]> nv-tegra.nvidia Code Review - linux-2.6.git/blob - drivers/mtd/chips/cfi_cmdset_0001.c
Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[linux-2.6.git] / drivers / mtd / chips / cfi_cmdset_0001.c
1 /*
2  * Common Flash Interface support:
3  *   Intel Extended Vendor Command Set (ID 0x0001)
4  *
5  * (C) 2000 Red Hat. GPL'd
6  *
7  *
8  * 10/10/2000   Nicolas Pitre <nico@fluxnic.net>
9  *      - completely revamped method functions so they are aware and
10  *        independent of the flash geometry (buswidth, interleave, etc.)
11  *      - scalability vs code size is completely set at compile-time
12  *        (see include/linux/mtd/cfi.h for selection)
13  *      - optimized write buffer method
14  * 02/05/2002   Christopher Hoover <ch@hpl.hp.com>/<ch@murgatroid.com>
15  *      - reworked lock/unlock/erase support for var size flash
16  * 21/03/2007   Rodolfo Giometti <giometti@linux.it>
17  *      - auto unlock sectors on resume for auto locking flash on power up
18  */
19
20 #include <linux/module.h>
21 #include <linux/types.h>
22 #include <linux/kernel.h>
23 #include <linux/sched.h>
24 #include <linux/init.h>
25 #include <asm/io.h>
26 #include <asm/byteorder.h>
27
28 #include <linux/errno.h>
29 #include <linux/slab.h>
30 #include <linux/delay.h>
31 #include <linux/interrupt.h>
32 #include <linux/reboot.h>
33 #include <linux/bitmap.h>
34 #include <linux/mtd/xip.h>
35 #include <linux/mtd/map.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/compatmac.h>
38 #include <linux/mtd/cfi.h>
39
40 /* #define CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE */
41 /* #define CMDSET0001_DISABLE_WRITE_SUSPEND */
42
43 // debugging, turns off buffer write mode if set to 1
44 #define FORCE_WORD_WRITE 0
45
46 /* Intel chips */
47 #define I82802AB        0x00ad
48 #define I82802AC        0x00ac
49 #define PF38F4476       0x881c
50 /* STMicroelectronics chips */
51 #define M50LPW080       0x002F
52 #define M50FLW080A      0x0080
53 #define M50FLW080B      0x0081
54 /* Atmel chips */
55 #define AT49BV640D      0x02de
56 #define AT49BV640DT     0x02db
57
58 static int cfi_intelext_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
59 static int cfi_intelext_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
60 static int cfi_intelext_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
61 static int cfi_intelext_writev(struct mtd_info *, const struct kvec *, unsigned long, loff_t, size_t *);
62 static int cfi_intelext_erase_varsize(struct mtd_info *, struct erase_info *);
63 static void cfi_intelext_sync (struct mtd_info *);
64 static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
65 static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
66 #ifdef CONFIG_MTD_OTP
67 static int cfi_intelext_read_fact_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
68 static int cfi_intelext_read_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
69 static int cfi_intelext_write_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
70 static int cfi_intelext_lock_user_prot_reg (struct mtd_info *, loff_t, size_t);
71 static int cfi_intelext_get_fact_prot_info (struct mtd_info *,
72                                             struct otp_info *, size_t);
73 static int cfi_intelext_get_user_prot_info (struct mtd_info *,
74                                             struct otp_info *, size_t);
75 #endif
76 static int cfi_intelext_suspend (struct mtd_info *);
77 static void cfi_intelext_resume (struct mtd_info *);
78 static int cfi_intelext_reboot (struct notifier_block *, unsigned long, void *);
79
80 static void cfi_intelext_destroy(struct mtd_info *);
81
82 struct mtd_info *cfi_cmdset_0001(struct map_info *, int);
83
84 static struct mtd_info *cfi_intelext_setup (struct mtd_info *);
85 static int cfi_intelext_partition_fixup(struct mtd_info *, struct cfi_private **);
86
87 static int cfi_intelext_point (struct mtd_info *mtd, loff_t from, size_t len,
88                      size_t *retlen, void **virt, resource_size_t *phys);
89 static void cfi_intelext_unpoint(struct mtd_info *mtd, loff_t from, size_t len);
90
91 static int chip_ready (struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
92 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
93 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
94 #include "fwh_lock.h"
95
96
97
98 /*
99  *  *********** SETUP AND PROBE BITS  ***********
100  */
101
102 static struct mtd_chip_driver cfi_intelext_chipdrv = {
103         .probe          = NULL, /* Not usable directly */
104         .destroy        = cfi_intelext_destroy,
105         .name           = "cfi_cmdset_0001",
106         .module         = THIS_MODULE
107 };
108
109 /* #define DEBUG_LOCK_BITS */
110 /* #define DEBUG_CFI_FEATURES */
111
112 #ifdef DEBUG_CFI_FEATURES
113 static void cfi_tell_features(struct cfi_pri_intelext *extp)
114 {
115         int i;
116         printk("  Extended Query version %c.%c\n", extp->MajorVersion, extp->MinorVersion);
117         printk("  Feature/Command Support:      %4.4X\n", extp->FeatureSupport);
118         printk("     - Chip Erase:              %s\n", extp->FeatureSupport&1?"supported":"unsupported");
119         printk("     - Suspend Erase:           %s\n", extp->FeatureSupport&2?"supported":"unsupported");
120         printk("     - Suspend Program:         %s\n", extp->FeatureSupport&4?"supported":"unsupported");
121         printk("     - Legacy Lock/Unlock:      %s\n", extp->FeatureSupport&8?"supported":"unsupported");
122         printk("     - Queued Erase:            %s\n", extp->FeatureSupport&16?"supported":"unsupported");
123         printk("     - Instant block lock:      %s\n", extp->FeatureSupport&32?"supported":"unsupported");
124         printk("     - Protection Bits:         %s\n", extp->FeatureSupport&64?"supported":"unsupported");
125         printk("     - Page-mode read:          %s\n", extp->FeatureSupport&128?"supported":"unsupported");
126         printk("     - Synchronous read:        %s\n", extp->FeatureSupport&256?"supported":"unsupported");
127         printk("     - Simultaneous operations: %s\n", extp->FeatureSupport&512?"supported":"unsupported");
128         printk("     - Extended Flash Array:    %s\n", extp->FeatureSupport&1024?"supported":"unsupported");
129         for (i=11; i<32; i++) {
130                 if (extp->FeatureSupport & (1<<i))
131                         printk("     - Unknown Bit %X:      supported\n", i);
132         }
133
134         printk("  Supported functions after Suspend: %2.2X\n", extp->SuspendCmdSupport);
135         printk("     - Program after Erase Suspend: %s\n", extp->SuspendCmdSupport&1?"supported":"unsupported");
136         for (i=1; i<8; i++) {
137                 if (extp->SuspendCmdSupport & (1<<i))
138                         printk("     - Unknown Bit %X:               supported\n", i);
139         }
140
141         printk("  Block Status Register Mask: %4.4X\n", extp->BlkStatusRegMask);
142         printk("     - Lock Bit Active:      %s\n", extp->BlkStatusRegMask&1?"yes":"no");
143         printk("     - Lock-Down Bit Active: %s\n", extp->BlkStatusRegMask&2?"yes":"no");
144         for (i=2; i<3; i++) {
145                 if (extp->BlkStatusRegMask & (1<<i))
146                         printk("     - Unknown Bit %X Active: yes\n",i);
147         }
148         printk("     - EFA Lock Bit:         %s\n", extp->BlkStatusRegMask&16?"yes":"no");
149         printk("     - EFA Lock-Down Bit:    %s\n", extp->BlkStatusRegMask&32?"yes":"no");
150         for (i=6; i<16; i++) {
151                 if (extp->BlkStatusRegMask & (1<<i))
152                         printk("     - Unknown Bit %X Active: yes\n",i);
153         }
154
155         printk("  Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n",
156                extp->VccOptimal >> 4, extp->VccOptimal & 0xf);
157         if (extp->VppOptimal)
158                 printk("  Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n",
159                        extp->VppOptimal >> 4, extp->VppOptimal & 0xf);
160 }
161 #endif
162
163 /* Atmel chips don't use the same PRI format as Intel chips */
164 static void fixup_convert_atmel_pri(struct mtd_info *mtd, void *param)
165 {
166         struct map_info *map = mtd->priv;
167         struct cfi_private *cfi = map->fldrv_priv;
168         struct cfi_pri_intelext *extp = cfi->cmdset_priv;
169         struct cfi_pri_atmel atmel_pri;
170         uint32_t features = 0;
171
172         /* Reverse byteswapping */
173         extp->FeatureSupport = cpu_to_le32(extp->FeatureSupport);
174         extp->BlkStatusRegMask = cpu_to_le16(extp->BlkStatusRegMask);
175         extp->ProtRegAddr = cpu_to_le16(extp->ProtRegAddr);
176
177         memcpy(&atmel_pri, extp, sizeof(atmel_pri));
178         memset((char *)extp + 5, 0, sizeof(*extp) - 5);
179
180         printk(KERN_ERR "atmel Features: %02x\n", atmel_pri.Features);
181
182         if (atmel_pri.Features & 0x01) /* chip erase supported */
183                 features |= (1<<0);
184         if (atmel_pri.Features & 0x02) /* erase suspend supported */
185                 features |= (1<<1);
186         if (atmel_pri.Features & 0x04) /* program suspend supported */
187                 features |= (1<<2);
188         if (atmel_pri.Features & 0x08) /* simultaneous operations supported */
189                 features |= (1<<9);
190         if (atmel_pri.Features & 0x20) /* page mode read supported */
191                 features |= (1<<7);
192         if (atmel_pri.Features & 0x40) /* queued erase supported */
193                 features |= (1<<4);
194         if (atmel_pri.Features & 0x80) /* Protection bits supported */
195                 features |= (1<<6);
196
197         extp->FeatureSupport = features;
198
199         /* burst write mode not supported */
200         cfi->cfiq->BufWriteTimeoutTyp = 0;
201         cfi->cfiq->BufWriteTimeoutMax = 0;
202 }
203
204 static void fixup_at49bv640dx_lock(struct mtd_info *mtd, void *param)
205 {
206         struct map_info *map = mtd->priv;
207         struct cfi_private *cfi = map->fldrv_priv;
208         struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
209
210         cfip->FeatureSupport |= (1 << 5);
211         mtd->flags |= MTD_POWERUP_LOCK;
212 }
213
214 #ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE
215 /* Some Intel Strata Flash prior to FPO revision C has bugs in this area */
216 static void fixup_intel_strataflash(struct mtd_info *mtd, void* param)
217 {
218         struct map_info *map = mtd->priv;
219         struct cfi_private *cfi = map->fldrv_priv;
220         struct cfi_pri_intelext *extp = cfi->cmdset_priv;
221
222         printk(KERN_WARNING "cfi_cmdset_0001: Suspend "
223                             "erase on write disabled.\n");
224         extp->SuspendCmdSupport &= ~1;
225 }
226 #endif
227
228 #ifdef CMDSET0001_DISABLE_WRITE_SUSPEND
229 static void fixup_no_write_suspend(struct mtd_info *mtd, void* param)
230 {
231         struct map_info *map = mtd->priv;
232         struct cfi_private *cfi = map->fldrv_priv;
233         struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
234
235         if (cfip && (cfip->FeatureSupport&4)) {
236                 cfip->FeatureSupport &= ~4;
237                 printk(KERN_WARNING "cfi_cmdset_0001: write suspend disabled\n");
238         }
239 }
240 #endif
241
242 static void fixup_st_m28w320ct(struct mtd_info *mtd, void* param)
243 {
244         struct map_info *map = mtd->priv;
245         struct cfi_private *cfi = map->fldrv_priv;
246
247         cfi->cfiq->BufWriteTimeoutTyp = 0;      /* Not supported */
248         cfi->cfiq->BufWriteTimeoutMax = 0;      /* Not supported */
249 }
250
251 static void fixup_st_m28w320cb(struct mtd_info *mtd, void* param)
252 {
253         struct map_info *map = mtd->priv;
254         struct cfi_private *cfi = map->fldrv_priv;
255
256         /* Note this is done after the region info is endian swapped */
257         cfi->cfiq->EraseRegionInfo[1] =
258                 (cfi->cfiq->EraseRegionInfo[1] & 0xffff0000) | 0x3e;
259 };
260
261 static void fixup_use_point(struct mtd_info *mtd, void *param)
262 {
263         struct map_info *map = mtd->priv;
264         if (!mtd->point && map_is_linear(map)) {
265                 mtd->point   = cfi_intelext_point;
266                 mtd->unpoint = cfi_intelext_unpoint;
267         }
268 }
269
270 static void fixup_use_write_buffers(struct mtd_info *mtd, void *param)
271 {
272         struct map_info *map = mtd->priv;
273         struct cfi_private *cfi = map->fldrv_priv;
274         if (cfi->cfiq->BufWriteTimeoutTyp) {
275                 printk(KERN_INFO "Using buffer write method\n" );
276                 mtd->write = cfi_intelext_write_buffers;
277                 mtd->writev = cfi_intelext_writev;
278         }
279 }
280
281 /*
282  * Some chips power-up with all sectors locked by default.
283  */
284 static void fixup_unlock_powerup_lock(struct mtd_info *mtd, void *param)
285 {
286         struct map_info *map = mtd->priv;
287         struct cfi_private *cfi = map->fldrv_priv;
288         struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
289
290         if (cfip->FeatureSupport&32) {
291                 printk(KERN_INFO "Using auto-unlock on power-up/resume\n" );
292                 mtd->flags |= MTD_POWERUP_LOCK;
293         }
294 }
295
296 static struct cfi_fixup cfi_fixup_table[] = {
297         { CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri, NULL },
298         { CFI_MFR_ATMEL, AT49BV640D, fixup_at49bv640dx_lock, NULL },
299         { CFI_MFR_ATMEL, AT49BV640DT, fixup_at49bv640dx_lock, NULL },
300 #ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE
301         { CFI_MFR_ANY, CFI_ID_ANY, fixup_intel_strataflash, NULL },
302 #endif
303 #ifdef CMDSET0001_DISABLE_WRITE_SUSPEND
304         { CFI_MFR_ANY, CFI_ID_ANY, fixup_no_write_suspend, NULL },
305 #endif
306 #if !FORCE_WORD_WRITE
307         { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers, NULL },
308 #endif
309         { CFI_MFR_ST, 0x00ba, /* M28W320CT */ fixup_st_m28w320ct, NULL },
310         { CFI_MFR_ST, 0x00bb, /* M28W320CB */ fixup_st_m28w320cb, NULL },
311         { CFI_MFR_INTEL, CFI_ID_ANY, fixup_unlock_powerup_lock, NULL, },
312         { 0, 0, NULL, NULL }
313 };
314
315 static struct cfi_fixup jedec_fixup_table[] = {
316         { CFI_MFR_INTEL, I82802AB,   fixup_use_fwh_lock, NULL, },
317         { CFI_MFR_INTEL, I82802AC,   fixup_use_fwh_lock, NULL, },
318         { CFI_MFR_ST,    M50LPW080,  fixup_use_fwh_lock, NULL, },
319         { CFI_MFR_ST,    M50FLW080A, fixup_use_fwh_lock, NULL, },
320         { CFI_MFR_ST,    M50FLW080B, fixup_use_fwh_lock, NULL, },
321         { 0, 0, NULL, NULL }
322 };
323 static struct cfi_fixup fixup_table[] = {
324         /* The CFI vendor ids and the JEDEC vendor IDs appear
325          * to be common.  It is like the devices id's are as
326          * well.  This table is to pick all cases where
327          * we know that is the case.
328          */
329         { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_point, NULL },
330         { 0, 0, NULL, NULL }
331 };
332
333 static void cfi_fixup_major_minor(struct cfi_private *cfi,
334                                                 struct cfi_pri_intelext *extp)
335 {
336         if (cfi->mfr == CFI_MFR_INTEL &&
337                         cfi->id == PF38F4476 && extp->MinorVersion == '3')
338                 extp->MinorVersion = '1';
339 }
340
341 static inline struct cfi_pri_intelext *
342 read_pri_intelext(struct map_info *map, __u16 adr)
343 {
344         struct cfi_private *cfi = map->fldrv_priv;
345         struct cfi_pri_intelext *extp;
346         unsigned int extra_size = 0;
347         unsigned int extp_size = sizeof(*extp);
348
349  again:
350         extp = (struct cfi_pri_intelext *)cfi_read_pri(map, adr, extp_size, "Intel/Sharp");
351         if (!extp)
352                 return NULL;
353
354         cfi_fixup_major_minor(cfi, extp);
355
356         if (extp->MajorVersion != '1' ||
357             (extp->MinorVersion < '0' || extp->MinorVersion > '5')) {
358                 printk(KERN_ERR "  Unknown Intel/Sharp Extended Query "
359                        "version %c.%c.\n",  extp->MajorVersion,
360                        extp->MinorVersion);
361                 kfree(extp);
362                 return NULL;
363         }
364
365         /* Do some byteswapping if necessary */
366         extp->FeatureSupport = le32_to_cpu(extp->FeatureSupport);
367         extp->BlkStatusRegMask = le16_to_cpu(extp->BlkStatusRegMask);
368         extp->ProtRegAddr = le16_to_cpu(extp->ProtRegAddr);
369
370         if (extp->MinorVersion >= '0') {
371                 extra_size = 0;
372
373                 /* Protection Register info */
374                 extra_size += (extp->NumProtectionFields - 1) *
375                               sizeof(struct cfi_intelext_otpinfo);
376         }
377
378         if (extp->MinorVersion >= '1') {
379                 /* Burst Read info */
380                 extra_size += 2;
381                 if (extp_size < sizeof(*extp) + extra_size)
382                         goto need_more;
383                 extra_size += extp->extra[extra_size - 1];
384         }
385
386         if (extp->MinorVersion >= '3') {
387                 int nb_parts, i;
388
389                 /* Number of hardware-partitions */
390                 extra_size += 1;
391                 if (extp_size < sizeof(*extp) + extra_size)
392                         goto need_more;
393                 nb_parts = extp->extra[extra_size - 1];
394
395                 /* skip the sizeof(partregion) field in CFI 1.4 */
396                 if (extp->MinorVersion >= '4')
397                         extra_size += 2;
398
399                 for (i = 0; i < nb_parts; i++) {
400                         struct cfi_intelext_regioninfo *rinfo;
401                         rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[extra_size];
402                         extra_size += sizeof(*rinfo);
403                         if (extp_size < sizeof(*extp) + extra_size)
404                                 goto need_more;
405                         rinfo->NumIdentPartitions=le16_to_cpu(rinfo->NumIdentPartitions);
406                         extra_size += (rinfo->NumBlockTypes - 1)
407                                       * sizeof(struct cfi_intelext_blockinfo);
408                 }
409
410                 if (extp->MinorVersion >= '4')
411                         extra_size += sizeof(struct cfi_intelext_programming_regioninfo);
412
413                 if (extp_size < sizeof(*extp) + extra_size) {
414                         need_more:
415                         extp_size = sizeof(*extp) + extra_size;
416                         kfree(extp);
417                         if (extp_size > 4096) {
418                                 printk(KERN_ERR
419                                         "%s: cfi_pri_intelext is too fat\n",
420                                         __func__);
421                                 return NULL;
422                         }
423                         goto again;
424                 }
425         }
426
427         return extp;
428 }
429
430 struct mtd_info *cfi_cmdset_0001(struct map_info *map, int primary)
431 {
432         struct cfi_private *cfi = map->fldrv_priv;
433         struct mtd_info *mtd;
434         int i;
435
436         mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
437         if (!mtd) {
438                 printk(KERN_ERR "Failed to allocate memory for MTD device\n");
439                 return NULL;
440         }
441         mtd->priv = map;
442         mtd->type = MTD_NORFLASH;
443
444         /* Fill in the default mtd operations */
445         mtd->erase   = cfi_intelext_erase_varsize;
446         mtd->read    = cfi_intelext_read;
447         mtd->write   = cfi_intelext_write_words;
448         mtd->sync    = cfi_intelext_sync;
449         mtd->lock    = cfi_intelext_lock;
450         mtd->unlock  = cfi_intelext_unlock;
451         mtd->suspend = cfi_intelext_suspend;
452         mtd->resume  = cfi_intelext_resume;
453         mtd->flags   = MTD_CAP_NORFLASH;
454         mtd->name    = map->name;
455         mtd->writesize = 1;
456
457         mtd->reboot_notifier.notifier_call = cfi_intelext_reboot;
458
459         if (cfi->cfi_mode == CFI_MODE_CFI) {
460                 /*
461                  * It's a real CFI chip, not one for which the probe
462                  * routine faked a CFI structure. So we read the feature
463                  * table from it.
464                  */
465                 __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
466                 struct cfi_pri_intelext *extp;
467
468                 extp = read_pri_intelext(map, adr);
469                 if (!extp) {
470                         kfree(mtd);
471                         return NULL;
472                 }
473
474                 /* Install our own private info structure */
475                 cfi->cmdset_priv = extp;
476
477                 cfi_fixup(mtd, cfi_fixup_table);
478
479 #ifdef DEBUG_CFI_FEATURES
480                 /* Tell the user about it in lots of lovely detail */
481                 cfi_tell_features(extp);
482 #endif
483
484                 if(extp->SuspendCmdSupport & 1) {
485                         printk(KERN_NOTICE "cfi_cmdset_0001: Erase suspend on write enabled\n");
486                 }
487         }
488         else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
489                 /* Apply jedec specific fixups */
490                 cfi_fixup(mtd, jedec_fixup_table);
491         }
492         /* Apply generic fixups */
493         cfi_fixup(mtd, fixup_table);
494
495         for (i=0; i< cfi->numchips; i++) {
496                 if (cfi->cfiq->WordWriteTimeoutTyp)
497                         cfi->chips[i].word_write_time =
498                                 1<<cfi->cfiq->WordWriteTimeoutTyp;
499                 else
500                         cfi->chips[i].word_write_time = 50000;
501
502                 if (cfi->cfiq->BufWriteTimeoutTyp)
503                         cfi->chips[i].buffer_write_time =
504                                 1<<cfi->cfiq->BufWriteTimeoutTyp;
505                 /* No default; if it isn't specified, we won't use it */
506
507                 if (cfi->cfiq->BlockEraseTimeoutTyp)
508                         cfi->chips[i].erase_time =
509                                 1000<<cfi->cfiq->BlockEraseTimeoutTyp;
510                 else
511                         cfi->chips[i].erase_time = 2000000;
512
513                 if (cfi->cfiq->WordWriteTimeoutTyp &&
514                     cfi->cfiq->WordWriteTimeoutMax)
515                         cfi->chips[i].word_write_time_max =
516                                 1<<(cfi->cfiq->WordWriteTimeoutTyp +
517                                     cfi->cfiq->WordWriteTimeoutMax);
518                 else
519                         cfi->chips[i].word_write_time_max = 50000 * 8;
520
521                 if (cfi->cfiq->BufWriteTimeoutTyp &&
522                     cfi->cfiq->BufWriteTimeoutMax)
523                         cfi->chips[i].buffer_write_time_max =
524                                 1<<(cfi->cfiq->BufWriteTimeoutTyp +
525                                     cfi->cfiq->BufWriteTimeoutMax);
526
527                 if (cfi->cfiq->BlockEraseTimeoutTyp &&
528                     cfi->cfiq->BlockEraseTimeoutMax)
529                         cfi->chips[i].erase_time_max =
530                                 1000<<(cfi->cfiq->BlockEraseTimeoutTyp +
531                                        cfi->cfiq->BlockEraseTimeoutMax);
532                 else
533                         cfi->chips[i].erase_time_max = 2000000 * 8;
534
535                 cfi->chips[i].ref_point_counter = 0;
536                 init_waitqueue_head(&(cfi->chips[i].wq));
537         }
538
539         map->fldrv = &cfi_intelext_chipdrv;
540
541         return cfi_intelext_setup(mtd);
542 }
543 struct mtd_info *cfi_cmdset_0003(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0001")));
544 struct mtd_info *cfi_cmdset_0200(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0001")));
545 EXPORT_SYMBOL_GPL(cfi_cmdset_0001);
546 EXPORT_SYMBOL_GPL(cfi_cmdset_0003);
547 EXPORT_SYMBOL_GPL(cfi_cmdset_0200);
548
549 static struct mtd_info *cfi_intelext_setup(struct mtd_info *mtd)
550 {
551         struct map_info *map = mtd->priv;
552         struct cfi_private *cfi = map->fldrv_priv;
553         unsigned long offset = 0;
554         int i,j;
555         unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
556
557         //printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips);
558
559         mtd->size = devsize * cfi->numchips;
560
561         mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
562         mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
563                         * mtd->numeraseregions, GFP_KERNEL);
564         if (!mtd->eraseregions) {
565                 printk(KERN_ERR "Failed to allocate memory for MTD erase region info\n");
566                 goto setup_err;
567         }
568
569         for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
570                 unsigned long ernum, ersize;
571                 ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
572                 ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
573
574                 if (mtd->erasesize < ersize) {
575                         mtd->erasesize = ersize;
576                 }
577                 for (j=0; j<cfi->numchips; j++) {
578                         mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
579                         mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
580                         mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
581                         mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].lockmap = kmalloc(ernum / 8 + 1, GFP_KERNEL);
582                 }
583                 offset += (ersize * ernum);
584         }
585
586         if (offset != devsize) {
587                 /* Argh */
588                 printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
589                 goto setup_err;
590         }
591
592         for (i=0; i<mtd->numeraseregions;i++){
593                 printk(KERN_DEBUG "erase region %d: offset=0x%llx,size=0x%x,blocks=%d\n",
594                        i,(unsigned long long)mtd->eraseregions[i].offset,
595                        mtd->eraseregions[i].erasesize,
596                        mtd->eraseregions[i].numblocks);
597         }
598
599 #ifdef CONFIG_MTD_OTP
600         mtd->read_fact_prot_reg = cfi_intelext_read_fact_prot_reg;
601         mtd->read_user_prot_reg = cfi_intelext_read_user_prot_reg;
602         mtd->write_user_prot_reg = cfi_intelext_write_user_prot_reg;
603         mtd->lock_user_prot_reg = cfi_intelext_lock_user_prot_reg;
604         mtd->get_fact_prot_info = cfi_intelext_get_fact_prot_info;
605         mtd->get_user_prot_info = cfi_intelext_get_user_prot_info;
606 #endif
607
608         /* This function has the potential to distort the reality
609            a bit and therefore should be called last. */
610         if (cfi_intelext_partition_fixup(mtd, &cfi) != 0)
611                 goto setup_err;
612
613         __module_get(THIS_MODULE);
614         register_reboot_notifier(&mtd->reboot_notifier);
615         return mtd;
616
617  setup_err:
618         if(mtd) {
619                 kfree(mtd->eraseregions);
620                 kfree(mtd);
621         }
622         kfree(cfi->cmdset_priv);
623         return NULL;
624 }
625
626 static int cfi_intelext_partition_fixup(struct mtd_info *mtd,
627                                         struct cfi_private **pcfi)
628 {
629         struct map_info *map = mtd->priv;
630         struct cfi_private *cfi = *pcfi;
631         struct cfi_pri_intelext *extp = cfi->cmdset_priv;
632
633         /*
634          * Probing of multi-partition flash chips.
635          *
636          * To support multiple partitions when available, we simply arrange
637          * for each of them to have their own flchip structure even if they
638          * are on the same physical chip.  This means completely recreating
639          * a new cfi_private structure right here which is a blatent code
640          * layering violation, but this is still the least intrusive
641          * arrangement at this point. This can be rearranged in the future
642          * if someone feels motivated enough.  --nico
643          */
644         if (extp && extp->MajorVersion == '1' && extp->MinorVersion >= '3'
645             && extp->FeatureSupport & (1 << 9)) {
646                 struct cfi_private *newcfi;
647                 struct flchip *chip;
648                 struct flchip_shared *shared;
649                 int offs, numregions, numparts, partshift, numvirtchips, i, j;
650
651                 /* Protection Register info */
652                 offs = (extp->NumProtectionFields - 1) *
653                        sizeof(struct cfi_intelext_otpinfo);
654
655                 /* Burst Read info */
656                 offs += extp->extra[offs+1]+2;
657
658                 /* Number of partition regions */
659                 numregions = extp->extra[offs];
660                 offs += 1;
661
662                 /* skip the sizeof(partregion) field in CFI 1.4 */
663                 if (extp->MinorVersion >= '4')
664                         offs += 2;
665
666                 /* Number of hardware partitions */
667                 numparts = 0;
668                 for (i = 0; i < numregions; i++) {
669                         struct cfi_intelext_regioninfo *rinfo;
670                         rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[offs];
671                         numparts += rinfo->NumIdentPartitions;
672                         offs += sizeof(*rinfo)
673                                 + (rinfo->NumBlockTypes - 1) *
674                                   sizeof(struct cfi_intelext_blockinfo);
675                 }
676
677                 if (!numparts)
678                         numparts = 1;
679
680                 /* Programming Region info */
681                 if (extp->MinorVersion >= '4') {
682                         struct cfi_intelext_programming_regioninfo *prinfo;
683                         prinfo = (struct cfi_intelext_programming_regioninfo *)&extp->extra[offs];
684                         mtd->writesize = cfi->interleave << prinfo->ProgRegShift;
685                         mtd->flags &= ~MTD_BIT_WRITEABLE;
686                         printk(KERN_DEBUG "%s: program region size/ctrl_valid/ctrl_inval = %d/%d/%d\n",
687                                map->name, mtd->writesize,
688                                cfi->interleave * prinfo->ControlValid,
689                                cfi->interleave * prinfo->ControlInvalid);
690                 }
691
692                 /*
693                  * All functions below currently rely on all chips having
694                  * the same geometry so we'll just assume that all hardware
695                  * partitions are of the same size too.
696                  */
697                 partshift = cfi->chipshift - __ffs(numparts);
698
699                 if ((1 << partshift) < mtd->erasesize) {
700                         printk( KERN_ERR
701                                 "%s: bad number of hw partitions (%d)\n",
702                                 __func__, numparts);
703                         return -EINVAL;
704                 }
705
706                 numvirtchips = cfi->numchips * numparts;
707                 newcfi = kmalloc(sizeof(struct cfi_private) + numvirtchips * sizeof(struct flchip), GFP_KERNEL);
708                 if (!newcfi)
709                         return -ENOMEM;
710                 shared = kmalloc(sizeof(struct flchip_shared) * cfi->numchips, GFP_KERNEL);
711                 if (!shared) {
712                         kfree(newcfi);
713                         return -ENOMEM;
714                 }
715                 memcpy(newcfi, cfi, sizeof(struct cfi_private));
716                 newcfi->numchips = numvirtchips;
717                 newcfi->chipshift = partshift;
718
719                 chip = &newcfi->chips[0];
720                 for (i = 0; i < cfi->numchips; i++) {
721                         shared[i].writing = shared[i].erasing = NULL;
722                         spin_lock_init(&shared[i].lock);
723                         for (j = 0; j < numparts; j++) {
724                                 *chip = cfi->chips[i];
725                                 chip->start += j << partshift;
726                                 chip->priv = &shared[i];
727                                 /* those should be reset too since
728                                    they create memory references. */
729                                 init_waitqueue_head(&chip->wq);
730                                 spin_lock_init(&chip->_spinlock);
731                                 chip->mutex = &chip->_spinlock;
732                                 chip++;
733                         }
734                 }
735
736                 printk(KERN_DEBUG "%s: %d set(s) of %d interleaved chips "
737                                   "--> %d partitions of %d KiB\n",
738                                   map->name, cfi->numchips, cfi->interleave,
739                                   newcfi->numchips, 1<<(newcfi->chipshift-10));
740
741                 map->fldrv_priv = newcfi;
742                 *pcfi = newcfi;
743                 kfree(cfi);
744         }
745
746         return 0;
747 }
748
749 /*
750  *  *********** CHIP ACCESS FUNCTIONS ***********
751  */
752 static int chip_ready (struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
753 {
754         DECLARE_WAITQUEUE(wait, current);
755         struct cfi_private *cfi = map->fldrv_priv;
756         map_word status, status_OK = CMD(0x80), status_PWS = CMD(0x01);
757         struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
758         unsigned long timeo = jiffies + HZ;
759
760         /* Prevent setting state FL_SYNCING for chip in suspended state. */
761         if (mode == FL_SYNCING && chip->oldstate != FL_READY)
762                 goto sleep;
763
764         switch (chip->state) {
765
766         case FL_STATUS:
767                 for (;;) {
768                         status = map_read(map, adr);
769                         if (map_word_andequal(map, status, status_OK, status_OK))
770                                 break;
771
772                         /* At this point we're fine with write operations
773                            in other partitions as they don't conflict. */
774                         if (chip->priv && map_word_andequal(map, status, status_PWS, status_PWS))
775                                 break;
776
777                         spin_unlock(chip->mutex);
778                         cfi_udelay(1);
779                         spin_lock(chip->mutex);
780                         /* Someone else might have been playing with it. */
781                         return -EAGAIN;
782                 }
783                 /* Fall through */
784         case FL_READY:
785         case FL_CFI_QUERY:
786         case FL_JEDEC_QUERY:
787                 return 0;
788
789         case FL_ERASING:
790                 if (!cfip ||
791                     !(cfip->FeatureSupport & 2) ||
792                     !(mode == FL_READY || mode == FL_POINT ||
793                      (mode == FL_WRITING && (cfip->SuspendCmdSupport & 1))))
794                         goto sleep;
795
796
797                 /* Erase suspend */
798                 map_write(map, CMD(0xB0), adr);
799
800                 /* If the flash has finished erasing, then 'erase suspend'
801                  * appears to make some (28F320) flash devices switch to
802                  * 'read' mode.  Make sure that we switch to 'read status'
803                  * mode so we get the right data. --rmk
804                  */
805                 map_write(map, CMD(0x70), adr);
806                 chip->oldstate = FL_ERASING;
807                 chip->state = FL_ERASE_SUSPENDING;
808                 chip->erase_suspended = 1;
809                 for (;;) {
810                         status = map_read(map, adr);
811                         if (map_word_andequal(map, status, status_OK, status_OK))
812                                 break;
813
814                         if (time_after(jiffies, timeo)) {
815                                 /* Urgh. Resume and pretend we weren't here.  */
816                                 map_write(map, CMD(0xd0), adr);
817                                 /* Make sure we're in 'read status' mode if it had finished */
818                                 map_write(map, CMD(0x70), adr);
819                                 chip->state = FL_ERASING;
820                                 chip->oldstate = FL_READY;
821                                 printk(KERN_ERR "%s: Chip not ready after erase "
822                                        "suspended: status = 0x%lx\n", map->name, status.x[0]);
823                                 return -EIO;
824                         }
825
826                         spin_unlock(chip->mutex);
827                         cfi_udelay(1);
828                         spin_lock(chip->mutex);
829                         /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
830                            So we can just loop here. */
831                 }
832                 chip->state = FL_STATUS;
833                 return 0;
834
835         case FL_XIP_WHILE_ERASING:
836                 if (mode != FL_READY && mode != FL_POINT &&
837                     (mode != FL_WRITING || !cfip || !(cfip->SuspendCmdSupport&1)))
838                         goto sleep;
839                 chip->oldstate = chip->state;
840                 chip->state = FL_READY;
841                 return 0;
842
843         case FL_SHUTDOWN:
844                 /* The machine is rebooting now,so no one can get chip anymore */
845                 return -EIO;
846         case FL_POINT:
847                 /* Only if there's no operation suspended... */
848                 if (mode == FL_READY && chip->oldstate == FL_READY)
849                         return 0;
850                 /* Fall through */
851         default:
852         sleep:
853                 set_current_state(TASK_UNINTERRUPTIBLE);
854                 add_wait_queue(&chip->wq, &wait);
855                 spin_unlock(chip->mutex);
856                 schedule();
857                 remove_wait_queue(&chip->wq, &wait);
858                 spin_lock(chip->mutex);
859                 return -EAGAIN;
860         }
861 }
862
863 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
864 {
865         int ret;
866         DECLARE_WAITQUEUE(wait, current);
867
868  retry:
869         if (chip->priv &&
870             (mode == FL_WRITING || mode == FL_ERASING || mode == FL_OTP_WRITE
871             || mode == FL_SHUTDOWN) && chip->state != FL_SYNCING) {
872                 /*
873                  * OK. We have possibility for contention on the write/erase
874                  * operations which are global to the real chip and not per
875                  * partition.  So let's fight it over in the partition which
876                  * currently has authority on the operation.
877                  *
878                  * The rules are as follows:
879                  *
880                  * - any write operation must own shared->writing.
881                  *
882                  * - any erase operation must own _both_ shared->writing and
883                  *   shared->erasing.
884                  *
885                  * - contention arbitration is handled in the owner's context.
886                  *
887                  * The 'shared' struct can be read and/or written only when
888                  * its lock is taken.
889                  */
890                 struct flchip_shared *shared = chip->priv;
891                 struct flchip *contender;
892                 spin_lock(&shared->lock);
893                 contender = shared->writing;
894                 if (contender && contender != chip) {
895                         /*
896                          * The engine to perform desired operation on this
897                          * partition is already in use by someone else.
898                          * Let's fight over it in the context of the chip
899                          * currently using it.  If it is possible to suspend,
900                          * that other partition will do just that, otherwise
901                          * it'll happily send us to sleep.  In any case, when
902                          * get_chip returns success we're clear to go ahead.
903                          */
904                         ret = spin_trylock(contender->mutex);
905                         spin_unlock(&shared->lock);
906                         if (!ret)
907                                 goto retry;
908                         spin_unlock(chip->mutex);
909                         ret = chip_ready(map, contender, contender->start, mode);
910                         spin_lock(chip->mutex);
911
912                         if (ret == -EAGAIN) {
913                                 spin_unlock(contender->mutex);
914                                 goto retry;
915                         }
916                         if (ret) {
917                                 spin_unlock(contender->mutex);
918                                 return ret;
919                         }
920                         spin_lock(&shared->lock);
921
922                         /* We should not own chip if it is already
923                          * in FL_SYNCING state. Put contender and retry. */
924                         if (chip->state == FL_SYNCING) {
925                                 put_chip(map, contender, contender->start);
926                                 spin_unlock(contender->mutex);
927                                 goto retry;
928                         }
929                         spin_unlock(contender->mutex);
930                 }
931
932                 /* Check if we already have suspended erase
933                  * on this chip. Sleep. */
934                 if (mode == FL_ERASING && shared->erasing
935                     && shared->erasing->oldstate == FL_ERASING) {
936                         spin_unlock(&shared->lock);
937                         set_current_state(TASK_UNINTERRUPTIBLE);
938                         add_wait_queue(&chip->wq, &wait);
939                         spin_unlock(chip->mutex);
940                         schedule();
941                         remove_wait_queue(&chip->wq, &wait);
942                         spin_lock(chip->mutex);
943                         goto retry;
944                 }
945
946                 /* We now own it */
947                 shared->writing = chip;
948                 if (mode == FL_ERASING)
949                         shared->erasing = chip;
950                 spin_unlock(&shared->lock);
951         }
952         ret = chip_ready(map, chip, adr, mode);
953         if (ret == -EAGAIN)
954                 goto retry;
955
956         return ret;
957 }
958
959 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
960 {
961         struct cfi_private *cfi = map->fldrv_priv;
962
963         if (chip->priv) {
964                 struct flchip_shared *shared = chip->priv;
965                 spin_lock(&shared->lock);
966                 if (shared->writing == chip && chip->oldstate == FL_READY) {
967                         /* We own the ability to write, but we're done */
968                         shared->writing = shared->erasing;
969                         if (shared->writing && shared->writing != chip) {
970                                 /* give back ownership to who we loaned it from */
971                                 struct flchip *loaner = shared->writing;
972                                 spin_lock(loaner->mutex);
973                                 spin_unlock(&shared->lock);
974                                 spin_unlock(chip->mutex);
975                                 put_chip(map, loaner, loaner->start);
976                                 spin_lock(chip->mutex);
977                                 spin_unlock(loaner->mutex);
978                                 wake_up(&chip->wq);
979                                 return;
980                         }
981                         shared->erasing = NULL;
982                         shared->writing = NULL;
983                 } else if (shared->erasing == chip && shared->writing != chip) {
984                         /*
985                          * We own the ability to erase without the ability
986                          * to write, which means the erase was suspended
987                          * and some other partition is currently writing.
988                          * Don't let the switch below mess things up since
989                          * we don't have ownership to resume anything.
990                          */
991                         spin_unlock(&shared->lock);
992                         wake_up(&chip->wq);
993                         return;
994                 }
995                 spin_unlock(&shared->lock);
996         }
997
998         switch(chip->oldstate) {
999         case FL_ERASING:
1000                 chip->state = chip->oldstate;
1001                 /* What if one interleaved chip has finished and the
1002                    other hasn't? The old code would leave the finished
1003                    one in READY mode. That's bad, and caused -EROFS
1004                    errors to be returned from do_erase_oneblock because
1005                    that's the only bit it checked for at the time.
1006                    As the state machine appears to explicitly allow
1007                    sending the 0x70 (Read Status) command to an erasing
1008                    chip and expecting it to be ignored, that's what we
1009                    do. */
1010                 map_write(map, CMD(0xd0), adr);
1011                 map_write(map, CMD(0x70), adr);
1012                 chip->oldstate = FL_READY;
1013                 chip->state = FL_ERASING;
1014                 break;
1015
1016         case FL_XIP_WHILE_ERASING:
1017                 chip->state = chip->oldstate;
1018                 chip->oldstate = FL_READY;
1019                 break;
1020
1021         case FL_READY:
1022         case FL_STATUS:
1023         case FL_JEDEC_QUERY:
1024                 /* We should really make set_vpp() count, rather than doing this */
1025                 DISABLE_VPP(map);
1026                 break;
1027         default:
1028                 printk(KERN_ERR "%s: put_chip() called with oldstate %d!!\n", map->name, chip->oldstate);
1029         }
1030         wake_up(&chip->wq);
1031 }
1032
1033 #ifdef CONFIG_MTD_XIP
1034
1035 /*
1036  * No interrupt what so ever can be serviced while the flash isn't in array
1037  * mode.  This is ensured by the xip_disable() and xip_enable() functions
1038  * enclosing any code path where the flash is known not to be in array mode.
1039  * And within a XIP disabled code path, only functions marked with __xipram
1040  * may be called and nothing else (it's a good thing to inspect generated
1041  * assembly to make sure inline functions were actually inlined and that gcc
1042  * didn't emit calls to its own support functions). Also configuring MTD CFI
1043  * support to a single buswidth and a single interleave is also recommended.
1044  */
1045
1046 static void xip_disable(struct map_info *map, struct flchip *chip,
1047                         unsigned long adr)
1048 {
1049         /* TODO: chips with no XIP use should ignore and return */
1050         (void) map_read(map, adr); /* ensure mmu mapping is up to date */
1051         local_irq_disable();
1052 }
1053
1054 static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
1055                                 unsigned long adr)
1056 {
1057         struct cfi_private *cfi = map->fldrv_priv;
1058         if (chip->state != FL_POINT && chip->state != FL_READY) {
1059                 map_write(map, CMD(0xff), adr);
1060                 chip->state = FL_READY;
1061         }
1062         (void) map_read(map, adr);
1063         xip_iprefetch();
1064         local_irq_enable();
1065 }
1066
1067 /*
1068  * When a delay is required for the flash operation to complete, the
1069  * xip_wait_for_operation() function is polling for both the given timeout
1070  * and pending (but still masked) hardware interrupts.  Whenever there is an
1071  * interrupt pending then the flash erase or write operation is suspended,
1072  * array mode restored and interrupts unmasked.  Task scheduling might also
1073  * happen at that point.  The CPU eventually returns from the interrupt or
1074  * the call to schedule() and the suspended flash operation is resumed for
1075  * the remaining of the delay period.
1076  *
1077  * Warning: this function _will_ fool interrupt latency tracing tools.
1078  */
1079
1080 static int __xipram xip_wait_for_operation(
1081                 struct map_info *map, struct flchip *chip,
1082                 unsigned long adr, unsigned int chip_op_time_max)
1083 {
1084         struct cfi_private *cfi = map->fldrv_priv;
1085         struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
1086         map_word status, OK = CMD(0x80);
1087         unsigned long usec, suspended, start, done;
1088         flstate_t oldstate, newstate;
1089
1090         start = xip_currtime();
1091         usec = chip_op_time_max;
1092         if (usec == 0)
1093                 usec = 500000;
1094         done = 0;
1095
1096         do {
1097                 cpu_relax();
1098                 if (xip_irqpending() && cfip &&
1099                     ((chip->state == FL_ERASING && (cfip->FeatureSupport&2)) ||
1100                      (chip->state == FL_WRITING && (cfip->FeatureSupport&4))) &&
1101                     (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
1102                         /*
1103                          * Let's suspend the erase or write operation when
1104                          * supported.  Note that we currently don't try to
1105                          * suspend interleaved chips if there is already
1106                          * another operation suspended (imagine what happens
1107                          * when one chip was already done with the current
1108                          * operation while another chip suspended it, then
1109                          * we resume the whole thing at once).  Yes, it
1110                          * can happen!
1111                          */
1112                         usec -= done;
1113                         map_write(map, CMD(0xb0), adr);
1114                         map_write(map, CMD(0x70), adr);
1115                         suspended = xip_currtime();
1116                         do {
1117                                 if (xip_elapsed_since(suspended) > 100000) {
1118                                         /*
1119                                          * The chip doesn't want to suspend
1120                                          * after waiting for 100 msecs.
1121                                          * This is a critical error but there
1122                                          * is not much we can do here.
1123                                          */
1124                                         return -EIO;
1125                                 }
1126                                 status = map_read(map, adr);
1127                         } while (!map_word_andequal(map, status, OK, OK));
1128
1129                         /* Suspend succeeded */
1130                         oldstate = chip->state;
1131                         if (oldstate == FL_ERASING) {
1132                                 if (!map_word_bitsset(map, status, CMD(0x40)))
1133                                         break;
1134                                 newstate = FL_XIP_WHILE_ERASING;
1135                                 chip->erase_suspended = 1;
1136                         } else {
1137                                 if (!map_word_bitsset(map, status, CMD(0x04)))
1138                                         break;
1139                                 newstate = FL_XIP_WHILE_WRITING;
1140                                 chip->write_suspended = 1;
1141                         }
1142                         chip->state = newstate;
1143                         map_write(map, CMD(0xff), adr);
1144                         (void) map_read(map, adr);
1145                         xip_iprefetch();
1146                         local_irq_enable();
1147                         spin_unlock(chip->mutex);
1148                         xip_iprefetch();
1149                         cond_resched();
1150
1151                         /*
1152                          * We're back.  However someone else might have
1153                          * decided to go write to the chip if we are in
1154                          * a suspended erase state.  If so let's wait
1155                          * until it's done.
1156                          */
1157                         spin_lock(chip->mutex);
1158                         while (chip->state != newstate) {
1159                                 DECLARE_WAITQUEUE(wait, current);
1160                                 set_current_state(TASK_UNINTERRUPTIBLE);
1161                                 add_wait_queue(&chip->wq, &wait);
1162                                 spin_unlock(chip->mutex);
1163                                 schedule();
1164                                 remove_wait_queue(&chip->wq, &wait);
1165                                 spin_lock(chip->mutex);
1166                         }
1167                         /* Disallow XIP again */
1168                         local_irq_disable();
1169
1170                         /* Resume the write or erase operation */
1171                         map_write(map, CMD(0xd0), adr);
1172                         map_write(map, CMD(0x70), adr);
1173                         chip->state = oldstate;
1174                         start = xip_currtime();
1175                 } else if (usec >= 1000000/HZ) {
1176                         /*
1177                          * Try to save on CPU power when waiting delay
1178                          * is at least a system timer tick period.
1179                          * No need to be extremely accurate here.
1180                          */
1181                         xip_cpu_idle();
1182                 }
1183                 status = map_read(map, adr);
1184                 done = xip_elapsed_since(start);
1185         } while (!map_word_andequal(map, status, OK, OK)
1186                  && done < usec);
1187
1188         return (done >= usec) ? -ETIME : 0;
1189 }
1190
1191 /*
1192  * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
1193  * the flash is actively programming or erasing since we have to poll for
1194  * the operation to complete anyway.  We can't do that in a generic way with
1195  * a XIP setup so do it before the actual flash operation in this case
1196  * and stub it out from INVAL_CACHE_AND_WAIT.
1197  */
1198 #define XIP_INVAL_CACHED_RANGE(map, from, size)  \
1199         INVALIDATE_CACHED_RANGE(map, from, size)
1200
1201 #define INVAL_CACHE_AND_WAIT(map, chip, cmd_adr, inval_adr, inval_len, usec, usec_max) \
1202         xip_wait_for_operation(map, chip, cmd_adr, usec_max)
1203
1204 #else
1205
1206 #define xip_disable(map, chip, adr)
1207 #define xip_enable(map, chip, adr)
1208 #define XIP_INVAL_CACHED_RANGE(x...)
1209 #define INVAL_CACHE_AND_WAIT inval_cache_and_wait_for_operation
1210
1211 static int inval_cache_and_wait_for_operation(
1212                 struct map_info *map, struct flchip *chip,
1213                 unsigned long cmd_adr, unsigned long inval_adr, int inval_len,
1214                 unsigned int chip_op_time, unsigned int chip_op_time_max)
1215 {
1216         struct cfi_private *cfi = map->fldrv_priv;
1217         map_word status, status_OK = CMD(0x80);
1218         int chip_state = chip->state;
1219         unsigned int timeo, sleep_time, reset_timeo;
1220
1221         spin_unlock(chip->mutex);
1222         if (inval_len)
1223                 INVALIDATE_CACHED_RANGE(map, inval_adr, inval_len);
1224         spin_lock(chip->mutex);
1225
1226         timeo = chip_op_time_max;
1227         if (!timeo)
1228                 timeo = 500000;
1229         reset_timeo = timeo;
1230         sleep_time = chip_op_time / 2;
1231
1232         for (;;) {
1233                 status = map_read(map, cmd_adr);
1234                 if (map_word_andequal(map, status, status_OK, status_OK))
1235                         break;
1236
1237                 if (!timeo) {
1238                         map_write(map, CMD(0x70), cmd_adr);
1239                         chip->state = FL_STATUS;
1240                         return -ETIME;
1241                 }
1242
1243                 /* OK Still waiting. Drop the lock, wait a while and retry. */
1244                 spin_unlock(chip->mutex);
1245                 if (sleep_time >= 1000000/HZ) {
1246                         /*
1247                          * Half of the normal delay still remaining
1248                          * can be performed with a sleeping delay instead
1249                          * of busy waiting.
1250                          */
1251                         msleep(sleep_time/1000);
1252                         timeo -= sleep_time;
1253                         sleep_time = 1000000/HZ;
1254                 } else {
1255                         udelay(1);
1256                         cond_resched();
1257                         timeo--;
1258                 }
1259                 spin_lock(chip->mutex);
1260
1261                 while (chip->state != chip_state) {
1262                         /* Someone's suspended the operation: sleep */
1263                         DECLARE_WAITQUEUE(wait, current);
1264                         set_current_state(TASK_UNINTERRUPTIBLE);
1265                         add_wait_queue(&chip->wq, &wait);
1266                         spin_unlock(chip->mutex);
1267                         schedule();
1268                         remove_wait_queue(&chip->wq, &wait);
1269                         spin_lock(chip->mutex);
1270                 }
1271                 if (chip->erase_suspended && chip_state == FL_ERASING)  {
1272                         /* Erase suspend occured while sleep: reset timeout */
1273                         timeo = reset_timeo;
1274                         chip->erase_suspended = 0;
1275                 }
1276                 if (chip->write_suspended && chip_state == FL_WRITING)  {
1277                         /* Write suspend occured while sleep: reset timeout */
1278                         timeo = reset_timeo;
1279                         chip->write_suspended = 0;
1280                 }
1281         }
1282
1283         /* Done and happy. */
1284         chip->state = FL_STATUS;
1285         return 0;
1286 }
1287
1288 #endif
1289
1290 #define WAIT_TIMEOUT(map, chip, adr, udelay, udelay_max) \
1291         INVAL_CACHE_AND_WAIT(map, chip, adr, 0, 0, udelay, udelay_max);
1292
1293
1294 static int do_point_onechip (struct map_info *map, struct flchip *chip, loff_t adr, size_t len)
1295 {
1296         unsigned long cmd_addr;
1297         struct cfi_private *cfi = map->fldrv_priv;
1298         int ret = 0;
1299
1300         adr += chip->start;
1301
1302         /* Ensure cmd read/writes are aligned. */
1303         cmd_addr = adr & ~(map_bankwidth(map)-1);
1304
1305         spin_lock(chip->mutex);
1306
1307         ret = get_chip(map, chip, cmd_addr, FL_POINT);
1308
1309         if (!ret) {
1310                 if (chip->state != FL_POINT && chip->state != FL_READY)
1311                         map_write(map, CMD(0xff), cmd_addr);
1312
1313                 chip->state = FL_POINT;
1314                 chip->ref_point_counter++;
1315         }
1316         spin_unlock(chip->mutex);
1317
1318         return ret;
1319 }
1320
1321 static int cfi_intelext_point(struct mtd_info *mtd, loff_t from, size_t len,
1322                 size_t *retlen, void **virt, resource_size_t *phys)
1323 {
1324         struct map_info *map = mtd->priv;
1325         struct cfi_private *cfi = map->fldrv_priv;
1326         unsigned long ofs, last_end = 0;
1327         int chipnum;
1328         int ret = 0;
1329
1330         if (!map->virt || (from + len > mtd->size))
1331                 return -EINVAL;
1332
1333         /* Now lock the chip(s) to POINT state */
1334
1335         /* ofs: offset within the first chip that the first read should start */
1336         chipnum = (from >> cfi->chipshift);
1337         ofs = from - (chipnum << cfi->chipshift);
1338
1339         *virt = map->virt + cfi->chips[chipnum].start + ofs;
1340         *retlen = 0;
1341         if (phys)
1342                 *phys = map->phys + cfi->chips[chipnum].start + ofs;
1343
1344         while (len) {
1345                 unsigned long thislen;
1346
1347                 if (chipnum >= cfi->numchips)
1348                         break;
1349
1350                 /* We cannot point across chips that are virtually disjoint */
1351                 if (!last_end)
1352                         last_end = cfi->chips[chipnum].start;
1353                 else if (cfi->chips[chipnum].start != last_end)
1354                         break;
1355
1356                 if ((len + ofs -1) >> cfi->chipshift)
1357                         thislen = (1<<cfi->chipshift) - ofs;
1358                 else
1359                         thislen = len;
1360
1361                 ret = do_point_onechip(map, &cfi->chips[chipnum], ofs, thislen);
1362                 if (ret)
1363                         break;
1364
1365                 *retlen += thislen;
1366                 len -= thislen;
1367
1368                 ofs = 0;
1369                 last_end += 1 << cfi->chipshift;
1370                 chipnum++;
1371         }
1372         return 0;
1373 }
1374
1375 static void cfi_intelext_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1376 {
1377         struct map_info *map = mtd->priv;
1378         struct cfi_private *cfi = map->fldrv_priv;
1379         unsigned long ofs;
1380         int chipnum;
1381
1382         /* Now unlock the chip(s) POINT state */
1383
1384         /* ofs: offset within the first chip that the first read should start */
1385         chipnum = (from >> cfi->chipshift);
1386         ofs = from - (chipnum <<  cfi->chipshift);
1387
1388         while (len) {
1389                 unsigned long thislen;
1390                 struct flchip *chip;
1391
1392                 chip = &cfi->chips[chipnum];
1393                 if (chipnum >= cfi->numchips)
1394                         break;
1395
1396                 if ((len + ofs -1) >> cfi->chipshift)
1397                         thislen = (1<<cfi->chipshift) - ofs;
1398                 else
1399                         thislen = len;
1400
1401                 spin_lock(chip->mutex);
1402                 if (chip->state == FL_POINT) {
1403                         chip->ref_point_counter--;
1404                         if(chip->ref_point_counter == 0)
1405                                 chip->state = FL_READY;
1406                 } else
1407                         printk(KERN_ERR "%s: Warning: unpoint called on non pointed region\n", map->name); /* Should this give an error? */
1408
1409                 put_chip(map, chip, chip->start);
1410                 spin_unlock(chip->mutex);
1411
1412                 len -= thislen;
1413                 ofs = 0;
1414                 chipnum++;
1415         }
1416 }
1417
1418 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
1419 {
1420         unsigned long cmd_addr;
1421         struct cfi_private *cfi = map->fldrv_priv;
1422         int ret;
1423
1424         adr += chip->start;
1425
1426         /* Ensure cmd read/writes are aligned. */
1427         cmd_addr = adr & ~(map_bankwidth(map)-1);
1428
1429         spin_lock(chip->mutex);
1430         ret = get_chip(map, chip, cmd_addr, FL_READY);
1431         if (ret) {
1432                 spin_unlock(chip->mutex);
1433                 return ret;
1434         }
1435
1436         if (chip->state != FL_POINT && chip->state != FL_READY) {
1437                 map_write(map, CMD(0xff), cmd_addr);
1438
1439                 chip->state = FL_READY;
1440         }
1441
1442         map_copy_from(map, buf, adr, len);
1443
1444         put_chip(map, chip, cmd_addr);
1445
1446         spin_unlock(chip->mutex);
1447         return 0;
1448 }
1449
1450 static int cfi_intelext_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1451 {
1452         struct map_info *map = mtd->priv;
1453         struct cfi_private *cfi = map->fldrv_priv;
1454         unsigned long ofs;
1455         int chipnum;
1456         int ret = 0;
1457
1458         /* ofs: offset within the first chip that the first read should start */
1459         chipnum = (from >> cfi->chipshift);
1460         ofs = from - (chipnum <<  cfi->chipshift);
1461
1462         *retlen = 0;
1463
1464         while (len) {
1465                 unsigned long thislen;
1466
1467                 if (chipnum >= cfi->numchips)
1468                         break;
1469
1470                 if ((len + ofs -1) >> cfi->chipshift)
1471                         thislen = (1<<cfi->chipshift) - ofs;
1472                 else
1473                         thislen = len;
1474
1475                 ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1476                 if (ret)
1477                         break;
1478
1479                 *retlen += thislen;
1480                 len -= thislen;
1481                 buf += thislen;
1482
1483                 ofs = 0;
1484                 chipnum++;
1485         }
1486         return ret;
1487 }
1488
1489 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1490                                      unsigned long adr, map_word datum, int mode)
1491 {
1492         struct cfi_private *cfi = map->fldrv_priv;
1493         map_word status, write_cmd;
1494         int ret=0;
1495
1496         adr += chip->start;
1497
1498         switch (mode) {
1499         case FL_WRITING:
1500                 write_cmd = (cfi->cfiq->P_ID != 0x0200) ? CMD(0x40) : CMD(0x41);
1501                 break;
1502         case FL_OTP_WRITE:
1503                 write_cmd = CMD(0xc0);
1504                 break;
1505         default:
1506                 return -EINVAL;
1507         }
1508
1509         spin_lock(chip->mutex);
1510         ret = get_chip(map, chip, adr, mode);
1511         if (ret) {
1512                 spin_unlock(chip->mutex);
1513                 return ret;
1514         }
1515
1516         XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1517         ENABLE_VPP(map);
1518         xip_disable(map, chip, adr);
1519         map_write(map, write_cmd, adr);
1520         map_write(map, datum, adr);
1521         chip->state = mode;
1522
1523         ret = INVAL_CACHE_AND_WAIT(map, chip, adr,
1524                                    adr, map_bankwidth(map),
1525                                    chip->word_write_time,
1526                                    chip->word_write_time_max);
1527         if (ret) {
1528                 xip_enable(map, chip, adr);
1529                 printk(KERN_ERR "%s: word write error (status timeout)\n", map->name);
1530                 goto out;
1531         }
1532
1533         /* check for errors */
1534         status = map_read(map, adr);
1535         if (map_word_bitsset(map, status, CMD(0x1a))) {
1536                 unsigned long chipstatus = MERGESTATUS(status);
1537
1538                 /* reset status */
1539                 map_write(map, CMD(0x50), adr);
1540                 map_write(map, CMD(0x70), adr);
1541                 xip_enable(map, chip, adr);
1542
1543                 if (chipstatus & 0x02) {
1544                         ret = -EROFS;
1545                 } else if (chipstatus & 0x08) {
1546                         printk(KERN_ERR "%s: word write error (bad VPP)\n", map->name);
1547                         ret = -EIO;
1548                 } else {
1549                         printk(KERN_ERR "%s: word write error (status 0x%lx)\n", map->name, chipstatus);
1550                         ret = -EINVAL;
1551                 }
1552
1553                 goto out;
1554         }
1555
1556         xip_enable(map, chip, adr);
1557  out:   put_chip(map, chip, adr);
1558         spin_unlock(chip->mutex);
1559         return ret;
1560 }
1561
1562
1563 static int cfi_intelext_write_words (struct mtd_info *mtd, loff_t to , size_t len, size_t *retlen, const u_char *buf)
1564 {
1565         struct map_info *map = mtd->priv;
1566         struct cfi_private *cfi = map->fldrv_priv;
1567         int ret = 0;
1568         int chipnum;
1569         unsigned long ofs;
1570
1571         *retlen = 0;
1572         if (!len)
1573                 return 0;
1574
1575         chipnum = to >> cfi->chipshift;
1576         ofs = to  - (chipnum << cfi->chipshift);
1577
1578         /* If it's not bus-aligned, do the first byte write */
1579         if (ofs & (map_bankwidth(map)-1)) {
1580                 unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1581                 int gap = ofs - bus_ofs;
1582                 int n;
1583                 map_word datum;
1584
1585                 n = min_t(int, len, map_bankwidth(map)-gap);
1586                 datum = map_word_ff(map);
1587                 datum = map_word_load_partial(map, datum, buf, gap, n);
1588
1589                 ret = do_write_oneword(map, &cfi->chips[chipnum],
1590                                                bus_ofs, datum, FL_WRITING);
1591                 if (ret)
1592                         return ret;
1593
1594                 len -= n;
1595                 ofs += n;
1596                 buf += n;
1597                 (*retlen) += n;
1598
1599                 if (ofs >> cfi->chipshift) {
1600                         chipnum ++;
1601                         ofs = 0;
1602                         if (chipnum == cfi->numchips)
1603                                 return 0;
1604                 }
1605         }
1606
1607         while(len >= map_bankwidth(map)) {
1608                 map_word datum = map_word_load(map, buf);
1609
1610                 ret = do_write_oneword(map, &cfi->chips[chipnum],
1611                                        ofs, datum, FL_WRITING);
1612                 if (ret)
1613                         return ret;
1614
1615                 ofs += map_bankwidth(map);
1616                 buf += map_bankwidth(map);
1617                 (*retlen) += map_bankwidth(map);
1618                 len -= map_bankwidth(map);
1619
1620                 if (ofs >> cfi->chipshift) {
1621                         chipnum ++;
1622                         ofs = 0;
1623                         if (chipnum == cfi->numchips)
1624                                 return 0;
1625                 }
1626         }
1627
1628         if (len & (map_bankwidth(map)-1)) {
1629                 map_word datum;
1630
1631                 datum = map_word_ff(map);
1632                 datum = map_word_load_partial(map, datum, buf, 0, len);
1633
1634                 ret = do_write_oneword(map, &cfi->chips[chipnum],
1635                                        ofs, datum, FL_WRITING);
1636                 if (ret)
1637                         return ret;
1638
1639                 (*retlen) += len;
1640         }
1641
1642         return 0;
1643 }
1644
1645
1646 static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
1647                                     unsigned long adr, const struct kvec **pvec,
1648                                     unsigned long *pvec_seek, int len)
1649 {
1650         struct cfi_private *cfi = map->fldrv_priv;
1651         map_word status, write_cmd, datum;
1652         unsigned long cmd_adr;
1653         int ret, wbufsize, word_gap, words;
1654         const struct kvec *vec;
1655         unsigned long vec_seek;
1656         unsigned long initial_adr;
1657         int initial_len = len;
1658
1659         wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1660         adr += chip->start;
1661         initial_adr = adr;
1662         cmd_adr = adr & ~(wbufsize-1);
1663
1664         /* Let's determine this according to the interleave only once */
1665         write_cmd = (cfi->cfiq->P_ID != 0x0200) ? CMD(0xe8) : CMD(0xe9);
1666
1667         spin_lock(chip->mutex);
1668         ret = get_chip(map, chip, cmd_adr, FL_WRITING);
1669         if (ret) {
1670                 spin_unlock(chip->mutex);
1671                 return ret;
1672         }
1673
1674         XIP_INVAL_CACHED_RANGE(map, initial_adr, initial_len);
1675         ENABLE_VPP(map);
1676         xip_disable(map, chip, cmd_adr);
1677
1678         /* Â§4.8 of the 28FxxxJ3A datasheet says "Any time SR.4 and/or SR.5 is set
1679            [...], the device will not accept any more Write to Buffer commands".
1680            So we must check here and reset those bits if they're set. Otherwise
1681            we're just pissing in the wind */
1682         if (chip->state != FL_STATUS) {
1683                 map_write(map, CMD(0x70), cmd_adr);
1684                 chip->state = FL_STATUS;
1685         }
1686         status = map_read(map, cmd_adr);
1687         if (map_word_bitsset(map, status, CMD(0x30))) {
1688                 xip_enable(map, chip, cmd_adr);
1689                 printk(KERN_WARNING "SR.4 or SR.5 bits set in buffer write (status %lx). Clearing.\n", status.x[0]);
1690                 xip_disable(map, chip, cmd_adr);
1691                 map_write(map, CMD(0x50), cmd_adr);
1692                 map_write(map, CMD(0x70), cmd_adr);
1693         }
1694
1695         chip->state = FL_WRITING_TO_BUFFER;
1696         map_write(map, write_cmd, cmd_adr);
1697         ret = WAIT_TIMEOUT(map, chip, cmd_adr, 0, 0);
1698         if (ret) {
1699                 /* Argh. Not ready for write to buffer */
1700                 map_word Xstatus = map_read(map, cmd_adr);
1701                 map_write(map, CMD(0x70), cmd_adr);
1702                 chip->state = FL_STATUS;
1703                 status = map_read(map, cmd_adr);
1704                 map_write(map, CMD(0x50), cmd_adr);
1705                 map_write(map, CMD(0x70), cmd_adr);
1706                 xip_enable(map, chip, cmd_adr);
1707                 printk(KERN_ERR "%s: Chip not ready for buffer write. Xstatus = %lx, status = %lx\n",
1708                                 map->name, Xstatus.x[0], status.x[0]);
1709                 goto out;
1710         }
1711
1712         /* Figure out the number of words to write */
1713         word_gap = (-adr & (map_bankwidth(map)-1));
1714         words = DIV_ROUND_UP(len - word_gap, map_bankwidth(map));
1715         if (!word_gap) {
1716                 words--;
1717         } else {
1718                 word_gap = map_bankwidth(map) - word_gap;
1719                 adr -= word_gap;
1720                 datum = map_word_ff(map);
1721         }
1722
1723         /* Write length of data to come */
1724         map_write(map, CMD(words), cmd_adr );
1725
1726         /* Write data */
1727         vec = *pvec;
1728         vec_seek = *pvec_seek;
1729         do {
1730                 int n = map_bankwidth(map) - word_gap;
1731                 if (n > vec->iov_len - vec_seek)
1732                         n = vec->iov_len - vec_seek;
1733                 if (n > len)
1734                         n = len;
1735
1736                 if (!word_gap && len < map_bankwidth(map))
1737                         datum = map_word_ff(map);
1738
1739                 datum = map_word_load_partial(map, datum,
1740                                               vec->iov_base + vec_seek,
1741                                               word_gap, n);
1742
1743                 len -= n;
1744                 word_gap += n;
1745                 if (!len || word_gap == map_bankwidth(map)) {
1746                         map_write(map, datum, adr);
1747                         adr += map_bankwidth(map);
1748                         word_gap = 0;
1749                 }
1750
1751                 vec_seek += n;
1752                 if (vec_seek == vec->iov_len) {
1753                         vec++;
1754                         vec_seek = 0;
1755                 }
1756         } while (len);
1757         *pvec = vec;
1758         *pvec_seek = vec_seek;
1759
1760         /* GO GO GO */
1761         map_write(map, CMD(0xd0), cmd_adr);
1762         chip->state = FL_WRITING;
1763
1764         ret = INVAL_CACHE_AND_WAIT(map, chip, cmd_adr,
1765                                    initial_adr, initial_len,
1766                                    chip->buffer_write_time,
1767                                    chip->buffer_write_time_max);
1768         if (ret) {
1769                 map_write(map, CMD(0x70), cmd_adr);
1770                 chip->state = FL_STATUS;
1771                 xip_enable(map, chip, cmd_adr);
1772                 printk(KERN_ERR "%s: buffer write error (status timeout)\n", map->name);
1773                 goto out;
1774         }
1775
1776         /* check for errors */
1777         status = map_read(map, cmd_adr);
1778         if (map_word_bitsset(map, status, CMD(0x1a))) {
1779                 unsigned long chipstatus = MERGESTATUS(status);
1780
1781                 /* reset status */
1782                 map_write(map, CMD(0x50), cmd_adr);
1783                 map_write(map, CMD(0x70), cmd_adr);
1784                 xip_enable(map, chip, cmd_adr);
1785
1786                 if (chipstatus & 0x02) {
1787                         ret = -EROFS;
1788                 } else if (chipstatus & 0x08) {
1789                         printk(KERN_ERR "%s: buffer write error (bad VPP)\n", map->name);
1790                         ret = -EIO;
1791                 } else {
1792                         printk(KERN_ERR "%s: buffer write error (status 0x%lx)\n", map->name, chipstatus);
1793                         ret = -EINVAL;
1794                 }
1795
1796                 goto out;
1797         }
1798
1799         xip_enable(map, chip, cmd_adr);
1800  out:   put_chip(map, chip, cmd_adr);
1801         spin_unlock(chip->mutex);
1802         return ret;
1803 }
1804
1805 static int cfi_intelext_writev (struct mtd_info *mtd, const struct kvec *vecs,
1806                                 unsigned long count, loff_t to, size_t *retlen)
1807 {
1808         struct map_info *map = mtd->priv;
1809         struct cfi_private *cfi = map->fldrv_priv;
1810         int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1811         int ret = 0;
1812         int chipnum;
1813         unsigned long ofs, vec_seek, i;
1814         size_t len = 0;
1815
1816         for (i = 0; i < count; i++)
1817                 len += vecs[i].iov_len;
1818
1819         *retlen = 0;
1820         if (!len)
1821                 return 0;
1822
1823         chipnum = to >> cfi->chipshift;
1824         ofs = to - (chipnum << cfi->chipshift);
1825         vec_seek = 0;
1826
1827         do {
1828                 /* We must not cross write block boundaries */
1829                 int size = wbufsize - (ofs & (wbufsize-1));
1830
1831                 if (size > len)
1832                         size = len;
1833                 ret = do_write_buffer(map, &cfi->chips[chipnum],
1834                                       ofs, &vecs, &vec_seek, size);
1835                 if (ret)
1836                         return ret;
1837
1838                 ofs += size;
1839                 (*retlen) += size;
1840                 len -= size;
1841
1842                 if (ofs >> cfi->chipshift) {
1843                         chipnum ++;
1844                         ofs = 0;
1845                         if (chipnum == cfi->numchips)
1846                                 return 0;
1847                 }
1848
1849                 /* Be nice and reschedule with the chip in a usable state for other
1850                    processes. */
1851                 cond_resched();
1852
1853         } while (len);
1854
1855         return 0;
1856 }
1857
1858 static int cfi_intelext_write_buffers (struct mtd_info *mtd, loff_t to,
1859                                        size_t len, size_t *retlen, const u_char *buf)
1860 {
1861         struct kvec vec;
1862
1863         vec.iov_base = (void *) buf;
1864         vec.iov_len = len;
1865
1866         return cfi_intelext_writev(mtd, &vec, 1, to, retlen);
1867 }
1868
1869 static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip,
1870                                       unsigned long adr, int len, void *thunk)
1871 {
1872         struct cfi_private *cfi = map->fldrv_priv;
1873         map_word status;
1874         int retries = 3;
1875         int ret;
1876
1877         adr += chip->start;
1878
1879  retry:
1880         spin_lock(chip->mutex);
1881         ret = get_chip(map, chip, adr, FL_ERASING);
1882         if (ret) {
1883                 spin_unlock(chip->mutex);
1884                 return ret;
1885         }
1886
1887         XIP_INVAL_CACHED_RANGE(map, adr, len);
1888         ENABLE_VPP(map);
1889         xip_disable(map, chip, adr);
1890
1891         /* Clear the status register first */
1892         map_write(map, CMD(0x50), adr);
1893
1894         /* Now erase */
1895         map_write(map, CMD(0x20), adr);
1896         map_write(map, CMD(0xD0), adr);
1897         chip->state = FL_ERASING;
1898         chip->erase_suspended = 0;
1899
1900         ret = INVAL_CACHE_AND_WAIT(map, chip, adr,
1901                                    adr, len,
1902                                    chip->erase_time,
1903                                    chip->erase_time_max);
1904         if (ret) {
1905                 map_write(map, CMD(0x70), adr);
1906                 chip->state = FL_STATUS;
1907                 xip_enable(map, chip, adr);
1908                 printk(KERN_ERR "%s: block erase error: (status timeout)\n", map->name);
1909                 goto out;
1910         }
1911
1912         /* We've broken this before. It doesn't hurt to be safe */
1913         map_write(map, CMD(0x70), adr);
1914         chip->state = FL_STATUS;
1915         status = map_read(map, adr);
1916
1917         /* check for errors */
1918         if (map_word_bitsset(map, status, CMD(0x3a))) {
1919                 unsigned long chipstatus = MERGESTATUS(status);
1920
1921                 /* Reset the error bits */
1922                 map_write(map, CMD(0x50), adr);
1923                 map_write(map, CMD(0x70), adr);
1924                 xip_enable(map, chip, adr);
1925
1926                 if ((chipstatus & 0x30) == 0x30) {
1927                         printk(KERN_ERR "%s: block erase error: (bad command sequence, status 0x%lx)\n", map->name, chipstatus);
1928                         ret = -EINVAL;
1929                 } else if (chipstatus & 0x02) {
1930                         /* Protection bit set */
1931                         ret = -EROFS;
1932                 } else if (chipstatus & 0x8) {
1933                         /* Voltage */
1934                         printk(KERN_ERR "%s: block erase error: (bad VPP)\n", map->name);
1935                         ret = -EIO;
1936                 } else if (chipstatus & 0x20 && retries--) {
1937                         printk(KERN_DEBUG "block erase failed at 0x%08lx: status 0x%lx. Retrying...\n", adr, chipstatus);
1938                         put_chip(map, chip, adr);
1939                         spin_unlock(chip->mutex);
1940                         goto retry;
1941                 } else {
1942                         printk(KERN_ERR "%s: block erase failed at 0x%08lx (status 0x%lx)\n", map->name, adr, chipstatus);
1943                         ret = -EIO;
1944                 }
1945
1946                 goto out;
1947         }
1948
1949         xip_enable(map, chip, adr);
1950  out:   put_chip(map, chip, adr);
1951         spin_unlock(chip->mutex);
1952         return ret;
1953 }
1954
1955 static int cfi_intelext_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
1956 {
1957         unsigned long ofs, len;
1958         int ret;
1959
1960         ofs = instr->addr;
1961         len = instr->len;
1962
1963         ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL);
1964         if (ret)
1965                 return ret;
1966
1967         instr->state = MTD_ERASE_DONE;
1968         mtd_erase_callback(instr);
1969
1970         return 0;
1971 }
1972
1973 static void cfi_intelext_sync (struct mtd_info *mtd)
1974 {
1975         struct map_info *map = mtd->priv;
1976         struct cfi_private *cfi = map->fldrv_priv;
1977         int i;
1978         struct flchip *chip;
1979         int ret = 0;
1980
1981         for (i=0; !ret && i<cfi->numchips; i++) {
1982                 chip = &cfi->chips[i];
1983
1984                 spin_lock(chip->mutex);
1985                 ret = get_chip(map, chip, chip->start, FL_SYNCING);
1986
1987                 if (!ret) {
1988                         chip->oldstate = chip->state;
1989                         chip->state = FL_SYNCING;
1990                         /* No need to wake_up() on this state change -
1991                          * as the whole point is that nobody can do anything
1992                          * with the chip now anyway.
1993                          */
1994                 }
1995                 spin_unlock(chip->mutex);
1996         }
1997
1998         /* Unlock the chips again */
1999
2000         for (i--; i >=0; i--) {
2001                 chip = &cfi->chips[i];
2002
2003                 spin_lock(chip->mutex);
2004
2005                 if (chip->state == FL_SYNCING) {
2006                         chip->state = chip->oldstate;
2007                         chip->oldstate = FL_READY;
2008                         wake_up(&chip->wq);
2009                 }
2010                 spin_unlock(chip->mutex);
2011         }
2012 }
2013
2014 static int __xipram do_getlockstatus_oneblock(struct map_info *map,
2015                                                 struct flchip *chip,
2016                                                 unsigned long adr,
2017                                                 int len, void *thunk)
2018 {
2019         struct cfi_private *cfi = map->fldrv_priv;
2020         int status, ofs_factor = cfi->interleave * cfi->device_type;
2021
2022         adr += chip->start;
2023         xip_disable(map, chip, adr+(2*ofs_factor));
2024         map_write(map, CMD(0x90), adr+(2*ofs_factor));
2025         chip->state = FL_JEDEC_QUERY;
2026         status = cfi_read_query(map, adr+(2*ofs_factor));
2027         xip_enable(map, chip, 0);
2028         return status;
2029 }
2030
2031 #ifdef DEBUG_LOCK_BITS
2032 static int __xipram do_printlockstatus_oneblock(struct map_info *map,
2033                                                 struct flchip *chip,
2034                                                 unsigned long adr,
2035                                                 int len, void *thunk)
2036 {
2037         printk(KERN_DEBUG "block status register for 0x%08lx is %x\n",
2038                adr, do_getlockstatus_oneblock(map, chip, adr, len, thunk));
2039         return 0;
2040 }
2041 #endif
2042
2043 #define DO_XXLOCK_ONEBLOCK_LOCK         ((void *) 1)
2044 #define DO_XXLOCK_ONEBLOCK_UNLOCK       ((void *) 2)
2045
2046 static int __xipram do_xxlock_oneblock(struct map_info *map, struct flchip *chip,
2047                                        unsigned long adr, int len, void *thunk)
2048 {
2049         struct cfi_private *cfi = map->fldrv_priv;
2050         struct cfi_pri_intelext *extp = cfi->cmdset_priv;
2051         int udelay;
2052         int ret;
2053
2054         adr += chip->start;
2055
2056         spin_lock(chip->mutex);
2057         ret = get_chip(map, chip, adr, FL_LOCKING);
2058         if (ret) {
2059                 spin_unlock(chip->mutex);
2060                 return ret;
2061         }
2062
2063         ENABLE_VPP(map);
2064         xip_disable(map, chip, adr);
2065
2066         map_write(map, CMD(0x60), adr);
2067         if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) {
2068                 map_write(map, CMD(0x01), adr);
2069                 chip->state = FL_LOCKING;
2070         } else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) {
2071                 map_write(map, CMD(0xD0), adr);
2072                 chip->state = FL_UNLOCKING;
2073         } else
2074                 BUG();
2075
2076         /*
2077          * If Instant Individual Block Locking supported then no need
2078          * to delay.
2079          */
2080         udelay = (!extp || !(extp->FeatureSupport & (1 << 5))) ? 1000000/HZ : 0;
2081
2082         ret = WAIT_TIMEOUT(map, chip, adr, udelay, udelay * 100);
2083         if (ret) {
2084                 map_write(map, CMD(0x70), adr);
2085                 chip->state = FL_STATUS;
2086                 xip_enable(map, chip, adr);
2087                 printk(KERN_ERR "%s: block unlock error: (status timeout)\n", map->name);
2088                 goto out;
2089         }
2090
2091         xip_enable(map, chip, adr);
2092 out:    put_chip(map, chip, adr);
2093         spin_unlock(chip->mutex);
2094         return ret;
2095 }
2096
2097 static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2098 {
2099         int ret;
2100
2101 #ifdef DEBUG_LOCK_BITS
2102         printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n",
2103                __func__, ofs, len);
2104         cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
2105                 ofs, len, NULL);
2106 #endif
2107
2108         ret = cfi_varsize_frob(mtd, do_xxlock_oneblock,
2109                 ofs, len, DO_XXLOCK_ONEBLOCK_LOCK);
2110
2111 #ifdef DEBUG_LOCK_BITS
2112         printk(KERN_DEBUG "%s: lock status after, ret=%d\n",
2113                __func__, ret);
2114         cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
2115                 ofs, len, NULL);
2116 #endif
2117
2118         return ret;
2119 }
2120
2121 static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2122 {
2123         int ret;
2124
2125 #ifdef DEBUG_LOCK_BITS
2126         printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n",
2127                __func__, ofs, len);
2128         cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
2129                 ofs, len, NULL);
2130 #endif
2131
2132         ret = cfi_varsize_frob(mtd, do_xxlock_oneblock,
2133                                         ofs, len, DO_XXLOCK_ONEBLOCK_UNLOCK);
2134
2135 #ifdef DEBUG_LOCK_BITS
2136         printk(KERN_DEBUG "%s: lock status after, ret=%d\n",
2137                __func__, ret);
2138         cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
2139                 ofs, len, NULL);
2140 #endif
2141
2142         return ret;
2143 }
2144
2145 #ifdef CONFIG_MTD_OTP
2146
2147 typedef int (*otp_op_t)(struct map_info *map, struct flchip *chip,
2148                         u_long data_offset, u_char *buf, u_int size,
2149                         u_long prot_offset, u_int groupno, u_int groupsize);
2150
2151 static int __xipram
2152 do_otp_read(struct map_info *map, struct flchip *chip, u_long offset,
2153             u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
2154 {
2155         struct cfi_private *cfi = map->fldrv_priv;
2156         int ret;
2157
2158         spin_lock(chip->mutex);
2159         ret = get_chip(map, chip, chip->start, FL_JEDEC_QUERY);
2160         if (ret) {
2161                 spin_unlock(chip->mutex);
2162                 return ret;
2163         }
2164
2165         /* let's ensure we're not reading back cached data from array mode */
2166         INVALIDATE_CACHED_RANGE(map, chip->start + offset, size);
2167
2168         xip_disable(map, chip, chip->start);
2169         if (chip->state != FL_JEDEC_QUERY) {
2170                 map_write(map, CMD(0x90), chip->start);
2171                 chip->state = FL_JEDEC_QUERY;
2172         }
2173         map_copy_from(map, buf, chip->start + offset, size);
2174         xip_enable(map, chip, chip->start);
2175
2176         /* then ensure we don't keep OTP data in the cache */
2177         INVALIDATE_CACHED_RANGE(map, chip->start + offset, size);
2178
2179         put_chip(map, chip, chip->start);
2180         spin_unlock(chip->mutex);
2181         return 0;
2182 }
2183
2184 static int
2185 do_otp_write(struct map_info *map, struct flchip *chip, u_long offset,
2186              u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
2187 {
2188         int ret;
2189
2190         while (size) {
2191                 unsigned long bus_ofs = offset & ~(map_bankwidth(map)-1);
2192                 int gap = offset - bus_ofs;
2193                 int n = min_t(int, size, map_bankwidth(map)-gap);
2194                 map_word datum = map_word_ff(map);
2195
2196                 datum = map_word_load_partial(map, datum, buf, gap, n);
2197                 ret = do_write_oneword(map, chip, bus_ofs, datum, FL_OTP_WRITE);
2198                 if (ret)
2199                         return ret;
2200
2201                 offset += n;
2202                 buf += n;
2203                 size -= n;
2204         }
2205
2206         return 0;
2207 }
2208
2209 static int
2210 do_otp_lock(struct map_info *map, struct flchip *chip, u_long offset,
2211             u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
2212 {
2213         struct cfi_private *cfi = map->fldrv_priv;
2214         map_word datum;
2215
2216         /* make sure area matches group boundaries */
2217         if (size != grpsz)
2218                 return -EXDEV;
2219
2220         datum = map_word_ff(map);
2221         datum = map_word_clr(map, datum, CMD(1 << grpno));
2222         return do_write_oneword(map, chip, prot, datum, FL_OTP_WRITE);
2223 }
2224
2225 static int cfi_intelext_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
2226                                  size_t *retlen, u_char *buf,
2227                                  otp_op_t action, int user_regs)
2228 {
2229         struct map_info *map = mtd->priv;
2230         struct cfi_private *cfi = map->fldrv_priv;
2231         struct cfi_pri_intelext *extp = cfi->cmdset_priv;
2232         struct flchip *chip;
2233         struct cfi_intelext_otpinfo *otp;
2234         u_long devsize, reg_prot_offset, data_offset;
2235         u_int chip_num, chip_step, field, reg_fact_size, reg_user_size;
2236         u_int groups, groupno, groupsize, reg_fact_groups, reg_user_groups;
2237         int ret;
2238
2239         *retlen = 0;
2240
2241         /* Check that we actually have some OTP registers */
2242         if (!extp || !(extp->FeatureSupport & 64) || !extp->NumProtectionFields)
2243                 return -ENODATA;
2244
2245         /* we need real chips here not virtual ones */
2246         devsize = (1 << cfi->cfiq->DevSize) * cfi->interleave;
2247         chip_step = devsize >> cfi->chipshift;
2248         chip_num = 0;
2249
2250         /* Some chips have OTP located in the _top_ partition only.
2251            For example: Intel 28F256L18T (T means top-parameter device) */
2252         if (cfi->mfr == CFI_MFR_INTEL) {
2253                 switch (cfi->id) {
2254                 case 0x880b:
2255                 case 0x880c:
2256                 case 0x880d:
2257                         chip_num = chip_step - 1;
2258                 }
2259         }
2260
2261         for ( ; chip_num < cfi->numchips; chip_num += chip_step) {
2262                 chip = &cfi->chips[chip_num];
2263                 otp = (struct cfi_intelext_otpinfo *)&extp->extra[0];
2264
2265                 /* first OTP region */
2266                 field = 0;
2267                 reg_prot_offset = extp->ProtRegAddr;
2268                 reg_fact_groups = 1;
2269                 reg_fact_size = 1 << extp->FactProtRegSize;
2270                 reg_user_groups = 1;
2271                 reg_user_size = 1 << extp->UserProtRegSize;
2272
2273                 while (len > 0) {
2274                         /* flash geometry fixup */
2275                         data_offset = reg_prot_offset + 1;
2276                         data_offset *= cfi->interleave * cfi->device_type;
2277                         reg_prot_offset *= cfi->interleave * cfi->device_type;
2278                         reg_fact_size *= cfi->interleave;
2279                         reg_user_size *= cfi->interleave;
2280
2281                         if (user_regs) {
2282                                 groups = reg_user_groups;
2283                                 groupsize = reg_user_size;
2284                                 /* skip over factory reg area */
2285                                 groupno = reg_fact_groups;
2286                                 data_offset += reg_fact_groups * reg_fact_size;
2287                         } else {
2288                                 groups = reg_fact_groups;
2289                                 groupsize = reg_fact_size;
2290                                 groupno = 0;
2291                         }
2292
2293                         while (len > 0 && groups > 0) {
2294                                 if (!action) {
2295                                         /*
2296                                          * Special case: if action is NULL
2297                                          * we fill buf with otp_info records.
2298                                          */
2299                                         struct otp_info *otpinfo;
2300                                         map_word lockword;
2301                                         len -= sizeof(struct otp_info);
2302                                         if (len <= 0)
2303                                                 return -ENOSPC;
2304                                         ret = do_otp_read(map, chip,
2305                                                           reg_prot_offset,
2306                                                           (u_char *)&lockword,
2307                                                           map_bankwidth(map),
2308                                                           0, 0,  0);
2309                                         if (ret)
2310                                                 return ret;
2311                                         otpinfo = (struct otp_info *)buf;
2312                                         otpinfo->start = from;
2313                                         otpinfo->length = groupsize;
2314                                         otpinfo->locked =
2315                                            !map_word_bitsset(map, lockword,
2316                                                              CMD(1 << groupno));
2317                                         from += groupsize;
2318                                         buf += sizeof(*otpinfo);
2319                                         *retlen += sizeof(*otpinfo);
2320                                 } else if (from >= groupsize) {
2321                                         from -= groupsize;
2322                                         data_offset += groupsize;
2323                                 } else {
2324                                         int size = groupsize;
2325                                         data_offset += from;
2326                                         size -= from;
2327                                         from = 0;
2328                                         if (size > len)
2329                                                 size = len;
2330                                         ret = action(map, chip, data_offset,
2331                                                      buf, size, reg_prot_offset,
2332                                                      groupno, groupsize);
2333                                         if (ret < 0)
2334                                                 return ret;
2335                                         buf += size;
2336                                         len -= size;
2337                                         *retlen += size;
2338                                         data_offset += size;
2339                                 }
2340                                 groupno++;
2341                                 groups--;
2342                         }
2343
2344                         /* next OTP region */
2345                         if (++field == extp->NumProtectionFields)
2346                                 break;
2347                         reg_prot_offset = otp->ProtRegAddr;
2348                         reg_fact_groups = otp->FactGroups;
2349                         reg_fact_size = 1 << otp->FactProtRegSize;
2350                         reg_user_groups = otp->UserGroups;
2351                         reg_user_size = 1 << otp->UserProtRegSize;
2352                         otp++;
2353                 }
2354         }
2355
2356         return 0;
2357 }
2358
2359 static int cfi_intelext_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
2360                                            size_t len, size_t *retlen,
2361                                             u_char *buf)
2362 {
2363         return cfi_intelext_otp_walk(mtd, from, len, retlen,
2364                                      buf, do_otp_read, 0);
2365 }
2366
2367 static int cfi_intelext_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
2368                                            size_t len, size_t *retlen,
2369                                             u_char *buf)
2370 {
2371         return cfi_intelext_otp_walk(mtd, from, len, retlen,
2372                                      buf, do_otp_read, 1);
2373 }
2374
2375 static int cfi_intelext_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
2376                                             size_t len, size_t *retlen,
2377                                              u_char *buf)
2378 {
2379         return cfi_intelext_otp_walk(mtd, from, len, retlen,
2380                                      buf, do_otp_write, 1);
2381 }
2382
2383 static int cfi_intelext_lock_user_prot_reg(struct mtd_info *mtd,
2384                                            loff_t from, size_t len)
2385 {
2386         size_t retlen;
2387         return cfi_intelext_otp_walk(mtd, from, len, &retlen,
2388                                      NULL, do_otp_lock, 1);
2389 }
2390
2391 static int cfi_intelext_get_fact_prot_info(struct mtd_info *mtd,
2392                                            struct otp_info *buf, size_t len)
2393 {
2394         size_t retlen;
2395         int ret;
2396
2397         ret = cfi_intelext_otp_walk(mtd, 0, len, &retlen, (u_char *)buf, NULL, 0);
2398         return ret ? : retlen;
2399 }
2400
2401 static int cfi_intelext_get_user_prot_info(struct mtd_info *mtd,
2402                                            struct otp_info *buf, size_t len)
2403 {
2404         size_t retlen;
2405         int ret;
2406
2407         ret = cfi_intelext_otp_walk(mtd, 0, len, &retlen, (u_char *)buf, NULL, 1);
2408         return ret ? : retlen;
2409 }
2410
2411 #endif
2412
2413 static void cfi_intelext_save_locks(struct mtd_info *mtd)
2414 {
2415         struct mtd_erase_region_info *region;
2416         int block, status, i;
2417         unsigned long adr;
2418         size_t len;
2419
2420         for (i = 0; i < mtd->numeraseregions; i++) {
2421                 region = &mtd->eraseregions[i];
2422                 if (!region->lockmap)
2423                         continue;
2424
2425                 for (block = 0; block < region->numblocks; block++){
2426                         len = region->erasesize;
2427                         adr = region->offset + block * len;
2428
2429                         status = cfi_varsize_frob(mtd,
2430                                         do_getlockstatus_oneblock, adr, len, NULL);
2431                         if (status)
2432                                 set_bit(block, region->lockmap);
2433                         else
2434                                 clear_bit(block, region->lockmap);
2435                 }
2436         }
2437 }
2438
2439 static int cfi_intelext_suspend(struct mtd_info *mtd)
2440 {
2441         struct map_info *map = mtd->priv;
2442         struct cfi_private *cfi = map->fldrv_priv;
2443         struct cfi_pri_intelext *extp = cfi->cmdset_priv;
2444         int i;
2445         struct flchip *chip;
2446         int ret = 0;
2447
2448         if ((mtd->flags & MTD_POWERUP_LOCK)
2449             && extp && (extp->FeatureSupport & (1 << 5)))
2450                 cfi_intelext_save_locks(mtd);
2451
2452         for (i=0; !ret && i<cfi->numchips; i++) {
2453                 chip = &cfi->chips[i];
2454
2455                 spin_lock(chip->mutex);
2456
2457                 switch (chip->state) {
2458                 case FL_READY:
2459                 case FL_STATUS:
2460                 case FL_CFI_QUERY:
2461                 case FL_JEDEC_QUERY:
2462                         if (chip->oldstate == FL_READY) {
2463                                 /* place the chip in a known state before suspend */
2464                                 map_write(map, CMD(0xFF), cfi->chips[i].start);
2465                                 chip->oldstate = chip->state;
2466                                 chip->state = FL_PM_SUSPENDED;
2467                                 /* No need to wake_up() on this state change -
2468                                  * as the whole point is that nobody can do anything
2469                                  * with the chip now anyway.
2470                                  */
2471                         } else {
2472                                 /* There seems to be an operation pending. We must wait for it. */
2473                                 printk(KERN_NOTICE "Flash device refused suspend due to pending operation (oldstate %d)\n", chip->oldstate);
2474                                 ret = -EAGAIN;
2475                         }
2476                         break;
2477                 default:
2478                         /* Should we actually wait? Once upon a time these routines weren't
2479                            allowed to. Or should we return -EAGAIN, because the upper layers
2480                            ought to have already shut down anything which was using the device
2481                            anyway? The latter for now. */
2482                         printk(KERN_NOTICE "Flash device refused suspend due to active operation (state %d)\n", chip->oldstate);
2483                         ret = -EAGAIN;
2484                 case FL_PM_SUSPENDED:
2485                         break;
2486                 }
2487                 spin_unlock(chip->mutex);
2488         }
2489
2490         /* Unlock the chips again */
2491
2492         if (ret) {
2493                 for (i--; i >=0; i--) {
2494                         chip = &cfi->chips[i];
2495
2496                         spin_lock(chip->mutex);
2497
2498                         if (chip->state == FL_PM_SUSPENDED) {
2499                                 /* No need to force it into a known state here,
2500                                    because we're returning failure, and it didn't
2501                                    get power cycled */
2502                                 chip->state = chip->oldstate;
2503                                 chip->oldstate = FL_READY;
2504                                 wake_up(&chip->wq);
2505                         }
2506                         spin_unlock(chip->mutex);
2507                 }
2508         }
2509
2510         return ret;
2511 }
2512
2513 static void cfi_intelext_restore_locks(struct mtd_info *mtd)
2514 {
2515         struct mtd_erase_region_info *region;
2516         int block, i;
2517         unsigned long adr;
2518         size_t len;
2519
2520         for (i = 0; i < mtd->numeraseregions; i++) {
2521                 region = &mtd->eraseregions[i];
2522                 if (!region->lockmap)
2523                         continue;
2524
2525                 for (block = 0; block < region->numblocks; block++) {
2526                         len = region->erasesize;
2527                         adr = region->offset + block * len;
2528
2529                         if (!test_bit(block, region->lockmap))
2530                                 cfi_intelext_unlock(mtd, adr, len);
2531                 }
2532         }
2533 }
2534
2535 static void cfi_intelext_resume(struct mtd_info *mtd)
2536 {
2537         struct map_info *map = mtd->priv;
2538         struct cfi_private *cfi = map->fldrv_priv;
2539         struct cfi_pri_intelext *extp = cfi->cmdset_priv;
2540         int i;
2541         struct flchip *chip;
2542
2543         for (i=0; i<cfi->numchips; i++) {
2544
2545                 chip = &cfi->chips[i];
2546
2547                 spin_lock(chip->mutex);
2548
2549                 /* Go to known state. Chip may have been power cycled */
2550                 if (chip->state == FL_PM_SUSPENDED) {
2551                         map_write(map, CMD(0xFF), cfi->chips[i].start);
2552                         chip->oldstate = chip->state = FL_READY;
2553                         wake_up(&chip->wq);
2554                 }
2555
2556                 spin_unlock(chip->mutex);
2557         }
2558
2559         if ((mtd->flags & MTD_POWERUP_LOCK)
2560             && extp && (extp->FeatureSupport & (1 << 5)))
2561                 cfi_intelext_restore_locks(mtd);
2562 }
2563
2564 static int cfi_intelext_reset(struct mtd_info *mtd)
2565 {
2566         struct map_info *map = mtd->priv;
2567         struct cfi_private *cfi = map->fldrv_priv;
2568         int i, ret;
2569
2570         for (i=0; i < cfi->numchips; i++) {
2571                 struct flchip *chip = &cfi->chips[i];
2572
2573                 /* force the completion of any ongoing operation
2574                    and switch to array mode so any bootloader in
2575                    flash is accessible for soft reboot. */
2576                 spin_lock(chip->mutex);
2577                 ret = get_chip(map, chip, chip->start, FL_SHUTDOWN);
2578                 if (!ret) {
2579                         map_write(map, CMD(0xff), chip->start);
2580                         chip->state = FL_SHUTDOWN;
2581                         put_chip(map, chip, chip->start);
2582                 }
2583                 spin_unlock(chip->mutex);
2584         }
2585
2586         return 0;
2587 }
2588
2589 static int cfi_intelext_reboot(struct notifier_block *nb, unsigned long val,
2590                                void *v)
2591 {
2592         struct mtd_info *mtd;
2593
2594         mtd = container_of(nb, struct mtd_info, reboot_notifier);
2595         cfi_intelext_reset(mtd);
2596         return NOTIFY_DONE;
2597 }
2598
2599 static void cfi_intelext_destroy(struct mtd_info *mtd)
2600 {
2601         struct map_info *map = mtd->priv;
2602         struct cfi_private *cfi = map->fldrv_priv;
2603         struct mtd_erase_region_info *region;
2604         int i;
2605         cfi_intelext_reset(mtd);
2606         unregister_reboot_notifier(&mtd->reboot_notifier);
2607         kfree(cfi->cmdset_priv);
2608         kfree(cfi->cfiq);
2609         kfree(cfi->chips[0].priv);
2610         kfree(cfi);
2611         for (i = 0; i < mtd->numeraseregions; i++) {
2612                 region = &mtd->eraseregions[i];
2613                 if (region->lockmap)
2614                         kfree(region->lockmap);
2615         }
2616         kfree(mtd->eraseregions);
2617 }
2618
2619 MODULE_LICENSE("GPL");
2620 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al.");
2621 MODULE_DESCRIPTION("MTD chip driver for Intel/Sharp flash chips");
2622 MODULE_ALIAS("cfi_cmdset_0003");
2623 MODULE_ALIAS("cfi_cmdset_0200");