1 /* bnx2.c: Broadcom NX2 network driver.
3 * Copyright (c) 2004, 2005, 2006 Broadcom Corporation
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
9 * Written by: Michael Chan (mchan@broadcom.com)
15 #define DRV_MODULE_NAME "bnx2"
16 #define PFX DRV_MODULE_NAME ": "
17 #define DRV_MODULE_VERSION "1.4.31"
18 #define DRV_MODULE_RELDATE "January 19, 2006"
20 #define RUN_AT(x) (jiffies + (x))
22 /* Time in jiffies before concluding the transmitter is hung. */
23 #define TX_TIMEOUT (5*HZ)
25 static char version[] __devinitdata =
26 "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
28 MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
29 MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708 Driver");
30 MODULE_LICENSE("GPL");
31 MODULE_VERSION(DRV_MODULE_VERSION);
33 static int disable_msi = 0;
35 module_param(disable_msi, int, 0);
36 MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
48 /* indexed by board_t, above */
51 } board_info[] __devinitdata = {
52 { "Broadcom NetXtreme II BCM5706 1000Base-T" },
53 { "HP NC370T Multifunction Gigabit Server Adapter" },
54 { "HP NC370i Multifunction Gigabit Server Adapter" },
55 { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
56 { "HP NC370F Multifunction Gigabit Server Adapter" },
57 { "Broadcom NetXtreme II BCM5708 1000Base-T" },
58 { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
61 static struct pci_device_id bnx2_pci_tbl[] = {
62 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
63 PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
64 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
65 PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
66 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
67 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
68 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
69 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
70 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
71 PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
72 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
73 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
74 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
75 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
79 static struct flash_spec flash_table[] =
82 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
83 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
84 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
86 /* Expansion entry 0001 */
87 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
88 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
89 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
91 /* Saifun SA25F010 (non-buffered flash) */
92 /* strap, cfg1, & write1 need updates */
93 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
94 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
95 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
96 "Non-buffered flash (128kB)"},
97 /* Saifun SA25F020 (non-buffered flash) */
98 /* strap, cfg1, & write1 need updates */
99 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
100 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
101 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
102 "Non-buffered flash (256kB)"},
103 /* Expansion entry 0100 */
104 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
105 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
106 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
108 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
109 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
110 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
111 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
112 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
113 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
114 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
115 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
116 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
117 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
118 /* Saifun SA25F005 (non-buffered flash) */
119 /* strap, cfg1, & write1 need updates */
120 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
121 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
122 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
123 "Non-buffered flash (64kB)"},
125 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
126 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
127 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
129 /* Expansion entry 1001 */
130 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
131 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
132 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
134 /* Expansion entry 1010 */
135 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
136 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
137 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
139 /* ATMEL AT45DB011B (buffered flash) */
140 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
141 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
142 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
143 "Buffered flash (128kB)"},
144 /* Expansion entry 1100 */
145 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
146 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
147 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
149 /* Expansion entry 1101 */
150 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
151 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
152 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
154 /* Ateml Expansion entry 1110 */
155 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
156 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
157 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
158 "Entry 1110 (Atmel)"},
159 /* ATMEL AT45DB021B (buffered flash) */
160 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
161 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
162 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
163 "Buffered flash (256kB)"},
166 MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
168 static inline u32 bnx2_tx_avail(struct bnx2 *bp)
170 u32 diff = TX_RING_IDX(bp->tx_prod) - TX_RING_IDX(bp->tx_cons);
172 if (diff > MAX_TX_DESC_CNT)
173 diff = (diff & MAX_TX_DESC_CNT) - 1;
174 return (bp->tx_ring_size - diff);
178 bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
180 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
181 return (REG_RD(bp, BNX2_PCICFG_REG_WINDOW));
185 bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
187 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
188 REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
192 bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
195 REG_WR(bp, BNX2_CTX_DATA_ADR, offset);
196 REG_WR(bp, BNX2_CTX_DATA, val);
200 bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
205 if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
206 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
207 val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
209 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
210 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
215 val1 = (bp->phy_addr << 21) | (reg << 16) |
216 BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
217 BNX2_EMAC_MDIO_COMM_START_BUSY;
218 REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
220 for (i = 0; i < 50; i++) {
223 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
224 if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
227 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
228 val1 &= BNX2_EMAC_MDIO_COMM_DATA;
234 if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
243 if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
244 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
245 val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
247 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
248 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
257 bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
262 if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
263 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
264 val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
266 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
267 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
272 val1 = (bp->phy_addr << 21) | (reg << 16) | val |
273 BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
274 BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
275 REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
277 for (i = 0; i < 50; i++) {
280 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
281 if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
287 if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
292 if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
293 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
294 val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
296 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
297 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
306 bnx2_disable_int(struct bnx2 *bp)
308 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
309 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
310 REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
314 bnx2_enable_int(struct bnx2 *bp)
318 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
319 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
320 BNX2_PCICFG_INT_ACK_CMD_MASK_INT | bp->last_status_idx);
322 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
323 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID | bp->last_status_idx);
325 val = REG_RD(bp, BNX2_HC_COMMAND);
326 REG_WR(bp, BNX2_HC_COMMAND, val | BNX2_HC_COMMAND_COAL_NOW);
330 bnx2_disable_int_sync(struct bnx2 *bp)
332 atomic_inc(&bp->intr_sem);
333 bnx2_disable_int(bp);
334 synchronize_irq(bp->pdev->irq);
338 bnx2_netif_stop(struct bnx2 *bp)
340 bnx2_disable_int_sync(bp);
341 if (netif_running(bp->dev)) {
342 netif_poll_disable(bp->dev);
343 netif_tx_disable(bp->dev);
344 bp->dev->trans_start = jiffies; /* prevent tx timeout */
349 bnx2_netif_start(struct bnx2 *bp)
351 if (atomic_dec_and_test(&bp->intr_sem)) {
352 if (netif_running(bp->dev)) {
353 netif_wake_queue(bp->dev);
354 netif_poll_enable(bp->dev);
361 bnx2_free_mem(struct bnx2 *bp)
364 pci_free_consistent(bp->pdev, sizeof(struct statistics_block),
365 bp->stats_blk, bp->stats_blk_mapping);
366 bp->stats_blk = NULL;
368 if (bp->status_blk) {
369 pci_free_consistent(bp->pdev, sizeof(struct status_block),
370 bp->status_blk, bp->status_blk_mapping);
371 bp->status_blk = NULL;
373 if (bp->tx_desc_ring) {
374 pci_free_consistent(bp->pdev,
375 sizeof(struct tx_bd) * TX_DESC_CNT,
376 bp->tx_desc_ring, bp->tx_desc_mapping);
377 bp->tx_desc_ring = NULL;
379 kfree(bp->tx_buf_ring);
380 bp->tx_buf_ring = NULL;
381 if (bp->rx_desc_ring) {
382 pci_free_consistent(bp->pdev,
383 sizeof(struct rx_bd) * RX_DESC_CNT,
384 bp->rx_desc_ring, bp->rx_desc_mapping);
385 bp->rx_desc_ring = NULL;
387 kfree(bp->rx_buf_ring);
388 bp->rx_buf_ring = NULL;
392 bnx2_alloc_mem(struct bnx2 *bp)
394 bp->tx_buf_ring = kmalloc(sizeof(struct sw_bd) * TX_DESC_CNT,
396 if (bp->tx_buf_ring == NULL)
399 memset(bp->tx_buf_ring, 0, sizeof(struct sw_bd) * TX_DESC_CNT);
400 bp->tx_desc_ring = pci_alloc_consistent(bp->pdev,
401 sizeof(struct tx_bd) *
403 &bp->tx_desc_mapping);
404 if (bp->tx_desc_ring == NULL)
407 bp->rx_buf_ring = kmalloc(sizeof(struct sw_bd) * RX_DESC_CNT,
409 if (bp->rx_buf_ring == NULL)
412 memset(bp->rx_buf_ring, 0, sizeof(struct sw_bd) * RX_DESC_CNT);
413 bp->rx_desc_ring = pci_alloc_consistent(bp->pdev,
414 sizeof(struct rx_bd) *
416 &bp->rx_desc_mapping);
417 if (bp->rx_desc_ring == NULL)
420 bp->status_blk = pci_alloc_consistent(bp->pdev,
421 sizeof(struct status_block),
422 &bp->status_blk_mapping);
423 if (bp->status_blk == NULL)
426 memset(bp->status_blk, 0, sizeof(struct status_block));
428 bp->stats_blk = pci_alloc_consistent(bp->pdev,
429 sizeof(struct statistics_block),
430 &bp->stats_blk_mapping);
431 if (bp->stats_blk == NULL)
434 memset(bp->stats_blk, 0, sizeof(struct statistics_block));
444 bnx2_report_fw_link(struct bnx2 *bp)
446 u32 fw_link_status = 0;
451 switch (bp->line_speed) {
453 if (bp->duplex == DUPLEX_HALF)
454 fw_link_status = BNX2_LINK_STATUS_10HALF;
456 fw_link_status = BNX2_LINK_STATUS_10FULL;
459 if (bp->duplex == DUPLEX_HALF)
460 fw_link_status = BNX2_LINK_STATUS_100HALF;
462 fw_link_status = BNX2_LINK_STATUS_100FULL;
465 if (bp->duplex == DUPLEX_HALF)
466 fw_link_status = BNX2_LINK_STATUS_1000HALF;
468 fw_link_status = BNX2_LINK_STATUS_1000FULL;
471 if (bp->duplex == DUPLEX_HALF)
472 fw_link_status = BNX2_LINK_STATUS_2500HALF;
474 fw_link_status = BNX2_LINK_STATUS_2500FULL;
478 fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
481 fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
483 bnx2_read_phy(bp, MII_BMSR, &bmsr);
484 bnx2_read_phy(bp, MII_BMSR, &bmsr);
486 if (!(bmsr & BMSR_ANEGCOMPLETE) ||
487 bp->phy_flags & PHY_PARALLEL_DETECT_FLAG)
488 fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
490 fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
494 fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
496 REG_WR_IND(bp, bp->shmem_base + BNX2_LINK_STATUS, fw_link_status);
500 bnx2_report_link(struct bnx2 *bp)
503 netif_carrier_on(bp->dev);
504 printk(KERN_INFO PFX "%s NIC Link is Up, ", bp->dev->name);
506 printk("%d Mbps ", bp->line_speed);
508 if (bp->duplex == DUPLEX_FULL)
509 printk("full duplex");
511 printk("half duplex");
514 if (bp->flow_ctrl & FLOW_CTRL_RX) {
515 printk(", receive ");
516 if (bp->flow_ctrl & FLOW_CTRL_TX)
517 printk("& transmit ");
520 printk(", transmit ");
522 printk("flow control ON");
527 netif_carrier_off(bp->dev);
528 printk(KERN_ERR PFX "%s NIC Link is Down\n", bp->dev->name);
531 bnx2_report_fw_link(bp);
535 bnx2_resolve_flow_ctrl(struct bnx2 *bp)
537 u32 local_adv, remote_adv;
540 if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
541 (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
543 if (bp->duplex == DUPLEX_FULL) {
544 bp->flow_ctrl = bp->req_flow_ctrl;
549 if (bp->duplex != DUPLEX_FULL) {
553 if ((bp->phy_flags & PHY_SERDES_FLAG) &&
554 (CHIP_NUM(bp) == CHIP_NUM_5708)) {
557 bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
558 if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
559 bp->flow_ctrl |= FLOW_CTRL_TX;
560 if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
561 bp->flow_ctrl |= FLOW_CTRL_RX;
565 bnx2_read_phy(bp, MII_ADVERTISE, &local_adv);
566 bnx2_read_phy(bp, MII_LPA, &remote_adv);
568 if (bp->phy_flags & PHY_SERDES_FLAG) {
569 u32 new_local_adv = 0;
570 u32 new_remote_adv = 0;
572 if (local_adv & ADVERTISE_1000XPAUSE)
573 new_local_adv |= ADVERTISE_PAUSE_CAP;
574 if (local_adv & ADVERTISE_1000XPSE_ASYM)
575 new_local_adv |= ADVERTISE_PAUSE_ASYM;
576 if (remote_adv & ADVERTISE_1000XPAUSE)
577 new_remote_adv |= ADVERTISE_PAUSE_CAP;
578 if (remote_adv & ADVERTISE_1000XPSE_ASYM)
579 new_remote_adv |= ADVERTISE_PAUSE_ASYM;
581 local_adv = new_local_adv;
582 remote_adv = new_remote_adv;
585 /* See Table 28B-3 of 802.3ab-1999 spec. */
586 if (local_adv & ADVERTISE_PAUSE_CAP) {
587 if(local_adv & ADVERTISE_PAUSE_ASYM) {
588 if (remote_adv & ADVERTISE_PAUSE_CAP) {
589 bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
591 else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
592 bp->flow_ctrl = FLOW_CTRL_RX;
596 if (remote_adv & ADVERTISE_PAUSE_CAP) {
597 bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
601 else if (local_adv & ADVERTISE_PAUSE_ASYM) {
602 if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
603 (remote_adv & ADVERTISE_PAUSE_ASYM)) {
605 bp->flow_ctrl = FLOW_CTRL_TX;
611 bnx2_5708s_linkup(struct bnx2 *bp)
616 bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
617 switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
618 case BCM5708S_1000X_STAT1_SPEED_10:
619 bp->line_speed = SPEED_10;
621 case BCM5708S_1000X_STAT1_SPEED_100:
622 bp->line_speed = SPEED_100;
624 case BCM5708S_1000X_STAT1_SPEED_1G:
625 bp->line_speed = SPEED_1000;
627 case BCM5708S_1000X_STAT1_SPEED_2G5:
628 bp->line_speed = SPEED_2500;
631 if (val & BCM5708S_1000X_STAT1_FD)
632 bp->duplex = DUPLEX_FULL;
634 bp->duplex = DUPLEX_HALF;
640 bnx2_5706s_linkup(struct bnx2 *bp)
642 u32 bmcr, local_adv, remote_adv, common;
645 bp->line_speed = SPEED_1000;
647 bnx2_read_phy(bp, MII_BMCR, &bmcr);
648 if (bmcr & BMCR_FULLDPLX) {
649 bp->duplex = DUPLEX_FULL;
652 bp->duplex = DUPLEX_HALF;
655 if (!(bmcr & BMCR_ANENABLE)) {
659 bnx2_read_phy(bp, MII_ADVERTISE, &local_adv);
660 bnx2_read_phy(bp, MII_LPA, &remote_adv);
662 common = local_adv & remote_adv;
663 if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
665 if (common & ADVERTISE_1000XFULL) {
666 bp->duplex = DUPLEX_FULL;
669 bp->duplex = DUPLEX_HALF;
677 bnx2_copper_linkup(struct bnx2 *bp)
681 bnx2_read_phy(bp, MII_BMCR, &bmcr);
682 if (bmcr & BMCR_ANENABLE) {
683 u32 local_adv, remote_adv, common;
685 bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
686 bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
688 common = local_adv & (remote_adv >> 2);
689 if (common & ADVERTISE_1000FULL) {
690 bp->line_speed = SPEED_1000;
691 bp->duplex = DUPLEX_FULL;
693 else if (common & ADVERTISE_1000HALF) {
694 bp->line_speed = SPEED_1000;
695 bp->duplex = DUPLEX_HALF;
698 bnx2_read_phy(bp, MII_ADVERTISE, &local_adv);
699 bnx2_read_phy(bp, MII_LPA, &remote_adv);
701 common = local_adv & remote_adv;
702 if (common & ADVERTISE_100FULL) {
703 bp->line_speed = SPEED_100;
704 bp->duplex = DUPLEX_FULL;
706 else if (common & ADVERTISE_100HALF) {
707 bp->line_speed = SPEED_100;
708 bp->duplex = DUPLEX_HALF;
710 else if (common & ADVERTISE_10FULL) {
711 bp->line_speed = SPEED_10;
712 bp->duplex = DUPLEX_FULL;
714 else if (common & ADVERTISE_10HALF) {
715 bp->line_speed = SPEED_10;
716 bp->duplex = DUPLEX_HALF;
725 if (bmcr & BMCR_SPEED100) {
726 bp->line_speed = SPEED_100;
729 bp->line_speed = SPEED_10;
731 if (bmcr & BMCR_FULLDPLX) {
732 bp->duplex = DUPLEX_FULL;
735 bp->duplex = DUPLEX_HALF;
743 bnx2_set_mac_link(struct bnx2 *bp)
747 REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
748 if (bp->link_up && (bp->line_speed == SPEED_1000) &&
749 (bp->duplex == DUPLEX_HALF)) {
750 REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
753 /* Configure the EMAC mode register. */
754 val = REG_RD(bp, BNX2_EMAC_MODE);
756 val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
757 BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
761 switch (bp->line_speed) {
763 if (CHIP_NUM(bp) == CHIP_NUM_5708) {
764 val |= BNX2_EMAC_MODE_PORT_MII_10;
769 val |= BNX2_EMAC_MODE_PORT_MII;
772 val |= BNX2_EMAC_MODE_25G;
775 val |= BNX2_EMAC_MODE_PORT_GMII;
780 val |= BNX2_EMAC_MODE_PORT_GMII;
783 /* Set the MAC to operate in the appropriate duplex mode. */
784 if (bp->duplex == DUPLEX_HALF)
785 val |= BNX2_EMAC_MODE_HALF_DUPLEX;
786 REG_WR(bp, BNX2_EMAC_MODE, val);
788 /* Enable/disable rx PAUSE. */
789 bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
791 if (bp->flow_ctrl & FLOW_CTRL_RX)
792 bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
793 REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
795 /* Enable/disable tx PAUSE. */
796 val = REG_RD(bp, BNX2_EMAC_TX_MODE);
797 val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
799 if (bp->flow_ctrl & FLOW_CTRL_TX)
800 val |= BNX2_EMAC_TX_MODE_FLOW_EN;
801 REG_WR(bp, BNX2_EMAC_TX_MODE, val);
803 /* Acknowledge the interrupt. */
804 REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
810 bnx2_set_link(struct bnx2 *bp)
815 if (bp->loopback == MAC_LOOPBACK) {
820 link_up = bp->link_up;
822 bnx2_read_phy(bp, MII_BMSR, &bmsr);
823 bnx2_read_phy(bp, MII_BMSR, &bmsr);
825 if ((bp->phy_flags & PHY_SERDES_FLAG) &&
826 (CHIP_NUM(bp) == CHIP_NUM_5706)) {
829 val = REG_RD(bp, BNX2_EMAC_STATUS);
830 if (val & BNX2_EMAC_STATUS_LINK)
831 bmsr |= BMSR_LSTATUS;
833 bmsr &= ~BMSR_LSTATUS;
836 if (bmsr & BMSR_LSTATUS) {
839 if (bp->phy_flags & PHY_SERDES_FLAG) {
840 if (CHIP_NUM(bp) == CHIP_NUM_5706)
841 bnx2_5706s_linkup(bp);
842 else if (CHIP_NUM(bp) == CHIP_NUM_5708)
843 bnx2_5708s_linkup(bp);
846 bnx2_copper_linkup(bp);
848 bnx2_resolve_flow_ctrl(bp);
851 if ((bp->phy_flags & PHY_SERDES_FLAG) &&
852 (bp->autoneg & AUTONEG_SPEED)) {
856 bnx2_read_phy(bp, MII_BMCR, &bmcr);
857 if (!(bmcr & BMCR_ANENABLE)) {
858 bnx2_write_phy(bp, MII_BMCR, bmcr |
862 bp->phy_flags &= ~PHY_PARALLEL_DETECT_FLAG;
866 if (bp->link_up != link_up) {
867 bnx2_report_link(bp);
870 bnx2_set_mac_link(bp);
876 bnx2_reset_phy(struct bnx2 *bp)
881 bnx2_write_phy(bp, MII_BMCR, BMCR_RESET);
883 #define PHY_RESET_MAX_WAIT 100
884 for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
887 bnx2_read_phy(bp, MII_BMCR, ®);
888 if (!(reg & BMCR_RESET)) {
893 if (i == PHY_RESET_MAX_WAIT) {
900 bnx2_phy_get_pause_adv(struct bnx2 *bp)
904 if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
905 (FLOW_CTRL_RX | FLOW_CTRL_TX)) {
907 if (bp->phy_flags & PHY_SERDES_FLAG) {
908 adv = ADVERTISE_1000XPAUSE;
911 adv = ADVERTISE_PAUSE_CAP;
914 else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
915 if (bp->phy_flags & PHY_SERDES_FLAG) {
916 adv = ADVERTISE_1000XPSE_ASYM;
919 adv = ADVERTISE_PAUSE_ASYM;
922 else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
923 if (bp->phy_flags & PHY_SERDES_FLAG) {
924 adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
927 adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
934 bnx2_setup_serdes_phy(struct bnx2 *bp)
939 if (!(bp->autoneg & AUTONEG_SPEED)) {
941 int force_link_down = 0;
943 if (CHIP_NUM(bp) == CHIP_NUM_5708) {
944 bnx2_read_phy(bp, BCM5708S_UP1, &up1);
945 if (up1 & BCM5708S_UP1_2G5) {
946 up1 &= ~BCM5708S_UP1_2G5;
947 bnx2_write_phy(bp, BCM5708S_UP1, up1);
952 bnx2_read_phy(bp, MII_ADVERTISE, &adv);
953 adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
955 bnx2_read_phy(bp, MII_BMCR, &bmcr);
956 new_bmcr = bmcr & ~BMCR_ANENABLE;
957 new_bmcr |= BMCR_SPEED1000;
958 if (bp->req_duplex == DUPLEX_FULL) {
959 adv |= ADVERTISE_1000XFULL;
960 new_bmcr |= BMCR_FULLDPLX;
963 adv |= ADVERTISE_1000XHALF;
964 new_bmcr &= ~BMCR_FULLDPLX;
966 if ((new_bmcr != bmcr) || (force_link_down)) {
967 /* Force a link down visible on the other side */
969 bnx2_write_phy(bp, MII_ADVERTISE, adv &
970 ~(ADVERTISE_1000XFULL |
971 ADVERTISE_1000XHALF));
972 bnx2_write_phy(bp, MII_BMCR, bmcr |
973 BMCR_ANRESTART | BMCR_ANENABLE);
976 netif_carrier_off(bp->dev);
977 bnx2_write_phy(bp, MII_BMCR, new_bmcr);
979 bnx2_write_phy(bp, MII_ADVERTISE, adv);
980 bnx2_write_phy(bp, MII_BMCR, new_bmcr);
985 if (bp->phy_flags & PHY_2_5G_CAPABLE_FLAG) {
986 bnx2_read_phy(bp, BCM5708S_UP1, &up1);
987 up1 |= BCM5708S_UP1_2G5;
988 bnx2_write_phy(bp, BCM5708S_UP1, up1);
991 if (bp->advertising & ADVERTISED_1000baseT_Full)
992 new_adv |= ADVERTISE_1000XFULL;
994 new_adv |= bnx2_phy_get_pause_adv(bp);
996 bnx2_read_phy(bp, MII_ADVERTISE, &adv);
997 bnx2_read_phy(bp, MII_BMCR, &bmcr);
999 bp->serdes_an_pending = 0;
1000 if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
1001 /* Force a link down visible on the other side */
1005 bnx2_write_phy(bp, MII_BMCR, BMCR_LOOPBACK);
1006 for (i = 0; i < 110; i++) {
1011 bnx2_write_phy(bp, MII_ADVERTISE, new_adv);
1012 bnx2_write_phy(bp, MII_BMCR, bmcr | BMCR_ANRESTART |
1014 if (CHIP_NUM(bp) == CHIP_NUM_5706) {
1015 /* Speed up link-up time when the link partner
1016 * does not autonegotiate which is very common
1017 * in blade servers. Some blade servers use
1018 * IPMI for kerboard input and it's important
1019 * to minimize link disruptions. Autoneg. involves
1020 * exchanging base pages plus 3 next pages and
1021 * normally completes in about 120 msec.
1023 bp->current_interval = SERDES_AN_TIMEOUT;
1024 bp->serdes_an_pending = 1;
1025 mod_timer(&bp->timer, jiffies + bp->current_interval);
1032 #define ETHTOOL_ALL_FIBRE_SPEED \
1033 (ADVERTISED_1000baseT_Full)
1035 #define ETHTOOL_ALL_COPPER_SPEED \
1036 (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1037 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1038 ADVERTISED_1000baseT_Full)
1040 #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
1041 ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
1043 #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
1046 bnx2_setup_copper_phy(struct bnx2 *bp)
1051 bnx2_read_phy(bp, MII_BMCR, &bmcr);
1053 if (bp->autoneg & AUTONEG_SPEED) {
1054 u32 adv_reg, adv1000_reg;
1055 u32 new_adv_reg = 0;
1056 u32 new_adv1000_reg = 0;
1058 bnx2_read_phy(bp, MII_ADVERTISE, &adv_reg);
1059 adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
1060 ADVERTISE_PAUSE_ASYM);
1062 bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
1063 adv1000_reg &= PHY_ALL_1000_SPEED;
1065 if (bp->advertising & ADVERTISED_10baseT_Half)
1066 new_adv_reg |= ADVERTISE_10HALF;
1067 if (bp->advertising & ADVERTISED_10baseT_Full)
1068 new_adv_reg |= ADVERTISE_10FULL;
1069 if (bp->advertising & ADVERTISED_100baseT_Half)
1070 new_adv_reg |= ADVERTISE_100HALF;
1071 if (bp->advertising & ADVERTISED_100baseT_Full)
1072 new_adv_reg |= ADVERTISE_100FULL;
1073 if (bp->advertising & ADVERTISED_1000baseT_Full)
1074 new_adv1000_reg |= ADVERTISE_1000FULL;
1076 new_adv_reg |= ADVERTISE_CSMA;
1078 new_adv_reg |= bnx2_phy_get_pause_adv(bp);
1080 if ((adv1000_reg != new_adv1000_reg) ||
1081 (adv_reg != new_adv_reg) ||
1082 ((bmcr & BMCR_ANENABLE) == 0)) {
1084 bnx2_write_phy(bp, MII_ADVERTISE, new_adv_reg);
1085 bnx2_write_phy(bp, MII_CTRL1000, new_adv1000_reg);
1086 bnx2_write_phy(bp, MII_BMCR, BMCR_ANRESTART |
1089 else if (bp->link_up) {
1090 /* Flow ctrl may have changed from auto to forced */
1091 /* or vice-versa. */
1093 bnx2_resolve_flow_ctrl(bp);
1094 bnx2_set_mac_link(bp);
1100 if (bp->req_line_speed == SPEED_100) {
1101 new_bmcr |= BMCR_SPEED100;
1103 if (bp->req_duplex == DUPLEX_FULL) {
1104 new_bmcr |= BMCR_FULLDPLX;
1106 if (new_bmcr != bmcr) {
1110 bnx2_read_phy(bp, MII_BMSR, &bmsr);
1111 bnx2_read_phy(bp, MII_BMSR, &bmsr);
1113 if (bmsr & BMSR_LSTATUS) {
1114 /* Force link down */
1115 bnx2_write_phy(bp, MII_BMCR, BMCR_LOOPBACK);
1118 bnx2_read_phy(bp, MII_BMSR, &bmsr);
1119 bnx2_read_phy(bp, MII_BMSR, &bmsr);
1121 } while ((bmsr & BMSR_LSTATUS) && (i < 620));
1124 bnx2_write_phy(bp, MII_BMCR, new_bmcr);
1126 /* Normally, the new speed is setup after the link has
1127 * gone down and up again. In some cases, link will not go
1128 * down so we need to set up the new speed here.
1130 if (bmsr & BMSR_LSTATUS) {
1131 bp->line_speed = bp->req_line_speed;
1132 bp->duplex = bp->req_duplex;
1133 bnx2_resolve_flow_ctrl(bp);
1134 bnx2_set_mac_link(bp);
1141 bnx2_setup_phy(struct bnx2 *bp)
1143 if (bp->loopback == MAC_LOOPBACK)
1146 if (bp->phy_flags & PHY_SERDES_FLAG) {
1147 return (bnx2_setup_serdes_phy(bp));
1150 return (bnx2_setup_copper_phy(bp));
1155 bnx2_init_5708s_phy(struct bnx2 *bp)
1159 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
1160 bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
1161 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
1163 bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
1164 val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
1165 bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
1167 bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
1168 val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
1169 bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
1171 if (bp->phy_flags & PHY_2_5G_CAPABLE_FLAG) {
1172 bnx2_read_phy(bp, BCM5708S_UP1, &val);
1173 val |= BCM5708S_UP1_2G5;
1174 bnx2_write_phy(bp, BCM5708S_UP1, val);
1177 if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
1178 (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
1179 (CHIP_ID(bp) == CHIP_ID_5708_B1)) {
1180 /* increase tx signal amplitude */
1181 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
1182 BCM5708S_BLK_ADDR_TX_MISC);
1183 bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
1184 val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
1185 bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
1186 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
1189 val = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_CONFIG) &
1190 BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
1195 is_backplane = REG_RD_IND(bp, bp->shmem_base +
1196 BNX2_SHARED_HW_CFG_CONFIG);
1197 if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
1198 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
1199 BCM5708S_BLK_ADDR_TX_MISC);
1200 bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
1201 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
1202 BCM5708S_BLK_ADDR_DIG);
1209 bnx2_init_5706s_phy(struct bnx2 *bp)
1211 bp->phy_flags &= ~PHY_PARALLEL_DETECT_FLAG;
1213 if (CHIP_NUM(bp) == CHIP_NUM_5706) {
1214 REG_WR(bp, BNX2_MISC_UNUSED0, 0x300);
1217 if (bp->dev->mtu > 1500) {
1220 /* Set extended packet length bit */
1221 bnx2_write_phy(bp, 0x18, 0x7);
1222 bnx2_read_phy(bp, 0x18, &val);
1223 bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
1225 bnx2_write_phy(bp, 0x1c, 0x6c00);
1226 bnx2_read_phy(bp, 0x1c, &val);
1227 bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
1232 bnx2_write_phy(bp, 0x18, 0x7);
1233 bnx2_read_phy(bp, 0x18, &val);
1234 bnx2_write_phy(bp, 0x18, val & ~0x4007);
1236 bnx2_write_phy(bp, 0x1c, 0x6c00);
1237 bnx2_read_phy(bp, 0x1c, &val);
1238 bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
1245 bnx2_init_copper_phy(struct bnx2 *bp)
1249 bp->phy_flags |= PHY_CRC_FIX_FLAG;
1251 if (bp->phy_flags & PHY_CRC_FIX_FLAG) {
1252 bnx2_write_phy(bp, 0x18, 0x0c00);
1253 bnx2_write_phy(bp, 0x17, 0x000a);
1254 bnx2_write_phy(bp, 0x15, 0x310b);
1255 bnx2_write_phy(bp, 0x17, 0x201f);
1256 bnx2_write_phy(bp, 0x15, 0x9506);
1257 bnx2_write_phy(bp, 0x17, 0x401f);
1258 bnx2_write_phy(bp, 0x15, 0x14e2);
1259 bnx2_write_phy(bp, 0x18, 0x0400);
1262 if (bp->dev->mtu > 1500) {
1263 /* Set extended packet length bit */
1264 bnx2_write_phy(bp, 0x18, 0x7);
1265 bnx2_read_phy(bp, 0x18, &val);
1266 bnx2_write_phy(bp, 0x18, val | 0x4000);
1268 bnx2_read_phy(bp, 0x10, &val);
1269 bnx2_write_phy(bp, 0x10, val | 0x1);
1272 bnx2_write_phy(bp, 0x18, 0x7);
1273 bnx2_read_phy(bp, 0x18, &val);
1274 bnx2_write_phy(bp, 0x18, val & ~0x4007);
1276 bnx2_read_phy(bp, 0x10, &val);
1277 bnx2_write_phy(bp, 0x10, val & ~0x1);
1280 /* ethernet@wirespeed */
1281 bnx2_write_phy(bp, 0x18, 0x7007);
1282 bnx2_read_phy(bp, 0x18, &val);
1283 bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
1289 bnx2_init_phy(struct bnx2 *bp)
1294 bp->phy_flags &= ~PHY_INT_MODE_MASK_FLAG;
1295 bp->phy_flags |= PHY_INT_MODE_LINK_READY_FLAG;
1297 REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
1301 bnx2_read_phy(bp, MII_PHYSID1, &val);
1302 bp->phy_id = val << 16;
1303 bnx2_read_phy(bp, MII_PHYSID2, &val);
1304 bp->phy_id |= val & 0xffff;
1306 if (bp->phy_flags & PHY_SERDES_FLAG) {
1307 if (CHIP_NUM(bp) == CHIP_NUM_5706)
1308 rc = bnx2_init_5706s_phy(bp);
1309 else if (CHIP_NUM(bp) == CHIP_NUM_5708)
1310 rc = bnx2_init_5708s_phy(bp);
1313 rc = bnx2_init_copper_phy(bp);
1322 bnx2_set_mac_loopback(struct bnx2 *bp)
1326 mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
1327 mac_mode &= ~BNX2_EMAC_MODE_PORT;
1328 mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
1329 REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
1334 static int bnx2_test_link(struct bnx2 *);
1337 bnx2_set_phy_loopback(struct bnx2 *bp)
1342 spin_lock_bh(&bp->phy_lock);
1343 rc = bnx2_write_phy(bp, MII_BMCR, BMCR_LOOPBACK | BMCR_FULLDPLX |
1345 spin_unlock_bh(&bp->phy_lock);
1349 for (i = 0; i < 10; i++) {
1350 if (bnx2_test_link(bp) == 0)
1355 mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
1356 mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
1357 BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
1358 BNX2_EMAC_MODE_25G);
1360 mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
1361 REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
1367 bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int silent)
1373 msg_data |= bp->fw_wr_seq;
1375 REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_MB, msg_data);
1377 /* wait for an acknowledgement. */
1378 for (i = 0; i < (FW_ACK_TIME_OUT_MS / 10); i++) {
1381 val = REG_RD_IND(bp, bp->shmem_base + BNX2_FW_MB);
1383 if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
1386 if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
1389 /* If we timed out, inform the firmware that this is the case. */
1390 if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
1392 printk(KERN_ERR PFX "fw sync timeout, reset code = "
1395 msg_data &= ~BNX2_DRV_MSG_CODE;
1396 msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
1398 REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_MB, msg_data);
1403 if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
1410 bnx2_init_context(struct bnx2 *bp)
1416 u32 vcid_addr, pcid_addr, offset;
1420 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
1423 vcid_addr = GET_PCID_ADDR(vcid);
1425 new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
1430 pcid_addr = GET_PCID_ADDR(new_vcid);
1433 vcid_addr = GET_CID_ADDR(vcid);
1434 pcid_addr = vcid_addr;
1437 REG_WR(bp, BNX2_CTX_VIRT_ADDR, 0x00);
1438 REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
1440 /* Zero out the context. */
1441 for (offset = 0; offset < PHY_CTX_SIZE; offset += 4) {
1442 CTX_WR(bp, 0x00, offset, 0);
1445 REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
1446 REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
1451 bnx2_alloc_bad_rbuf(struct bnx2 *bp)
1457 good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
1458 if (good_mbuf == NULL) {
1459 printk(KERN_ERR PFX "Failed to allocate memory in "
1460 "bnx2_alloc_bad_rbuf\n");
1464 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
1465 BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
1469 /* Allocate a bunch of mbufs and save the good ones in an array. */
1470 val = REG_RD_IND(bp, BNX2_RBUF_STATUS1);
1471 while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
1472 REG_WR_IND(bp, BNX2_RBUF_COMMAND, BNX2_RBUF_COMMAND_ALLOC_REQ);
1474 val = REG_RD_IND(bp, BNX2_RBUF_FW_BUF_ALLOC);
1476 val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
1478 /* The addresses with Bit 9 set are bad memory blocks. */
1479 if (!(val & (1 << 9))) {
1480 good_mbuf[good_mbuf_cnt] = (u16) val;
1484 val = REG_RD_IND(bp, BNX2_RBUF_STATUS1);
1487 /* Free the good ones back to the mbuf pool thus discarding
1488 * all the bad ones. */
1489 while (good_mbuf_cnt) {
1492 val = good_mbuf[good_mbuf_cnt];
1493 val = (val << 9) | val | 1;
1495 REG_WR_IND(bp, BNX2_RBUF_FW_BUF_FREE, val);
1502 bnx2_set_mac_addr(struct bnx2 *bp)
1505 u8 *mac_addr = bp->dev->dev_addr;
1507 val = (mac_addr[0] << 8) | mac_addr[1];
1509 REG_WR(bp, BNX2_EMAC_MAC_MATCH0, val);
1511 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
1512 (mac_addr[4] << 8) | mac_addr[5];
1514 REG_WR(bp, BNX2_EMAC_MAC_MATCH1, val);
1518 bnx2_alloc_rx_skb(struct bnx2 *bp, u16 index)
1520 struct sk_buff *skb;
1521 struct sw_bd *rx_buf = &bp->rx_buf_ring[index];
1523 struct rx_bd *rxbd = &bp->rx_desc_ring[index];
1524 unsigned long align;
1526 skb = dev_alloc_skb(bp->rx_buf_size);
1531 if (unlikely((align = (unsigned long) skb->data & 0x7))) {
1532 skb_reserve(skb, 8 - align);
1536 mapping = pci_map_single(bp->pdev, skb->data, bp->rx_buf_use_size,
1537 PCI_DMA_FROMDEVICE);
1540 pci_unmap_addr_set(rx_buf, mapping, mapping);
1542 rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
1543 rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
1545 bp->rx_prod_bseq += bp->rx_buf_use_size;
1551 bnx2_phy_int(struct bnx2 *bp)
1553 u32 new_link_state, old_link_state;
1555 new_link_state = bp->status_blk->status_attn_bits &
1556 STATUS_ATTN_BITS_LINK_STATE;
1557 old_link_state = bp->status_blk->status_attn_bits_ack &
1558 STATUS_ATTN_BITS_LINK_STATE;
1559 if (new_link_state != old_link_state) {
1560 if (new_link_state) {
1561 REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD,
1562 STATUS_ATTN_BITS_LINK_STATE);
1565 REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD,
1566 STATUS_ATTN_BITS_LINK_STATE);
1573 bnx2_tx_int(struct bnx2 *bp)
1575 struct status_block *sblk = bp->status_blk;
1576 u16 hw_cons, sw_cons, sw_ring_cons;
1579 hw_cons = bp->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
1580 if ((hw_cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT) {
1583 sw_cons = bp->tx_cons;
1585 while (sw_cons != hw_cons) {
1586 struct sw_bd *tx_buf;
1587 struct sk_buff *skb;
1590 sw_ring_cons = TX_RING_IDX(sw_cons);
1592 tx_buf = &bp->tx_buf_ring[sw_ring_cons];
1595 /* partial BD completions possible with TSO packets */
1596 if (skb_shinfo(skb)->tso_size) {
1597 u16 last_idx, last_ring_idx;
1599 last_idx = sw_cons +
1600 skb_shinfo(skb)->nr_frags + 1;
1601 last_ring_idx = sw_ring_cons +
1602 skb_shinfo(skb)->nr_frags + 1;
1603 if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) {
1606 if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
1611 pci_unmap_single(bp->pdev, pci_unmap_addr(tx_buf, mapping),
1612 skb_headlen(skb), PCI_DMA_TODEVICE);
1615 last = skb_shinfo(skb)->nr_frags;
1617 for (i = 0; i < last; i++) {
1618 sw_cons = NEXT_TX_BD(sw_cons);
1620 pci_unmap_page(bp->pdev,
1622 &bp->tx_buf_ring[TX_RING_IDX(sw_cons)],
1624 skb_shinfo(skb)->frags[i].size,
1628 sw_cons = NEXT_TX_BD(sw_cons);
1630 tx_free_bd += last + 1;
1632 dev_kfree_skb_irq(skb);
1634 hw_cons = bp->hw_tx_cons =
1635 sblk->status_tx_quick_consumer_index0;
1637 if ((hw_cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT) {
1642 bp->tx_cons = sw_cons;
1644 if (unlikely(netif_queue_stopped(bp->dev))) {
1645 spin_lock(&bp->tx_lock);
1646 if ((netif_queue_stopped(bp->dev)) &&
1647 (bnx2_tx_avail(bp) > MAX_SKB_FRAGS)) {
1649 netif_wake_queue(bp->dev);
1651 spin_unlock(&bp->tx_lock);
1656 bnx2_reuse_rx_skb(struct bnx2 *bp, struct sk_buff *skb,
1659 struct sw_bd *cons_rx_buf = &bp->rx_buf_ring[cons];
1660 struct sw_bd *prod_rx_buf = &bp->rx_buf_ring[prod];
1661 struct rx_bd *cons_bd = &bp->rx_desc_ring[cons];
1662 struct rx_bd *prod_bd = &bp->rx_desc_ring[prod];
1664 pci_dma_sync_single_for_device(bp->pdev,
1665 pci_unmap_addr(cons_rx_buf, mapping),
1666 bp->rx_offset + RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
1668 prod_rx_buf->skb = cons_rx_buf->skb;
1669 pci_unmap_addr_set(prod_rx_buf, mapping,
1670 pci_unmap_addr(cons_rx_buf, mapping));
1672 memcpy(prod_bd, cons_bd, 8);
1674 bp->rx_prod_bseq += bp->rx_buf_use_size;
1679 bnx2_rx_int(struct bnx2 *bp, int budget)
1681 struct status_block *sblk = bp->status_blk;
1682 u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
1683 struct l2_fhdr *rx_hdr;
1686 hw_cons = bp->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
1687 if ((hw_cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT) {
1690 sw_cons = bp->rx_cons;
1691 sw_prod = bp->rx_prod;
1693 /* Memory barrier necessary as speculative reads of the rx
1694 * buffer can be ahead of the index in the status block
1697 while (sw_cons != hw_cons) {
1700 struct sw_bd *rx_buf;
1701 struct sk_buff *skb;
1703 sw_ring_cons = RX_RING_IDX(sw_cons);
1704 sw_ring_prod = RX_RING_IDX(sw_prod);
1706 rx_buf = &bp->rx_buf_ring[sw_ring_cons];
1708 pci_dma_sync_single_for_cpu(bp->pdev,
1709 pci_unmap_addr(rx_buf, mapping),
1710 bp->rx_offset + RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
1712 rx_hdr = (struct l2_fhdr *) skb->data;
1713 len = rx_hdr->l2_fhdr_pkt_len - 4;
1715 if ((status = rx_hdr->l2_fhdr_status) &
1716 (L2_FHDR_ERRORS_BAD_CRC |
1717 L2_FHDR_ERRORS_PHY_DECODE |
1718 L2_FHDR_ERRORS_ALIGNMENT |
1719 L2_FHDR_ERRORS_TOO_SHORT |
1720 L2_FHDR_ERRORS_GIANT_FRAME)) {
1725 /* Since we don't have a jumbo ring, copy small packets
1728 if ((bp->dev->mtu > 1500) && (len <= RX_COPY_THRESH)) {
1729 struct sk_buff *new_skb;
1731 new_skb = dev_alloc_skb(len + 2);
1732 if (new_skb == NULL)
1736 memcpy(new_skb->data,
1737 skb->data + bp->rx_offset - 2,
1740 skb_reserve(new_skb, 2);
1741 skb_put(new_skb, len);
1742 new_skb->dev = bp->dev;
1744 bnx2_reuse_rx_skb(bp, skb,
1745 sw_ring_cons, sw_ring_prod);
1749 else if (bnx2_alloc_rx_skb(bp, sw_ring_prod) == 0) {
1750 pci_unmap_single(bp->pdev,
1751 pci_unmap_addr(rx_buf, mapping),
1752 bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
1754 skb_reserve(skb, bp->rx_offset);
1759 bnx2_reuse_rx_skb(bp, skb,
1760 sw_ring_cons, sw_ring_prod);
1764 skb->protocol = eth_type_trans(skb, bp->dev);
1766 if ((len > (bp->dev->mtu + ETH_HLEN)) &&
1767 (htons(skb->protocol) != 0x8100)) {
1769 dev_kfree_skb_irq(skb);
1774 skb->ip_summed = CHECKSUM_NONE;
1776 (status & (L2_FHDR_STATUS_TCP_SEGMENT |
1777 L2_FHDR_STATUS_UDP_DATAGRAM))) {
1779 if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
1780 L2_FHDR_ERRORS_UDP_XSUM)) == 0))
1781 skb->ip_summed = CHECKSUM_UNNECESSARY;
1785 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) && (bp->vlgrp != 0)) {
1786 vlan_hwaccel_receive_skb(skb, bp->vlgrp,
1787 rx_hdr->l2_fhdr_vlan_tag);
1791 netif_receive_skb(skb);
1793 bp->dev->last_rx = jiffies;
1799 sw_cons = NEXT_RX_BD(sw_cons);
1800 sw_prod = NEXT_RX_BD(sw_prod);
1802 if ((rx_pkt == budget))
1805 /* Refresh hw_cons to see if there is new work */
1806 if (sw_cons == hw_cons) {
1807 hw_cons = bp->hw_rx_cons =
1808 sblk->status_rx_quick_consumer_index0;
1809 if ((hw_cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT)
1814 bp->rx_cons = sw_cons;
1815 bp->rx_prod = sw_prod;
1817 REG_WR16(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BDIDX, sw_prod);
1819 REG_WR(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BSEQ, bp->rx_prod_bseq);
1827 /* MSI ISR - The only difference between this and the INTx ISR
1828 * is that the MSI interrupt is always serviced.
1831 bnx2_msi(int irq, void *dev_instance, struct pt_regs *regs)
1833 struct net_device *dev = dev_instance;
1834 struct bnx2 *bp = netdev_priv(dev);
1836 prefetch(bp->status_blk);
1837 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
1838 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
1839 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
1841 /* Return here if interrupt is disabled. */
1842 if (unlikely(atomic_read(&bp->intr_sem) != 0))
1845 netif_rx_schedule(dev);
1851 bnx2_interrupt(int irq, void *dev_instance, struct pt_regs *regs)
1853 struct net_device *dev = dev_instance;
1854 struct bnx2 *bp = netdev_priv(dev);
1856 /* When using INTx, it is possible for the interrupt to arrive
1857 * at the CPU before the status block posted prior to the
1858 * interrupt. Reading a register will flush the status block.
1859 * When using MSI, the MSI message will always complete after
1860 * the status block write.
1862 if ((bp->status_blk->status_idx == bp->last_status_idx) &&
1863 (REG_RD(bp, BNX2_PCICFG_MISC_STATUS) &
1864 BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
1867 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
1868 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
1869 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
1871 /* Return here if interrupt is shared and is disabled. */
1872 if (unlikely(atomic_read(&bp->intr_sem) != 0))
1875 netif_rx_schedule(dev);
1881 bnx2_has_work(struct bnx2 *bp)
1883 struct status_block *sblk = bp->status_blk;
1885 if ((sblk->status_rx_quick_consumer_index0 != bp->hw_rx_cons) ||
1886 (sblk->status_tx_quick_consumer_index0 != bp->hw_tx_cons))
1889 if (((sblk->status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) != 0) !=
1897 bnx2_poll(struct net_device *dev, int *budget)
1899 struct bnx2 *bp = netdev_priv(dev);
1901 if ((bp->status_blk->status_attn_bits &
1902 STATUS_ATTN_BITS_LINK_STATE) !=
1903 (bp->status_blk->status_attn_bits_ack &
1904 STATUS_ATTN_BITS_LINK_STATE)) {
1906 spin_lock(&bp->phy_lock);
1908 spin_unlock(&bp->phy_lock);
1911 if (bp->status_blk->status_tx_quick_consumer_index0 != bp->hw_tx_cons)
1914 if (bp->status_blk->status_rx_quick_consumer_index0 != bp->hw_rx_cons) {
1915 int orig_budget = *budget;
1918 if (orig_budget > dev->quota)
1919 orig_budget = dev->quota;
1921 work_done = bnx2_rx_int(bp, orig_budget);
1922 *budget -= work_done;
1923 dev->quota -= work_done;
1926 bp->last_status_idx = bp->status_blk->status_idx;
1929 if (!bnx2_has_work(bp)) {
1930 netif_rx_complete(dev);
1931 if (likely(bp->flags & USING_MSI_FLAG)) {
1932 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
1933 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
1934 bp->last_status_idx);
1937 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
1938 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
1939 BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
1940 bp->last_status_idx);
1942 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
1943 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
1944 bp->last_status_idx);
1951 /* Called with rtnl_lock from vlan functions and also dev->xmit_lock
1952 * from set_multicast.
1955 bnx2_set_rx_mode(struct net_device *dev)
1957 struct bnx2 *bp = netdev_priv(dev);
1958 u32 rx_mode, sort_mode;
1961 spin_lock_bh(&bp->phy_lock);
1963 rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
1964 BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
1965 sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
1967 if (!bp->vlgrp && !(bp->flags & ASF_ENABLE_FLAG))
1968 rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
1970 if (!(bp->flags & ASF_ENABLE_FLAG))
1971 rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
1973 if (dev->flags & IFF_PROMISC) {
1974 /* Promiscuous mode. */
1975 rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
1976 sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN;
1978 else if (dev->flags & IFF_ALLMULTI) {
1979 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
1980 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
1983 sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
1986 /* Accept one or more multicast(s). */
1987 struct dev_mc_list *mclist;
1988 u32 mc_filter[NUM_MC_HASH_REGISTERS];
1993 memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
1995 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1996 i++, mclist = mclist->next) {
1998 crc = ether_crc_le(ETH_ALEN, mclist->dmi_addr);
2000 regidx = (bit & 0xe0) >> 5;
2002 mc_filter[regidx] |= (1 << bit);
2005 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
2006 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
2010 sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
2013 if (rx_mode != bp->rx_mode) {
2014 bp->rx_mode = rx_mode;
2015 REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
2018 REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
2019 REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
2020 REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
2022 spin_unlock_bh(&bp->phy_lock);
2026 load_rv2p_fw(struct bnx2 *bp, u32 *rv2p_code, u32 rv2p_code_len,
2033 for (i = 0; i < rv2p_code_len; i += 8) {
2034 REG_WR(bp, BNX2_RV2P_INSTR_HIGH, *rv2p_code);
2036 REG_WR(bp, BNX2_RV2P_INSTR_LOW, *rv2p_code);
2039 if (rv2p_proc == RV2P_PROC1) {
2040 val = (i / 8) | BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
2041 REG_WR(bp, BNX2_RV2P_PROC1_ADDR_CMD, val);
2044 val = (i / 8) | BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
2045 REG_WR(bp, BNX2_RV2P_PROC2_ADDR_CMD, val);
2049 /* Reset the processor, un-stall is done later. */
2050 if (rv2p_proc == RV2P_PROC1) {
2051 REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
2054 REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
2059 load_cpu_fw(struct bnx2 *bp, struct cpu_reg *cpu_reg, struct fw_info *fw)
2065 val = REG_RD_IND(bp, cpu_reg->mode);
2066 val |= cpu_reg->mode_value_halt;
2067 REG_WR_IND(bp, cpu_reg->mode, val);
2068 REG_WR_IND(bp, cpu_reg->state, cpu_reg->state_value_clear);
2070 /* Load the Text area. */
2071 offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
2075 for (j = 0; j < (fw->text_len / 4); j++, offset += 4) {
2076 REG_WR_IND(bp, offset, fw->text[j]);
2080 /* Load the Data area. */
2081 offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
2085 for (j = 0; j < (fw->data_len / 4); j++, offset += 4) {
2086 REG_WR_IND(bp, offset, fw->data[j]);
2090 /* Load the SBSS area. */
2091 offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
2095 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) {
2096 REG_WR_IND(bp, offset, fw->sbss[j]);
2100 /* Load the BSS area. */
2101 offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
2105 for (j = 0; j < (fw->bss_len/4); j++, offset += 4) {
2106 REG_WR_IND(bp, offset, fw->bss[j]);
2110 /* Load the Read-Only area. */
2111 offset = cpu_reg->spad_base +
2112 (fw->rodata_addr - cpu_reg->mips_view_base);
2116 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) {
2117 REG_WR_IND(bp, offset, fw->rodata[j]);
2121 /* Clear the pre-fetch instruction. */
2122 REG_WR_IND(bp, cpu_reg->inst, 0);
2123 REG_WR_IND(bp, cpu_reg->pc, fw->start_addr);
2125 /* Start the CPU. */
2126 val = REG_RD_IND(bp, cpu_reg->mode);
2127 val &= ~cpu_reg->mode_value_halt;
2128 REG_WR_IND(bp, cpu_reg->state, cpu_reg->state_value_clear);
2129 REG_WR_IND(bp, cpu_reg->mode, val);
2133 bnx2_init_cpus(struct bnx2 *bp)
2135 struct cpu_reg cpu_reg;
2138 /* Initialize the RV2P processor. */
2139 load_rv2p_fw(bp, bnx2_rv2p_proc1, sizeof(bnx2_rv2p_proc1), RV2P_PROC1);
2140 load_rv2p_fw(bp, bnx2_rv2p_proc2, sizeof(bnx2_rv2p_proc2), RV2P_PROC2);
2142 /* Initialize the RX Processor. */
2143 cpu_reg.mode = BNX2_RXP_CPU_MODE;
2144 cpu_reg.mode_value_halt = BNX2_RXP_CPU_MODE_SOFT_HALT;
2145 cpu_reg.mode_value_sstep = BNX2_RXP_CPU_MODE_STEP_ENA;
2146 cpu_reg.state = BNX2_RXP_CPU_STATE;
2147 cpu_reg.state_value_clear = 0xffffff;
2148 cpu_reg.gpr0 = BNX2_RXP_CPU_REG_FILE;
2149 cpu_reg.evmask = BNX2_RXP_CPU_EVENT_MASK;
2150 cpu_reg.pc = BNX2_RXP_CPU_PROGRAM_COUNTER;
2151 cpu_reg.inst = BNX2_RXP_CPU_INSTRUCTION;
2152 cpu_reg.bp = BNX2_RXP_CPU_HW_BREAKPOINT;
2153 cpu_reg.spad_base = BNX2_RXP_SCRATCH;
2154 cpu_reg.mips_view_base = 0x8000000;
2156 fw.ver_major = bnx2_RXP_b06FwReleaseMajor;
2157 fw.ver_minor = bnx2_RXP_b06FwReleaseMinor;
2158 fw.ver_fix = bnx2_RXP_b06FwReleaseFix;
2159 fw.start_addr = bnx2_RXP_b06FwStartAddr;
2161 fw.text_addr = bnx2_RXP_b06FwTextAddr;
2162 fw.text_len = bnx2_RXP_b06FwTextLen;
2164 fw.text = bnx2_RXP_b06FwText;
2166 fw.data_addr = bnx2_RXP_b06FwDataAddr;
2167 fw.data_len = bnx2_RXP_b06FwDataLen;
2169 fw.data = bnx2_RXP_b06FwData;
2171 fw.sbss_addr = bnx2_RXP_b06FwSbssAddr;
2172 fw.sbss_len = bnx2_RXP_b06FwSbssLen;
2174 fw.sbss = bnx2_RXP_b06FwSbss;
2176 fw.bss_addr = bnx2_RXP_b06FwBssAddr;
2177 fw.bss_len = bnx2_RXP_b06FwBssLen;
2179 fw.bss = bnx2_RXP_b06FwBss;
2181 fw.rodata_addr = bnx2_RXP_b06FwRodataAddr;
2182 fw.rodata_len = bnx2_RXP_b06FwRodataLen;
2183 fw.rodata_index = 0;
2184 fw.rodata = bnx2_RXP_b06FwRodata;
2186 load_cpu_fw(bp, &cpu_reg, &fw);
2188 /* Initialize the TX Processor. */
2189 cpu_reg.mode = BNX2_TXP_CPU_MODE;
2190 cpu_reg.mode_value_halt = BNX2_TXP_CPU_MODE_SOFT_HALT;
2191 cpu_reg.mode_value_sstep = BNX2_TXP_CPU_MODE_STEP_ENA;
2192 cpu_reg.state = BNX2_TXP_CPU_STATE;
2193 cpu_reg.state_value_clear = 0xffffff;
2194 cpu_reg.gpr0 = BNX2_TXP_CPU_REG_FILE;
2195 cpu_reg.evmask = BNX2_TXP_CPU_EVENT_MASK;
2196 cpu_reg.pc = BNX2_TXP_CPU_PROGRAM_COUNTER;
2197 cpu_reg.inst = BNX2_TXP_CPU_INSTRUCTION;
2198 cpu_reg.bp = BNX2_TXP_CPU_HW_BREAKPOINT;
2199 cpu_reg.spad_base = BNX2_TXP_SCRATCH;
2200 cpu_reg.mips_view_base = 0x8000000;
2202 fw.ver_major = bnx2_TXP_b06FwReleaseMajor;
2203 fw.ver_minor = bnx2_TXP_b06FwReleaseMinor;
2204 fw.ver_fix = bnx2_TXP_b06FwReleaseFix;
2205 fw.start_addr = bnx2_TXP_b06FwStartAddr;
2207 fw.text_addr = bnx2_TXP_b06FwTextAddr;
2208 fw.text_len = bnx2_TXP_b06FwTextLen;
2210 fw.text = bnx2_TXP_b06FwText;
2212 fw.data_addr = bnx2_TXP_b06FwDataAddr;
2213 fw.data_len = bnx2_TXP_b06FwDataLen;
2215 fw.data = bnx2_TXP_b06FwData;
2217 fw.sbss_addr = bnx2_TXP_b06FwSbssAddr;
2218 fw.sbss_len = bnx2_TXP_b06FwSbssLen;
2220 fw.sbss = bnx2_TXP_b06FwSbss;
2222 fw.bss_addr = bnx2_TXP_b06FwBssAddr;
2223 fw.bss_len = bnx2_TXP_b06FwBssLen;
2225 fw.bss = bnx2_TXP_b06FwBss;
2227 fw.rodata_addr = bnx2_TXP_b06FwRodataAddr;
2228 fw.rodata_len = bnx2_TXP_b06FwRodataLen;
2229 fw.rodata_index = 0;
2230 fw.rodata = bnx2_TXP_b06FwRodata;
2232 load_cpu_fw(bp, &cpu_reg, &fw);
2234 /* Initialize the TX Patch-up Processor. */
2235 cpu_reg.mode = BNX2_TPAT_CPU_MODE;
2236 cpu_reg.mode_value_halt = BNX2_TPAT_CPU_MODE_SOFT_HALT;
2237 cpu_reg.mode_value_sstep = BNX2_TPAT_CPU_MODE_STEP_ENA;
2238 cpu_reg.state = BNX2_TPAT_CPU_STATE;
2239 cpu_reg.state_value_clear = 0xffffff;
2240 cpu_reg.gpr0 = BNX2_TPAT_CPU_REG_FILE;
2241 cpu_reg.evmask = BNX2_TPAT_CPU_EVENT_MASK;
2242 cpu_reg.pc = BNX2_TPAT_CPU_PROGRAM_COUNTER;
2243 cpu_reg.inst = BNX2_TPAT_CPU_INSTRUCTION;
2244 cpu_reg.bp = BNX2_TPAT_CPU_HW_BREAKPOINT;
2245 cpu_reg.spad_base = BNX2_TPAT_SCRATCH;
2246 cpu_reg.mips_view_base = 0x8000000;
2248 fw.ver_major = bnx2_TPAT_b06FwReleaseMajor;
2249 fw.ver_minor = bnx2_TPAT_b06FwReleaseMinor;
2250 fw.ver_fix = bnx2_TPAT_b06FwReleaseFix;
2251 fw.start_addr = bnx2_TPAT_b06FwStartAddr;
2253 fw.text_addr = bnx2_TPAT_b06FwTextAddr;
2254 fw.text_len = bnx2_TPAT_b06FwTextLen;
2256 fw.text = bnx2_TPAT_b06FwText;
2258 fw.data_addr = bnx2_TPAT_b06FwDataAddr;
2259 fw.data_len = bnx2_TPAT_b06FwDataLen;
2261 fw.data = bnx2_TPAT_b06FwData;
2263 fw.sbss_addr = bnx2_TPAT_b06FwSbssAddr;
2264 fw.sbss_len = bnx2_TPAT_b06FwSbssLen;
2266 fw.sbss = bnx2_TPAT_b06FwSbss;
2268 fw.bss_addr = bnx2_TPAT_b06FwBssAddr;
2269 fw.bss_len = bnx2_TPAT_b06FwBssLen;
2271 fw.bss = bnx2_TPAT_b06FwBss;
2273 fw.rodata_addr = bnx2_TPAT_b06FwRodataAddr;
2274 fw.rodata_len = bnx2_TPAT_b06FwRodataLen;
2275 fw.rodata_index = 0;
2276 fw.rodata = bnx2_TPAT_b06FwRodata;
2278 load_cpu_fw(bp, &cpu_reg, &fw);
2280 /* Initialize the Completion Processor. */
2281 cpu_reg.mode = BNX2_COM_CPU_MODE;
2282 cpu_reg.mode_value_halt = BNX2_COM_CPU_MODE_SOFT_HALT;
2283 cpu_reg.mode_value_sstep = BNX2_COM_CPU_MODE_STEP_ENA;
2284 cpu_reg.state = BNX2_COM_CPU_STATE;
2285 cpu_reg.state_value_clear = 0xffffff;
2286 cpu_reg.gpr0 = BNX2_COM_CPU_REG_FILE;
2287 cpu_reg.evmask = BNX2_COM_CPU_EVENT_MASK;
2288 cpu_reg.pc = BNX2_COM_CPU_PROGRAM_COUNTER;
2289 cpu_reg.inst = BNX2_COM_CPU_INSTRUCTION;
2290 cpu_reg.bp = BNX2_COM_CPU_HW_BREAKPOINT;
2291 cpu_reg.spad_base = BNX2_COM_SCRATCH;
2292 cpu_reg.mips_view_base = 0x8000000;
2294 fw.ver_major = bnx2_COM_b06FwReleaseMajor;
2295 fw.ver_minor = bnx2_COM_b06FwReleaseMinor;
2296 fw.ver_fix = bnx2_COM_b06FwReleaseFix;
2297 fw.start_addr = bnx2_COM_b06FwStartAddr;
2299 fw.text_addr = bnx2_COM_b06FwTextAddr;
2300 fw.text_len = bnx2_COM_b06FwTextLen;
2302 fw.text = bnx2_COM_b06FwText;
2304 fw.data_addr = bnx2_COM_b06FwDataAddr;
2305 fw.data_len = bnx2_COM_b06FwDataLen;
2307 fw.data = bnx2_COM_b06FwData;
2309 fw.sbss_addr = bnx2_COM_b06FwSbssAddr;
2310 fw.sbss_len = bnx2_COM_b06FwSbssLen;
2312 fw.sbss = bnx2_COM_b06FwSbss;
2314 fw.bss_addr = bnx2_COM_b06FwBssAddr;
2315 fw.bss_len = bnx2_COM_b06FwBssLen;
2317 fw.bss = bnx2_COM_b06FwBss;
2319 fw.rodata_addr = bnx2_COM_b06FwRodataAddr;
2320 fw.rodata_len = bnx2_COM_b06FwRodataLen;
2321 fw.rodata_index = 0;
2322 fw.rodata = bnx2_COM_b06FwRodata;
2324 load_cpu_fw(bp, &cpu_reg, &fw);
2329 bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
2333 pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
2339 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
2340 (pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
2341 PCI_PM_CTRL_PME_STATUS);
2343 if (pmcsr & PCI_PM_CTRL_STATE_MASK)
2344 /* delay required during transition out of D3hot */
2347 val = REG_RD(bp, BNX2_EMAC_MODE);
2348 val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
2349 val &= ~BNX2_EMAC_MODE_MPKT;
2350 REG_WR(bp, BNX2_EMAC_MODE, val);
2352 val = REG_RD(bp, BNX2_RPM_CONFIG);
2353 val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
2354 REG_WR(bp, BNX2_RPM_CONFIG, val);
2365 autoneg = bp->autoneg;
2366 advertising = bp->advertising;
2368 bp->autoneg = AUTONEG_SPEED;
2369 bp->advertising = ADVERTISED_10baseT_Half |
2370 ADVERTISED_10baseT_Full |
2371 ADVERTISED_100baseT_Half |
2372 ADVERTISED_100baseT_Full |
2375 bnx2_setup_copper_phy(bp);
2377 bp->autoneg = autoneg;
2378 bp->advertising = advertising;
2380 bnx2_set_mac_addr(bp);
2382 val = REG_RD(bp, BNX2_EMAC_MODE);
2384 /* Enable port mode. */
2385 val &= ~BNX2_EMAC_MODE_PORT;
2386 val |= BNX2_EMAC_MODE_PORT_MII |
2387 BNX2_EMAC_MODE_MPKT_RCVD |
2388 BNX2_EMAC_MODE_ACPI_RCVD |
2389 BNX2_EMAC_MODE_MPKT;
2391 REG_WR(bp, BNX2_EMAC_MODE, val);
2393 /* receive all multicast */
2394 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
2395 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
2398 REG_WR(bp, BNX2_EMAC_RX_MODE,
2399 BNX2_EMAC_RX_MODE_SORT_MODE);
2401 val = 1 | BNX2_RPM_SORT_USER0_BC_EN |
2402 BNX2_RPM_SORT_USER0_MC_EN;
2403 REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
2404 REG_WR(bp, BNX2_RPM_SORT_USER0, val);
2405 REG_WR(bp, BNX2_RPM_SORT_USER0, val |
2406 BNX2_RPM_SORT_USER0_ENA);
2408 /* Need to enable EMAC and RPM for WOL. */
2409 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
2410 BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
2411 BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
2412 BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
2414 val = REG_RD(bp, BNX2_RPM_CONFIG);
2415 val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
2416 REG_WR(bp, BNX2_RPM_CONFIG, val);
2418 wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
2421 wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
2424 if (!(bp->flags & NO_WOL_FLAG))
2425 bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg, 0);
2427 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
2428 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
2429 (CHIP_ID(bp) == CHIP_ID_5706_A1)) {
2438 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2440 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
2443 /* No more memory access after this point until
2444 * device is brought back to D0.
2456 bnx2_acquire_nvram_lock(struct bnx2 *bp)
2461 /* Request access to the flash interface. */
2462 REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
2463 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2464 val = REG_RD(bp, BNX2_NVM_SW_ARB);
2465 if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
2471 if (j >= NVRAM_TIMEOUT_COUNT)
2478 bnx2_release_nvram_lock(struct bnx2 *bp)
2483 /* Relinquish nvram interface. */
2484 REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
2486 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2487 val = REG_RD(bp, BNX2_NVM_SW_ARB);
2488 if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
2494 if (j >= NVRAM_TIMEOUT_COUNT)
2502 bnx2_enable_nvram_write(struct bnx2 *bp)
2506 val = REG_RD(bp, BNX2_MISC_CFG);
2507 REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
2509 if (!bp->flash_info->buffered) {
2512 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
2513 REG_WR(bp, BNX2_NVM_COMMAND,
2514 BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
2516 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2519 val = REG_RD(bp, BNX2_NVM_COMMAND);
2520 if (val & BNX2_NVM_COMMAND_DONE)
2524 if (j >= NVRAM_TIMEOUT_COUNT)
2531 bnx2_disable_nvram_write(struct bnx2 *bp)
2535 val = REG_RD(bp, BNX2_MISC_CFG);
2536 REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
2541 bnx2_enable_nvram_access(struct bnx2 *bp)
2545 val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
2546 /* Enable both bits, even on read. */
2547 REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
2548 val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
2552 bnx2_disable_nvram_access(struct bnx2 *bp)
2556 val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
2557 /* Disable both bits, even after read. */
2558 REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
2559 val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
2560 BNX2_NVM_ACCESS_ENABLE_WR_EN));
2564 bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
2569 if (bp->flash_info->buffered)
2570 /* Buffered flash, no erase needed */
2573 /* Build an erase command */
2574 cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
2575 BNX2_NVM_COMMAND_DOIT;
2577 /* Need to clear DONE bit separately. */
2578 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
2580 /* Address of the NVRAM to read from. */
2581 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
2583 /* Issue an erase command. */
2584 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
2586 /* Wait for completion. */
2587 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2592 val = REG_RD(bp, BNX2_NVM_COMMAND);
2593 if (val & BNX2_NVM_COMMAND_DONE)
2597 if (j >= NVRAM_TIMEOUT_COUNT)
2604 bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
2609 /* Build the command word. */
2610 cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
2612 /* Calculate an offset of a buffered flash. */
2613 if (bp->flash_info->buffered) {
2614 offset = ((offset / bp->flash_info->page_size) <<
2615 bp->flash_info->page_bits) +
2616 (offset % bp->flash_info->page_size);
2619 /* Need to clear DONE bit separately. */
2620 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
2622 /* Address of the NVRAM to read from. */
2623 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
2625 /* Issue a read command. */
2626 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
2628 /* Wait for completion. */
2629 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2634 val = REG_RD(bp, BNX2_NVM_COMMAND);
2635 if (val & BNX2_NVM_COMMAND_DONE) {
2636 val = REG_RD(bp, BNX2_NVM_READ);
2638 val = be32_to_cpu(val);
2639 memcpy(ret_val, &val, 4);
2643 if (j >= NVRAM_TIMEOUT_COUNT)
2651 bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
2656 /* Build the command word. */
2657 cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
2659 /* Calculate an offset of a buffered flash. */
2660 if (bp->flash_info->buffered) {
2661 offset = ((offset / bp->flash_info->page_size) <<
2662 bp->flash_info->page_bits) +
2663 (offset % bp->flash_info->page_size);
2666 /* Need to clear DONE bit separately. */
2667 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
2669 memcpy(&val32, val, 4);
2670 val32 = cpu_to_be32(val32);
2672 /* Write the data. */
2673 REG_WR(bp, BNX2_NVM_WRITE, val32);
2675 /* Address of the NVRAM to write to. */
2676 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
2678 /* Issue the write command. */
2679 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
2681 /* Wait for completion. */
2682 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2685 if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
2688 if (j >= NVRAM_TIMEOUT_COUNT)
2695 bnx2_init_nvram(struct bnx2 *bp)
2698 int j, entry_count, rc;
2699 struct flash_spec *flash;
2701 /* Determine the selected interface. */
2702 val = REG_RD(bp, BNX2_NVM_CFG1);
2704 entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
2707 if (val & 0x40000000) {
2709 /* Flash interface has been reconfigured */
2710 for (j = 0, flash = &flash_table[0]; j < entry_count;
2712 if ((val & FLASH_BACKUP_STRAP_MASK) ==
2713 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
2714 bp->flash_info = flash;
2721 /* Not yet been reconfigured */
2723 if (val & (1 << 23))
2724 mask = FLASH_BACKUP_STRAP_MASK;
2726 mask = FLASH_STRAP_MASK;
2728 for (j = 0, flash = &flash_table[0]; j < entry_count;
2731 if ((val & mask) == (flash->strapping & mask)) {
2732 bp->flash_info = flash;
2734 /* Request access to the flash interface. */
2735 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
2738 /* Enable access to flash interface */
2739 bnx2_enable_nvram_access(bp);
2741 /* Reconfigure the flash interface */
2742 REG_WR(bp, BNX2_NVM_CFG1, flash->config1);
2743 REG_WR(bp, BNX2_NVM_CFG2, flash->config2);
2744 REG_WR(bp, BNX2_NVM_CFG3, flash->config3);
2745 REG_WR(bp, BNX2_NVM_WRITE1, flash->write1);
2747 /* Disable access to flash interface */
2748 bnx2_disable_nvram_access(bp);
2749 bnx2_release_nvram_lock(bp);
2754 } /* if (val & 0x40000000) */
2756 if (j == entry_count) {
2757 bp->flash_info = NULL;
2758 printk(KERN_ALERT PFX "Unknown flash/EEPROM type.\n");
2762 val = REG_RD_IND(bp, bp->shmem_base + BNX2_SHARED_HW_CFG_CONFIG2);
2763 val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
2765 bp->flash_size = val;
2767 bp->flash_size = bp->flash_info->total_size;
2773 bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
2777 u32 cmd_flags, offset32, len32, extra;
2782 /* Request access to the flash interface. */
2783 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
2786 /* Enable access to flash interface */
2787 bnx2_enable_nvram_access(bp);
2800 pre_len = 4 - (offset & 3);
2802 if (pre_len >= len32) {
2804 cmd_flags = BNX2_NVM_COMMAND_FIRST |
2805 BNX2_NVM_COMMAND_LAST;
2808 cmd_flags = BNX2_NVM_COMMAND_FIRST;
2811 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
2816 memcpy(ret_buf, buf + (offset & 3), pre_len);
2823 extra = 4 - (len32 & 3);
2824 len32 = (len32 + 4) & ~3;
2831 cmd_flags = BNX2_NVM_COMMAND_LAST;
2833 cmd_flags = BNX2_NVM_COMMAND_FIRST |
2834 BNX2_NVM_COMMAND_LAST;
2836 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
2838 memcpy(ret_buf, buf, 4 - extra);
2840 else if (len32 > 0) {
2843 /* Read the first word. */
2847 cmd_flags = BNX2_NVM_COMMAND_FIRST;
2849 rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
2851 /* Advance to the next dword. */
2856 while (len32 > 4 && rc == 0) {
2857 rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
2859 /* Advance to the next dword. */
2868 cmd_flags = BNX2_NVM_COMMAND_LAST;
2869 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
2871 memcpy(ret_buf, buf, 4 - extra);
2874 /* Disable access to flash interface */
2875 bnx2_disable_nvram_access(bp);
2877 bnx2_release_nvram_lock(bp);
2883 bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
2886 u32 written, offset32, len32;
2887 u8 *buf, start[4], end[4];
2889 int align_start, align_end;
2894 align_start = align_end = 0;
2896 if ((align_start = (offset32 & 3))) {
2898 len32 += align_start;
2899 if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
2904 if ((len32 > 4) || !align_start) {
2905 align_end = 4 - (len32 & 3);
2907 if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4,
2914 if (align_start || align_end) {
2915 buf = kmalloc(len32, GFP_KERNEL);
2919 memcpy(buf, start, 4);
2922 memcpy(buf + len32 - 4, end, 4);
2924 memcpy(buf + align_start, data_buf, buf_size);
2928 while ((written < len32) && (rc == 0)) {
2929 u32 page_start, page_end, data_start, data_end;
2930 u32 addr, cmd_flags;
2932 u8 flash_buffer[264];
2934 /* Find the page_start addr */
2935 page_start = offset32 + written;
2936 page_start -= (page_start % bp->flash_info->page_size);
2937 /* Find the page_end addr */
2938 page_end = page_start + bp->flash_info->page_size;
2939 /* Find the data_start addr */
2940 data_start = (written == 0) ? offset32 : page_start;
2941 /* Find the data_end addr */
2942 data_end = (page_end > offset32 + len32) ?
2943 (offset32 + len32) : page_end;
2945 /* Request access to the flash interface. */
2946 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
2947 goto nvram_write_end;
2949 /* Enable access to flash interface */
2950 bnx2_enable_nvram_access(bp);
2952 cmd_flags = BNX2_NVM_COMMAND_FIRST;
2953 if (bp->flash_info->buffered == 0) {
2956 /* Read the whole page into the buffer
2957 * (non-buffer flash only) */
2958 for (j = 0; j < bp->flash_info->page_size; j += 4) {
2959 if (j == (bp->flash_info->page_size - 4)) {
2960 cmd_flags |= BNX2_NVM_COMMAND_LAST;
2962 rc = bnx2_nvram_read_dword(bp,
2968 goto nvram_write_end;
2974 /* Enable writes to flash interface (unlock write-protect) */
2975 if ((rc = bnx2_enable_nvram_write(bp)) != 0)
2976 goto nvram_write_end;
2978 /* Erase the page */
2979 if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
2980 goto nvram_write_end;
2982 /* Re-enable the write again for the actual write */
2983 bnx2_enable_nvram_write(bp);
2985 /* Loop to write back the buffer data from page_start to
2988 if (bp->flash_info->buffered == 0) {
2989 for (addr = page_start; addr < data_start;
2990 addr += 4, i += 4) {
2992 rc = bnx2_nvram_write_dword(bp, addr,
2993 &flash_buffer[i], cmd_flags);
2996 goto nvram_write_end;
3002 /* Loop to write the new data from data_start to data_end */
3003 for (addr = data_start; addr < data_end; addr += 4, i++) {
3004 if ((addr == page_end - 4) ||
3005 ((bp->flash_info->buffered) &&
3006 (addr == data_end - 4))) {
3008 cmd_flags |= BNX2_NVM_COMMAND_LAST;
3010 rc = bnx2_nvram_write_dword(bp, addr, buf,
3014 goto nvram_write_end;
3020 /* Loop to write back the buffer data from data_end
3022 if (bp->flash_info->buffered == 0) {
3023 for (addr = data_end; addr < page_end;
3024 addr += 4, i += 4) {
3026 if (addr == page_end-4) {
3027 cmd_flags = BNX2_NVM_COMMAND_LAST;
3029 rc = bnx2_nvram_write_dword(bp, addr,
3030 &flash_buffer[i], cmd_flags);
3033 goto nvram_write_end;
3039 /* Disable writes to flash interface (lock write-protect) */
3040 bnx2_disable_nvram_write(bp);
3042 /* Disable access to flash interface */
3043 bnx2_disable_nvram_access(bp);
3044 bnx2_release_nvram_lock(bp);
3046 /* Increment written */
3047 written += data_end - data_start;
3051 if (align_start || align_end)
3057 bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
3062 /* Wait for the current PCI transaction to complete before
3063 * issuing a reset. */
3064 REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
3065 BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
3066 BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
3067 BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
3068 BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
3069 val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
3072 /* Wait for the firmware to tell us it is ok to issue a reset. */
3073 bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1);
3075 /* Deposit a driver reset signature so the firmware knows that
3076 * this is a soft reset. */
3077 REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_RESET_SIGNATURE,
3078 BNX2_DRV_RESET_SIGNATURE_MAGIC);
3080 /* Do a dummy read to force the chip to complete all current transaction
3081 * before we issue a reset. */
3082 val = REG_RD(bp, BNX2_MISC_ID);
3084 val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3085 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3086 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3089 REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
3091 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
3092 (CHIP_ID(bp) == CHIP_ID_5706_A1))
3095 /* Reset takes approximate 30 usec */
3096 for (i = 0; i < 10; i++) {
3097 val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG);
3098 if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3099 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
3105 if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3106 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
3107 printk(KERN_ERR PFX "Chip reset did not complete\n");
3111 /* Make sure byte swapping is properly configured. */
3112 val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0);
3113 if (val != 0x01020304) {
3114 printk(KERN_ERR PFX "Chip not in correct endian mode\n");
3118 /* Wait for the firmware to finish its initialization. */
3119 rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 0);
3123 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
3124 /* Adjust the voltage regular to two steps lower. The default
3125 * of this register is 0x0000000e. */
3126 REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
3128 /* Remove bad rbuf memory from the free pool. */
3129 rc = bnx2_alloc_bad_rbuf(bp);
3136 bnx2_init_chip(struct bnx2 *bp)
3141 /* Make sure the interrupt is not active. */
3142 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
3144 val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
3145 BNX2_DMA_CONFIG_DATA_WORD_SWAP |
3147 BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
3149 BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
3150 DMA_READ_CHANS << 12 |
3151 DMA_WRITE_CHANS << 16;
3153 val |= (0x2 << 20) | (1 << 11);
3155 if ((bp->flags & PCIX_FLAG) && (bp->bus_speed_mhz == 133))
3158 if ((CHIP_NUM(bp) == CHIP_NUM_5706) &&
3159 (CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & PCIX_FLAG))
3160 val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
3162 REG_WR(bp, BNX2_DMA_CONFIG, val);
3164 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
3165 val = REG_RD(bp, BNX2_TDMA_CONFIG);
3166 val |= BNX2_TDMA_CONFIG_ONE_DMA;
3167 REG_WR(bp, BNX2_TDMA_CONFIG, val);
3170 if (bp->flags & PCIX_FLAG) {
3173 pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
3175 pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
3176 val16 & ~PCI_X_CMD_ERO);
3179 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
3180 BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
3181 BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
3182 BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
3184 /* Initialize context mapping and zero out the quick contexts. The
3185 * context block must have already been enabled. */
3186 bnx2_init_context(bp);
3189 bnx2_init_nvram(bp);
3191 bnx2_set_mac_addr(bp);
3193 val = REG_RD(bp, BNX2_MQ_CONFIG);
3194 val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
3195 val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
3196 REG_WR(bp, BNX2_MQ_CONFIG, val);
3198 val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
3199 REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
3200 REG_WR(bp, BNX2_MQ_KNL_WIND_END, val);
3202 val = (BCM_PAGE_BITS - 8) << 24;
3203 REG_WR(bp, BNX2_RV2P_CONFIG, val);
3205 /* Configure page size. */
3206 val = REG_RD(bp, BNX2_TBDR_CONFIG);
3207 val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
3208 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
3209 REG_WR(bp, BNX2_TBDR_CONFIG, val);
3211 val = bp->mac_addr[0] +
3212 (bp->mac_addr[1] << 8) +
3213 (bp->mac_addr[2] << 16) +
3215 (bp->mac_addr[4] << 8) +
3216 (bp->mac_addr[5] << 16);
3217 REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
3219 /* Program the MTU. Also include 4 bytes for CRC32. */
3220 val = bp->dev->mtu + ETH_HLEN + 4;
3221 if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
3222 val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
3223 REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
3225 bp->last_status_idx = 0;
3226 bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
3228 /* Set up how to generate a link change interrupt. */
3229 REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
3231 REG_WR(bp, BNX2_HC_STATUS_ADDR_L,
3232 (u64) bp->status_blk_mapping & 0xffffffff);
3233 REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
3235 REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
3236 (u64) bp->stats_blk_mapping & 0xffffffff);
3237 REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
3238 (u64) bp->stats_blk_mapping >> 32);
3240 REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
3241 (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
3243 REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
3244 (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
3246 REG_WR(bp, BNX2_HC_COMP_PROD_TRIP,
3247 (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
3249 REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
3251 REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
3253 REG_WR(bp, BNX2_HC_COM_TICKS,
3254 (bp->com_ticks_int << 16) | bp->com_ticks);
3256 REG_WR(bp, BNX2_HC_CMD_TICKS,
3257 (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
3259 REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks & 0xffff00);
3260 REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
3262 if (CHIP_ID(bp) == CHIP_ID_5706_A1)
3263 REG_WR(bp, BNX2_HC_CONFIG, BNX2_HC_CONFIG_COLLECT_STATS);
3265 REG_WR(bp, BNX2_HC_CONFIG, BNX2_HC_CONFIG_RX_TMR_MODE |
3266 BNX2_HC_CONFIG_TX_TMR_MODE |
3267 BNX2_HC_CONFIG_COLLECT_STATS);
3270 /* Clear internal stats counters. */
3271 REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
3273 REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
3275 if (REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_FEATURE) &
3276 BNX2_PORT_FEATURE_ASF_ENABLED)
3277 bp->flags |= ASF_ENABLE_FLAG;
3279 /* Initialize the receive filter. */
3280 bnx2_set_rx_mode(bp->dev);
3282 rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
3285 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, 0x5ffffff);
3286 REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
3295 bnx2_init_tx_ring(struct bnx2 *bp)
3300 txbd = &bp->tx_desc_ring[MAX_TX_DESC_CNT];
3302 txbd->tx_bd_haddr_hi = (u64) bp->tx_desc_mapping >> 32;
3303 txbd->tx_bd_haddr_lo = (u64) bp->tx_desc_mapping & 0xffffffff;
3308 bp->tx_prod_bseq = 0;
3310 val = BNX2_L2CTX_TYPE_TYPE_L2;
3311 val |= BNX2_L2CTX_TYPE_SIZE_L2;
3312 CTX_WR(bp, GET_CID_ADDR(TX_CID), BNX2_L2CTX_TYPE, val);
3314 val = BNX2_L2CTX_CMD_TYPE_TYPE_L2;
3316 CTX_WR(bp, GET_CID_ADDR(TX_CID), BNX2_L2CTX_CMD_TYPE, val);
3318 val = (u64) bp->tx_desc_mapping >> 32;
3319 CTX_WR(bp, GET_CID_ADDR(TX_CID), BNX2_L2CTX_TBDR_BHADDR_HI, val);
3321 val = (u64) bp->tx_desc_mapping & 0xffffffff;
3322 CTX_WR(bp, GET_CID_ADDR(TX_CID), BNX2_L2CTX_TBDR_BHADDR_LO, val);
3326 bnx2_init_rx_ring(struct bnx2 *bp)
3330 u16 prod, ring_prod;
3333 /* 8 for CRC and VLAN */
3334 bp->rx_buf_use_size = bp->dev->mtu + ETH_HLEN + bp->rx_offset + 8;
3335 /* 8 for alignment */
3336 bp->rx_buf_size = bp->rx_buf_use_size + 8;
3338 ring_prod = prod = bp->rx_prod = 0;
3341 bp->rx_prod_bseq = 0;
3343 rxbd = &bp->rx_desc_ring[0];
3344 for (i = 0; i < MAX_RX_DESC_CNT; i++, rxbd++) {
3345 rxbd->rx_bd_len = bp->rx_buf_use_size;