2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
5 completely rewritten, based on the MD driver code from Marc Zyngier
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
20 Neil Brown <neilb@cse.unsw.edu.au>.
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
35 #include <linux/module.h>
36 #include <linux/kthread.h>
37 #include <linux/linkage.h>
38 #include <linux/raid/md.h>
39 #include <linux/raid/bitmap.h>
40 #include <linux/sysctl.h>
41 #include <linux/buffer_head.h> /* for invalidate_bdev */
42 #include <linux/poll.h>
43 #include <linux/mutex.h>
44 #include <linux/ctype.h>
45 #include <linux/freezer.h>
47 #include <linux/init.h>
49 #include <linux/file.h>
52 #include <linux/kmod.h>
55 #include <asm/unaligned.h>
57 #define MAJOR_NR MD_MAJOR
60 /* 63 partitions with the alternate major number (mdp) */
61 #define MdpMinorShift 6
64 #define dprintk(x...) ((void)(DEBUG && printk(x)))
68 static void autostart_arrays (int part);
71 static LIST_HEAD(pers_list);
72 static DEFINE_SPINLOCK(pers_lock);
74 static void md_print_devices(void);
76 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
79 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
80 * is 1000 KB/sec, so the extra system load does not show up that much.
81 * Increase it if you want to have more _guaranteed_ speed. Note that
82 * the RAID driver will use the maximum available bandwidth if the IO
83 * subsystem is idle. There is also an 'absolute maximum' reconstruction
84 * speed limit - in case reconstruction slows down your system despite
87 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
88 * or /sys/block/mdX/md/sync_speed_{min,max}
91 static int sysctl_speed_limit_min = 1000;
92 static int sysctl_speed_limit_max = 200000;
93 static inline int speed_min(mddev_t *mddev)
95 return mddev->sync_speed_min ?
96 mddev->sync_speed_min : sysctl_speed_limit_min;
99 static inline int speed_max(mddev_t *mddev)
101 return mddev->sync_speed_max ?
102 mddev->sync_speed_max : sysctl_speed_limit_max;
105 static struct ctl_table_header *raid_table_header;
107 static ctl_table raid_table[] = {
109 .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
110 .procname = "speed_limit_min",
111 .data = &sysctl_speed_limit_min,
112 .maxlen = sizeof(int),
113 .mode = S_IRUGO|S_IWUSR,
114 .proc_handler = &proc_dointvec,
117 .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
118 .procname = "speed_limit_max",
119 .data = &sysctl_speed_limit_max,
120 .maxlen = sizeof(int),
121 .mode = S_IRUGO|S_IWUSR,
122 .proc_handler = &proc_dointvec,
127 static ctl_table raid_dir_table[] = {
129 .ctl_name = DEV_RAID,
132 .mode = S_IRUGO|S_IXUGO,
138 static ctl_table raid_root_table[] = {
144 .child = raid_dir_table,
149 static struct block_device_operations md_fops;
151 static int start_readonly;
154 * We have a system wide 'event count' that is incremented
155 * on any 'interesting' event, and readers of /proc/mdstat
156 * can use 'poll' or 'select' to find out when the event
160 * start array, stop array, error, add device, remove device,
161 * start build, activate spare
163 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
164 static atomic_t md_event_count;
165 void md_new_event(mddev_t *mddev)
167 atomic_inc(&md_event_count);
168 wake_up(&md_event_waiters);
169 sysfs_notify(&mddev->kobj, NULL, "sync_action");
171 EXPORT_SYMBOL_GPL(md_new_event);
173 /* Alternate version that can be called from interrupts
174 * when calling sysfs_notify isn't needed.
176 static void md_new_event_inintr(mddev_t *mddev)
178 atomic_inc(&md_event_count);
179 wake_up(&md_event_waiters);
183 * Enables to iterate over all existing md arrays
184 * all_mddevs_lock protects this list.
186 static LIST_HEAD(all_mddevs);
187 static DEFINE_SPINLOCK(all_mddevs_lock);
191 * iterates through all used mddevs in the system.
192 * We take care to grab the all_mddevs_lock whenever navigating
193 * the list, and to always hold a refcount when unlocked.
194 * Any code which breaks out of this loop while own
195 * a reference to the current mddev and must mddev_put it.
197 #define ITERATE_MDDEV(mddev,tmp) \
199 for (({ spin_lock(&all_mddevs_lock); \
200 tmp = all_mddevs.next; \
202 ({ if (tmp != &all_mddevs) \
203 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
204 spin_unlock(&all_mddevs_lock); \
205 if (mddev) mddev_put(mddev); \
206 mddev = list_entry(tmp, mddev_t, all_mddevs); \
207 tmp != &all_mddevs;}); \
208 ({ spin_lock(&all_mddevs_lock); \
213 static int md_fail_request (request_queue_t *q, struct bio *bio)
215 bio_io_error(bio, bio->bi_size);
219 static inline mddev_t *mddev_get(mddev_t *mddev)
221 atomic_inc(&mddev->active);
225 static void mddev_put(mddev_t *mddev)
227 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
229 if (!mddev->raid_disks && list_empty(&mddev->disks)) {
230 list_del(&mddev->all_mddevs);
231 spin_unlock(&all_mddevs_lock);
232 blk_cleanup_queue(mddev->queue);
233 kobject_unregister(&mddev->kobj);
235 spin_unlock(&all_mddevs_lock);
238 static mddev_t * mddev_find(dev_t unit)
240 mddev_t *mddev, *new = NULL;
243 spin_lock(&all_mddevs_lock);
244 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
245 if (mddev->unit == unit) {
247 spin_unlock(&all_mddevs_lock);
253 list_add(&new->all_mddevs, &all_mddevs);
254 spin_unlock(&all_mddevs_lock);
257 spin_unlock(&all_mddevs_lock);
259 new = kzalloc(sizeof(*new), GFP_KERNEL);
264 if (MAJOR(unit) == MD_MAJOR)
265 new->md_minor = MINOR(unit);
267 new->md_minor = MINOR(unit) >> MdpMinorShift;
269 mutex_init(&new->reconfig_mutex);
270 INIT_LIST_HEAD(&new->disks);
271 INIT_LIST_HEAD(&new->all_mddevs);
272 init_timer(&new->safemode_timer);
273 atomic_set(&new->active, 1);
274 spin_lock_init(&new->write_lock);
275 init_waitqueue_head(&new->sb_wait);
277 new->queue = blk_alloc_queue(GFP_KERNEL);
282 set_bit(QUEUE_FLAG_CLUSTER, &new->queue->queue_flags);
284 blk_queue_make_request(new->queue, md_fail_request);
289 static inline int mddev_lock(mddev_t * mddev)
291 return mutex_lock_interruptible(&mddev->reconfig_mutex);
294 static inline int mddev_trylock(mddev_t * mddev)
296 return mutex_trylock(&mddev->reconfig_mutex);
299 static inline void mddev_unlock(mddev_t * mddev)
301 mutex_unlock(&mddev->reconfig_mutex);
303 md_wakeup_thread(mddev->thread);
306 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
309 struct list_head *tmp;
311 ITERATE_RDEV(mddev,rdev,tmp) {
312 if (rdev->desc_nr == nr)
318 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
320 struct list_head *tmp;
323 ITERATE_RDEV(mddev,rdev,tmp) {
324 if (rdev->bdev->bd_dev == dev)
330 static struct mdk_personality *find_pers(int level, char *clevel)
332 struct mdk_personality *pers;
333 list_for_each_entry(pers, &pers_list, list) {
334 if (level != LEVEL_NONE && pers->level == level)
336 if (strcmp(pers->name, clevel)==0)
342 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
344 sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
345 return MD_NEW_SIZE_BLOCKS(size);
348 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
352 size = rdev->sb_offset;
355 size &= ~((sector_t)chunk_size/1024 - 1);
359 static int alloc_disk_sb(mdk_rdev_t * rdev)
364 rdev->sb_page = alloc_page(GFP_KERNEL);
365 if (!rdev->sb_page) {
366 printk(KERN_ALERT "md: out of memory.\n");
373 static void free_disk_sb(mdk_rdev_t * rdev)
376 put_page(rdev->sb_page);
378 rdev->sb_page = NULL;
385 static int super_written(struct bio *bio, unsigned int bytes_done, int error)
387 mdk_rdev_t *rdev = bio->bi_private;
388 mddev_t *mddev = rdev->mddev;
392 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
393 printk("md: super_written gets error=%d, uptodate=%d\n",
394 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
395 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
396 md_error(mddev, rdev);
399 if (atomic_dec_and_test(&mddev->pending_writes))
400 wake_up(&mddev->sb_wait);
405 static int super_written_barrier(struct bio *bio, unsigned int bytes_done, int error)
407 struct bio *bio2 = bio->bi_private;
408 mdk_rdev_t *rdev = bio2->bi_private;
409 mddev_t *mddev = rdev->mddev;
413 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
414 error == -EOPNOTSUPP) {
416 /* barriers don't appear to be supported :-( */
417 set_bit(BarriersNotsupp, &rdev->flags);
418 mddev->barriers_work = 0;
419 spin_lock_irqsave(&mddev->write_lock, flags);
420 bio2->bi_next = mddev->biolist;
421 mddev->biolist = bio2;
422 spin_unlock_irqrestore(&mddev->write_lock, flags);
423 wake_up(&mddev->sb_wait);
428 bio->bi_private = rdev;
429 return super_written(bio, bytes_done, error);
432 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
433 sector_t sector, int size, struct page *page)
435 /* write first size bytes of page to sector of rdev
436 * Increment mddev->pending_writes before returning
437 * and decrement it on completion, waking up sb_wait
438 * if zero is reached.
439 * If an error occurred, call md_error
441 * As we might need to resubmit the request if BIO_RW_BARRIER
442 * causes ENOTSUPP, we allocate a spare bio...
444 struct bio *bio = bio_alloc(GFP_NOIO, 1);
445 int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
447 bio->bi_bdev = rdev->bdev;
448 bio->bi_sector = sector;
449 bio_add_page(bio, page, size, 0);
450 bio->bi_private = rdev;
451 bio->bi_end_io = super_written;
454 atomic_inc(&mddev->pending_writes);
455 if (!test_bit(BarriersNotsupp, &rdev->flags)) {
457 rw |= (1<<BIO_RW_BARRIER);
458 rbio = bio_clone(bio, GFP_NOIO);
459 rbio->bi_private = bio;
460 rbio->bi_end_io = super_written_barrier;
461 submit_bio(rw, rbio);
466 void md_super_wait(mddev_t *mddev)
468 /* wait for all superblock writes that were scheduled to complete.
469 * if any had to be retried (due to BARRIER problems), retry them
473 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
474 if (atomic_read(&mddev->pending_writes)==0)
476 while (mddev->biolist) {
478 spin_lock_irq(&mddev->write_lock);
479 bio = mddev->biolist;
480 mddev->biolist = bio->bi_next ;
482 spin_unlock_irq(&mddev->write_lock);
483 submit_bio(bio->bi_rw, bio);
487 finish_wait(&mddev->sb_wait, &wq);
490 static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
495 complete((struct completion*)bio->bi_private);
499 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
500 struct page *page, int rw)
502 struct bio *bio = bio_alloc(GFP_NOIO, 1);
503 struct completion event;
506 rw |= (1 << BIO_RW_SYNC);
509 bio->bi_sector = sector;
510 bio_add_page(bio, page, size, 0);
511 init_completion(&event);
512 bio->bi_private = &event;
513 bio->bi_end_io = bi_complete;
515 wait_for_completion(&event);
517 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
521 EXPORT_SYMBOL_GPL(sync_page_io);
523 static int read_disk_sb(mdk_rdev_t * rdev, int size)
525 char b[BDEVNAME_SIZE];
526 if (!rdev->sb_page) {
534 if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
540 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
541 bdevname(rdev->bdev,b));
545 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
547 if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
548 (sb1->set_uuid1 == sb2->set_uuid1) &&
549 (sb1->set_uuid2 == sb2->set_uuid2) &&
550 (sb1->set_uuid3 == sb2->set_uuid3))
558 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
561 mdp_super_t *tmp1, *tmp2;
563 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
564 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
566 if (!tmp1 || !tmp2) {
568 printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
576 * nr_disks is not constant
581 if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
592 static unsigned int calc_sb_csum(mdp_super_t * sb)
594 unsigned int disk_csum, csum;
596 disk_csum = sb->sb_csum;
598 csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
599 sb->sb_csum = disk_csum;
605 * Handle superblock details.
606 * We want to be able to handle multiple superblock formats
607 * so we have a common interface to them all, and an array of
608 * different handlers.
609 * We rely on user-space to write the initial superblock, and support
610 * reading and updating of superblocks.
611 * Interface methods are:
612 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
613 * loads and validates a superblock on dev.
614 * if refdev != NULL, compare superblocks on both devices
616 * 0 - dev has a superblock that is compatible with refdev
617 * 1 - dev has a superblock that is compatible and newer than refdev
618 * so dev should be used as the refdev in future
619 * -EINVAL superblock incompatible or invalid
620 * -othererror e.g. -EIO
622 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
623 * Verify that dev is acceptable into mddev.
624 * The first time, mddev->raid_disks will be 0, and data from
625 * dev should be merged in. Subsequent calls check that dev
626 * is new enough. Return 0 or -EINVAL
628 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
629 * Update the superblock for rdev with data in mddev
630 * This does not write to disc.
636 struct module *owner;
637 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
638 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
639 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
643 * load_super for 0.90.0
645 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
647 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
653 * Calculate the position of the superblock,
654 * it's at the end of the disk.
656 * It also happens to be a multiple of 4Kb.
658 sb_offset = calc_dev_sboffset(rdev->bdev);
659 rdev->sb_offset = sb_offset;
661 ret = read_disk_sb(rdev, MD_SB_BYTES);
666 bdevname(rdev->bdev, b);
667 sb = (mdp_super_t*)page_address(rdev->sb_page);
669 if (sb->md_magic != MD_SB_MAGIC) {
670 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
675 if (sb->major_version != 0 ||
676 sb->minor_version < 90 ||
677 sb->minor_version > 91) {
678 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
679 sb->major_version, sb->minor_version,
684 if (sb->raid_disks <= 0)
687 if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
688 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
693 rdev->preferred_minor = sb->md_minor;
694 rdev->data_offset = 0;
695 rdev->sb_size = MD_SB_BYTES;
697 if (sb->level == LEVEL_MULTIPATH)
700 rdev->desc_nr = sb->this_disk.number;
706 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
707 if (!uuid_equal(refsb, sb)) {
708 printk(KERN_WARNING "md: %s has different UUID to %s\n",
709 b, bdevname(refdev->bdev,b2));
712 if (!sb_equal(refsb, sb)) {
713 printk(KERN_WARNING "md: %s has same UUID"
714 " but different superblock to %s\n",
715 b, bdevname(refdev->bdev, b2));
719 ev2 = md_event(refsb);
725 rdev->size = calc_dev_size(rdev, sb->chunk_size);
727 if (rdev->size < sb->size && sb->level > 1)
728 /* "this cannot possibly happen" ... */
736 * validate_super for 0.90.0
738 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
741 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
742 __u64 ev1 = md_event(sb);
744 rdev->raid_disk = -1;
746 if (mddev->raid_disks == 0) {
747 mddev->major_version = 0;
748 mddev->minor_version = sb->minor_version;
749 mddev->patch_version = sb->patch_version;
750 mddev->persistent = ! sb->not_persistent;
751 mddev->chunk_size = sb->chunk_size;
752 mddev->ctime = sb->ctime;
753 mddev->utime = sb->utime;
754 mddev->level = sb->level;
755 mddev->clevel[0] = 0;
756 mddev->layout = sb->layout;
757 mddev->raid_disks = sb->raid_disks;
758 mddev->size = sb->size;
760 mddev->bitmap_offset = 0;
761 mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
763 if (mddev->minor_version >= 91) {
764 mddev->reshape_position = sb->reshape_position;
765 mddev->delta_disks = sb->delta_disks;
766 mddev->new_level = sb->new_level;
767 mddev->new_layout = sb->new_layout;
768 mddev->new_chunk = sb->new_chunk;
770 mddev->reshape_position = MaxSector;
771 mddev->delta_disks = 0;
772 mddev->new_level = mddev->level;
773 mddev->new_layout = mddev->layout;
774 mddev->new_chunk = mddev->chunk_size;
777 if (sb->state & (1<<MD_SB_CLEAN))
778 mddev->recovery_cp = MaxSector;
780 if (sb->events_hi == sb->cp_events_hi &&
781 sb->events_lo == sb->cp_events_lo) {
782 mddev->recovery_cp = sb->recovery_cp;
784 mddev->recovery_cp = 0;
787 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
788 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
789 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
790 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
792 mddev->max_disks = MD_SB_DISKS;
794 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
795 mddev->bitmap_file == NULL) {
796 if (mddev->level != 1 && mddev->level != 4
797 && mddev->level != 5 && mddev->level != 6
798 && mddev->level != 10) {
799 /* FIXME use a better test */
800 printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
803 mddev->bitmap_offset = mddev->default_bitmap_offset;
806 } else if (mddev->pers == NULL) {
807 /* Insist on good event counter while assembling */
809 if (ev1 < mddev->events)
811 } else if (mddev->bitmap) {
812 /* if adding to array with a bitmap, then we can accept an
813 * older device ... but not too old.
815 if (ev1 < mddev->bitmap->events_cleared)
818 if (ev1 < mddev->events)
819 /* just a hot-add of a new device, leave raid_disk at -1 */
823 if (mddev->level != LEVEL_MULTIPATH) {
824 desc = sb->disks + rdev->desc_nr;
826 if (desc->state & (1<<MD_DISK_FAULTY))
827 set_bit(Faulty, &rdev->flags);
828 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
829 desc->raid_disk < mddev->raid_disks */) {
830 set_bit(In_sync, &rdev->flags);
831 rdev->raid_disk = desc->raid_disk;
833 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
834 set_bit(WriteMostly, &rdev->flags);
835 } else /* MULTIPATH are always insync */
836 set_bit(In_sync, &rdev->flags);
841 * sync_super for 0.90.0
843 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
846 struct list_head *tmp;
848 int next_spare = mddev->raid_disks;
851 /* make rdev->sb match mddev data..
854 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
855 * 3/ any empty disks < next_spare become removed
857 * disks[0] gets initialised to REMOVED because
858 * we cannot be sure from other fields if it has
859 * been initialised or not.
862 int active=0, working=0,failed=0,spare=0,nr_disks=0;
864 rdev->sb_size = MD_SB_BYTES;
866 sb = (mdp_super_t*)page_address(rdev->sb_page);
868 memset(sb, 0, sizeof(*sb));
870 sb->md_magic = MD_SB_MAGIC;
871 sb->major_version = mddev->major_version;
872 sb->patch_version = mddev->patch_version;
873 sb->gvalid_words = 0; /* ignored */
874 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
875 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
876 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
877 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
879 sb->ctime = mddev->ctime;
880 sb->level = mddev->level;
881 sb->size = mddev->size;
882 sb->raid_disks = mddev->raid_disks;
883 sb->md_minor = mddev->md_minor;
884 sb->not_persistent = !mddev->persistent;
885 sb->utime = mddev->utime;
887 sb->events_hi = (mddev->events>>32);
888 sb->events_lo = (u32)mddev->events;
890 if (mddev->reshape_position == MaxSector)
891 sb->minor_version = 90;
893 sb->minor_version = 91;
894 sb->reshape_position = mddev->reshape_position;
895 sb->new_level = mddev->new_level;
896 sb->delta_disks = mddev->delta_disks;
897 sb->new_layout = mddev->new_layout;
898 sb->new_chunk = mddev->new_chunk;
900 mddev->minor_version = sb->minor_version;
903 sb->recovery_cp = mddev->recovery_cp;
904 sb->cp_events_hi = (mddev->events>>32);
905 sb->cp_events_lo = (u32)mddev->events;
906 if (mddev->recovery_cp == MaxSector)
907 sb->state = (1<< MD_SB_CLEAN);
911 sb->layout = mddev->layout;
912 sb->chunk_size = mddev->chunk_size;
914 if (mddev->bitmap && mddev->bitmap_file == NULL)
915 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
917 sb->disks[0].state = (1<<MD_DISK_REMOVED);
918 ITERATE_RDEV(mddev,rdev2,tmp) {
921 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
922 && !test_bit(Faulty, &rdev2->flags))
923 desc_nr = rdev2->raid_disk;
925 desc_nr = next_spare++;
926 rdev2->desc_nr = desc_nr;
927 d = &sb->disks[rdev2->desc_nr];
929 d->number = rdev2->desc_nr;
930 d->major = MAJOR(rdev2->bdev->bd_dev);
931 d->minor = MINOR(rdev2->bdev->bd_dev);
932 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
933 && !test_bit(Faulty, &rdev2->flags))
934 d->raid_disk = rdev2->raid_disk;
936 d->raid_disk = rdev2->desc_nr; /* compatibility */
937 if (test_bit(Faulty, &rdev2->flags))
938 d->state = (1<<MD_DISK_FAULTY);
939 else if (test_bit(In_sync, &rdev2->flags)) {
940 d->state = (1<<MD_DISK_ACTIVE);
941 d->state |= (1<<MD_DISK_SYNC);
949 if (test_bit(WriteMostly, &rdev2->flags))
950 d->state |= (1<<MD_DISK_WRITEMOSTLY);
952 /* now set the "removed" and "faulty" bits on any missing devices */
953 for (i=0 ; i < mddev->raid_disks ; i++) {
954 mdp_disk_t *d = &sb->disks[i];
955 if (d->state == 0 && d->number == 0) {
958 d->state = (1<<MD_DISK_REMOVED);
959 d->state |= (1<<MD_DISK_FAULTY);
963 sb->nr_disks = nr_disks;
964 sb->active_disks = active;
965 sb->working_disks = working;
966 sb->failed_disks = failed;
967 sb->spare_disks = spare;
969 sb->this_disk = sb->disks[rdev->desc_nr];
970 sb->sb_csum = calc_sb_csum(sb);
974 * version 1 superblock
977 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
981 unsigned long long newcsum;
982 int size = 256 + le32_to_cpu(sb->max_dev)*2;
983 __le32 *isuper = (__le32*)sb;
986 disk_csum = sb->sb_csum;
989 for (i=0; size>=4; size -= 4 )
990 newcsum += le32_to_cpu(*isuper++);
993 newcsum += le16_to_cpu(*(__le16*) isuper);
995 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
996 sb->sb_csum = disk_csum;
997 return cpu_to_le32(csum);
1000 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1002 struct mdp_superblock_1 *sb;
1005 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1009 * Calculate the position of the superblock.
1010 * It is always aligned to a 4K boundary and
1011 * depeding on minor_version, it can be:
1012 * 0: At least 8K, but less than 12K, from end of device
1013 * 1: At start of device
1014 * 2: 4K from start of device.
1016 switch(minor_version) {
1018 sb_offset = rdev->bdev->bd_inode->i_size >> 9;
1020 sb_offset &= ~(sector_t)(4*2-1);
1021 /* convert from sectors to K */
1033 rdev->sb_offset = sb_offset;
1035 /* superblock is rarely larger than 1K, but it can be larger,
1036 * and it is safe to read 4k, so we do that
1038 ret = read_disk_sb(rdev, 4096);
1039 if (ret) return ret;
1042 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1044 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1045 sb->major_version != cpu_to_le32(1) ||
1046 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1047 le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
1048 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1051 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1052 printk("md: invalid superblock checksum on %s\n",
1053 bdevname(rdev->bdev,b));
1056 if (le64_to_cpu(sb->data_size) < 10) {
1057 printk("md: data_size too small on %s\n",
1058 bdevname(rdev->bdev,b));
1061 rdev->preferred_minor = 0xffff;
1062 rdev->data_offset = le64_to_cpu(sb->data_offset);
1063 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1065 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1066 bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
1067 if (rdev->sb_size & bmask)
1068 rdev-> sb_size = (rdev->sb_size | bmask)+1;
1070 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1073 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1079 struct mdp_superblock_1 *refsb =
1080 (struct mdp_superblock_1*)page_address(refdev->sb_page);
1082 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1083 sb->level != refsb->level ||
1084 sb->layout != refsb->layout ||
1085 sb->chunksize != refsb->chunksize) {
1086 printk(KERN_WARNING "md: %s has strangely different"
1087 " superblock to %s\n",
1088 bdevname(rdev->bdev,b),
1089 bdevname(refdev->bdev,b2));
1092 ev1 = le64_to_cpu(sb->events);
1093 ev2 = le64_to_cpu(refsb->events);
1101 rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
1103 rdev->size = rdev->sb_offset;
1104 if (rdev->size < le64_to_cpu(sb->data_size)/2)
1106 rdev->size = le64_to_cpu(sb->data_size)/2;
1107 if (le32_to_cpu(sb->chunksize))
1108 rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
1110 if (le64_to_cpu(sb->size) > rdev->size*2)
1115 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1117 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1118 __u64 ev1 = le64_to_cpu(sb->events);
1120 rdev->raid_disk = -1;
1122 if (mddev->raid_disks == 0) {
1123 mddev->major_version = 1;
1124 mddev->patch_version = 0;
1125 mddev->persistent = 1;
1126 mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
1127 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1128 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1129 mddev->level = le32_to_cpu(sb->level);
1130 mddev->clevel[0] = 0;
1131 mddev->layout = le32_to_cpu(sb->layout);
1132 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1133 mddev->size = le64_to_cpu(sb->size)/2;
1134 mddev->events = ev1;
1135 mddev->bitmap_offset = 0;
1136 mddev->default_bitmap_offset = 1024 >> 9;
1138 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1139 memcpy(mddev->uuid, sb->set_uuid, 16);
1141 mddev->max_disks = (4096-256)/2;
1143 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1144 mddev->bitmap_file == NULL ) {
1145 if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6
1146 && mddev->level != 10) {
1147 printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
1150 mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1152 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1153 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1154 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1155 mddev->new_level = le32_to_cpu(sb->new_level);
1156 mddev->new_layout = le32_to_cpu(sb->new_layout);
1157 mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9;
1159 mddev->reshape_position = MaxSector;
1160 mddev->delta_disks = 0;
1161 mddev->new_level = mddev->level;
1162 mddev->new_layout = mddev->layout;
1163 mddev->new_chunk = mddev->chunk_size;
1166 } else if (mddev->pers == NULL) {
1167 /* Insist of good event counter while assembling */
1169 if (ev1 < mddev->events)
1171 } else if (mddev->bitmap) {
1172 /* If adding to array with a bitmap, then we can accept an
1173 * older device, but not too old.
1175 if (ev1 < mddev->bitmap->events_cleared)
1178 if (ev1 < mddev->events)
1179 /* just a hot-add of a new device, leave raid_disk at -1 */
1182 if (mddev->level != LEVEL_MULTIPATH) {
1184 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1186 case 0xffff: /* spare */
1188 case 0xfffe: /* faulty */
1189 set_bit(Faulty, &rdev->flags);
1192 if ((le32_to_cpu(sb->feature_map) &
1193 MD_FEATURE_RECOVERY_OFFSET))
1194 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1196 set_bit(In_sync, &rdev->flags);
1197 rdev->raid_disk = role;
1200 if (sb->devflags & WriteMostly1)
1201 set_bit(WriteMostly, &rdev->flags);
1202 } else /* MULTIPATH are always insync */
1203 set_bit(In_sync, &rdev->flags);
1208 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1210 struct mdp_superblock_1 *sb;
1211 struct list_head *tmp;
1214 /* make rdev->sb match mddev and rdev data. */
1216 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1218 sb->feature_map = 0;
1220 sb->recovery_offset = cpu_to_le64(0);
1221 memset(sb->pad1, 0, sizeof(sb->pad1));
1222 memset(sb->pad2, 0, sizeof(sb->pad2));
1223 memset(sb->pad3, 0, sizeof(sb->pad3));
1225 sb->utime = cpu_to_le64((__u64)mddev->utime);
1226 sb->events = cpu_to_le64(mddev->events);
1228 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1230 sb->resync_offset = cpu_to_le64(0);
1232 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1234 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1235 sb->size = cpu_to_le64(mddev->size<<1);
1237 if (mddev->bitmap && mddev->bitmap_file == NULL) {
1238 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1239 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1242 if (rdev->raid_disk >= 0 &&
1243 !test_bit(In_sync, &rdev->flags) &&
1244 rdev->recovery_offset > 0) {
1245 sb->feature_map |= cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1246 sb->recovery_offset = cpu_to_le64(rdev->recovery_offset);
1249 if (mddev->reshape_position != MaxSector) {
1250 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1251 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1252 sb->new_layout = cpu_to_le32(mddev->new_layout);
1253 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1254 sb->new_level = cpu_to_le32(mddev->new_level);
1255 sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9);
1259 ITERATE_RDEV(mddev,rdev2,tmp)
1260 if (rdev2->desc_nr+1 > max_dev)
1261 max_dev = rdev2->desc_nr+1;
1263 sb->max_dev = cpu_to_le32(max_dev);
1264 for (i=0; i<max_dev;i++)
1265 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1267 ITERATE_RDEV(mddev,rdev2,tmp) {
1269 if (test_bit(Faulty, &rdev2->flags))
1270 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1271 else if (test_bit(In_sync, &rdev2->flags))
1272 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1273 else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0)
1274 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1276 sb->dev_roles[i] = cpu_to_le16(0xffff);
1279 sb->sb_csum = calc_sb_1_csum(sb);
1283 static struct super_type super_types[] = {
1286 .owner = THIS_MODULE,
1287 .load_super = super_90_load,
1288 .validate_super = super_90_validate,
1289 .sync_super = super_90_sync,
1293 .owner = THIS_MODULE,
1294 .load_super = super_1_load,
1295 .validate_super = super_1_validate,
1296 .sync_super = super_1_sync,
1300 static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
1302 struct list_head *tmp;
1305 ITERATE_RDEV(mddev,rdev,tmp)
1306 if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
1312 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1314 struct list_head *tmp;
1317 ITERATE_RDEV(mddev1,rdev,tmp)
1318 if (match_dev_unit(mddev2, rdev))
1324 static LIST_HEAD(pending_raid_disks);
1326 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1328 mdk_rdev_t *same_pdev;
1329 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1337 /* make sure rdev->size exceeds mddev->size */
1338 if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) {
1340 /* Cannot change size, so fail */
1343 mddev->size = rdev->size;
1345 same_pdev = match_dev_unit(mddev, rdev);
1348 "%s: WARNING: %s appears to be on the same physical"
1349 " disk as %s. True\n protection against single-disk"
1350 " failure might be compromised.\n",
1351 mdname(mddev), bdevname(rdev->bdev,b),
1352 bdevname(same_pdev->bdev,b2));
1354 /* Verify rdev->desc_nr is unique.
1355 * If it is -1, assign a free number, else
1356 * check number is not in use
1358 if (rdev->desc_nr < 0) {
1360 if (mddev->pers) choice = mddev->raid_disks;
1361 while (find_rdev_nr(mddev, choice))
1363 rdev->desc_nr = choice;
1365 if (find_rdev_nr(mddev, rdev->desc_nr))
1368 bdevname(rdev->bdev,b);
1369 if (kobject_set_name(&rdev->kobj, "dev-%s", b) < 0)
1371 while ( (s=strchr(rdev->kobj.k_name, '/')) != NULL)
1374 list_add(&rdev->same_set, &mddev->disks);
1375 rdev->mddev = mddev;
1376 printk(KERN_INFO "md: bind<%s>\n", b);
1378 rdev->kobj.parent = &mddev->kobj;
1379 kobject_add(&rdev->kobj);
1381 if (rdev->bdev->bd_part)
1382 ko = &rdev->bdev->bd_part->kobj;
1384 ko = &rdev->bdev->bd_disk->kobj;
1385 sysfs_create_link(&rdev->kobj, ko, "block");
1386 bd_claim_by_disk(rdev->bdev, rdev, mddev->gendisk);
1390 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1392 char b[BDEVNAME_SIZE];
1397 bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1398 list_del_init(&rdev->same_set);
1399 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1401 sysfs_remove_link(&rdev->kobj, "block");
1402 kobject_del(&rdev->kobj);
1406 * prevent the device from being mounted, repartitioned or
1407 * otherwise reused by a RAID array (or any other kernel
1408 * subsystem), by bd_claiming the device.
1410 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1413 struct block_device *bdev;
1414 char b[BDEVNAME_SIZE];
1416 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1418 printk(KERN_ERR "md: could not open %s.\n",
1419 __bdevname(dev, b));
1420 return PTR_ERR(bdev);
1422 err = bd_claim(bdev, rdev);
1424 printk(KERN_ERR "md: could not bd_claim %s.\n",
1433 static void unlock_rdev(mdk_rdev_t *rdev)
1435 struct block_device *bdev = rdev->bdev;
1443 void md_autodetect_dev(dev_t dev);
1445 static void export_rdev(mdk_rdev_t * rdev)
1447 char b[BDEVNAME_SIZE];
1448 printk(KERN_INFO "md: export_rdev(%s)\n",
1449 bdevname(rdev->bdev,b));
1453 list_del_init(&rdev->same_set);
1455 md_autodetect_dev(rdev->bdev->bd_dev);
1458 kobject_put(&rdev->kobj);
1461 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1463 unbind_rdev_from_array(rdev);
1467 static void export_array(mddev_t *mddev)
1469 struct list_head *tmp;
1472 ITERATE_RDEV(mddev,rdev,tmp) {
1477 kick_rdev_from_array(rdev);
1479 if (!list_empty(&mddev->disks))
1481 mddev->raid_disks = 0;
1482 mddev->major_version = 0;
1485 static void print_desc(mdp_disk_t *desc)
1487 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1488 desc->major,desc->minor,desc->raid_disk,desc->state);
1491 static void print_sb(mdp_super_t *sb)
1496 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1497 sb->major_version, sb->minor_version, sb->patch_version,
1498 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1500 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1501 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1502 sb->md_minor, sb->layout, sb->chunk_size);
1503 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
1504 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
1505 sb->utime, sb->state, sb->active_disks, sb->working_disks,
1506 sb->failed_disks, sb->spare_disks,
1507 sb->sb_csum, (unsigned long)sb->events_lo);
1510 for (i = 0; i < MD_SB_DISKS; i++) {
1513 desc = sb->disks + i;
1514 if (desc->number || desc->major || desc->minor ||
1515 desc->raid_disk || (desc->state && (desc->state != 4))) {
1516 printk(" D %2d: ", i);
1520 printk(KERN_INFO "md: THIS: ");
1521 print_desc(&sb->this_disk);
1525 static void print_rdev(mdk_rdev_t *rdev)
1527 char b[BDEVNAME_SIZE];
1528 printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1529 bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1530 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1532 if (rdev->sb_loaded) {
1533 printk(KERN_INFO "md: rdev superblock:\n");
1534 print_sb((mdp_super_t*)page_address(rdev->sb_page));
1536 printk(KERN_INFO "md: no rdev superblock!\n");
1539 static void md_print_devices(void)
1541 struct list_head *tmp, *tmp2;
1544 char b[BDEVNAME_SIZE];
1547 printk("md: **********************************\n");
1548 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
1549 printk("md: **********************************\n");
1550 ITERATE_MDDEV(mddev,tmp) {
1553 bitmap_print_sb(mddev->bitmap);
1555 printk("%s: ", mdname(mddev));
1556 ITERATE_RDEV(mddev,rdev,tmp2)
1557 printk("<%s>", bdevname(rdev->bdev,b));
1560 ITERATE_RDEV(mddev,rdev,tmp2)
1563 printk("md: **********************************\n");
1568 static void sync_sbs(mddev_t * mddev, int nospares)
1570 /* Update each superblock (in-memory image), but
1571 * if we are allowed to, skip spares which already
1572 * have the right event counter, or have one earlier
1573 * (which would mean they aren't being marked as dirty
1574 * with the rest of the array)
1577 struct list_head *tmp;
1579 ITERATE_RDEV(mddev,rdev,tmp) {
1580 if (rdev->sb_events == mddev->events ||
1582 rdev->raid_disk < 0 &&
1583 (rdev->sb_events&1)==0 &&
1584 rdev->sb_events+1 == mddev->events)) {
1585 /* Don't update this superblock */
1586 rdev->sb_loaded = 2;
1588 super_types[mddev->major_version].
1589 sync_super(mddev, rdev);
1590 rdev->sb_loaded = 1;
1595 static void md_update_sb(mddev_t * mddev, int force_change)
1598 struct list_head *tmp;
1604 spin_lock_irq(&mddev->write_lock);
1606 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1607 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
1609 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
1610 /* just a clean<-> dirty transition, possibly leave spares alone,
1611 * though if events isn't the right even/odd, we will have to do
1617 if (mddev->degraded)
1618 /* If the array is degraded, then skipping spares is both
1619 * dangerous and fairly pointless.
1620 * Dangerous because a device that was removed from the array
1621 * might have a event_count that still looks up-to-date,
1622 * so it can be re-added without a resync.
1623 * Pointless because if there are any spares to skip,
1624 * then a recovery will happen and soon that array won't
1625 * be degraded any more and the spare can go back to sleep then.
1629 sync_req = mddev->in_sync;
1630 mddev->utime = get_seconds();
1632 /* If this is just a dirty<->clean transition, and the array is clean
1633 * and 'events' is odd, we can roll back to the previous clean state */
1635 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
1636 && (mddev->events & 1))
1639 /* otherwise we have to go forward and ... */
1641 if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
1642 /* .. if the array isn't clean, insist on an odd 'events' */
1643 if ((mddev->events&1)==0) {
1648 /* otherwise insist on an even 'events' (for clean states) */
1649 if ((mddev->events&1)) {
1656 if (!mddev->events) {
1658 * oops, this 64-bit counter should never wrap.
1659 * Either we are in around ~1 trillion A.C., assuming
1660 * 1 reboot per second, or we have a bug:
1665 sync_sbs(mddev, nospares);
1668 * do not write anything to disk if using
1669 * nonpersistent superblocks
1671 if (!mddev->persistent) {
1672 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1673 spin_unlock_irq(&mddev->write_lock);
1674 wake_up(&mddev->sb_wait);
1677 spin_unlock_irq(&mddev->write_lock);
1680 "md: updating %s RAID superblock on device (in sync %d)\n",
1681 mdname(mddev),mddev->in_sync);
1683 err = bitmap_update_sb(mddev->bitmap);
1684 ITERATE_RDEV(mddev,rdev,tmp) {
1685 char b[BDEVNAME_SIZE];
1686 dprintk(KERN_INFO "md: ");
1687 if (rdev->sb_loaded != 1)
1688 continue; /* no noise on spare devices */
1689 if (test_bit(Faulty, &rdev->flags))
1690 dprintk("(skipping faulty ");
1692 dprintk("%s ", bdevname(rdev->bdev,b));
1693 if (!test_bit(Faulty, &rdev->flags)) {
1694 md_super_write(mddev,rdev,
1695 rdev->sb_offset<<1, rdev->sb_size,
1697 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1698 bdevname(rdev->bdev,b),
1699 (unsigned long long)rdev->sb_offset);
1700 rdev->sb_events = mddev->events;
1704 if (mddev->level == LEVEL_MULTIPATH)
1705 /* only need to write one superblock... */
1708 md_super_wait(mddev);
1709 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
1711 spin_lock_irq(&mddev->write_lock);
1712 if (mddev->in_sync != sync_req ||
1713 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
1714 /* have to write it out again */
1715 spin_unlock_irq(&mddev->write_lock);
1718 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1719 spin_unlock_irq(&mddev->write_lock);
1720 wake_up(&mddev->sb_wait);
1724 /* words written to sysfs files may, or my not, be \n terminated.
1725 * We want to accept with case. For this we use cmd_match.
1727 static int cmd_match(const char *cmd, const char *str)
1729 /* See if cmd, written into a sysfs file, matches
1730 * str. They must either be the same, or cmd can
1731 * have a trailing newline
1733 while (*cmd && *str && *cmd == *str) {
1744 struct rdev_sysfs_entry {
1745 struct attribute attr;
1746 ssize_t (*show)(mdk_rdev_t *, char *);
1747 ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
1751 state_show(mdk_rdev_t *rdev, char *page)
1756 if (test_bit(Faulty, &rdev->flags)) {
1757 len+= sprintf(page+len, "%sfaulty",sep);
1760 if (test_bit(In_sync, &rdev->flags)) {
1761 len += sprintf(page+len, "%sin_sync",sep);
1764 if (test_bit(WriteMostly, &rdev->flags)) {
1765 len += sprintf(page+len, "%swrite_mostly",sep);
1768 if (!test_bit(Faulty, &rdev->flags) &&
1769 !test_bit(In_sync, &rdev->flags)) {
1770 len += sprintf(page+len, "%sspare", sep);
1773 return len+sprintf(page+len, "\n");
1777 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1780 * faulty - simulates and error
1781 * remove - disconnects the device
1782 * writemostly - sets write_mostly
1783 * -writemostly - clears write_mostly
1786 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
1787 md_error(rdev->mddev, rdev);
1789 } else if (cmd_match(buf, "remove")) {
1790 if (rdev->raid_disk >= 0)
1793 mddev_t *mddev = rdev->mddev;
1794 kick_rdev_from_array(rdev);
1795 md_update_sb(mddev, 1);
1796 md_new_event(mddev);
1799 } else if (cmd_match(buf, "writemostly")) {
1800 set_bit(WriteMostly, &rdev->flags);
1802 } else if (cmd_match(buf, "-writemostly")) {
1803 clear_bit(WriteMostly, &rdev->flags);
1806 return err ? err : len;
1808 static struct rdev_sysfs_entry rdev_state =
1809 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
1812 super_show(mdk_rdev_t *rdev, char *page)
1814 if (rdev->sb_loaded && rdev->sb_size) {
1815 memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
1816 return rdev->sb_size;
1820 static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super);
1823 errors_show(mdk_rdev_t *rdev, char *page)
1825 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
1829 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1832 unsigned long n = simple_strtoul(buf, &e, 10);
1833 if (*buf && (*e == 0 || *e == '\n')) {
1834 atomic_set(&rdev->corrected_errors, n);
1839 static struct rdev_sysfs_entry rdev_errors =
1840 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
1843 slot_show(mdk_rdev_t *rdev, char *page)
1845 if (rdev->raid_disk < 0)
1846 return sprintf(page, "none\n");
1848 return sprintf(page, "%d\n", rdev->raid_disk);
1852 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1855 int slot = simple_strtoul(buf, &e, 10);
1856 if (strncmp(buf, "none", 4)==0)
1858 else if (e==buf || (*e && *e!= '\n'))
1860 if (rdev->mddev->pers)
1861 /* Cannot set slot in active array (yet) */
1863 if (slot >= rdev->mddev->raid_disks)
1865 rdev->raid_disk = slot;
1866 /* assume it is working */
1868 set_bit(In_sync, &rdev->flags);
1873 static struct rdev_sysfs_entry rdev_slot =
1874 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
1877 offset_show(mdk_rdev_t *rdev, char *page)
1879 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
1883 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1886 unsigned long long offset = simple_strtoull(buf, &e, 10);
1887 if (e==buf || (*e && *e != '\n'))
1889 if (rdev->mddev->pers)
1891 rdev->data_offset = offset;
1895 static struct rdev_sysfs_entry rdev_offset =
1896 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
1899 rdev_size_show(mdk_rdev_t *rdev, char *page)
1901 return sprintf(page, "%llu\n", (unsigned long long)rdev->size);
1905 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1908 unsigned long long size = simple_strtoull(buf, &e, 10);
1909 if (e==buf || (*e && *e != '\n'))
1911 if (rdev->mddev->pers)
1914 if (size < rdev->mddev->size || rdev->mddev->size == 0)
1915 rdev->mddev->size = size;
1919 static struct rdev_sysfs_entry rdev_size =
1920 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
1922 static struct attribute *rdev_default_attrs[] = {
1932 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1934 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1935 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1939 return entry->show(rdev, page);
1943 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
1944 const char *page, size_t length)
1946 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1947 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1951 if (!capable(CAP_SYS_ADMIN))
1953 return entry->store(rdev, page, length);
1956 static void rdev_free(struct kobject *ko)
1958 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
1961 static struct sysfs_ops rdev_sysfs_ops = {
1962 .show = rdev_attr_show,
1963 .store = rdev_attr_store,
1965 static struct kobj_type rdev_ktype = {
1966 .release = rdev_free,
1967 .sysfs_ops = &rdev_sysfs_ops,
1968 .default_attrs = rdev_default_attrs,
1972 * Import a device. If 'super_format' >= 0, then sanity check the superblock
1974 * mark the device faulty if:
1976 * - the device is nonexistent (zero size)
1977 * - the device has no valid superblock
1979 * a faulty rdev _never_ has rdev->sb set.
1981 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
1983 char b[BDEVNAME_SIZE];
1988 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
1990 printk(KERN_ERR "md: could not alloc mem for new device!\n");
1991 return ERR_PTR(-ENOMEM);
1994 if ((err = alloc_disk_sb(rdev)))
1997 err = lock_rdev(rdev, newdev);
2001 rdev->kobj.parent = NULL;
2002 rdev->kobj.ktype = &rdev_ktype;
2003 kobject_init(&rdev->kobj);
2006 rdev->saved_raid_disk = -1;
2008 rdev->data_offset = 0;
2009 rdev->sb_events = 0;
2010 atomic_set(&rdev->nr_pending, 0);
2011 atomic_set(&rdev->read_errors, 0);
2012 atomic_set(&rdev->corrected_errors, 0);
2014 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2017 "md: %s has zero or unknown size, marking faulty!\n",
2018 bdevname(rdev->bdev,b));
2023 if (super_format >= 0) {
2024 err = super_types[super_format].
2025 load_super(rdev, NULL, super_minor);
2026 if (err == -EINVAL) {
2028 "md: %s has invalid sb, not importing!\n",
2029 bdevname(rdev->bdev,b));
2034 "md: could not read %s's sb, not importing!\n",
2035 bdevname(rdev->bdev,b));
2039 INIT_LIST_HEAD(&rdev->same_set);
2044 if (rdev->sb_page) {
2050 return ERR_PTR(err);
2054 * Check a full RAID array for plausibility
2058 static void analyze_sbs(mddev_t * mddev)
2061 struct list_head *tmp;
2062 mdk_rdev_t *rdev, *freshest;
2063 char b[BDEVNAME_SIZE];
2066 ITERATE_RDEV(mddev,rdev,tmp)
2067 switch (super_types[mddev->major_version].
2068 load_super(rdev, freshest, mddev->minor_version)) {
2076 "md: fatal superblock inconsistency in %s"
2077 " -- removing from array\n",
2078 bdevname(rdev->bdev,b));
2079 kick_rdev_from_array(rdev);
2083 super_types[mddev->major_version].
2084 validate_super(mddev, freshest);
2087 ITERATE_RDEV(mddev,rdev,tmp) {
2088 if (rdev != freshest)
2089 if (super_types[mddev->major_version].
2090 validate_super(mddev, rdev)) {
2091 printk(KERN_WARNING "md: kicking non-fresh %s"
2093 bdevname(rdev->bdev,b));
2094 kick_rdev_from_array(rdev);
2097 if (mddev->level == LEVEL_MULTIPATH) {
2098 rdev->desc_nr = i++;
2099 rdev->raid_disk = rdev->desc_nr;
2100 set_bit(In_sync, &rdev->flags);
2106 if (mddev->recovery_cp != MaxSector &&
2108 printk(KERN_ERR "md: %s: raid array is not clean"
2109 " -- starting background reconstruction\n",
2115 safe_delay_show(mddev_t *mddev, char *page)
2117 int msec = (mddev->safemode_delay*1000)/HZ;
2118 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2121 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2129 /* remove a period, and count digits after it */
2130 if (len >= sizeof(buf))
2132 strlcpy(buf, cbuf, len);
2134 for (i=0; i<len; i++) {
2136 if (isdigit(buf[i])) {
2141 } else if (buf[i] == '.') {
2146 msec = simple_strtoul(buf, &e, 10);
2147 if (e == buf || (*e && *e != '\n'))
2149 msec = (msec * 1000) / scale;
2151 mddev->safemode_delay = 0;
2153 mddev->safemode_delay = (msec*HZ)/1000;
2154 if (mddev->safemode_delay == 0)
2155 mddev->safemode_delay = 1;
2159 static struct md_sysfs_entry md_safe_delay =
2160 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
2163 level_show(mddev_t *mddev, char *page)
2165 struct mdk_personality *p = mddev->pers;
2167 return sprintf(page, "%s\n", p->name);
2168 else if (mddev->clevel[0])
2169 return sprintf(page, "%s\n", mddev->clevel);
2170 else if (mddev->level != LEVEL_NONE)
2171 return sprintf(page, "%d\n", mddev->level);
2177 level_store(mddev_t *mddev, const char *buf, size_t len)
2184 if (len >= sizeof(mddev->clevel))
2186 strncpy(mddev->clevel, buf, len);
2187 if (mddev->clevel[len-1] == '\n')
2189 mddev->clevel[len] = 0;
2190 mddev->level = LEVEL_NONE;
2194 static struct md_sysfs_entry md_level =
2195 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
2199 layout_show(mddev_t *mddev, char *page)
2201 /* just a number, not meaningful for all levels */
2202 return sprintf(page, "%d\n", mddev->layout);
2206 layout_store(mddev_t *mddev, const char *buf, size_t len)
2209 unsigned long n = simple_strtoul(buf, &e, 10);
2213 if (!*buf || (*e && *e != '\n'))
2219 static struct md_sysfs_entry md_layout =
2220 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
2224 raid_disks_show(mddev_t *mddev, char *page)
2226 if (mddev->raid_disks == 0)
2228 return sprintf(page, "%d\n", mddev->raid_disks);
2231 static int update_raid_disks(mddev_t *mddev, int raid_disks);
2234 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
2236 /* can only set raid_disks if array is not yet active */
2239 unsigned long n = simple_strtoul(buf, &e, 10);
2241 if (!*buf || (*e && *e != '\n'))
2245 rv = update_raid_disks(mddev, n);
2247 mddev->raid_disks = n;
2248 return rv ? rv : len;
2250 static struct md_sysfs_entry md_raid_disks =
2251 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
2254 chunk_size_show(mddev_t *mddev, char *page)
2256 return sprintf(page, "%d\n", mddev->chunk_size);
2260 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
2262 /* can only set chunk_size if array is not yet active */
2264 unsigned long n = simple_strtoul(buf, &e, 10);
2268 if (!*buf || (*e && *e != '\n'))
2271 mddev->chunk_size = n;
2274 static struct md_sysfs_entry md_chunk_size =
2275 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
2278 resync_start_show(mddev_t *mddev, char *page)
2280 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
2284 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
2286 /* can only set chunk_size if array is not yet active */
2288 unsigned long long n = simple_strtoull(buf, &e, 10);
2292 if (!*buf || (*e && *e != '\n'))
2295 mddev->recovery_cp = n;
2298 static struct md_sysfs_entry md_resync_start =
2299 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
2302 * The array state can be:
2305 * No devices, no size, no level
2306 * Equivalent to STOP_ARRAY ioctl
2308 * May have some settings, but array is not active
2309 * all IO results in error
2310 * When written, doesn't tear down array, but just stops it
2311 * suspended (not supported yet)
2312 * All IO requests will block. The array can be reconfigured.
2313 * Writing this, if accepted, will block until array is quiessent
2315 * no resync can happen. no superblocks get written.
2316 * write requests fail
2318 * like readonly, but behaves like 'clean' on a write request.
2320 * clean - no pending writes, but otherwise active.
2321 * When written to inactive array, starts without resync
2322 * If a write request arrives then
2323 * if metadata is known, mark 'dirty' and switch to 'active'.
2324 * if not known, block and switch to write-pending
2325 * If written to an active array that has pending writes, then fails.
2327 * fully active: IO and resync can be happening.
2328 * When written to inactive array, starts with resync
2331 * clean, but writes are blocked waiting for 'active' to be written.
2334 * like active, but no writes have been seen for a while (100msec).
2337 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
2338 write_pending, active_idle, bad_word};
2339 static char *array_states[] = {
2340 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
2341 "write-pending", "active-idle", NULL };
2343 static int match_word(const char *word, char **list)
2346 for (n=0; list[n]; n++)
2347 if (cmd_match(word, list[n]))
2353 array_state_show(mddev_t *mddev, char *page)
2355 enum array_state st = inactive;
2368 else if (mddev->safemode)
2374 if (list_empty(&mddev->disks) &&
2375 mddev->raid_disks == 0 &&
2381 return sprintf(page, "%s\n", array_states[st]);
2384 static int do_md_stop(mddev_t * mddev, int ro);
2385 static int do_md_run(mddev_t * mddev);
2386 static int restart_array(mddev_t *mddev);
2389 array_state_store(mddev_t *mddev, const char *buf, size_t len)
2392 enum array_state st = match_word(buf, array_states);
2397 /* stopping an active array */
2399 if (atomic_read(&mddev->active) > 1)
2401 err = do_md_stop(mddev, 0);
2405 /* stopping an active array */
2407 if (atomic_read(&mddev->active) > 1)
2409 err = do_md_stop(mddev, 2);
2413 break; /* not supported yet */
2416 err = do_md_stop(mddev, 1);
2419 err = do_md_run(mddev);
2423 /* stopping an active array */
2425 err = do_md_stop(mddev, 1);
2427 mddev->ro = 2; /* FIXME mark devices writable */
2430 err = do_md_run(mddev);
2435 restart_array(mddev);
2436 spin_lock_irq(&mddev->write_lock);
2437 if (atomic_read(&mddev->writes_pending) == 0) {
2439 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
2441 spin_unlock_irq(&mddev->write_lock);
2444 mddev->recovery_cp = MaxSector;
2445 err = do_md_run(mddev);
2450 restart_array(mddev);
2451 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2452 wake_up(&mddev->sb_wait);
2456 err = do_md_run(mddev);
2461 /* these cannot be set */
2469 static struct md_sysfs_entry md_array_state =
2470 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
2473 null_show(mddev_t *mddev, char *page)
2479 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
2481 /* buf must be %d:%d\n? giving major and minor numbers */
2482 /* The new device is added to the array.
2483 * If the array has a persistent superblock, we read the
2484 * superblock to initialise info and check validity.
2485 * Otherwise, only checking done is that in bind_rdev_to_array,
2486 * which mainly checks size.
2489 int major = simple_strtoul(buf, &e, 10);
2495 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
2497 minor = simple_strtoul(e+1, &e, 10);
2498 if (*e && *e != '\n')
2500 dev = MKDEV(major, minor);
2501 if (major != MAJOR(dev) ||
2502 minor != MINOR(dev))
2506 if (mddev->persistent) {
2507 rdev = md_import_device(dev, mddev->major_version,
2508 mddev->minor_version);
2509 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
2510 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2511 mdk_rdev_t, same_set);
2512 err = super_types[mddev->major_version]
2513 .load_super(rdev, rdev0, mddev->minor_version);
2518 rdev = md_import_device(dev, -1, -1);
2521 return PTR_ERR(rdev);
2522 err = bind_rdev_to_array(rdev, mddev);
2526 return err ? err : len;
2529 static struct md_sysfs_entry md_new_device =
2530 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
2533 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
2536 unsigned long chunk, end_chunk;
2540 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
2542 chunk = end_chunk = simple_strtoul(buf, &end, 0);
2543 if (buf == end) break;
2544 if (*end == '-') { /* range */
2546 end_chunk = simple_strtoul(buf, &end, 0);
2547 if (buf == end) break;
2549 if (*end && !isspace(*end)) break;
2550 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
2552 while (isspace(*buf)) buf++;
2554 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
2559 static struct md_sysfs_entry md_bitmap =
2560 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
2563 size_show(mddev_t *mddev, char *page)
2565 return sprintf(page, "%llu\n", (unsigned long long)mddev->size);
2568 static int update_size(mddev_t *mddev, unsigned long size);
2571 size_store(mddev_t *mddev, const char *buf, size_t len)
2573 /* If array is inactive, we can reduce the component size, but
2574 * not increase it (except from 0).
2575 * If array is active, we can try an on-line resize
2579 unsigned long long size = simple_strtoull(buf, &e, 10);
2580 if (!*buf || *buf == '\n' ||
2585 err = update_size(mddev, size);
2586 md_update_sb(mddev, 1);
2588 if (mddev->size == 0 ||
2594 return err ? err : len;
2597 static struct md_sysfs_entry md_size =
2598 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
2602 * This is either 'none' for arrays with externally managed metadata,
2603 * or N.M for internally known formats
2606 metadata_show(mddev_t *mddev, char *page)
2608 if (mddev->persistent)
2609 return sprintf(page, "%d.%d\n",
2610 mddev->major_version, mddev->minor_version);
2612 return sprintf(page, "none\n");
2616 metadata_store(mddev_t *mddev, const char *buf, size_t len)
2620 if (!list_empty(&mddev->disks))
2623 if (cmd_match(buf, "none")) {
2624 mddev->persistent = 0;
2625 mddev->major_version = 0;
2626 mddev->minor_version = 90;
2629 major = simple_strtoul(buf, &e, 10);
2630 if (e==buf || *e != '.')
2633 minor = simple_strtoul(buf, &e, 10);
2634 if (e==buf || *e != '\n')
2636 if (major >= sizeof(super_types)/sizeof(super_types[0]) ||
2637 super_types[major].name == NULL)
2639 mddev->major_version = major;
2640 mddev->minor_version = minor;
2641 mddev->persistent = 1;
2645 static struct md_sysfs_entry md_metadata =
2646 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
2649 action_show(mddev_t *mddev, char *page)
2651 char *type = "idle";
2652 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2653 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) {
2654 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2656 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2657 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2659 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2666 return sprintf(page, "%s\n", type);
2670 action_store(mddev_t *mddev, const char *page, size_t len)
2672 if (!mddev->pers || !mddev->pers->sync_request)
2675 if (cmd_match(page, "idle")) {
2676 if (mddev->sync_thread) {
2677 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2678 md_unregister_thread(mddev->sync_thread);
2679 mddev->sync_thread = NULL;
2680 mddev->recovery = 0;
2682 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2683 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
2685 else if (cmd_match(page, "resync") || cmd_match(page, "recover"))
2686 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2687 else if (cmd_match(page, "reshape")) {
2689 if (mddev->pers->start_reshape == NULL)
2691 err = mddev->pers->start_reshape(mddev);
2695 if (cmd_match(page, "check"))
2696 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
2697 else if (!cmd_match(page, "repair"))
2699 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
2700 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
2702 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2703 md_wakeup_thread(mddev->thread);
2708 mismatch_cnt_show(mddev_t *mddev, char *page)
2710 return sprintf(page, "%llu\n",
2711 (unsigned long long) mddev->resync_mismatches);
2714 static struct md_sysfs_entry md_scan_mode =
2715 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
2718 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
2721 sync_min_show(mddev_t *mddev, char *page)
2723 return sprintf(page, "%d (%s)\n", speed_min(mddev),
2724 mddev->sync_speed_min ? "local": "system");
2728 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
2732 if (strncmp(buf, "system", 6)==0) {
2733 mddev->sync_speed_min = 0;
2736 min = simple_strtoul(buf, &e, 10);
2737 if (buf == e || (*e && *e != '\n') || min <= 0)
2739 mddev->sync_speed_min = min;
2743 static struct md_sysfs_entry md_sync_min =
2744 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
2747 sync_max_show(mddev_t *mddev, char *page)
2749 return sprintf(page, "%d (%s)\n", speed_max(mddev),
2750 mddev->sync_speed_max ? "local": "system");
2754 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
2758 if (strncmp(buf, "system", 6)==0) {
2759 mddev->sync_speed_max = 0;
2762 max = simple_strtoul(buf, &e, 10);
2763 if (buf == e || (*e && *e != '\n') || max <= 0)
2765 mddev->sync_speed_max = max;
2769 static struct md_sysfs_entry md_sync_max =
2770 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
2774 sync_speed_show(mddev_t *mddev, char *page)
2776 unsigned long resync, dt, db;
2777 resync = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active));
2778 dt = ((jiffies - mddev->resync_mark) / HZ);
2780 db = resync - (mddev->resync_mark_cnt);
2781 return sprintf(page, "%ld\n", db/dt/2); /* K/sec */
2784 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
2787 sync_completed_show(mddev_t *mddev, char *page)
2789 unsigned long max_blocks, resync;
2791 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2792 max_blocks = mddev->resync_max_sectors;
2794 max_blocks = mddev->size << 1;
2796 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
2797 return sprintf(page, "%lu / %lu\n", resync, max_blocks);
2800 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
2803 suspend_lo_show(mddev_t *mddev, char *page)
2805 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
2809 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
2812 unsigned long long new = simple_strtoull(buf, &e, 10);
2814 if (mddev->pers->quiesce == NULL)
2816 if (buf == e || (*e && *e != '\n'))
2818 if (new >= mddev->suspend_hi ||
2819 (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
2820 mddev->suspend_lo = new;
2821 mddev->pers->quiesce(mddev, 2);
2826 static struct md_sysfs_entry md_suspend_lo =
2827 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
2831 suspend_hi_show(mddev_t *mddev, char *page)
2833 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
2837 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
2840 unsigned long long new = simple_strtoull(buf, &e, 10);
2842 if (mddev->pers->quiesce == NULL)
2844 if (buf == e || (*e && *e != '\n'))
2846 if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
2847 (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
2848 mddev->suspend_hi = new;
2849 mddev->pers->quiesce(mddev, 1);
2850 mddev->pers->quiesce(mddev, 0);
2855 static struct md_sysfs_entry md_suspend_hi =
2856 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
2859 static struct attribute *md_default_attrs[] = {
2862 &md_raid_disks.attr,
2863 &md_chunk_size.attr,
2865 &md_resync_start.attr,
2867 &md_new_device.attr,
2868 &md_safe_delay.attr,
2869 &md_array_state.attr,
2873 static struct attribute *md_redundancy_attrs[] = {
2875 &md_mismatches.attr,
2878 &md_sync_speed.attr,
2879 &md_sync_completed.attr,
2880 &md_suspend_lo.attr,
2881 &md_suspend_hi.attr,
2885 static struct attribute_group md_redundancy_group = {
2887 .attrs = md_redundancy_attrs,
2892 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2894 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
2895 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
2900 rv = mddev_lock(mddev);
2902 rv = entry->show(mddev, page);
2903 mddev_unlock(mddev);
2909 md_attr_store(struct kobject *kobj, struct attribute *attr,
2910 const char *page, size_t length)
2912 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
2913 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
2918 if (!capable(CAP_SYS_ADMIN))
2920 rv = mddev_lock(mddev);
2922 rv = entry->store(mddev, page, length);
2923 mddev_unlock(mddev);
2928 static void md_free(struct kobject *ko)
2930 mddev_t *mddev = container_of(ko, mddev_t, kobj);
2934 static struct sysfs_ops md_sysfs_ops = {
2935 .show = md_attr_show,
2936 .store = md_attr_store,
2938 static struct kobj_type md_ktype = {
2940 .sysfs_ops = &md_sysfs_ops,
2941 .default_attrs = md_default_attrs,
2946 static struct kobject *md_probe(dev_t dev, int *part, void *data)
2948 static DEFINE_MUTEX(disks_mutex);
2949 mddev_t *mddev = mddev_find(dev);
2950 struct gendisk *disk;
2951 int partitioned = (MAJOR(dev) != MD_MAJOR);
2952 int shift = partitioned ? MdpMinorShift : 0;
2953 int unit = MINOR(dev) >> shift;
2958 mutex_lock(&disks_mutex);
2959 if (mddev->gendisk) {
2960 mutex_unlock(&disks_mutex);
2964 disk = alloc_disk(1 << shift);
2966 mutex_unlock(&disks_mutex);
2970 disk->major = MAJOR(dev);
2971 disk->first_minor = unit << shift;
2973 sprintf(disk->disk_name, "md_d%d", unit);
2975 sprintf(disk->disk_name, "md%d", unit);
2976 disk->fops = &md_fops;
2977 disk->private_data = mddev;
2978 disk->queue = mddev->queue;
2980 mddev->gendisk = disk;
2981 mutex_unlock(&disks_mutex);
2982 mddev->kobj.parent = &disk->kobj;
2983 mddev->kobj.k_name = NULL;
2984 snprintf(mddev->kobj.name, KOBJ_NAME_LEN, "%s", "md");
2985 mddev->kobj.ktype = &md_ktype;
2986 kobject_register(&mddev->kobj);
2990 static void md_safemode_timeout(unsigned long data)
2992 mddev_t *mddev = (mddev_t *) data;
2994 mddev->safemode = 1;
2995 md_wakeup_thread(mddev->thread);
2998 static int start_dirty_degraded;
3000 static int do_md_run(mddev_t * mddev)
3004 struct list_head *tmp;
3006 struct gendisk *disk;
3007 struct mdk_personality *pers;
3008 char b[BDEVNAME_SIZE];
3010 if (list_empty(&mddev->disks))
3011 /* cannot run an array with no devices.. */
3018 * Analyze all RAID superblock(s)
3020 if (!mddev->raid_disks)
3023 chunk_size = mddev->chunk_size;
3026 if (chunk_size > MAX_CHUNK_SIZE) {
3027 printk(KERN_ERR "too big chunk_size: %d > %d\n",
3028 chunk_size, MAX_CHUNK_SIZE);
3032 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
3034 if ( (1 << ffz(~chunk_size)) != chunk_size) {
3035 printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
3038 if (chunk_size < PAGE_SIZE) {
3039 printk(KERN_ERR "too small chunk_size: %d < %ld\n",
3040 chunk_size, PAGE_SIZE);
3044 /* devices must have minimum size of one chunk */
3045 ITERATE_RDEV(mddev,rdev,tmp) {
3046 if (test_bit(Faulty, &rdev->flags))
3048 if (rdev->size < chunk_size / 1024) {
3050 "md: Dev %s smaller than chunk_size:"
3052 bdevname(rdev->bdev,b),
3053 (unsigned long long)rdev->size,
3061 if (mddev->level != LEVEL_NONE)
3062 request_module("md-level-%d", mddev->level);
3063 else if (mddev->clevel[0])
3064 request_module("md-%s", mddev->clevel);
3068 * Drop all container device buffers, from now on
3069 * the only valid external interface is through the md
3071 * Also find largest hardsector size
3073 ITERATE_RDEV(mddev,rdev,tmp) {
3074 if (test_bit(Faulty, &rdev->flags))
3076 sync_blockdev(rdev->bdev);
3077 invalidate_bdev(rdev->bdev, 0);
3080 md_probe(mddev->unit, NULL, NULL);
3081 disk = mddev->gendisk;
3085 spin_lock(&pers_lock);
3086 pers = find_pers(mddev->level, mddev->clevel);
3087 if (!pers || !try_module_get(pers->owner)) {
3088 spin_unlock(&pers_lock);
3089 if (mddev->level != LEVEL_NONE)
3090 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
3093 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
3098 spin_unlock(&pers_lock);
3099 mddev->level = pers->level;
3100 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3102 if (mddev->reshape_position != MaxSector &&
3103 pers->start_reshape == NULL) {
3104 /* This personality cannot handle reshaping... */
3106 module_put(pers->owner);
3110 mddev->recovery = 0;
3111 mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
3112 mddev->barriers_work = 1;
3113 mddev->ok_start_degraded = start_dirty_degraded;
3116 mddev->ro = 2; /* read-only, but switch on first write */
3118 err = mddev->pers->run(mddev);
3119 if (!err && mddev->pers->sync_request) {
3120 err = bitmap_create(mddev);
3122 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
3123 mdname(mddev), err);
3124 mddev->pers->stop(mddev);
3128 printk(KERN_ERR "md: pers->run() failed ...\n");
3129 module_put(mddev->pers->owner);
3131 bitmap_destroy(mddev);
3134 if (mddev->pers->sync_request)
3135 sysfs_create_group(&mddev->kobj, &md_redundancy_group);
3136 else if (mddev->ro == 2) /* auto-readonly not meaningful */
3139 atomic_set(&mddev->writes_pending,0);
3140 mddev->safemode = 0;
3141 mddev->safemode_timer.function = md_safemode_timeout;
3142 mddev->safemode_timer.data = (unsigned long) mddev;
3143 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
3146 ITERATE_RDEV(mddev,rdev,tmp)
3147 if (rdev->raid_disk >= 0) {
3149 sprintf(nm, "rd%d", rdev->raid_disk);
3150 sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
3153 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3156 md_update_sb(mddev, 0);
3158 set_capacity(disk, mddev->array_size<<1);
3160 /* If we call blk_queue_make_request here, it will
3161 * re-initialise max_sectors etc which may have been
3162 * refined inside -> run. So just set the bits we need to set.
3163 * Most initialisation happended when we called
3164 * blk_queue_make_request(..., md_fail_request)
3167 mddev->queue->queuedata = mddev;
3168 mddev->queue->make_request_fn = mddev->pers->make_request;
3170 /* If there is a partially-recovered drive we need to
3171 * start recovery here. If we leave it to md_check_recovery,
3172 * it will remove the drives and not do the right thing
3174 if (mddev->degraded && !mddev->sync_thread) {
3175 struct list_head *rtmp;
3177 ITERATE_RDEV(mddev,rdev,rtmp)
3178 if (rdev->raid_disk >= 0 &&
3179 !test_bit(In_sync, &rdev->flags) &&
3180 !test_bit(Faulty, &rdev->flags))
3181 /* complete an interrupted recovery */
3183 if (spares && mddev->pers->sync_request) {
3184 mddev->recovery = 0;
3185 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3186 mddev->sync_thread = md_register_thread(md_do_sync,
3189 if (!mddev->sync_thread) {
3190 printk(KERN_ERR "%s: could not start resync"
3193 /* leave the spares where they are, it shouldn't hurt */
3194 mddev->recovery = 0;
3198 md_wakeup_thread(mddev->thread);
3199 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
3202 md_new_event(mddev);
3203 kobject_uevent(&mddev->gendisk->kobj, KOBJ_CHANGE);
3207 static int restart_array(mddev_t *mddev)
3209 struct gendisk *disk = mddev->gendisk;
3213 * Complain if it has no devices
3216 if (list_empty(&mddev->disks))
3224 mddev->safemode = 0;
3226 set_disk_ro(disk, 0);
3228 printk(KERN_INFO "md: %s switched to read-write mode.\n",
3231 * Kick recovery or resync if necessary
3233 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3234 md_wakeup_thread(mddev->thread);
3235 md_wakeup_thread(mddev->sync_thread);
3244 /* similar to deny_write_access, but accounts for our holding a reference
3245 * to the file ourselves */
3246 static int deny_bitmap_write_access(struct file * file)
3248 struct inode *inode = file->f_mapping->host;
3250 spin_lock(&inode->i_lock);
3251 if (atomic_read(&inode->i_writecount) > 1) {
3252 spin_unlock(&inode->i_lock);
3255 atomic_set(&inode->i_writecount, -1);
3256 spin_unlock(&inode->i_lock);
3261 static void restore_bitmap_write_access(struct file *file)
3263 struct inode *inode = file->f_mapping->host;
3265 spin_lock(&inode->i_lock);
3266 atomic_set(&inode->i_writecount, 1);
3267 spin_unlock(&inode->i_lock);
3271 * 0 - completely stop and dis-assemble array
3272 * 1 - switch to readonly
3273 * 2 - stop but do not disassemble array
3275 static int do_md_stop(mddev_t * mddev, int mode)
3278 struct gendisk *disk = mddev->gendisk;
3281 if (atomic_read(&mddev->active)>2) {
3282 printk("md: %s still in use.\n",mdname(mddev));
3286 if (mddev->sync_thread) {
3287 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3288 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3289 md_unregister_thread(mddev->sync_thread);
3290 mddev->sync_thread = NULL;
3293 del_timer_sync(&mddev->safemode_timer);
3295 invalidate_partition(disk, 0);
3298 case 1: /* readonly */
3304 case 0: /* disassemble */
3306 bitmap_flush(mddev);
3307 md_super_wait(mddev);
3309 set_disk_ro(disk, 0);
3310 blk_queue_make_request(mddev->queue, md_fail_request);
3311 mddev->pers->stop(mddev);
3312 if (mddev->pers->sync_request)
3313 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
3315 module_put(mddev->pers->owner);
3318 set_capacity(disk, 0);
3324 if (!mddev->in_sync || mddev->flags) {
3325 /* mark array as shutdown cleanly */
3327 md_update_sb(mddev, 1);
3330 set_disk_ro(disk, 1);
3331 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3335 * Free resources if final stop
3339 struct list_head *tmp;
3341 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
3343 bitmap_destroy(mddev);
3344 if (mddev->bitmap_file) {
3345 restore_bitmap_write_access(mddev->bitmap_file);
3346 fput(mddev->bitmap_file);
3347 mddev->bitmap_file = NULL;
3349 mddev->bitmap_offset = 0;
3351 ITERATE_RDEV(mddev,rdev,tmp)
3352 if (rdev->raid_disk >= 0) {
3354 sprintf(nm, "rd%d", rdev->raid_disk);
3355 sysfs_remove_link(&mddev->kobj, nm);
3358 export_array(mddev);
3360 mddev->array_size = 0;
3362 mddev->raid_disks = 0;
3363 mddev->recovery_cp = 0;
3365 } else if (mddev->pers)
3366 printk(KERN_INFO "md: %s switched to read-only mode.\n",
3369 md_new_event(mddev);
3375 static void autorun_array(mddev_t *mddev)
3378 struct list_head *tmp;
3381 if (list_empty(&mddev->disks))
3384 printk(KERN_INFO "md: running: ");
3386 ITERATE_RDEV(mddev,rdev,tmp) {
3387 char b[BDEVNAME_SIZE];
3388 printk("<%s>", bdevname(rdev->bdev,b));
3392 err = do_md_run (mddev);
3394 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
3395 do_md_stop (mddev, 0);
3400 * lets try to run arrays based on all disks that have arrived
3401 * until now. (those are in pending_raid_disks)
3403 * the method: pick the first pending disk, collect all disks with
3404 * the same UUID, remove all from the pending list and put them into
3405 * the 'same_array' list. Then order this list based on superblock
3406 * update time (freshest comes first), kick out 'old' disks and
3407 * compare superblocks. If everything's fine then run it.
3409 * If "unit" is allocated, then bump its reference count
3411 static void autorun_devices(int part)
3413 struct list_head *tmp;
3414 mdk_rdev_t *rdev0, *rdev;
3416 char b[BDEVNAME_SIZE];
3418 printk(KERN_INFO "md: autorun ...\n");
3419 while (!list_empty(&pending_raid_disks)) {
3422 LIST_HEAD(candidates);
3423 rdev0 = list_entry(pending_raid_disks.next,
3424 mdk_rdev_t, same_set);