]> nv-tegra.nvidia Code Review - linux-2.6.git/blob - drivers/md/md.c
[PATCH] md: remove a stray debugging printk.
[linux-2.6.git] / drivers / md / md.c
1 /*
2    md.c : Multiple Devices driver for Linux
3           Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5      completely rewritten, based on the MD driver code from Marc Zyngier
6
7    Changes:
8
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19
20      Neil Brown <neilb@cse.unsw.edu.au>.
21
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/module.h>
36 #include <linux/config.h>
37 #include <linux/linkage.h>
38 #include <linux/raid/md.h>
39 #include <linux/raid/bitmap.h>
40 #include <linux/sysctl.h>
41 #include <linux/devfs_fs_kernel.h>
42 #include <linux/buffer_head.h> /* for invalidate_bdev */
43 #include <linux/suspend.h>
44
45 #include <linux/init.h>
46
47 #include <linux/file.h>
48
49 #ifdef CONFIG_KMOD
50 #include <linux/kmod.h>
51 #endif
52
53 #include <asm/unaligned.h>
54
55 #define MAJOR_NR MD_MAJOR
56 #define MD_DRIVER
57
58 /* 63 partitions with the alternate major number (mdp) */
59 #define MdpMinorShift 6
60
61 #define DEBUG 0
62 #define dprintk(x...) ((void)(DEBUG && printk(x)))
63
64
65 #ifndef MODULE
66 static void autostart_arrays (int part);
67 #endif
68
69 static mdk_personality_t *pers[MAX_PERSONALITY];
70 static DEFINE_SPINLOCK(pers_lock);
71
72 /*
73  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
74  * is 1000 KB/sec, so the extra system load does not show up that much.
75  * Increase it if you want to have more _guaranteed_ speed. Note that
76  * the RAID driver will use the maximum available bandwith if the IO
77  * subsystem is idle. There is also an 'absolute maximum' reconstruction
78  * speed limit - in case reconstruction slows down your system despite
79  * idle IO detection.
80  *
81  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
82  */
83
84 static int sysctl_speed_limit_min = 1000;
85 static int sysctl_speed_limit_max = 200000;
86
87 static struct ctl_table_header *raid_table_header;
88
89 static ctl_table raid_table[] = {
90         {
91                 .ctl_name       = DEV_RAID_SPEED_LIMIT_MIN,
92                 .procname       = "speed_limit_min",
93                 .data           = &sysctl_speed_limit_min,
94                 .maxlen         = sizeof(int),
95                 .mode           = 0644,
96                 .proc_handler   = &proc_dointvec,
97         },
98         {
99                 .ctl_name       = DEV_RAID_SPEED_LIMIT_MAX,
100                 .procname       = "speed_limit_max",
101                 .data           = &sysctl_speed_limit_max,
102                 .maxlen         = sizeof(int),
103                 .mode           = 0644,
104                 .proc_handler   = &proc_dointvec,
105         },
106         { .ctl_name = 0 }
107 };
108
109 static ctl_table raid_dir_table[] = {
110         {
111                 .ctl_name       = DEV_RAID,
112                 .procname       = "raid",
113                 .maxlen         = 0,
114                 .mode           = 0555,
115                 .child          = raid_table,
116         },
117         { .ctl_name = 0 }
118 };
119
120 static ctl_table raid_root_table[] = {
121         {
122                 .ctl_name       = CTL_DEV,
123                 .procname       = "dev",
124                 .maxlen         = 0,
125                 .mode           = 0555,
126                 .child          = raid_dir_table,
127         },
128         { .ctl_name = 0 }
129 };
130
131 static struct block_device_operations md_fops;
132
133 /*
134  * Enables to iterate over all existing md arrays
135  * all_mddevs_lock protects this list.
136  */
137 static LIST_HEAD(all_mddevs);
138 static DEFINE_SPINLOCK(all_mddevs_lock);
139
140
141 /*
142  * iterates through all used mddevs in the system.
143  * We take care to grab the all_mddevs_lock whenever navigating
144  * the list, and to always hold a refcount when unlocked.
145  * Any code which breaks out of this loop while own
146  * a reference to the current mddev and must mddev_put it.
147  */
148 #define ITERATE_MDDEV(mddev,tmp)                                        \
149                                                                         \
150         for (({ spin_lock(&all_mddevs_lock);                            \
151                 tmp = all_mddevs.next;                                  \
152                 mddev = NULL;});                                        \
153              ({ if (tmp != &all_mddevs)                                 \
154                         mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
155                 spin_unlock(&all_mddevs_lock);                          \
156                 if (mddev) mddev_put(mddev);                            \
157                 mddev = list_entry(tmp, mddev_t, all_mddevs);           \
158                 tmp != &all_mddevs;});                                  \
159              ({ spin_lock(&all_mddevs_lock);                            \
160                 tmp = tmp->next;})                                      \
161                 )
162
163
164 static int md_fail_request (request_queue_t *q, struct bio *bio)
165 {
166         bio_io_error(bio, bio->bi_size);
167         return 0;
168 }
169
170 static inline mddev_t *mddev_get(mddev_t *mddev)
171 {
172         atomic_inc(&mddev->active);
173         return mddev;
174 }
175
176 static void mddev_put(mddev_t *mddev)
177 {
178         if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
179                 return;
180         if (!mddev->raid_disks && list_empty(&mddev->disks)) {
181                 list_del(&mddev->all_mddevs);
182                 blk_put_queue(mddev->queue);
183                 kfree(mddev);
184         }
185         spin_unlock(&all_mddevs_lock);
186 }
187
188 static mddev_t * mddev_find(dev_t unit)
189 {
190         mddev_t *mddev, *new = NULL;
191
192  retry:
193         spin_lock(&all_mddevs_lock);
194         list_for_each_entry(mddev, &all_mddevs, all_mddevs)
195                 if (mddev->unit == unit) {
196                         mddev_get(mddev);
197                         spin_unlock(&all_mddevs_lock);
198                         kfree(new);
199                         return mddev;
200                 }
201
202         if (new) {
203                 list_add(&new->all_mddevs, &all_mddevs);
204                 spin_unlock(&all_mddevs_lock);
205                 return new;
206         }
207         spin_unlock(&all_mddevs_lock);
208
209         new = (mddev_t *) kmalloc(sizeof(*new), GFP_KERNEL);
210         if (!new)
211                 return NULL;
212
213         memset(new, 0, sizeof(*new));
214
215         new->unit = unit;
216         if (MAJOR(unit) == MD_MAJOR)
217                 new->md_minor = MINOR(unit);
218         else
219                 new->md_minor = MINOR(unit) >> MdpMinorShift;
220
221         init_MUTEX(&new->reconfig_sem);
222         INIT_LIST_HEAD(&new->disks);
223         INIT_LIST_HEAD(&new->all_mddevs);
224         init_timer(&new->safemode_timer);
225         atomic_set(&new->active, 1);
226         spin_lock_init(&new->write_lock);
227         init_waitqueue_head(&new->sb_wait);
228
229         new->queue = blk_alloc_queue(GFP_KERNEL);
230         if (!new->queue) {
231                 kfree(new);
232                 return NULL;
233         }
234
235         blk_queue_make_request(new->queue, md_fail_request);
236
237         goto retry;
238 }
239
240 static inline int mddev_lock(mddev_t * mddev)
241 {
242         return down_interruptible(&mddev->reconfig_sem);
243 }
244
245 static inline void mddev_lock_uninterruptible(mddev_t * mddev)
246 {
247         down(&mddev->reconfig_sem);
248 }
249
250 static inline int mddev_trylock(mddev_t * mddev)
251 {
252         return down_trylock(&mddev->reconfig_sem);
253 }
254
255 static inline void mddev_unlock(mddev_t * mddev)
256 {
257         up(&mddev->reconfig_sem);
258
259         if (mddev->thread)
260                 md_wakeup_thread(mddev->thread);
261 }
262
263 mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
264 {
265         mdk_rdev_t * rdev;
266         struct list_head *tmp;
267
268         ITERATE_RDEV(mddev,rdev,tmp) {
269                 if (rdev->desc_nr == nr)
270                         return rdev;
271         }
272         return NULL;
273 }
274
275 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
276 {
277         struct list_head *tmp;
278         mdk_rdev_t *rdev;
279
280         ITERATE_RDEV(mddev,rdev,tmp) {
281                 if (rdev->bdev->bd_dev == dev)
282                         return rdev;
283         }
284         return NULL;
285 }
286
287 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
288 {
289         sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
290         return MD_NEW_SIZE_BLOCKS(size);
291 }
292
293 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
294 {
295         sector_t size;
296
297         size = rdev->sb_offset;
298
299         if (chunk_size)
300                 size &= ~((sector_t)chunk_size/1024 - 1);
301         return size;
302 }
303
304 static int alloc_disk_sb(mdk_rdev_t * rdev)
305 {
306         if (rdev->sb_page)
307                 MD_BUG();
308
309         rdev->sb_page = alloc_page(GFP_KERNEL);
310         if (!rdev->sb_page) {
311                 printk(KERN_ALERT "md: out of memory.\n");
312                 return -EINVAL;
313         }
314
315         return 0;
316 }
317
318 static void free_disk_sb(mdk_rdev_t * rdev)
319 {
320         if (rdev->sb_page) {
321                 page_cache_release(rdev->sb_page);
322                 rdev->sb_loaded = 0;
323                 rdev->sb_page = NULL;
324                 rdev->sb_offset = 0;
325                 rdev->size = 0;
326         }
327 }
328
329
330 static int super_written(struct bio *bio, unsigned int bytes_done, int error)
331 {
332         mdk_rdev_t *rdev = bio->bi_private;
333         if (bio->bi_size)
334                 return 1;
335
336         if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags))
337                 md_error(rdev->mddev, rdev);
338
339         if (atomic_dec_and_test(&rdev->mddev->pending_writes))
340                 wake_up(&rdev->mddev->sb_wait);
341         bio_put(bio);
342         return 0;
343 }
344
345 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
346                    sector_t sector, int size, struct page *page)
347 {
348         /* write first size bytes of page to sector of rdev
349          * Increment mddev->pending_writes before returning
350          * and decrement it on completion, waking up sb_wait
351          * if zero is reached.
352          * If an error occurred, call md_error
353          */
354         struct bio *bio = bio_alloc(GFP_NOIO, 1);
355
356         bio->bi_bdev = rdev->bdev;
357         bio->bi_sector = sector;
358         bio_add_page(bio, page, size, 0);
359         bio->bi_private = rdev;
360         bio->bi_end_io = super_written;
361         atomic_inc(&mddev->pending_writes);
362         submit_bio((1<<BIO_RW)|(1<<BIO_RW_SYNC), bio);
363 }
364
365 static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
366 {
367         if (bio->bi_size)
368                 return 1;
369
370         complete((struct completion*)bio->bi_private);
371         return 0;
372 }
373
374 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
375                    struct page *page, int rw)
376 {
377         struct bio *bio = bio_alloc(GFP_NOIO, 1);
378         struct completion event;
379         int ret;
380
381         rw |= (1 << BIO_RW_SYNC);
382
383         bio->bi_bdev = bdev;
384         bio->bi_sector = sector;
385         bio_add_page(bio, page, size, 0);
386         init_completion(&event);
387         bio->bi_private = &event;
388         bio->bi_end_io = bi_complete;
389         submit_bio(rw, bio);
390         wait_for_completion(&event);
391
392         ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
393         bio_put(bio);
394         return ret;
395 }
396
397 static int read_disk_sb(mdk_rdev_t * rdev)
398 {
399         char b[BDEVNAME_SIZE];
400         if (!rdev->sb_page) {
401                 MD_BUG();
402                 return -EINVAL;
403         }
404         if (rdev->sb_loaded)
405                 return 0;
406
407
408         if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, MD_SB_BYTES, rdev->sb_page, READ))
409                 goto fail;
410         rdev->sb_loaded = 1;
411         return 0;
412
413 fail:
414         printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
415                 bdevname(rdev->bdev,b));
416         return -EINVAL;
417 }
418
419 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
420 {
421         if (    (sb1->set_uuid0 == sb2->set_uuid0) &&
422                 (sb1->set_uuid1 == sb2->set_uuid1) &&
423                 (sb1->set_uuid2 == sb2->set_uuid2) &&
424                 (sb1->set_uuid3 == sb2->set_uuid3))
425
426                 return 1;
427
428         return 0;
429 }
430
431
432 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
433 {
434         int ret;
435         mdp_super_t *tmp1, *tmp2;
436
437         tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
438         tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
439
440         if (!tmp1 || !tmp2) {
441                 ret = 0;
442                 printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
443                 goto abort;
444         }
445
446         *tmp1 = *sb1;
447         *tmp2 = *sb2;
448
449         /*
450          * nr_disks is not constant
451          */
452         tmp1->nr_disks = 0;
453         tmp2->nr_disks = 0;
454
455         if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
456                 ret = 0;
457         else
458                 ret = 1;
459
460 abort:
461         kfree(tmp1);
462         kfree(tmp2);
463         return ret;
464 }
465
466 static unsigned int calc_sb_csum(mdp_super_t * sb)
467 {
468         unsigned int disk_csum, csum;
469
470         disk_csum = sb->sb_csum;
471         sb->sb_csum = 0;
472         csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
473         sb->sb_csum = disk_csum;
474         return csum;
475 }
476
477
478 /*
479  * Handle superblock details.
480  * We want to be able to handle multiple superblock formats
481  * so we have a common interface to them all, and an array of
482  * different handlers.
483  * We rely on user-space to write the initial superblock, and support
484  * reading and updating of superblocks.
485  * Interface methods are:
486  *   int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
487  *      loads and validates a superblock on dev.
488  *      if refdev != NULL, compare superblocks on both devices
489  *    Return:
490  *      0 - dev has a superblock that is compatible with refdev
491  *      1 - dev has a superblock that is compatible and newer than refdev
492  *          so dev should be used as the refdev in future
493  *     -EINVAL superblock incompatible or invalid
494  *     -othererror e.g. -EIO
495  *
496  *   int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
497  *      Verify that dev is acceptable into mddev.
498  *       The first time, mddev->raid_disks will be 0, and data from
499  *       dev should be merged in.  Subsequent calls check that dev
500  *       is new enough.  Return 0 or -EINVAL
501  *
502  *   void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
503  *     Update the superblock for rdev with data in mddev
504  *     This does not write to disc.
505  *
506  */
507
508 struct super_type  {
509         char            *name;
510         struct module   *owner;
511         int             (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
512         int             (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
513         void            (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
514 };
515
516 /*
517  * load_super for 0.90.0 
518  */
519 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
520 {
521         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
522         mdp_super_t *sb;
523         int ret;
524         sector_t sb_offset;
525
526         /*
527          * Calculate the position of the superblock,
528          * it's at the end of the disk.
529          *
530          * It also happens to be a multiple of 4Kb.
531          */
532         sb_offset = calc_dev_sboffset(rdev->bdev);
533         rdev->sb_offset = sb_offset;
534
535         ret = read_disk_sb(rdev);
536         if (ret) return ret;
537
538         ret = -EINVAL;
539
540         bdevname(rdev->bdev, b);
541         sb = (mdp_super_t*)page_address(rdev->sb_page);
542
543         if (sb->md_magic != MD_SB_MAGIC) {
544                 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
545                        b);
546                 goto abort;
547         }
548
549         if (sb->major_version != 0 ||
550             sb->minor_version != 90) {
551                 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
552                         sb->major_version, sb->minor_version,
553                         b);
554                 goto abort;
555         }
556
557         if (sb->raid_disks <= 0)
558                 goto abort;
559
560         if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
561                 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
562                         b);
563                 goto abort;
564         }
565
566         rdev->preferred_minor = sb->md_minor;
567         rdev->data_offset = 0;
568
569         if (sb->level == LEVEL_MULTIPATH)
570                 rdev->desc_nr = -1;
571         else
572                 rdev->desc_nr = sb->this_disk.number;
573
574         if (refdev == 0)
575                 ret = 1;
576         else {
577                 __u64 ev1, ev2;
578                 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
579                 if (!uuid_equal(refsb, sb)) {
580                         printk(KERN_WARNING "md: %s has different UUID to %s\n",
581                                 b, bdevname(refdev->bdev,b2));
582                         goto abort;
583                 }
584                 if (!sb_equal(refsb, sb)) {
585                         printk(KERN_WARNING "md: %s has same UUID"
586                                " but different superblock to %s\n",
587                                b, bdevname(refdev->bdev, b2));
588                         goto abort;
589                 }
590                 ev1 = md_event(sb);
591                 ev2 = md_event(refsb);
592                 if (ev1 > ev2)
593                         ret = 1;
594                 else 
595                         ret = 0;
596         }
597         rdev->size = calc_dev_size(rdev, sb->chunk_size);
598
599  abort:
600         return ret;
601 }
602
603 /*
604  * validate_super for 0.90.0
605  */
606 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
607 {
608         mdp_disk_t *desc;
609         mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
610
611         rdev->raid_disk = -1;
612         rdev->in_sync = 0;
613         if (mddev->raid_disks == 0) {
614                 mddev->major_version = 0;
615                 mddev->minor_version = sb->minor_version;
616                 mddev->patch_version = sb->patch_version;
617                 mddev->persistent = ! sb->not_persistent;
618                 mddev->chunk_size = sb->chunk_size;
619                 mddev->ctime = sb->ctime;
620                 mddev->utime = sb->utime;
621                 mddev->level = sb->level;
622                 mddev->layout = sb->layout;
623                 mddev->raid_disks = sb->raid_disks;
624                 mddev->size = sb->size;
625                 mddev->events = md_event(sb);
626
627                 if (sb->state & (1<<MD_SB_CLEAN))
628                         mddev->recovery_cp = MaxSector;
629                 else {
630                         if (sb->events_hi == sb->cp_events_hi && 
631                                 sb->events_lo == sb->cp_events_lo) {
632                                 mddev->recovery_cp = sb->recovery_cp;
633                         } else
634                                 mddev->recovery_cp = 0;
635                 }
636
637                 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
638                 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
639                 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
640                 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
641
642                 mddev->max_disks = MD_SB_DISKS;
643
644                 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
645                     mddev->bitmap_file == NULL) {
646                         if (mddev->level != 1) {
647                                 /* FIXME use a better test */
648                                 printk(KERN_WARNING "md: bitmaps only support for raid1\n");
649                                 return -EINVAL;
650                         }
651                         mddev->bitmap_offset = (MD_SB_BYTES >> 9);
652                 }
653
654         } else if (mddev->pers == NULL) {
655                 /* Insist on good event counter while assembling */
656                 __u64 ev1 = md_event(sb);
657                 ++ev1;
658                 if (ev1 < mddev->events) 
659                         return -EINVAL;
660         } else if (mddev->bitmap) {
661                 /* if adding to array with a bitmap, then we can accept an
662                  * older device ... but not too old.
663                  */
664                 __u64 ev1 = md_event(sb);
665                 if (ev1 < mddev->bitmap->events_cleared)
666                         return 0;
667         } else /* just a hot-add of a new device, leave raid_disk at -1 */
668                 return 0;
669
670         if (mddev->level != LEVEL_MULTIPATH) {
671                 rdev->faulty = 0;
672                 desc = sb->disks + rdev->desc_nr;
673
674                 if (desc->state & (1<<MD_DISK_FAULTY))
675                         rdev->faulty = 1;
676                 else if (desc->state & (1<<MD_DISK_SYNC) &&
677                          desc->raid_disk < mddev->raid_disks) {
678                         rdev->in_sync = 1;
679                         rdev->raid_disk = desc->raid_disk;
680                 }
681         } else /* MULTIPATH are always insync */
682                 rdev->in_sync = 1;
683         return 0;
684 }
685
686 /*
687  * sync_super for 0.90.0
688  */
689 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
690 {
691         mdp_super_t *sb;
692         struct list_head *tmp;
693         mdk_rdev_t *rdev2;
694         int next_spare = mddev->raid_disks;
695
696         /* make rdev->sb match mddev data..
697          *
698          * 1/ zero out disks
699          * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
700          * 3/ any empty disks < next_spare become removed
701          *
702          * disks[0] gets initialised to REMOVED because
703          * we cannot be sure from other fields if it has
704          * been initialised or not.
705          */
706         int i;
707         int active=0, working=0,failed=0,spare=0,nr_disks=0;
708
709         sb = (mdp_super_t*)page_address(rdev->sb_page);
710
711         memset(sb, 0, sizeof(*sb));
712
713         sb->md_magic = MD_SB_MAGIC;
714         sb->major_version = mddev->major_version;
715         sb->minor_version = mddev->minor_version;
716         sb->patch_version = mddev->patch_version;
717         sb->gvalid_words  = 0; /* ignored */
718         memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
719         memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
720         memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
721         memcpy(&sb->set_uuid3, mddev->uuid+12,4);
722
723         sb->ctime = mddev->ctime;
724         sb->level = mddev->level;
725         sb->size  = mddev->size;
726         sb->raid_disks = mddev->raid_disks;
727         sb->md_minor = mddev->md_minor;
728         sb->not_persistent = !mddev->persistent;
729         sb->utime = mddev->utime;
730         sb->state = 0;
731         sb->events_hi = (mddev->events>>32);
732         sb->events_lo = (u32)mddev->events;
733
734         if (mddev->in_sync)
735         {
736                 sb->recovery_cp = mddev->recovery_cp;
737                 sb->cp_events_hi = (mddev->events>>32);
738                 sb->cp_events_lo = (u32)mddev->events;
739                 if (mddev->recovery_cp == MaxSector)
740                         sb->state = (1<< MD_SB_CLEAN);
741         } else
742                 sb->recovery_cp = 0;
743
744         sb->layout = mddev->layout;
745         sb->chunk_size = mddev->chunk_size;
746
747         if (mddev->bitmap && mddev->bitmap_file == NULL)
748                 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
749
750         sb->disks[0].state = (1<<MD_DISK_REMOVED);
751         ITERATE_RDEV(mddev,rdev2,tmp) {
752                 mdp_disk_t *d;
753                 if (rdev2->raid_disk >= 0 && rdev2->in_sync && !rdev2->faulty)
754                         rdev2->desc_nr = rdev2->raid_disk;
755                 else
756                         rdev2->desc_nr = next_spare++;
757                 d = &sb->disks[rdev2->desc_nr];
758                 nr_disks++;
759                 d->number = rdev2->desc_nr;
760                 d->major = MAJOR(rdev2->bdev->bd_dev);
761                 d->minor = MINOR(rdev2->bdev->bd_dev);
762                 if (rdev2->raid_disk >= 0 && rdev->in_sync && !rdev2->faulty)
763                         d->raid_disk = rdev2->raid_disk;
764                 else
765                         d->raid_disk = rdev2->desc_nr; /* compatibility */
766                 if (rdev2->faulty) {
767                         d->state = (1<<MD_DISK_FAULTY);
768                         failed++;
769                 } else if (rdev2->in_sync) {
770                         d->state = (1<<MD_DISK_ACTIVE);
771                         d->state |= (1<<MD_DISK_SYNC);
772                         active++;
773                         working++;
774                 } else {
775                         d->state = 0;
776                         spare++;
777                         working++;
778                 }
779         }
780         
781         /* now set the "removed" and "faulty" bits on any missing devices */
782         for (i=0 ; i < mddev->raid_disks ; i++) {
783                 mdp_disk_t *d = &sb->disks[i];
784                 if (d->state == 0 && d->number == 0) {
785                         d->number = i;
786                         d->raid_disk = i;
787                         d->state = (1<<MD_DISK_REMOVED);
788                         d->state |= (1<<MD_DISK_FAULTY);
789                         failed++;
790                 }
791         }
792         sb->nr_disks = nr_disks;
793         sb->active_disks = active;
794         sb->working_disks = working;
795         sb->failed_disks = failed;
796         sb->spare_disks = spare;
797
798         sb->this_disk = sb->disks[rdev->desc_nr];
799         sb->sb_csum = calc_sb_csum(sb);
800 }
801
802 /*
803  * version 1 superblock
804  */
805
806 static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
807 {
808         unsigned int disk_csum, csum;
809         unsigned long long newcsum;
810         int size = 256 + le32_to_cpu(sb->max_dev)*2;
811         unsigned int *isuper = (unsigned int*)sb;
812         int i;
813
814         disk_csum = sb->sb_csum;
815         sb->sb_csum = 0;
816         newcsum = 0;
817         for (i=0; size>=4; size -= 4 )
818                 newcsum += le32_to_cpu(*isuper++);
819
820         if (size == 2)
821                 newcsum += le16_to_cpu(*(unsigned short*) isuper);
822
823         csum = (newcsum & 0xffffffff) + (newcsum >> 32);
824         sb->sb_csum = disk_csum;
825         return cpu_to_le32(csum);
826 }
827
828 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
829 {
830         struct mdp_superblock_1 *sb;
831         int ret;
832         sector_t sb_offset;
833         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
834
835         /*
836          * Calculate the position of the superblock.
837          * It is always aligned to a 4K boundary and
838          * depeding on minor_version, it can be:
839          * 0: At least 8K, but less than 12K, from end of device
840          * 1: At start of device
841          * 2: 4K from start of device.
842          */
843         switch(minor_version) {
844         case 0:
845                 sb_offset = rdev->bdev->bd_inode->i_size >> 9;
846                 sb_offset -= 8*2;
847                 sb_offset &= ~(sector_t)(4*2-1);
848                 /* convert from sectors to K */
849                 sb_offset /= 2;
850                 break;
851         case 1:
852                 sb_offset = 0;
853                 break;
854         case 2:
855                 sb_offset = 4;
856                 break;
857         default:
858                 return -EINVAL;
859         }
860         rdev->sb_offset = sb_offset;
861
862         ret = read_disk_sb(rdev);
863         if (ret) return ret;
864
865
866         sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
867
868         if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
869             sb->major_version != cpu_to_le32(1) ||
870             le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
871             le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
872             sb->feature_map != 0)
873                 return -EINVAL;
874
875         if (calc_sb_1_csum(sb) != sb->sb_csum) {
876                 printk("md: invalid superblock checksum on %s\n",
877                         bdevname(rdev->bdev,b));
878                 return -EINVAL;
879         }
880         if (le64_to_cpu(sb->data_size) < 10) {
881                 printk("md: data_size too small on %s\n",
882                        bdevname(rdev->bdev,b));
883                 return -EINVAL;
884         }
885         rdev->preferred_minor = 0xffff;
886         rdev->data_offset = le64_to_cpu(sb->data_offset);
887
888         if (refdev == 0)
889                 return 1;
890         else {
891                 __u64 ev1, ev2;
892                 struct mdp_superblock_1 *refsb = 
893                         (struct mdp_superblock_1*)page_address(refdev->sb_page);
894
895                 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
896                     sb->level != refsb->level ||
897                     sb->layout != refsb->layout ||
898                     sb->chunksize != refsb->chunksize) {
899                         printk(KERN_WARNING "md: %s has strangely different"
900                                 " superblock to %s\n",
901                                 bdevname(rdev->bdev,b),
902                                 bdevname(refdev->bdev,b2));
903                         return -EINVAL;
904                 }
905                 ev1 = le64_to_cpu(sb->events);
906                 ev2 = le64_to_cpu(refsb->events);
907
908                 if (ev1 > ev2)
909                         return 1;
910         }
911         if (minor_version) 
912                 rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
913         else
914                 rdev->size = rdev->sb_offset;
915         if (rdev->size < le64_to_cpu(sb->data_size)/2)
916                 return -EINVAL;
917         rdev->size = le64_to_cpu(sb->data_size)/2;
918         if (le32_to_cpu(sb->chunksize))
919                 rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
920         return 0;
921 }
922
923 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
924 {
925         struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
926
927         rdev->raid_disk = -1;
928         rdev->in_sync = 0;
929         if (mddev->raid_disks == 0) {
930                 mddev->major_version = 1;
931                 mddev->patch_version = 0;
932                 mddev->persistent = 1;
933                 mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
934                 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
935                 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
936                 mddev->level = le32_to_cpu(sb->level);
937                 mddev->layout = le32_to_cpu(sb->layout);
938                 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
939                 mddev->size = le64_to_cpu(sb->size)/2;
940                 mddev->events = le64_to_cpu(sb->events);
941                 
942                 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
943                 memcpy(mddev->uuid, sb->set_uuid, 16);
944
945                 mddev->max_disks =  (4096-256)/2;
946
947                 if ((le32_to_cpu(sb->feature_map) & 1) &&
948                     mddev->bitmap_file == NULL ) {
949                         if (mddev->level != 1) {
950                                 printk(KERN_WARNING "md: bitmaps only supported for raid1\n");
951                                 return -EINVAL;
952                         }
953                         mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
954                 }
955         } else if (mddev->pers == NULL) {
956                 /* Insist of good event counter while assembling */
957                 __u64 ev1 = le64_to_cpu(sb->events);
958                 ++ev1;
959                 if (ev1 < mddev->events)
960                         return -EINVAL;
961         } else if (mddev->bitmap) {
962                 /* If adding to array with a bitmap, then we can accept an
963                  * older device, but not too old.
964                  */
965                 __u64 ev1 = le64_to_cpu(sb->events);
966                 if (ev1 < mddev->bitmap->events_cleared)
967                         return 0;
968         } else /* just a hot-add of a new device, leave raid_disk at -1 */
969                 return 0;
970
971         if (mddev->level != LEVEL_MULTIPATH) {
972                 int role;
973                 rdev->desc_nr = le32_to_cpu(sb->dev_number);
974                 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
975                 switch(role) {
976                 case 0xffff: /* spare */
977                         rdev->faulty = 0;
978                         break;
979                 case 0xfffe: /* faulty */
980                         rdev->faulty = 1;
981                         break;
982                 default:
983                         rdev->in_sync = 1;
984                         rdev->faulty = 0;
985                         rdev->raid_disk = role;
986                         break;
987                 }
988         } else /* MULTIPATH are always insync */
989                 rdev->in_sync = 1;
990
991         return 0;
992 }
993
994 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
995 {
996         struct mdp_superblock_1 *sb;
997         struct list_head *tmp;
998         mdk_rdev_t *rdev2;
999         int max_dev, i;
1000         /* make rdev->sb match mddev and rdev data. */
1001
1002         sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1003
1004         sb->feature_map = 0;
1005         sb->pad0 = 0;
1006         memset(sb->pad1, 0, sizeof(sb->pad1));
1007         memset(sb->pad2, 0, sizeof(sb->pad2));
1008         memset(sb->pad3, 0, sizeof(sb->pad3));
1009
1010         sb->utime = cpu_to_le64((__u64)mddev->utime);
1011         sb->events = cpu_to_le64(mddev->events);
1012         if (mddev->in_sync)
1013                 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1014         else
1015                 sb->resync_offset = cpu_to_le64(0);
1016
1017         if (mddev->bitmap && mddev->bitmap_file == NULL) {
1018                 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1019                 sb->feature_map = cpu_to_le32(1);
1020         }
1021
1022         max_dev = 0;
1023         ITERATE_RDEV(mddev,rdev2,tmp)
1024                 if (rdev2->desc_nr+1 > max_dev)
1025                         max_dev = rdev2->desc_nr+1;
1026         
1027         sb->max_dev = cpu_to_le32(max_dev);
1028         for (i=0; i<max_dev;i++)
1029                 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1030         
1031         ITERATE_RDEV(mddev,rdev2,tmp) {
1032                 i = rdev2->desc_nr;
1033                 if (rdev2->faulty)
1034                         sb->dev_roles[i] = cpu_to_le16(0xfffe);
1035                 else if (rdev2->in_sync)
1036                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1037                 else
1038                         sb->dev_roles[i] = cpu_to_le16(0xffff);
1039         }
1040
1041         sb->recovery_offset = cpu_to_le64(0); /* not supported yet */
1042         sb->sb_csum = calc_sb_1_csum(sb);
1043 }
1044
1045
1046 static struct super_type super_types[] = {
1047         [0] = {
1048                 .name   = "0.90.0",
1049                 .owner  = THIS_MODULE,
1050                 .load_super     = super_90_load,
1051                 .validate_super = super_90_validate,
1052                 .sync_super     = super_90_sync,
1053         },
1054         [1] = {
1055                 .name   = "md-1",
1056                 .owner  = THIS_MODULE,
1057                 .load_super     = super_1_load,
1058                 .validate_super = super_1_validate,
1059                 .sync_super     = super_1_sync,
1060         },
1061 };
1062         
1063 static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
1064 {
1065         struct list_head *tmp;
1066         mdk_rdev_t *rdev;
1067
1068         ITERATE_RDEV(mddev,rdev,tmp)
1069                 if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
1070                         return rdev;
1071
1072         return NULL;
1073 }
1074
1075 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1076 {
1077         struct list_head *tmp;
1078         mdk_rdev_t *rdev;
1079
1080         ITERATE_RDEV(mddev1,rdev,tmp)
1081                 if (match_dev_unit(mddev2, rdev))
1082                         return 1;
1083
1084         return 0;
1085 }
1086
1087 static LIST_HEAD(pending_raid_disks);
1088
1089 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1090 {
1091         mdk_rdev_t *same_pdev;
1092         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1093
1094         if (rdev->mddev) {
1095                 MD_BUG();
1096                 return -EINVAL;
1097         }
1098         same_pdev = match_dev_unit(mddev, rdev);
1099         if (same_pdev)
1100                 printk(KERN_WARNING
1101                         "%s: WARNING: %s appears to be on the same physical"
1102                         " disk as %s. True\n     protection against single-disk"
1103                         " failure might be compromised.\n",
1104                         mdname(mddev), bdevname(rdev->bdev,b),
1105                         bdevname(same_pdev->bdev,b2));
1106
1107         /* Verify rdev->desc_nr is unique.
1108          * If it is -1, assign a free number, else
1109          * check number is not in use
1110          */
1111         if (rdev->desc_nr < 0) {
1112                 int choice = 0;
1113                 if (mddev->pers) choice = mddev->raid_disks;
1114                 while (find_rdev_nr(mddev, choice))
1115                         choice++;
1116                 rdev->desc_nr = choice;
1117         } else {
1118                 if (find_rdev_nr(mddev, rdev->desc_nr))
1119                         return -EBUSY;
1120         }
1121                         
1122         list_add(&rdev->same_set, &mddev->disks);
1123         rdev->mddev = mddev;
1124         printk(KERN_INFO "md: bind<%s>\n", bdevname(rdev->bdev,b));
1125         return 0;
1126 }
1127
1128 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1129 {
1130         char b[BDEVNAME_SIZE];
1131         if (!rdev->mddev) {
1132                 MD_BUG();
1133                 return;
1134         }
1135         list_del_init(&rdev->same_set);
1136         printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1137         rdev->mddev = NULL;
1138 }
1139
1140 /*
1141  * prevent the device from being mounted, repartitioned or
1142  * otherwise reused by a RAID array (or any other kernel
1143  * subsystem), by bd_claiming the device.
1144  */
1145 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1146 {
1147         int err = 0;
1148         struct block_device *bdev;
1149         char b[BDEVNAME_SIZE];
1150
1151         bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1152         if (IS_ERR(bdev)) {
1153                 printk(KERN_ERR "md: could not open %s.\n",
1154                         __bdevname(dev, b));
1155                 return PTR_ERR(bdev);
1156         }
1157         err = bd_claim(bdev, rdev);
1158         if (err) {
1159                 printk(KERN_ERR "md: could not bd_claim %s.\n",
1160                         bdevname(bdev, b));
1161                 blkdev_put(bdev);
1162                 return err;
1163         }
1164         rdev->bdev = bdev;
1165         return err;
1166 }
1167
1168 static void unlock_rdev(mdk_rdev_t *rdev)
1169 {
1170         struct block_device *bdev = rdev->bdev;
1171         rdev->bdev = NULL;
1172         if (!bdev)
1173                 MD_BUG();
1174         bd_release(bdev);
1175         blkdev_put(bdev);
1176 }
1177
1178 void md_autodetect_dev(dev_t dev);
1179
1180 static void export_rdev(mdk_rdev_t * rdev)
1181 {
1182         char b[BDEVNAME_SIZE];
1183         printk(KERN_INFO "md: export_rdev(%s)\n",
1184                 bdevname(rdev->bdev,b));
1185         if (rdev->mddev)
1186                 MD_BUG();
1187         free_disk_sb(rdev);
1188         list_del_init(&rdev->same_set);
1189 #ifndef MODULE
1190         md_autodetect_dev(rdev->bdev->bd_dev);
1191 #endif
1192         unlock_rdev(rdev);
1193         kfree(rdev);
1194 }
1195
1196 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1197 {
1198         unbind_rdev_from_array(rdev);
1199         export_rdev(rdev);
1200 }
1201
1202 static void export_array(mddev_t *mddev)
1203 {
1204         struct list_head *tmp;
1205         mdk_rdev_t *rdev;
1206
1207         ITERATE_RDEV(mddev,rdev,tmp) {
1208                 if (!rdev->mddev) {
1209                         MD_BUG();
1210                         continue;
1211                 }
1212                 kick_rdev_from_array(rdev);
1213         }
1214         if (!list_empty(&mddev->disks))
1215                 MD_BUG();
1216         mddev->raid_disks = 0;
1217         mddev->major_version = 0;
1218 }
1219
1220 static void print_desc(mdp_disk_t *desc)
1221 {
1222         printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1223                 desc->major,desc->minor,desc->raid_disk,desc->state);
1224 }
1225
1226 static void print_sb(mdp_super_t *sb)
1227 {
1228         int i;
1229
1230         printk(KERN_INFO 
1231                 "md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1232                 sb->major_version, sb->minor_version, sb->patch_version,
1233                 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1234                 sb->ctime);
1235         printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1236                 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1237                 sb->md_minor, sb->layout, sb->chunk_size);
1238         printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
1239                 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
1240                 sb->utime, sb->state, sb->active_disks, sb->working_disks,
1241                 sb->failed_disks, sb->spare_disks,
1242                 sb->sb_csum, (unsigned long)sb->events_lo);
1243
1244         printk(KERN_INFO);
1245         for (i = 0; i < MD_SB_DISKS; i++) {
1246                 mdp_disk_t *desc;
1247
1248                 desc = sb->disks + i;
1249                 if (desc->number || desc->major || desc->minor ||
1250                     desc->raid_disk || (desc->state && (desc->state != 4))) {
1251                         printk("     D %2d: ", i);
1252                         print_desc(desc);
1253                 }
1254         }
1255         printk(KERN_INFO "md:     THIS: ");
1256         print_desc(&sb->this_disk);
1257
1258 }
1259
1260 static void print_rdev(mdk_rdev_t *rdev)
1261 {
1262         char b[BDEVNAME_SIZE];
1263         printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1264                 bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1265                 rdev->faulty, rdev->in_sync, rdev->desc_nr);
1266         if (rdev->sb_loaded) {
1267                 printk(KERN_INFO "md: rdev superblock:\n");
1268                 print_sb((mdp_super_t*)page_address(rdev->sb_page));
1269         } else
1270                 printk(KERN_INFO "md: no rdev superblock!\n");
1271 }
1272
1273 void md_print_devices(void)
1274 {
1275         struct list_head *tmp, *tmp2;
1276         mdk_rdev_t *rdev;
1277         mddev_t *mddev;
1278         char b[BDEVNAME_SIZE];
1279
1280         printk("\n");
1281         printk("md:     **********************************\n");
1282         printk("md:     * <COMPLETE RAID STATE PRINTOUT> *\n");
1283         printk("md:     **********************************\n");
1284         ITERATE_MDDEV(mddev,tmp) {
1285
1286                 if (mddev->bitmap)
1287                         bitmap_print_sb(mddev->bitmap);
1288                 else
1289                         printk("%s: ", mdname(mddev));
1290                 ITERATE_RDEV(mddev,rdev,tmp2)
1291                         printk("<%s>", bdevname(rdev->bdev,b));
1292                 printk("\n");
1293
1294                 ITERATE_RDEV(mddev,rdev,tmp2)
1295                         print_rdev(rdev);
1296         }
1297         printk("md:     **********************************\n");
1298         printk("\n");
1299 }
1300
1301
1302 static void sync_sbs(mddev_t * mddev)
1303 {
1304         mdk_rdev_t *rdev;
1305         struct list_head *tmp;
1306
1307         ITERATE_RDEV(mddev,rdev,tmp) {
1308                 super_types[mddev->major_version].
1309                         sync_super(mddev, rdev);
1310                 rdev->sb_loaded = 1;
1311         }
1312 }
1313
1314 static void md_update_sb(mddev_t * mddev)
1315 {
1316         int err;
1317         struct list_head *tmp;
1318         mdk_rdev_t *rdev;
1319         int sync_req;
1320
1321 repeat:
1322         spin_lock(&mddev->write_lock);
1323         sync_req = mddev->in_sync;
1324         mddev->utime = get_seconds();
1325         mddev->events ++;
1326
1327         if (!mddev->events) {
1328                 /*
1329                  * oops, this 64-bit counter should never wrap.
1330                  * Either we are in around ~1 trillion A.C., assuming
1331                  * 1 reboot per second, or we have a bug:
1332                  */
1333                 MD_BUG();
1334                 mddev->events --;
1335         }
1336         mddev->sb_dirty = 2;
1337         sync_sbs(mddev);
1338
1339         /*
1340          * do not write anything to disk if using
1341          * nonpersistent superblocks
1342          */
1343         if (!mddev->persistent) {
1344                 mddev->sb_dirty = 0;
1345                 spin_unlock(&mddev->write_lock);
1346                 wake_up(&mddev->sb_wait);
1347                 return;
1348         }
1349         spin_unlock(&mddev->write_lock);
1350
1351         dprintk(KERN_INFO 
1352                 "md: updating %s RAID superblock on device (in sync %d)\n",
1353                 mdname(mddev),mddev->in_sync);
1354
1355         err = bitmap_update_sb(mddev->bitmap);
1356         ITERATE_RDEV(mddev,rdev,tmp) {
1357                 char b[BDEVNAME_SIZE];
1358                 dprintk(KERN_INFO "md: ");
1359                 if (rdev->faulty)
1360                         dprintk("(skipping faulty ");
1361
1362                 dprintk("%s ", bdevname(rdev->bdev,b));
1363                 if (!rdev->faulty) {
1364                         md_super_write(mddev,rdev,
1365                                        rdev->sb_offset<<1, MD_SB_BYTES,
1366                                        rdev->sb_page);
1367                         dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1368                                 bdevname(rdev->bdev,b),
1369                                 (unsigned long long)rdev->sb_offset);
1370
1371                 } else
1372                         dprintk(")\n");
1373                 if (mddev->level == LEVEL_MULTIPATH)
1374                         /* only need to write one superblock... */
1375                         break;
1376         }
1377         wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
1378         /* if there was a failure, sb_dirty was set to 1, and we re-write super */
1379
1380         spin_lock(&mddev->write_lock);
1381         if (mddev->in_sync != sync_req|| mddev->sb_dirty == 1) {
1382                 /* have to write it out again */
1383                 spin_unlock(&mddev->write_lock);
1384                 goto repeat;
1385         }
1386         mddev->sb_dirty = 0;
1387         spin_unlock(&mddev->write_lock);
1388         wake_up(&mddev->sb_wait);
1389
1390 }
1391
1392 /*
1393  * Import a device. If 'super_format' >= 0, then sanity check the superblock
1394  *
1395  * mark the device faulty if:
1396  *
1397  *   - the device is nonexistent (zero size)
1398  *   - the device has no valid superblock
1399  *
1400  * a faulty rdev _never_ has rdev->sb set.
1401  */
1402 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
1403 {
1404         char b[BDEVNAME_SIZE];
1405         int err;
1406         mdk_rdev_t *rdev;
1407         sector_t size;
1408
1409         rdev = (mdk_rdev_t *) kmalloc(sizeof(*rdev), GFP_KERNEL);
1410         if (!rdev) {
1411                 printk(KERN_ERR "md: could not alloc mem for new device!\n");
1412                 return ERR_PTR(-ENOMEM);
1413         }
1414         memset(rdev, 0, sizeof(*rdev));
1415
1416         if ((err = alloc_disk_sb(rdev)))
1417                 goto abort_free;
1418
1419         err = lock_rdev(rdev, newdev);
1420         if (err)
1421                 goto abort_free;
1422
1423         rdev->desc_nr = -1;
1424         rdev->faulty = 0;
1425         rdev->in_sync = 0;
1426         rdev->data_offset = 0;
1427         atomic_set(&rdev->nr_pending, 0);
1428
1429         size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
1430         if (!size) {
1431                 printk(KERN_WARNING 
1432                         "md: %s has zero or unknown size, marking faulty!\n",
1433                         bdevname(rdev->bdev,b));
1434                 err = -EINVAL;
1435                 goto abort_free;
1436         }
1437
1438         if (super_format >= 0) {
1439                 err = super_types[super_format].
1440                         load_super(rdev, NULL, super_minor);
1441                 if (err == -EINVAL) {
1442                         printk(KERN_WARNING 
1443                                 "md: %s has invalid sb, not importing!\n",
1444                                 bdevname(rdev->bdev,b));
1445                         goto abort_free;
1446                 }
1447                 if (err < 0) {
1448                         printk(KERN_WARNING 
1449                                 "md: could not read %s's sb, not importing!\n",
1450                                 bdevname(rdev->bdev,b));
1451                         goto abort_free;
1452                 }
1453         }
1454         INIT_LIST_HEAD(&rdev->same_set);
1455
1456         return rdev;
1457
1458 abort_free:
1459         if (rdev->sb_page) {
1460                 if (rdev->bdev)
1461                         unlock_rdev(rdev);
1462                 free_disk_sb(rdev);
1463         }
1464         kfree(rdev);
1465         return ERR_PTR(err);
1466 }
1467
1468 /*
1469  * Check a full RAID array for plausibility
1470  */
1471
1472
1473 static void analyze_sbs(mddev_t * mddev)
1474 {
1475         int i;
1476         struct list_head *tmp;
1477         mdk_rdev_t *rdev, *freshest;
1478         char b[BDEVNAME_SIZE];
1479
1480         freshest = NULL;
1481         ITERATE_RDEV(mddev,rdev,tmp)
1482                 switch (super_types[mddev->major_version].
1483                         load_super(rdev, freshest, mddev->minor_version)) {
1484                 case 1:
1485                         freshest = rdev;
1486                         break;
1487                 case 0:
1488                         break;
1489                 default:
1490                         printk( KERN_ERR \
1491                                 "md: fatal superblock inconsistency in %s"
1492                                 " -- removing from array\n", 
1493                                 bdevname(rdev->bdev,b));
1494                         kick_rdev_from_array(rdev);
1495                 }
1496
1497
1498         super_types[mddev->major_version].
1499                 validate_super(mddev, freshest);
1500
1501         i = 0;
1502         ITERATE_RDEV(mddev,rdev,tmp) {
1503                 if (rdev != freshest)
1504                         if (super_types[mddev->major_version].
1505                             validate_super(mddev, rdev)) {
1506                                 printk(KERN_WARNING "md: kicking non-fresh %s"
1507                                         " from array!\n",
1508                                         bdevname(rdev->bdev,b));
1509                                 kick_rdev_from_array(rdev);
1510                                 continue;
1511                         }
1512                 if (mddev->level == LEVEL_MULTIPATH) {
1513                         rdev->desc_nr = i++;
1514                         rdev->raid_disk = rdev->desc_nr;
1515                         rdev->in_sync = 1;
1516                 }
1517         }
1518
1519
1520
1521         if (mddev->recovery_cp != MaxSector &&
1522             mddev->level >= 1)
1523                 printk(KERN_ERR "md: %s: raid array is not clean"
1524                        " -- starting background reconstruction\n",
1525                        mdname(mddev));
1526
1527 }
1528
1529 int mdp_major = 0;
1530
1531 static struct kobject *md_probe(dev_t dev, int *part, void *data)
1532 {
1533         static DECLARE_MUTEX(disks_sem);
1534         mddev_t *mddev = mddev_find(dev);
1535         struct gendisk *disk;
1536         int partitioned = (MAJOR(dev) != MD_MAJOR);
1537         int shift = partitioned ? MdpMinorShift : 0;
1538         int unit = MINOR(dev) >> shift;
1539
1540         if (!mddev)
1541                 return NULL;
1542
1543         down(&disks_sem);
1544         if (mddev->gendisk) {
1545                 up(&disks_sem);
1546                 mddev_put(mddev);
1547                 return NULL;
1548         }
1549         disk = alloc_disk(1 << shift);
1550         if (!disk) {
1551                 up(&disks_sem);
1552                 mddev_put(mddev);
1553                 return NULL;
1554         }
1555         disk->major = MAJOR(dev);
1556         disk->first_minor = unit << shift;
1557         if (partitioned) {
1558                 sprintf(disk->disk_name, "md_d%d", unit);
1559                 sprintf(disk->devfs_name, "md/d%d", unit);
1560         } else {
1561                 sprintf(disk->disk_name, "md%d", unit);
1562                 sprintf(disk->devfs_name, "md/%d", unit);
1563         }
1564         disk->fops = &md_fops;
1565         disk->private_data = mddev;
1566         disk->queue = mddev->queue;
1567         add_disk(disk);
1568         mddev->gendisk = disk;
1569         up(&disks_sem);
1570         return NULL;
1571 }
1572
1573 void md_wakeup_thread(mdk_thread_t *thread);
1574
1575 static void md_safemode_timeout(unsigned long data)
1576 {
1577         mddev_t *mddev = (mddev_t *) data;
1578
1579         mddev->safemode = 1;
1580         md_wakeup_thread(mddev->thread);
1581 }
1582
1583
1584 static int do_md_run(mddev_t * mddev)
1585 {
1586         int pnum, err;
1587         int chunk_size;
1588         struct list_head *tmp;
1589         mdk_rdev_t *rdev;
1590         struct gendisk *disk;
1591         char b[BDEVNAME_SIZE];
1592
1593         if (list_empty(&mddev->disks))
1594                 /* cannot run an array with no devices.. */
1595                 return -EINVAL;
1596
1597         if (mddev->pers)
1598                 return -EBUSY;
1599
1600         /*
1601          * Analyze all RAID superblock(s)
1602          */
1603         if (!mddev->raid_disks)
1604                 analyze_sbs(mddev);
1605
1606         chunk_size = mddev->chunk_size;
1607         pnum = level_to_pers(mddev->level);
1608
1609         if ((pnum != MULTIPATH) && (pnum != RAID1)) {
1610                 if (!chunk_size) {
1611                         /*
1612                          * 'default chunksize' in the old md code used to
1613                          * be PAGE_SIZE, baaad.
1614                          * we abort here to be on the safe side. We don't
1615                          * want to continue the bad practice.
1616                          */
1617                         printk(KERN_ERR 
1618                                 "no chunksize specified, see 'man raidtab'\n");
1619                         return -EINVAL;
1620                 }
1621                 if (chunk_size > MAX_CHUNK_SIZE) {
1622                         printk(KERN_ERR "too big chunk_size: %d > %d\n",
1623                                 chunk_size, MAX_CHUNK_SIZE);
1624                         return -EINVAL;
1625                 }
1626                 /*
1627                  * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
1628                  */
1629                 if ( (1 << ffz(~chunk_size)) != chunk_size) {
1630                         printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
1631                         return -EINVAL;
1632                 }
1633                 if (chunk_size < PAGE_SIZE) {
1634                         printk(KERN_ERR "too small chunk_size: %d < %ld\n",
1635                                 chunk_size, PAGE_SIZE);
1636                         return -EINVAL;
1637                 }
1638
1639                 /* devices must have minimum size of one chunk */
1640                 ITERATE_RDEV(mddev,rdev,tmp) {
1641                         if (rdev->faulty)
1642                                 continue;
1643                         if (rdev->size < chunk_size / 1024) {
1644                                 printk(KERN_WARNING
1645                                         "md: Dev %s smaller than chunk_size:"
1646                                         " %lluk < %dk\n",
1647                                         bdevname(rdev->bdev,b),
1648                                         (unsigned long long)rdev->size,
1649                                         chunk_size / 1024);
1650                                 return -EINVAL;
1651                         }
1652                 }
1653         }
1654
1655 #ifdef CONFIG_KMOD
1656         if (!pers[pnum])
1657         {
1658                 request_module("md-personality-%d", pnum);
1659         }
1660 #endif
1661
1662         /*
1663          * Drop all container device buffers, from now on
1664          * the only valid external interface is through the md
1665          * device.
1666          * Also find largest hardsector size
1667          */
1668         ITERATE_RDEV(mddev,rdev,tmp) {
1669                 if (rdev->faulty)
1670                         continue;
1671                 sync_blockdev(rdev->bdev);
1672                 invalidate_bdev(rdev->bdev, 0);
1673         }
1674
1675         md_probe(mddev->unit, NULL, NULL);
1676         disk = mddev->gendisk;
1677         if (!disk)
1678                 return -ENOMEM;
1679
1680         spin_lock(&pers_lock);
1681         if (!pers[pnum] || !try_module_get(pers[pnum]->owner)) {
1682                 spin_unlock(&pers_lock);
1683                 printk(KERN_WARNING "md: personality %d is not loaded!\n",
1684                        pnum);
1685                 return -EINVAL;
1686         }
1687
1688         mddev->pers = pers[pnum];
1689         spin_unlock(&pers_lock);
1690
1691         mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
1692
1693         /* before we start the array running, initialise the bitmap */
1694         err = bitmap_create(mddev);
1695         if (err)
1696                 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
1697                         mdname(mddev), err);
1698         else
1699                 err = mddev->pers->run(mddev);
1700         if (err) {
1701                 printk(KERN_ERR "md: pers->run() failed ...\n");
1702                 module_put(mddev->pers->owner);
1703                 mddev->pers = NULL;
1704                 bitmap_destroy(mddev);
1705                 return err;
1706         }
1707         atomic_set(&mddev->writes_pending,0);
1708         mddev->safemode = 0;
1709         mddev->safemode_timer.function = md_safemode_timeout;
1710         mddev->safemode_timer.data = (unsigned long) mddev;
1711         mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */
1712         mddev->in_sync = 1;
1713         
1714         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1715         
1716         if (mddev->sb_dirty)
1717                 md_update_sb(mddev);
1718
1719         set_capacity(disk, mddev->array_size<<1);
1720
1721         /* If we call blk_queue_make_request here, it will
1722          * re-initialise max_sectors etc which may have been
1723          * refined inside -> run.  So just set the bits we need to set.
1724          * Most initialisation happended when we called
1725          * blk_queue_make_request(..., md_fail_request)
1726          * earlier.
1727          */
1728         mddev->queue->queuedata = mddev;
1729         mddev->queue->make_request_fn = mddev->pers->make_request;
1730
1731         mddev->changed = 1;
1732         return 0;
1733 }
1734
1735 static int restart_array(mddev_t *mddev)
1736 {
1737         struct gendisk *disk = mddev->gendisk;
1738         int err;
1739
1740         /*
1741          * Complain if it has no devices
1742          */
1743         err = -ENXIO;
1744         if (list_empty(&mddev->disks))
1745                 goto out;
1746
1747         if (mddev->pers) {
1748                 err = -EBUSY;
1749                 if (!mddev->ro)
1750                         goto out;
1751
1752                 mddev->safemode = 0;
1753                 mddev->ro = 0;
1754                 set_disk_ro(disk, 0);
1755
1756                 printk(KERN_INFO "md: %s switched to read-write mode.\n",
1757                         mdname(mddev));
1758                 /*
1759                  * Kick recovery or resync if necessary
1760                  */
1761                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1762                 md_wakeup_thread(mddev->thread);
1763                 err = 0;
1764         } else {
1765                 printk(KERN_ERR "md: %s has no personality assigned.\n",
1766                         mdname(mddev));
1767                 err = -EINVAL;
1768         }
1769
1770 out:
1771         return err;
1772 }
1773
1774 static int do_md_stop(mddev_t * mddev, int ro)
1775 {
1776         int err = 0;
1777         struct gendisk *disk = mddev->gendisk;
1778
1779         if (mddev->pers) {
1780                 if (atomic_read(&mddev->active)>2) {
1781                         printk("md: %s still in use.\n",mdname(mddev));
1782                         return -EBUSY;
1783                 }
1784
1785                 if (mddev->sync_thread) {
1786                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1787                         md_unregister_thread(mddev->sync_thread);
1788                         mddev->sync_thread = NULL;
1789                 }
1790
1791                 del_timer_sync(&mddev->safemode_timer);
1792
1793                 invalidate_partition(disk, 0);
1794
1795                 if (ro) {
1796                         err  = -ENXIO;
1797                         if (mddev->ro)
1798                                 goto out;
1799                         mddev->ro = 1;
1800                 } else {
1801                         if (mddev->ro)
1802                                 set_disk_ro(disk, 0);
1803                         blk_queue_make_request(mddev->queue, md_fail_request);
1804                         mddev->pers->stop(mddev);
1805                         module_put(mddev->pers->owner);
1806                         mddev->pers = NULL;
1807                         if (mddev->ro)
1808                                 mddev->ro = 0;
1809                 }
1810                 if (!mddev->in_sync) {
1811                         /* mark array as shutdown cleanly */
1812                         mddev->in_sync = 1;
1813                         md_update_sb(mddev);
1814                 }
1815                 if (ro)
1816                         set_disk_ro(disk, 1);
1817         }
1818
1819         bitmap_destroy(mddev);
1820         if (mddev->bitmap_file) {
1821                 atomic_set(&mddev->bitmap_file->f_dentry->d_inode->i_writecount, 1);
1822                 fput(mddev->bitmap_file);
1823                 mddev->bitmap_file = NULL;
1824         }
1825
1826         /*
1827          * Free resources if final stop
1828          */
1829         if (!ro) {
1830                 struct gendisk *disk;
1831                 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
1832
1833                 export_array(mddev);
1834
1835                 mddev->array_size = 0;
1836                 disk = mddev->gendisk;
1837                 if (disk)
1838                         set_capacity(disk, 0);
1839                 mddev->changed = 1;
1840         } else
1841                 printk(KERN_INFO "md: %s switched to read-only mode.\n",
1842                         mdname(mddev));
1843         err = 0;
1844 out:
1845         return err;
1846 }
1847
1848 static void autorun_array(mddev_t *mddev)
1849 {
1850         mdk_rdev_t *rdev;
1851         struct list_head *tmp;
1852         int err;
1853
1854         if (list_empty(&mddev->disks))
1855                 return;
1856
1857         printk(KERN_INFO "md: running: ");
1858
1859         ITERATE_RDEV(mddev,rdev,tmp) {
1860                 char b[BDEVNAME_SIZE];
1861                 printk("<%s>", bdevname(rdev->bdev,b));
1862         }
1863         printk("\n");
1864
1865         err = do_md_run (mddev);
1866         if (err) {
1867                 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
1868                 do_md_stop (mddev, 0);
1869         }
1870 }
1871
1872 /*
1873  * lets try to run arrays based on all disks that have arrived
1874  * until now. (those are in pending_raid_disks)
1875  *
1876  * the method: pick the first pending disk, collect all disks with
1877  * the same UUID, remove all from the pending list and put them into
1878  * the 'same_array' list. Then order this list based on superblock
1879  * update time (freshest comes first), kick out 'old' disks and
1880  * compare superblocks. If everything's fine then run it.
1881  *
1882  * If "unit" is allocated, then bump its reference count
1883  */
1884 static void autorun_devices(int part)
1885 {
1886         struct list_head candidates;
1887         struct list_head *tmp;
1888         mdk_rdev_t *rdev0, *rdev;
1889         mddev_t *mddev;
1890         char b[BDEVNAME_SIZE];
1891
1892         printk(KERN_INFO "md: autorun ...\n");
1893         while (!list_empty(&pending_raid_disks)) {
1894                 dev_t dev;
1895                 rdev0 = list_entry(pending_raid_disks.next,
1896                                          mdk_rdev_t, same_set);
1897
1898                 printk(KERN_INFO "md: considering %s ...\n",
1899                         bdevname(rdev0->bdev,b));
1900                 INIT_LIST_HEAD(&candidates);
1901                 ITERATE_RDEV_PENDING(rdev,tmp)
1902                         if (super_90_load(rdev, rdev0, 0) >= 0) {
1903                                 printk(KERN_INFO "md:  adding %s ...\n",
1904                                         bdevname(rdev->bdev,b));
1905                                 list_move(&rdev->same_set, &candidates);
1906                         }
1907                 /*
1908                  * now we have a set of devices, with all of them having
1909                  * mostly sane superblocks. It's time to allocate the
1910                  * mddev.
1911                  */
1912                 if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
1913                         printk(KERN_INFO "md: unit number in %s is bad: %d\n",
1914                                bdevname(rdev0->bdev, b), rdev0->preferred_minor);
1915                         break;
1916                 }
1917                 if (part)
1918                         dev = MKDEV(mdp_major,
1919                                     rdev0->preferred_minor << MdpMinorShift);
1920                 else
1921                         dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
1922
1923                 md_probe(dev, NULL, NULL);
1924                 mddev = mddev_find(dev);
1925                 if (!mddev) {
1926                         printk(KERN_ERR 
1927                                 "md: cannot allocate memory for md drive.\n");
1928                         break;
1929                 }
1930                 if (mddev_lock(mddev)) 
1931                         printk(KERN_WARNING "md: %s locked, cannot run\n",
1932                                mdname(mddev));
1933                 else if (mddev->raid_disks || mddev->major_version
1934                          || !list_empty(&mddev->disks)) {
1935                         printk(KERN_WARNING 
1936                                 "md: %s already running, cannot run %s\n",
1937                                 mdname(mddev), bdevname(rdev0->bdev,b));
1938                         mddev_unlock(mddev);
1939                 } else {
1940                         printk(KERN_INFO "md: created %s\n", mdname(mddev));
1941                         ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
1942                                 list_del_init(&rdev->same_set);
1943                                 if (bind_rdev_to_array(rdev, mddev))
1944                                         export_rdev(rdev);
1945                         }
1946                         autorun_array(mddev);
1947                         mddev_unlock(mddev);
1948                 }
1949                 /* on success, candidates will be empty, on error
1950                  * it won't...
1951                  */
1952                 ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
1953                         export_rdev(rdev);
1954                 mddev_put(mddev);
1955         }
1956         printk(KERN_INFO "md: ... autorun DONE.\n");
1957 }
1958
1959 /*
1960  * import RAID devices based on one partition
1961  * if possible, the array gets run as well.
1962  */
1963
1964 static int autostart_array(dev_t startdev)
1965 {
1966         char b[BDEVNAME_SIZE];
1967         int err = -EINVAL, i;
1968         mdp_super_t *sb = NULL;
1969         mdk_rdev_t *start_rdev = NULL, *rdev;
1970
1971         start_rdev = md_import_device(startdev, 0, 0);
1972         if (IS_ERR(start_rdev))
1973                 return err;
1974
1975
1976         /* NOTE: this can only work for 0.90.0 superblocks */
1977         sb = (mdp_super_t*)page_address(start_rdev->sb_page);
1978         if (sb->major_version != 0 ||
1979             sb->minor_version != 90 ) {
1980                 printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
1981                 export_rdev(start_rdev);
1982                 return err;
1983         }
1984
1985         if (start_rdev->faulty) {
1986                 printk(KERN_WARNING 
1987                         "md: can not autostart based on faulty %s!\n",
1988                         bdevname(start_rdev->bdev,b));
1989                 export_rdev(start_rdev);
1990                 return err;
1991         }
1992         list_add(&start_rdev->same_set, &pending_raid_disks);
1993
1994         for (i = 0; i < MD_SB_DISKS; i++) {
1995                 mdp_disk_t *desc = sb->disks + i;
1996                 dev_t dev = MKDEV(desc->major, desc->minor);
1997
1998                 if (!dev)
1999                         continue;
2000                 if (dev == startdev)
2001                         continue;
2002                 if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
2003                         continue;
2004                 rdev = md_import_device(dev, 0, 0);
2005                 if (IS_ERR(rdev))
2006                         continue;
2007
2008                 list_add(&rdev->same_set, &pending_raid_disks);
2009         }
2010
2011         /*
2012          * possibly return codes
2013          */
2014         autorun_devices(0);
2015         return 0;
2016
2017 }
2018
2019
2020 static int get_version(void __user * arg)
2021 {
2022         mdu_version_t ver;
2023
2024         ver.major = MD_MAJOR_VERSION;
2025         ver.minor = MD_MINOR_VERSION;
2026         ver.patchlevel = MD_PATCHLEVEL_VERSION;
2027
2028         if (copy_to_user(arg, &ver, sizeof(ver)))
2029                 return -EFAULT;
2030
2031         return 0;
2032 }
2033
2034 static int get_array_info(mddev_t * mddev, void __user * arg)
2035 {
2036         mdu_array_info_t info;
2037         int nr,working,active,failed,spare;
2038         mdk_rdev_t *rdev;
2039         struct list_head *tmp;
2040
2041         nr=working=active=failed=spare=0;
2042         ITERATE_RDEV(mddev,rdev,tmp) {
2043                 nr++;
2044                 if (rdev->faulty)
2045                         failed++;
2046                 else {
2047                         working++;
2048                         if (rdev->in_sync)
2049                                 active++;       
2050                         else
2051                                 spare++;
2052                 }
2053         }
2054
2055         info.major_version = mddev->major_version;
2056         info.minor_version = mddev->minor_version;
2057         info.patch_version = MD_PATCHLEVEL_VERSION;
2058         info.ctime         = mddev->ctime;
2059         info.level         = mddev->level;
2060         info.size          = mddev->size;
2061         info.nr_disks      = nr;
2062         info.raid_disks    = mddev->raid_disks;
2063         info.md_minor      = mddev->md_minor;
2064         info.not_persistent= !mddev->persistent;
2065
2066         info.utime         = mddev->utime;
2067         info.state         = 0;
2068         if (mddev->in_sync)
2069                 info.state = (1<<MD_SB_CLEAN);
2070         info.active_disks  = active;
2071         info.working_disks = working;
2072         info.failed_disks  = failed;
2073         info.spare_disks   = spare;
2074
2075         info.layout        = mddev->layout;
2076         info.chunk_size    = mddev->chunk_size;
2077
2078         if (copy_to_user(arg, &info, sizeof(info)))
2079                 return -EFAULT;
2080
2081         return 0;
2082 }
2083
2084 static int get_bitmap_file(mddev_t * mddev, void * arg)
2085 {
2086         mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
2087         char *ptr, *buf = NULL;
2088         int err = -ENOMEM;
2089
2090         file = kmalloc(sizeof(*file), GFP_KERNEL);
2091         if (!file)
2092                 goto out;
2093
2094         /* bitmap disabled, zero the first byte and copy out */
2095         if (!mddev->bitmap || !mddev->bitmap->file) {
2096                 file->pathname[0] = '\0';
2097                 goto copy_out;
2098         }
2099
2100         buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
2101         if (!buf)
2102                 goto out;
2103
2104         ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
2105         if (!ptr)
2106                 goto out;
2107
2108         strcpy(file->pathname, ptr);
2109
2110 copy_out:
2111         err = 0;
2112         if (copy_to_user(arg, file, sizeof(*file)))
2113                 err = -EFAULT;
2114 out:
2115         kfree(buf);
2116         kfree(file);
2117         return err;
2118 }
2119
2120 static int get_disk_info(mddev_t * mddev, void __user * arg)
2121 {
2122         mdu_disk_info_t info;
2123         unsigned int nr;
2124         mdk_rdev_t *rdev;
2125
2126         if (copy_from_user(&info, arg, sizeof(info)))
2127                 return -EFAULT;
2128
2129         nr = info.number;
2130
2131         rdev = find_rdev_nr(mddev, nr);
2132         if (rdev) {
2133                 info.major = MAJOR(rdev->bdev->bd_dev);
2134                 info.minor = MINOR(rdev->bdev->bd_dev);
2135                 info.raid_disk = rdev->raid_disk;
2136                 info.state = 0;
2137                 if (rdev->faulty)
2138                         info.state |= (1<<MD_DISK_FAULTY);
2139                 else if (rdev->in_sync) {
2140                         info.state |= (1<<MD_DISK_ACTIVE);
2141                         info.state |= (1<<MD_DISK_SYNC);
2142                 }
2143         } else {
2144                 info.major = info.minor = 0;
2145                 info.raid_disk = -1;
2146                 info.state = (1<<MD_DISK_REMOVED);
2147         }
2148
2149         if (copy_to_user(arg, &info, sizeof(info)))
2150                 return -EFAULT;
2151
2152         return 0;
2153 }
2154
2155 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
2156 {
2157         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
2158         mdk_rdev_t *rdev;
2159         dev_t dev = MKDEV(info->major,info->minor);
2160
2161         if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
2162                 return -EOVERFLOW;
2163
2164         if (!mddev->raid_disks) {
2165                 int err;
2166                 /* expecting a device which has a superblock */
2167                 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
2168                 if (IS_ERR(rdev)) {
2169                         printk(KERN_WARNING 
2170                                 "md: md_import_device returned %ld\n",
2171                                 PTR_ERR(rdev));
2172                         return PTR_ERR(rdev);
2173                 }
2174                 if (!list_empty(&mddev->disks)) {
2175                         mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2176                                                         mdk_rdev_t, same_set);
2177                         int err = super_types[mddev->major_version]
2178                                 .load_super(rdev, rdev0, mddev->minor_version);
2179                         if (err < 0) {
2180                                 printk(KERN_WARNING 
2181                                         "md: %s has different UUID to %s\n",
2182                                         bdevname(rdev->bdev,b), 
2183                                         bdevname(rdev0->bdev,b2));
2184                                 export_rdev(rdev);
2185                                 return -EINVAL;
2186                         }
2187                 }
2188                 err = bind_rdev_to_array(rdev, mddev);
2189                 if (err)
2190                         export_rdev(rdev);
2191                 return err;
2192         }
2193
2194         /*
2195          * add_new_disk can be used once the array is assembled
2196          * to add "hot spares".  They must already have a superblock
2197          * written
2198          */
2199         if (mddev->pers) {
2200                 int err;
2201                 if (!mddev->pers->hot_add_disk) {
2202                         printk(KERN_WARNING 
2203                                 "%s: personality does not support diskops!\n",
2204                                mdname(mddev));
2205                         return -EINVAL;
2206                 }
2207                 rdev = md_import_device(dev, mddev->major_version,
2208                                         mddev->minor_version);
2209                 if (IS_ERR(rdev)) {
2210                         printk(KERN_WARNING 
2211                                 "md: md_import_device returned %ld\n",
2212                                 PTR_ERR(rdev));
2213                         return PTR_ERR(rdev);
2214                 }
2215                 /* set save_raid_disk if appropriate */
2216                 if (!mddev->persistent) {
2217                         if (info->state & (1<<MD_DISK_SYNC)  &&
2218                             info->raid_disk < mddev->raid_disks)
2219                                 rdev->raid_disk = info->raid_disk;
2220                         else
2221                                 rdev->raid_disk = -1;
2222                 } else
2223                         super_types[mddev->major_version].
2224                                 validate_super(mddev, rdev);
2225                 rdev->saved_raid_disk = rdev->raid_disk;
2226
2227                 rdev->in_sync = 0; /* just to be sure */
2228                 rdev->raid_disk = -1;
2229                 err = bind_rdev_to_array(rdev, mddev);
2230                 if (err)
2231                         export_rdev(rdev);
2232
2233                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2234                 if (mddev->thread)
2235                         md_wakeup_thread(mddev->thread);
2236                 return err;
2237         }
2238
2239         /* otherwise, add_new_disk is only allowed
2240          * for major_version==0 superblocks
2241          */
2242         if (mddev->major_version != 0) {
2243                 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
2244                        mdname(mddev));
2245                 return -EINVAL;
2246         }
2247
2248         if (!(info->state & (1<<MD_DISK_FAULTY))) {
2249                 int err;
2250                 rdev = md_import_device (dev, -1, 0);
2251                 if (IS_ERR(rdev)) {
2252                         printk(KERN_WARNING 
2253                                 "md: error, md_import_device() returned %ld\n",
2254                                 PTR_ERR(rdev));
2255                         return PTR_ERR(rdev);
2256                 }
2257                 rdev->desc_nr = info->number;
2258                 if (info->raid_disk < mddev->raid_disks)
2259                         rdev->raid_disk = info->raid_disk;
2260                 else
2261                         rdev->raid_disk = -1;
2262
2263                 rdev->faulty = 0;
2264                 if (rdev->raid_disk < mddev->raid_disks)
2265                         rdev->in_sync = (info->state & (1<<MD_DISK_SYNC));
2266                 else
2267                         rdev->in_sync = 0;
2268
2269                 err = bind_rdev_to_array(rdev, mddev);
2270                 if (err) {
2271                         export_rdev(rdev);
2272                         return err;
2273                 }
2274
2275                 if (!mddev->persistent) {
2276                         printk(KERN_INFO "md: nonpersistent superblock ...\n");
2277                         rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2278                 } else 
2279                         rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2280                 rdev->size = calc_dev_size(rdev, mddev->chunk_size);
2281
2282                 if (!mddev->size || (mddev->size > rdev->size))
2283                         mddev->size = rdev->size;
2284         }
2285
2286         return 0;
2287 }
2288
2289 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
2290 {
2291         char b[BDEVNAME_SIZE];
2292         mdk_rdev_t *rdev;
2293
2294         if (!mddev->pers)
2295                 return -ENODEV;
2296
2297         rdev = find_rdev(mddev, dev);
2298         if (!rdev)
2299                 return -ENXIO;
2300
2301         if (rdev->raid_disk >= 0)
2302                 goto busy;
2303
2304         kick_rdev_from_array(rdev);
2305         md_update_sb(mddev);
2306
2307         return 0;
2308 busy:
2309         printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
2310                 bdevname(rdev->bdev,b), mdname(mddev));
2311         return -EBUSY;
2312 }
2313
2314 static int hot_add_disk(mddev_t * mddev, dev_t dev)
2315 {
2316         char b[BDEVNAME_SIZE];
2317         int err;
2318         unsigned int size;
2319         mdk_rdev_t *rdev;
2320
2321         if (!mddev->pers)
2322                 return -ENODEV;
2323
2324         if (mddev->major_version != 0) {
2325                 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
2326                         " version-0 superblocks.\n",
2327                         mdname(mddev));
2328                 return -EINVAL;
2329         }
2330         if (!mddev->pers->hot_add_disk) {
2331                 printk(KERN_WARNING 
2332                         "%s: personality does not support diskops!\n",
2333                         mdname(mddev));
2334                 return -EINVAL;
2335         }
2336
2337         rdev = md_import_device (dev, -1, 0);
2338         if (IS_ERR(rdev)) {
2339                 printk(KERN_WARNING 
2340                         "md: error, md_import_device() returned %ld\n",
2341                         PTR_ERR(rdev));
2342                 return -EINVAL;
2343         }
2344
2345         if (mddev->persistent)
2346                 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2347         else
2348                 rdev->sb_offset =
2349                         rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2350
2351         size = calc_dev_size(rdev, mddev->chunk_size);
2352         rdev->size = size;
2353
2354         if (size < mddev->size) {
2355                 printk(KERN_WARNING 
2356                         "%s: disk size %llu blocks < array size %llu\n",
2357                         mdname(mddev), (unsigned long long)size,
2358                         (unsigned long long)mddev->size);
2359                 err = -ENOSPC;
2360                 goto abort_export;
2361         }
2362
2363         if (rdev->faulty) {
2364                 printk(KERN_WARNING 
2365                         "md: can not hot-add faulty %s disk to %s!\n",
2366                         bdevname(rdev->bdev,b), mdname(mddev));
2367                 err = -EINVAL;
2368                 goto abort_export;
2369         }
2370         rdev->in_sync = 0;
2371         rdev->desc_nr = -1;
2372         bind_rdev_to_array(rdev, mddev);
2373
2374         /*
2375          * The rest should better be atomic, we can have disk failures
2376          * noticed in interrupt contexts ...
2377          */
2378
2379         if (rdev->desc_nr == mddev->max_disks) {
2380                 printk(KERN_WARNING "%s: can not hot-add to full array!\n",
2381                         mdname(mddev));
2382                 err = -EBUSY;
2383                 goto abort_unbind_export;
2384         }
2385
2386         rdev->raid_disk = -1;
2387
2388         md_update_sb(mddev);
2389
2390         /*
2391          * Kick recovery, maybe this spare has to be added to the
2392          * array immediately.
2393          */
2394         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2395         md_wakeup_thread(mddev->thread);
2396
2397         return 0;
2398
2399 abort_unbind_export:
2400         unbind_rdev_from_array(rdev);
2401
2402 abort_export:
2403         export_rdev(rdev);
2404         return err;
2405 }
2406
2407 /* similar to deny_write_access, but accounts for our holding a reference
2408  * to the file ourselves */
2409 static int deny_bitmap_write_access(struct file * file)
2410 {
2411         struct inode *inode = file->f_mapping->host;
2412
2413         spin_lock(&inode->i_lock);
2414         if (atomic_read(&inode->i_writecount) > 1) {
2415                 spin_unlock(&inode->i_lock);
2416                 return -ETXTBSY;
2417         }
2418         atomic_set(&inode->i_writecount, -1);
2419         spin_unlock(&inode->i_lock);
2420
2421         return 0;
2422 }
2423
2424 static int set_bitmap_file(mddev_t *mddev, int fd)
2425 {
2426         int err;
2427
2428         if (mddev->pers)
2429                 return -EBUSY;
2430
2431         mddev->bitmap_file = fget(fd);
2432
2433         if (mddev->bitmap_file == NULL) {
2434                 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
2435                         mdname(mddev));
2436                 return -EBADF;
2437         }
2438
2439         err = deny_bitmap_write_access(mddev->bitmap_file);
2440         if (err) {
2441                 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
2442                         mdname(mddev));
2443                 fput(mddev->bitmap_file);
2444                 mddev->bitmap_file = NULL;
2445         } else
2446                 mddev->bitmap_offset = 0; /* file overrides offset */
2447         return err;
2448 }
2449
2450 /*
2451  * set_array_info is used two different ways
2452  * The original usage is when creating a new array.
2453  * In this usage, raid_disks is > 0 and it together with
2454  *  level, size, not_persistent,layout,chunksize determine the
2455  *  shape of the array.
2456  *  This will always create an array with a type-0.90.0 superblock.
2457  * The newer usage is when assembling an array.
2458  *  In this case raid_disks will be 0, and the major_version field is
2459  *  use to determine which style super-blocks are to be found on the devices.
2460  *  The minor and patch _version numbers are also kept incase the
2461  *  super_block handler wishes to interpret them.
2462  */
2463 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
2464 {
2465
2466         if (info->raid_disks == 0) {
2467                 /* just setting version number for superblock loading */
2468                 if (info->major_version < 0 ||
2469                     info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
2470                     super_types[info->major_version].name == NULL) {
2471                         /* maybe try to auto-load a module? */
2472                         printk(KERN_INFO 
2473                                 "md: superblock version %d not known\n",
2474                                 info->major_version);
2475                         return -EINVAL;
2476                 }
2477                 mddev->major_version = info->major_version;
2478                 mddev->minor_version = info->minor_version;
2479                 mddev->patch_version = info->patch_version;
2480                 return 0;
2481         }
2482         mddev->major_version = MD_MAJOR_VERSION;
2483         mddev->minor_version = MD_MINOR_VERSION;
2484         mddev->patch_version = MD_PATCHLEVEL_VERSION;
2485         mddev->ctime         = get_seconds();
2486
2487         mddev->level         = info->level;
2488         mddev->size          = info->size;
2489         mddev->raid_disks    = info->raid_disks;
2490         /* don't set md_minor, it is determined by which /dev/md* was
2491          * openned
2492          */
2493         if (info->state & (1<<MD_SB_CLEAN))
2494                 mddev->recovery_cp = MaxSector;
2495         else
2496                 mddev->recovery_cp = 0;
2497         mddev->persistent    = ! info->not_persistent;
2498
2499         mddev->layout        = info->layout;
2500         mddev->chunk_size    = info->chunk_size;
2501
2502         mddev->max_disks     = MD_SB_DISKS;
2503
2504         mddev->sb_dirty      = 1;
2505
2506         /*
2507          * Generate a 128 bit UUID
2508          */
2509         get_random_bytes(mddev->uuid, 16);
2510
2511         return 0;
2512 }
2513
2514 /*
2515  * update_array_info is used to change the configuration of an
2516  * on-line array.
2517  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
2518  * fields in the info are checked against the array.
2519  * Any differences that cannot be handled will cause an error.
2520  * Normally, only one change can be managed at a time.
2521  */
2522 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
2523 {
2524         int rv = 0;
2525         int cnt = 0;
2526
2527         if (mddev->major_version != info->major_version ||
2528             mddev->minor_version != info->minor_version ||
2529 /*          mddev->patch_version != info->patch_version || */
2530             mddev->ctime         != info->ctime         ||
2531             mddev->level         != info->level         ||
2532 /*          mddev->layout        != info->layout        || */
2533             !mddev->persistent   != info->not_persistent||
2534             mddev->chunk_size    != info->chunk_size    )
2535                 return -EINVAL;
2536         /* Check there is only one change */
2537         if (mddev->size != info->size) cnt++;
2538         if (mddev->raid_disks != info->raid_disks) cnt++;
2539         if (mddev->layout != info->layout) cnt++;
2540         if (cnt == 0) return 0;
2541         if (cnt > 1) return -EINVAL;
2542
2543         if (mddev->layout != info->layout) {
2544                 /* Change layout
2545                  * we don't need to do anything at the md level, the
2546                  * personality will take care of it all.
2547                  */
2548                 if (mddev->pers->reconfig == NULL)
2549                         return -EINVAL;
2550                 else
2551                         return mddev->pers->reconfig(mddev, info->layout, -1);
2552         }
2553         if (mddev->size != info->size) {
2554                 mdk_rdev_t * rdev;
2555                 struct list_head *tmp;
2556                 if (mddev->pers->resize == NULL)
2557                         return -EINVAL;
2558                 /* The "size" is the amount of each device that is used.
2559                  * This can only make sense for arrays with redundancy.
2560                  * linear and raid0 always use whatever space is available
2561                  * We can only consider changing the size if no resync
2562                  * or reconstruction is happening, and if the new size
2563                  * is acceptable. It must fit before the sb_offset or,
2564                  * if that is <data_offset, it must fit before the
2565                  * size of each device.
2566                  * If size is zero, we find the largest size that fits.
2567                  */
2568                 if (mddev->sync_thread)
2569                         return -EBUSY;
2570                 ITERATE_RDEV(mddev,rdev,tmp) {
2571                         sector_t avail;
2572                         int fit = (info->size == 0);
2573                         if (rdev->sb_offset > rdev->data_offset)
2574                                 avail = (rdev->sb_offset*2) - rdev->data_offset;
2575                         else
2576                                 avail = get_capacity(rdev->bdev->bd_disk)
2577                                         - rdev->data_offset;
2578                         if (fit && (info->size == 0 || info->size > avail/2))
2579                                 info->size = avail/2;
2580                         if (avail < ((sector_t)info->size << 1))
2581                                 return -ENOSPC;
2582                 }
2583                 rv = mddev->pers->resize(mddev, (sector_t)info->size *2);
2584                 if (!rv) {
2585                         struct block_device *bdev;
2586
2587                         bdev = bdget_disk(mddev->gendisk, 0);
2588                         if (bdev) {
2589                                 down(&bdev->bd_inode->i_sem);
2590                                 i_size_write(bdev->bd_inode, mddev->array_size << 10);
2591                                 up(&bdev->bd_inode->i_sem);
2592                                 bdput(bdev);
2593                         }
2594                 }
2595         }
2596         if (mddev->raid_disks    != info->raid_disks) {
2597                 /* change the number of raid disks */
2598                 if (mddev->pers->reshape == NULL)
2599                         return -EINVAL;
2600                 if (info->raid_disks <= 0 ||
2601                     info->raid_disks >= mddev->max_disks)
2602                         return -EINVAL;
2603                 if (mddev->sync_thread)
2604                         return -EBUSY;
2605                 rv = mddev->pers->reshape(mddev, info->raid_disks);
2606                 if (!rv) {
2607                         struct block_device *bdev;
2608
2609                         bdev = bdget_disk(mddev->gendisk, 0);
2610                         if (bdev) {
2611                                 down(&bdev->bd_inode->i_sem);
2612                                 i_size_write(bdev->bd_inode, mddev->array_size << 10);
2613                                 up(&bdev->bd_inode->i_sem);
2614                                 bdput(bdev);
2615                         }
2616                 }
2617         }
2618         md_update_sb(mddev);
2619         return rv;
2620 }
2621
2622 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
2623 {
2624         mdk_rdev_t *rdev;
2625
2626         if (mddev->pers == NULL)
2627                 return -ENODEV;
2628
2629         rdev = find_rdev(mddev, dev);
2630         if (!rdev)
2631                 return -ENODEV;
2632
2633         md_error(mddev, rdev);
2634         return 0;
2635 }
2636
2637 static int md_ioctl(struct inode *inode, struct file *file,
2638                         unsigned int cmd, unsigned long arg)
2639 {
2640         int err = 0;
2641         void __user *argp = (void __user *)arg;
2642         struct hd_geometry __user *loc = argp;
2643         mddev_t *mddev = NULL;
2644
2645         if (!capable(CAP_SYS_ADMIN))
2646                 return -EACCES;
2647
2648         /*
2649          * Commands dealing with the RAID driver but not any
2650          * particular array:
2651          */
2652         switch (cmd)
2653         {
2654                 case RAID_VERSION:
2655                         err = get_version(argp);
2656                         goto done;
2657
2658                 case PRINT_RAID_DEBUG:
2659                         err = 0;
2660                         md_print_devices();
2661                         goto done;
2662
2663 #ifndef MODULE
2664                 case RAID_AUTORUN:
2665                         err = 0;
2666                         autostart_arrays(arg);
2667                         goto done;
2668 #endif
2669                 default:;
2670         }
2671
2672         /*
2673          * Commands creating/starting a new array:
2674          */
2675
2676         mddev = inode->i_bdev->bd_disk->private_data;
2677
2678         if (!mddev) {
2679                 BUG();
2680                 goto abort;
2681         }
2682
2683
2684         if (cmd == START_ARRAY) {
2685                 /* START_ARRAY doesn't need to lock the array as autostart_array
2686                  * does the locking, and it could even be a different array
2687                  */
2688                 static int cnt = 3;
2689                 if (cnt > 0 ) {
2690                         printk(KERN_WARNING
2691                                "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
2692                                "This will not be supported beyond 2.6\n",
2693                                current->comm, current->pid);
2694                         cnt--;
2695                 }
2696                 err = autostart_array(new_decode_dev(arg));
2697                 if (err) {
2698                         printk(KERN_WARNING "md: autostart failed!\n");
2699                         goto abort;
2700                 }
2701                 goto done;
2702         }
2703
2704         err = mddev_lock(mddev);
2705         if (err) {
2706                 printk(KERN_INFO 
2707                         "md: ioctl lock interrupted, reason %d, cmd %d\n",
2708                         err, cmd);
2709                 goto abort;
2710         }
2711
2712         switch (cmd)
2713         {
2714                 case SET_ARRAY_INFO:
2715                         {
2716                                 mdu_array_info_t info;
2717                                 if (!arg)
2718                                         memset(&info, 0, sizeof(info));
2719                                 else if (copy_from_user(&info, argp, sizeof(info))) {
2720                                         err = -EFAULT;
2721                                         goto abort_unlock;
2722                                 }
2723                                 if (mddev->pers) {
2724                                         err = update_array_info(mddev, &info);
2725                                         if (err) {
2726                                                 printk(KERN_WARNING "md: couldn't update"
2727                                                        " array info. %d\n", err);
2728                                                 goto abort_unlock;
2729                                         }
2730                                         goto done_unlock;
2731                                 }
2732                                 if (!list_empty(&mddev->disks)) {
2733                                         printk(KERN_WARNING
2734                                                "md: array %s already has disks!\n",
2735                                                mdname(mddev));
2736                                         err = -EBUSY;
2737                                         goto abort_unlock;
2738                                 }
2739                                 if (mddev->raid_disks) {
2740                                         printk(KERN_WARNING
2741                                                "md: array %s already initialised!\n",
2742                                                mdname(mddev));
2743                                         err = -EBUSY;
2744                                         goto abort_unlock;
2745                                 }
2746                                 err = set_array_info(mddev, &info);
2747                                 if (err) {
2748                                         printk(KERN_WARNING "md: couldn't set"
2749                                                " array info. %d\n", err);
2750                                         goto abort_unlock;
2751                                 }
2752                         }
2753                         goto done_unlock;
2754
2755                 default:;
2756         }
2757
2758         /*
2759          * Commands querying/configuring an existing array:
2760          */
2761         /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
2762          * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
2763         if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
2764                         && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
2765                 err = -ENODEV;
2766                 goto abort_unlock;
2767         }
2768
2769         /*
2770          * Commands even a read-only array can execute:
2771          */
2772         switch (cmd)
2773         {
2774                 case GET_ARRAY_INFO:
2775                         err = get_array_info(mddev, argp);
2776                         goto done_unlock;
2777
2778                 case GET_BITMAP_FILE:
2779                         err = get_bitmap_file(mddev, (void *)arg);
2780                         goto done_unlock;
2781
2782                 case GET_DISK_INFO:
2783                         err = get_disk_info(mddev, argp);
2784                         goto done_unlock;
2785
2786                 case RESTART_ARRAY_RW:
2787                         err = restart_array(mddev);
2788                         goto done_unlock;
2789
2790                 case STOP_ARRAY:
2791                         err = do_md_stop (mddev, 0);
2792                         goto done_unlock;
2793
2794                 case STOP_ARRAY_RO:
2795                         err = do_md_stop (mddev, 1);
2796                         goto done_unlock;
2797
2798         /*
2799          * We have a problem here : there is no easy way to give a CHS
2800          * virtual geometry. We currently pretend that we have a 2 heads
2801          * 4 sectors (with a BIG number of cylinders...). This drives
2802          * dosfs just mad... ;-)
2803          */
2804                 case HDIO_GETGEO:
2805                         if (!loc) {
2806                                 err = -EINVAL;
2807                                 goto abort_unlock;
2808                         }
2809                         err = put_user (2, (char __user *) &loc->heads);
2810                         if (err)
2811                                 goto abort_unlock;
2812                         err = put_user (4, (char __user *) &loc->sectors);
2813                         if (err)
2814                                 goto abort_unlock;
2815                         err = put_user(get_capacity(mddev->gendisk)/8,
2816                                         (short __user *) &loc->cylinders);
2817                         if (err)
2818                                 goto abort_unlock;
2819                         err = put_user (get_start_sect(inode->i_bdev),
2820                                                 (long __user *) &loc->start);
2821                         goto done_unlock;
2822         }
2823
2824         /*
2825          * The remaining ioctls are changing the state of the
2826          * superblock, so we do not allow read-only arrays
2827          * here:
2828          */
2829         if (mddev->ro) {
2830                 err = -EROFS;
2831                 goto abort_unlock;
2832         }
2833
2834         switch (cmd)
2835         {
2836                 case ADD_NEW_DISK:
2837                 {
2838                         mdu_disk_info_t info;
2839                         if (copy_from_user(&info, argp, sizeof(info)))
2840                                 err = -EFAULT;
2841                         else
2842                                 err = add_new_disk(mddev, &info);
2843                         goto done_unlock;
2844                 }
2845
2846                 case HOT_REMOVE_DISK:
2847                         err = hot_remove_disk(mddev, new_decode_dev(arg));
2848                         goto done_unlock;
2849
2850                 case HOT_ADD_DISK:
2851                         err = hot_add_disk(mddev, new_decode_dev(arg));
2852                         goto done_unlock;
2853
2854                 case SET_DISK_FAULTY:
2855                         err = set_disk_faulty(mddev, new_decode_dev(arg));
2856                         goto done_unlock;
2857
2858                 case RUN_ARRAY:
2859                         err = do_md_run (mddev);
2860                         goto done_unlock;
2861
2862                 case SET_BITMAP_FILE:
2863                         err = set_bitmap_file(mddev, (int)arg);
2864                         goto done_unlock;
2865
2866                 default:
2867                         if (_IOC_TYPE(cmd) == MD_MAJOR)
2868                                 printk(KERN_WARNING "md: %s(pid %d) used"
2869                                         " obsolete MD ioctl, upgrade your"
2870                                         " software to use new ictls.\n",
2871                                         current->comm, current->pid);
2872                         err = -EINVAL;
2873                         goto abort_unlock;
2874         }
2875
2876 done_unlock:
2877 abort_unlock:
2878         mddev_unlock(mddev);
2879
2880         return err;
2881 done:
2882         if (err)
2883                 MD_BUG();
2884 abort:
2885         return err;
2886 }
2887
2888 static int md_open(struct inode *inode, struct file *file)
2889 {
2890         /*
2891          * Succeed if we can lock the mddev, which confirms that
2892          * it isn't being stopped right now.
2893          */
2894         mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
2895         int err;
2896
2897         if ((err = mddev_lock(mddev)))
2898                 goto out;
2899
2900         err = 0;
2901         mddev_get(mddev);
2902         mddev_unlock(mddev);
2903
2904         check_disk_change(inode->i_bdev);
2905  out:
2906         return err;
2907 }
2908
2909 static int md_release(struct inode *inode, struct file * file)
2910 {
2911         mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
2912
2913         if (!mddev)
2914                 BUG();
2915         mddev_put(mddev);
2916
2917         return 0;
2918 }
2919
2920 static int md_media_changed(struct gendisk *disk)
2921 {
2922         mddev_t *mddev = disk->private_data;
2923
2924         return mddev->changed;
2925 }
2926
2927 static int md_revalidate(struct gendisk *disk)
2928 {
2929         mddev_t *mddev = disk->private_data;
2930
2931         mddev->changed = 0;
2932         return 0;
2933 }
2934 static struct block_device_operations md_fops =
2935 {
2936         .owner          = THIS_MODULE,
2937         .open           = md_open,
2938         .release        = md_release,
2939         .ioctl          = md_ioctl,
2940         .media_changed  = md_media_changed,
2941         .revalidate_disk= md_revalidate,
2942 };
2943
2944 static int md_thread(void * arg)
2945 {
2946         mdk_thread_t *thread = arg;
2947
2948         lock_kernel();
2949
2950         /*
2951          * Detach thread
2952          */
2953
2954         daemonize(thread->name, mdname(thread->mddev));
2955
2956         current->exit_signal = SIGCHLD;
2957         allow_signal(SIGKILL);
2958         thread->tsk = current;
2959
2960         /*
2961          * md_thread is a 'system-thread', it's priority should be very
2962          * high. We avoid resource deadlocks individually in each
2963          * raid personality. (RAID5 does preallocation) We also use RR and
2964          * the very same RT priority as kswapd, thus we will never get
2965          * into a priority inversion deadlock.
2966          *
2967          * we definitely have to have equal or higher priority than
2968          * bdflush, otherwise bdflush will deadlock if there are too
2969          * many dirty RAID5 blocks.
2970          */
2971         unlock_kernel();
2972
2973         complete(thread->event);
2974         while (thread->run) {
2975                 void (*run)(mddev_t *);
2976
2977                 wait_event_interruptible_timeout(thread->wqueue,
2978                                                  test_bit(THREAD_WAKEUP, &thread->flags),
2979                                                  thread->timeout);
2980                 try_to_freeze();
2981
2982                 clear_bit(THREAD_WAKEUP, &thread->flags);
2983
2984                 run = thread->run;
2985                 if (run)
2986                         run(thread->mddev);
2987
2988                 if (signal_pending(current))
2989                         flush_signals(current);
2990         }
2991         complete(thread->event);
2992         return 0;
2993 }
2994
2995 void md_wakeup_thread(mdk_thread_t *thread)
2996 {
2997         if (thread) {
2998                 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
2999                 set_bit(THREAD_WAKEUP, &thread->flags);
3000                 wake_up(&thread->wqueue);
3001         }
3002 }
3003
3004 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
3005                                  const char *name)
3006 {
3007         mdk_thread_t *thread;
3008         int ret;
3009         struct completion event;
3010
3011         thread = (mdk_thread_t *) kmalloc
3012                                 (sizeof(mdk_thread_t), GFP_KERNEL);
3013         if (!thread)
3014                 return NULL;
3015
3016         memset(thread, 0, sizeof(mdk_thread_t));
3017         init_waitqueue_head(&thread->wqueue);
3018
3019         init_completion(&event);
3020         thread->event = &event;
3021         thread->run = run;
3022         thread->mddev = mddev;
3023         thread->name = name;
3024         thread->timeout = MAX_SCHEDULE_TIMEOUT;
3025         ret = kernel_thread(md_thread, thread, 0);
3026         if (ret < 0) {
3027                 kfree(thread);
3028                 return NULL;
3029         }
3030         wait_for_completion(&event);
3031         return thread;
3032 }
3033
3034 void md_unregister_thread(mdk_thread_t *thread)
3035 {
3036         struct completion event;
3037
3038         init_completion(&event);
3039
3040         thread->event = &event;
3041
3042         /* As soon as ->run is set to NULL, the task could disappear,
3043          * so we need to hold tasklist_lock until we have sent the signal
3044          */
3045         dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
3046         read_lock(&tasklist_lock);
3047         thread->run = NULL;
3048         send_sig(SIGKILL, thread->tsk, 1);
3049         read_unlock(&tasklist_lock);
3050         wait_for_completion(&event);
3051         kfree(thread);
3052 }
3053
3054 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
3055 {
3056         if (!mddev) {
3057                 MD_BUG();
3058                 return;
3059         }
3060
3061         if (!rdev || rdev->faulty)
3062                 return;
3063 /*
3064         dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
3065                 mdname(mddev),
3066                 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
3067                 __builtin_return_address(0),__builtin_return_address(1),
3068                 __builtin_return_address(2),__builtin_return_address(3));
3069 */
3070         if (!mddev->pers->error_handler)
3071                 return;
3072         mddev->pers->error_handler(mddev,rdev);
3073         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3074         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3075         md_wakeup_thread(mddev->thread);
3076 }
3077
3078 /* seq_file implementation /proc/mdstat */
3079
3080 static void status_unused(struct seq_file *seq)
3081 {
3082         int i = 0;
3083         mdk_rdev_t *rdev;
3084         struct list_head *tmp;
3085
3086         seq_printf(seq, "unused devices: ");
3087
3088         ITERATE_RDEV_PENDING(rdev,tmp) {
3089                 char b[BDEVNAME_SIZE];
3090                 i++;
3091                 seq_printf(seq, "%s ",
3092                               bdevname(rdev->bdev,b));
3093         }
3094         if (!i)
3095                 seq_printf(seq, "<none>");
3096
3097         seq_printf(seq, "\n");
3098 }
3099
3100
3101 static void status_resync(struct seq_file *seq, mddev_t * mddev)
3102 {
3103         unsigned long max_blocks, resync, res, dt, db, rt;
3104
3105         resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
3106
3107         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3108                 max_blocks = mddev->resync_max_sectors >> 1;
3109         else
3110                 max_blocks = mddev->size;
3111
3112         /*
3113          * Should not happen.
3114          */
3115         if (!max_blocks) {
3116                 MD_BUG();
3117                 return;
3118         }
3119         res = (resync/1024)*1000/(max_blocks/1024 + 1);
3120         {
3121                 int i, x = res/50, y = 20-x;
3122                 seq_printf(seq, "[");
3123                 for (i = 0; i < x; i++)
3124                         seq_printf(seq, "=");
3125                 seq_printf(seq, ">");
3126                 for (i = 0; i < y; i++)
3127                         seq_printf(seq, ".");
3128                 seq_printf(seq, "] ");
3129         }
3130         seq_printf(seq, " %s =%3lu.%lu%% (%lu/%lu)",
3131                       (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
3132                        "resync" : "recovery"),
3133                       res/10, res % 10, resync, max_blocks);
3134
3135         /*
3136          * We do not want to overflow, so the order of operands and
3137          * the * 100 / 100 trick are important. We do a +1 to be
3138          * safe against division by zero. We only estimate anyway.
3139          *
3140          * dt: time from mark until now
3141          * db: blocks written from mark until now
3142          * rt: remaining time
3143          */
3144         dt = ((jiffies - mddev->resync_mark) / HZ);
3145         if (!dt) dt++;
3146         db = resync - (mddev->resync_mark_cnt/2);
3147         rt = (dt * ((max_blocks-resync) / (db/100+1)))/100;
3148
3149         seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
3150
3151         seq_printf(seq, " speed=%ldK/sec", db/dt);
3152 }
3153
3154 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
3155 {
3156         struct list_head *tmp;
3157         loff_t l = *pos;
3158         mddev_t *mddev;
3159
3160         if (l >= 0x10000)
3161                 return NULL;
3162         if (!l--)
3163                 /* header */
3164                 return (void*)1;
3165
3166         spin_lock(&all_mddevs_lock);
3167         list_for_each(tmp,&all_mddevs)
3168                 if (!l--) {
3169                         mddev = list_entry(tmp, mddev_t, all_mddevs);
3170                         mddev_get(mddev);
3171                         spin_unlock(&all_mddevs_lock);
3172                         return mddev;
3173                 }
3174         spin_unlock(&all_mddevs_lock);
3175         if (!l--)
3176                 return (void*)2;/* tail */
3177         return NULL;
3178 }
3179
3180 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3181 {
3182         struct list_head *tmp;
3183         mddev_t *next_mddev, *mddev = v;
3184         
3185         ++*pos;
3186         if (v == (void*)2)
3187                 return NULL;
3188
3189         spin_lock(&all_mddevs_lock);
3190         if (v == (void*)1)
3191                 tmp = all_mddevs.next;
3192         else
3193                 tmp = mddev->all_mddevs.next;
3194         if (tmp != &all_mddevs)
3195                 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
3196         else {
3197                 next_mddev = (void*)2;
3198                 *pos = 0x10000;
3199         }               
3200         spin_unlock(&all_mddevs_lock);
3201
3202         if (v != (void*)1)
3203                 mddev_put(mddev);
3204         return next_mddev;
3205
3206 }
3207
3208 static void md_seq_stop(struct seq_file *seq, void *v)
3209 {
3210         mddev_t *mddev = v;
3211
3212         if (mddev && v != (void*)1 && v != (void*)2)
3213                 mddev_put(mddev);
3214 }
3215
3216 static int md_seq_show(struct seq_file *seq, void *v)
3217 {
3218         mddev_t *mddev = v;
3219         sector_t size;
3220         struct list_head *tmp2;
3221         mdk_rdev_t *rdev;
3222         int i;
3223         struct bitmap *bitmap;
3224
3225         if (v == (void*)1) {
3226                 seq_printf(seq, "Personalities : ");
3227                 spin_lock(&pers_lock);
3228                 for (i = 0; i < MAX_PERSONALITY; i++)
3229                         if (pers[i])
3230                                 seq_printf(seq, "[%s] ", pers[i]->name);
3231
3232                 spin_unlock(&pers_lock);
3233                 seq_printf(seq, "\n");
3234                 return 0;
3235         }
3236         if (v == (void*)2) {
3237                 status_unused(seq);
3238                 return 0;
3239         }
3240
3241         if (mddev_lock(mddev)!=0) 
3242                 return -EINTR;
3243         if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
3244                 seq_printf(seq, "%s : %sactive", mdname(mddev),
3245                                                 mddev->pers ? "" : "in");
3246                 if (mddev->pers) {
3247                         if (mddev->ro)
3248                                 seq_printf(seq, " (read-only)");
3249                         seq_printf(seq, " %s", mddev->pers->name);
3250                 }
3251
3252                 size = 0;
3253                 ITERATE_RDEV(mddev,rdev,tmp2) {
3254                         char b[BDEVNAME_SIZE];
3255                         seq_printf(seq, " %s[%d]",
3256                                 bdevname(rdev->bdev,b), rdev->desc_nr);
3257                         if (rdev->faulty) {
3258                                 seq_printf(seq, "(F)");
3259                                 continue;
3260                         }
3261                         size += rdev->size;
3262                 }
3263
3264                 if (!list_empty(&mddev->disks)) {
3265                         if (mddev->pers)
3266                                 seq_printf(seq, "\n      %llu blocks",
3267                                         (unsigned long long)mddev->array_size);
3268                         else
3269                                 seq_printf(seq, "\n      %llu blocks",
3270                                         (unsigned long long)size);
3271                 }
3272
3273                 if (mddev->pers) {
3274                         mddev->pers->status (seq, mddev);
3275                         seq_printf(seq, "\n      ");
3276                         if (mddev->curr_resync > 2) {
3277                                 status_resync (seq, mddev);
3278                                 seq_printf(seq, "\n      ");
3279                         } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
3280                                 seq_printf(seq, "       resync=DELAYED\n      ");
3281                 } else
3282                         seq_printf(seq, "\n       ");
3283
3284                 if ((bitmap = mddev->bitmap)) {
3285                         unsigned long chunk_kb;
3286                         unsigned long flags;
3287                         spin_lock_irqsave(&bitmap->lock, flags);
3288                         chunk_kb = bitmap->chunksize >> 10;
3289                         seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
3290                                 "%lu%s chunk",
3291                                 bitmap->pages - bitmap->missing_pages,
3292                                 bitmap->pages,
3293                                 (bitmap->pages - bitmap->missing_pages)
3294                                         << (PAGE_SHIFT - 10),
3295                                 chunk_kb ? chunk_kb : bitmap->chunksize,
3296                                 chunk_kb ? "KB" : "B");
3297                         if (bitmap->file) {
3298                                 seq_printf(seq, ", file: ");
3299                                 seq_path(seq, bitmap->file->f_vfsmnt,
3300                                          bitmap->file->f_dentry," \t\n");
3301                         }
3302
3303                         seq_printf(seq, "\n");
3304                         spin_unlock_irqrestore(&bitmap->lock, flags);
3305                 }
3306
3307                 seq_printf(seq, "\n");
3308         }
3309         mddev_unlock(mddev);
3310         
3311         return 0;
3312 }
3313
3314 static struct seq_operations md_seq_ops = {
3315         .start  = md_seq_start,
3316         .next   = md_seq_next,
3317         .stop   = md_seq_stop,
3318         .show   = md_seq_show,
3319 };
3320
3321 static int md_seq_open(struct inode *inode, struct file *file)
3322 {
3323         int error;
3324
3325         error = seq_open(file, &md_seq_ops);
3326         return error;
3327 }
3328
3329 static struct file_operations md_seq_fops = {
3330         .open           = md_seq_open,
3331         .read           = seq_read,
3332         .llseek         = seq_lseek,
3333         .release        = seq_release,
3334 };
3335
3336 int register_md_personality(int pnum, mdk_personality_t *p)
3337 {
3338         if (pnum >= MAX_PERSONALITY) {
3339                 printk(KERN_ERR
3340                        "md: tried to install personality %s as nr %d, but max is %lu\n",
3341                        p->name, pnum, MAX_PERSONALITY-1);
3342                 return -EINVAL;
3343         }
3344
3345         spin_lock(&pers_lock);
3346         if (pers[pnum]) {
3347                 spin_unlock(&pers_lock);
3348                 return -EBUSY;
3349         }
3350
3351         pers[pnum] = p;
3352         printk(KERN_INFO "md: %s personality registered as nr %d\n", p->name, pnum);
3353         spin_unlock(&pers_lock);
3354         return 0;