]> nv-tegra.nvidia Code Review - linux-2.6.git/blob - drivers/mtd/devices/mtd_dataflash.c
Merge branch 'topic/hda' into for-linus
[linux-2.6.git] / drivers / mtd / devices / mtd_dataflash.c
1 /*
2  * Atmel AT45xxx DataFlash MTD driver for lightweight SPI framework
3  *
4  * Largely derived from at91_dataflash.c:
5  *  Copyright (C) 2003-2005 SAN People (Pty) Ltd
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; either version
10  * 2 of the License, or (at your option) any later version.
11 */
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/delay.h>
16 #include <linux/device.h>
17 #include <linux/mutex.h>
18 #include <linux/err.h>
19 #include <linux/math64.h>
20
21 #include <linux/spi/spi.h>
22 #include <linux/spi/flash.h>
23
24 #include <linux/mtd/mtd.h>
25 #include <linux/mtd/partitions.h>
26
27
28 /*
29  * DataFlash is a kind of SPI flash.  Most AT45 chips have two buffers in
30  * each chip, which may be used for double buffered I/O; but this driver
31  * doesn't (yet) use these for any kind of i/o overlap or prefetching.
32  *
33  * Sometimes DataFlash is packaged in MMC-format cards, although the
34  * MMC stack can't (yet?) distinguish between MMC and DataFlash
35  * protocols during enumeration.
36  */
37
38 /* reads can bypass the buffers */
39 #define OP_READ_CONTINUOUS      0xE8
40 #define OP_READ_PAGE            0xD2
41
42 /* group B requests can run even while status reports "busy" */
43 #define OP_READ_STATUS          0xD7    /* group B */
44
45 /* move data between host and buffer */
46 #define OP_READ_BUFFER1         0xD4    /* group B */
47 #define OP_READ_BUFFER2         0xD6    /* group B */
48 #define OP_WRITE_BUFFER1        0x84    /* group B */
49 #define OP_WRITE_BUFFER2        0x87    /* group B */
50
51 /* erasing flash */
52 #define OP_ERASE_PAGE           0x81
53 #define OP_ERASE_BLOCK          0x50
54
55 /* move data between buffer and flash */
56 #define OP_TRANSFER_BUF1        0x53
57 #define OP_TRANSFER_BUF2        0x55
58 #define OP_MREAD_BUFFER1        0xD4
59 #define OP_MREAD_BUFFER2        0xD6
60 #define OP_MWERASE_BUFFER1      0x83
61 #define OP_MWERASE_BUFFER2      0x86
62 #define OP_MWRITE_BUFFER1       0x88    /* sector must be pre-erased */
63 #define OP_MWRITE_BUFFER2       0x89    /* sector must be pre-erased */
64
65 /* write to buffer, then write-erase to flash */
66 #define OP_PROGRAM_VIA_BUF1     0x82
67 #define OP_PROGRAM_VIA_BUF2     0x85
68
69 /* compare buffer to flash */
70 #define OP_COMPARE_BUF1         0x60
71 #define OP_COMPARE_BUF2         0x61
72
73 /* read flash to buffer, then write-erase to flash */
74 #define OP_REWRITE_VIA_BUF1     0x58
75 #define OP_REWRITE_VIA_BUF2     0x59
76
77 /* newer chips report JEDEC manufacturer and device IDs; chip
78  * serial number and OTP bits; and per-sector writeprotect.
79  */
80 #define OP_READ_ID              0x9F
81 #define OP_READ_SECURITY        0x77
82 #define OP_WRITE_SECURITY_REVC  0x9A
83 #define OP_WRITE_SECURITY       0x9B    /* revision D */
84
85
86 struct dataflash {
87         uint8_t                 command[4];
88         char                    name[24];
89
90         unsigned                partitioned:1;
91
92         unsigned short          page_offset;    /* offset in flash address */
93         unsigned int            page_size;      /* of bytes per page */
94
95         struct mutex            lock;
96         struct spi_device       *spi;
97
98         struct mtd_info         mtd;
99 };
100
101 #ifdef CONFIG_MTD_PARTITIONS
102 #define mtd_has_partitions()    (1)
103 #else
104 #define mtd_has_partitions()    (0)
105 #endif
106
107 /* ......................................................................... */
108
109 /*
110  * Return the status of the DataFlash device.
111  */
112 static inline int dataflash_status(struct spi_device *spi)
113 {
114         /* NOTE:  at45db321c over 25 MHz wants to write
115          * a dummy byte after the opcode...
116          */
117         return spi_w8r8(spi, OP_READ_STATUS);
118 }
119
120 /*
121  * Poll the DataFlash device until it is READY.
122  * This usually takes 5-20 msec or so; more for sector erase.
123  */
124 static int dataflash_waitready(struct spi_device *spi)
125 {
126         int     status;
127
128         for (;;) {
129                 status = dataflash_status(spi);
130                 if (status < 0) {
131                         DEBUG(MTD_DEBUG_LEVEL1, "%s: status %d?\n",
132                                         dev_name(&spi->dev), status);
133                         status = 0;
134                 }
135
136                 if (status & (1 << 7))  /* RDY/nBSY */
137                         return status;
138
139                 msleep(3);
140         }
141 }
142
143 /* ......................................................................... */
144
145 /*
146  * Erase pages of flash.
147  */
148 static int dataflash_erase(struct mtd_info *mtd, struct erase_info *instr)
149 {
150         struct dataflash        *priv = (struct dataflash *)mtd->priv;
151         struct spi_device       *spi = priv->spi;
152         struct spi_transfer     x = { .tx_dma = 0, };
153         struct spi_message      msg;
154         unsigned                blocksize = priv->page_size << 3;
155         uint8_t                 *command;
156         uint32_t                rem;
157
158         DEBUG(MTD_DEBUG_LEVEL2, "%s: erase addr=0x%llx len 0x%llx\n",
159               dev_name(&spi->dev), (long long)instr->addr,
160               (long long)instr->len);
161
162         /* Sanity checks */
163         if (instr->addr + instr->len > mtd->size)
164                 return -EINVAL;
165         div_u64_rem(instr->len, priv->page_size, &rem);
166         if (rem)
167                 return -EINVAL;
168         div_u64_rem(instr->addr, priv->page_size, &rem);
169         if (rem)
170                 return -EINVAL;
171
172         spi_message_init(&msg);
173
174         x.tx_buf = command = priv->command;
175         x.len = 4;
176         spi_message_add_tail(&x, &msg);
177
178         mutex_lock(&priv->lock);
179         while (instr->len > 0) {
180                 unsigned int    pageaddr;
181                 int             status;
182                 int             do_block;
183
184                 /* Calculate flash page address; use block erase (for speed) if
185                  * we're at a block boundary and need to erase the whole block.
186                  */
187                 pageaddr = div_u64(instr->len, priv->page_size);
188                 do_block = (pageaddr & 0x7) == 0 && instr->len >= blocksize;
189                 pageaddr = pageaddr << priv->page_offset;
190
191                 command[0] = do_block ? OP_ERASE_BLOCK : OP_ERASE_PAGE;
192                 command[1] = (uint8_t)(pageaddr >> 16);
193                 command[2] = (uint8_t)(pageaddr >> 8);
194                 command[3] = 0;
195
196                 DEBUG(MTD_DEBUG_LEVEL3, "ERASE %s: (%x) %x %x %x [%i]\n",
197                         do_block ? "block" : "page",
198                         command[0], command[1], command[2], command[3],
199                         pageaddr);
200
201                 status = spi_sync(spi, &msg);
202                 (void) dataflash_waitready(spi);
203
204                 if (status < 0) {
205                         printk(KERN_ERR "%s: erase %x, err %d\n",
206                                 dev_name(&spi->dev), pageaddr, status);
207                         /* REVISIT:  can retry instr->retries times; or
208                          * giveup and instr->fail_addr = instr->addr;
209                          */
210                         continue;
211                 }
212
213                 if (do_block) {
214                         instr->addr += blocksize;
215                         instr->len -= blocksize;
216                 } else {
217                         instr->addr += priv->page_size;
218                         instr->len -= priv->page_size;
219                 }
220         }
221         mutex_unlock(&priv->lock);
222
223         /* Inform MTD subsystem that erase is complete */
224         instr->state = MTD_ERASE_DONE;
225         mtd_erase_callback(instr);
226
227         return 0;
228 }
229
230 /*
231  * Read from the DataFlash device.
232  *   from   : Start offset in flash device
233  *   len    : Amount to read
234  *   retlen : About of data actually read
235  *   buf    : Buffer containing the data
236  */
237 static int dataflash_read(struct mtd_info *mtd, loff_t from, size_t len,
238                                size_t *retlen, u_char *buf)
239 {
240         struct dataflash        *priv = (struct dataflash *)mtd->priv;
241         struct spi_transfer     x[2] = { { .tx_dma = 0, }, };
242         struct spi_message      msg;
243         unsigned int            addr;
244         uint8_t                 *command;
245         int                     status;
246
247         DEBUG(MTD_DEBUG_LEVEL2, "%s: read 0x%x..0x%x\n",
248                 dev_name(&priv->spi->dev), (unsigned)from, (unsigned)(from + len));
249
250         *retlen = 0;
251
252         /* Sanity checks */
253         if (!len)
254                 return 0;
255         if (from + len > mtd->size)
256                 return -EINVAL;
257
258         /* Calculate flash page/byte address */
259         addr = (((unsigned)from / priv->page_size) << priv->page_offset)
260                 + ((unsigned)from % priv->page_size);
261
262         command = priv->command;
263
264         DEBUG(MTD_DEBUG_LEVEL3, "READ: (%x) %x %x %x\n",
265                 command[0], command[1], command[2], command[3]);
266
267         spi_message_init(&msg);
268
269         x[0].tx_buf = command;
270         x[0].len = 8;
271         spi_message_add_tail(&x[0], &msg);
272
273         x[1].rx_buf = buf;
274         x[1].len = len;
275         spi_message_add_tail(&x[1], &msg);
276
277         mutex_lock(&priv->lock);
278
279         /* Continuous read, max clock = f(car) which may be less than
280          * the peak rate available.  Some chips support commands with
281          * fewer "don't care" bytes.  Both buffers stay unchanged.
282          */
283         command[0] = OP_READ_CONTINUOUS;
284         command[1] = (uint8_t)(addr >> 16);
285         command[2] = (uint8_t)(addr >> 8);
286         command[3] = (uint8_t)(addr >> 0);
287         /* plus 4 "don't care" bytes */
288
289         status = spi_sync(priv->spi, &msg);
290         mutex_unlock(&priv->lock);
291
292         if (status >= 0) {
293                 *retlen = msg.actual_length - 8;
294                 status = 0;
295         } else
296                 DEBUG(MTD_DEBUG_LEVEL1, "%s: read %x..%x --> %d\n",
297                         dev_name(&priv->spi->dev),
298                         (unsigned)from, (unsigned)(from + len),
299                         status);
300         return status;
301 }
302
303 /*
304  * Write to the DataFlash device.
305  *   to     : Start offset in flash device
306  *   len    : Amount to write
307  *   retlen : Amount of data actually written
308  *   buf    : Buffer containing the data
309  */
310 static int dataflash_write(struct mtd_info *mtd, loff_t to, size_t len,
311                                 size_t * retlen, const u_char * buf)
312 {
313         struct dataflash        *priv = (struct dataflash *)mtd->priv;
314         struct spi_device       *spi = priv->spi;
315         struct spi_transfer     x[2] = { { .tx_dma = 0, }, };
316         struct spi_message      msg;
317         unsigned int            pageaddr, addr, offset, writelen;
318         size_t                  remaining = len;
319         u_char                  *writebuf = (u_char *) buf;
320         int                     status = -EINVAL;
321         uint8_t                 *command;
322
323         DEBUG(MTD_DEBUG_LEVEL2, "%s: write 0x%x..0x%x\n",
324                 dev_name(&spi->dev), (unsigned)to, (unsigned)(to + len));
325
326         *retlen = 0;
327
328         /* Sanity checks */
329         if (!len)
330                 return 0;
331         if ((to + len) > mtd->size)
332                 return -EINVAL;
333
334         spi_message_init(&msg);
335
336         x[0].tx_buf = command = priv->command;
337         x[0].len = 4;
338         spi_message_add_tail(&x[0], &msg);
339
340         pageaddr = ((unsigned)to / priv->page_size);
341         offset = ((unsigned)to % priv->page_size);
342         if (offset + len > priv->page_size)
343                 writelen = priv->page_size - offset;
344         else
345                 writelen = len;
346
347         mutex_lock(&priv->lock);
348         while (remaining > 0) {
349                 DEBUG(MTD_DEBUG_LEVEL3, "write @ %i:%i len=%i\n",
350                         pageaddr, offset, writelen);
351
352                 /* REVISIT:
353                  * (a) each page in a sector must be rewritten at least
354                  *     once every 10K sibling erase/program operations.
355                  * (b) for pages that are already erased, we could
356                  *     use WRITE+MWRITE not PROGRAM for ~30% speedup.
357                  * (c) WRITE to buffer could be done while waiting for
358                  *     a previous MWRITE/MWERASE to complete ...
359                  * (d) error handling here seems to be mostly missing.
360                  *
361                  * Two persistent bits per page, plus a per-sector counter,
362                  * could support (a) and (b) ... we might consider using
363                  * the second half of sector zero, which is just one block,
364                  * to track that state.  (On AT91, that sector should also
365                  * support boot-from-DataFlash.)
366                  */
367
368                 addr = pageaddr << priv->page_offset;
369
370                 /* (1) Maybe transfer partial page to Buffer1 */
371                 if (writelen != priv->page_size) {
372                         command[0] = OP_TRANSFER_BUF1;
373                         command[1] = (addr & 0x00FF0000) >> 16;
374                         command[2] = (addr & 0x0000FF00) >> 8;
375                         command[3] = 0;
376
377                         DEBUG(MTD_DEBUG_LEVEL3, "TRANSFER: (%x) %x %x %x\n",
378                                 command[0], command[1], command[2], command[3]);
379
380                         status = spi_sync(spi, &msg);
381                         if (status < 0)
382                                 DEBUG(MTD_DEBUG_LEVEL1, "%s: xfer %u -> %d \n",
383                                         dev_name(&spi->dev), addr, status);
384
385                         (void) dataflash_waitready(priv->spi);
386                 }
387
388                 /* (2) Program full page via Buffer1 */
389                 addr += offset;
390                 command[0] = OP_PROGRAM_VIA_BUF1;
391                 command[1] = (addr & 0x00FF0000) >> 16;
392                 command[2] = (addr & 0x0000FF00) >> 8;
393                 command[3] = (addr & 0x000000FF);
394
395                 DEBUG(MTD_DEBUG_LEVEL3, "PROGRAM: (%x) %x %x %x\n",
396                         command[0], command[1], command[2], command[3]);
397
398                 x[1].tx_buf = writebuf;
399                 x[1].len = writelen;
400                 spi_message_add_tail(x + 1, &msg);
401                 status = spi_sync(spi, &msg);
402                 spi_transfer_del(x + 1);
403                 if (status < 0)
404                         DEBUG(MTD_DEBUG_LEVEL1, "%s: pgm %u/%u -> %d \n",
405                                 dev_name(&spi->dev), addr, writelen, status);
406
407                 (void) dataflash_waitready(priv->spi);
408
409
410 #ifdef CONFIG_MTD_DATAFLASH_VERIFY_WRITE
411
412                 /* (3) Compare to Buffer1 */
413                 addr = pageaddr << priv->page_offset;
414                 command[0] = OP_COMPARE_BUF1;
415                 command[1] = (addr & 0x00FF0000) >> 16;
416                 command[2] = (addr & 0x0000FF00) >> 8;
417                 command[3] = 0;
418
419                 DEBUG(MTD_DEBUG_LEVEL3, "COMPARE: (%x) %x %x %x\n",
420                         command[0], command[1], command[2], command[3]);
421
422                 status = spi_sync(spi, &msg);
423                 if (status < 0)
424                         DEBUG(MTD_DEBUG_LEVEL1, "%s: compare %u -> %d \n",
425                                 dev_name(&spi->dev), addr, status);
426
427                 status = dataflash_waitready(priv->spi);
428
429                 /* Check result of the compare operation */
430                 if (status & (1 << 6)) {
431                         printk(KERN_ERR "%s: compare page %u, err %d\n",
432                                 dev_name(&spi->dev), pageaddr, status);
433                         remaining = 0;
434                         status = -EIO;
435                         break;
436                 } else
437                         status = 0;
438
439 #endif  /* CONFIG_MTD_DATAFLASH_VERIFY_WRITE */
440
441                 remaining = remaining - writelen;
442                 pageaddr++;
443                 offset = 0;
444                 writebuf += writelen;
445                 *retlen += writelen;
446
447                 if (remaining > priv->page_size)
448                         writelen = priv->page_size;
449                 else
450                         writelen = remaining;
451         }
452         mutex_unlock(&priv->lock);
453
454         return status;
455 }
456
457 /* ......................................................................... */
458
459 #ifdef CONFIG_MTD_DATAFLASH_OTP
460
461 static int dataflash_get_otp_info(struct mtd_info *mtd,
462                 struct otp_info *info, size_t len)
463 {
464         /* Report both blocks as identical:  bytes 0..64, locked.
465          * Unless the user block changed from all-ones, we can't
466          * tell whether it's still writable; so we assume it isn't.
467          */
468         info->start = 0;
469         info->length = 64;
470         info->locked = 1;
471         return sizeof(*info);
472 }
473
474 static ssize_t otp_read(struct spi_device *spi, unsigned base,
475                 uint8_t *buf, loff_t off, size_t len)
476 {
477         struct spi_message      m;
478         size_t                  l;
479         uint8_t                 *scratch;
480         struct spi_transfer     t;
481         int                     status;
482
483         if (off > 64)
484                 return -EINVAL;
485
486         if ((off + len) > 64)
487                 len = 64 - off;
488         if (len == 0)
489                 return len;
490
491         spi_message_init(&m);
492
493         l = 4 + base + off + len;
494         scratch = kzalloc(l, GFP_KERNEL);
495         if (!scratch)
496                 return -ENOMEM;
497
498         /* OUT: OP_READ_SECURITY, 3 don't-care bytes, zeroes
499          * IN:  ignore 4 bytes, data bytes 0..N (max 127)
500          */
501         scratch[0] = OP_READ_SECURITY;
502
503         memset(&t, 0, sizeof t);
504         t.tx_buf = scratch;
505         t.rx_buf = scratch;
506         t.len = l;
507         spi_message_add_tail(&t, &m);
508
509         dataflash_waitready(spi);
510
511         status = spi_sync(spi, &m);
512         if (status >= 0) {
513                 memcpy(buf, scratch + 4 + base + off, len);
514                 status = len;
515         }
516
517         kfree(scratch);
518         return status;
519 }
520
521 static int dataflash_read_fact_otp(struct mtd_info *mtd,
522                 loff_t from, size_t len, size_t *retlen, u_char *buf)
523 {
524         struct dataflash        *priv = (struct dataflash *)mtd->priv;
525         int                     status;
526
527         /* 64 bytes, from 0..63 ... start at 64 on-chip */
528         mutex_lock(&priv->lock);
529         status = otp_read(priv->spi, 64, buf, from, len);
530         mutex_unlock(&priv->lock);
531
532         if (status < 0)
533                 return status;
534         *retlen = status;
535         return 0;
536 }
537
538 static int dataflash_read_user_otp(struct mtd_info *mtd,
539                 loff_t from, size_t len, size_t *retlen, u_char *buf)
540 {
541         struct dataflash        *priv = (struct dataflash *)mtd->priv;
542         int                     status;
543
544         /* 64 bytes, from 0..63 ... start at 0 on-chip */
545         mutex_lock(&priv->lock);
546         status = otp_read(priv->spi, 0, buf, from, len);
547         mutex_unlock(&priv->lock);
548
549         if (status < 0)
550                 return status;
551         *retlen = status;
552         return 0;
553 }
554
555 static int dataflash_write_user_otp(struct mtd_info *mtd,
556                 loff_t from, size_t len, size_t *retlen, u_char *buf)
557 {
558         struct spi_message      m;
559         const size_t            l = 4 + 64;
560         uint8_t                 *scratch;
561         struct spi_transfer     t;
562         struct dataflash        *priv = (struct dataflash *)mtd->priv;
563         int                     status;
564
565         if (len > 64)
566                 return -EINVAL;
567
568         /* Strictly speaking, we *could* truncate the write ... but
569          * let's not do that for the only write that's ever possible.
570          */
571         if ((from + len) > 64)
572                 return -EINVAL;
573
574         /* OUT: OP_WRITE_SECURITY, 3 zeroes, 64 data-or-zero bytes
575          * IN:  ignore all
576          */
577         scratch = kzalloc(l, GFP_KERNEL);
578         if (!scratch)
579                 return -ENOMEM;
580         scratch[0] = OP_WRITE_SECURITY;
581         memcpy(scratch + 4 + from, buf, len);
582
583         spi_message_init(&m);
584
585         memset(&t, 0, sizeof t);
586         t.tx_buf = scratch;
587         t.len = l;
588         spi_message_add_tail(&t, &m);
589
590         /* Write the OTP bits, if they've not yet been written.
591          * This modifies SRAM buffer1.
592          */
593         mutex_lock(&priv->lock);
594         dataflash_waitready(priv->spi);
595         status = spi_sync(priv->spi, &m);
596         mutex_unlock(&priv->lock);
597
598         kfree(scratch);
599
600         if (status >= 0) {
601                 status = 0;
602                 *retlen = len;
603         }
604         return status;
605 }
606
607 static char *otp_setup(struct mtd_info *device, char revision)
608 {
609         device->get_fact_prot_info = dataflash_get_otp_info;
610         device->read_fact_prot_reg = dataflash_read_fact_otp;
611         device->get_user_prot_info = dataflash_get_otp_info;
612         device->read_user_prot_reg = dataflash_read_user_otp;
613
614         /* rev c parts (at45db321c and at45db1281 only!) use a
615          * different write procedure; not (yet?) implemented.
616          */
617         if (revision > 'c')
618                 device->write_user_prot_reg = dataflash_write_user_otp;
619
620         return ", OTP";
621 }
622
623 #else
624
625 static char *otp_setup(struct mtd_info *device, char revision)
626 {
627         return " (OTP)";
628 }
629
630 #endif
631
632 /* ......................................................................... */
633
634 /*
635  * Register DataFlash device with MTD subsystem.
636  */
637 static int __devinit
638 add_dataflash_otp(struct spi_device *spi, char *name,
639                 int nr_pages, int pagesize, int pageoffset, char revision)
640 {
641         struct dataflash                *priv;
642         struct mtd_info                 *device;
643         struct flash_platform_data      *pdata = spi->dev.platform_data;
644         char                            *otp_tag = "";
645
646         priv = kzalloc(sizeof *priv, GFP_KERNEL);
647         if (!priv)
648                 return -ENOMEM;
649
650         mutex_init(&priv->lock);
651         priv->spi = spi;
652         priv->page_size = pagesize;
653         priv->page_offset = pageoffset;
654
655         /* name must be usable with cmdlinepart */
656         sprintf(priv->name, "spi%d.%d-%s",
657                         spi->master->bus_num, spi->chip_select,
658                         name);
659
660         device = &priv->mtd;
661         device->name = (pdata && pdata->name) ? pdata->name : priv->name;
662         device->size = nr_pages * pagesize;
663         device->erasesize = pagesize;
664         device->writesize = pagesize;
665         device->owner = THIS_MODULE;
666         device->type = MTD_DATAFLASH;
667         device->flags = MTD_WRITEABLE;
668         device->erase = dataflash_erase;
669         device->read = dataflash_read;
670         device->write = dataflash_write;
671         device->priv = priv;
672
673         if (revision >= 'c')
674                 otp_tag = otp_setup(device, revision);
675
676         dev_info(&spi->dev, "%s (%lld KBytes) pagesize %d bytes%s\n",
677                         name, (long long)((device->size + 1023) >> 10),
678                         pagesize, otp_tag);
679         dev_set_drvdata(&spi->dev, priv);
680
681         if (mtd_has_partitions()) {
682                 struct mtd_partition    *parts;
683                 int                     nr_parts = 0;
684
685 #ifdef CONFIG_MTD_CMDLINE_PARTS
686                 static const char *part_probes[] = { "cmdlinepart", NULL, };
687
688                 nr_parts = parse_mtd_partitions(device, part_probes, &parts, 0);
689 #endif
690
691                 if (nr_parts <= 0 && pdata && pdata->parts) {
692                         parts = pdata->parts;
693                         nr_parts = pdata->nr_parts;
694                 }
695
696                 if (nr_parts > 0) {
697                         priv->partitioned = 1;
698                         return add_mtd_partitions(device, parts, nr_parts);
699                 }
700         } else if (pdata && pdata->nr_parts)
701                 dev_warn(&spi->dev, "ignoring %d default partitions on %s\n",
702                                 pdata->nr_parts, device->name);
703
704         return add_mtd_device(device) == 1 ? -ENODEV : 0;
705 }
706
707 static inline int __devinit
708 add_dataflash(struct spi_device *spi, char *name,
709                 int nr_pages, int pagesize, int pageoffset)
710 {
711         return add_dataflash_otp(spi, name, nr_pages, pagesize,
712                         pageoffset, 0);
713 }
714
715 struct flash_info {
716         char            *name;
717
718         /* JEDEC id has a high byte of zero plus three data bytes:
719          * the manufacturer id, then a two byte device id.
720          */
721         uint32_t        jedec_id;
722
723         /* The size listed here is what works with OP_ERASE_PAGE. */
724         unsigned        nr_pages;
725         uint16_t        pagesize;
726         uint16_t        pageoffset;
727
728         uint16_t        flags;
729 #define SUP_POW2PS      0x0002          /* supports 2^N byte pages */
730 #define IS_POW2PS       0x0001          /* uses 2^N byte pages */
731 };
732
733 static struct flash_info __devinitdata dataflash_data [] = {
734
735         /*
736          * NOTE:  chips with SUP_POW2PS (rev D and up) need two entries,
737          * one with IS_POW2PS and the other without.  The entry with the
738          * non-2^N byte page size can't name exact chip revisions without
739          * losing backwards compatibility for cmdlinepart.
740          *
741          * These newer chips also support 128-byte security registers (with
742          * 64 bytes one-time-programmable) and software write-protection.
743          */
744         { "AT45DB011B",  0x1f2200, 512, 264, 9, SUP_POW2PS},
745         { "at45db011d",  0x1f2200, 512, 256, 8, SUP_POW2PS | IS_POW2PS},
746
747         { "AT45DB021B",  0x1f2300, 1024, 264, 9, SUP_POW2PS},
748         { "at45db021d",  0x1f2300, 1024, 256, 8, SUP_POW2PS | IS_POW2PS},
749
750         { "AT45DB041x",  0x1f2400, 2048, 264, 9, SUP_POW2PS},
751         { "at45db041d",  0x1f2400, 2048, 256, 8, SUP_POW2PS | IS_POW2PS},
752
753         { "AT45DB081B",  0x1f2500, 4096, 264, 9, SUP_POW2PS},
754         { "at45db081d",  0x1f2500, 4096, 256, 8, SUP_POW2PS | IS_POW2PS},
755
756         { "AT45DB161x",  0x1f2600, 4096, 528, 10, SUP_POW2PS},
757         { "at45db161d",  0x1f2600, 4096, 512, 9, SUP_POW2PS | IS_POW2PS},
758
759         { "AT45DB321x",  0x1f2700, 8192, 528, 10, 0},           /* rev C */
760
761         { "AT45DB321x",  0x1f2701, 8192, 528, 10, SUP_POW2PS},
762         { "at45db321d",  0x1f2701, 8192, 512, 9, SUP_POW2PS | IS_POW2PS},
763
764         { "AT45DB642x",  0x1f2800, 8192, 1056, 11, SUP_POW2PS},
765         { "at45db642d",  0x1f2800, 8192, 1024, 10, SUP_POW2PS | IS_POW2PS},
766 };
767
768 static struct flash_info *__devinit jedec_probe(struct spi_device *spi)
769 {
770         int                     tmp;
771         uint8_t                 code = OP_READ_ID;
772         uint8_t                 id[3];
773         uint32_t                jedec;
774         struct flash_info       *info;
775         int status;
776
777         /* JEDEC also defines an optional "extended device information"
778          * string for after vendor-specific data, after the three bytes
779          * we use here.  Supporting some chips might require using it.
780          *
781          * If the vendor ID isn't Atmel's (0x1f), assume this call failed.
782          * That's not an error; only rev C and newer chips handle it, and
783          * only Atmel sells these chips.
784          */
785         tmp = spi_write_then_read(spi, &code, 1, id, 3);
786         if (tmp < 0) {
787                 DEBUG(MTD_DEBUG_LEVEL0, "%s: error %d reading JEDEC ID\n",
788                         dev_name(&spi->dev), tmp);
789                 return ERR_PTR(tmp);
790         }
791         if (id[0] != 0x1f)
792                 return NULL;
793
794         jedec = id[0];
795         jedec = jedec << 8;
796         jedec |= id[1];
797         jedec = jedec << 8;
798         jedec |= id[2];
799
800         for (tmp = 0, info = dataflash_data;
801                         tmp < ARRAY_SIZE(dataflash_data);
802                         tmp++, info++) {
803                 if (info->jedec_id == jedec) {
804                         DEBUG(MTD_DEBUG_LEVEL1, "%s: OTP, sector protect%s\n",
805                                 dev_name(&spi->dev),
806                                 (info->flags & SUP_POW2PS)
807                                         ? ", binary pagesize" : ""
808                                 );
809                         if (info->flags & SUP_POW2PS) {
810                                 status = dataflash_status(spi);
811                                 if (status < 0) {
812                                         DEBUG(MTD_DEBUG_LEVEL1,
813                                                 "%s: status error %d\n",
814                                                 dev_name(&spi->dev), status);
815                                         return ERR_PTR(status);
816                                 }
817                                 if (status & 0x1) {
818                                         if (info->flags & IS_POW2PS)
819                                                 return info;
820                                 } else {
821                                         if (!(info->flags & IS_POW2PS))
822                                                 return info;
823                                 }
824                         }
825                 }
826         }
827
828         /*
829          * Treat other chips as errors ... we won't know the right page
830          * size (it might be binary) even when we can tell which density
831          * class is involved (legacy chip id scheme).
832          */
833         dev_warn(&spi->dev, "JEDEC id %06x not handled\n", jedec);
834         return ERR_PTR(-ENODEV);
835 }
836
837 /*
838  * Detect and initialize DataFlash device, using JEDEC IDs on newer chips
839  * or else the ID code embedded in the status bits:
840  *
841  *   Device      Density         ID code          #Pages PageSize  Offset
842  *   AT45DB011B  1Mbit   (128K)  xx0011xx (0x0c)    512    264      9
843  *   AT45DB021B  2Mbit   (256K)  xx0101xx (0x14)   1024    264      9
844  *   AT45DB041B  4Mbit   (512K)  xx0111xx (0x1c)   2048    264      9
845  *   AT45DB081B  8Mbit   (1M)    xx1001xx (0x24)   4096    264      9
846  *   AT45DB0161B 16Mbit  (2M)    xx1011xx (0x2c)   4096    528     10
847  *   AT45DB0321B 32Mbit  (4M)    xx1101xx (0x34)   8192    528     10
848  *   AT45DB0642  64Mbit  (8M)    xx111xxx (0x3c)   8192   1056     11
849  *   AT45DB1282  128Mbit (16M)   xx0100xx (0x10)  16384   1056     11
850  */
851 static int __devinit dataflash_probe(struct spi_device *spi)
852 {
853         int status;
854         struct flash_info       *info;
855
856         /*
857          * Try to detect dataflash by JEDEC ID.
858          * If it succeeds we know we have either a C or D part.
859          * D will support power of 2 pagesize option.
860          * Both support the security register, though with different
861          * write procedures.
862          */
863         info = jedec_probe(spi);
864         if (IS_ERR(info))
865                 return PTR_ERR(info);
866         if (info != NULL)
867                 return add_dataflash_otp(spi, info->name, info->nr_pages,
868                                 info->pagesize, info->pageoffset,
869                                 (info->flags & SUP_POW2PS) ? 'd' : 'c');
870
871         /*
872          * Older chips support only legacy commands, identifing
873          * capacity using bits in the status byte.
874          */
875         status = dataflash_status(spi);
876         if (status <= 0 || status == 0xff) {
877                 DEBUG(MTD_DEBUG_LEVEL1, "%s: status error %d\n",
878                                 dev_name(&spi->dev), status);
879                 if (status == 0 || status == 0xff)
880                         status = -ENODEV;
881                 return status;
882         }
883
884         /* if there's a device there, assume it's dataflash.
885          * board setup should have set spi->max_speed_max to
886          * match f(car) for continuous reads, mode 0 or 3.
887          */
888         switch (status & 0x3c) {
889         case 0x0c:      /* 0 0 1 1 x x */
890                 status = add_dataflash(spi, "AT45DB011B", 512, 264, 9);
891                 break;
892         case 0x14:      /* 0 1 0 1 x x */
893                 status = add_dataflash(spi, "AT45DB021B", 1024, 264, 9);
894                 break;
895         case 0x1c:      /* 0 1 1 1 x x */
896                 status = add_dataflash(spi, "AT45DB041x", 2048, 264, 9);
897                 break;
898         case 0x24:      /* 1 0 0 1 x x */
899                 status = add_dataflash(spi, "AT45DB081B", 4096, 264, 9);
900                 break;
901         case 0x2c:      /* 1 0 1 1 x x */
902                 status = add_dataflash(spi, "AT45DB161x", 4096, 528, 10);
903                 break;
904         case 0x34:      /* 1 1 0 1 x x */
905                 status = add_dataflash(spi, "AT45DB321x", 8192, 528, 10);
906                 break;
907         case 0x38:      /* 1 1 1 x x x */
908         case 0x3c:
909                 status = add_dataflash(spi, "AT45DB642x", 8192, 1056, 11);
910                 break;
911         /* obsolete AT45DB1282 not (yet?) supported */
912         default:
913                 DEBUG(MTD_DEBUG_LEVEL1, "%s: unsupported device (%x)\n",
914                                 dev_name(&spi->dev), status & 0x3c);
915                 status = -ENODEV;
916         }
917
918         if (status < 0)
919                 DEBUG(MTD_DEBUG_LEVEL1, "%s: add_dataflash --> %d\n",
920                                 dev_name(&spi->dev), status);
921
922         return status;
923 }
924
925 static int __devexit dataflash_remove(struct spi_device *spi)
926 {
927         struct dataflash        *flash = dev_get_drvdata(&spi->dev);
928         int                     status;
929
930         DEBUG(MTD_DEBUG_LEVEL1, "%s: remove\n", dev_name(&spi->dev));
931
932         if (mtd_has_partitions() && flash->partitioned)
933                 status = del_mtd_partitions(&flash->mtd);
934         else
935                 status = del_mtd_device(&flash->mtd);
936         if (status == 0)
937                 kfree(flash);
938         return status;
939 }
940
941 static struct spi_driver dataflash_driver = {
942         .driver = {
943                 .name           = "mtd_dataflash",
944                 .bus            = &spi_bus_type,
945                 .owner          = THIS_MODULE,
946         },
947
948         .probe          = dataflash_probe,
949         .remove         = __devexit_p(dataflash_remove),
950
951         /* FIXME:  investigate suspend and resume... */
952 };
953
954 static int __init dataflash_init(void)
955 {
956         return spi_register_driver(&dataflash_driver);
957 }
958 module_init(dataflash_init);
959
960 static void __exit dataflash_exit(void)
961 {
962         spi_unregister_driver(&dataflash_driver);
963 }
964 module_exit(dataflash_exit);
965
966
967 MODULE_LICENSE("GPL");
968 MODULE_AUTHOR("Andrew Victor, David Brownell");
969 MODULE_DESCRIPTION("MTD DataFlash driver");