a753598a5e35004c3759160a244fd75fc1e49ecf
[linux-2.6.git] / drivers / gpu / drm / ttm / ttm_bo.c
1 /**************************************************************************
2  *
3  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 /*
28  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29  */
30
31 #include "ttm/ttm_module.h"
32 #include "ttm/ttm_bo_driver.h"
33 #include "ttm/ttm_placement.h"
34 #include <linux/jiffies.h>
35 #include <linux/slab.h>
36 #include <linux/sched.h>
37 #include <linux/mm.h>
38 #include <linux/file.h>
39 #include <linux/module.h>
40
41 #define TTM_ASSERT_LOCKED(param)
42 #define TTM_DEBUG(fmt, arg...)
43 #define TTM_BO_HASH_ORDER 13
44
45 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo);
46 static void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo);
47 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
48
49 static inline uint32_t ttm_bo_type_flags(unsigned type)
50 {
51         return 1 << (type);
52 }
53
54 static void ttm_bo_release_list(struct kref *list_kref)
55 {
56         struct ttm_buffer_object *bo =
57             container_of(list_kref, struct ttm_buffer_object, list_kref);
58         struct ttm_bo_device *bdev = bo->bdev;
59
60         BUG_ON(atomic_read(&bo->list_kref.refcount));
61         BUG_ON(atomic_read(&bo->kref.refcount));
62         BUG_ON(atomic_read(&bo->cpu_writers));
63         BUG_ON(bo->sync_obj != NULL);
64         BUG_ON(bo->mem.mm_node != NULL);
65         BUG_ON(!list_empty(&bo->lru));
66         BUG_ON(!list_empty(&bo->ddestroy));
67
68         if (bo->ttm)
69                 ttm_tt_destroy(bo->ttm);
70         if (bo->destroy)
71                 bo->destroy(bo);
72         else {
73                 ttm_mem_global_free(bdev->mem_glob, bo->acc_size, false);
74                 kfree(bo);
75         }
76 }
77
78 int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo, bool interruptible)
79 {
80
81         if (interruptible) {
82                 int ret = 0;
83
84                 ret = wait_event_interruptible(bo->event_queue,
85                                                atomic_read(&bo->reserved) == 0);
86                 if (unlikely(ret != 0))
87                         return -ERESTART;
88         } else {
89                 wait_event(bo->event_queue, atomic_read(&bo->reserved) == 0);
90         }
91         return 0;
92 }
93
94 static void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
95 {
96         struct ttm_bo_device *bdev = bo->bdev;
97         struct ttm_mem_type_manager *man;
98
99         BUG_ON(!atomic_read(&bo->reserved));
100
101         if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
102
103                 BUG_ON(!list_empty(&bo->lru));
104
105                 man = &bdev->man[bo->mem.mem_type];
106                 list_add_tail(&bo->lru, &man->lru);
107                 kref_get(&bo->list_kref);
108
109                 if (bo->ttm != NULL) {
110                         list_add_tail(&bo->swap, &bdev->swap_lru);
111                         kref_get(&bo->list_kref);
112                 }
113         }
114 }
115
116 /**
117  * Call with the lru_lock held.
118  */
119
120 static int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
121 {
122         int put_count = 0;
123
124         if (!list_empty(&bo->swap)) {
125                 list_del_init(&bo->swap);
126                 ++put_count;
127         }
128         if (!list_empty(&bo->lru)) {
129                 list_del_init(&bo->lru);
130                 ++put_count;
131         }
132
133         /*
134          * TODO: Add a driver hook to delete from
135          * driver-specific LRU's here.
136          */
137
138         return put_count;
139 }
140
141 int ttm_bo_reserve_locked(struct ttm_buffer_object *bo,
142                           bool interruptible,
143                           bool no_wait, bool use_sequence, uint32_t sequence)
144 {
145         struct ttm_bo_device *bdev = bo->bdev;
146         int ret;
147
148         while (unlikely(atomic_cmpxchg(&bo->reserved, 0, 1) != 0)) {
149                 if (use_sequence && bo->seq_valid &&
150                         (sequence - bo->val_seq < (1 << 31))) {
151                         return -EAGAIN;
152                 }
153
154                 if (no_wait)
155                         return -EBUSY;
156
157                 spin_unlock(&bdev->lru_lock);
158                 ret = ttm_bo_wait_unreserved(bo, interruptible);
159                 spin_lock(&bdev->lru_lock);
160
161                 if (unlikely(ret))
162                         return ret;
163         }
164
165         if (use_sequence) {
166                 bo->val_seq = sequence;
167                 bo->seq_valid = true;
168         } else {
169                 bo->seq_valid = false;
170         }
171
172         return 0;
173 }
174 EXPORT_SYMBOL(ttm_bo_reserve);
175
176 static void ttm_bo_ref_bug(struct kref *list_kref)
177 {
178         BUG();
179 }
180
181 int ttm_bo_reserve(struct ttm_buffer_object *bo,
182                    bool interruptible,
183                    bool no_wait, bool use_sequence, uint32_t sequence)
184 {
185         struct ttm_bo_device *bdev = bo->bdev;
186         int put_count = 0;
187         int ret;
188
189         spin_lock(&bdev->lru_lock);
190         ret = ttm_bo_reserve_locked(bo, interruptible, no_wait, use_sequence,
191                                     sequence);
192         if (likely(ret == 0))
193                 put_count = ttm_bo_del_from_lru(bo);
194         spin_unlock(&bdev->lru_lock);
195
196         while (put_count--)
197                 kref_put(&bo->list_kref, ttm_bo_ref_bug);
198
199         return ret;
200 }
201
202 void ttm_bo_unreserve(struct ttm_buffer_object *bo)
203 {
204         struct ttm_bo_device *bdev = bo->bdev;
205
206         spin_lock(&bdev->lru_lock);
207         ttm_bo_add_to_lru(bo);
208         atomic_set(&bo->reserved, 0);
209         wake_up_all(&bo->event_queue);
210         spin_unlock(&bdev->lru_lock);
211 }
212 EXPORT_SYMBOL(ttm_bo_unreserve);
213
214 /*
215  * Call bo->mutex locked.
216  */
217
218 static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
219 {
220         struct ttm_bo_device *bdev = bo->bdev;
221         int ret = 0;
222         uint32_t page_flags = 0;
223
224         TTM_ASSERT_LOCKED(&bo->mutex);
225         bo->ttm = NULL;
226
227         switch (bo->type) {
228         case ttm_bo_type_device:
229                 if (zero_alloc)
230                         page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
231         case ttm_bo_type_kernel:
232                 bo->ttm = ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
233                                         page_flags, bdev->dummy_read_page);
234                 if (unlikely(bo->ttm == NULL))
235                         ret = -ENOMEM;
236                 break;
237         case ttm_bo_type_user:
238                 bo->ttm = ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
239                                         page_flags | TTM_PAGE_FLAG_USER,
240                                         bdev->dummy_read_page);
241                 if (unlikely(bo->ttm == NULL))
242                         ret = -ENOMEM;
243                 break;
244
245                 ret = ttm_tt_set_user(bo->ttm, current,
246                                       bo->buffer_start, bo->num_pages);
247                 if (unlikely(ret != 0))
248                         ttm_tt_destroy(bo->ttm);
249                 break;
250         default:
251                 printk(KERN_ERR TTM_PFX "Illegal buffer object type\n");
252                 ret = -EINVAL;
253                 break;
254         }
255
256         return ret;
257 }
258
259 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
260                                   struct ttm_mem_reg *mem,
261                                   bool evict, bool interruptible, bool no_wait)
262 {
263         struct ttm_bo_device *bdev = bo->bdev;
264         bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
265         bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
266         struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
267         struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
268         int ret = 0;
269
270         if (old_is_pci || new_is_pci ||
271             ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0))
272                 ttm_bo_unmap_virtual(bo);
273
274         /*
275          * Create and bind a ttm if required.
276          */
277
278         if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && (bo->ttm == NULL)) {
279                 ret = ttm_bo_add_ttm(bo, false);
280                 if (ret)
281                         goto out_err;
282
283                 ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
284                 if (ret)
285                         goto out_err;
286
287                 if (mem->mem_type != TTM_PL_SYSTEM) {
288                         ret = ttm_tt_bind(bo->ttm, mem);
289                         if (ret)
290                                 goto out_err;
291                 }
292
293                 if (bo->mem.mem_type == TTM_PL_SYSTEM) {
294
295                         struct ttm_mem_reg *old_mem = &bo->mem;
296                         uint32_t save_flags = old_mem->placement;
297
298                         *old_mem = *mem;
299                         mem->mm_node = NULL;
300                         ttm_flag_masked(&save_flags, mem->placement,
301                                         TTM_PL_MASK_MEMTYPE);
302                         goto moved;
303                 }
304
305         }
306
307         if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
308             !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
309                 ret = ttm_bo_move_ttm(bo, evict, no_wait, mem);
310         else if (bdev->driver->move)
311                 ret = bdev->driver->move(bo, evict, interruptible,
312                                          no_wait, mem);
313         else
314                 ret = ttm_bo_move_memcpy(bo, evict, no_wait, mem);
315
316         if (ret)
317                 goto out_err;
318
319 moved:
320         if (bo->evicted) {
321                 ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
322                 if (ret)
323                         printk(KERN_ERR TTM_PFX "Can not flush read caches\n");
324                 bo->evicted = false;
325         }
326
327         if (bo->mem.mm_node) {
328                 spin_lock(&bo->lock);
329                 bo->offset = (bo->mem.mm_node->start << PAGE_SHIFT) +
330                     bdev->man[bo->mem.mem_type].gpu_offset;
331                 bo->cur_placement = bo->mem.placement;
332                 spin_unlock(&bo->lock);
333         }
334
335         return 0;
336
337 out_err:
338         new_man = &bdev->man[bo->mem.mem_type];
339         if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) {
340                 ttm_tt_unbind(bo->ttm);
341                 ttm_tt_destroy(bo->ttm);
342                 bo->ttm = NULL;
343         }
344
345         return ret;
346 }
347
348 /**
349  * If bo idle, remove from delayed- and lru lists, and unref.
350  * If not idle, and already on delayed list, do nothing.
351  * If not idle, and not on delayed list, put on delayed list,
352  *   up the list_kref and schedule a delayed list check.
353  */
354
355 static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo, bool remove_all)
356 {
357         struct ttm_bo_device *bdev = bo->bdev;
358         struct ttm_bo_driver *driver = bdev->driver;
359         int ret;
360
361         spin_lock(&bo->lock);
362         (void) ttm_bo_wait(bo, false, false, !remove_all);
363
364         if (!bo->sync_obj) {
365                 int put_count;
366
367                 spin_unlock(&bo->lock);
368
369                 spin_lock(&bdev->lru_lock);
370                 ret = ttm_bo_reserve_locked(bo, false, false, false, 0);
371                 BUG_ON(ret);
372                 if (bo->ttm)
373                         ttm_tt_unbind(bo->ttm);
374
375                 if (!list_empty(&bo->ddestroy)) {
376                         list_del_init(&bo->ddestroy);
377                         kref_put(&bo->list_kref, ttm_bo_ref_bug);
378                 }
379                 if (bo->mem.mm_node) {
380                         drm_mm_put_block(bo->mem.mm_node);
381                         bo->mem.mm_node = NULL;
382                 }
383                 put_count = ttm_bo_del_from_lru(bo);
384                 spin_unlock(&bdev->lru_lock);
385
386                 atomic_set(&bo->reserved, 0);
387
388                 while (put_count--)
389                         kref_put(&bo->list_kref, ttm_bo_release_list);
390
391                 return 0;
392         }
393
394         spin_lock(&bdev->lru_lock);
395         if (list_empty(&bo->ddestroy)) {
396                 void *sync_obj = bo->sync_obj;
397                 void *sync_obj_arg = bo->sync_obj_arg;
398
399                 kref_get(&bo->list_kref);
400                 list_add_tail(&bo->ddestroy, &bdev->ddestroy);
401                 spin_unlock(&bdev->lru_lock);
402                 spin_unlock(&bo->lock);
403
404                 if (sync_obj)
405                         driver->sync_obj_flush(sync_obj, sync_obj_arg);
406                 schedule_delayed_work(&bdev->wq,
407                                       ((HZ / 100) < 1) ? 1 : HZ / 100);
408                 ret = 0;
409
410         } else {
411                 spin_unlock(&bdev->lru_lock);
412                 spin_unlock(&bo->lock);
413                 ret = -EBUSY;
414         }
415
416         return ret;
417 }
418
419 /**
420  * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
421  * encountered buffers.
422  */
423
424 static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
425 {
426         struct ttm_buffer_object *entry, *nentry;
427         struct list_head *list, *next;
428         int ret;
429
430         spin_lock(&bdev->lru_lock);
431         list_for_each_safe(list, next, &bdev->ddestroy) {
432                 entry = list_entry(list, struct ttm_buffer_object, ddestroy);
433                 nentry = NULL;
434
435                 /*
436                  * Protect the next list entry from destruction while we
437                  * unlock the lru_lock.
438                  */
439
440                 if (next != &bdev->ddestroy) {
441                         nentry = list_entry(next, struct ttm_buffer_object,
442                                             ddestroy);
443                         kref_get(&nentry->list_kref);
444                 }
445                 kref_get(&entry->list_kref);
446
447                 spin_unlock(&bdev->lru_lock);
448                 ret = ttm_bo_cleanup_refs(entry, remove_all);
449                 kref_put(&entry->list_kref, ttm_bo_release_list);
450
451                 spin_lock(&bdev->lru_lock);
452                 if (nentry) {
453                         bool next_onlist = !list_empty(next);
454                         spin_unlock(&bdev->lru_lock);
455                         kref_put(&nentry->list_kref, ttm_bo_release_list);
456                         spin_lock(&bdev->lru_lock);
457                         /*
458                          * Someone might have raced us and removed the
459                          * next entry from the list. We don't bother restarting
460                          * list traversal.
461                          */
462
463                         if (!next_onlist)
464                                 break;
465                 }
466                 if (ret)
467                         break;
468         }
469         ret = !list_empty(&bdev->ddestroy);
470         spin_unlock(&bdev->lru_lock);
471
472         return ret;
473 }
474
475 static void ttm_bo_delayed_workqueue(struct work_struct *work)
476 {
477         struct ttm_bo_device *bdev =
478             container_of(work, struct ttm_bo_device, wq.work);
479
480         if (ttm_bo_delayed_delete(bdev, false)) {
481                 schedule_delayed_work(&bdev->wq,
482                                       ((HZ / 100) < 1) ? 1 : HZ / 100);
483         }
484 }
485
486 static void ttm_bo_release(struct kref *kref)
487 {
488         struct ttm_buffer_object *bo =
489             container_of(kref, struct ttm_buffer_object, kref);
490         struct ttm_bo_device *bdev = bo->bdev;
491
492         if (likely(bo->vm_node != NULL)) {
493                 rb_erase(&bo->vm_rb, &bdev->addr_space_rb);
494                 drm_mm_put_block(bo->vm_node);
495                 bo->vm_node = NULL;
496         }
497         write_unlock(&bdev->vm_lock);
498         ttm_bo_cleanup_refs(bo, false);
499         kref_put(&bo->list_kref, ttm_bo_release_list);
500         write_lock(&bdev->vm_lock);
501 }
502
503 void ttm_bo_unref(struct ttm_buffer_object **p_bo)
504 {
505         struct ttm_buffer_object *bo = *p_bo;
506         struct ttm_bo_device *bdev = bo->bdev;
507
508         *p_bo = NULL;
509         write_lock(&bdev->vm_lock);
510         kref_put(&bo->kref, ttm_bo_release);
511         write_unlock(&bdev->vm_lock);
512 }
513 EXPORT_SYMBOL(ttm_bo_unref);
514
515 static int ttm_bo_evict(struct ttm_buffer_object *bo, unsigned mem_type,
516                         bool interruptible, bool no_wait)
517 {
518         int ret = 0;
519         struct ttm_bo_device *bdev = bo->bdev;
520         struct ttm_mem_reg evict_mem;
521         uint32_t proposed_placement;
522
523         if (bo->mem.mem_type != mem_type)
524                 goto out;
525
526         spin_lock(&bo->lock);
527         ret = ttm_bo_wait(bo, false, interruptible, no_wait);
528         spin_unlock(&bo->lock);
529
530         if (unlikely(ret != 0)) {
531                 if (ret != -ERESTART) {
532                         printk(KERN_ERR TTM_PFX
533                                "Failed to expire sync object before "
534                                "buffer eviction.\n");
535                 }
536                 goto out;
537         }
538
539         BUG_ON(!atomic_read(&bo->reserved));
540
541         evict_mem = bo->mem;
542         evict_mem.mm_node = NULL;
543
544         proposed_placement = bdev->driver->evict_flags(bo);
545
546         ret = ttm_bo_mem_space(bo, proposed_placement,
547                                &evict_mem, interruptible, no_wait);
548         if (unlikely(ret != 0 && ret != -ERESTART))
549                 ret = ttm_bo_mem_space(bo, TTM_PL_FLAG_SYSTEM,
550                                        &evict_mem, interruptible, no_wait);
551
552         if (ret) {
553                 if (ret != -ERESTART)
554                         printk(KERN_ERR TTM_PFX
555                                "Failed to find memory space for "
556                                "buffer 0x%p eviction.\n", bo);
557                 goto out;
558         }
559
560         ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
561                                      no_wait);
562         if (ret) {
563                 if (ret != -ERESTART)
564                         printk(KERN_ERR TTM_PFX "Buffer eviction failed\n");
565                 goto out;
566         }
567
568         spin_lock(&bdev->lru_lock);
569         if (evict_mem.mm_node) {
570                 drm_mm_put_block(evict_mem.mm_node);
571                 evict_mem.mm_node = NULL;
572         }
573         spin_unlock(&bdev->lru_lock);
574         bo->evicted = true;
575 out:
576         return ret;
577 }
578
579 /**
580  * Repeatedly evict memory from the LRU for @mem_type until we create enough
581  * space, or we've evicted everything and there isn't enough space.
582  */
583 static int ttm_bo_mem_force_space(struct ttm_bo_device *bdev,
584                                   struct ttm_mem_reg *mem,
585                                   uint32_t mem_type,
586                                   bool interruptible, bool no_wait)
587 {
588         struct drm_mm_node *node;
589         struct ttm_buffer_object *entry;
590         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
591         struct list_head *lru;
592         unsigned long num_pages = mem->num_pages;
593         int put_count = 0;
594         int ret;
595
596 retry_pre_get:
597         ret = drm_mm_pre_get(&man->manager);
598         if (unlikely(ret != 0))
599                 return ret;
600
601         spin_lock(&bdev->lru_lock);
602         do {
603                 node = drm_mm_search_free(&man->manager, num_pages,
604                                           mem->page_alignment, 1);
605                 if (node)
606                         break;
607
608                 lru = &man->lru;
609                 if (list_empty(lru))
610                         break;
611
612                 entry = list_first_entry(lru, struct ttm_buffer_object, lru);
613                 kref_get(&entry->list_kref);
614
615                 ret =
616                     ttm_bo_reserve_locked(entry, interruptible, no_wait,
617                                           false, 0);
618
619                 if (likely(ret == 0))
620                         put_count = ttm_bo_del_from_lru(entry);
621
622                 spin_unlock(&bdev->lru_lock);
623
624                 if (unlikely(ret != 0))
625                         return ret;
626
627                 while (put_count--)
628                         kref_put(&entry->list_kref, ttm_bo_ref_bug);
629
630                 ret = ttm_bo_evict(entry, mem_type, interruptible, no_wait);
631
632                 ttm_bo_unreserve(entry);
633
634                 kref_put(&entry->list_kref, ttm_bo_release_list);
635                 if (ret)
636                         return ret;
637
638                 spin_lock(&bdev->lru_lock);
639         } while (1);
640
641         if (!node) {
642                 spin_unlock(&bdev->lru_lock);
643                 return -ENOMEM;
644         }
645
646         node = drm_mm_get_block_atomic(node, num_pages, mem->page_alignment);
647         if (unlikely(!node)) {
648                 spin_unlock(&bdev->lru_lock);
649                 goto retry_pre_get;
650         }
651
652         spin_unlock(&bdev->lru_lock);
653         mem->mm_node = node;
654         mem->mem_type = mem_type;
655         return 0;
656 }
657
658 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
659                                       uint32_t cur_placement,
660                                       uint32_t proposed_placement)
661 {
662         uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
663         uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
664
665         /**
666          * Keep current caching if possible.
667          */
668
669         if ((cur_placement & caching) != 0)
670                 result |= (cur_placement & caching);
671         else if ((man->default_caching & caching) != 0)
672                 result |= man->default_caching;
673         else if ((TTM_PL_FLAG_CACHED & caching) != 0)
674                 result |= TTM_PL_FLAG_CACHED;
675         else if ((TTM_PL_FLAG_WC & caching) != 0)
676                 result |= TTM_PL_FLAG_WC;
677         else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
678                 result |= TTM_PL_FLAG_UNCACHED;
679
680         return result;
681 }
682
683
684 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
685                                  bool disallow_fixed,
686                                  uint32_t mem_type,
687                                  uint32_t proposed_placement,
688                                  uint32_t *masked_placement)
689 {
690         uint32_t cur_flags = ttm_bo_type_flags(mem_type);
691
692         if ((man->flags & TTM_MEMTYPE_FLAG_FIXED) && disallow_fixed)
693                 return false;
694
695         if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0)
696                 return false;
697
698         if ((proposed_placement & man->available_caching) == 0)
699                 return false;
700
701         cur_flags |= (proposed_placement & man->available_caching);
702
703         *masked_placement = cur_flags;
704         return true;
705 }
706
707 /**
708  * Creates space for memory region @mem according to its type.
709  *
710  * This function first searches for free space in compatible memory types in
711  * the priority order defined by the driver.  If free space isn't found, then
712  * ttm_bo_mem_force_space is attempted in priority order to evict and find
713  * space.
714  */
715 int ttm_bo_mem_space(struct ttm_buffer_object *bo,
716                      uint32_t proposed_placement,
717                      struct ttm_mem_reg *mem,
718                      bool interruptible, bool no_wait)
719 {
720         struct ttm_bo_device *bdev = bo->bdev;
721         struct ttm_mem_type_manager *man;
722
723         uint32_t num_prios = bdev->driver->num_mem_type_prio;
724         const uint32_t *prios = bdev->driver->mem_type_prio;
725         uint32_t i;
726         uint32_t mem_type = TTM_PL_SYSTEM;
727         uint32_t cur_flags = 0;
728         bool type_found = false;
729         bool type_ok = false;
730         bool has_eagain = false;
731         struct drm_mm_node *node = NULL;
732         int ret;
733
734         mem->mm_node = NULL;
735         for (i = 0; i < num_prios; ++i) {
736                 mem_type = prios[i];
737                 man = &bdev->man[mem_type];
738
739                 type_ok = ttm_bo_mt_compatible(man,
740                                                bo->type == ttm_bo_type_user,
741                                                mem_type, proposed_placement,
742                                                &cur_flags);
743
744                 if (!type_ok)
745                         continue;
746
747                 cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
748                                                   cur_flags);
749
750                 if (mem_type == TTM_PL_SYSTEM)
751                         break;
752
753                 if (man->has_type && man->use_type) {
754                         type_found = true;
755                         do {
756                                 ret = drm_mm_pre_get(&man->manager);
757                                 if (unlikely(ret))
758                                         return ret;
759
760                                 spin_lock(&bdev->lru_lock);
761                                 node = drm_mm_search_free(&man->manager,
762                                                           mem->num_pages,
763                                                           mem->page_alignment,
764                                                           1);
765                                 if (unlikely(!node)) {
766                                         spin_unlock(&bdev->lru_lock);
767                                         break;
768                                 }
769                                 node = drm_mm_get_block_atomic(node,
770                                                                mem->num_pages,
771                                                                mem->
772                                                                page_alignment);
773                                 spin_unlock(&bdev->lru_lock);
774                         } while (!node);
775                 }
776                 if (node)
777                         break;
778         }
779
780         if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || node) {
781                 mem->mm_node = node;
782                 mem->mem_type = mem_type;
783                 mem->placement = cur_flags;
784                 return 0;
785         }
786
787         if (!type_found)
788                 return -EINVAL;
789
790         num_prios = bdev->driver->num_mem_busy_prio;
791         prios = bdev->driver->mem_busy_prio;
792
793         for (i = 0; i < num_prios; ++i) {
794                 mem_type = prios[i];
795                 man = &bdev->man[mem_type];
796
797                 if (!man->has_type)
798                         continue;
799
800                 if (!ttm_bo_mt_compatible(man,
801                                           bo->type == ttm_bo_type_user,
802                                           mem_type,
803                                           proposed_placement, &cur_flags))
804                         continue;
805
806                 cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
807                                                   cur_flags);
808
809                 ret = ttm_bo_mem_force_space(bdev, mem, mem_type,
810                                              interruptible, no_wait);
811
812                 if (ret == 0 && mem->mm_node) {
813                         mem->placement = cur_flags;
814                         return 0;
815                 }
816
817                 if (ret == -ERESTART)
818                         has_eagain = true;
819         }
820
821         ret = (has_eagain) ? -ERESTART : -ENOMEM;
822         return ret;
823 }
824 EXPORT_SYMBOL(ttm_bo_mem_space);
825
826 int ttm_bo_wait_cpu(struct ttm_buffer_object *bo, bool no_wait)
827 {
828         int ret = 0;
829
830         if ((atomic_read(&bo->cpu_writers) > 0) && no_wait)
831                 return -EBUSY;
832
833         ret = wait_event_interruptible(bo->event_queue,
834                                        atomic_read(&bo->cpu_writers) == 0);
835
836         if (ret == -ERESTARTSYS)
837                 ret = -ERESTART;
838
839         return ret;
840 }
841
842 int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
843                        uint32_t proposed_placement,
844                        bool interruptible, bool no_wait)
845 {
846         struct ttm_bo_device *bdev = bo->bdev;
847         int ret = 0;
848         struct ttm_mem_reg mem;
849
850         BUG_ON(!atomic_read(&bo->reserved));
851
852         /*
853          * FIXME: It's possible to pipeline buffer moves.
854          * Have the driver move function wait for idle when necessary,
855          * instead of doing it here.
856          */
857
858         spin_lock(&bo->lock);
859         ret = ttm_bo_wait(bo, false, interruptible, no_wait);
860         spin_unlock(&bo->lock);
861
862         if (ret)
863                 return ret;
864
865         mem.num_pages = bo->num_pages;
866         mem.size = mem.num_pages << PAGE_SHIFT;
867         mem.page_alignment = bo->mem.page_alignment;
868
869         /*
870          * Determine where to move the buffer.
871          */
872
873         ret = ttm_bo_mem_space(bo, proposed_placement, &mem,
874                                interruptible, no_wait);
875         if (ret)
876                 goto out_unlock;
877
878         ret = ttm_bo_handle_move_mem(bo, &mem, false, interruptible, no_wait);
879
880 out_unlock:
881         if (ret && mem.mm_node) {
882                 spin_lock(&bdev->lru_lock);
883                 drm_mm_put_block(mem.mm_node);
884                 spin_unlock(&bdev->lru_lock);
885         }
886         return ret;
887 }
888
889 static int ttm_bo_mem_compat(uint32_t proposed_placement,
890                              struct ttm_mem_reg *mem)
891 {
892         if ((proposed_placement & mem->placement & TTM_PL_MASK_MEM) == 0)
893                 return 0;
894         if ((proposed_placement & mem->placement & TTM_PL_MASK_CACHING) == 0)
895                 return 0;
896
897         return 1;
898 }
899
900 int ttm_buffer_object_validate(struct ttm_buffer_object *bo,
901                                uint32_t proposed_placement,
902                                bool interruptible, bool no_wait)
903 {
904         int ret;
905
906         BUG_ON(!atomic_read(&bo->reserved));
907         bo->proposed_placement = proposed_placement;
908
909         TTM_DEBUG("Proposed placement 0x%08lx, Old flags 0x%08lx\n",
910                   (unsigned long)proposed_placement,
911                   (unsigned long)bo->mem.placement);
912
913         /*
914          * Check whether we need to move buffer.
915          */
916
917         if (!ttm_bo_mem_compat(bo->proposed_placement, &bo->mem)) {
918                 ret = ttm_bo_move_buffer(bo, bo->proposed_placement,
919                                          interruptible, no_wait);
920                 if (ret) {
921                         if (ret != -ERESTART)
922                                 printk(KERN_ERR TTM_PFX
923                                        "Failed moving buffer. "
924                                        "Proposed placement 0x%08x\n",
925                                        bo->proposed_placement);
926                         if (ret == -ENOMEM)
927                                 printk(KERN_ERR TTM_PFX
928                                        "Out of aperture space or "
929                                        "DRM memory quota.\n");
930                         return ret;
931                 }
932         }
933
934         /*
935          * We might need to add a TTM.
936          */
937
938         if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
939                 ret = ttm_bo_add_ttm(bo, true);
940                 if (ret)
941                         return ret;
942         }
943         /*
944          * Validation has succeeded, move the access and other
945          * non-mapping-related flag bits from the proposed flags to
946          * the active flags
947          */
948
949         ttm_flag_masked(&bo->mem.placement, bo->proposed_placement,
950                         ~TTM_PL_MASK_MEMTYPE);
951
952         return 0;
953 }
954 EXPORT_SYMBOL(ttm_buffer_object_validate);
955
956 int
957 ttm_bo_check_placement(struct ttm_buffer_object *bo,
958                        uint32_t set_flags, uint32_t clr_flags)
959 {
960         uint32_t new_mask = set_flags | clr_flags;
961
962         if ((bo->type == ttm_bo_type_user) &&
963             (clr_flags & TTM_PL_FLAG_CACHED)) {
964                 printk(KERN_ERR TTM_PFX
965                        "User buffers require cache-coherent memory.\n");
966                 return -EINVAL;
967         }
968
969         if (!capable(CAP_SYS_ADMIN)) {
970                 if (new_mask & TTM_PL_FLAG_NO_EVICT) {
971                         printk(KERN_ERR TTM_PFX "Need to be root to modify"
972                                " NO_EVICT status.\n");
973                         return -EINVAL;
974                 }
975
976                 if ((clr_flags & bo->mem.placement & TTM_PL_MASK_MEMTYPE) &&
977                     (bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
978                         printk(KERN_ERR TTM_PFX
979                                "Incompatible memory specification"
980                                " for NO_EVICT buffer.\n");
981                         return -EINVAL;
982                 }
983         }
984         return 0;
985 }
986
987 int ttm_buffer_object_init(struct ttm_bo_device *bdev,
988                            struct ttm_buffer_object *bo,
989                            unsigned long size,
990                            enum ttm_bo_type type,
991                            uint32_t flags,
992                            uint32_t page_alignment,
993                            unsigned long buffer_start,
994                            bool interruptible,
995                            struct file *persistant_swap_storage,
996                            size_t acc_size,
997                            void (*destroy) (struct ttm_buffer_object *))
998 {
999         int ret = 0;
1000         unsigned long num_pages;
1001
1002         size += buffer_start & ~PAGE_MASK;
1003         num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1004         if (num_pages == 0) {
1005                 printk(KERN_ERR TTM_PFX "Illegal buffer object size.\n");
1006                 return -EINVAL;
1007         }
1008         bo->destroy = destroy;
1009
1010         spin_lock_init(&bo->lock);
1011         kref_init(&bo->kref);
1012         kref_init(&bo->list_kref);
1013         atomic_set(&bo->cpu_writers, 0);
1014         atomic_set(&bo->reserved, 1);
1015         init_waitqueue_head(&bo->event_queue);
1016         INIT_LIST_HEAD(&bo->lru);
1017         INIT_LIST_HEAD(&bo->ddestroy);
1018         INIT_LIST_HEAD(&bo->swap);
1019         bo->bdev = bdev;
1020         bo->type = type;
1021         bo->num_pages = num_pages;
1022         bo->mem.mem_type = TTM_PL_SYSTEM;
1023         bo->mem.num_pages = bo->num_pages;
1024         bo->mem.mm_node = NULL;
1025         bo->mem.page_alignment = page_alignment;
1026         bo->buffer_start = buffer_start & PAGE_MASK;
1027         bo->priv_flags = 0;
1028         bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1029         bo->seq_valid = false;
1030         bo->persistant_swap_storage = persistant_swap_storage;
1031         bo->acc_size = acc_size;
1032
1033         ret = ttm_bo_check_placement(bo, flags, 0ULL);
1034         if (unlikely(ret != 0))
1035                 goto out_err;
1036
1037         /*
1038          * If no caching attributes are set, accept any form of caching.
1039          */
1040
1041         if ((flags & TTM_PL_MASK_CACHING) == 0)
1042                 flags |= TTM_PL_MASK_CACHING;
1043
1044         /*
1045          * For ttm_bo_type_device buffers, allocate
1046          * address space from the device.
1047          */
1048
1049         if (bo->type == ttm_bo_type_device) {
1050                 ret = ttm_bo_setup_vm(bo);
1051                 if (ret)
1052                         goto out_err;
1053         }
1054
1055         ret = ttm_buffer_object_validate(bo, flags, interruptible, false);
1056         if (ret)
1057                 goto out_err;
1058
1059         ttm_bo_unreserve(bo);
1060         return 0;
1061
1062 out_err:
1063         ttm_bo_unreserve(bo);
1064         ttm_bo_unref(&bo);
1065
1066         return ret;
1067 }
1068 EXPORT_SYMBOL(ttm_buffer_object_init);
1069
1070 static inline size_t ttm_bo_size(struct ttm_bo_device *bdev,
1071                                  unsigned long num_pages)
1072 {
1073         size_t page_array_size = (num_pages * sizeof(void *) + PAGE_SIZE - 1) &
1074             PAGE_MASK;
1075
1076         return bdev->ttm_bo_size + 2 * page_array_size;
1077 }
1078
1079 int ttm_buffer_object_create(struct ttm_bo_device *bdev,
1080                              unsigned long size,
1081                              enum ttm_bo_type type,
1082                              uint32_t flags,
1083                              uint32_t page_alignment,
1084                              unsigned long buffer_start,
1085                              bool interruptible,
1086                              struct file *persistant_swap_storage,
1087                              struct ttm_buffer_object **p_bo)
1088 {
1089         struct ttm_buffer_object *bo;
1090         int ret;
1091         struct ttm_mem_global *mem_glob = bdev->mem_glob;
1092
1093         size_t acc_size =
1094             ttm_bo_size(bdev, (size + PAGE_SIZE - 1) >> PAGE_SHIFT);
1095         ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false, false);
1096         if (unlikely(ret != 0))
1097                 return ret;
1098
1099         bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1100
1101         if (unlikely(bo == NULL)) {
1102                 ttm_mem_global_free(mem_glob, acc_size, false);
1103                 return -ENOMEM;
1104         }
1105
1106         ret = ttm_buffer_object_init(bdev, bo, size, type, flags,
1107                                      page_alignment, buffer_start,
1108                                      interruptible,
1109                                      persistant_swap_storage, acc_size, NULL);
1110         if (likely(ret == 0))
1111                 *p_bo = bo;
1112
1113         return ret;
1114 }
1115
1116 static int ttm_bo_leave_list(struct ttm_buffer_object *bo,
1117                              uint32_t mem_type, bool allow_errors)
1118 {
1119         int ret;
1120
1121         spin_lock(&bo->lock);
1122         ret = ttm_bo_wait(bo, false, false, false);
1123         spin_unlock(&bo->lock);
1124
1125         if (ret && allow_errors)
1126                 goto out;
1127
1128         if (bo->mem.mem_type == mem_type)
1129                 ret = ttm_bo_evict(bo, mem_type, false, false);
1130
1131         if (ret) {
1132                 if (allow_errors) {
1133                         goto out;
1134                 } else {
1135                         ret = 0;
1136                         printk(KERN_ERR TTM_PFX "Cleanup eviction failed\n");
1137                 }
1138         }
1139
1140 out:
1141         return ret;
1142 }
1143
1144 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1145                                    struct list_head *head,
1146                                    unsigned mem_type, bool allow_errors)
1147 {
1148         struct ttm_buffer_object *entry;
1149         int ret;
1150         int put_count;
1151
1152         /*
1153          * Can't use standard list traversal since we're unlocking.
1154          */
1155
1156         spin_lock(&bdev->lru_lock);
1157
1158         while (!list_empty(head)) {
1159                 entry = list_first_entry(head, struct ttm_buffer_object, lru);
1160                 kref_get(&entry->list_kref);
1161                 ret = ttm_bo_reserve_locked(entry, false, false, false, 0);
1162                 put_count = ttm_bo_del_from_lru(entry);
1163                 spin_unlock(&bdev->lru_lock);
1164                 while (put_count--)
1165                         kref_put(&entry->list_kref, ttm_bo_ref_bug);
1166                 BUG_ON(ret);
1167                 ret = ttm_bo_leave_list(entry, mem_type, allow_errors);
1168                 ttm_bo_unreserve(entry);
1169                 kref_put(&entry->list_kref, ttm_bo_release_list);
1170                 spin_lock(&bdev->lru_lock);
1171         }
1172
1173         spin_unlock(&bdev->lru_lock);
1174
1175         return 0;
1176 }
1177
1178 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1179 {
1180         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1181         int ret = -EINVAL;
1182
1183         if (mem_type >= TTM_NUM_MEM_TYPES) {
1184                 printk(KERN_ERR TTM_PFX "Illegal memory type %d\n", mem_type);
1185                 return ret;
1186         }
1187
1188         if (!man->has_type) {
1189                 printk(KERN_ERR TTM_PFX "Trying to take down uninitialized "
1190                        "memory manager type %u\n", mem_type);
1191                 return ret;
1192         }
1193
1194         man->use_type = false;
1195         man->has_type = false;
1196
1197         ret = 0;
1198         if (mem_type > 0) {
1199                 ttm_bo_force_list_clean(bdev, &man->lru, mem_type, false);
1200
1201                 spin_lock(&bdev->lru_lock);
1202                 if (drm_mm_clean(&man->manager))
1203                         drm_mm_takedown(&man->manager);
1204                 else
1205                         ret = -EBUSY;
1206
1207                 spin_unlock(&bdev->lru_lock);
1208         }
1209
1210         return ret;
1211 }
1212 EXPORT_SYMBOL(ttm_bo_clean_mm);
1213
1214 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1215 {
1216         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1217
1218         if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1219                 printk(KERN_ERR TTM_PFX
1220                        "Illegal memory manager memory type %u.\n",
1221                        mem_type);
1222                 return -EINVAL;
1223         }
1224
1225         if (!man->has_type) {
1226                 printk(KERN_ERR TTM_PFX
1227                        "Memory type %u has not been initialized.\n",
1228                        mem_type);
1229                 return 0;
1230         }
1231
1232         return ttm_bo_force_list_clean(bdev, &man->lru, mem_type, true);
1233 }
1234 EXPORT_SYMBOL(ttm_bo_evict_mm);
1235
1236 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1237                    unsigned long p_offset, unsigned long p_size)
1238 {
1239         int ret = -EINVAL;
1240         struct ttm_mem_type_manager *man;
1241
1242         if (type >= TTM_NUM_MEM_TYPES) {
1243                 printk(KERN_ERR TTM_PFX "Illegal memory type %d\n", type);
1244                 return ret;
1245         }
1246
1247         man = &bdev->man[type];
1248         if (man->has_type) {
1249                 printk(KERN_ERR TTM_PFX
1250                        "Memory manager already initialized for type %d\n",
1251                        type);
1252                 return ret;
1253         }
1254
1255         ret = bdev->driver->init_mem_type(bdev, type, man);
1256         if (ret)
1257                 return ret;
1258
1259         ret = 0;
1260         if (type != TTM_PL_SYSTEM) {
1261                 if (!p_size) {
1262                         printk(KERN_ERR TTM_PFX
1263                                "Zero size memory manager type %d\n",
1264                                type);
1265                         return ret;
1266                 }
1267                 ret = drm_mm_init(&man->manager, p_offset, p_size);
1268                 if (ret)
1269                         return ret;
1270         }
1271         man->has_type = true;
1272         man->use_type = true;
1273         man->size = p_size;
1274
1275         INIT_LIST_HEAD(&man->lru);
1276
1277         return 0;
1278 }
1279 EXPORT_SYMBOL(ttm_bo_init_mm);
1280
1281 int ttm_bo_device_release(struct ttm_bo_device *bdev)
1282 {
1283         int ret = 0;
1284         unsigned i = TTM_NUM_MEM_TYPES;
1285         struct ttm_mem_type_manager *man;
1286
1287         while (i--) {
1288                 man = &bdev->man[i];
1289                 if (man->has_type) {
1290                         man->use_type = false;
1291                         if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1292                                 ret = -EBUSY;
1293                                 printk(KERN_ERR TTM_PFX
1294                                        "DRM memory manager type %d "
1295                                        "is not clean.\n", i);
1296                         }
1297                         man->has_type = false;
1298                 }
1299         }
1300
1301         if (!cancel_delayed_work(&bdev->wq))
1302                 flush_scheduled_work();
1303
1304         while (ttm_bo_delayed_delete(bdev, true))
1305                 ;
1306
1307         spin_lock(&bdev->lru_lock);
1308         if (list_empty(&bdev->ddestroy))
1309                 TTM_DEBUG("Delayed destroy list was clean\n");
1310
1311         if (list_empty(&bdev->man[0].lru))
1312                 TTM_DEBUG("Swap list was clean\n");
1313         spin_unlock(&bdev->lru_lock);
1314
1315         ttm_mem_unregister_shrink(bdev->mem_glob, &bdev->shrink);
1316         BUG_ON(!drm_mm_clean(&bdev->addr_space_mm));
1317         write_lock(&bdev->vm_lock);
1318         drm_mm_takedown(&bdev->addr_space_mm);
1319         write_unlock(&bdev->vm_lock);
1320
1321         __free_page(bdev->dummy_read_page);
1322         return ret;
1323 }
1324 EXPORT_SYMBOL(ttm_bo_device_release);
1325
1326 /*
1327  * This function is intended to be called on drm driver load.
1328  * If you decide to call it from firstopen, you must protect the call
1329  * from a potentially racing ttm_bo_driver_finish in lastclose.
1330  * (This may happen on X server restart).
1331  */
1332
1333 int ttm_bo_device_init(struct ttm_bo_device *bdev,
1334                        struct ttm_mem_global *mem_glob,
1335                        struct ttm_bo_driver *driver, uint64_t file_page_offset)
1336 {
1337         int ret = -EINVAL;
1338
1339         bdev->dummy_read_page = NULL;
1340         rwlock_init(&bdev->vm_lock);
1341         spin_lock_init(&bdev->lru_lock);
1342
1343         bdev->driver = driver;
1344         bdev->mem_glob = mem_glob;
1345
1346         memset(bdev->man, 0, sizeof(bdev->man));
1347
1348         bdev->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1349         if (unlikely(bdev->dummy_read_page == NULL)) {
1350                 ret = -ENOMEM;
1351                 goto out_err0;
1352         }
1353
1354         /*
1355          * Initialize the system memory buffer type.
1356          * Other types need to be driver / IOCTL initialized.
1357          */
1358         ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0, 0);
1359         if (unlikely(ret != 0))
1360                 goto out_err1;
1361
1362         bdev->addr_space_rb = RB_ROOT;
1363         ret = drm_mm_init(&bdev->addr_space_mm, file_page_offset, 0x10000000);
1364         if (unlikely(ret != 0))
1365                 goto out_err2;
1366
1367         INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1368         bdev->nice_mode = true;
1369         INIT_LIST_HEAD(&bdev->ddestroy);
1370         INIT_LIST_HEAD(&bdev->swap_lru);
1371         bdev->dev_mapping = NULL;
1372         ttm_mem_init_shrink(&bdev->shrink, ttm_bo_swapout);
1373         ret = ttm_mem_register_shrink(mem_glob, &bdev->shrink);
1374         if (unlikely(ret != 0)) {
1375                 printk(KERN_ERR TTM_PFX
1376                        "Could not register buffer object swapout.\n");
1377                 goto out_err2;
1378         }
1379
1380         bdev->ttm_bo_extra_size =
1381                 ttm_round_pot(sizeof(struct ttm_tt)) +
1382                 ttm_round_pot(sizeof(struct ttm_backend));
1383
1384         bdev->ttm_bo_size = bdev->ttm_bo_extra_size +
1385                 ttm_round_pot(sizeof(struct ttm_buffer_object));
1386
1387         return 0;
1388 out_err2:
1389         ttm_bo_clean_mm(bdev, 0);
1390 out_err1:
1391         __free_page(bdev->dummy_read_page);
1392 out_err0:
1393         return ret;
1394 }
1395 EXPORT_SYMBOL(ttm_bo_device_init);
1396
1397 /*
1398  * buffer object vm functions.
1399  */
1400
1401 bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1402 {
1403         struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1404
1405         if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1406                 if (mem->mem_type == TTM_PL_SYSTEM)
1407                         return false;
1408
1409                 if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1410                         return false;
1411
1412                 if (mem->placement & TTM_PL_FLAG_CACHED)
1413                         return false;
1414         }
1415         return true;
1416 }
1417
1418 int ttm_bo_pci_offset(struct ttm_bo_device *bdev,
1419                       struct ttm_mem_reg *mem,
1420                       unsigned long *bus_base,
1421                       unsigned long *bus_offset, unsigned long *bus_size)
1422 {
1423         struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1424
1425         *bus_size = 0;
1426         if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
1427                 return -EINVAL;
1428
1429         if (ttm_mem_reg_is_pci(bdev, mem)) {
1430                 *bus_offset = mem->mm_node->start << PAGE_SHIFT;
1431                 *bus_size = mem->num_pages << PAGE_SHIFT;
1432                 *bus_base = man->io_offset;
1433         }
1434
1435         return 0;
1436 }
1437
1438 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1439 {
1440         struct ttm_bo_device *bdev = bo->bdev;
1441         loff_t offset = (loff_t) bo->addr_space_offset;
1442         loff_t holelen = ((loff_t) bo->mem.num_pages) << PAGE_SHIFT;
1443
1444         if (!bdev->dev_mapping)
1445                 return;
1446
1447         unmap_mapping_range(bdev->dev_mapping, offset, holelen, 1);
1448 }
1449
1450 static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo)
1451 {
1452         struct ttm_bo_device *bdev = bo->bdev;
1453         struct rb_node **cur = &bdev->addr_space_rb.rb_node;
1454         struct rb_node *parent = NULL;
1455         struct ttm_buffer_object *cur_bo;
1456         unsigned long offset = bo->vm_node->start;
1457         unsigned long cur_offset;
1458
1459         while (*cur) {
1460                 parent = *cur;
1461                 cur_bo = rb_entry(parent, struct ttm_buffer_object, vm_rb);
1462                 cur_offset = cur_bo->vm_node->start;
1463                 if (offset < cur_offset)
1464                         cur = &parent->rb_left;
1465                 else if (offset > cur_offset)
1466                         cur = &parent->rb_right;
1467                 else
1468                         BUG();
1469         }
1470
1471         rb_link_node(&bo->vm_rb, parent, cur);
1472         rb_insert_color(&bo->vm_rb, &bdev->addr_space_rb);
1473 }
1474
1475 /**
1476  * ttm_bo_setup_vm:
1477  *
1478  * @bo: the buffer to allocate address space for
1479  *
1480  * Allocate address space in the drm device so that applications
1481  * can mmap the buffer and access the contents. This only
1482  * applies to ttm_bo_type_device objects as others are not
1483  * placed in the drm device address space.
1484  */
1485
1486 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo)
1487 {
1488         struct ttm_bo_device *bdev = bo->bdev;
1489         int ret;
1490
1491 retry_pre_get:
1492         ret = drm_mm_pre_get(&bdev->addr_space_mm);
1493         if (unlikely(ret != 0))
1494                 return ret;
1495
1496         write_lock(&bdev->vm_lock);
1497         bo->vm_node = drm_mm_search_free(&bdev->addr_space_mm,
1498                                          bo->mem.num_pages, 0, 0);
1499
1500         if (unlikely(bo->vm_node == NULL)) {
1501                 ret = -ENOMEM;
1502                 goto out_unlock;
1503         }
1504
1505         bo->vm_node = drm_mm_get_block_atomic(bo->vm_node,
1506                                               bo->mem.num_pages, 0);
1507
1508         if (unlikely(bo->vm_node == NULL)) {
1509                 write_unlock(&bdev->vm_lock);
1510                 goto retry_pre_get;
1511         }
1512
1513         ttm_bo_vm_insert_rb(bo);
1514         write_unlock(&bdev->vm_lock);
1515         bo->addr_space_offset = ((uint64_t) bo->vm_node->start) << PAGE_SHIFT;
1516
1517         return 0;
1518 out_unlock:
1519         write_unlock(&bdev->vm_lock);
1520         return ret;
1521 }
1522
1523 int ttm_bo_wait(struct ttm_buffer_object *bo,
1524                 bool lazy, bool interruptible, bool no_wait)
1525 {
1526         struct ttm_bo_driver *driver = bo->bdev->driver;
1527         void *sync_obj;
1528         void *sync_obj_arg;
1529         int ret = 0;
1530
1531         if (likely(bo->sync_obj == NULL))
1532                 return 0;
1533
1534         while (bo->sync_obj) {
1535
1536                 if (driver->sync_obj_signaled(bo->sync_obj, bo->sync_obj_arg)) {
1537                         void *tmp_obj = bo->sync_obj;
1538                         bo->sync_obj = NULL;
1539                         clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
1540                         spin_unlock(&bo->lock);
1541                         driver->sync_obj_unref(&tmp_obj);
1542                         spin_lock(&bo->lock);
1543                         continue;
1544                 }
1545
1546                 if (no_wait)
1547                         return -EBUSY;
1548
1549                 sync_obj = driver->sync_obj_ref(bo->sync_obj);
1550                 sync_obj_arg = bo->sync_obj_arg;
1551                 spin_unlock(&bo->lock);
1552                 ret = driver->sync_obj_wait(sync_obj, sync_obj_arg,
1553                                             lazy, interruptible);
1554                 if (unlikely(ret != 0)) {
1555                         driver->sync_obj_unref(&sync_obj);
1556                         spin_lock(&bo->lock);
1557                         return ret;
1558                 }
1559                 spin_lock(&bo->lock);
1560                 if (likely(bo->sync_obj == sync_obj &&
1561                            bo->sync_obj_arg == sync_obj_arg)) {
1562                         void *tmp_obj = bo->sync_obj;
1563                         bo->sync_obj = NULL;
1564                         clear_bit(TTM_BO_PRIV_FLAG_MOVING,
1565                                   &bo->priv_flags);
1566                         spin_unlock(&bo->lock);
1567                         driver->sync_obj_unref(&sync_obj);
1568                         driver->sync_obj_unref(&tmp_obj);
1569                         spin_lock(&bo->lock);
1570                 }
1571         }
1572         return 0;
1573 }
1574 EXPORT_SYMBOL(ttm_bo_wait);
1575
1576 void ttm_bo_unblock_reservation(struct ttm_buffer_object *bo)
1577 {
1578         atomic_set(&bo->reserved, 0);
1579         wake_up_all(&bo->event_queue);
1580 }
1581
1582 int ttm_bo_block_reservation(struct ttm_buffer_object *bo, bool interruptible,
1583                              bool no_wait)
1584 {
1585         int ret;
1586
1587         while (unlikely(atomic_cmpxchg(&bo->reserved, 0, 1) != 0)) {
1588                 if (no_wait)
1589                         return -EBUSY;
1590                 else if (interruptible) {
1591                         ret = wait_event_interruptible
1592                             (bo->event_queue, atomic_read(&bo->reserved) == 0);
1593                         if (unlikely(ret != 0))
1594                                 return -ERESTART;
1595                 } else {
1596                         wait_event(bo->event_queue,
1597                                    atomic_read(&bo->reserved) == 0);
1598                 }
1599         }
1600         return 0;
1601 }
1602
1603 int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1604 {
1605         int ret = 0;
1606
1607         /*
1608          * Using ttm_bo_reserve instead of ttm_bo_block_reservation
1609          * makes sure the lru lists are updated.
1610          */
1611
1612         ret = ttm_bo_reserve(bo, true, no_wait, false, 0);
1613         if (unlikely(ret != 0))
1614                 return ret;
1615         spin_lock(&bo->lock);
1616         ret = ttm_bo_wait(bo, false, true, no_wait);
1617         spin_unlock(&bo->lock);
1618         if (likely(ret == 0))
1619                 atomic_inc(&bo->cpu_writers);
1620         ttm_bo_unreserve(bo);
1621         return ret;
1622 }
1623
1624 void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1625 {
1626         if (atomic_dec_and_test(&bo->cpu_writers))
1627                 wake_up_all(&bo->event_queue);
1628 }
1629
1630 /**
1631  * A buffer object shrink method that tries to swap out the first
1632  * buffer object on the bo_global::swap_lru list.
1633  */
1634
1635 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
1636 {
1637         struct ttm_bo_device *bdev =
1638             container_of(shrink, struct ttm_bo_device, shrink);
1639         struct ttm_buffer_object *bo;
1640         int ret = -EBUSY;
1641         int put_count;
1642         uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);
1643
1644         spin_lock(&bdev->lru_lock);
1645         while (ret == -EBUSY) {
1646                 if (unlikely(list_empty(&bdev->swap_lru))) {
1647                         spin_unlock(&bdev->lru_lock);
1648                         return -EBUSY;
1649                 }
1650
1651                 bo = list_first_entry(&bdev->swap_lru,
1652                                       struct ttm_buffer_object, swap);
1653                 kref_get(&bo->list_kref);
1654
1655                 /**
1656                  * Reserve buffer. Since we unlock while sleeping, we need
1657                  * to re-check that nobody removed us from the swap-list while
1658                  * we slept.
1659                  */
1660
1661                 ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
1662                 if (unlikely(ret == -EBUSY)) {
1663                         spin_unlock(&bdev->lru_lock);
1664                         ttm_bo_wait_unreserved(bo, false);
1665                         kref_put(&bo->list_kref, ttm_bo_release_list);
1666                         spin_lock(&bdev->lru_lock);
1667                 }
1668         }
1669
1670         BUG_ON(ret != 0);
1671         put_count = ttm_bo_del_from_lru(bo);
1672         spin_unlock(&bdev->lru_lock);
1673
1674         while (put_count--)
1675                 kref_put(&bo->list_kref, ttm_bo_ref_bug);
1676
1677         /**
1678          * Wait for GPU, then move to system cached.
1679          */
1680
1681         spin_lock(&bo->lock);
1682         ret = ttm_bo_wait(bo, false, false, false);
1683         spin_unlock(&bo->lock);
1684
1685         if (unlikely(ret != 0))
1686                 goto out;
1687
1688         if ((bo->mem.placement & swap_placement) != swap_placement) {
1689                 struct ttm_mem_reg evict_mem;
1690
1691                 evict_mem = bo->mem;
1692                 evict_mem.mm_node = NULL;
1693                 evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1694                 evict_mem.mem_type = TTM_PL_SYSTEM;
1695
1696                 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
1697                                              false, false);
1698                 if (unlikely(ret != 0))
1699                         goto out;
1700         }
1701
1702         ttm_bo_unmap_virtual(bo);
1703
1704         /**
1705          * Swap out. Buffer will be swapped in again as soon as
1706          * anyone tries to access a ttm page.
1707          */
1708
1709         ret = ttm_tt_swapout(bo->ttm, bo->persistant_swap_storage);
1710 out:
1711
1712         /**
1713          *
1714          * Unreserve without putting on LRU to avoid swapping out an
1715          * already swapped buffer.
1716          */
1717
1718         atomic_set(&bo->reserved, 0);
1719         wake_up_all(&bo->event_queue);
1720         kref_put(&bo->list_kref, ttm_bo_release_list);
1721         return ret;
1722 }
1723
1724 void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1725 {
1726         while (ttm_bo_swapout(&bdev->shrink) == 0)
1727                 ;
1728 }