) {
1884                         retval = low_latency;
1885                 }
1886                 break;
1887         case low_latency:  /* 50 usec aka 20000 ints/s */
1888                 if (bytes > 10000) {
1889                         /* this if handles the TSO accounting */
1890                         if (bytes/packets > 8000) {
1891                                 retval = bulk_latency;
1892                         } else if ((packets < 10) || ((bytes/packets) > 1200)) {
1893                                 retval = bulk_latency;
1894                         } else if ((packets > 35)) {
1895                                 retval = lowest_latency;
1896                         }
1897                 } else if (bytes/packets > 2000) {
1898                         retval = bulk_latency;
1899                 } else if (packets <= 2 && bytes < 512) {
1900                         retval = lowest_latency;
1901                 }
1902                 break;
1903         case bulk_latency: /* 250 usec aka 4000 ints/s */
1904                 if (bytes > 25000) {
1905                         if (packets > 35) {
1906                                 retval = low_latency;
1907                         }
1908                 } else if (bytes < 6000) {
1909                         retval = low_latency;
1910                 }
1911                 break;
1912         }
1913
1914 update_itr_done:
1915         return retval;
1916 }
1917
1918 static void e1000_set_itr(struct e1000_adapter *adapter)
1919 {
1920         struct e1000_hw *hw = &adapter->hw;
1921         u16 current_itr;
1922         u32 new_itr = adapter->itr;
1923
1924         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
1925         if (adapter->link_speed != SPEED_1000) {
1926                 current_itr = 0;
1927                 new_itr = 4000;
1928                 goto set_itr_now;
1929         }
1930
1931         adapter->tx_itr = e1000_update_itr(adapter,
1932                                     adapter->tx_itr,
1933                                     adapter->total_tx_packets,
1934                                     adapter->total_tx_bytes);
1935         /* conservative mode (itr 3) eliminates the lowest_latency setting */
1936         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
1937                 adapter->tx_itr = low_latency;
1938
1939         adapter->rx_itr = e1000_update_itr(adapter,
1940                                     adapter->rx_itr,
1941                                     adapter->total_rx_packets,
1942                                     adapter->total_rx_bytes);
1943         /* conservative mode (itr 3) eliminates the lowest_latency setting */
1944         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
1945                 adapter->rx_itr = low_latency;
1946
1947         current_itr = max(adapter->rx_itr, adapter->tx_itr);
1948
1949         switch (current_itr) {
1950         /* counts and packets in update_itr are dependent on these numbers */
1951         case lowest_latency:
1952                 new_itr = 70000;
1953                 break;
1954         case low_latency:
1955                 new_itr = 20000; /* aka hwitr = ~200 */
1956                 break;
1957         case bulk_latency:
1958                 new_itr = 4000;
1959                 break;
1960         default:
1961                 break;
1962         }
1963
1964 set_itr_now:
1965         if (new_itr != adapter->itr) {
1966                 /*
1967                  * this attempts to bias the interrupt rate towards Bulk
1968                  * by adding intermediate steps when interrupt rate is
1969                  * increasing
1970                  */
1971                 new_itr = new_itr > adapter->itr ?
1972                              min(adapter->itr + (new_itr >> 2), new_itr) :
1973                              new_itr;
1974                 adapter->itr = new_itr;
1975                 adapter->rx_ring->itr_val = new_itr;
1976                 if (adapter->msix_entries)
1977                         adapter->rx_ring->set_itr = 1;
1978                 else
1979                         ew32(ITR, 1000000000 / (new_itr * 256));
1980         }
1981 }
1982
1983 /**
1984  * e1000_alloc_queues - Allocate memory for all rings
1985  * @adapter: board private structure to initialize
1986  **/
1987 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1988 {
1989         adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
1990         if (!adapter->tx_ring)
1991                 goto err;
1992
1993         adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
1994         if (!adapter->rx_ring)
1995                 goto err;
1996
1997         return 0;
1998 err:
1999         e_err("Unable to allocate memory for queues\n");
2000         kfree(adapter->rx_ring);
2001         kfree(adapter->tx_ring);
2002         return -ENOMEM;
2003 }
2004
2005 /**
2006  * e1000_clean - NAPI Rx polling callback
2007  * @napi: struct associated with this polling callback
2008  * @budget: amount of packets driver is allowed to process this poll
2009  **/
2010 static int e1000_clean(struct napi_struct *napi, int budget)
2011 {
2012         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
2013         struct e1000_hw *hw = &adapter->hw;
2014         struct net_device *poll_dev = adapter->netdev;
2015         int tx_cleaned = 1, work_done = 0;
2016
2017         adapter = netdev_priv(poll_dev);
2018
2019         if (adapter->msix_entries &&
2020             !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2021                 goto clean_rx;
2022
2023         tx_cleaned = e1000_clean_tx_irq(adapter);
2024
2025 clean_rx:
2026         adapter->clean_rx(adapter, &work_done, budget);
2027
2028         if (!tx_cleaned)
2029                 work_done = budget;
2030
2031         /* If budget not fully consumed, exit the polling mode */
2032         if (work_done < budget) {
2033                 if (adapter->itr_setting & 3)
2034                         e1000_set_itr(adapter);
2035                 napi_complete(napi);
2036                 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2037                         if (adapter->msix_entries)
2038                                 ew32(IMS, adapter->rx_ring->ims_val);
2039                         else
2040                                 e1000_irq_enable(adapter);
2041                 }
2042         }
2043
2044         return work_done;
2045 }
2046
2047 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2048 {
2049         struct e1000_adapter *adapter = netdev_priv(netdev);
2050         struct e1000_hw *hw = &adapter->hw;
2051         u32 vfta, index;
2052
2053         /* don't update vlan cookie if already programmed */
2054         if ((adapter->hw.mng_cookie.status &
2055              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2056             (vid == adapter->mng_vlan_id))
2057                 return;
2058
2059         /* add VID to filter table */
2060         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2061                 index = (vid >> 5) & 0x7F;
2062                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2063                 vfta |= (1 << (vid & 0x1F));
2064                 hw->mac.ops.write_vfta(hw, index, vfta);
2065         }
2066 }
2067
2068 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2069 {
2070         struct e1000_adapter *adapter = netdev_priv(netdev);
2071         struct e1000_hw *hw = &adapter->hw;
2072         u32 vfta, index;
2073
2074         if (!test_bit(__E1000_DOWN, &adapter->state))
2075                 e1000_irq_disable(adapter);
2076         vlan_group_set_device(adapter->vlgrp, vid, NULL);
2077
2078         if (!test_bit(__E1000_DOWN, &adapter->state))
2079                 e1000_irq_enable(adapter);
2080
2081         if ((adapter->hw.mng_cookie.status &
2082              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2083             (vid == adapter->mng_vlan_id)) {
2084                 /* release control to f/w */
2085                 e1000_release_hw_control(adapter);
2086                 return;
2087         }
2088
2089         /* remove VID from filter table */
2090         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2091                 index = (vid >> 5) & 0x7F;
2092                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2093                 vfta &= ~(1 << (vid & 0x1F));
2094                 hw->mac.ops.write_vfta(hw, index, vfta);
2095         }
2096 }
2097
2098 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2099 {
2100         struct net_device *netdev = adapter->netdev;
2101         u16 vid = adapter->hw.mng_cookie.vlan_id;
2102         u16 old_vid = adapter->mng_vlan_id;
2103
2104         if (!adapter->vlgrp)
2105                 return;
2106
2107         if (!vlan_group_get_device(adapter->vlgrp, vid)) {
2108                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2109                 if (adapter->hw.mng_cookie.status &
2110                         E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2111                         e1000_vlan_rx_add_vid(netdev, vid);
2112                         adapter->mng_vlan_id = vid;
2113                 }
2114
2115                 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
2116                                 (vid != old_vid) &&
2117                     !vlan_group_get_device(adapter->vlgrp, old_vid))
2118                         e1000_vlan_rx_kill_vid(netdev, old_vid);
2119         } else {
2120                 adapter->mng_vlan_id = vid;
2121         }
2122 }
2123
2124
2125 static void e1000_vlan_rx_register(struct net_device *netdev,
2126                                    struct vlan_group *grp)
2127 {
2128         struct e1000_adapter *adapter = netdev_priv(netdev);
2129         struct e1000_hw *hw = &adapter->hw;
2130         u32 ctrl, rctl;
2131
2132         if (!test_bit(__E1000_DOWN, &adapter->state))
2133                 e1000_irq_disable(adapter);
2134         adapter->vlgrp = grp;
2135
2136         if (grp) {
2137                 /* enable VLAN tag insert/strip */
2138                 ctrl = er32(CTRL);
2139                 ctrl |= E1000_CTRL_VME;
2140                 ew32(CTRL, ctrl);
2141
2142                 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2143                         /* enable VLAN receive filtering */
2144                         rctl = er32(RCTL);
2145                         rctl &= ~E1000_RCTL_CFIEN;
2146                         ew32(RCTL, rctl);
2147                         e1000_update_mng_vlan(adapter);
2148                 }
2149         } else {
2150                 /* disable VLAN tag insert/strip */
2151                 ctrl = er32(CTRL);
2152                 ctrl &= ~E1000_CTRL_VME;
2153                 ew32(CTRL, ctrl);
2154
2155                 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2156                         if (adapter->mng_vlan_id !=
2157                             (u16)E1000_MNG_VLAN_NONE) {
2158                                 e1000_vlan_rx_kill_vid(netdev,
2159                                                        adapter->mng_vlan_id);
2160                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2161                         }
2162                 }
2163         }
2164
2165         if (!test_bit(__E1000_DOWN, &adapter->state))
2166                 e1000_irq_enable(adapter);
2167 }
2168
2169 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2170 {
2171         u16 vid;
2172
2173         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
2174
2175         if (!adapter->vlgrp)
2176                 return;
2177
2178         for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
2179                 if (!vlan_group_get_device(adapter->vlgrp, vid))
2180                         continue;
2181                 e1000_vlan_rx_add_vid(adapter->netdev, vid);
2182         }
2183 }
2184
2185 static void e1000_init_manageability(struct e1000_adapter *adapter)
2186 {
2187         struct e1000_hw *hw = &adapter->hw;
2188         u32 manc, manc2h;
2189
2190         if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2191                 return;
2192
2193         manc = er32(MANC);
2194
2195         /*
2196          * enable receiving management packets to the host. this will probably
2197          * generate destination unreachable messages from the host OS, but
2198          * the packets will be handled on SMBUS
2199          */
2200         manc |= E1000_MANC_EN_MNG2HOST;
2201         manc2h = er32(MANC2H);
2202 #define E1000_MNG2HOST_PORT_623 (1 << 5)
2203 #define E1000_MNG2HOST_PORT_664 (1 << 6)
2204         manc2h |= E1000_MNG2HOST_PORT_623;
2205         manc2h |= E1000_MNG2HOST_PORT_664;
2206         ew32(MANC2H, manc2h);
2207         ew32(MANC, manc);
2208 }
2209
2210 /**
2211  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
2212  * @adapter: board private structure
2213  *
2214  * Configure the Tx unit of the MAC after a reset.
2215  **/
2216 static void e1000_configure_tx(struct e1000_adapter *adapter)
2217 {
2218         struct e1000_hw *hw = &adapter->hw;
2219         struct e1000_ring *tx_ring = adapter->tx_ring;
2220         u64 tdba;
2221         u32 tdlen, tctl, tipg, tarc;
2222         u32 ipgr1, ipgr2;
2223
2224         /* Setup the HW Tx Head and Tail descriptor pointers */
2225         tdba = tx_ring->dma;
2226         tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2227         ew32(TDBAL, (tdba & DMA_BIT_MASK(32)));
2228         ew32(TDBAH, (tdba >> 32));
2229         ew32(TDLEN, tdlen);
2230         ew32(TDH, 0);
2231         ew32(TDT, 0);
2232         tx_ring->head = E1000_TDH;
2233         tx_ring->tail = E1000_TDT;
2234
2235         /* Set the default values for the Tx Inter Packet Gap timer */
2236         tipg = DEFAULT_82543_TIPG_IPGT_COPPER;          /*  8  */
2237         ipgr1 = DEFAULT_82543_TIPG_IPGR1;               /*  8  */
2238         ipgr2 = DEFAULT_82543_TIPG_IPGR2;               /*  6  */
2239
2240         if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
2241                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /*  7  */
2242
2243         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
2244         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
2245         ew32(TIPG, tipg);
2246
2247         /* Set the Tx Interrupt Delay register */
2248         ew32(TIDV, adapter->tx_int_delay);
2249         /* Tx irq moderation */
2250         ew32(TADV, adapter->tx_abs_int_delay);
2251
2252         /* Program the Transmit Control Register */
2253         tctl = er32(TCTL);
2254         tctl &= ~E1000_TCTL_CT;
2255         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2256                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2257
2258         if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2259                 tarc = er32(TARC(0));
2260                 /*
2261                  * set the speed mode bit, we'll clear it if we're not at
2262                  * gigabit link later
2263                  */
2264 #define SPEED_MODE_BIT (1 << 21)
2265                 tarc |= SPEED_MODE_BIT;
2266                 ew32(TARC(0), tarc);
2267         }
2268
2269         /* errata: program both queues to unweighted RR */
2270         if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2271                 tarc = er32(TARC(0));
2272                 tarc |= 1;
2273                 ew32(TARC(0), tarc);
2274                 tarc = er32(TARC(1));
2275                 tarc |= 1;
2276                 ew32(TARC(1), tarc);
2277         }
2278
2279         /* Setup Transmit Descriptor Settings for eop descriptor */
2280         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2281
2282         /* only set IDE if we are delaying interrupts using the timers */
2283         if (adapter->tx_int_delay)
2284                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2285
2286         /* enable Report Status bit */
2287         adapter->txd_cmd |= E1000_TXD_CMD_RS;
2288
2289         ew32(TCTL, tctl);
2290
2291         e1000e_config_collision_dist(hw);
2292
2293         adapter->tx_queue_len = adapter->netdev->tx_queue_len;
2294 }
2295
2296 /**
2297  * e1000_setup_rctl - configure the receive control registers
2298  * @adapter: Board private structure
2299  **/
2300 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2301                            (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2302 static void e1000_setup_rctl(struct e1000_adapter *adapter)
2303 {
2304         struct e1000_hw *hw = &adapter->hw;
2305         u32 rctl, rfctl;
2306         u32 psrctl = 0;
2307         u32 pages = 0;
2308
2309         /* Program MC offset vector base */
2310         rctl = er32(RCTL);
2311         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2312         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2313                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2314                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2315
2316         /* Do not Store bad packets */
2317         rctl &= ~E1000_RCTL_SBP;
2318
2319         /* Enable Long Packet receive */
2320         if (adapter->netdev->mtu <= ETH_DATA_LEN)
2321                 rctl &= ~E1000_RCTL_LPE;
2322         else
2323                 rctl |= E1000_RCTL_LPE;
2324
2325         /* Some systems expect that the CRC is included in SMBUS traffic. The
2326          * hardware strips the CRC before sending to both SMBUS (BMC) and to
2327          * host memory when this is enabled
2328          */
2329         if (adapter->flags2 & FLAG2_CRC_STRIPPING)
2330                 rctl |= E1000_RCTL_SECRC;
2331
2332         /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
2333         if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
2334                 u16 phy_data;
2335
2336                 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
2337                 phy_data &= 0xfff8;
2338                 phy_data |= (1 << 2);
2339                 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
2340
2341                 e1e_rphy(hw, 22, &phy_data);
2342                 phy_data &= 0x0fff;
2343                 phy_data |= (1 << 14);
2344                 e1e_wphy(hw, 0x10, 0x2823);
2345                 e1e_wphy(hw, 0x11, 0x0003);
2346                 e1e_wphy(hw, 22, phy_data);
2347         }
2348
2349         /* Setup buffer sizes */
2350         rctl &= ~E1000_RCTL_SZ_4096;
2351         rctl |= E1000_RCTL_BSEX;
2352         switch (adapter->rx_buffer_len) {
2353         case 256:
2354                 rctl |= E1000_RCTL_SZ_256;
2355                 rctl &= ~E1000_RCTL_BSEX;
2356                 break;
2357         case 512:
2358                 rctl |= E1000_RCTL_SZ_512;
2359                 rctl &= ~E1000_RCTL_BSEX;
2360                 break;
2361         case 1024:
2362                 rctl |= E1000_RCTL_SZ_1024;
2363                 rctl &= ~E1000_RCTL_BSEX;
2364                 break;
2365         case 2048:
2366         default:
2367                 rctl |= E1000_RCTL_SZ_2048;
2368                 rctl &= ~E1000_RCTL_BSEX;
2369                 break;
2370         case 4096:
2371                 rctl |= E1000_RCTL_SZ_4096;
2372                 break;
2373         case 8192:
2374                 rctl |= E1000_RCTL_SZ_8192;
2375                 break;
2376         case 16384:
2377                 rctl |= E1000_RCTL_SZ_16384;
2378                 break;
2379         }
2380
2381         /*
2382          * 82571 and greater support packet-split where the protocol
2383          * header is placed in skb->data and the packet data is
2384          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2385          * In the case of a non-split, skb->data is linearly filled,
2386          * followed by the page buffers.  Therefore, skb->data is
2387          * sized to hold the largest protocol header.
2388          *
2389          * allocations using alloc_page take too long for regular MTU
2390          * so only enable packet split for jumbo frames
2391          *
2392          * Using pages when the page size is greater than 16k wastes
2393          * a lot of memory, since we allocate 3 pages at all times
2394          * per packet.
2395          */
2396         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2397         if (!(adapter->flags & FLAG_IS_ICH) && (pages <= 3) &&
2398             (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2399                 adapter->rx_ps_pages = pages;
2400         else
2401                 adapter->rx_ps_pages = 0;
2402
2403         if (adapter->rx_ps_pages) {
2404                 /* Configure extra packet-split registers */
2405                 rfctl = er32(RFCTL);
2406                 rfctl |= E1000_RFCTL_EXTEN;
2407                 /*
2408                  * disable packet split support for IPv6 extension headers,
2409                  * because some malformed IPv6 headers can hang the Rx
2410                  */
2411                 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
2412                           E1000_RFCTL_NEW_IPV6_EXT_DIS);
2413
2414                 ew32(RFCTL, rfctl);
2415
2416                 /* Enable Packet split descriptors */
2417                 rctl |= E1000_RCTL_DTYP_PS;
2418
2419                 psrctl |= adapter->rx_ps_bsize0 >>
2420                         E1000_PSRCTL_BSIZE0_SHIFT;
2421
2422                 switch (adapter->rx_ps_pages) {
2423                 case 3:
2424                         psrctl |= PAGE_SIZE <<
2425                                 E1000_PSRCTL_BSIZE3_SHIFT;
2426                 case 2:
2427                         psrctl |= PAGE_SIZE <<
2428                                 E1000_PSRCTL_BSIZE2_SHIFT;
2429                 case 1:
2430                         psrctl |= PAGE_SIZE >>
2431                                 E1000_PSRCTL_BSIZE1_SHIFT;
2432                         break;
2433                 }
2434
2435                 ew32(PSRCTL, psrctl);
2436         }
2437
2438         ew32(RCTL, rctl);
2439         /* just started the receive unit, no need to restart */
2440         adapter->flags &= ~FLAG_RX_RESTART_NOW;
2441 }
2442
2443 /**
2444  * e1000_configure_rx - Configure Receive Unit after Reset
2445  * @adapter: board private structure
2446  *
2447  * Configure the Rx unit of the MAC after a reset.
2448  **/
2449 static void e1000_configure_rx(struct e1000_adapter *adapter)
2450 {
2451         struct e1000_hw *hw = &adapter->hw;
2452         struct e1000_ring *rx_ring = adapter->rx_ring;
2453         u64 rdba;
2454         u32 rdlen, rctl, rxcsum, ctrl_ext;
2455
2456         if (adapter->rx_ps_pages) {
2457                 /* this is a 32 byte descriptor */
2458                 rdlen = rx_ring->count *
2459                         sizeof(union e1000_rx_desc_packet_split);
2460                 adapter->clean_rx = e1000_clean_rx_irq_ps;
2461                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2462         } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
2463                 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2464                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
2465                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
2466         } else {
2467                 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2468                 adapter->clean_rx = e1000_clean_rx_irq;
2469                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2470         }
2471
2472         /* disable receives while setting up the descriptors */
2473         rctl = er32(RCTL);
2474         ew32(RCTL, rctl & ~E1000_RCTL_EN);
2475         e1e_flush();
2476         msleep(10);
2477
2478         /* set the Receive Delay Timer Register */
2479         ew32(RDTR, adapter->rx_int_delay);
2480
2481         /* irq moderation */
2482         ew32(RADV, adapter->rx_abs_int_delay);
2483         if (adapter->itr_setting != 0)
2484                 ew32(ITR, 1000000000 / (adapter->itr * 256));
2485
2486         ctrl_ext = er32(CTRL_EXT);
2487         /* Auto-Mask interrupts upon ICR access */
2488         ctrl_ext |= E1000_CTRL_EXT_IAME;
2489         ew32(IAM, 0xffffffff);
2490         ew32(CTRL_EXT, ctrl_ext);
2491         e1e_flush();
2492
2493         /*
2494          * Setup the HW Rx Head and Tail Descriptor Pointers and
2495          * the Base and Length of the Rx Descriptor Ring
2496          */
2497         rdba = rx_ring->dma;
2498         ew32(RDBAL, (rdba & DMA_BIT_MASK(32)));
2499         ew32(RDBAH, (rdba >> 32));
2500         ew32(RDLEN, rdlen);
2501         ew32(RDH, 0);
2502         ew32(RDT, 0);
2503         rx_ring->head = E1000_RDH;
2504         rx_ring->tail = E1000_RDT;
2505
2506         /* Enable Receive Checksum Offload for TCP and UDP */
2507         rxcsum = er32(RXCSUM);
2508         if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
2509                 rxcsum |= E1000_RXCSUM_TUOFL;
2510
2511                 /*
2512                  * IPv4 payload checksum for UDP fragments must be
2513                  * used in conjunction with packet-split.
2514                  */
2515                 if (adapter->rx_ps_pages)
2516                         rxcsum |= E1000_RXCSUM_IPPCSE;
2517         } else {
2518                 rxcsum &= ~E1000_RXCSUM_TUOFL;
2519                 /* no need to clear IPPCSE as it defaults to 0 */
2520         }
2521         ew32(RXCSUM, rxcsum);
2522
2523         /*
2524          * Enable early receives on supported devices, only takes effect when
2525          * packet size is equal or larger than the specified value (in 8 byte
2526          * units), e.g. using jumbo frames when setting to E1000_ERT_2048
2527          */
2528         if (adapter->flags & FLAG_HAS_ERT) {
2529                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
2530                         u32 rxdctl = er32(RXDCTL(0));
2531                         ew32(RXDCTL(0), rxdctl | 0x3);
2532                         ew32(ERT, E1000_ERT_2048 | (1 << 13));
2533                         /*
2534                          * With jumbo frames and early-receive enabled,
2535                          * excessive C-state transition latencies result in
2536                          * dropped transactions.
2537                          */
2538                         pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2539                                                   adapter->netdev->name, 55);
2540                 } else {
2541                         pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2542                                                   adapter->netdev->name,
2543                                                   PM_QOS_DEFAULT_VALUE);
2544                 }
2545         }
2546
2547         /* Enable Receives */
2548         ew32(RCTL, rctl);
2549 }
2550
2551 /**
2552  *  e1000_update_mc_addr_list - Update Multicast addresses
2553  *  @hw: pointer to the HW structure
2554  *  @mc_addr_list: array of multicast addresses to program
2555  *  @mc_addr_count: number of multicast addresses to program
2556  *  @rar_used_count: the first RAR register free to program
2557  *  @rar_count: total number of supported Receive Address Registers
2558  *
2559  *  Updates the Receive Address Registers and Multicast Table Array.
2560  *  The caller must have a packed mc_addr_list of multicast addresses.
2561  *  The parameter rar_count will usually be hw->mac.rar_entry_count
2562  *  unless there are workarounds that change this.  Currently no func pointer
2563  *  exists and all implementations are handled in the generic version of this
2564  *  function.
2565  **/
2566 static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
2567                                       u32 mc_addr_count, u32 rar_used_count,
2568                                       u32 rar_count)
2569 {
2570         hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count,
2571                                         rar_used_count, rar_count);
2572 }
2573
2574 /**
2575  * e1000_set_multi - Multicast and Promiscuous mode set
2576  * @netdev: network interface device structure
2577  *
2578  * The set_multi entry point is called whenever the multicast address
2579  * list or the network interface flags are updated.  This routine is
2580  * responsible for configuring the hardware for proper multicast,
2581  * promiscuous mode, and all-multi behavior.
2582  **/
2583 static void e1000_set_multi(struct net_device *netdev)
2584 {
2585         struct e1000_adapter *adapter = netdev_priv(netdev);
2586         struct e1000_hw *hw = &adapter->hw;
2587         struct e1000_mac_info *mac = &hw->mac;
2588         struct dev_mc_list *mc_ptr;
2589         u8  *mta_list;
2590         u32 rctl;
2591         int i;
2592
2593         /* Check for Promiscuous and All Multicast modes */
2594
2595         rctl = er32(RCTL);
2596
2597         if (netdev->flags & IFF_PROMISC) {
2598                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2599                 rctl &= ~E1000_RCTL_VFE;
2600         } else {
2601                 if (netdev->flags & IFF_ALLMULTI) {
2602                         rctl |= E1000_RCTL_MPE;
2603                         rctl &= ~E1000_RCTL_UPE;
2604                 } else {
2605                         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2606                 }
2607                 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
2608                         rctl |= E1000_RCTL_VFE;
2609         }
2610
2611         ew32(RCTL, rctl);
2612
2613         if (netdev->mc_count) {
2614                 mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC);
2615                 if (!mta_list)
2616                         return;
2617
2618                 /* prepare a packed array of only addresses. */
2619                 mc_ptr = netdev->mc_list;
2620
2621                 for (i = 0; i < netdev->mc_count; i++) {
2622                         if (!mc_ptr)
2623                                 break;
2624                         memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr,
2625                                ETH_ALEN);
2626                         mc_ptr = mc_ptr->next;
2627                 }
2628
2629                 e1000_update_mc_addr_list(hw, mta_list, i, 1,
2630                                           mac->rar_entry_count);
2631                 kfree(mta_list);
2632         } else {
2633                 /*
2634                  * if we're called from probe, we might not have
2635                  * anything to do here, so clear out the list
2636                  */
2637                 e1000_update_mc_addr_list(hw, NULL, 0, 1, mac->rar_entry_count);
2638         }
2639 }
2640
2641 /**
2642  * e1000_configure - configure the hardware for Rx and Tx
2643  * @adapter: private board structure
2644  **/
2645 static void e1000_configure(struct e1000_adapter *adapter)
2646 {
2647         e1000_set_multi(adapter->netdev);
2648
2649         e1000_restore_vlan(adapter);
2650         e1000_init_manageability(adapter);
2651
2652         e1000_configure_tx(adapter);
2653         e1000_setup_rctl(adapter);
2654         e1000_configure_rx(adapter);
2655         adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring));
2656 }
2657
2658 /**
2659  * e1000e_power_up_phy - restore link in case the phy was powered down
2660  * @adapter: address of board private structure
2661  *
2662  * The phy may be powered down to save power and turn off link when the
2663  * driver is unloaded and wake on lan is not enabled (among others)
2664  * *** this routine MUST be followed by a call to e1000e_reset ***
2665  **/
2666 void e1000e_power_up_phy(struct e1000_adapter *adapter)
2667 {
2668         if (adapter->hw.phy.ops.power_up)
2669                 adapter->hw.phy.ops.power_up(&adapter->hw);
2670
2671         adapter->hw.mac.ops.setup_link(&adapter->hw);
2672 }
2673
2674 /**
2675  * e1000_power_down_phy - Power down the PHY
2676  *
2677  * Power down the PHY so no link is implied when interface is down.
2678  * The PHY cannot be powered down if management or WoL is active.
2679  */
2680 static void e1000_power_down_phy(struct e1000_adapter *adapter)
2681 {
2682         /* WoL is enabled */
2683         if (adapter->wol)
2684                 return;
2685
2686         if (adapter->hw.phy.ops.power_down)
2687                 adapter->hw.phy.ops.power_down(&adapter->hw);
2688 }
2689
2690 /**
2691  * e1000e_reset - bring the hardware into a known good state
2692  *
2693  * This function boots the hardware and enables some settings that
2694  * require a configuration cycle of the hardware - those cannot be
2695  * set/changed during runtime. After reset the device needs to be
2696  * properly configured for Rx, Tx etc.
2697  */
2698 void e1000e_reset(struct e1000_adapter *adapter)
2699 {
2700         struct e1000_mac_info *mac = &adapter->hw.mac;
2701         struct e1000_fc_info *fc = &adapter->hw.fc;
2702         struct e1000_hw *hw = &adapter->hw;
2703         u32 tx_space, min_tx_space, min_rx_space;
2704         u32 pba = adapter->pba;
2705         u16 hwm;
2706
2707         /* reset Packet Buffer Allocation to default */
2708         ew32(PBA, pba);
2709
2710         if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
2711                 /*
2712                  * To maintain wire speed transmits, the Tx FIFO should be
2713                  * large enough to accommodate two full transmit packets,
2714                  * rounded up to the next 1KB and expressed in KB.  Likewise,
2715                  * the Rx FIFO should be large enough to accommodate at least
2716                  * one full receive packet and is similarly rounded up and
2717                  * expressed in KB.
2718                  */
2719                 pba = er32(PBA);
2720                 /* upper 16 bits has Tx packet buffer allocation size in KB */
2721                 tx_space = pba >> 16;
2722                 /* lower 16 bits has Rx packet buffer allocation size in KB */
2723                 pba &= 0xffff;
2724                 /*
2725                  * the Tx fifo also stores 16 bytes of information about the tx
2726                  * but don't include ethernet FCS because hardware appends it
2727                  */
2728                 min_tx_space = (adapter->max_frame_size +
2729                                 sizeof(struct e1000_tx_desc) -
2730                                 ETH_FCS_LEN) * 2;
2731                 min_tx_space = ALIGN(min_tx_space, 1024);
2732                 min_tx_space >>= 10;
2733                 /* software strips receive CRC, so leave room for it */
2734                 min_rx_space = adapter->max_frame_size;
2735                 min_rx_space = ALIGN(min_rx_space, 1024);
2736                 min_rx_space >>= 10;
2737
2738                 /*
2739                  * If current Tx allocation is less than the min Tx FIFO size,
2740                  * and the min Tx FIFO size is less than the current Rx FIFO
2741                  * allocation, take space away from current Rx allocation
2742                  */
2743                 if ((tx_space < min_tx_space) &&
2744                     ((min_tx_space - tx_space) < pba)) {
2745                         pba -= min_tx_space - tx_space;
2746
2747                         /*
2748                          * if short on Rx space, Rx wins and must trump tx
2749                          * adjustment or use Early Receive if available
2750                          */
2751                         if ((pba < min_rx_space) &&
2752                             (!(adapter->flags & FLAG_HAS_ERT)))
2753                                 /* ERT enabled in e1000_configure_rx */
2754                                 pba = min_rx_space;
2755                 }
2756
2757                 ew32(PBA, pba);
2758         }
2759
2760
2761         /*
2762          * flow control settings
2763          *
2764          * The high water mark must be low enough to fit one full frame
2765          * (or the size used for early receive) above it in the Rx FIFO.
2766          * Set it to the lower of:
2767          * - 90% of the Rx FIFO size, and
2768          * - the full Rx FIFO size minus the early receive size (for parts
2769          *   with ERT support assuming ERT set to E1000_ERT_2048), or
2770          * - the full Rx FIFO size minus one full frame
2771          */
2772         if (hw->mac.type == e1000_pchlan) {
2773                 /*
2774                  * Workaround PCH LOM adapter hangs with certain network
2775                  * loads.  If hangs persist, try disabling Tx flow control.
2776                  */
2777                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
2778                         fc->high_water = 0x3500;
2779                         fc->low_water  = 0x1500;
2780                 } else {
2781                         fc->high_water = 0x5000;
2782                         fc->low_water  = 0x3000;
2783                 }
2784         } else {
2785                 if ((adapter->flags & FLAG_HAS_ERT) &&
2786                     (adapter->netdev->mtu > ETH_DATA_LEN))
2787                         hwm = min(((pba << 10) * 9 / 10),
2788                                   ((pba << 10) - (E1000_ERT_2048 << 3)));
2789                 else
2790                         hwm = min(((pba << 10) * 9 / 10),
2791                                   ((pba << 10) - adapter->max_frame_size));
2792
2793                 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
2794                 fc->low_water = fc->high_water - 8;
2795         }
2796
2797         if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
2798                 fc->pause_time = 0xFFFF;
2799         else
2800                 fc->pause_time = E1000_FC_PAUSE_TIME;
2801         fc->send_xon = 1;
2802         fc->current_mode = fc->requested_mode;
2803
2804         /* Allow time for pending master requests to run */
2805         mac->ops.reset_hw(hw);
2806
2807         /*
2808          * For parts with AMT enabled, let the firmware know
2809          * that the network interface is in control
2810          */
2811         if (adapter->flags & FLAG_HAS_AMT)
2812                 e1000_get_hw_control(adapter);
2813
2814         ew32(WUC, 0);
2815         if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP)
2816                 e1e_wphy(&adapter->hw, BM_WUC, 0);
2817
2818         if (mac->ops.init_hw(hw))
2819                 e_err("Hardware Error\n");
2820
2821         /* additional part of the flow-control workaround above */
2822         if (hw->mac.type == e1000_pchlan)
2823                 ew32(FCRTV_PCH, 0x1000);
2824
2825         e1000_update_mng_vlan(adapter);
2826
2827         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2828         ew32(VET, ETH_P_8021Q);
2829
2830         e1000e_reset_adaptive(hw);
2831         e1000_get_phy_info(hw);
2832
2833         if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
2834             !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
2835                 u16 phy_data = 0;
2836                 /*
2837                  * speed up time to link by disabling smart power down, ignore
2838                  * the return value of this function because there is nothing
2839                  * different we would do if it failed
2840                  */
2841                 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
2842                 phy_data &= ~IGP02E1000_PM_SPD;
2843                 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
2844         }
2845 }
2846
2847 int e1000e_up(struct e1000_adapter *adapter)
2848 {
2849         struct e1000_hw *hw = &adapter->hw;
2850
2851         /* DMA latency requirement to workaround early-receive/jumbo issue */
2852         if (adapter->flags & FLAG_HAS_ERT)
2853                 pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY,
2854                                        adapter->netdev->name,
2855                                        PM_QOS_DEFAULT_VALUE);
2856
2857         /* hardware has been reset, we need to reload some things */
2858         e1000_configure(adapter);
2859
2860         clear_bit(__E1000_DOWN, &adapter->state);
2861
2862         napi_enable(&adapter->napi);
2863         if (adapter->msix_entries)
2864                 e1000_configure_msix(adapter);
2865         e1000_irq_enable(adapter);
2866
2867         netif_wake_queue(adapter->netdev);
2868
2869         /* fire a link change interrupt to start the watchdog */
2870         ew32(ICS, E1000_ICS_LSC);
2871         return 0;
2872 }
2873
2874 void e1000e_down(struct e1000_adapter *adapter)
2875 {
2876         struct net_device *netdev = adapter->netdev;
2877         struct e1000_hw *hw = &adapter->hw;
2878         u32 tctl, rctl;
2879
2880         /*
2881          * signal that we're down so the interrupt handler does not
2882          * reschedule our watchdog timer
2883          */
2884         set_bit(__E1000_DOWN, &adapter->state);
2885
2886         /* disable receives in the hardware */
2887         rctl = er32(RCTL);
2888         ew32(RCTL, rctl & ~E1000_RCTL_EN);
2889         /* flush and sleep below */
2890
2891         netif_stop_queue(netdev);
2892
2893         /* disable transmits in the hardware */
2894         tctl = er32(TCTL);
2895         tctl &= ~E1000_TCTL_EN;
2896         ew32(TCTL, tctl);
2897         /* flush both disables and wait for them to finish */
2898         e1e_flush();
2899         msleep(10);
2900
2901         napi_disable(&adapter->napi);
2902         e1000_irq_disable(adapter);
2903
2904         del_timer_sync(&adapter->watchdog_timer);
2905         del_timer_sync(&adapter->phy_info_timer);
2906
2907         netdev->tx_queue_len = adapter->tx_queue_len;
2908         netif_carrier_off(netdev);
2909         adapter->link_speed = 0;
2910         adapter->link_duplex = 0;
2911
2912         if (!pci_channel_offline(adapter->pdev))
2913                 e1000e_reset(adapter);
2914         e1000_clean_tx_ring(adapter);
2915         e1000_clean_rx_ring(adapter);
2916
2917         if (adapter->flags & FLAG_HAS_ERT)
2918                 pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY,
2919                                           adapter->netdev->name);
2920
2921         /*
2922          * TODO: for power management, we could drop the link and
2923          * pci_disable_device here.
2924          */
2925 }
2926
2927 void e1000e_reinit_locked(struct e1000_adapter *adapter)
2928 {
2929         might_sleep();
2930         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
2931                 msleep(1);
2932         e1000e_down(adapter);
2933         e1000e_up(adapter);
2934         clear_bit(__E1000_RESETTING, &adapter->state);
2935 }
2936
2937 /**
2938  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
2939  * @adapter: board private structure to initialize
2940  *
2941  * e1000_sw_init initializes the Adapter private data structure.
2942  * Fields are initialized based on PCI device information and
2943  * OS network device settings (MTU size).
2944  **/
2945 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
2946 {
2947         struct net_device *netdev = adapter->netdev;
2948
2949         adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
2950         adapter->rx_ps_bsize0 = 128;
2951         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
2952         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2953
2954         e1000e_set_interrupt_capability(adapter);
2955
2956         if (e1000_alloc_queues(adapter))
2957                 return -ENOMEM;
2958
2959         /* Explicitly disable IRQ since the NIC can be in any state. */
2960         e1000_irq_disable(adapter);
2961
2962         set_bit(__E1000_DOWN, &adapter->state);
2963         return 0;
2964 }
2965
2966 /**
2967  * e1000_intr_msi_test - Interrupt Handler
2968  * @irq: interrupt number
2969  * @data: pointer to a network interface device structure
2970  **/
2971 static irqreturn_t e1000_intr_msi_test(int irq, void *data)
2972 {
2973         struct net_device *netdev = data;
2974         struct e1000_adapter *adapter = netdev_priv(netdev);
2975         struct e1000_hw *hw = &adapter->hw;
2976         u32 icr = er32(ICR);
2977
2978         e_dbg("icr is %08X\n", icr);
2979         if (icr & E1000_ICR_RXSEQ) {
2980                 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
2981                 wmb();
2982         }
2983
2984         return IRQ_HANDLED;
2985 }
2986
2987 /**
2988  * e1000_test_msi_interrupt - Returns 0 for successful test
2989  * @adapter: board private struct
2990  *
2991  * code flow taken from tg3.c
2992  **/
2993 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
2994 {
2995         struct net_device *netdev = adapter->netdev;
2996         struct e1000_hw *hw = &adapter->hw;
2997         int err;
2998
2999         /* poll_enable hasn't been called yet, so don't need disable */
3000         /* clear any pending events */
3001         er32(ICR);
3002
3003         /* free the real vector and request a test handler */
3004         e1000_free_irq(adapter);
3005         e1000e_reset_interrupt_capability(adapter);
3006
3007         /* Assume that the test fails, if it succeeds then the test
3008          * MSI irq handler will unset this flag */
3009         adapter->flags |= FLAG_MSI_TEST_FAILED;
3010
3011         err = pci_enable_msi(adapter->pdev);
3012         if (err)
3013                 goto msi_test_failed;
3014
3015         err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
3016                           netdev->name, netdev);
3017         if (err) {
3018                 pci_disable_msi(adapter->pdev);
3019                 goto msi_test_failed;
3020         }
3021
3022         wmb();
3023
3024         e1000_irq_enable(adapter);
3025
3026         /* fire an unusual interrupt on the test handler */
3027         ew32(ICS, E1000_ICS_RXSEQ);
3028         e1e_flush();
3029         msleep(50);
3030
3031         e1000_irq_disable(adapter);
3032
3033         rmb();
3034
3035         if (adapter->flags & FLAG_MSI_TEST_FAILED) {
3036                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
3037                 err = -EIO;
3038                 e_info("MSI interrupt test failed!\n");
3039         }
3040
3041         free_irq(adapter->pdev->irq, netdev);
3042         pci_disable_msi(adapter->pdev);
3043
3044         if (err == -EIO)
3045                 goto msi_test_failed;
3046
3047         /* okay so the test worked, restore settings */
3048         e_dbg("MSI interrupt test succeeded!\n");
3049 msi_test_failed:
3050         e1000e_set_interrupt_capability(adapter);
3051         e1000_request_irq(adapter);
3052         return err;
3053 }
3054
3055 /**
3056  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3057  * @adapter: board private struct
3058  *
3059  * code flow taken from tg3.c, called with e1000 interrupts disabled.
3060  **/
3061 static int e1000_test_msi(struct e1000_adapter *adapter)
3062 {
3063         int err;
3064         u16 pci_cmd;
3065
3066         if (!(adapter->flags & FLAG_MSI_ENABLED))
3067                 return 0;
3068
3069         /* disable SERR in case the MSI write causes a master abort */
3070         pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3071         pci_write_config_word(adapter->pdev, PCI_COMMAND,
3072                               pci_cmd & ~PCI_COMMAND_SERR);
3073
3074         err = e1000_test_msi_interrupt(adapter);
3075
3076         /* restore previous setting of command word */
3077         pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
3078
3079         /* success ! */
3080         if (!err)
3081                 return 0;
3082
3083         /* EIO means MSI test failed */
3084         if (err != -EIO)
3085                 return err;
3086
3087         /* back to INTx mode */
3088         e_warn("MSI interrupt test failed, using legacy interrupt.\n");
3089
3090         e1000_free_irq(adapter);
3091
3092         err = e1000_request_irq(adapter);
3093
3094         return err;
3095 }
3096
3097 /**
3098  * e1000_open - Called when a network interface is made active
3099  * @netdev: network interface device structure
3100  *
3101  * Returns 0 on success, negative value on failure
3102  *
3103  * The open entry point is called when a network interface is made
3104  * active by the system (IFF_UP).  At this point all resources needed
3105  * for transmit and receive operations are allocated, the interrupt
3106  * handler is registered with the OS, the watchdog timer is started,
3107  * and the stack is notified that the interface is ready.
3108  **/
3109 static int e1000_open(struct net_device *netdev)
3110 {
3111         struct e1000_adapter *adapter = netdev_priv(netdev);
3112         struct e1000_hw *hw = &adapter->hw;
3113         int err;
3114
3115         /* disallow open during test */
3116         if (test_bit(__E1000_TESTING, &adapter->state))
3117                 return -EBUSY;
3118
3119         netif_carrier_off(netdev);
3120
3121         /* allocate transmit descriptors */
3122         err = e1000e_setup_tx_resources(adapter);
3123         if (err)
3124                 goto err_setup_tx;
3125
3126         /* allocate receive descriptors */
3127         err = e1000e_setup_rx_resources(adapter);
3128         if (err)
3129                 goto err_setup_rx;
3130
3131         e1000e_power_up_phy(adapter);
3132
3133         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
3134         if ((adapter->hw.mng_cookie.status &
3135              E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
3136                 e1000_update_mng_vlan(adapter);
3137
3138         /*
3139          * If AMT is enabled, let the firmware know that the network
3140          * interface is now open
3141          */
3142         if (adapter->flags & FLAG_HAS_AMT)
3143                 e1000_get_hw_control(adapter);
3144
3145         /*
3146          * before we allocate an interrupt, we must be ready to handle it.
3147          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3148          * as soon as we call pci_request_irq, so we have to setup our
3149          * clean_rx handler before we do so.
3150          */
3151         e1000_configure(adapter);
3152
3153         err = e1000_request_irq(adapter);
3154         if (err)
3155                 goto err_req_irq;
3156
3157         /*
3158          * Work around PCIe errata with MSI interrupts causing some chipsets to
3159          * ignore e1000e MSI messages, which means we need to test our MSI
3160          * interrupt now
3161          */
3162         if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3163                 err = e1000_test_msi(adapter);
3164                 if (err) {
3165                         e_err("Interrupt allocation failed\n");
3166                         goto err_req_irq;
3167                 }
3168         }
3169
3170         /* From here on the code is the same as e1000e_up() */
3171         clear_bit(__E1000_DOWN, &adapter->state);
3172
3173         napi_enable(&adapter->napi);
3174
3175         e1000_irq_enable(adapter);
3176
3177         netif_start_queue(netdev);
3178
3179         /* fire a link status change interrupt to start the watchdog */
3180         ew32(ICS, E1000_ICS_LSC);
3181
3182         return 0;
3183
3184 err_req_irq:
3185         e1000_release_hw_control(adapter);
3186         e1000_power_down_phy(adapter);
3187         e1000e_free_rx_resources(adapter);
3188 err_setup_rx:
3189         e1000e_free_tx_resources(adapter);
3190 err_setup_tx:
3191         e1000e_reset(adapter);