1 /* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
3 * Copyright (C) 2004 Sun Microsystems Inc.
4 * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 of the
9 * License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
21 * This driver uses the sungem driver (c) David Miller
22 * (davem@redhat.com) as its basis.
24 * The cassini chip has a number of features that distinguish it from
26 * 4 transmit descriptor rings that are used for either QoS (VLAN) or
27 * load balancing (non-VLAN mode)
28 * batching of multiple packets
29 * multiple CPU dispatching
30 * page-based RX descriptor engine with separate completion rings
31 * Gigabit support (GMII and PCS interface)
32 * MIF link up/down detection works
34 * RX is handled by page sized buffers that are attached as fragments to
35 * the skb. here's what's done:
36 * -- driver allocates pages at a time and keeps reference counts
38 * -- the upper protocol layers assume that the header is in the skb
39 * itself. as a result, cassini will copy a small amount (64 bytes)
41 * -- driver appends the rest of the data pages as frags to skbuffs
42 * and increments the reference count
43 * -- on page reclamation, the driver swaps the page with a spare page.
44 * if that page is still in use, it frees its reference to that page,
45 * and allocates a new page for use. otherwise, it just recycles the
48 * NOTE: cassini can parse the header. however, it's not worth it
49 * as long as the network stack requires a header copy.
51 * TX has 4 queues. currently these queues are used in a round-robin
52 * fashion for load balancing. They can also be used for QoS. for that
53 * to work, however, QoS information needs to be exposed down to the driver
54 * level so that subqueues get targetted to particular transmit rings.
55 * alternatively, the queues can be configured via use of the all-purpose
58 * RX DATA: the rx completion ring has all the info, but the rx desc
59 * ring has all of the data. RX can conceivably come in under multiple
60 * interrupts, but the INT# assignment needs to be set up properly by
61 * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
62 * that. also, the two descriptor rings are designed to distinguish between
63 * encrypted and non-encrypted packets, but we use them for buffering
66 * by default, the selective clear mask is set up to process rx packets.
70 #include <linux/module.h>
71 #include <linux/kernel.h>
72 #include <linux/types.h>
73 #include <linux/compiler.h>
74 #include <linux/slab.h>
75 #include <linux/delay.h>
76 #include <linux/init.h>
77 #include <linux/ioport.h>
78 #include <linux/pci.h>
80 #include <linux/highmem.h>
81 #include <linux/list.h>
82 #include <linux/dma-mapping.h>
84 #include <linux/netdevice.h>
85 #include <linux/etherdevice.h>
86 #include <linux/skbuff.h>
87 #include <linux/ethtool.h>
88 #include <linux/crc32.h>
89 #include <linux/random.h>
90 #include <linux/mii.h>
92 #include <linux/tcp.h>
93 #include <linux/mutex.h>
95 #include <net/checksum.h>
97 #include <asm/atomic.h>
98 #include <asm/system.h>
100 #include <asm/byteorder.h>
101 #include <asm/uaccess.h>
103 #define cas_page_map(x) kmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
104 #define cas_page_unmap(x) kunmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
105 #define CAS_NCPUS num_online_cpus()
107 #if defined(CONFIG_CASSINI_NAPI) && defined(HAVE_NETDEV_POLL)
109 #define cas_skb_release(x) netif_receive_skb(x)
111 #define cas_skb_release(x) netif_rx(x)
114 /* select which firmware to use */
115 #define USE_HP_WORKAROUND
116 #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
117 #define CAS_HP_ALT_FIRMWARE cas_prog_null /* alternate firmware */
121 #define USE_TX_COMPWB /* use completion writeback registers */
122 #define USE_CSMA_CD_PROTO /* standard CSMA/CD */
123 #define USE_RX_BLANK /* hw interrupt mitigation */
124 #undef USE_ENTROPY_DEV /* don't test for entropy device */
126 /* NOTE: these aren't useable unless PCI interrupts can be assigned.
127 * also, we need to make cp->lock finer-grained.
134 #undef USE_VPD_DEBUG /* debug vpd information if defined */
136 /* rx processing options */
137 #define USE_PAGE_ORDER /* specify to allocate large rx pages */
138 #define RX_DONT_BATCH 0 /* if 1, don't batch flows */
139 #define RX_COPY_ALWAYS 0 /* if 0, use frags */
140 #define RX_COPY_MIN 64 /* copy a little to make upper layers happy */
141 #undef RX_COUNT_BUFFERS /* define to calculate RX buffer stats */
143 #define DRV_MODULE_NAME "cassini"
144 #define PFX DRV_MODULE_NAME ": "
145 #define DRV_MODULE_VERSION "1.4"
146 #define DRV_MODULE_RELDATE "1 July 2004"
148 #define CAS_DEF_MSG_ENABLE \
158 /* length of time before we decide the hardware is borked,
159 * and dev->tx_timeout() should be called to fix the problem
161 #define CAS_TX_TIMEOUT (HZ)
162 #define CAS_LINK_TIMEOUT (22*HZ/10)
163 #define CAS_LINK_FAST_TIMEOUT (1)
165 /* timeout values for state changing. these specify the number
166 * of 10us delays to be used before giving up.
168 #define STOP_TRIES_PHY 1000
169 #define STOP_TRIES 5000
171 /* specify a minimum frame size to deal with some fifo issues
172 * max mtu == 2 * page size - ethernet header - 64 - swivel =
173 * 2 * page_size - 0x50
175 #define CAS_MIN_FRAME 97
176 #define CAS_1000MB_MIN_FRAME 255
177 #define CAS_MIN_MTU 60
178 #define CAS_MAX_MTU min(((cp->page_size << 1) - 0x50), 9000)
182 * Eliminate these and use separate atomic counters for each, to
183 * avoid a race condition.
186 #define CAS_RESET_MTU 1
187 #define CAS_RESET_ALL 2
188 #define CAS_RESET_SPARE 3
191 static char version[] __devinitdata =
192 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
194 static int cassini_debug = -1; /* -1 == use CAS_DEF_MSG_ENABLE as value */
195 static int link_mode;
197 MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
198 MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
199 MODULE_LICENSE("GPL");
200 module_param(cassini_debug, int, 0);
201 MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value");
202 module_param(link_mode, int, 0);
203 MODULE_PARM_DESC(link_mode, "default link mode");
206 * Work around for a PCS bug in which the link goes down due to the chip
207 * being confused and never showing a link status of "up."
209 #define DEFAULT_LINKDOWN_TIMEOUT 5
211 * Value in seconds, for user input.
213 static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT;
214 module_param(linkdown_timeout, int, 0);
215 MODULE_PARM_DESC(linkdown_timeout,
216 "min reset interval in sec. for PCS linkdown issue; disabled if not positive");
219 * value in 'ticks' (units used by jiffies). Set when we init the
220 * module because 'HZ' in actually a function call on some flavors of
221 * Linux. This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
223 static int link_transition_timeout;
227 static u16 link_modes[] __devinitdata = {
228 BMCR_ANENABLE, /* 0 : autoneg */
229 0, /* 1 : 10bt half duplex */
230 BMCR_SPEED100, /* 2 : 100bt half duplex */
231 BMCR_FULLDPLX, /* 3 : 10bt full duplex */
232 BMCR_SPEED100|BMCR_FULLDPLX, /* 4 : 100bt full duplex */
233 CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */
236 static struct pci_device_id cas_pci_tbl[] __devinitdata = {
237 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI,
238 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
239 { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN,
240 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
244 MODULE_DEVICE_TABLE(pci, cas_pci_tbl);
246 static void cas_set_link_modes(struct cas *cp);
248 static inline void cas_lock_tx(struct cas *cp)
252 for (i = 0; i < N_TX_RINGS; i++)
253 spin_lock(&cp->tx_lock[i]);
256 static inline void cas_lock_all(struct cas *cp)
258 spin_lock_irq(&cp->lock);
262 /* WTZ: QA was finding deadlock problems with the previous
263 * versions after long test runs with multiple cards per machine.
264 * See if replacing cas_lock_all with safer versions helps. The
265 * symptoms QA is reporting match those we'd expect if interrupts
266 * aren't being properly restored, and we fixed a previous deadlock
267 * with similar symptoms by using save/restore versions in other
270 #define cas_lock_all_save(cp, flags) \
272 struct cas *xxxcp = (cp); \
273 spin_lock_irqsave(&xxxcp->lock, flags); \
274 cas_lock_tx(xxxcp); \
277 static inline void cas_unlock_tx(struct cas *cp)
281 for (i = N_TX_RINGS; i > 0; i--)
282 spin_unlock(&cp->tx_lock[i - 1]);
285 static inline void cas_unlock_all(struct cas *cp)
288 spin_unlock_irq(&cp->lock);
291 #define cas_unlock_all_restore(cp, flags) \
293 struct cas *xxxcp = (cp); \
294 cas_unlock_tx(xxxcp); \
295 spin_unlock_irqrestore(&xxxcp->lock, flags); \
298 static void cas_disable_irq(struct cas *cp, const int ring)
300 /* Make sure we won't get any more interrupts */
302 writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK);
306 /* disable completion interrupts and selectively mask */
307 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
309 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
319 writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN,
320 cp->regs + REG_PLUS_INTRN_MASK(ring));
324 writel(INTRN_MASK_CLEAR_ALL, cp->regs +
325 REG_PLUS_INTRN_MASK(ring));
331 static inline void cas_mask_intr(struct cas *cp)
335 for (i = 0; i < N_RX_COMP_RINGS; i++)
336 cas_disable_irq(cp, i);
339 static inline void cas_buffer_init(cas_page_t *cp)
341 struct page *page = cp->buffer;
342 atomic_set((atomic_t *)&page->lru.next, 1);
345 static inline int cas_buffer_count(cas_page_t *cp)
347 struct page *page = cp->buffer;
348 return atomic_read((atomic_t *)&page->lru.next);
351 static inline void cas_buffer_inc(cas_page_t *cp)
353 struct page *page = cp->buffer;
354 atomic_inc((atomic_t *)&page->lru.next);
357 static inline void cas_buffer_dec(cas_page_t *cp)
359 struct page *page = cp->buffer;
360 atomic_dec((atomic_t *)&page->lru.next);
363 static void cas_enable_irq(struct cas *cp, const int ring)
365 if (ring == 0) { /* all but TX_DONE */
366 writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK);
370 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
372 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
382 writel(INTRN_MASK_RX_EN, cp->regs +
383 REG_PLUS_INTRN_MASK(ring));
392 static inline void cas_unmask_intr(struct cas *cp)
396 for (i = 0; i < N_RX_COMP_RINGS; i++)
397 cas_enable_irq(cp, i);
400 static inline void cas_entropy_gather(struct cas *cp)
402 #ifdef USE_ENTROPY_DEV
403 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
406 batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV),
407 readl(cp->regs + REG_ENTROPY_IV),
412 static inline void cas_entropy_reset(struct cas *cp)
414 #ifdef USE_ENTROPY_DEV
415 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
418 writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT,
419 cp->regs + REG_BIM_LOCAL_DEV_EN);
420 writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET);
421 writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG);
423 /* if we read back 0x0, we don't have an entropy device */
424 if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0)
425 cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV;
429 /* access to the phy. the following assumes that we've initialized the MIF to
430 * be in frame rather than bit-bang mode
432 static u16 cas_phy_read(struct cas *cp, int reg)
435 int limit = STOP_TRIES_PHY;
437 cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ;
438 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
439 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
440 cmd |= MIF_FRAME_TURN_AROUND_MSB;
441 writel(cmd, cp->regs + REG_MIF_FRAME);
443 /* poll for completion */
444 while (limit-- > 0) {
446 cmd = readl(cp->regs + REG_MIF_FRAME);
447 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
448 return (cmd & MIF_FRAME_DATA_MASK);
450 return 0xFFFF; /* -1 */
453 static int cas_phy_write(struct cas *cp, int reg, u16 val)
455 int limit = STOP_TRIES_PHY;
458 cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE;
459 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
460 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
461 cmd |= MIF_FRAME_TURN_AROUND_MSB;
462 cmd |= val & MIF_FRAME_DATA_MASK;
463 writel(cmd, cp->regs + REG_MIF_FRAME);
465 /* poll for completion */
466 while (limit-- > 0) {
468 cmd = readl(cp->regs + REG_MIF_FRAME);
469 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
475 static void cas_phy_powerup(struct cas *cp)
477 u16 ctl = cas_phy_read(cp, MII_BMCR);
479 if ((ctl & BMCR_PDOWN) == 0)
482 cas_phy_write(cp, MII_BMCR, ctl);
485 static void cas_phy_powerdown(struct cas *cp)
487 u16 ctl = cas_phy_read(cp, MII_BMCR);
489 if (ctl & BMCR_PDOWN)
492 cas_phy_write(cp, MII_BMCR, ctl);
495 /* cp->lock held. note: the last put_page will free the buffer */
496 static int cas_page_free(struct cas *cp, cas_page_t *page)
498 pci_unmap_page(cp->pdev, page->dma_addr, cp->page_size,
500 cas_buffer_dec(page);
501 __free_pages(page->buffer, cp->page_order);
506 #ifdef RX_COUNT_BUFFERS
507 #define RX_USED_ADD(x, y) ((x)->used += (y))
508 #define RX_USED_SET(x, y) ((x)->used = (y))
510 #define RX_USED_ADD(x, y)
511 #define RX_USED_SET(x, y)
514 /* local page allocation routines for the receive buffers. jumbo pages
515 * require at least 8K contiguous and 8K aligned buffers.
517 static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags)
521 page = kmalloc(sizeof(cas_page_t), flags);
525 INIT_LIST_HEAD(&page->list);
526 RX_USED_SET(page, 0);
527 page->buffer = alloc_pages(flags, cp->page_order);
530 cas_buffer_init(page);
531 page->dma_addr = pci_map_page(cp->pdev, page->buffer, 0,
532 cp->page_size, PCI_DMA_FROMDEVICE);
540 /* initialize spare pool of rx buffers, but allocate during the open */
541 static void cas_spare_init(struct cas *cp)
543 spin_lock(&cp->rx_inuse_lock);
544 INIT_LIST_HEAD(&cp->rx_inuse_list);
545 spin_unlock(&cp->rx_inuse_lock);
547 spin_lock(&cp->rx_spare_lock);
548 INIT_LIST_HEAD(&cp->rx_spare_list);
549 cp->rx_spares_needed = RX_SPARE_COUNT;
550 spin_unlock(&cp->rx_spare_lock);
553 /* used on close. free all the spare buffers. */
554 static void cas_spare_free(struct cas *cp)
556 struct list_head list, *elem, *tmp;
558 /* free spare buffers */
559 INIT_LIST_HEAD(&list);
560 spin_lock(&cp->rx_spare_lock);
561 list_splice(&cp->rx_spare_list, &list);
562 INIT_LIST_HEAD(&cp->rx_spare_list);
563 spin_unlock(&cp->rx_spare_lock);
564 list_for_each_safe(elem, tmp, &list) {
565 cas_page_free(cp, list_entry(elem, cas_page_t, list));
568 INIT_LIST_HEAD(&list);
571 * Looks like Adrian had protected this with a different
572 * lock than used everywhere else to manipulate this list.
574 spin_lock(&cp->rx_inuse_lock);
575 list_splice(&cp->rx_inuse_list, &list);
576 INIT_LIST_HEAD(&cp->rx_inuse_list);
577 spin_unlock(&cp->rx_inuse_lock);
579 spin_lock(&cp->rx_spare_lock);
580 list_splice(&cp->rx_inuse_list, &list);
581 INIT_LIST_HEAD(&cp->rx_inuse_list);
582 spin_unlock(&cp->rx_spare_lock);
584 list_for_each_safe(elem, tmp, &list) {
585 cas_page_free(cp, list_entry(elem, cas_page_t, list));
589 /* replenish spares if needed */
590 static void cas_spare_recover(struct cas *cp, const gfp_t flags)
592 struct list_head list, *elem, *tmp;
595 /* check inuse list. if we don't need any more free buffers,
599 /* make a local copy of the list */
600 INIT_LIST_HEAD(&list);
601 spin_lock(&cp->rx_inuse_lock);
602 list_splice(&cp->rx_inuse_list, &list);
603 INIT_LIST_HEAD(&cp->rx_inuse_list);
604 spin_unlock(&cp->rx_inuse_lock);
606 list_for_each_safe(elem, tmp, &list) {
607 cas_page_t *page = list_entry(elem, cas_page_t, list);
609 if (cas_buffer_count(page) > 1)
613 spin_lock(&cp->rx_spare_lock);
614 if (cp->rx_spares_needed > 0) {
615 list_add(elem, &cp->rx_spare_list);
616 cp->rx_spares_needed--;
617 spin_unlock(&cp->rx_spare_lock);
619 spin_unlock(&cp->rx_spare_lock);
620 cas_page_free(cp, page);
624 /* put any inuse buffers back on the list */
625 if (!list_empty(&list)) {
626 spin_lock(&cp->rx_inuse_lock);
627 list_splice(&list, &cp->rx_inuse_list);
628 spin_unlock(&cp->rx_inuse_lock);
631 spin_lock(&cp->rx_spare_lock);
632 needed = cp->rx_spares_needed;
633 spin_unlock(&cp->rx_spare_lock);
637 /* we still need spares, so try to allocate some */
638 INIT_LIST_HEAD(&list);
641 cas_page_t *spare = cas_page_alloc(cp, flags);
644 list_add(&spare->list, &list);
648 spin_lock(&cp->rx_spare_lock);
649 list_splice(&list, &cp->rx_spare_list);
650 cp->rx_spares_needed -= i;
651 spin_unlock(&cp->rx_spare_lock);
654 /* pull a page from the list. */
655 static cas_page_t *cas_page_dequeue(struct cas *cp)
657 struct list_head *entry;
660 spin_lock(&cp->rx_spare_lock);
661 if (list_empty(&cp->rx_spare_list)) {
662 /* try to do a quick recovery */
663 spin_unlock(&cp->rx_spare_lock);
664 cas_spare_recover(cp, GFP_ATOMIC);
665 spin_lock(&cp->rx_spare_lock);
666 if (list_empty(&cp->rx_spare_list)) {
667 if (netif_msg_rx_err(cp))
668 printk(KERN_ERR "%s: no spare buffers "
669 "available.\n", cp->dev->name);
670 spin_unlock(&cp->rx_spare_lock);
675 entry = cp->rx_spare_list.next;
677 recover = ++cp->rx_spares_needed;
678 spin_unlock(&cp->rx_spare_lock);
680 /* trigger the timer to do the recovery */
681 if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) {
683 atomic_inc(&cp->reset_task_pending);
684 atomic_inc(&cp->reset_task_pending_spare);
685 schedule_work(&cp->reset_task);
687 atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE);
688 schedule_work(&cp->reset_task);
691 return list_entry(entry, cas_page_t, list);
695 static void cas_mif_poll(struct cas *cp, const int enable)
699 cfg = readl(cp->regs + REG_MIF_CFG);
700 cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1);
702 if (cp->phy_type & CAS_PHY_MII_MDIO1)
703 cfg |= MIF_CFG_PHY_SELECT;
705 /* poll and interrupt on link status change. */
707 cfg |= MIF_CFG_POLL_EN;
708 cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR);
709 cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr);
711 writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF,
712 cp->regs + REG_MIF_MASK);
713 writel(cfg, cp->regs + REG_MIF_CFG);
716 /* Must be invoked under cp->lock */
717 static void cas_begin_auto_negotiation(struct cas *cp, struct ethtool_cmd *ep)
723 int oldstate = cp->lstate;
724 int link_was_not_down = !(oldstate == link_down);
726 /* Setup link parameters */
729 lcntl = cp->link_cntl;
730 if (ep->autoneg == AUTONEG_ENABLE)
731 cp->link_cntl = BMCR_ANENABLE;
734 if (ep->speed == SPEED_100)
735 cp->link_cntl |= BMCR_SPEED100;
736 else if (ep->speed == SPEED_1000)
737 cp->link_cntl |= CAS_BMCR_SPEED1000;
738 if (ep->duplex == DUPLEX_FULL)
739 cp->link_cntl |= BMCR_FULLDPLX;
742 changed = (lcntl != cp->link_cntl);
745 if (cp->lstate == link_up) {
746 printk(KERN_INFO "%s: PCS link down.\n",
750 printk(KERN_INFO "%s: link configuration changed\n",
754 cp->lstate = link_down;
755 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
760 * WTZ: If the old state was link_up, we turn off the carrier
761 * to replicate everything we do elsewhere on a link-down
762 * event when we were already in a link-up state..
764 if (oldstate == link_up)
765 netif_carrier_off(cp->dev);
766 if (changed && link_was_not_down) {
768 * WTZ: This branch will simply schedule a full reset after
769 * we explicitly changed link modes in an ioctl. See if this
770 * fixes the link-problems we were having for forced mode.
772 atomic_inc(&cp->reset_task_pending);
773 atomic_inc(&cp->reset_task_pending_all);
774 schedule_work(&cp->reset_task);
776 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
780 if (cp->phy_type & CAS_PHY_SERDES) {
781 u32 val = readl(cp->regs + REG_PCS_MII_CTRL);
783 if (cp->link_cntl & BMCR_ANENABLE) {
784 val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN);
785 cp->lstate = link_aneg;
787 if (cp->link_cntl & BMCR_FULLDPLX)
788 val |= PCS_MII_CTRL_DUPLEX;
789 val &= ~PCS_MII_AUTONEG_EN;
790 cp->lstate = link_force_ok;
792 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
793 writel(val, cp->regs + REG_PCS_MII_CTRL);
797 ctl = cas_phy_read(cp, MII_BMCR);
798 ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 |
799 CAS_BMCR_SPEED1000 | BMCR_ANENABLE);
800 ctl |= cp->link_cntl;
801 if (ctl & BMCR_ANENABLE) {
802 ctl |= BMCR_ANRESTART;
803 cp->lstate = link_aneg;
805 cp->lstate = link_force_ok;
807 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
808 cas_phy_write(cp, MII_BMCR, ctl);
813 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
816 /* Must be invoked under cp->lock. */
817 static int cas_reset_mii_phy(struct cas *cp)
819 int limit = STOP_TRIES_PHY;
822 cas_phy_write(cp, MII_BMCR, BMCR_RESET);
825 val = cas_phy_read(cp, MII_BMCR);
826 if ((val & BMCR_RESET) == 0)
833 static void cas_saturn_firmware_load(struct cas *cp)
835 cas_saturn_patch_t *patch = cas_saturn_patch;
837 cas_phy_powerdown(cp);
839 /* expanded memory access mode */
840 cas_phy_write(cp, DP83065_MII_MEM, 0x0);
842 /* pointer configuration for new firmware */
843 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9);
844 cas_phy_write(cp, DP83065_MII_REGD, 0xbd);
845 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa);
846 cas_phy_write(cp, DP83065_MII_REGD, 0x82);
847 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb);
848 cas_phy_write(cp, DP83065_MII_REGD, 0x0);
849 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc);
850 cas_phy_write(cp, DP83065_MII_REGD, 0x39);
852 /* download new firmware */
853 cas_phy_write(cp, DP83065_MII_MEM, 0x1);
854 cas_phy_write(cp, DP83065_MII_REGE, patch->addr);
855 while (patch->addr) {
856 cas_phy_write(cp, DP83065_MII_REGD, patch->val);
860 /* enable firmware */
861 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8);
862 cas_phy_write(cp, DP83065_MII_REGD, 0x1);
866 /* phy initialization */
867 static void cas_phy_init(struct cas *cp)
871 /* if we're in MII/GMII mode, set up phy */
872 if (CAS_PHY_MII(cp->phy_type)) {
873 writel(PCS_DATAPATH_MODE_MII,
874 cp->regs + REG_PCS_DATAPATH_MODE);
877 cas_reset_mii_phy(cp); /* take out of isolate mode */
879 if (PHY_LUCENT_B0 == cp->phy_id) {
880 /* workaround link up/down issue with lucent */
881 cas_phy_write(cp, LUCENT_MII_REG, 0x8000);
882 cas_phy_write(cp, MII_BMCR, 0x00f1);
883 cas_phy_write(cp, LUCENT_MII_REG, 0x0);
885 } else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) {
886 /* workarounds for broadcom phy */
887 cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20);
888 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012);
889 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804);
890 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013);
891 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204);
892 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
893 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132);
894 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
895 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232);
896 cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F);
897 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20);
899 } else if (PHY_BROADCOM_5411 == cp->phy_id) {
900 val = cas_phy_read(cp, BROADCOM_MII_REG4);
901 val = cas_phy_read(cp, BROADCOM_MII_REG4);
903 /* link workaround */
904 cas_phy_write(cp, BROADCOM_MII_REG4,
908 } else if (cp->cas_flags & CAS_FLAG_SATURN) {
909 writel((cp->phy_type & CAS_PHY_MII_MDIO0) ?
910 SATURN_PCFG_FSI : 0x0,
911 cp->regs + REG_SATURN_PCFG);
913 /* load firmware to address 10Mbps auto-negotiation
914 * issue. NOTE: this will need to be changed if the
915 * default firmware gets fixed.
917 if (PHY_NS_DP83065 == cp->phy_id) {
918 cas_saturn_firmware_load(cp);
923 /* advertise capabilities */
924 val = cas_phy_read(cp, MII_BMCR);
925 val &= ~BMCR_ANENABLE;
926 cas_phy_write(cp, MII_BMCR, val);
929 cas_phy_write(cp, MII_ADVERTISE,
930 cas_phy_read(cp, MII_ADVERTISE) |
931 (ADVERTISE_10HALF | ADVERTISE_10FULL |
932 ADVERTISE_100HALF | ADVERTISE_100FULL |
933 CAS_ADVERTISE_PAUSE |
934 CAS_ADVERTISE_ASYM_PAUSE));
936 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
937 /* make sure that we don't advertise half
938 * duplex to avoid a chip issue
940 val = cas_phy_read(cp, CAS_MII_1000_CTRL);
941 val &= ~CAS_ADVERTISE_1000HALF;
942 val |= CAS_ADVERTISE_1000FULL;
943 cas_phy_write(cp, CAS_MII_1000_CTRL, val);
947 /* reset pcs for serdes */
951 writel(PCS_DATAPATH_MODE_SERDES,
952 cp->regs + REG_PCS_DATAPATH_MODE);
954 /* enable serdes pins on saturn */
955 if (cp->cas_flags & CAS_FLAG_SATURN)
956 writel(0, cp->regs + REG_SATURN_PCFG);
958 /* Reset PCS unit. */
959 val = readl(cp->regs + REG_PCS_MII_CTRL);
960 val |= PCS_MII_RESET;
961 writel(val, cp->regs + REG_PCS_MII_CTRL);
964 while (limit-- > 0) {
966 if ((readl(cp->regs + REG_PCS_MII_CTRL) &
971 printk(KERN_WARNING "%s: PCS reset bit would not "
972 "clear [%08x].\n", cp->dev->name,
973 readl(cp->regs + REG_PCS_STATE_MACHINE));
975 /* Make sure PCS is disabled while changing advertisement
978 writel(0x0, cp->regs + REG_PCS_CFG);
980 /* Advertise all capabilities except half-duplex. */
981 val = readl(cp->regs + REG_PCS_MII_ADVERT);
982 val &= ~PCS_MII_ADVERT_HD;
983 val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE |
984 PCS_MII_ADVERT_ASYM_PAUSE);
985 writel(val, cp->regs + REG_PCS_MII_ADVERT);
988 writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG);
990 /* pcs workaround: enable sync detect */
991 writel(PCS_SERDES_CTRL_SYNCD_EN,
992 cp->regs + REG_PCS_SERDES_CTRL);
997 static int cas_pcs_link_check(struct cas *cp)
999 u32 stat, state_machine;
1002 /* The link status bit latches on zero, so you must
1003 * read it twice in such a case to see a transition
1004 * to the link being up.
1006 stat = readl(cp->regs + REG_PCS_MII_STATUS);
1007 if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0)
1008 stat = readl(cp->regs + REG_PCS_MII_STATUS);
1010 /* The remote-fault indication is only valid
1011 * when autoneg has completed.
1013 if ((stat & (PCS_MII_STATUS_AUTONEG_COMP |
1014 PCS_MII_STATUS_REMOTE_FAULT)) ==
1015 (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT)) {
1016 if (netif_msg_link(cp))
1017 printk(KERN_INFO "%s: PCS RemoteFault\n",
1021 /* work around link detection issue by querying the PCS state
1024 state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE);
1025 if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) {
1026 stat &= ~PCS_MII_STATUS_LINK_STATUS;
1027 } else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) {
1028 stat |= PCS_MII_STATUS_LINK_STATUS;
1031 if (stat & PCS_MII_STATUS_LINK_STATUS) {
1032 if (cp->lstate != link_up) {
1034 cp->lstate = link_up;
1035 cp->link_transition = LINK_TRANSITION_LINK_UP;
1037 cas_set_link_modes(cp);
1038 netif_carrier_on(cp->dev);
1041 } else if (cp->lstate == link_up) {
1042 cp->lstate = link_down;
1043 if (link_transition_timeout != 0 &&
1044 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1045 !cp->link_transition_jiffies_valid) {
1047 * force a reset, as a workaround for the
1048 * link-failure problem. May want to move this to a
1049 * point a bit earlier in the sequence. If we had
1050 * generated a reset a short time ago, we'll wait for
1051 * the link timer to check the status until a
1052 * timer expires (link_transistion_jiffies_valid is
1053 * true when the timer is running.) Instead of using
1054 * a system timer, we just do a check whenever the
1055 * link timer is running - this clears the flag after
1059 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1060 cp->link_transition_jiffies = jiffies;
1061 cp->link_transition_jiffies_valid = 1;
1063 cp->link_transition = LINK_TRANSITION_ON_FAILURE;
1065 netif_carrier_off(cp->dev);
1066 if (cp->opened && netif_msg_link(cp)) {
1067 printk(KERN_INFO "%s: PCS link down.\n",
1071 /* Cassini only: if you force a mode, there can be
1072 * sync problems on link down. to fix that, the following
1073 * things need to be checked:
1074 * 1) read serialink state register
1075 * 2) read pcs status register to verify link down.
1076 * 3) if link down and serial link == 0x03, then you need
1077 * to global reset the chip.
1079 if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) {
1080 /* should check to see if we're in a forced mode */
1081 stat = readl(cp->regs + REG_PCS_SERDES_STATE);
1085 } else if (cp->lstate == link_down) {
1086 if (link_transition_timeout != 0 &&
1087 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1088 !cp->link_transition_jiffies_valid) {
1089 /* force a reset, as a workaround for the
1090 * link-failure problem. May want to move
1091 * this to a point a bit earlier in the
1095 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1096 cp->link_transition_jiffies = jiffies;
1097 cp->link_transition_jiffies_valid = 1;
1099 cp->link_transition = LINK_TRANSITION_STILL_FAILED;
1106 static int cas_pcs_interrupt(struct net_device *dev,
1107 struct cas *cp, u32 status)
1109 u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS);
1111 if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0)
1113 return cas_pcs_link_check(cp);
1116 static int cas_txmac_interrupt(struct net_device *dev,
1117 struct cas *cp, u32 status)
1119 u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS);
1124 if (netif_msg_intr(cp))
1125 printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
1126 cp->dev->name, txmac_stat);
1128 /* Defer timer expiration is quite normal,
1129 * don't even log the event.
1131 if ((txmac_stat & MAC_TX_DEFER_TIMER) &&
1132 !(txmac_stat & ~MAC_TX_DEFER_TIMER))
1135 spin_lock(&cp->stat_lock[0]);
1136 if (txmac_stat & MAC_TX_UNDERRUN) {
1137 printk(KERN_ERR "%s: TX MAC xmit underrun.\n",
1139 cp->net_stats[0].tx_fifo_errors++;
1142 if (txmac_stat & MAC_TX_MAX_PACKET_ERR) {
1143 printk(KERN_ERR "%s: TX MAC max packet size error.\n",
1145 cp->net_stats[0].tx_errors++;
1148 /* The rest are all cases of one of the 16-bit TX
1149 * counters expiring.
1151 if (txmac_stat & MAC_TX_COLL_NORMAL)
1152 cp->net_stats[0].collisions += 0x10000;
1154 if (txmac_stat & MAC_TX_COLL_EXCESS) {
1155 cp->net_stats[0].tx_aborted_errors += 0x10000;
1156 cp->net_stats[0].collisions += 0x10000;
1159 if (txmac_stat & MAC_TX_COLL_LATE) {
1160 cp->net_stats[0].tx_aborted_errors += 0x10000;
1161 cp->net_stats[0].collisions += 0x10000;
1163 spin_unlock(&cp->stat_lock[0]);
1165 /* We do not keep track of MAC_TX_COLL_FIRST and
1166 * MAC_TX_PEAK_ATTEMPTS events.
1171 static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware)
1173 cas_hp_inst_t *inst;
1178 while ((inst = firmware) && inst->note) {
1179 writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR);
1181 val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val);
1182 val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask);
1183 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI);
1185 val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10);
1186 val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop);
1187 val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext);
1188 val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff);
1189 val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext);
1190 val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff);
1191 val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op);
1192 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID);
1194 val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask);
1195 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift);
1196 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab);
1197 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg);
1198 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW);
1204 static void cas_init_rx_dma(struct cas *cp)
1206 u64 desc_dma = cp->block_dvma;
1210 /* rx free descriptors */
1211 val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL);
1212 val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0));
1213 val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0));
1214 if ((N_RX_DESC_RINGS > 1) &&
1215 (cp->cas_flags & CAS_FLAG_REG_PLUS)) /* do desc 2 */
1216 val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1));
1217 writel(val, cp->regs + REG_RX_CFG);
1219 val = (unsigned long) cp->init_rxds[0] -
1220 (unsigned long) cp->init_block;
1221 writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI);
1222 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW);
1223 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
1225 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1226 /* rx desc 2 is for IPSEC packets. however,
1227 * we don't it that for that purpose.
1229 val = (unsigned long) cp->init_rxds[1] -
1230 (unsigned long) cp->init_block;
1231 writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI);
1232 writel((desc_dma + val) & 0xffffffff, cp->regs +
1233 REG_PLUS_RX_DB1_LOW);
1234 writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs +
1238 /* rx completion registers */
1239 val = (unsigned long) cp->init_rxcs[0] -
1240 (unsigned long) cp->init_block;
1241 writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI);
1242 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW);
1244 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1246 for (i = 1; i < MAX_RX_COMP_RINGS; i++) {
1247 val = (unsigned long) cp->init_rxcs[i] -
1248 (unsigned long) cp->init_block;
1249 writel((desc_dma + val) >> 32, cp->regs +
1250 REG_PLUS_RX_CBN_HI(i));
1251 writel((desc_dma + val) & 0xffffffff, cp->regs +
1252 REG_PLUS_RX_CBN_LOW(i));
1256 /* read selective clear regs to prevent spurious interrupts
1257 * on reset because complete == kick.
1258 * selective clear set up to prevent interrupts on resets
1260 readl(cp->regs + REG_INTR_STATUS_ALIAS);
1261 writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR);
1262 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1263 for (i = 1; i < N_RX_COMP_RINGS; i++)
1264 readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i));
1266 /* 2 is different from 3 and 4 */
1267 if (N_RX_COMP_RINGS > 1)
1268 writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1,
1269 cp->regs + REG_PLUS_ALIASN_CLEAR(1));
1271 for (i = 2; i < N_RX_COMP_RINGS; i++)
1272 writel(INTR_RX_DONE_ALT,
1273 cp->regs + REG_PLUS_ALIASN_CLEAR(i));
1276 /* set up pause thresholds */
1277 val = CAS_BASE(RX_PAUSE_THRESH_OFF,
1278 cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM);
1279 val |= CAS_BASE(RX_PAUSE_THRESH_ON,
1280 cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM);
1281 writel(val, cp->regs + REG_RX_PAUSE_THRESH);
1283 /* zero out dma reassembly buffers */
1284 for (i = 0; i < 64; i++) {
1285 writel(i, cp->regs + REG_RX_TABLE_ADDR);
1286 writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW);
1287 writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID);
1288 writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI);
1291 /* make sure address register is 0 for normal operation */
1292 writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR);
1293 writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR);
1295 /* interrupt mitigation */
1297 val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL);
1298 val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL);
1299 writel(val, cp->regs + REG_RX_BLANK);
1301 writel(0x0, cp->regs + REG_RX_BLANK);
1304 /* interrupt generation as a function of low water marks for
1305 * free desc and completion entries. these are used to trigger
1306 * housekeeping for rx descs. we don't use the free interrupt
1307 * as it's not very useful
1309 /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1310 val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL);
1311 writel(val, cp->regs + REG_RX_AE_THRESH);
1312 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1313 val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1));
1314 writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH);
1317 /* Random early detect registers. useful for congestion avoidance.
1318 * this should be tunable.
1320 writel(0x0, cp->regs + REG_RX_RED);
1322 /* receive page sizes. default == 2K (0x800) */
1324 if (cp->page_size == 0x1000)
1326 else if (cp->page_size == 0x2000)
1328 else if (cp->page_size == 0x4000)
1331 /* round mtu + offset. constrain to page size. */
1332 size = cp->dev->mtu + 64;
1333 if (size > cp->page_size)
1334 size = cp->page_size;
1338 else if (size <= 0x800)
1340 else if (size <= 0x1000)
1345 cp->mtu_stride = 1 << (i + 10);
1346 val = CAS_BASE(RX_PAGE_SIZE, val);
1347 val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i);
1348 val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10));
1349 val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1);
1350 writel(val, cp->regs + REG_RX_PAGE_SIZE);
1352 /* enable the header parser if desired */
1353 if (CAS_HP_FIRMWARE == cas_prog_null)
1356 val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS);
1357 val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK;
1358 val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL);
1359 writel(val, cp->regs + REG_HP_CFG);
1362 static inline void cas_rxc_init(struct cas_rx_comp *rxc)
1364 memset(rxc, 0, sizeof(*rxc));
1365 rxc->word4 = cpu_to_le64(RX_COMP4_ZERO);
1368 /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1369 * flipping is protected by the fact that the chip will not
1370 * hand back the same page index while it's being processed.
1372 static inline cas_page_t *cas_page_spare(struct cas *cp, const int index)
1374 cas_page_t *page = cp->rx_pages[1][index];
1377 if (cas_buffer_count(page) == 1)
1380 new = cas_page_dequeue(cp);
1382 spin_lock(&cp->rx_inuse_lock);
1383 list_add(&page->list, &cp->rx_inuse_list);
1384 spin_unlock(&cp->rx_inuse_lock);
1389 /* this needs to be changed if we actually use the ENC RX DESC ring */
1390 static cas_page_t *cas_page_swap(struct cas *cp, const int ring,
1393 cas_page_t **page0 = cp->rx_pages[0];
1394 cas_page_t **page1 = cp->rx_pages[1];
1396 /* swap if buffer is in use */
1397 if (cas_buffer_count(page0[index]) > 1) {
1398 cas_page_t *new = cas_page_spare(cp, index);
1400 page1[index] = page0[index];
1404 RX_USED_SET(page0[index], 0);
1405 return page0[index];
1408 static void cas_clean_rxds(struct cas *cp)
1410 /* only clean ring 0 as ring 1 is used for spare buffers */
1411 struct cas_rx_desc *rxd = cp->init_rxds[0];
1414 /* release all rx flows */
1415 for (i = 0; i < N_RX_FLOWS; i++) {
1416 struct sk_buff *skb;
1417 while ((skb = __skb_dequeue(&cp->rx_flows[i]))) {
1418 cas_skb_release(skb);
1422 /* initialize descriptors */
1423 size = RX_DESC_RINGN_SIZE(0);
1424 for (i = 0; i < size; i++) {
1425 cas_page_t *page = cas_page_swap(cp, 0, i);
1426 rxd[i].buffer = cpu_to_le64(page->dma_addr);
1427 rxd[i].index = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) |
1428 CAS_BASE(RX_INDEX_RING, 0));
1431 cp->rx_old[0] = RX_DESC_RINGN_SIZE(0) - 4;
1433 cp->cas_flags &= ~CAS_FLAG_RXD_POST(0);
1436 static void cas_clean_rxcs(struct cas *cp)
1440 /* take ownership of rx comp descriptors */
1441 memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS);
1442 memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS);
1443 for (i = 0; i < N_RX_COMP_RINGS; i++) {
1444 struct cas_rx_comp *rxc = cp->init_rxcs[i];
1445 for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) {
1446 cas_rxc_init(rxc + j);
1452 /* When we get a RX fifo overflow, the RX unit is probably hung
1453 * so we do the following.
1455 * If any part of the reset goes wrong, we return 1 and that causes the
1456 * whole chip to be reset.
1458 static int cas_rxmac_reset(struct cas *cp)
1460 struct net_device *dev = cp->dev;
1464 /* First, reset MAC RX. */
1465 writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1466 for (limit = 0; limit < STOP_TRIES; limit++) {
1467 if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN))
1471 if (limit == STOP_TRIES) {
1472 printk(KERN_ERR "%s: RX MAC will not disable, resetting whole "
1473 "chip.\n", dev->name);
1477 /* Second, disable RX DMA. */
1478 writel(0, cp->regs + REG_RX_CFG);
1479 for (limit = 0; limit < STOP_TRIES; limit++) {
1480 if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN))
1484 if (limit == STOP_TRIES) {
1485 printk(KERN_ERR "%s: RX DMA will not disable, resetting whole "
1486 "chip.\n", dev->name);
1492 /* Execute RX reset command. */
1493 writel(SW_RESET_RX, cp->regs + REG_SW_RESET);
1494 for (limit = 0; limit < STOP_TRIES; limit++) {
1495 if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX))
1499 if (limit == STOP_TRIES) {
1500 printk(KERN_ERR "%s: RX reset command will not execute, "
1501 "resetting whole chip.\n", dev->name);
1505 /* reset driver rx state */
1509 /* Now, reprogram the rest of RX unit. */
1510 cas_init_rx_dma(cp);
1513 val = readl(cp->regs + REG_RX_CFG);
1514 writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG);
1515 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
1516 val = readl(cp->regs + REG_MAC_RX_CFG);
1517 writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1522 static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp,
1525 u32 stat = readl(cp->regs + REG_MAC_RX_STATUS);
1530 if (netif_msg_intr(cp))
1531 printk(KERN_DEBUG "%s: rxmac interrupt, stat: 0x%x\n",
1532 cp->dev->name, stat);
1534 /* these are all rollovers */
1535 spin_lock(&cp->stat_lock[0]);
1536 if (stat & MAC_RX_ALIGN_ERR)
1537 cp->net_stats[0].rx_frame_errors += 0x10000;
1539 if (stat & MAC_RX_CRC_ERR)
1540 cp->net_stats[0].rx_crc_errors += 0x10000;
1542 if (stat & MAC_RX_LEN_ERR)
1543 cp->net_stats[0].rx_length_errors += 0x10000;
1545 if (stat & MAC_RX_OVERFLOW) {
1546 cp->net_stats[0].rx_over_errors++;
1547 cp->net_stats[0].rx_fifo_errors++;
1550 /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1553 spin_unlock(&cp->stat_lock[0]);
1557 static int cas_mac_interrupt(struct net_device *dev, struct cas *cp,
1560 u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS);
1565 if (netif_msg_intr(cp))
1566 printk(KERN_DEBUG "%s: mac interrupt, stat: 0x%x\n",
1567 cp->dev->name, stat);
1569 /* This interrupt is just for pause frame and pause
1570 * tracking. It is useful for diagnostics and debug
1571 * but probably by default we will mask these events.
1573 if (stat & MAC_CTRL_PAUSE_STATE)
1574 cp->pause_entered++;
1576 if (stat & MAC_CTRL_PAUSE_RECEIVED)
1577 cp->pause_last_time_recvd = (stat >> 16);
1583 /* Must be invoked under cp->lock. */
1584 static inline int cas_mdio_link_not_up(struct cas *cp)
1588 switch (cp->lstate) {
1589 case link_force_ret:
1590 if (netif_msg_link(cp))
1591 printk(KERN_INFO "%s: Autoneg failed again, keeping"
1592 " forced mode\n", cp->dev->name);
1593 cas_phy_write(cp, MII_BMCR, cp->link_fcntl);
1594 cp->timer_ticks = 5;
1595 cp->lstate = link_force_ok;
1596 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1600 val = cas_phy_read(cp, MII_BMCR);
1602 /* Try forced modes. we try things in the following order:
1603 * 1000 full -> 100 full/half -> 10 half
1605 val &= ~(BMCR_ANRESTART | BMCR_ANENABLE);
1606 val |= BMCR_FULLDPLX;
1607 val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
1608 CAS_BMCR_SPEED1000 : BMCR_SPEED100;
1609 cas_phy_write(cp, MII_BMCR, val);
1610 cp->timer_ticks = 5;
1611 cp->lstate = link_force_try;
1612 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1615 case link_force_try:
1616 /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1617 val = cas_phy_read(cp, MII_BMCR);
1618 cp->timer_ticks = 5;
1619 if (val & CAS_BMCR_SPEED1000) { /* gigabit */
1620 val &= ~CAS_BMCR_SPEED1000;
1621 val |= (BMCR_SPEED100 | BMCR_FULLDPLX);
1622 cas_phy_write(cp, MII_BMCR, val);
1626 if (val & BMCR_SPEED100) {
1627 if (val & BMCR_FULLDPLX) /* fd failed */
1628 val &= ~BMCR_FULLDPLX;
1629 else { /* 100Mbps failed */
1630 val &= ~BMCR_SPEED100;
1632 cas_phy_write(cp, MII_BMCR, val);
1642 /* must be invoked with cp->lock held */
1643 static int cas_mii_link_check(struct cas *cp, const u16 bmsr)
1647 if (bmsr & BMSR_LSTATUS) {
1648 /* Ok, here we got a link. If we had it due to a forced
1649 * fallback, and we were configured for autoneg, we
1650 * retry a short autoneg pass. If you know your hub is
1651 * broken, use ethtool ;)
1653 if ((cp->lstate == link_force_try) &&
1654 (cp->link_cntl & BMCR_ANENABLE)) {
1655 cp->lstate = link_force_ret;
1656 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1657 cas_mif_poll(cp, 0);
1658 cp->link_fcntl = cas_phy_read(cp, MII_BMCR);
1659 cp->timer_ticks = 5;
1660 if (cp->opened && netif_msg_link(cp))
1661 printk(KERN_INFO "%s: Got link after fallback, retrying"
1662 " autoneg once...\n", cp->dev->name);
1663 cas_phy_write(cp, MII_BMCR,
1664 cp->link_fcntl | BMCR_ANENABLE |
1666 cas_mif_poll(cp, 1);
1668 } else if (cp->lstate != link_up) {
1669 cp->lstate = link_up;
1670 cp->link_transition = LINK_TRANSITION_LINK_UP;
1673 cas_set_link_modes(cp);
1674 netif_carrier_on(cp->dev);
1680 /* link not up. if the link was previously up, we restart the
1684 if (cp->lstate == link_up) {
1685 cp->lstate = link_down;
1686 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
1688 netif_carrier_off(cp->dev);
1689 if (cp->opened && netif_msg_link(cp))
1690 printk(KERN_INFO "%s: Link down\n",
1694 } else if (++cp->timer_ticks > 10)
1695 cas_mdio_link_not_up(cp);
1700 static int cas_mif_interrupt(struct net_device *dev, struct cas *cp,
1703 u32 stat = readl(cp->regs + REG_MIF_STATUS);
1706 /* check for a link change */
1707 if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0)
1710 bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat);
1711 return cas_mii_link_check(cp, bmsr);
1714 static int cas_pci_interrupt(struct net_device *dev, struct cas *cp,
1717 u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS);
1722 printk(KERN_ERR "%s: PCI error [%04x:%04x] ", dev->name, stat,
1723 readl(cp->regs + REG_BIM_DIAG));
1725 /* cassini+ has this reserved */
1726 if ((stat & PCI_ERR_BADACK) &&
1727 ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0))
1728 printk("<No ACK64# during ABS64 cycle> ");
1730 if (stat & PCI_ERR_DTRTO)
1731 printk("<Delayed transaction timeout> ");
1732 if (stat & PCI_ERR_OTHER)
1734 if (stat & PCI_ERR_BIM_DMA_WRITE)
1735 printk("<BIM DMA 0 write req> ");
1736 if (stat & PCI_ERR_BIM_DMA_READ)
1737 printk("<BIM DMA 0 read req> ");
1740 if (stat & PCI_ERR_OTHER) {
1743 /* Interrogate PCI config space for the
1746 pci_read_config_word(cp->pdev, PCI_STATUS, &cfg);
1747 printk(KERN_ERR "%s: Read PCI cfg space status [%04x]\n",
1749 if (cfg & PCI_STATUS_PARITY)
1750 printk(KERN_ERR "%s: PCI parity error detected.\n",
1752 if (cfg & PCI_STATUS_SIG_TARGET_ABORT)
1753 printk(KERN_ERR "%s: PCI target abort.\n",
1755 if (cfg & PCI_STATUS_REC_TARGET_ABORT)
1756 printk(KERN_ERR "%s: PCI master acks target abort.\n",
1758 if (cfg & PCI_STATUS_REC_MASTER_ABORT)
1759 printk(KERN_ERR "%s: PCI master abort.\n", dev->name);
1760 if (cfg & PCI_STATUS_SIG_SYSTEM_ERROR)
1761 printk(KERN_ERR "%s: PCI system error SERR#.\n",
1763 if (cfg & PCI_STATUS_DETECTED_PARITY)
1764 printk(KERN_ERR "%s: PCI parity error.\n",
1767 /* Write the error bits back to clear them. */
1768 cfg &= (PCI_STATUS_PARITY |
1769 PCI_STATUS_SIG_TARGET_ABORT |
1770 PCI_STATUS_REC_TARGET_ABORT |
1771 PCI_STATUS_REC_MASTER_ABORT |
1772 PCI_STATUS_SIG_SYSTEM_ERROR |
1773 PCI_STATUS_DETECTED_PARITY);
1774 pci_write_config_word(cp->pdev, PCI_STATUS, cfg);
1777 /* For all PCI errors, we should reset the chip. */
1781 /* All non-normal interrupt conditions get serviced here.
1782 * Returns non-zero if we should just exit the interrupt
1783 * handler right now (ie. if we reset the card which invalidates
1784 * all of the other original irq status bits).
1786 static int cas_abnormal_irq(struct net_device *dev, struct cas *cp,
1789 if (status & INTR_RX_TAG_ERROR) {
1790 /* corrupt RX tag framing */
1791 if (netif_msg_rx_err(cp))
1792 printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
1794 spin_lock(&cp->stat_lock[0]);
1795 cp->net_stats[0].rx_errors++;
1796 spin_unlock(&cp->stat_lock[0]);
1800 if (status & INTR_RX_LEN_MISMATCH) {
1801 /* length mismatch. */
1802 if (netif_msg_rx_err(cp))
1803 printk(KERN_DEBUG "%s: length mismatch for rx frame\n",
1805 spin_lock(&cp->stat_lock[0]);
1806 cp->net_stats[0].rx_errors++;
1807 spin_unlock(&cp->stat_lock[0]);
1811 if (status & INTR_PCS_STATUS) {
1812 if (cas_pcs_interrupt(dev, cp, status))
1816 if (status & INTR_TX_MAC_STATUS) {
1817 if (cas_txmac_interrupt(dev, cp, status))
1821 if (status & INTR_RX_MAC_STATUS) {
1822 if (cas_rxmac_interrupt(dev, cp, status))
1826 if (status & INTR_MAC_CTRL_STATUS) {
1827 if (cas_mac_interrupt(dev, cp, status))
1831 if (status & INTR_MIF_STATUS) {
1832 if (cas_mif_interrupt(dev, cp, status))
1836 if (status & INTR_PCI_ERROR_STATUS) {
1837 if (cas_pci_interrupt(dev, cp, status))
1844 atomic_inc(&cp->reset_task_pending);
1845 atomic_inc(&cp->reset_task_pending_all);
1846 printk(KERN_ERR "%s:reset called in cas_abnormal_irq [0x%x]\n",
1848 schedule_work(&cp->reset_task);
1850 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
1851 printk(KERN_ERR "reset called in cas_abnormal_irq\n");
1852 schedule_work(&cp->reset_task);
1857 /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1858 * determining whether to do a netif_stop/wakeup
1860 #define CAS_TABORT(x) (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1861 #define CAS_ROUND_PAGE(x) (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1862 static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr,
1865 unsigned long off = addr + len;
1867 if (CAS_TABORT(cp) == 1)
1869 if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN)
1871 return TX_TARGET_ABORT_LEN;
1874 static inline void cas_tx_ringN(struct cas *cp, int ring, int limit)
1876 struct cas_tx_desc *txds;
1877 struct sk_buff **skbs;
1878 struct net_device *dev = cp->dev;
1881 spin_lock(&cp->tx_lock[ring]);
1882 txds = cp->init_txds[ring];
1883 skbs = cp->tx_skbs[ring];
1884 entry = cp->tx_old[ring];
1886 count = TX_BUFF_COUNT(ring, entry, limit);
1887 while (entry != limit) {
1888 struct sk_buff *skb = skbs[entry];
1894 /* this should never occur */
1895 entry = TX_DESC_NEXT(ring, entry);
1899 /* however, we might get only a partial skb release. */
1900 count -= skb_shinfo(skb)->nr_frags +
1901 + cp->tx_tiny_use[ring][entry].nbufs + 1;
1905 if (netif_msg_tx_done(cp))
1906 printk(KERN_DEBUG "%s: tx[%d] done, slot %d\n",
1907 cp->dev->name, ring, entry);
1910 cp->tx_tiny_use[ring][entry].nbufs = 0;
1912 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1913 struct cas_tx_desc *txd = txds + entry;
1915 daddr = le64_to_cpu(txd->buffer);
1916 dlen = CAS_VAL(TX_DESC_BUFLEN,
1917 le64_to_cpu(txd->control));
1918 pci_unmap_page(cp->pdev, daddr, dlen,
1920 entry = TX_DESC_NEXT(ring, entry);
1922 /* tiny buffer may follow */
1923 if (cp->tx_tiny_use[ring][entry].used) {
1924 cp->tx_tiny_use[ring][entry].used = 0;
1925 entry = TX_DESC_NEXT(ring, entry);
1929 spin_lock(&cp->stat_lock[ring]);
1930 cp->net_stats[ring].tx_packets++;
1931 cp->net_stats[ring].tx_bytes += skb->len;
1932 spin_unlock(&cp->stat_lock[ring]);
1933 dev_kfree_skb_irq(skb);
1935 cp->tx_old[ring] = entry;
1937 /* this is wrong for multiple tx rings. the net device needs
1938 * multiple queues for this to do the right thing. we wait
1939 * for 2*packets to be available when using tiny buffers
1941 if (netif_queue_stopped(dev) &&
1942 (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)))
1943 netif_wake_queue(dev);
1944 spin_unlock(&cp->tx_lock[ring]);
1947 static void cas_tx(struct net_device *dev, struct cas *cp,
1951 #ifdef USE_TX_COMPWB
1952 u64 compwb = le64_to_cpu(cp->init_block->tx_compwb);
1954 if (netif_msg_intr(cp))
1955 printk(KERN_DEBUG "%s: tx interrupt, status: 0x%x, %llx\n",
1956 cp->dev->name, status, (unsigned long long)compwb);
1957 /* process all the rings */
1958 for (ring = 0; ring < N_TX_RINGS; ring++) {
1959 #ifdef USE_TX_COMPWB
1960 /* use the completion writeback registers */
1961 limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) |
1962 CAS_VAL(TX_COMPWB_LSB, compwb);
1963 compwb = TX_COMPWB_NEXT(compwb);
1965 limit = readl(cp->regs + REG_TX_COMPN(ring));
1967 if (cp->tx_old[ring] != limit)
1968 cas_tx_ringN(cp, ring, limit);
1973 static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc,
1974 int entry, const u64 *words,
1975 struct sk_buff **skbref)
1977 int dlen, hlen, len, i, alloclen;
1978 int off, swivel = RX_SWIVEL_OFF_VAL;
1979 struct cas_page *page;
1980 struct sk_buff *skb;
1981 void *addr, *crcaddr;
1984 hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]);
1985 dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]);
1988 if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT))
1991 alloclen = max(hlen, RX_COPY_MIN);
1993 skb = dev_alloc_skb(alloclen + swivel + cp->crc_size);
1998 skb_reserve(skb, swivel);
2001 addr = crcaddr = NULL;
2002 if (hlen) { /* always copy header pages */
2003 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2004 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2005 off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 +
2009 if (!dlen) /* attach FCS */
2011 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2012 PCI_DMA_FROMDEVICE);
2013 addr = cas_page_map(page->buffer);
2014 memcpy(p, addr + off, i);
2015 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2016 PCI_DMA_FROMDEVICE);
2017 cas_page_unmap(addr);
2018 RX_USED_ADD(page, 0x100);
2024 if (alloclen < (hlen + dlen)) {
2025 skb_frag_t *frag = skb_shinfo(skb)->frags;
2027 /* normal or jumbo packets. we use frags */
2028 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2029 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2030 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2032 hlen = min(cp->page_size - off, dlen);
2034 if (netif_msg_rx_err(cp)) {
2035 printk(KERN_DEBUG "%s: rx page overflow: "
2036 "%d\n", cp->dev->name, hlen);
2038 dev_kfree_skb_irq(skb);
2042 if (i == dlen) /* attach FCS */
2044 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2045 PCI_DMA_FROMDEVICE);
2047 /* make sure we always copy a header */
2049 if (p == (char *) skb->data) { /* not split */
2050 addr = cas_page_map(page->buffer);
2051 memcpy(p, addr + off, RX_COPY_MIN);
2052 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2053 PCI_DMA_FROMDEVICE);
2054 cas_page_unmap(addr);
2056 swivel = RX_COPY_MIN;
2057 RX_USED_ADD(page, cp->mtu_stride);
2059 RX_USED_ADD(page, hlen);
2061 skb_put(skb, alloclen);
2063 skb_shinfo(skb)->nr_frags++;
2064 skb->data_len += hlen - swivel;
2065 skb->len += hlen - swivel;
2067 get_page(page->buffer);
2068 cas_buffer_inc(page);
2069 frag->page = page->buffer;
2070 frag->page_offset = off;
2071 frag->size = hlen - swivel;
2073 /* any more data? */
2074 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2078 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2079 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2080 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2081 hlen + cp->crc_size,
2082 PCI_DMA_FROMDEVICE);
2083 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2084 hlen + cp->crc_size,
2085 PCI_DMA_FROMDEVICE);
2087 skb_shinfo(skb)->nr_frags++;
2088 skb->data_len += hlen;
2092 get_page(page->buffer);
2093 cas_buffer_inc(page);
2094 frag->page = page->buffer;
2095 frag->page_offset = 0;
2097 RX_USED_ADD(page, hlen + cp->crc_size);
2101 addr = cas_page_map(page->buffer);
2102 crcaddr = addr + off + hlen;
2106 /* copying packet */
2110 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2111 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2112 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2113 hlen = min(cp->page_size - off, dlen);
2115 if (netif_msg_rx_err(cp)) {
2116 printk(KERN_DEBUG "%s: rx page overflow: "
2117 "%d\n", cp->dev->name, hlen);
2119 dev_kfree_skb_irq(skb);
2123 if (i == dlen) /* attach FCS */
2125 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2126 PCI_DMA_FROMDEVICE);
2127 addr = cas_page_map(page->buffer);
2128 memcpy(p, addr + off, i);
2129 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2130 PCI_DMA_FROMDEVICE);
2131 cas_page_unmap(addr);
2132 if (p == (char *) skb->data) /* not split */
2133 RX_USED_ADD(page, cp->mtu_stride);
2135 RX_USED_ADD(page, i);
2137 /* any more data? */
2138 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2140 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2141 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2142 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2143 dlen + cp->crc_size,
2144 PCI_DMA_FROMDEVICE);
2145 addr = cas_page_map(page->buffer);
2146 memcpy(p, addr, dlen + cp->crc_size);
2147 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2148 dlen + cp->crc_size,
2149 PCI_DMA_FROMDEVICE);
2150 cas_page_unmap(addr);
2151 RX_USED_ADD(page, dlen + cp->crc_size);
2156 crcaddr = skb->data + alloclen;
2158 skb_put(skb, alloclen);
2161 i = CAS_VAL(RX_COMP4_TCP_CSUM, words[3]);
2163 /* checksum includes FCS. strip it out. */
2164 i = csum_fold(csum_partial(crcaddr, cp->crc_size, i));
2166 cas_page_unmap(addr);
2168 skb->csum = ntohs(i ^ 0xffff);
2169 skb->ip_summed = CHECKSUM_COMPLETE;
2170 skb->protocol = eth_type_trans(skb, cp->dev);
2175 /* we can handle up to 64 rx flows at a time. we do the same thing
2176 * as nonreassm except that we batch up the buffers.
2177 * NOTE: we currently just treat each flow as a bunch of packets that
2178 * we pass up. a better way would be to coalesce the packets
2179 * into a jumbo packet. to do that, we need to do the following:
2180 * 1) the first packet will have a clean split between header and
2182 * 2) each time the next flow packet comes in, extend the
2183 * data length and merge the checksums.
2184 * 3) on flow release, fix up the header.
2185 * 4) make sure the higher layer doesn't care.
2186 * because packets get coalesced, we shouldn't run into fragment count
2189 static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words,
2190 struct sk_buff *skb)
2192 int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1);
2193 struct sk_buff_head *flow = &cp->rx_flows[flowid];
2195 /* this is protected at a higher layer, so no need to
2196 * do any additional locking here. stick the buffer
2199 __skb_insert(skb, flow->prev, (struct sk_buff *) flow, flow);
2200 if (words[0] & RX_COMP1_RELEASE_FLOW) {
2201 while ((skb = __skb_dequeue(flow))) {
2202 cas_skb_release(skb);
2207 /* put rx descriptor back on ring. if a buffer is in use by a higher
2208 * layer, this will need to put in a replacement.
2210 static void cas_post_page(struct cas *cp, const int ring, const int index)
2215 entry = cp->rx_old[ring];
2217 new = cas_page_swap(cp, ring, index);
2218 cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr);
2219 cp->init_rxds[ring][entry].index =
2220 cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) |
2221 CAS_BASE(RX_INDEX_RING, ring));
2223 entry = RX_DESC_ENTRY(ring, entry + 1);
2224 cp->rx_old[ring] = entry;
2230 writel(entry, cp->regs + REG_RX_KICK);
2231 else if ((N_RX_DESC_RINGS > 1) &&
2232 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2233 writel(entry, cp->regs + REG_PLUS_RX_KICK1);
2237 /* only when things are bad */
2238 static int cas_post_rxds_ringN(struct cas *cp, int ring, int num)
2240 unsigned int entry, last, count, released;
2242 cas_page_t **page = cp->rx_pages[ring];
2244 entry = cp->rx_old[ring];
2246 if (netif_msg_intr(cp))
2247 printk(KERN_DEBUG "%s: rxd[%d] interrupt, done: %d\n",
2248 cp->dev->name, ring, entry);
2251 count = entry & 0x3;
2252 last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4);
2254 while (entry != last) {
2255 /* make a new buffer if it's still in use */
2256 if (cas_buffer_count(page[entry]) > 1) {
2257 cas_page_t *new = cas_page_dequeue(cp);
2259 /* let the timer know that we need to
2262 cp->cas_flags |= CAS_FLAG_RXD_POST(ring);
2263 if (!timer_pending(&cp->link_timer))
2264 mod_timer(&cp->link_timer, jiffies +
2265 CAS_LINK_FAST_TIMEOUT);
2266 cp->rx_old[ring] = entry;
2267 cp->rx_last[ring] = num ? num - released : 0;
2270 spin_lock(&cp->rx_inuse_lock);
2271 list_add(&page[entry]->list, &cp->rx_inuse_list);
2272 spin_unlock(&cp->rx_inuse_lock);
2273 cp->init_rxds[ring][entry].buffer =
2274 cpu_to_le64(new->dma_addr);
2284 entry = RX_DESC_ENTRY(ring, entry + 1);
2286 cp->rx_old[ring] = entry;
2292 writel(cluster, cp->regs + REG_RX_KICK);
2293 else if ((N_RX_DESC_RINGS > 1) &&
2294 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2295 writel(cluster, cp->regs + REG_PLUS_RX_KICK1);
2300 /* process a completion ring. packets are set up in three basic ways:
2301 * small packets: should be copied header + data in single buffer.
2302 * large packets: header and data in a single buffer.
2303 * split packets: header in a separate buffer from data.
2304 * data may be in multiple pages. data may be > 256
2305 * bytes but in a single page.
2307 * NOTE: RX page posting is done in this routine as well. while there's
2308 * the capability of using multiple RX completion rings, it isn't
2309 * really worthwhile due to the fact that the page posting will
2310 * force serialization on the single descriptor ring.
2312 static int cas_rx_ringN(struct cas *cp, int ring, int budget)
2314 struct cas_rx_comp *rxcs = cp->init_rxcs[ring];
2318 if (netif_msg_intr(cp))
2319 printk(KERN_DEBUG "%s: rx[%d] interrupt, done: %d/%d\n",
2320 cp->dev->name, ring,
2321 readl(cp->regs + REG_RX_COMP_HEAD),
2324 entry = cp->rx_new[ring];
2327 struct cas_rx_comp *rxc = rxcs + entry;
2328 struct sk_buff *skb;
2333 words[0] = le64_to_cpu(rxc->word1);
2334 words[1] = le64_to_cpu(rxc->word2);
2335 words[2] = le64_to_cpu(rxc->word3);
2336 words[3] = le64_to_cpu(rxc->word4);
2338 /* don't touch if still owned by hw */
2339 type = CAS_VAL(RX_COMP1_TYPE, words[0]);
2343 /* hw hasn't cleared the zero bit yet */
2344 if (words[3] & RX_COMP4_ZERO) {
2348 /* get info on the packet */
2349 if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) {
2350 spin_lock(&cp->stat_lock[ring]);
2351 cp->net_stats[ring].rx_errors++;
2352 if (words[3] & RX_COMP4_LEN_MISMATCH)
2353 cp->net_stats[ring].rx_length_errors++;
2354 if (words[3] & RX_COMP4_BAD)
2355 cp->net_stats[ring].rx_crc_errors++;
2356 spin_unlock(&cp->stat_lock[ring]);
2358 /* We'll just return it to Cassini. */
2360 spin_lock(&cp->stat_lock[ring]);
2361 ++cp->net_stats[ring].rx_dropped;
2362 spin_unlock(&cp->stat_lock[ring]);
2366 len = cas_rx_process_pkt(cp, rxc, entry, words, &skb);
2372 /* see if it's a flow re-assembly or not. the driver
2373 * itself handles release back up.
2375 if (RX_DONT_BATCH || (type == 0x2)) {
2376 /* non-reassm: these always get released */
2377 cas_skb_release(skb);
2379 cas_rx_flow_pkt(cp, words, skb);
2382 spin_lock(&cp->stat_lock[ring]);
2383 cp->net_stats[ring].rx_packets++;
2384 cp->net_stats[ring].rx_bytes += len;
2385 spin_unlock(&cp->stat_lock[ring]);
2386 cp->dev->last_rx = jiffies;
2391 /* should it be released? */
2392 if (words[0] & RX_COMP1_RELEASE_HDR) {
2393 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2394 dring = CAS_VAL(RX_INDEX_RING, i);
2395 i = CAS_VAL(RX_INDEX_NUM, i);
2396 cas_post_page(cp, dring, i);
2399 if (words[0] & RX_COMP1_RELEASE_DATA) {
2400 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2401 dring = CAS_VAL(RX_INDEX_RING, i);
2402 i = CAS_VAL(RX_INDEX_NUM, i);
2403 cas_post_page(cp, dring, i);
2406 if (words[0] & RX_COMP1_RELEASE_NEXT) {
2407 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2408 dring = CAS_VAL(RX_INDEX_RING, i);
2409 i = CAS_VAL(RX_INDEX_NUM, i);
2410 cas_post_page(cp, dring, i);
2413 /* skip to the next entry */
2414 entry = RX_COMP_ENTRY(ring, entry + 1 +
2415 CAS_VAL(RX_COMP1_SKIP, words[0]));
2417 if (budget && (npackets >= budget))
2421 cp->rx_new[ring] = entry;
2424 printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n",
2430 /* put completion entries back on the ring */
2431 static void cas_post_rxcs_ringN(struct net_device *dev,
2432 struct cas *cp, int ring)
2434 struct cas_rx_comp *rxc = cp->init_rxcs[ring];
2437 last = cp->rx_cur[ring];
2438 entry = cp->rx_new[ring];
2439 if (netif_msg_intr(cp))
2440 printk(KERN_DEBUG "%s: rxc[%d] interrupt, done: %d/%d\n",
2441 dev->name, ring, readl(cp->regs + REG_RX_COMP_HEAD),
2444 /* zero and re-mark descriptors */
2445 while (last != entry) {
2446 cas_rxc_init(rxc + last);
2447 last = RX_COMP_ENTRY(ring, last + 1);
2449 cp->rx_cur[ring] = last;
2452 writel(last, cp->regs + REG_RX_COMP_TAIL);
2453 else if (cp->cas_flags & CAS_FLAG_REG_PLUS)
2454 writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring));
2459 /* cassini can use all four PCI interrupts for the completion ring.
2460 * rings 3 and 4 are identical
2462 #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
2463 static inline void cas_handle_irqN(struct net_device *dev,
2464 struct cas *cp, const u32 status,
2467 if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT))
2468 cas_post_rxcs_ringN(dev, cp, ring);
2471 static irqreturn_t cas_interruptN(int irq, void *dev_id)
2473 struct net_device *dev = dev_id;
2474 struct cas *cp = netdev_priv(dev);
2475 unsigned long flags;
2477 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring));
2479 /* check for shared irq */
2483 ring = (irq == cp->pci_irq_INTC) ? 2 : 3;
2484 spin_lock_irqsave(&cp->lock, flags);
2485 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2488 netif_rx_schedule(dev, &cp->napi);
2490 cas_rx_ringN(cp, ring, 0);
2492 status &= ~INTR_RX_DONE_ALT;
2496 cas_handle_irqN(dev, cp, status, ring);
2497 spin_unlock_irqrestore(&cp->lock, flags);
2503 /* everything but rx packets */
2504 static inline void cas_handle_irq1(struct cas *cp, const u32 status)
2506 if (status & INTR_RX_BUF_UNAVAIL_1) {
2507 /* Frame arrived, no free RX buffers available.
2508 * NOTE: we can get this on a link transition. */
2509 cas_post_rxds_ringN(cp, 1, 0);
2510 spin_lock(&cp->stat_lock[1]);
2511 cp->net_stats[1].rx_dropped++;
2512 spin_unlock(&cp->stat_lock[1]);
2515 if (status & INTR_RX_BUF_AE_1)
2516 cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) -
2517 RX_AE_FREEN_VAL(1));
2519 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2520 cas_post_rxcs_ringN(cp, 1);
2523 /* ring 2 handles a few more events than 3 and 4 */
2524 static irqreturn_t cas_interrupt1(int irq, void *dev_id)
2526 struct net_device *dev = dev_id;
2527 struct cas *cp = netdev_priv(dev);
2528 unsigned long flags;
2529 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2531 /* check for shared interrupt */
2535 spin_lock_irqsave(&cp->lock, flags);
2536 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2539 netif_rx_schedule(dev, &cp->napi);
2541 cas_rx_ringN(cp, 1, 0);
2543 status &= ~INTR_RX_DONE_ALT;
2546 cas_handle_irq1(cp, status);
2547 spin_unlock_irqrestore(&cp->lock, flags);
2552 static inline void cas_handle_irq(struct net_device *dev,
2553 struct cas *cp, const u32 status)
2555 /* housekeeping interrupts */
2556 if (status & INTR_ERROR_MASK)
2557 cas_abnormal_irq(dev, cp, status);
2559 if (status & INTR_RX_BUF_UNAVAIL) {
2560 /* Frame arrived, no free RX buffers available.
2561 * NOTE: we can get this on a link transition.
2563 cas_post_rxds_ringN(cp, 0, 0);
2564 spin_lock(&cp->stat_lock[0]);
2565 cp->net_stats[0].rx_dropped++;
2566 spin_unlock(&cp->stat_lock[0]);
2567 } else if (status & INTR_RX_BUF_AE) {
2568 cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) -
2569 RX_AE_FREEN_VAL(0));
2572 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2573 cas_post_rxcs_ringN(dev, cp, 0);
2576 static irqreturn_t cas_interrupt(int irq, void *dev_id)
2578 struct net_device *dev = dev_id;
2579 struct cas *cp = netdev_priv(dev);
2580 unsigned long flags;
2581 u32 status = readl(cp->regs + REG_INTR_STATUS);
2586 spin_lock_irqsave(&cp->lock, flags);
2587 if (status & (INTR_TX_ALL | INTR_TX_INTME)) {
2588 cas_tx(dev, cp, status);
2589 status &= ~(INTR_TX_ALL | INTR_TX_INTME);
2592 if (status & INTR_RX_DONE) {
2595 netif_rx_schedule(dev, &cp->napi);
2597 cas_rx_ringN(cp, 0, 0);
2599 status &= ~INTR_RX_DONE;
2603 cas_handle_irq(dev, cp, status);
2604 spin_unlock_irqrestore(&cp->lock, flags);
2610 static int cas_poll(struct napi_struct *napi, int budget)
2612 struct cas *cp = container_of(napi, struct cas, napi);
2613 struct net_device *dev = cp->dev;
2614 int i, enable_intr, todo, credits;
2615 u32 status = readl(cp->regs + REG_INTR_STATUS);
2616 unsigned long flags;
2618 spin_lock_irqsave(&cp->lock, flags);
2619 cas_tx(dev, cp, status);
2620 spin_unlock_irqrestore(&cp->lock, flags);
2622 /* NAPI rx packets. we spread the credits across all of the
2625 * to make sure we're fair with the work we loop through each
2626 * ring N_RX_COMP_RING times with a request of
2627 * budget / N_RX_COMP_RINGS
2631 for (i = 0; i < N_RX_COMP_RINGS; i++) {
2633 for (j = 0; j < N_RX_COMP_RINGS; j++) {
2634 credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS);
2635 if (credits >= budget) {
2643 /* final rx completion */
2644 spin_lock_irqsave(&cp->lock, flags);
2646 cas_handle_irq(dev, cp, status);
2649 if (N_RX_COMP_RINGS > 1) {
2650 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2652 cas_handle_irq1(dev, cp, status);
2657 if (N_RX_COMP_RINGS > 2) {
2658 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2));
2660 cas_handle_irqN(dev, cp, status, 2);
2665 if (N_RX_COMP_RINGS > 3) {
2666 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3));
2668 cas_handle_irqN(dev, cp, status, 3);
2671 spin_unlock_irqrestore(&cp->lock, flags);
2673 netif_rx_complete(dev, napi);
2674 cas_unmask_intr(cp);
2680 #ifdef CONFIG_NET_POLL_CONTROLLER
2681 static void cas_netpoll(struct net_device *dev)
2683 struct cas *cp = netdev_priv(dev);
2685 cas_disable_irq(cp, 0);
2686 cas_interrupt(cp->pdev->irq, dev);
2687 cas_enable_irq(cp, 0);
2690 if (N_RX_COMP_RINGS > 1) {
2691 /* cas_interrupt1(); */
2695 if (N_RX_COMP_RINGS > 2) {
2696 /* cas_interruptN(); */
2700 if (N_RX_COMP_RINGS > 3) {
2701 /* cas_interruptN(); */
2707 static void cas_tx_timeout(struct net_device *dev)
2709 struct cas *cp = netdev_priv(dev);
2711 printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
2712 if (!cp->hw_running) {
2713 printk("%s: hrm.. hw not running!\n", dev->name);
2717 printk(KERN_ERR "%s: MIF_STATE[%08x]\n",
2718 dev->name, readl(cp->regs + REG_MIF_STATE_MACHINE));
2720 printk(KERN_ERR "%s: MAC_STATE[%08x]\n",
2721 dev->name, readl(cp->regs + REG_MAC_STATE_MACHINE));
2723 printk(KERN_ERR "%s: TX_STATE[%08x:%08x:%08x] "
2724 "FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2726 readl(cp->regs + REG_TX_CFG),
2727 readl(cp->regs + REG_MAC_TX_STATUS),
2728 readl(cp->regs + REG_MAC_TX_CFG),
2729 readl(cp->regs + REG_TX_FIFO_PKT_CNT),
2730 readl(cp->regs + REG_TX_FIFO_WRITE_PTR),
2731 readl(cp->regs + REG_TX_FIFO_READ_PTR),
2732 readl(cp->regs + REG_TX_SM_1),
2733 readl(cp->regs + REG_TX_SM_2));
2735 printk(KERN_ERR "%s: RX_STATE[%08x:%08x:%08x]\n",
2737 readl(cp->regs + REG_RX_CFG),
2738 readl(cp->regs + REG_MAC_RX_STATUS),
2739 readl(cp->regs + REG_MAC_RX_CFG));
2741 printk(KERN_ERR "%s: HP_STATE[%08x:%08x:%08x:%08x]\n",
2743 readl(cp->regs + REG_HP_STATE_MACHINE),
2744 readl(cp->regs + REG_HP_STATUS0),
2745 readl(cp->regs + REG_HP_STATUS1),
2746 readl(cp->regs + REG_HP_STATUS2));
2749 atomic_inc(&cp->reset_task_pending);
2750 atomic_inc(&cp->reset_task_pending_all);
2751 schedule_work(&cp->reset_task);
2753 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
2754 schedule_work(&cp->reset_task);
2758 static inline int cas_intme(int ring, int entry)
2760 /* Algorithm: IRQ every 1/2 of descriptors. */
2761 if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1)))
2767 static void cas_write_txd(struct cas *cp, int ring, int entry,
2768 dma_addr_t mapping, int len, u64 ctrl, int last)
2770 struct cas_tx_desc *txd = cp->init_txds[ring] + entry;
2772 ctrl |= CAS_BASE(TX_DESC_BUFLEN, len);
2773 if (cas_intme(ring, entry))
2774 ctrl |= TX_DESC_INTME;
2776 ctrl |= TX_DESC_EOF;
2777 txd->control = cpu_to_le64(ctrl);
2778 txd->buffer = cpu_to_le64(mapping);
2781 static inline void *tx_tiny_buf(struct cas *cp, const int ring,
2784 return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry;
2787 static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring,
2788 const int entry, const int tentry)
2790 cp->tx_tiny_use[ring][tentry].nbufs++;
2791 cp->tx_tiny_use[ring][entry].used = 1;
2792 return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry;
2795 static inline int cas_xmit_tx_ringN(struct cas *cp, int ring,
2796 struct sk_buff *skb)
2798 struct net_device *dev = cp->dev;
2799 int entry, nr_frags, frag, tabort, tentry;
2801 unsigned long flags;
2805 spin_lock_irqsave(&cp->tx_lock[ring], flags);
2807 /* This is a hard error, log it. */
2808 if (TX_BUFFS_AVAIL(cp, ring) <=
2809 CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) {
2810 netif_stop_queue(dev);
2811 spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2812 printk(KERN_ERR PFX "%s: BUG! Tx Ring full when "
2813 "queue awake!\n", dev->name);
2818 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2819 const u64 csum_start_off = skb_transport_offset(skb);
2820 const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
2822 ctrl = TX_DESC_CSUM_EN |
2823 CAS_BASE(TX_DESC_CSUM_START, csum_start_off) |
2824 CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off);
2827 entry = cp->tx_new[ring];
2828 cp->tx_skbs[ring][entry] = skb;
2830 nr_frags = skb_shinfo(skb)->nr_frags;
2831 len = skb_headlen(skb);
2832 mapping = pci_map_page(cp->pdev, virt_to_page(skb->data),
2833 offset_in_page(skb->data), len,
2837 tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len);
2838 if (unlikely(tabort)) {
2839 /* NOTE: len is always > tabort */
2840 cas_write_txd(cp, ring, entry, mapping, len - tabort,
2841 ctrl | TX_DESC_SOF, 0);
2842 entry = TX_DESC_NEXT(ring, entry);
2844 skb_copy_from_linear_data_offset(skb, len - tabort,
2845 tx_tiny_buf(cp, ring, entry), tabort);
2846 mapping = tx_tiny_map(cp, ring, entry, tentry);
2847 cas_write_txd(cp, ring, entry, mapping, tabort, ctrl,
2850 cas_write_txd(cp, ring, entry, mapping, len, ctrl |
2851 TX_DESC_SOF, (nr_frags == 0));
2853 entry = TX_DESC_NEXT(ring, entry);
2855 for (frag = 0; frag < nr_frags; frag++) {
2856 skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];
2859 mapping = pci_map_page(cp->pdev, fragp->page,
2860 fragp->page_offset, len,
2863 tabort = cas_calc_tabort(cp, fragp->page_offset, len);
2864 if (unlikely(tabort)) {
2867 /* NOTE: len is always > tabort */
2868 cas_write_txd(cp, ring, entry, mapping, len - tabort,
2870 entry = TX_DESC_NEXT(ring, entry);
2872 addr = cas_page_map(fragp->page);
2873 memcpy(tx_tiny_buf(cp, ring, entry),
2874 addr + fragp->page_offset + len - tabort,
2876 cas_page_unmap(addr);
2877 mapping = tx_tiny_map(cp, ring, entry, tentry);
2881 cas_write_txd(cp, ring, entry, mapping, len, ctrl,
2882 (frag + 1 == nr_frags));
2883 entry = TX_DESC_NEXT(ring, entry);
2886 cp->tx_new[ring] = entry;
2887 if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))
2888 netif_stop_queue(dev);
2890 if (netif_msg_tx_queued(cp))
2891 printk(KERN_DEBUG "%s: tx[%d] queued, slot %d, skblen %d, "
2893 dev->name, ring, entry, skb->len,
2894 TX_BUFFS_AVAIL(cp, ring));
2895 writel(entry, cp->regs + REG_TX_KICKN(ring));
2896 spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2900 static int cas_start_xmit(struct sk_buff *skb, struct net_device *dev)
2902 struct cas *cp = netdev_priv(dev);
2904 /* this is only used as a load-balancing hint, so it doesn't
2905 * need to be SMP safe
2909 if (skb_padto(skb, cp->min_frame_size))
2912 /* XXX: we need some higher-level QoS hooks to steer packets to
2913 * individual queues.
2915 if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb))
2917 dev->trans_start = jiffies;
2921 static void cas_init_tx_dma(struct cas *cp)
2923 u64 desc_dma = cp->block_dvma;
2928 /* set up tx completion writeback registers. must be 8-byte aligned */
2929 #ifdef USE_TX_COMPWB
2930 off = offsetof(struct cas_init_block, tx_compwb);
2931 writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI);
2932 writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW);
2935 /* enable completion writebacks, enable paced mode,
2936 * disable read pipe, and disable pre-interrupt compwbs
2938 val = TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 |
2939 TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 |
2940 TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE |
2941 TX_CFG_INTR_COMPWB_DIS;
2943 /* write out tx ring info and tx desc bases */
2944 for (i = 0; i < MAX_TX_RINGS; i++) {
2945 off = (unsigned long) cp->init_txds[i] -
2946 (unsigned long) cp->init_block;
2948 val |= CAS_TX_RINGN_BASE(i);
2949 writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i));
2950 writel((desc_dma + off) & 0xffffffff, cp->regs +
2952 /* don't zero out the kick register here as the system
2956 writel(val, cp->regs + REG_TX_CFG);
2958 /* program max burst sizes. these numbers should be different
2962 writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2963 writel(0x1600, cp->regs + REG_TX_MAXBURST_1);
2964 writel(0x2400, cp->regs + REG_TX_MAXBURST_2);
2965 writel(0x4800, cp->regs + REG_TX_MAXBURST_3);
2967 writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2968 writel(0x800, cp->regs + REG_TX_MAXBURST_1);
2969 writel(0x800, cp->regs + REG_TX_MAXBURST_2);
2970 writel(0x800, cp->regs + REG_TX_MAXBURST_3);
2974 /* Must be invoked under cp->lock. */
2975 static inline void cas_init_dma(struct cas *cp)
2977 cas_init_tx_dma(cp);
2978 cas_init_rx_dma(cp);
2981 /* Must be invoked under cp->lock. */
2982 static u32 cas_setup_multicast(struct cas *cp)
2987 if (cp->dev->flags & IFF_PROMISC) {
2988 rxcfg |= MAC_RX_CFG_PROMISC_EN;
2990 } else if (cp->dev->flags & IFF_ALLMULTI) {
2991 for (i=0; i < 16; i++)
2992 writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i));
2993 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2998 struct dev_mc_list *dmi = cp->dev->mc_list;
3001 /* use the alternate mac address registers for the
3002 * first 15 multicast addresses
3004 for (i = 1; i <= CAS_MC_EXACT_MATCH_SIZE; i++) {
3006 writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 0));
3007 writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 1));
3008 writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 2));
3011 writel((dmi->dmi_addr[4] << 8) | dmi->dmi_addr[5],
3012 cp->regs + REG_MAC_ADDRN(i*3 + 0));
3013 writel((dmi->dmi_addr[2] << 8) | dmi->dmi_addr[3],
3014 cp->regs + REG_MAC_ADDRN(i*3 + 1));
3015 writel((dmi->dmi_addr[0] << 8) | dmi->dmi_addr[1],
3016 cp->regs + REG_MAC_ADDRN(i*3 + 2));
3020 /* use hw hash table for the next series of
3021 * multicast addresses
3023 memset(hash_table, 0, sizeof(hash_table));
3025 crc = ether_crc_le(ETH_ALEN, dmi->dmi_addr);
3027 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
3030 for (i=0; i < 16; i++)
3031 writel(hash_table[i], cp->regs +
3032 REG_MAC_HASH_TABLEN(i));
3033 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
3039 /* must be invoked under cp->stat_lock[N_TX_RINGS] */
3040 static void cas_clear_mac_err(struct cas *cp)
3042 writel(0, cp->regs + REG_MAC_COLL_NORMAL);
3043 writel(0, cp->regs + REG_MAC_COLL_FIRST);
3044 writel(0, cp->regs + REG_MAC_COLL_EXCESS);
3045 writel(0, cp->regs + REG_MAC_COLL_LATE);
3046 writel(0, cp->regs + REG_MAC_TIMER_DEFER);
3047 writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK);
3048 writel(0, cp->regs + REG_MAC_RECV_FRAME);
3049 writel(0, cp->regs + REG_MAC_LEN_ERR);
3050 writel(0, cp->regs + REG_MAC_ALIGN_ERR);
3051 writel(0, cp->regs + REG_MAC_FCS_ERR);
3052 writel(0, cp->regs + REG_MAC_RX_CODE_ERR);
3056 static void cas_mac_reset(struct cas *cp)
3060 /* do both TX and RX reset */
3061 writel(0x1, cp->regs + REG_MAC_TX_RESET);
3062 writel(0x1, cp->regs + REG_MAC_RX_RESET);
3067 if (readl(cp->regs + REG_MAC_TX_RESET) == 0)
3075 if (readl(cp->regs + REG_MAC_RX_RESET) == 0)
3080 if (readl(cp->regs + REG_MAC_TX_RESET) |
3081 readl(cp->regs + REG_MAC_RX_RESET))
3082 printk(KERN_ERR "%s: mac tx[%d]/rx[%d] reset failed [%08x]\n",
3083 cp->dev->name, readl(cp->regs + REG_MAC_TX_RESET),
3084 readl(cp->regs + REG_MAC_RX_RESET),
3085 readl(cp->regs + REG_MAC_STATE_MACHINE));
3089 /* Must be invoked under cp->lock. */
3090 static void cas_init_mac(struct cas *cp)
3092 unsigned char *e = &cp->dev->dev_addr[0];
3094 #ifdef CONFIG_CASSINI_MULTICAST_REG_WRITE
3099 /* setup core arbitration weight register */
3100 writel(CAWR_RR_DIS, cp->regs + REG_CAWR);
3102 /* XXX Use pci_dma_burst_advice() */
3103 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3104 /* set the infinite burst register for chips that don't have
3107 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0)
3108 writel(INF_BURST_EN, cp->regs + REG_INF_BURST);
3111 writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE);
3113 writel(0x00, cp->regs + REG_MAC_IPG0);
3114 writel(0x08, cp->regs + REG_MAC_IPG1);
3115 writel(0x04, cp->regs + REG_MAC_IPG2);
3117 /* change later for 802.3z */
3118 writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3120 /* min frame + FCS */
3121 writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN);
3123 /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3124 * specify the maximum frame size to prevent RX tag errors on
3127 writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) |
3128 CAS_BASE(MAC_FRAMESIZE_MAX_FRAME,
3129 (CAS_MAX_MTU + ETH_HLEN + 4 + 4)),
3130 cp->regs + REG_MAC_FRAMESIZE_MAX);
3132 /* NOTE: crc_size is used as a surrogate for half-duplex.
3133 * workaround saturn half-duplex issue by increasing preamble
3136 if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size)
3137 writel(0x41, cp->regs + REG_MAC_PA_SIZE);
3139 writel(0x07, cp->regs + REG_MAC_PA_SIZE);
3140 writel(0x04, cp->regs + REG_MAC_JAM_SIZE);
3141 writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT);
3142 writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE);
3144 writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED);
3146 writel(0, cp->regs + REG_MAC_ADDR_FILTER0);
3147 writel(0, cp->regs + REG_MAC_ADDR_FILTER1);
3148 writel(0, cp->regs + REG_MAC_ADDR_FILTER2);
3149 writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK);
3150 writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK);
3152 /* setup mac address in perfect filter array */
3153 for (i = 0; i < 45; i++)
3154 writel(0x0, cp->regs + REG_MAC_ADDRN(i));
3156 writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0));
3157 writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1));
3158 writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2));
3160 writel(0x0001, cp->regs + REG_MAC_ADDRN(42));
3161 writel(0xc200, cp->regs + REG_MAC_ADDRN(43));
3162 writel(0x0180, cp->regs + REG_MAC_ADDRN(44));
3164 #ifndef CONFIG_CASSINI_MULTICAST_REG_WRITE
3165 cp->mac_rx_cfg = cas_setup_multicast(cp);
3167 /* WTZ: Do what Adrian did in cas_set_multicast. Doing
3168 * a writel does not seem to be necessary because Cassini
3169 * seems to preserve the configuration when we do the reset.
3170 * If the chip is in trouble, though, it is not clear if we
3171 * can really count on this behavior. cas_set_multicast uses
3172 * spin_lock_irqsave, but we are called only in cas_init_hw and
3173 * cas_init_hw is protected by cas_lock_all, which calls
3174 * spin_lock_irq (so it doesn't need to save the flags, and
3175 * we should be OK for the writel, as that is the only
3178 cp->mac_rx_cfg = rxcfg = cas_setup_multicast(cp);
3179 writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
3181 spin_lock(&cp->stat_lock[N_TX_RINGS]);
3182 cas_clear_mac_err(cp);
3183 spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3185 /* Setup MAC interrupts. We want to get all of the interesting
3186 * counter expiration events, but we do not want to hear about
3187 * normal rx/tx as the DMA engine tells us that.
3189 writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK);
3190 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
3192 /* Don't enable even the PAUSE interrupts for now, we
3193 * make no use of those events other than to record them.
3195 writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK);
3198 /* Must be invoked under cp->lock. */
3199 static void cas_init_pause_thresholds(struct cas *cp)
3201 /* Calculate pause thresholds. Setting the OFF threshold to the
3202 * full RX fifo size effectively disables PAUSE generation
3204 if (cp->rx_fifo_size <= (2 * 1024)) {
3205 cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size;
3207 int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63;
3208 if (max_frame * 3 > cp->rx_fifo_size) {
3209 cp->rx_pause_off = 7104;
3210 cp->rx_pause_on = 960;
3212 int off = (cp->rx_fifo_size - (max_frame * 2));
3213 int on = off - max_frame;
3214 cp->rx_pause_off = off;
3215 cp->rx_pause_on = on;
3220 static int cas_vpd_match(const void __iomem *p, const char *str)
3222 int len = strlen(str) + 1;
3225 for (i = 0; i < len; i++) {
3226 if (readb(p + i) != str[i])
3233 /* get the mac address by reading the vpd information in the rom.
3234 * also get the phy type and determine if there's an entropy generator.
3235 * NOTE: this is a bit convoluted for the following reasons:
3236 * 1) vpd info has order-dependent mac addresses for multinic cards
3237 * 2) the only way to determine the nic order is to use the slot
3239 * 3) fiber cards don't have bridges, so their slot numbers don't
3241 * 4) we don't actually know we have a fiber card until after
3242 * the mac addresses are parsed.
3244 static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr,
3247 void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START;
3248 void __iomem *base, *kstart;
3251 #define VPD_FOUND_MAC 0x01
3252 #define VPD_FOUND_PHY 0x02
3254 int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */
3257 /* give us access to the PROM */
3258 writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD,
3259 cp->regs + REG_BIM_LOCAL_DEV_EN);
3261 /* check for an expansion rom */
3262 if (readb(p) != 0x55 || readb(p + 1) != 0xaa)
3263 goto use_random_mac_addr;
3265 /* search for beginning of vpd */
3267 for (i = 2; i < EXPANSION_ROM_SIZE; i++) {
3268 /* check for PCIR */
3269 if ((readb(p + i + 0) == 0x50) &&
3270 (readb(p + i + 1) == 0x43) &&
3271 (readb(p + i + 2) == 0x49) &&
3272 (readb(p + i + 3) == 0x52)) {
3273 base = p + (readb(p + i + 8) |
3274 (readb(p + i + 9) << 8));