1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2009 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/delay.h>
36 #include <linux/netdevice.h>
37 #include <linux/tcp.h>
38 #include <linux/ipv6.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/mii.h>
42 #include <linux/ethtool.h>
43 #include <linux/if_vlan.h>
44 #include <linux/cpu.h>
45 #include <linux/smp.h>
46 #include <linux/pm_qos_params.h>
47 #include <linux/aer.h>
51 #define DRV_VERSION "1.0.2-k2"
52 char e1000e_driver_name[] = "e1000e";
53 const char e1000e_driver_version[] = DRV_VERSION;
55 static const struct e1000_info *e1000_info_tbl[] = {
56 [board_82571] = &e1000_82571_info,
57 [board_82572] = &e1000_82572_info,
58 [board_82573] = &e1000_82573_info,
59 [board_82574] = &e1000_82574_info,
60 [board_82583] = &e1000_82583_info,
61 [board_80003es2lan] = &e1000_es2_info,
62 [board_ich8lan] = &e1000_ich8_info,
63 [board_ich9lan] = &e1000_ich9_info,
64 [board_ich10lan] = &e1000_ich10_info,
65 [board_pchlan] = &e1000_pch_info,
69 * e1000_desc_unused - calculate if we have unused descriptors
71 static int e1000_desc_unused(struct e1000_ring *ring)
73 if (ring->next_to_clean > ring->next_to_use)
74 return ring->next_to_clean - ring->next_to_use - 1;
76 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
80 * e1000_receive_skb - helper function to handle Rx indications
81 * @adapter: board private structure
82 * @status: descriptor status field as written by hardware
83 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
84 * @skb: pointer to sk_buff to be indicated to stack
86 static void e1000_receive_skb(struct e1000_adapter *adapter,
87 struct net_device *netdev,
89 u8 status, __le16 vlan)
91 skb->protocol = eth_type_trans(skb, netdev);
93 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
94 vlan_gro_receive(&adapter->napi, adapter->vlgrp,
95 le16_to_cpu(vlan), skb);
97 napi_gro_receive(&adapter->napi, skb);
101 * e1000_rx_checksum - Receive Checksum Offload for 82543
102 * @adapter: board private structure
103 * @status_err: receive descriptor status and error fields
104 * @csum: receive descriptor csum field
105 * @sk_buff: socket buffer with received data
107 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
108 u32 csum, struct sk_buff *skb)
110 u16 status = (u16)status_err;
111 u8 errors = (u8)(status_err >> 24);
112 skb->ip_summed = CHECKSUM_NONE;
114 /* Ignore Checksum bit is set */
115 if (status & E1000_RXD_STAT_IXSM)
117 /* TCP/UDP checksum error bit is set */
118 if (errors & E1000_RXD_ERR_TCPE) {
119 /* let the stack verify checksum errors */
120 adapter->hw_csum_err++;
124 /* TCP/UDP Checksum has not been calculated */
125 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
128 /* It must be a TCP or UDP packet with a valid checksum */
129 if (status & E1000_RXD_STAT_TCPCS) {
130 /* TCP checksum is good */
131 skb->ip_summed = CHECKSUM_UNNECESSARY;
134 * IP fragment with UDP payload
135 * Hardware complements the payload checksum, so we undo it
136 * and then put the value in host order for further stack use.
138 __sum16 sum = (__force __sum16)htons(csum);
139 skb->csum = csum_unfold(~sum);
140 skb->ip_summed = CHECKSUM_COMPLETE;
142 adapter->hw_csum_good++;
146 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
147 * @adapter: address of board private structure
149 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
152 struct net_device *netdev = adapter->netdev;
153 struct pci_dev *pdev = adapter->pdev;
154 struct e1000_ring *rx_ring = adapter->rx_ring;
155 struct e1000_rx_desc *rx_desc;
156 struct e1000_buffer *buffer_info;
159 unsigned int bufsz = adapter->rx_buffer_len;
161 i = rx_ring->next_to_use;
162 buffer_info = &rx_ring->buffer_info[i];
164 while (cleaned_count--) {
165 skb = buffer_info->skb;
171 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
173 /* Better luck next round */
174 adapter->alloc_rx_buff_failed++;
178 buffer_info->skb = skb;
180 buffer_info->dma = pci_map_single(pdev, skb->data,
181 adapter->rx_buffer_len,
183 if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
184 dev_err(&pdev->dev, "RX DMA map failed\n");
185 adapter->rx_dma_failed++;
189 rx_desc = E1000_RX_DESC(*rx_ring, i);
190 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
193 if (i == rx_ring->count)
195 buffer_info = &rx_ring->buffer_info[i];
198 if (rx_ring->next_to_use != i) {
199 rx_ring->next_to_use = i;
201 i = (rx_ring->count - 1);
204 * Force memory writes to complete before letting h/w
205 * know there are new descriptors to fetch. (Only
206 * applicable for weak-ordered memory model archs,
210 writel(i, adapter->hw.hw_addr + rx_ring->tail);
215 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
216 * @adapter: address of board private structure
218 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
221 struct net_device *netdev = adapter->netdev;
222 struct pci_dev *pdev = adapter->pdev;
223 union e1000_rx_desc_packet_split *rx_desc;
224 struct e1000_ring *rx_ring = adapter->rx_ring;
225 struct e1000_buffer *buffer_info;
226 struct e1000_ps_page *ps_page;
230 i = rx_ring->next_to_use;
231 buffer_info = &rx_ring->buffer_info[i];
233 while (cleaned_count--) {
234 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
236 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
237 ps_page = &buffer_info->ps_pages[j];
238 if (j >= adapter->rx_ps_pages) {
239 /* all unused desc entries get hw null ptr */
240 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
243 if (!ps_page->page) {
244 ps_page->page = alloc_page(GFP_ATOMIC);
245 if (!ps_page->page) {
246 adapter->alloc_rx_buff_failed++;
249 ps_page->dma = pci_map_page(pdev,
253 if (pci_dma_mapping_error(pdev, ps_page->dma)) {
254 dev_err(&adapter->pdev->dev,
255 "RX DMA page map failed\n");
256 adapter->rx_dma_failed++;
261 * Refresh the desc even if buffer_addrs
262 * didn't change because each write-back
265 rx_desc->read.buffer_addr[j+1] =
266 cpu_to_le64(ps_page->dma);
269 skb = netdev_alloc_skb_ip_align(netdev,
270 adapter->rx_ps_bsize0);
273 adapter->alloc_rx_buff_failed++;
277 buffer_info->skb = skb;
278 buffer_info->dma = pci_map_single(pdev, skb->data,
279 adapter->rx_ps_bsize0,
281 if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
282 dev_err(&pdev->dev, "RX DMA map failed\n");
283 adapter->rx_dma_failed++;
285 dev_kfree_skb_any(skb);
286 buffer_info->skb = NULL;
290 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
293 if (i == rx_ring->count)
295 buffer_info = &rx_ring->buffer_info[i];
299 if (rx_ring->next_to_use != i) {
300 rx_ring->next_to_use = i;
303 i = (rx_ring->count - 1);
306 * Force memory writes to complete before letting h/w
307 * know there are new descriptors to fetch. (Only
308 * applicable for weak-ordered memory model archs,
313 * Hardware increments by 16 bytes, but packet split
314 * descriptors are 32 bytes...so we increment tail
317 writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
322 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
323 * @adapter: address of board private structure
324 * @cleaned_count: number of buffers to allocate this pass
327 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
330 struct net_device *netdev = adapter->netdev;
331 struct pci_dev *pdev = adapter->pdev;
332 struct e1000_rx_desc *rx_desc;
333 struct e1000_ring *rx_ring = adapter->rx_ring;
334 struct e1000_buffer *buffer_info;
337 unsigned int bufsz = 256 - 16 /* for skb_reserve */;
339 i = rx_ring->next_to_use;
340 buffer_info = &rx_ring->buffer_info[i];
342 while (cleaned_count--) {
343 skb = buffer_info->skb;
349 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
350 if (unlikely(!skb)) {
351 /* Better luck next round */
352 adapter->alloc_rx_buff_failed++;
356 buffer_info->skb = skb;
358 /* allocate a new page if necessary */
359 if (!buffer_info->page) {
360 buffer_info->page = alloc_page(GFP_ATOMIC);
361 if (unlikely(!buffer_info->page)) {
362 adapter->alloc_rx_buff_failed++;
367 if (!buffer_info->dma)
368 buffer_info->dma = pci_map_page(pdev,
369 buffer_info->page, 0,
373 rx_desc = E1000_RX_DESC(*rx_ring, i);
374 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
376 if (unlikely(++i == rx_ring->count))
378 buffer_info = &rx_ring->buffer_info[i];
381 if (likely(rx_ring->next_to_use != i)) {
382 rx_ring->next_to_use = i;
383 if (unlikely(i-- == 0))
384 i = (rx_ring->count - 1);
386 /* Force memory writes to complete before letting h/w
387 * know there are new descriptors to fetch. (Only
388 * applicable for weak-ordered memory model archs,
391 writel(i, adapter->hw.hw_addr + rx_ring->tail);
396 * e1000_clean_rx_irq - Send received data up the network stack; legacy
397 * @adapter: board private structure
399 * the return value indicates whether actual cleaning was done, there
400 * is no guarantee that everything was cleaned
402 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
403 int *work_done, int work_to_do)
405 struct net_device *netdev = adapter->netdev;
406 struct pci_dev *pdev = adapter->pdev;
407 struct e1000_hw *hw = &adapter->hw;
408 struct e1000_ring *rx_ring = adapter->rx_ring;
409 struct e1000_rx_desc *rx_desc, *next_rxd;
410 struct e1000_buffer *buffer_info, *next_buffer;
413 int cleaned_count = 0;
415 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
417 i = rx_ring->next_to_clean;
418 rx_desc = E1000_RX_DESC(*rx_ring, i);
419 buffer_info = &rx_ring->buffer_info[i];
421 while (rx_desc->status & E1000_RXD_STAT_DD) {
425 if (*work_done >= work_to_do)
429 status = rx_desc->status;
430 skb = buffer_info->skb;
431 buffer_info->skb = NULL;
433 prefetch(skb->data - NET_IP_ALIGN);
436 if (i == rx_ring->count)
438 next_rxd = E1000_RX_DESC(*rx_ring, i);
441 next_buffer = &rx_ring->buffer_info[i];
445 pci_unmap_single(pdev,
447 adapter->rx_buffer_len,
449 buffer_info->dma = 0;
451 length = le16_to_cpu(rx_desc->length);
454 * !EOP means multiple descriptors were used to store a single
455 * packet, if that's the case we need to toss it. In fact, we
456 * need to toss every packet with the EOP bit clear and the
457 * next frame that _does_ have the EOP bit set, as it is by
458 * definition only a frame fragment
460 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
461 adapter->flags2 |= FLAG2_IS_DISCARDING;
463 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
464 /* All receives must fit into a single buffer */
465 e_dbg("Receive packet consumed multiple buffers\n");
467 buffer_info->skb = skb;
468 if (status & E1000_RXD_STAT_EOP)
469 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
473 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
475 buffer_info->skb = skb;
479 /* adjust length to remove Ethernet CRC */
480 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
483 total_rx_bytes += length;
487 * code added for copybreak, this should improve
488 * performance for small packets with large amounts
489 * of reassembly being done in the stack
491 if (length < copybreak) {
492 struct sk_buff *new_skb =
493 netdev_alloc_skb_ip_align(netdev, length);
495 skb_copy_to_linear_data_offset(new_skb,
501 /* save the skb in buffer_info as good */
502 buffer_info->skb = skb;
505 /* else just continue with the old one */
507 /* end copybreak code */
508 skb_put(skb, length);
510 /* Receive Checksum Offload */
511 e1000_rx_checksum(adapter,
513 ((u32)(rx_desc->errors) << 24),
514 le16_to_cpu(rx_desc->csum), skb);
516 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
521 /* return some buffers to hardware, one at a time is too slow */
522 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
523 adapter->alloc_rx_buf(adapter, cleaned_count);
527 /* use prefetched values */
529 buffer_info = next_buffer;
531 rx_ring->next_to_clean = i;
533 cleaned_count = e1000_desc_unused(rx_ring);
535 adapter->alloc_rx_buf(adapter, cleaned_count);
537 adapter->total_rx_bytes += total_rx_bytes;
538 adapter->total_rx_packets += total_rx_packets;
539 netdev->stats.rx_bytes += total_rx_bytes;
540 netdev->stats.rx_packets += total_rx_packets;
544 static void e1000_put_txbuf(struct e1000_adapter *adapter,
545 struct e1000_buffer *buffer_info)
547 if (buffer_info->dma) {
548 if (buffer_info->mapped_as_page)
549 pci_unmap_page(adapter->pdev, buffer_info->dma,
550 buffer_info->length, PCI_DMA_TODEVICE);
552 pci_unmap_single(adapter->pdev, buffer_info->dma,
555 buffer_info->dma = 0;
557 if (buffer_info->skb) {
558 dev_kfree_skb_any(buffer_info->skb);
559 buffer_info->skb = NULL;
561 buffer_info->time_stamp = 0;
564 static void e1000_print_hw_hang(struct work_struct *work)
566 struct e1000_adapter *adapter = container_of(work,
567 struct e1000_adapter,
569 struct e1000_ring *tx_ring = adapter->tx_ring;
570 unsigned int i = tx_ring->next_to_clean;
571 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
572 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
573 struct e1000_hw *hw = &adapter->hw;
574 u16 phy_status, phy_1000t_status, phy_ext_status;
577 e1e_rphy(hw, PHY_STATUS, &phy_status);
578 e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
579 e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
581 pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
583 /* detected Hardware unit hang */
584 e_err("Detected Hardware Unit Hang:\n"
587 " next_to_use <%x>\n"
588 " next_to_clean <%x>\n"
589 "buffer_info[next_to_clean]:\n"
590 " time_stamp <%lx>\n"
591 " next_to_watch <%x>\n"
593 " next_to_watch.status <%x>\n"
596 "PHY 1000BASE-T Status <%x>\n"
597 "PHY Extended Status <%x>\n"
599 readl(adapter->hw.hw_addr + tx_ring->head),
600 readl(adapter->hw.hw_addr + tx_ring->tail),
601 tx_ring->next_to_use,
602 tx_ring->next_to_clean,
603 tx_ring->buffer_info[eop].time_stamp,
606 eop_desc->upper.fields.status,
615 * e1000_clean_tx_irq - Reclaim resources after transmit completes
616 * @adapter: board private structure
618 * the return value indicates whether actual cleaning was done, there
619 * is no guarantee that everything was cleaned
621 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
623 struct net_device *netdev = adapter->netdev;
624 struct e1000_hw *hw = &adapter->hw;
625 struct e1000_ring *tx_ring = adapter->tx_ring;
626 struct e1000_tx_desc *tx_desc, *eop_desc;
627 struct e1000_buffer *buffer_info;
629 unsigned int count = 0;
630 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
632 i = tx_ring->next_to_clean;
633 eop = tx_ring->buffer_info[i].next_to_watch;
634 eop_desc = E1000_TX_DESC(*tx_ring, eop);
636 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
637 (count < tx_ring->count)) {
638 bool cleaned = false;
639 for (; !cleaned; count++) {
640 tx_desc = E1000_TX_DESC(*tx_ring, i);
641 buffer_info = &tx_ring->buffer_info[i];
642 cleaned = (i == eop);
645 struct sk_buff *skb = buffer_info->skb;
646 unsigned int segs, bytecount;
647 segs = skb_shinfo(skb)->gso_segs ?: 1;
648 /* multiply data chunks by size of headers */
649 bytecount = ((segs - 1) * skb_headlen(skb)) +
651 total_tx_packets += segs;
652 total_tx_bytes += bytecount;
655 e1000_put_txbuf(adapter, buffer_info);
656 tx_desc->upper.data = 0;
659 if (i == tx_ring->count)
663 eop = tx_ring->buffer_info[i].next_to_watch;
664 eop_desc = E1000_TX_DESC(*tx_ring, eop);
667 tx_ring->next_to_clean = i;
669 #define TX_WAKE_THRESHOLD 32
670 if (count && netif_carrier_ok(netdev) &&
671 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
672 /* Make sure that anybody stopping the queue after this
673 * sees the new next_to_clean.
677 if (netif_queue_stopped(netdev) &&
678 !(test_bit(__E1000_DOWN, &adapter->state))) {
679 netif_wake_queue(netdev);
680 ++adapter->restart_queue;
684 if (adapter->detect_tx_hung) {
686 * Detect a transmit hang in hardware, this serializes the
687 * check with the clearing of time_stamp and movement of i
689 adapter->detect_tx_hung = 0;
690 if (tx_ring->buffer_info[i].time_stamp &&
691 time_after(jiffies, tx_ring->buffer_info[i].time_stamp
692 + (adapter->tx_timeout_factor * HZ)) &&
693 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
694 schedule_work(&adapter->print_hang_task);
695 netif_stop_queue(netdev);
698 adapter->total_tx_bytes += total_tx_bytes;
699 adapter->total_tx_packets += total_tx_packets;
700 netdev->stats.tx_bytes += total_tx_bytes;
701 netdev->stats.tx_packets += total_tx_packets;
702 return (count < tx_ring->count);
706 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
707 * @adapter: board private structure
709 * the return value indicates whether actual cleaning was done, there
710 * is no guarantee that everything was cleaned
712 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
713 int *work_done, int work_to_do)
715 struct e1000_hw *hw = &adapter->hw;
716 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
717 struct net_device *netdev = adapter->netdev;
718 struct pci_dev *pdev = adapter->pdev;
719 struct e1000_ring *rx_ring = adapter->rx_ring;
720 struct e1000_buffer *buffer_info, *next_buffer;
721 struct e1000_ps_page *ps_page;
725 int cleaned_count = 0;
727 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
729 i = rx_ring->next_to_clean;
730 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
731 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
732 buffer_info = &rx_ring->buffer_info[i];
734 while (staterr & E1000_RXD_STAT_DD) {
735 if (*work_done >= work_to_do)
738 skb = buffer_info->skb;
740 /* in the packet split case this is header only */
741 prefetch(skb->data - NET_IP_ALIGN);
744 if (i == rx_ring->count)
746 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
749 next_buffer = &rx_ring->buffer_info[i];
753 pci_unmap_single(pdev, buffer_info->dma,
754 adapter->rx_ps_bsize0,
756 buffer_info->dma = 0;
758 /* see !EOP comment in other rx routine */
759 if (!(staterr & E1000_RXD_STAT_EOP))
760 adapter->flags2 |= FLAG2_IS_DISCARDING;
762 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
763 e_dbg("Packet Split buffers didn't pick up the full "
765 dev_kfree_skb_irq(skb);
766 if (staterr & E1000_RXD_STAT_EOP)
767 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
771 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
772 dev_kfree_skb_irq(skb);
776 length = le16_to_cpu(rx_desc->wb.middle.length0);
779 e_dbg("Last part of the packet spanning multiple "
781 dev_kfree_skb_irq(skb);
786 skb_put(skb, length);
790 * this looks ugly, but it seems compiler issues make it
791 * more efficient than reusing j
793 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
796 * page alloc/put takes too long and effects small packet
797 * throughput, so unsplit small packets and save the alloc/put
798 * only valid in softirq (napi) context to call kmap_*
800 if (l1 && (l1 <= copybreak) &&
801 ((length + l1) <= adapter->rx_ps_bsize0)) {
804 ps_page = &buffer_info->ps_pages[0];
807 * there is no documentation about how to call
808 * kmap_atomic, so we can't hold the mapping
811 pci_dma_sync_single_for_cpu(pdev, ps_page->dma,
812 PAGE_SIZE, PCI_DMA_FROMDEVICE);
813 vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
814 memcpy(skb_tail_pointer(skb), vaddr, l1);
815 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
816 pci_dma_sync_single_for_device(pdev, ps_page->dma,
817 PAGE_SIZE, PCI_DMA_FROMDEVICE);
820 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
828 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
829 length = le16_to_cpu(rx_desc->wb.upper.length[j]);
833 ps_page = &buffer_info->ps_pages[j];
834 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
837 skb_fill_page_desc(skb, j, ps_page->page, 0, length);
838 ps_page->page = NULL;
840 skb->data_len += length;
841 skb->truesize += length;
844 /* strip the ethernet crc, problem is we're using pages now so
845 * this whole operation can get a little cpu intensive
847 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
848 pskb_trim(skb, skb->len - 4);
851 total_rx_bytes += skb->len;
854 e1000_rx_checksum(adapter, staterr, le16_to_cpu(
855 rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
857 if (rx_desc->wb.upper.header_status &
858 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
859 adapter->rx_hdr_split++;
861 e1000_receive_skb(adapter, netdev, skb,
862 staterr, rx_desc->wb.middle.vlan);
865 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
866 buffer_info->skb = NULL;
868 /* return some buffers to hardware, one at a time is too slow */
869 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
870 adapter->alloc_rx_buf(adapter, cleaned_count);
874 /* use prefetched values */
876 buffer_info = next_buffer;
878 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
880 rx_ring->next_to_clean = i;
882 cleaned_count = e1000_desc_unused(rx_ring);
884 adapter->alloc_rx_buf(adapter, cleaned_count);
886 adapter->total_rx_bytes += total_rx_bytes;
887 adapter->total_rx_packets += total_rx_packets;
888 netdev->stats.rx_bytes += total_rx_bytes;
889 netdev->stats.rx_packets += total_rx_packets;
894 * e1000_consume_page - helper function
896 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
901 skb->data_len += length;
902 skb->truesize += length;
906 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
907 * @adapter: board private structure
909 * the return value indicates whether actual cleaning was done, there
910 * is no guarantee that everything was cleaned
913 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
914 int *work_done, int work_to_do)
916 struct net_device *netdev = adapter->netdev;
917 struct pci_dev *pdev = adapter->pdev;
918 struct e1000_ring *rx_ring = adapter->rx_ring;
919 struct e1000_rx_desc *rx_desc, *next_rxd;
920 struct e1000_buffer *buffer_info, *next_buffer;
923 int cleaned_count = 0;
924 bool cleaned = false;
925 unsigned int total_rx_bytes=0, total_rx_packets=0;
927 i = rx_ring->next_to_clean;
928 rx_desc = E1000_RX_DESC(*rx_ring, i);
929 buffer_info = &rx_ring->buffer_info[i];
931 while (rx_desc->status & E1000_RXD_STAT_DD) {
935 if (*work_done >= work_to_do)
939 status = rx_desc->status;
940 skb = buffer_info->skb;
941 buffer_info->skb = NULL;
944 if (i == rx_ring->count)
946 next_rxd = E1000_RX_DESC(*rx_ring, i);
949 next_buffer = &rx_ring->buffer_info[i];
953 pci_unmap_page(pdev, buffer_info->dma, PAGE_SIZE,
955 buffer_info->dma = 0;
957 length = le16_to_cpu(rx_desc->length);
959 /* errors is only valid for DD + EOP descriptors */
960 if (unlikely((status & E1000_RXD_STAT_EOP) &&
961 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
962 /* recycle both page and skb */
963 buffer_info->skb = skb;
964 /* an error means any chain goes out the window
966 if (rx_ring->rx_skb_top)
967 dev_kfree_skb(rx_ring->rx_skb_top);
968 rx_ring->rx_skb_top = NULL;
972 #define rxtop rx_ring->rx_skb_top
973 if (!(status & E1000_RXD_STAT_EOP)) {
974 /* this descriptor is only the beginning (or middle) */
976 /* this is the beginning of a chain */
978 skb_fill_page_desc(rxtop, 0, buffer_info->page,
981 /* this is the middle of a chain */
982 skb_fill_page_desc(rxtop,
983 skb_shinfo(rxtop)->nr_frags,
984 buffer_info->page, 0, length);
985 /* re-use the skb, only consumed the page */
986 buffer_info->skb = skb;
988 e1000_consume_page(buffer_info, rxtop, length);
992 /* end of the chain */
993 skb_fill_page_desc(rxtop,
994 skb_shinfo(rxtop)->nr_frags,
995 buffer_info->page, 0, length);
996 /* re-use the current skb, we only consumed the
998 buffer_info->skb = skb;
1001 e1000_consume_page(buffer_info, skb, length);
1003 /* no chain, got EOP, this buf is the packet
1004 * copybreak to save the put_page/alloc_page */
1005 if (length <= copybreak &&
1006 skb_tailroom(skb) >= length) {
1008 vaddr = kmap_atomic(buffer_info->page,
1009 KM_SKB_DATA_SOFTIRQ);
1010 memcpy(skb_tail_pointer(skb), vaddr,
1012 kunmap_atomic(vaddr,
1013 KM_SKB_DATA_SOFTIRQ);
1014 /* re-use the page, so don't erase
1015 * buffer_info->page */
1016 skb_put(skb, length);
1018 skb_fill_page_desc(skb, 0,
1019 buffer_info->page, 0,
1021 e1000_consume_page(buffer_info, skb,
1027 /* Receive Checksum Offload XXX recompute due to CRC strip? */
1028 e1000_rx_checksum(adapter,
1030 ((u32)(rx_desc->errors) << 24),
1031 le16_to_cpu(rx_desc->csum), skb);
1033 /* probably a little skewed due to removing CRC */
1034 total_rx_bytes += skb->len;
1037 /* eth type trans needs skb->data to point to something */
1038 if (!pskb_may_pull(skb, ETH_HLEN)) {
1039 e_err("pskb_may_pull failed.\n");
1044 e1000_receive_skb(adapter, netdev, skb, status,
1048 rx_desc->status = 0;
1050 /* return some buffers to hardware, one at a time is too slow */
1051 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1052 adapter->alloc_rx_buf(adapter, cleaned_count);
1056 /* use prefetched values */
1058 buffer_info = next_buffer;
1060 rx_ring->next_to_clean = i;
1062 cleaned_count = e1000_desc_unused(rx_ring);
1064 adapter->alloc_rx_buf(adapter, cleaned_count);
1066 adapter->total_rx_bytes += total_rx_bytes;
1067 adapter->total_rx_packets += total_rx_packets;
1068 netdev->stats.rx_bytes += total_rx_bytes;
1069 netdev->stats.rx_packets += total_rx_packets;
1074 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1075 * @adapter: board private structure
1077 static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
1079 struct e1000_ring *rx_ring = adapter->rx_ring;
1080 struct e1000_buffer *buffer_info;
1081 struct e1000_ps_page *ps_page;
1082 struct pci_dev *pdev = adapter->pdev;
1085 /* Free all the Rx ring sk_buffs */
1086 for (i = 0; i < rx_ring->count; i++) {
1087 buffer_info = &rx_ring->buffer_info[i];
1088 if (buffer_info->dma) {
1089 if (adapter->clean_rx == e1000_clean_rx_irq)
1090 pci_unmap_single(pdev, buffer_info->dma,
1091 adapter->rx_buffer_len,
1092 PCI_DMA_FROMDEVICE);
1093 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1094 pci_unmap_page(pdev, buffer_info->dma,
1096 PCI_DMA_FROMDEVICE);
1097 else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1098 pci_unmap_single(pdev, buffer_info->dma,
1099 adapter->rx_ps_bsize0,
1100 PCI_DMA_FROMDEVICE);
1101 buffer_info->dma = 0;
1104 if (buffer_info->page) {
1105 put_page(buffer_info->page);
1106 buffer_info->page = NULL;
1109 if (buffer_info->skb) {
1110 dev_kfree_skb(buffer_info->skb);
1111 buffer_info->skb = NULL;
1114 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1115 ps_page = &buffer_info->ps_pages[j];
1118 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
1119 PCI_DMA_FROMDEVICE);
1121 put_page(ps_page->page);
1122 ps_page->page = NULL;
1126 /* there also may be some cached data from a chained receive */
1127 if (rx_ring->rx_skb_top) {
1128 dev_kfree_skb(rx_ring->rx_skb_top);
1129 rx_ring->rx_skb_top = NULL;
1132 /* Zero out the descriptor ring */
1133 memset(rx_ring->desc, 0, rx_ring->size);
1135 rx_ring->next_to_clean = 0;
1136 rx_ring->next_to_use = 0;
1137 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1139 writel(0, adapter->hw.hw_addr + rx_ring->head);
1140 writel(0, adapter->hw.hw_addr + rx_ring->tail);
1143 static void e1000e_downshift_workaround(struct work_struct *work)
1145 struct e1000_adapter *adapter = container_of(work,
1146 struct e1000_adapter, downshift_task);
1148 e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1152 * e1000_intr_msi - Interrupt Handler
1153 * @irq: interrupt number
1154 * @data: pointer to a network interface device structure
1156 static irqreturn_t e1000_intr_msi(int irq, void *data)
1158 struct net_device *netdev = data;
1159 struct e1000_adapter *adapter = netdev_priv(netdev);
1160 struct e1000_hw *hw = &adapter->hw;
1161 u32 icr = er32(ICR);
1164 * read ICR disables interrupts using IAM
1167 if (icr & E1000_ICR_LSC) {
1168 hw->mac.get_link_status = 1;
1170 * ICH8 workaround-- Call gig speed drop workaround on cable
1171 * disconnect (LSC) before accessing any PHY registers
1173 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1174 (!(er32(STATUS) & E1000_STATUS_LU)))
1175 schedule_work(&adapter->downshift_task);
1178 * 80003ES2LAN workaround-- For packet buffer work-around on
1179 * link down event; disable receives here in the ISR and reset
1180 * adapter in watchdog
1182 if (netif_carrier_ok(netdev) &&
1183 adapter->flags & FLAG_RX_NEEDS_RESTART) {
1184 /* disable receives */
1185 u32 rctl = er32(RCTL);
1186 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1187 adapter->flags |= FLAG_RX_RESTART_NOW;
1189 /* guard against interrupt when we're going down */
1190 if (!test_bit(__E1000_DOWN, &adapter->state))
1191 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1194 if (napi_schedule_prep(&adapter->napi)) {
1195 adapter->total_tx_bytes = 0;
1196 adapter->total_tx_packets = 0;
1197 adapter->total_rx_bytes = 0;
1198 adapter->total_rx_packets = 0;
1199 __napi_schedule(&adapter->napi);
1206 * e1000_intr - Interrupt Handler
1207 * @irq: interrupt number
1208 * @data: pointer to a network interface device structure
1210 static irqreturn_t e1000_intr(int irq, void *data)
1212 struct net_device *netdev = data;
1213 struct e1000_adapter *adapter = netdev_priv(netdev);
1214 struct e1000_hw *hw = &adapter->hw;
1215 u32 rctl, icr = er32(ICR);
1217 if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1218 return IRQ_NONE; /* Not our interrupt */
1221 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1222 * not set, then the adapter didn't send an interrupt
1224 if (!(icr & E1000_ICR_INT_ASSERTED))
1228 * Interrupt Auto-Mask...upon reading ICR,
1229 * interrupts are masked. No need for the
1233 if (icr & E1000_ICR_LSC) {
1234 hw->mac.get_link_status = 1;
1236 * ICH8 workaround-- Call gig speed drop workaround on cable
1237 * disconnect (LSC) before accessing any PHY registers
1239 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1240 (!(er32(STATUS) & E1000_STATUS_LU)))
1241 schedule_work(&adapter->downshift_task);
1244 * 80003ES2LAN workaround--
1245 * For packet buffer work-around on link down event;
1246 * disable receives here in the ISR and
1247 * reset adapter in watchdog
1249 if (netif_carrier_ok(netdev) &&
1250 (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1251 /* disable receives */
1253 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1254 adapter->flags |= FLAG_RX_RESTART_NOW;
1256 /* guard against interrupt when we're going down */
1257 if (!test_bit(__E1000_DOWN, &adapter->state))
1258 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1261 if (napi_schedule_prep(&adapter->napi)) {
1262 adapter->total_tx_bytes = 0;
1263 adapter->total_tx_packets = 0;
1264 adapter->total_rx_bytes = 0;
1265 adapter->total_rx_packets = 0;
1266 __napi_schedule(&adapter->napi);
1272 static irqreturn_t e1000_msix_other(int irq, void *data)
1274 struct net_device *netdev = data;
1275 struct e1000_adapter *adapter = netdev_priv(netdev);
1276 struct e1000_hw *hw = &adapter->hw;
1277 u32 icr = er32(ICR);
1279 if (!(icr & E1000_ICR_INT_ASSERTED)) {
1280 if (!test_bit(__E1000_DOWN, &adapter->state))
1281 ew32(IMS, E1000_IMS_OTHER);
1285 if (icr & adapter->eiac_mask)
1286 ew32(ICS, (icr & adapter->eiac_mask));
1288 if (icr & E1000_ICR_OTHER) {
1289 if (!(icr & E1000_ICR_LSC))
1290 goto no_link_interrupt;
1291 hw->mac.get_link_status = 1;
1292 /* guard against interrupt when we're going down */
1293 if (!test_bit(__E1000_DOWN, &adapter->state))
1294 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1298 if (!test_bit(__E1000_DOWN, &adapter->state))
1299 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1305 static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
1307 struct net_device *netdev = data;
1308 struct e1000_adapter *adapter = netdev_priv(netdev);
1309 struct e1000_hw *hw = &adapter->hw;
1310 struct e1000_ring *tx_ring = adapter->tx_ring;
1313 adapter->total_tx_bytes = 0;
1314 adapter->total_tx_packets = 0;
1316 if (!e1000_clean_tx_irq(adapter))
1317 /* Ring was not completely cleaned, so fire another interrupt */
1318 ew32(ICS, tx_ring->ims_val);
1323 static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
1325 struct net_device *netdev = data;
1326 struct e1000_adapter *adapter = netdev_priv(netdev);
1328 /* Write the ITR value calculated at the end of the
1329 * previous interrupt.
1331 if (adapter->rx_ring->set_itr) {
1332 writel(1000000000 / (adapter->rx_ring->itr_val * 256),
1333 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
1334 adapter->rx_ring->set_itr = 0;
1337 if (napi_schedule_prep(&adapter->napi)) {
1338 adapter->total_rx_bytes = 0;
1339 adapter->total_rx_packets = 0;
1340 __napi_schedule(&adapter->napi);
1346 * e1000_configure_msix - Configure MSI-X hardware
1348 * e1000_configure_msix sets up the hardware to properly
1349 * generate MSI-X interrupts.
1351 static void e1000_configure_msix(struct e1000_adapter *adapter)
1353 struct e1000_hw *hw = &adapter->hw;
1354 struct e1000_ring *rx_ring = adapter->rx_ring;
1355 struct e1000_ring *tx_ring = adapter->tx_ring;
1357 u32 ctrl_ext, ivar = 0;
1359 adapter->eiac_mask = 0;
1361 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1362 if (hw->mac.type == e1000_82574) {
1363 u32 rfctl = er32(RFCTL);
1364 rfctl |= E1000_RFCTL_ACK_DIS;
1368 #define E1000_IVAR_INT_ALLOC_VALID 0x8
1369 /* Configure Rx vector */
1370 rx_ring->ims_val = E1000_IMS_RXQ0;
1371 adapter->eiac_mask |= rx_ring->ims_val;
1372 if (rx_ring->itr_val)
1373 writel(1000000000 / (rx_ring->itr_val * 256),
1374 hw->hw_addr + rx_ring->itr_register);
1376 writel(1, hw->hw_addr + rx_ring->itr_register);
1377 ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1379 /* Configure Tx vector */
1380 tx_ring->ims_val = E1000_IMS_TXQ0;
1382 if (tx_ring->itr_val)
1383 writel(1000000000 / (tx_ring->itr_val * 256),
1384 hw->hw_addr + tx_ring->itr_register);
1386 writel(1, hw->hw_addr + tx_ring->itr_register);
1387 adapter->eiac_mask |= tx_ring->ims_val;
1388 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1390 /* set vector for Other Causes, e.g. link changes */
1392 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1393 if (rx_ring->itr_val)
1394 writel(1000000000 / (rx_ring->itr_val * 256),
1395 hw->hw_addr + E1000_EITR_82574(vector));
1397 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1399 /* Cause Tx interrupts on every write back */
1404 /* enable MSI-X PBA support */
1405 ctrl_ext = er32(CTRL_EXT);
1406 ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
1408 /* Auto-Mask Other interrupts upon ICR read */
1409 #define E1000_EIAC_MASK_82574 0x01F00000
1410 ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
1411 ctrl_ext |= E1000_CTRL_EXT_EIAME;
1412 ew32(CTRL_EXT, ctrl_ext);
1416 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
1418 if (adapter->msix_entries) {
1419 pci_disable_msix(adapter->pdev);
1420 kfree(adapter->msix_entries);
1421 adapter->msix_entries = NULL;
1422 } else if (adapter->flags & FLAG_MSI_ENABLED) {
1423 pci_disable_msi(adapter->pdev);
1424 adapter->flags &= ~FLAG_MSI_ENABLED;
1431 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1433 * Attempt to configure interrupts using the best available
1434 * capabilities of the hardware and kernel.
1436 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
1442 switch (adapter->int_mode) {
1443 case E1000E_INT_MODE_MSIX:
1444 if (adapter->flags & FLAG_HAS_MSIX) {
1445 numvecs = 3; /* RxQ0, TxQ0 and other */
1446 adapter->msix_entries = kcalloc(numvecs,
1447 sizeof(struct msix_entry),
1449 if (adapter->msix_entries) {
1450 for (i = 0; i < numvecs; i++)
1451 adapter->msix_entries[i].entry = i;
1453 err = pci_enable_msix(adapter->pdev,
1454 adapter->msix_entries,
1459 /* MSI-X failed, so fall through and try MSI */
1460 e_err("Failed to initialize MSI-X interrupts. "
1461 "Falling back to MSI interrupts.\n");
1462 e1000e_reset_interrupt_capability(adapter);
1464 adapter->int_mode = E1000E_INT_MODE_MSI;
1466 case E1000E_INT_MODE_MSI:
1467 if (!pci_enable_msi(adapter->pdev)) {
1468 adapter->flags |= FLAG_MSI_ENABLED;
1470 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1471 e_err("Failed to initialize MSI interrupts. Falling "
1472 "back to legacy interrupts.\n");
1475 case E1000E_INT_MODE_LEGACY:
1476 /* Don't do anything; this is the system default */
1484 * e1000_request_msix - Initialize MSI-X interrupts
1486 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1489 static int e1000_request_msix(struct e1000_adapter *adapter)
1491 struct net_device *netdev = adapter->netdev;
1492 int err = 0, vector = 0;
1494 if (strlen(netdev->name) < (IFNAMSIZ - 5))
1495 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1497 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1498 err = request_irq(adapter->msix_entries[vector].vector,
1499 e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1503 adapter->rx_ring->itr_register = E1000_EITR_82574(vector);
1504 adapter->rx_ring->itr_val = adapter->itr;
1507 if (strlen(netdev->name) < (IFNAMSIZ - 5))
1508 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1510 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1511 err = request_irq(adapter->msix_entries[vector].vector,
1512 e1000_intr_msix_tx, 0, adapter->tx_ring->name,
1516 adapter->tx_ring->itr_register = E1000_EITR_82574(vector);
1517 adapter->tx_ring->itr_val = adapter->itr;
1520 err = request_irq(adapter->msix_entries[vector].vector,
1521 e1000_msix_other, 0, netdev->name, netdev);
1525 e1000_configure_msix(adapter);
1532 * e1000_request_irq - initialize interrupts
1534 * Attempts to configure interrupts using the best available
1535 * capabilities of the hardware and kernel.
1537 static int e1000_request_irq(struct e1000_adapter *adapter)
1539 struct net_device *netdev = adapter->netdev;
1542 if (adapter->msix_entries) {
1543 err = e1000_request_msix(adapter);
1546 /* fall back to MSI */
1547 e1000e_reset_interrupt_capability(adapter);
1548 adapter->int_mode = E1000E_INT_MODE_MSI;
1549 e1000e_set_interrupt_capability(adapter);
1551 if (adapter->flags & FLAG_MSI_ENABLED) {
1552 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
1553 netdev->name, netdev);
1557 /* fall back to legacy interrupt */
1558 e1000e_reset_interrupt_capability(adapter);
1559 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1562 err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
1563 netdev->name, netdev);
1565 e_err("Unable to allocate interrupt, Error: %d\n", err);
1570 static void e1000_free_irq(struct e1000_adapter *adapter)
1572 struct net_device *netdev = adapter->netdev;
1574 if (adapter->msix_entries) {
1577 free_irq(adapter->msix_entries[vector].vector, netdev);
1580 free_irq(adapter->msix_entries[vector].vector, netdev);
1583 /* Other Causes interrupt vector */
1584 free_irq(adapter->msix_entries[vector].vector, netdev);
1588 free_irq(adapter->pdev->irq, netdev);
1592 * e1000_irq_disable - Mask off interrupt generation on the NIC
1594 static void e1000_irq_disable(struct e1000_adapter *adapter)
1596 struct e1000_hw *hw = &adapter->hw;
1599 if (adapter->msix_entries)
1600 ew32(EIAC_82574, 0);
1602 synchronize_irq(adapter->pdev->irq);
1606 * e1000_irq_enable - Enable default interrupt generation settings
1608 static void e1000_irq_enable(struct e1000_adapter *adapter)
1610 struct e1000_hw *hw = &adapter->hw;
1612 if (adapter->msix_entries) {
1613 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
1614 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
1616 ew32(IMS, IMS_ENABLE_MASK);
1622 * e1000_get_hw_control - get control of the h/w from f/w
1623 * @adapter: address of board private structure
1625 * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1626 * For ASF and Pass Through versions of f/w this means that
1627 * the driver is loaded. For AMT version (only with 82573)
1628 * of the f/w this means that the network i/f is open.
1630 static void e1000_get_hw_control(struct e1000_adapter *adapter)
1632 struct e1000_hw *hw = &adapter->hw;
1636 /* Let firmware know the driver has taken over */
1637 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1639 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
1640 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1641 ctrl_ext = er32(CTRL_EXT);
1642 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1647 * e1000_release_hw_control - release control of the h/w to f/w
1648 * @adapter: address of board private structure
1650 * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1651 * For ASF and Pass Through versions of f/w this means that the
1652 * driver is no longer loaded. For AMT version (only with 82573) i
1653 * of the f/w this means that the network i/f is closed.
1656 static void e1000_release_hw_control(struct e1000_adapter *adapter)
1658 struct e1000_hw *hw = &adapter->hw;
1662 /* Let firmware taken over control of h/w */
1663 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1665 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1666 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1667 ctrl_ext = er32(CTRL_EXT);
1668 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1673 * @e1000_alloc_ring - allocate memory for a ring structure
1675 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
1676 struct e1000_ring *ring)
1678 struct pci_dev *pdev = adapter->pdev;
1680 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
1689 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
1690 * @adapter: board private structure
1692 * Return 0 on success, negative on failure
1694 int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
1696 struct e1000_ring *tx_ring = adapter->tx_ring;
1697 int err = -ENOMEM, size;
1699 size = sizeof(struct e1000_buffer) * tx_ring->count;
1700 tx_ring->buffer_info = vmalloc(size);
1701 if (!tx_ring->buffer_info)
1703 memset(tx_ring->buffer_info, 0, size);
1705 /* round up to nearest 4K */
1706 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1707 tx_ring->size = ALIGN(tx_ring->size, 4096);
1709 err = e1000_alloc_ring_dma(adapter, tx_ring);
1713 tx_ring->next_to_use = 0;
1714 tx_ring->next_to_clean = 0;
1718 vfree(tx_ring->buffer_info);
1719 e_err("Unable to allocate memory for the transmit descriptor ring\n");
1724 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
1725 * @adapter: board private structure
1727 * Returns 0 on success, negative on failure
1729 int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
1731 struct e1000_ring *rx_ring = adapter->rx_ring;
1732 struct e1000_buffer *buffer_info;
1733 int i, size, desc_len, err = -ENOMEM;
1735 size = sizeof(struct e1000_buffer) * rx_ring->count;
1736 rx_ring->buffer_info = vmalloc(size);
1737 if (!rx_ring->buffer_info)
1739 memset(rx_ring->buffer_info, 0, size);
1741 for (i = 0; i < rx_ring->count; i++) {
1742 buffer_info = &rx_ring->buffer_info[i];
1743 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
1744 sizeof(struct e1000_ps_page),
1746 if (!buffer_info->ps_pages)
1750 desc_len = sizeof(union e1000_rx_desc_packet_split);
1752 /* Round up to nearest 4K */
1753 rx_ring->size = rx_ring->count * desc_len;
1754 rx_ring->size = ALIGN(rx_ring->size, 4096);
1756 err = e1000_alloc_ring_dma(adapter, rx_ring);
1760 rx_ring->next_to_clean = 0;
1761 rx_ring->next_to_use = 0;
1762 rx_ring->rx_skb_top = NULL;
1767 for (i = 0; i < rx_ring->count; i++) {
1768 buffer_info = &rx_ring->buffer_info[i];
1769 kfree(buffer_info->ps_pages);
1772 vfree(rx_ring->buffer_info);
1773 e_err("Unable to allocate memory for the transmit descriptor ring\n");
1778 * e1000_clean_tx_ring - Free Tx Buffers
1779 * @adapter: board private structure
1781 static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
1783 struct e1000_ring *tx_ring = adapter->tx_ring;
1784 struct e1000_buffer *buffer_info;
1788 for (i = 0; i < tx_ring->count; i++) {
1789 buffer_info = &tx_ring->buffer_info[i];
1790 e1000_put_txbuf(adapter, buffer_info);
1793 size = sizeof(struct e1000_buffer) * tx_ring->count;
1794 memset(tx_ring->buffer_info, 0, size);
1796 memset(tx_ring->desc, 0, tx_ring->size);
1798 tx_ring->next_to_use = 0;
1799 tx_ring->next_to_clean = 0;
1801 writel(0, adapter->hw.hw_addr + tx_ring->head);
1802 writel(0, adapter->hw.hw_addr + tx_ring->tail);
1806 * e1000e_free_tx_resources - Free Tx Resources per Queue
1807 * @adapter: board private structure
1809 * Free all transmit software resources
1811 void e1000e_free_tx_resources(struct e1000_adapter *adapter)
1813 struct pci_dev *pdev = adapter->pdev;
1814 struct e1000_ring *tx_ring = adapter->tx_ring;
1816 e1000_clean_tx_ring(adapter);
1818 vfree(tx_ring->buffer_info);
1819 tx_ring->buffer_info = NULL;
1821 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1823 tx_ring->desc = NULL;
1827 * e1000e_free_rx_resources - Free Rx Resources
1828 * @adapter: board private structure
1830 * Free all receive software resources
1833 void e1000e_free_rx_resources(struct e1000_adapter *adapter)
1835 struct pci_dev *pdev = adapter->pdev;
1836 struct e1000_ring *rx_ring = adapter->rx_ring;
1839 e1000_clean_rx_ring(adapter);
1841 for (i = 0; i < rx_ring->count; i++) {
1842 kfree(rx_ring->buffer_info[i].ps_pages);
1845 vfree(rx_ring->buffer_info);
1846 rx_ring->buffer_info = NULL;
1848 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1850 rx_ring->desc = NULL;
1854 * e1000_update_itr - update the dynamic ITR value based on statistics
1855 * @adapter: pointer to adapter
1856 * @itr_setting: current adapter->itr
1857 * @packets: the number of packets during this measurement interval
1858 * @bytes: the number of bytes during this measurement interval
1860 * Stores a new ITR value based on packets and byte
1861 * counts during the last interrupt. The advantage of per interrupt
1862 * computation is faster updates and more accurate ITR for the current
1863 * traffic pattern. Constants in this function were computed
1864 * based on theoretical maximum wire speed and thresholds were set based
1865 * on testing data as well as attempting to minimize response time
1866 * while increasing bulk throughput. This functionality is controlled
1867 * by the InterruptThrottleRate module parameter.
1869 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
1870 u16 itr_setting, int packets,
1873 unsigned int retval = itr_setting;
1876 goto update_itr_done;
1878 switch (itr_setting) {
1879 case lowest_latency:
1880 /* handle TSO and jumbo frames */
1881 if (bytes/packets > 8000)
1882 retval = bulk_latency;
1883 else if ((packets < 5) && (bytes > 512)) {
1884 retval = low_latency;
1887 case low_latency: /* 50 usec aka 20000 ints/s */
1888 if (bytes > 10000) {
1889 /* this if handles the TSO accounting */
1890 if (bytes/packets > 8000) {
1891 retval = bulk_latency;
1892 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
1893 retval = bulk_latency;
1894 } else if ((packets > 35)) {
1895 retval = lowest_latency;
1897 } else if (bytes/packets > 2000) {
1898 retval = bulk_latency;
1899 } else if (packets <= 2 && bytes < 512) {
1900 retval = lowest_latency;
1903 case bulk_latency: /* 250 usec aka 4000 ints/s */
1904 if (bytes > 25000) {
1906 retval = low_latency;
1908 } else if (bytes < 6000) {
1909 retval = low_latency;
1918 static void e1000_set_itr(struct e1000_adapter *adapter)
1920 struct e1000_hw *hw = &adapter->hw;
1922 u32 new_itr = adapter->itr;
1924 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
1925 if (adapter->link_speed != SPEED_1000) {
1931 adapter->tx_itr = e1000_update_itr(adapter,
1933 adapter->total_tx_packets,
1934 adapter->total_tx_bytes);
1935 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1936 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
1937 adapter->tx_itr = low_latency;
1939 adapter->rx_itr = e1000_update_itr(adapter,
1941 adapter->total_rx_packets,
1942 adapter->total_rx_bytes);
1943 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1944 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
1945 adapter->rx_itr = low_latency;
1947 current_itr = max(adapter->rx_itr, adapter->tx_itr);
1949 switch (current_itr) {
1950 /* counts and packets in update_itr are dependent on these numbers */
1951 case lowest_latency:
1955 new_itr = 20000; /* aka hwitr = ~200 */
1965 if (new_itr != adapter->itr) {
1967 * this attempts to bias the interrupt rate towards Bulk
1968 * by adding intermediate steps when interrupt rate is
1971 new_itr = new_itr > adapter->itr ?
1972 min(adapter->itr + (new_itr >> 2), new_itr) :
1974 adapter->itr = new_itr;
1975 adapter->rx_ring->itr_val = new_itr;
1976 if (adapter->msix_entries)
1977 adapter->rx_ring->set_itr = 1;
1979 ew32(ITR, 1000000000 / (new_itr * 256));
1984 * e1000_alloc_queues - Allocate memory for all rings
1985 * @adapter: board private structure to initialize
1987 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1989 adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
1990 if (!adapter->tx_ring)
1993 adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
1994 if (!adapter->rx_ring)
1999 e_err("Unable to allocate memory for queues\n");
2000 kfree(adapter->rx_ring);
2001 kfree(adapter->tx_ring);
2006 * e1000_clean - NAPI Rx polling callback
2007 * @napi: struct associated with this polling callback
2008 * @budget: amount of packets driver is allowed to process this poll
2010 static int e1000_clean(struct napi_struct *napi, int budget)
2012 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
2013 struct e1000_hw *hw = &adapter->hw;
2014 struct net_device *poll_dev = adapter->netdev;
2015 int tx_cleaned = 1, work_done = 0;
2017 adapter = netdev_priv(poll_dev);
2019 if (adapter->msix_entries &&
2020 !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2023 tx_cleaned = e1000_clean_tx_irq(adapter);
2026 adapter->clean_rx(adapter, &work_done, budget);
2031 /* If budget not fully consumed, exit the polling mode */
2032 if (work_done < budget) {
2033 if (adapter->itr_setting & 3)
2034 e1000_set_itr(adapter);
2035 napi_complete(napi);
2036 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2037 if (adapter->msix_entries)
2038 ew32(IMS, adapter->rx_ring->ims_val);
2040 e1000_irq_enable(adapter);
2047 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2049 struct e1000_adapter *adapter = netdev_priv(netdev);
2050 struct e1000_hw *hw = &adapter->hw;
2053 /* don't update vlan cookie if already programmed */
2054 if ((adapter->hw.mng_cookie.status &
2055 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2056 (vid == adapter->mng_vlan_id))
2059 /* add VID to filter table */
2060 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2061 index = (vid >> 5) & 0x7F;
2062 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2063 vfta |= (1 << (vid & 0x1F));
2064 hw->mac.ops.write_vfta(hw, index, vfta);
2068 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2070 struct e1000_adapter *adapter = netdev_priv(netdev);
2071 struct e1000_hw *hw = &adapter->hw;
2074 if (!test_bit(__E1000_DOWN, &adapter->state))
2075 e1000_irq_disable(adapter);
2076 vlan_group_set_device(adapter->vlgrp, vid, NULL);
2078 if (!test_bit(__E1000_DOWN, &adapter->state))
2079 e1000_irq_enable(adapter);
2081 if ((adapter->hw.mng_cookie.status &
2082 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2083 (vid == adapter->mng_vlan_id)) {
2084 /* release control to f/w */
2085 e1000_release_hw_control(adapter);
2089 /* remove VID from filter table */
2090 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2091 index = (vid >> 5) & 0x7F;
2092 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2093 vfta &= ~(1 << (vid & 0x1F));
2094 hw->mac.ops.write_vfta(hw, index, vfta);
2098 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2100 struct net_device *netdev = adapter->netdev;
2101 u16 vid = adapter->hw.mng_cookie.vlan_id;
2102 u16 old_vid = adapter->mng_vlan_id;
2104 if (!adapter->vlgrp)
2107 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
2108 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2109 if (adapter->hw.mng_cookie.status &
2110 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2111 e1000_vlan_rx_add_vid(netdev, vid);
2112 adapter->mng_vlan_id = vid;
2115 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
2117 !vlan_group_get_device(adapter->vlgrp, old_vid))
2118 e1000_vlan_rx_kill_vid(netdev, old_vid);
2120 adapter->mng_vlan_id = vid;
2125 static void e1000_vlan_rx_register(struct net_device *netdev,
2126 struct vlan_group *grp)
2128 struct e1000_adapter *adapter = netdev_priv(netdev);
2129 struct e1000_hw *hw = &adapter->hw;
2132 if (!test_bit(__E1000_DOWN, &adapter->state))
2133 e1000_irq_disable(adapter);
2134 adapter->vlgrp = grp;
2137 /* enable VLAN tag insert/strip */
2139 ctrl |= E1000_CTRL_VME;
2142 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2143 /* enable VLAN receive filtering */
2145 rctl &= ~E1000_RCTL_CFIEN;
2147 e1000_update_mng_vlan(adapter);
2150 /* disable VLAN tag insert/strip */
2152 ctrl &= ~E1000_CTRL_VME;
2155 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2156 if (adapter->mng_vlan_id !=
2157 (u16)E1000_MNG_VLAN_NONE) {
2158 e1000_vlan_rx_kill_vid(netdev,
2159 adapter->mng_vlan_id);
2160 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2165 if (!test_bit(__E1000_DOWN, &adapter->state))
2166 e1000_irq_enable(adapter);
2169 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2173 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
2175 if (!adapter->vlgrp)
2178 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
2179 if (!vlan_group_get_device(adapter->vlgrp, vid))
2181 e1000_vlan_rx_add_vid(adapter->netdev, vid);
2185 static void e1000_init_manageability(struct e1000_adapter *adapter)
2187 struct e1000_hw *hw = &adapter->hw;
2190 if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2196 * enable receiving management packets to the host. this will probably
2197 * generate destination unreachable messages from the host OS, but
2198 * the packets will be handled on SMBUS
2200 manc |= E1000_MANC_EN_MNG2HOST;
2201 manc2h = er32(MANC2H);
2202 #define E1000_MNG2HOST_PORT_623 (1 << 5)
2203 #define E1000_MNG2HOST_PORT_664 (1 << 6)
2204 manc2h |= E1000_MNG2HOST_PORT_623;
2205 manc2h |= E1000_MNG2HOST_PORT_664;
2206 ew32(MANC2H, manc2h);
2211 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
2212 * @adapter: board private structure
2214 * Configure the Tx unit of the MAC after a reset.
2216 static void e1000_configure_tx(struct e1000_adapter *adapter)
2218 struct e1000_hw *hw = &adapter->hw;
2219 struct e1000_ring *tx_ring = adapter->tx_ring;
2221 u32 tdlen, tctl, tipg, tarc;
2224 /* Setup the HW Tx Head and Tail descriptor pointers */
2225 tdba = tx_ring->dma;
2226 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2227 ew32(TDBAL, (tdba & DMA_BIT_MASK(32)));
2228 ew32(TDBAH, (tdba >> 32));
2232 tx_ring->head = E1000_TDH;
2233 tx_ring->tail = E1000_TDT;
2235 /* Set the default values for the Tx Inter Packet Gap timer */
2236 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; /* 8 */
2237 ipgr1 = DEFAULT_82543_TIPG_IPGR1; /* 8 */
2238 ipgr2 = DEFAULT_82543_TIPG_IPGR2; /* 6 */
2240 if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
2241 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /* 7 */
2243 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
2244 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
2247 /* Set the Tx Interrupt Delay register */
2248 ew32(TIDV, adapter->tx_int_delay);
2249 /* Tx irq moderation */
2250 ew32(TADV, adapter->tx_abs_int_delay);
2252 /* Program the Transmit Control Register */
2254 tctl &= ~E1000_TCTL_CT;
2255 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2256 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2258 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2259 tarc = er32(TARC(0));
2261 * set the speed mode bit, we'll clear it if we're not at
2262 * gigabit link later
2264 #define SPEED_MODE_BIT (1 << 21)
2265 tarc |= SPEED_MODE_BIT;
2266 ew32(TARC(0), tarc);
2269 /* errata: program both queues to unweighted RR */
2270 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2271 tarc = er32(TARC(0));
2273 ew32(TARC(0), tarc);
2274 tarc = er32(TARC(1));
2276 ew32(TARC(1), tarc);
2279 /* Setup Transmit Descriptor Settings for eop descriptor */
2280 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2282 /* only set IDE if we are delaying interrupts using the timers */
2283 if (adapter->tx_int_delay)
2284 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2286 /* enable Report Status bit */
2287 adapter->txd_cmd |= E1000_TXD_CMD_RS;
2291 e1000e_config_collision_dist(hw);
2293 adapter->tx_queue_len = adapter->netdev->tx_queue_len;
2297 * e1000_setup_rctl - configure the receive control registers
2298 * @adapter: Board private structure
2300 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2301 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2302 static void e1000_setup_rctl(struct e1000_adapter *adapter)
2304 struct e1000_hw *hw = &adapter->hw;
2309 /* Program MC offset vector base */
2311 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2312 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2313 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2314 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2316 /* Do not Store bad packets */
2317 rctl &= ~E1000_RCTL_SBP;
2319 /* Enable Long Packet receive */
2320 if (adapter->netdev->mtu <= ETH_DATA_LEN)
2321 rctl &= ~E1000_RCTL_LPE;
2323 rctl |= E1000_RCTL_LPE;
2325 /* Some systems expect that the CRC is included in SMBUS traffic. The
2326 * hardware strips the CRC before sending to both SMBUS (BMC) and to
2327 * host memory when this is enabled
2329 if (adapter->flags2 & FLAG2_CRC_STRIPPING)
2330 rctl |= E1000_RCTL_SECRC;
2332 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
2333 if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
2336 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
2338 phy_data |= (1 << 2);
2339 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
2341 e1e_rphy(hw, 22, &phy_data);
2343 phy_data |= (1 << 14);
2344 e1e_wphy(hw, 0x10, 0x2823);
2345 e1e_wphy(hw, 0x11, 0x0003);
2346 e1e_wphy(hw, 22, phy_data);
2349 /* Setup buffer sizes */
2350 rctl &= ~E1000_RCTL_SZ_4096;
2351 rctl |= E1000_RCTL_BSEX;
2352 switch (adapter->rx_buffer_len) {
2354 rctl |= E1000_RCTL_SZ_256;
2355 rctl &= ~E1000_RCTL_BSEX;
2358 rctl |= E1000_RCTL_SZ_512;
2359 rctl &= ~E1000_RCTL_BSEX;
2362 rctl |= E1000_RCTL_SZ_1024;
2363 rctl &= ~E1000_RCTL_BSEX;
2367 rctl |= E1000_RCTL_SZ_2048;
2368 rctl &= ~E1000_RCTL_BSEX;
2371 rctl |= E1000_RCTL_SZ_4096;
2374 rctl |= E1000_RCTL_SZ_8192;
2377 rctl |= E1000_RCTL_SZ_16384;
2382 * 82571 and greater support packet-split where the protocol
2383 * header is placed in skb->data and the packet data is
2384 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2385 * In the case of a non-split, skb->data is linearly filled,
2386 * followed by the page buffers. Therefore, skb->data is
2387 * sized to hold the largest protocol header.
2389 * allocations using alloc_page take too long for regular MTU
2390 * so only enable packet split for jumbo frames
2392 * Using pages when the page size is greater than 16k wastes
2393 * a lot of memory, since we allocate 3 pages at all times
2396 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2397 if (!(adapter->flags & FLAG_IS_ICH) && (pages <= 3) &&
2398 (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2399 adapter->rx_ps_pages = pages;
2401 adapter->rx_ps_pages = 0;
2403 if (adapter->rx_ps_pages) {
2404 /* Configure extra packet-split registers */
2405 rfctl = er32(RFCTL);
2406 rfctl |= E1000_RFCTL_EXTEN;
2408 * disable packet split support for IPv6 extension headers,
2409 * because some malformed IPv6 headers can hang the Rx
2411 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
2412 E1000_RFCTL_NEW_IPV6_EXT_DIS);
2416 /* Enable Packet split descriptors */
2417 rctl |= E1000_RCTL_DTYP_PS;
2419 psrctl |= adapter->rx_ps_bsize0 >>
2420 E1000_PSRCTL_BSIZE0_SHIFT;
2422 switch (adapter->rx_ps_pages) {
2424 psrctl |= PAGE_SIZE <<
2425 E1000_PSRCTL_BSIZE3_SHIFT;
2427 psrctl |= PAGE_SIZE <<
2428 E1000_PSRCTL_BSIZE2_SHIFT;
2430 psrctl |= PAGE_SIZE >>
2431 E1000_PSRCTL_BSIZE1_SHIFT;
2435 ew32(PSRCTL, psrctl);
2439 /* just started the receive unit, no need to restart */
2440 adapter->flags &= ~FLAG_RX_RESTART_NOW;
2444 * e1000_configure_rx - Configure Receive Unit after Reset
2445 * @adapter: board private structure
2447 * Configure the Rx unit of the MAC after a reset.
2449 static void e1000_configure_rx(struct e1000_adapter *adapter)
2451 struct e1000_hw *hw = &adapter->hw;
2452 struct e1000_ring *rx_ring = adapter->rx_ring;
2454 u32 rdlen, rctl, rxcsum, ctrl_ext;
2456 if (adapter->rx_ps_pages) {
2457 /* this is a 32 byte descriptor */
2458 rdlen = rx_ring->count *
2459 sizeof(union e1000_rx_desc_packet_split);
2460 adapter->clean_rx = e1000_clean_rx_irq_ps;
2461 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2462 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
2463 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2464 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
2465 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
2467 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2468 adapter->clean_rx = e1000_clean_rx_irq;
2469 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2472 /* disable receives while setting up the descriptors */
2474 ew32(RCTL, rctl & ~E1000_RCTL_EN);
2478 /* set the Receive Delay Timer Register */
2479 ew32(RDTR, adapter->rx_int_delay);
2481 /* irq moderation */
2482 ew32(RADV, adapter->rx_abs_int_delay);
2483 if (adapter->itr_setting != 0)
2484 ew32(ITR, 1000000000 / (adapter->itr * 256));
2486 ctrl_ext = er32(CTRL_EXT);
2487 /* Auto-Mask interrupts upon ICR access */
2488 ctrl_ext |= E1000_CTRL_EXT_IAME;
2489 ew32(IAM, 0xffffffff);
2490 ew32(CTRL_EXT, ctrl_ext);
2494 * Setup the HW Rx Head and Tail Descriptor Pointers and
2495 * the Base and Length of the Rx Descriptor Ring
2497 rdba = rx_ring->dma;
2498 ew32(RDBAL, (rdba & DMA_BIT_MASK(32)));
2499 ew32(RDBAH, (rdba >> 32));
2503 rx_ring->head = E1000_RDH;
2504 rx_ring->tail = E1000_RDT;
2506 /* Enable Receive Checksum Offload for TCP and UDP */
2507 rxcsum = er32(RXCSUM);
2508 if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
2509 rxcsum |= E1000_RXCSUM_TUOFL;
2512 * IPv4 payload checksum for UDP fragments must be
2513 * used in conjunction with packet-split.
2515 if (adapter->rx_ps_pages)
2516 rxcsum |= E1000_RXCSUM_IPPCSE;
2518 rxcsum &= ~E1000_RXCSUM_TUOFL;
2519 /* no need to clear IPPCSE as it defaults to 0 */
2521 ew32(RXCSUM, rxcsum);
2524 * Enable early receives on supported devices, only takes effect when
2525 * packet size is equal or larger than the specified value (in 8 byte
2526 * units), e.g. using jumbo frames when setting to E1000_ERT_2048
2528 if (adapter->flags & FLAG_HAS_ERT) {
2529 if (adapter->netdev->mtu > ETH_DATA_LEN) {
2530 u32 rxdctl = er32(RXDCTL(0));
2531 ew32(RXDCTL(0), rxdctl | 0x3);
2532 ew32(ERT, E1000_ERT_2048 | (1 << 13));
2534 * With jumbo frames and early-receive enabled,
2535 * excessive C-state transition latencies result in
2536 * dropped transactions.
2538 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2539 adapter->netdev->name, 55);
2541 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2542 adapter->netdev->name,
2543 PM_QOS_DEFAULT_VALUE);
2547 /* Enable Receives */
2552 * e1000_update_mc_addr_list - Update Multicast addresses
2553 * @hw: pointer to the HW structure
2554 * @mc_addr_list: array of multicast addresses to program
2555 * @mc_addr_count: number of multicast addresses to program
2556 * @rar_used_count: the first RAR register free to program
2557 * @rar_count: total number of supported Receive Address Registers
2559 * Updates the Receive Address Registers and Multicast Table Array.
2560 * The caller must have a packed mc_addr_list of multicast addresses.
2561 * The parameter rar_count will usually be hw->mac.rar_entry_count
2562 * unless there are workarounds that change this. Currently no func pointer
2563 * exists and all implementations are handled in the generic version of this
2566 static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
2567 u32 mc_addr_count, u32 rar_used_count,
2570 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count,
2571 rar_used_count, rar_count);
2575 * e1000_set_multi - Multicast and Promiscuous mode set
2576 * @netdev: network interface device structure
2578 * The set_multi entry point is called whenever the multicast address
2579 * list or the network interface flags are updated. This routine is
2580 * responsible for configuring the hardware for proper multicast,
2581 * promiscuous mode, and all-multi behavior.
2583 static void e1000_set_multi(struct net_device *netdev)
2585 struct e1000_adapter *adapter = netdev_priv(netdev);
2586 struct e1000_hw *hw = &adapter->hw;
2587 struct e1000_mac_info *mac = &hw->mac;
2588 struct dev_mc_list *mc_ptr;
2593 /* Check for Promiscuous and All Multicast modes */
2597 if (netdev->flags & IFF_PROMISC) {
2598 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2599 rctl &= ~E1000_RCTL_VFE;
2601 if (netdev->flags & IFF_ALLMULTI) {
2602 rctl |= E1000_RCTL_MPE;
2603 rctl &= ~E1000_RCTL_UPE;
2605 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2607 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
2608 rctl |= E1000_RCTL_VFE;
2613 if (netdev->mc_count) {
2614 mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC);
2618 /* prepare a packed array of only addresses. */
2619 mc_ptr = netdev->mc_list;
2621 for (i = 0; i < netdev->mc_count; i++) {
2624 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr,
2626 mc_ptr = mc_ptr->next;
2629 e1000_update_mc_addr_list(hw, mta_list, i, 1,
2630 mac->rar_entry_count);
2634 * if we're called from probe, we might not have
2635 * anything to do here, so clear out the list
2637 e1000_update_mc_addr_list(hw, NULL, 0, 1, mac->rar_entry_count);
2642 * e1000_configure - configure the hardware for Rx and Tx
2643 * @adapter: private board structure
2645 static void e1000_configure(struct e1000_adapter *adapter)
2647 e1000_set_multi(adapter->netdev);
2649 e1000_restore_vlan(adapter);
2650 e1000_init_manageability(adapter);
2652 e1000_configure_tx(adapter);
2653 e1000_setup_rctl(adapter);
2654 e1000_configure_rx(adapter);
2655 adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring));
2659 * e1000e_power_up_phy - restore link in case the phy was powered down
2660 * @adapter: address of board private structure
2662 * The phy may be powered down to save power and turn off link when the
2663 * driver is unloaded and wake on lan is not enabled (among others)
2664 * *** this routine MUST be followed by a call to e1000e_reset ***
2666 void e1000e_power_up_phy(struct e1000_adapter *adapter)
2668 if (adapter->hw.phy.ops.power_up)
2669 adapter->hw.phy.ops.power_up(&adapter->hw);
2671 adapter->hw.mac.ops.setup_link(&adapter->hw);
2675 * e1000_power_down_phy - Power down the PHY
2677 * Power down the PHY so no link is implied when interface is down.
2678 * The PHY cannot be powered down if management or WoL is active.
2680 static void e1000_power_down_phy(struct e1000_adapter *adapter)
2682 /* WoL is enabled */
2686 if (adapter->hw.phy.ops.power_down)
2687 adapter->hw.phy.ops.power_down(&adapter->hw);
2691 * e1000e_reset - bring the hardware into a known good state
2693 * This function boots the hardware and enables some settings that
2694 * require a configuration cycle of the hardware - those cannot be
2695 * set/changed during runtime. After reset the device needs to be
2696 * properly configured for Rx, Tx etc.
2698 void e1000e_reset(struct e1000_adapter *adapter)
2700 struct e1000_mac_info *mac = &adapter->hw.mac;
2701 struct e1000_fc_info *fc = &adapter->hw.fc;
2702 struct e1000_hw *hw = &adapter->hw;
2703 u32 tx_space, min_tx_space, min_rx_space;
2704 u32 pba = adapter->pba;
2707 /* reset Packet Buffer Allocation to default */
2710 if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
2712 * To maintain wire speed transmits, the Tx FIFO should be
2713 * large enough to accommodate two full transmit packets,
2714 * rounded up to the next 1KB and expressed in KB. Likewise,
2715 * the Rx FIFO should be large enough to accommodate at least
2716 * one full receive packet and is similarly rounded up and
2720 /* upper 16 bits has Tx packet buffer allocation size in KB */
2721 tx_space = pba >> 16;
2722 /* lower 16 bits has Rx packet buffer allocation size in KB */
2725 * the Tx fifo also stores 16 bytes of information about the tx
2726 * but don't include ethernet FCS because hardware appends it
2728 min_tx_space = (adapter->max_frame_size +
2729 sizeof(struct e1000_tx_desc) -
2731 min_tx_space = ALIGN(min_tx_space, 1024);
2732 min_tx_space >>= 10;
2733 /* software strips receive CRC, so leave room for it */
2734 min_rx_space = adapter->max_frame_size;
2735 min_rx_space = ALIGN(min_rx_space, 1024);
2736 min_rx_space >>= 10;
2739 * If current Tx allocation is less than the min Tx FIFO size,
2740 * and the min Tx FIFO size is less than the current Rx FIFO
2741 * allocation, take space away from current Rx allocation
2743 if ((tx_space < min_tx_space) &&
2744 ((min_tx_space - tx_space) < pba)) {
2745 pba -= min_tx_space - tx_space;
2748 * if short on Rx space, Rx wins and must trump tx
2749 * adjustment or use Early Receive if available
2751 if ((pba < min_rx_space) &&
2752 (!(adapter->flags & FLAG_HAS_ERT)))
2753 /* ERT enabled in e1000_configure_rx */
2762 * flow control settings
2764 * The high water mark must be low enough to fit one full frame
2765 * (or the size used for early receive) above it in the Rx FIFO.
2766 * Set it to the lower of:
2767 * - 90% of the Rx FIFO size, and
2768 * - the full Rx FIFO size minus the early receive size (for parts
2769 * with ERT support assuming ERT set to E1000_ERT_2048), or
2770 * - the full Rx FIFO size minus one full frame
2772 if (hw->mac.type == e1000_pchlan) {
2774 * Workaround PCH LOM adapter hangs with certain network
2775 * loads. If hangs persist, try disabling Tx flow control.
2777 if (adapter->netdev->mtu > ETH_DATA_LEN) {
2778 fc->high_water = 0x3500;
2779 fc->low_water = 0x1500;
2781 fc->high_water = 0x5000;
2782 fc->low_water = 0x3000;
2785 if ((adapter->flags & FLAG_HAS_ERT) &&
2786 (adapter->netdev->mtu > ETH_DATA_LEN))
2787 hwm = min(((pba << 10) * 9 / 10),
2788 ((pba << 10) - (E1000_ERT_2048 << 3)));
2790 hwm = min(((pba << 10) * 9 / 10),
2791 ((pba << 10) - adapter->max_frame_size));
2793 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
2794 fc->low_water = fc->high_water - 8;
2797 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
2798 fc->pause_time = 0xFFFF;
2800 fc->pause_time = E1000_FC_PAUSE_TIME;
2802 fc->current_mode = fc->requested_mode;
2804 /* Allow time for pending master requests to run */
2805 mac->ops.reset_hw(hw);
2808 * For parts with AMT enabled, let the firmware know
2809 * that the network interface is in control
2811 if (adapter->flags & FLAG_HAS_AMT)
2812 e1000_get_hw_control(adapter);
2815 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP)
2816 e1e_wphy(&adapter->hw, BM_WUC, 0);
2818 if (mac->ops.init_hw(hw))
2819 e_err("Hardware Error\n");
2821 /* additional part of the flow-control workaround above */
2822 if (hw->mac.type == e1000_pchlan)
2823 ew32(FCRTV_PCH, 0x1000);
2825 e1000_update_mng_vlan(adapter);
2827 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2828 ew32(VET, ETH_P_8021Q);
2830 e1000e_reset_adaptive(hw);
2831 e1000_get_phy_info(hw);
2833 if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
2834 !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
2837 * speed up time to link by disabling smart power down, ignore
2838 * the return value of this function because there is nothing
2839 * different we would do if it failed
2841 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
2842 phy_data &= ~IGP02E1000_PM_SPD;
2843 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
2847 int e1000e_up(struct e1000_adapter *adapter)
2849 struct e1000_hw *hw = &adapter->hw;
2851 /* DMA latency requirement to workaround early-receive/jumbo issue */
2852 if (adapter->flags & FLAG_HAS_ERT)
2853 pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY,
2854 adapter->netdev->name,
2855 PM_QOS_DEFAULT_VALUE);
2857 /* hardware has been reset, we need to reload some things */
2858 e1000_configure(adapter);
2860 clear_bit(__E1000_DOWN, &adapter->state);
2862 napi_enable(&adapter->napi);
2863 if (adapter->msix_entries)
2864 e1000_configure_msix(adapter);
2865 e1000_irq_enable(adapter);
2867 netif_wake_queue(adapter->netdev);
2869 /* fire a link change interrupt to start the watchdog */
2870 ew32(ICS, E1000_ICS_LSC);
2874 void e1000e_down(struct e1000_adapter *adapter)
2876 struct net_device *netdev = adapter->netdev;
2877 struct e1000_hw *hw = &adapter->hw;
2881 * signal that we're down so the interrupt handler does not
2882 * reschedule our watchdog timer
2884 set_bit(__E1000_DOWN, &adapter->state);
2886 /* disable receives in the hardware */
2888 ew32(RCTL, rctl & ~E1000_RCTL_EN);
2889 /* flush and sleep below */
2891 netif_stop_queue(netdev);
2893 /* disable transmits in the hardware */
2895 tctl &= ~E1000_TCTL_EN;
2897 /* flush both disables and wait for them to finish */
2901 napi_disable(&adapter->napi);
2902 e1000_irq_disable(adapter);
2904 del_timer_sync(&adapter->watchdog_timer);
2905 del_timer_sync(&adapter->phy_info_timer);
2907 netdev->tx_queue_len = adapter->tx_queue_len;
2908 netif_carrier_off(netdev);
2909 adapter->link_speed = 0;
2910 adapter->link_duplex = 0;
2912 if (!pci_channel_offline(adapter->pdev))
2913 e1000e_reset(adapter);
2914 e1000_clean_tx_ring(adapter);
2915 e1000_clean_rx_ring(adapter);
2917 if (adapter->flags & FLAG_HAS_ERT)
2918 pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY,
2919 adapter->netdev->name);
2922 * TODO: for power management, we could drop the link and
2923 * pci_disable_device here.
2927 void e1000e_reinit_locked(struct e1000_adapter *adapter)
2930 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
2932 e1000e_down(adapter);
2934 clear_bit(__E1000_RESETTING, &adapter->state);
2938 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
2939 * @adapter: board private structure to initialize
2941 * e1000_sw_init initializes the Adapter private data structure.
2942 * Fields are initialized based on PCI device information and
2943 * OS network device settings (MTU size).
2945 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
2947 struct net_device *netdev = adapter->netdev;
2949 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
2950 adapter->rx_ps_bsize0 = 128;
2951 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
2952 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2954 e1000e_set_interrupt_capability(adapter);
2956 if (e1000_alloc_queues(adapter))
2959 /* Explicitly disable IRQ since the NIC can be in any state. */
2960 e1000_irq_disable(adapter);
2962 set_bit(__E1000_DOWN, &adapter->state);
2967 * e1000_intr_msi_test - Interrupt Handler
2968 * @irq: interrupt number
2969 * @data: pointer to a network interface device structure
2971 static irqreturn_t e1000_intr_msi_test(int irq, void *data)
2973 struct net_device *netdev = data;
2974 struct e1000_adapter *adapter = netdev_priv(netdev);
2975 struct e1000_hw *hw = &adapter->hw;
2976 u32 icr = er32(ICR);
2978 e_dbg("icr is %08X\n", icr);
2979 if (icr & E1000_ICR_RXSEQ) {
2980 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
2988 * e1000_test_msi_interrupt - Returns 0 for successful test
2989 * @adapter: board private struct
2991 * code flow taken from tg3.c
2993 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
2995 struct net_device *netdev = adapter->netdev;
2996 struct e1000_hw *hw = &adapter->hw;
2999 /* poll_enable hasn't been called yet, so don't need disable */
3000 /* clear any pending events */
3003 /* free the real vector and request a test handler */
3004 e1000_free_irq(adapter);
3005 e1000e_reset_interrupt_capability(adapter);
3007 /* Assume that the test fails, if it succeeds then the test
3008 * MSI irq handler will unset this flag */
3009 adapter->flags |= FLAG_MSI_TEST_FAILED;
3011 err = pci_enable_msi(adapter->pdev);
3013 goto msi_test_failed;
3015 err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
3016 netdev->name, netdev);
3018 pci_disable_msi(adapter->pdev);
3019 goto msi_test_failed;
3024 e1000_irq_enable(adapter);
3026 /* fire an unusual interrupt on the test handler */
3027 ew32(ICS, E1000_ICS_RXSEQ);
3031 e1000_irq_disable(adapter);
3035 if (adapter->flags & FLAG_MSI_TEST_FAILED) {
3036 adapter->int_mode = E1000E_INT_MODE_LEGACY;
3038 e_info("MSI interrupt test failed!\n");
3041 free_irq(adapter->pdev->irq, netdev);
3042 pci_disable_msi(adapter->pdev);
3045 goto msi_test_failed;
3047 /* okay so the test worked, restore settings */
3048 e_dbg("MSI interrupt test succeeded!\n");
3050 e1000e_set_interrupt_capability(adapter);
3051 e1000_request_irq(adapter);
3056 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3057 * @adapter: board private struct
3059 * code flow taken from tg3.c, called with e1000 interrupts disabled.
3061 static int e1000_test_msi(struct e1000_adapter *adapter)
3066 if (!(adapter->flags & FLAG_MSI_ENABLED))
3069 /* disable SERR in case the MSI write causes a master abort */
3070 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3071 pci_write_config_word(adapter->pdev, PCI_COMMAND,
3072 pci_cmd & ~PCI_COMMAND_SERR);
3074 err = e1000_test_msi_interrupt(adapter);
3076 /* restore previous setting of command word */
3077 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
3083 /* EIO means MSI test failed */
3087 /* back to INTx mode */
3088 e_warn("MSI interrupt test failed, using legacy interrupt.\n");
3090 e1000_free_irq(adapter);
3092 err = e1000_request_irq(adapter);
3098 * e1000_open - Called when a network interface is made active
3099 * @netdev: network interface device structure
3101 * Returns 0 on success, negative value on failure
3103 * The open entry point is called when a network interface is made
3104 * active by the system (IFF_UP). At this point all resources needed
3105 * for transmit and receive operations are allocated, the interrupt
3106 * handler is registered with the OS, the watchdog timer is started,
3107 * and the stack is notified that the interface is ready.
3109 static int e1000_open(struct net_device *netdev)
3111 struct e1000_adapter *adapter = netdev_priv(netdev);
3112 struct e1000_hw *hw = &adapter->hw;
3115 /* disallow open during test */
3116 if (test_bit(__E1000_TESTING, &adapter->state))
3119 netif_carrier_off(netdev);
3121 /* allocate transmit descriptors */
3122 err = e1000e_setup_tx_resources(adapter);
3126 /* allocate receive descriptors */
3127 err = e1000e_setup_rx_resources(adapter);
3131 e1000e_power_up_phy(adapter);
3133 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
3134 if ((adapter->hw.mng_cookie.status &
3135 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
3136 e1000_update_mng_vlan(adapter);
3139 * If AMT is enabled, let the firmware know that the network
3140 * interface is now open
3142 if (adapter->flags & FLAG_HAS_AMT)
3143 e1000_get_hw_control(adapter);
3146 * before we allocate an interrupt, we must be ready to handle it.
3147 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3148 * as soon as we call pci_request_irq, so we have to setup our
3149 * clean_rx handler before we do so.
3151 e1000_configure(adapter);
3153 err = e1000_request_irq(adapter);
3158 * Work around PCIe errata with MSI interrupts causing some chipsets to
3159 * ignore e1000e MSI messages, which means we need to test our MSI
3162 if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3163 err = e1000_test_msi(adapter);
3165 e_err("Interrupt allocation failed\n");
3170 /* From here on the code is the same as e1000e_up() */
3171 clear_bit(__E1000_DOWN, &adapter->state);
3173 napi_enable(&adapter->napi);
3175 e1000_irq_enable(adapter);
3177 netif_start_queue(netdev);
3179 /* fire a link status change interrupt to start the watchdog */
3180 ew32(ICS, E1000_ICS_LSC);
3185 e1000_release_hw_control(adapter);
3186 e1000_power_down_phy(adapter);
3187 e1000e_free_rx_resources(adapter);
3189 e1000e_free_tx_resources(adapter);
3191 e1000e_reset(adapter);