2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
62 #define DRV_VERSION "2.20" /* must be exactly four chars */
65 /* debounce timing parameters in msecs { interval, duration, timeout } */
66 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
70 static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73 static void ata_dev_xfermask(struct ata_device *dev);
75 static unsigned int ata_print_id = 1;
76 static struct workqueue_struct *ata_wq;
78 struct workqueue_struct *ata_aux_wq;
80 int atapi_enabled = 1;
81 module_param(atapi_enabled, int, 0444);
82 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
85 module_param(atapi_dmadir, int, 0444);
86 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
89 module_param_named(fua, libata_fua, int, 0444);
90 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
92 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
93 module_param(ata_probe_timeout, int, 0444);
94 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
96 int libata_noacpi = 1;
97 module_param_named(noacpi, libata_noacpi, int, 0444);
98 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
100 MODULE_AUTHOR("Jeff Garzik");
101 MODULE_DESCRIPTION("Library module for ATA devices");
102 MODULE_LICENSE("GPL");
103 MODULE_VERSION(DRV_VERSION);
107 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
108 * @tf: Taskfile to convert
109 * @fis: Buffer into which data will output
110 * @pmp: Port multiplier port
112 * Converts a standard ATA taskfile to a Serial ATA
113 * FIS structure (Register - Host to Device).
116 * Inherited from caller.
119 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
121 fis[0] = 0x27; /* Register - Host to Device FIS */
122 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
123 bit 7 indicates Command FIS */
124 fis[2] = tf->command;
125 fis[3] = tf->feature;
132 fis[8] = tf->hob_lbal;
133 fis[9] = tf->hob_lbam;
134 fis[10] = tf->hob_lbah;
135 fis[11] = tf->hob_feature;
138 fis[13] = tf->hob_nsect;
149 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
150 * @fis: Buffer from which data will be input
151 * @tf: Taskfile to output
153 * Converts a serial ATA FIS structure to a standard ATA taskfile.
156 * Inherited from caller.
159 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
161 tf->command = fis[2]; /* status */
162 tf->feature = fis[3]; /* error */
169 tf->hob_lbal = fis[8];
170 tf->hob_lbam = fis[9];
171 tf->hob_lbah = fis[10];
174 tf->hob_nsect = fis[13];
177 static const u8 ata_rw_cmds[] = {
181 ATA_CMD_READ_MULTI_EXT,
182 ATA_CMD_WRITE_MULTI_EXT,
186 ATA_CMD_WRITE_MULTI_FUA_EXT,
190 ATA_CMD_PIO_READ_EXT,
191 ATA_CMD_PIO_WRITE_EXT,
204 ATA_CMD_WRITE_FUA_EXT
208 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
209 * @tf: command to examine and configure
210 * @dev: device tf belongs to
212 * Examine the device configuration and tf->flags to calculate
213 * the proper read/write commands and protocol to use.
218 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
222 int index, fua, lba48, write;
224 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
225 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
226 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
228 if (dev->flags & ATA_DFLAG_PIO) {
229 tf->protocol = ATA_PROT_PIO;
230 index = dev->multi_count ? 0 : 8;
231 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
232 /* Unable to use DMA due to host limitation */
233 tf->protocol = ATA_PROT_PIO;
234 index = dev->multi_count ? 0 : 8;
236 tf->protocol = ATA_PROT_DMA;
240 cmd = ata_rw_cmds[index + fua + lba48 + write];
249 * ata_tf_read_block - Read block address from ATA taskfile
250 * @tf: ATA taskfile of interest
251 * @dev: ATA device @tf belongs to
256 * Read block address from @tf. This function can handle all
257 * three address formats - LBA, LBA48 and CHS. tf->protocol and
258 * flags select the address format to use.
261 * Block address read from @tf.
263 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
267 if (tf->flags & ATA_TFLAG_LBA) {
268 if (tf->flags & ATA_TFLAG_LBA48) {
269 block |= (u64)tf->hob_lbah << 40;
270 block |= (u64)tf->hob_lbam << 32;
271 block |= tf->hob_lbal << 24;
273 block |= (tf->device & 0xf) << 24;
275 block |= tf->lbah << 16;
276 block |= tf->lbam << 8;
281 cyl = tf->lbam | (tf->lbah << 8);
282 head = tf->device & 0xf;
285 block = (cyl * dev->heads + head) * dev->sectors + sect;
292 * ata_build_rw_tf - Build ATA taskfile for given read/write request
293 * @tf: Target ATA taskfile
294 * @dev: ATA device @tf belongs to
295 * @block: Block address
296 * @n_block: Number of blocks
297 * @tf_flags: RW/FUA etc...
303 * Build ATA taskfile @tf for read/write request described by
304 * @block, @n_block, @tf_flags and @tag on @dev.
308 * 0 on success, -ERANGE if the request is too large for @dev,
309 * -EINVAL if the request is invalid.
311 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
312 u64 block, u32 n_block, unsigned int tf_flags,
315 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
316 tf->flags |= tf_flags;
318 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
320 if (!lba_48_ok(block, n_block))
323 tf->protocol = ATA_PROT_NCQ;
324 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
326 if (tf->flags & ATA_TFLAG_WRITE)
327 tf->command = ATA_CMD_FPDMA_WRITE;
329 tf->command = ATA_CMD_FPDMA_READ;
331 tf->nsect = tag << 3;
332 tf->hob_feature = (n_block >> 8) & 0xff;
333 tf->feature = n_block & 0xff;
335 tf->hob_lbah = (block >> 40) & 0xff;
336 tf->hob_lbam = (block >> 32) & 0xff;
337 tf->hob_lbal = (block >> 24) & 0xff;
338 tf->lbah = (block >> 16) & 0xff;
339 tf->lbam = (block >> 8) & 0xff;
340 tf->lbal = block & 0xff;
343 if (tf->flags & ATA_TFLAG_FUA)
344 tf->device |= 1 << 7;
345 } else if (dev->flags & ATA_DFLAG_LBA) {
346 tf->flags |= ATA_TFLAG_LBA;
348 if (lba_28_ok(block, n_block)) {
350 tf->device |= (block >> 24) & 0xf;
351 } else if (lba_48_ok(block, n_block)) {
352 if (!(dev->flags & ATA_DFLAG_LBA48))
356 tf->flags |= ATA_TFLAG_LBA48;
358 tf->hob_nsect = (n_block >> 8) & 0xff;
360 tf->hob_lbah = (block >> 40) & 0xff;
361 tf->hob_lbam = (block >> 32) & 0xff;
362 tf->hob_lbal = (block >> 24) & 0xff;
364 /* request too large even for LBA48 */
367 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
370 tf->nsect = n_block & 0xff;
372 tf->lbah = (block >> 16) & 0xff;
373 tf->lbam = (block >> 8) & 0xff;
374 tf->lbal = block & 0xff;
376 tf->device |= ATA_LBA;
379 u32 sect, head, cyl, track;
381 /* The request -may- be too large for CHS addressing. */
382 if (!lba_28_ok(block, n_block))
385 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
388 /* Convert LBA to CHS */
389 track = (u32)block / dev->sectors;
390 cyl = track / dev->heads;
391 head = track % dev->heads;
392 sect = (u32)block % dev->sectors + 1;
394 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
395 (u32)block, track, cyl, head, sect);
397 /* Check whether the converted CHS can fit.
401 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
404 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
415 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
416 * @pio_mask: pio_mask
417 * @mwdma_mask: mwdma_mask
418 * @udma_mask: udma_mask
420 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
421 * unsigned int xfer_mask.
429 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
430 unsigned int mwdma_mask,
431 unsigned int udma_mask)
433 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
434 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
435 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
439 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
440 * @xfer_mask: xfer_mask to unpack
441 * @pio_mask: resulting pio_mask
442 * @mwdma_mask: resulting mwdma_mask
443 * @udma_mask: resulting udma_mask
445 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
446 * Any NULL distination masks will be ignored.
448 static void ata_unpack_xfermask(unsigned int xfer_mask,
449 unsigned int *pio_mask,
450 unsigned int *mwdma_mask,
451 unsigned int *udma_mask)
454 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
456 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
458 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
461 static const struct ata_xfer_ent {
465 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
466 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
467 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
472 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
473 * @xfer_mask: xfer_mask of interest
475 * Return matching XFER_* value for @xfer_mask. Only the highest
476 * bit of @xfer_mask is considered.
482 * Matching XFER_* value, 0 if no match found.
484 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
486 int highbit = fls(xfer_mask) - 1;
487 const struct ata_xfer_ent *ent;
489 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
490 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
491 return ent->base + highbit - ent->shift;
496 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
497 * @xfer_mode: XFER_* of interest
499 * Return matching xfer_mask for @xfer_mode.
505 * Matching xfer_mask, 0 if no match found.
507 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
509 const struct ata_xfer_ent *ent;
511 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
512 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
513 return 1 << (ent->shift + xfer_mode - ent->base);
518 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
519 * @xfer_mode: XFER_* of interest
521 * Return matching xfer_shift for @xfer_mode.
527 * Matching xfer_shift, -1 if no match found.
529 static int ata_xfer_mode2shift(unsigned int xfer_mode)
531 const struct ata_xfer_ent *ent;
533 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
534 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
540 * ata_mode_string - convert xfer_mask to string
541 * @xfer_mask: mask of bits supported; only highest bit counts.
543 * Determine string which represents the highest speed
544 * (highest bit in @modemask).
550 * Constant C string representing highest speed listed in
551 * @mode_mask, or the constant C string "<n/a>".
553 static const char *ata_mode_string(unsigned int xfer_mask)
555 static const char * const xfer_mode_str[] = {
579 highbit = fls(xfer_mask) - 1;
580 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
581 return xfer_mode_str[highbit];
585 static const char *sata_spd_string(unsigned int spd)
587 static const char * const spd_str[] = {
592 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
594 return spd_str[spd - 1];
597 void ata_dev_disable(struct ata_device *dev)
599 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
600 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
601 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
608 * ata_devchk - PATA device presence detection
609 * @ap: ATA channel to examine
610 * @device: Device to examine (starting at zero)
612 * This technique was originally described in
613 * Hale Landis's ATADRVR (www.ata-atapi.com), and
614 * later found its way into the ATA/ATAPI spec.
616 * Write a pattern to the ATA shadow registers,
617 * and if a device is present, it will respond by
618 * correctly storing and echoing back the
619 * ATA shadow register contents.
625 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
627 struct ata_ioports *ioaddr = &ap->ioaddr;
630 ap->ops->dev_select(ap, device);
632 iowrite8(0x55, ioaddr->nsect_addr);
633 iowrite8(0xaa, ioaddr->lbal_addr);
635 iowrite8(0xaa, ioaddr->nsect_addr);
636 iowrite8(0x55, ioaddr->lbal_addr);
638 iowrite8(0x55, ioaddr->nsect_addr);
639 iowrite8(0xaa, ioaddr->lbal_addr);
641 nsect = ioread8(ioaddr->nsect_addr);
642 lbal = ioread8(ioaddr->lbal_addr);
644 if ((nsect == 0x55) && (lbal == 0xaa))
645 return 1; /* we found a device */
647 return 0; /* nothing found */
651 * ata_dev_classify - determine device type based on ATA-spec signature
652 * @tf: ATA taskfile register set for device to be identified
654 * Determine from taskfile register contents whether a device is
655 * ATA or ATAPI, as per "Signature and persistence" section
656 * of ATA/PI spec (volume 1, sect 5.14).
662 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
663 * the event of failure.
666 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
668 /* Apple's open source Darwin code hints that some devices only
669 * put a proper signature into the LBA mid/high registers,
670 * So, we only check those. It's sufficient for uniqueness.
673 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
674 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
675 DPRINTK("found ATA device by sig\n");
679 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
680 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
681 DPRINTK("found ATAPI device by sig\n");
682 return ATA_DEV_ATAPI;
685 DPRINTK("unknown device\n");
686 return ATA_DEV_UNKNOWN;
690 * ata_dev_try_classify - Parse returned ATA device signature
691 * @ap: ATA channel to examine
692 * @device: Device to examine (starting at zero)
693 * @r_err: Value of error register on completion
695 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
696 * an ATA/ATAPI-defined set of values is placed in the ATA
697 * shadow registers, indicating the results of device detection
700 * Select the ATA device, and read the values from the ATA shadow
701 * registers. Then parse according to the Error register value,
702 * and the spec-defined values examined by ata_dev_classify().
708 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
712 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
714 struct ata_taskfile tf;
718 ap->ops->dev_select(ap, device);
720 memset(&tf, 0, sizeof(tf));
722 ap->ops->tf_read(ap, &tf);
727 /* see if device passed diags: if master then continue and warn later */
728 if (err == 0 && device == 0)
729 /* diagnostic fail : do nothing _YET_ */
730 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
733 else if ((device == 0) && (err == 0x81))
738 /* determine if device is ATA or ATAPI */
739 class = ata_dev_classify(&tf);
741 if (class == ATA_DEV_UNKNOWN)
743 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
749 * ata_id_string - Convert IDENTIFY DEVICE page into string
750 * @id: IDENTIFY DEVICE results we will examine
751 * @s: string into which data is output
752 * @ofs: offset into identify device page
753 * @len: length of string to return. must be an even number.
755 * The strings in the IDENTIFY DEVICE page are broken up into
756 * 16-bit chunks. Run through the string, and output each
757 * 8-bit chunk linearly, regardless of platform.
763 void ata_id_string(const u16 *id, unsigned char *s,
764 unsigned int ofs, unsigned int len)
783 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
784 * @id: IDENTIFY DEVICE results we will examine
785 * @s: string into which data is output
786 * @ofs: offset into identify device page
787 * @len: length of string to return. must be an odd number.
789 * This function is identical to ata_id_string except that it
790 * trims trailing spaces and terminates the resulting string with
791 * null. @len must be actual maximum length (even number) + 1.
796 void ata_id_c_string(const u16 *id, unsigned char *s,
797 unsigned int ofs, unsigned int len)
803 ata_id_string(id, s, ofs, len - 1);
805 p = s + strnlen(s, len - 1);
806 while (p > s && p[-1] == ' ')
811 static u64 ata_id_n_sectors(const u16 *id)
813 if (ata_id_has_lba(id)) {
814 if (ata_id_has_lba48(id))
815 return ata_id_u64(id, 100);
817 return ata_id_u32(id, 60);
819 if (ata_id_current_chs_valid(id))
820 return ata_id_u32(id, 57);
822 return id[1] * id[3] * id[6];
827 * ata_id_to_dma_mode - Identify DMA mode from id block
828 * @dev: device to identify
829 * @unknown: mode to assume if we cannot tell
831 * Set up the timing values for the device based upon the identify
832 * reported values for the DMA mode. This function is used by drivers
833 * which rely upon firmware configured modes, but wish to report the
834 * mode correctly when possible.
836 * In addition we emit similarly formatted messages to the default
837 * ata_dev_set_mode handler, in order to provide consistency of
841 void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
846 /* Pack the DMA modes */
847 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
848 if (dev->id[53] & 0x04)
849 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
851 /* Select the mode in use */
852 mode = ata_xfer_mask2mode(mask);
855 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
856 ata_mode_string(mask));
858 /* SWDMA perhaps ? */
860 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
863 /* Configure the device reporting */
864 dev->xfer_mode = mode;
865 dev->xfer_shift = ata_xfer_mode2shift(mode);
869 * ata_noop_dev_select - Select device 0/1 on ATA bus
870 * @ap: ATA channel to manipulate
871 * @device: ATA device (numbered from zero) to select
873 * This function performs no actual function.
875 * May be used as the dev_select() entry in ata_port_operations.
880 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
886 * ata_std_dev_select - Select device 0/1 on ATA bus
887 * @ap: ATA channel to manipulate
888 * @device: ATA device (numbered from zero) to select
890 * Use the method defined in the ATA specification to
891 * make either device 0, or device 1, active on the
892 * ATA channel. Works with both PIO and MMIO.
894 * May be used as the dev_select() entry in ata_port_operations.
900 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
905 tmp = ATA_DEVICE_OBS;
907 tmp = ATA_DEVICE_OBS | ATA_DEV1;
909 iowrite8(tmp, ap->ioaddr.device_addr);
910 ata_pause(ap); /* needed; also flushes, for mmio */
914 * ata_dev_select - Select device 0/1 on ATA bus
915 * @ap: ATA channel to manipulate
916 * @device: ATA device (numbered from zero) to select
917 * @wait: non-zero to wait for Status register BSY bit to clear
918 * @can_sleep: non-zero if context allows sleeping
920 * Use the method defined in the ATA specification to
921 * make either device 0, or device 1, active on the
924 * This is a high-level version of ata_std_dev_select(),
925 * which additionally provides the services of inserting
926 * the proper pauses and status polling, where needed.
932 void ata_dev_select(struct ata_port *ap, unsigned int device,
933 unsigned int wait, unsigned int can_sleep)
935 if (ata_msg_probe(ap))
936 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
937 "device %u, wait %u\n", device, wait);
942 ap->ops->dev_select(ap, device);
945 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
952 * ata_dump_id - IDENTIFY DEVICE info debugging output
953 * @id: IDENTIFY DEVICE page to dump
955 * Dump selected 16-bit words from the given IDENTIFY DEVICE
962 static inline void ata_dump_id(const u16 *id)
964 DPRINTK("49==0x%04x "
974 DPRINTK("80==0x%04x "
984 DPRINTK("88==0x%04x "
991 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
992 * @id: IDENTIFY data to compute xfer mask from
994 * Compute the xfermask for this device. This is not as trivial
995 * as it seems if we must consider early devices correctly.
997 * FIXME: pre IDE drive timing (do we care ?).
1005 static unsigned int ata_id_xfermask(const u16 *id)
1007 unsigned int pio_mask, mwdma_mask, udma_mask;
1009 /* Usual case. Word 53 indicates word 64 is valid */
1010 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1011 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1015 /* If word 64 isn't valid then Word 51 high byte holds
1016 * the PIO timing number for the maximum. Turn it into
1019 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1020 if (mode < 5) /* Valid PIO range */
1021 pio_mask = (2 << mode) - 1;
1025 /* But wait.. there's more. Design your standards by
1026 * committee and you too can get a free iordy field to
1027 * process. However its the speeds not the modes that
1028 * are supported... Note drivers using the timing API
1029 * will get this right anyway
1033 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1035 if (ata_id_is_cfa(id)) {
1037 * Process compact flash extended modes
1039 int pio = id[163] & 0x7;
1040 int dma = (id[163] >> 3) & 7;
1043 pio_mask |= (1 << 5);
1045 pio_mask |= (1 << 6);
1047 mwdma_mask |= (1 << 3);
1049 mwdma_mask |= (1 << 4);
1053 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1054 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1056 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1060 * ata_port_queue_task - Queue port_task
1061 * @ap: The ata_port to queue port_task for
1062 * @fn: workqueue function to be scheduled
1063 * @data: data for @fn to use
1064 * @delay: delay time for workqueue function
1066 * Schedule @fn(@data) for execution after @delay jiffies using
1067 * port_task. There is one port_task per port and it's the
1068 * user(low level driver)'s responsibility to make sure that only
1069 * one task is active at any given time.
1071 * libata core layer takes care of synchronization between
1072 * port_task and EH. ata_port_queue_task() may be ignored for EH
1076 * Inherited from caller.
1078 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1079 unsigned long delay)
1083 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
1086 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1087 ap->port_task_data = data;
1089 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
1091 /* rc == 0 means that another user is using port task */
1096 * ata_port_flush_task - Flush port_task
1097 * @ap: The ata_port to flush port_task for
1099 * After this function completes, port_task is guranteed not to
1100 * be running or scheduled.
1103 * Kernel thread context (may sleep)
1105 void ata_port_flush_task(struct ata_port *ap)
1107 unsigned long flags;
1111 spin_lock_irqsave(ap->lock, flags);
1112 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
1113 spin_unlock_irqrestore(ap->lock, flags);
1115 DPRINTK("flush #1\n");
1116 flush_workqueue(ata_wq);
1119 * At this point, if a task is running, it's guaranteed to see
1120 * the FLUSH flag; thus, it will never queue pio tasks again.
1123 if (!cancel_delayed_work(&ap->port_task)) {
1124 if (ata_msg_ctl(ap))
1125 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
1127 flush_workqueue(ata_wq);
1130 spin_lock_irqsave(ap->lock, flags);
1131 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
1132 spin_unlock_irqrestore(ap->lock, flags);
1134 if (ata_msg_ctl(ap))
1135 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1138 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1140 struct completion *waiting = qc->private_data;
1146 * ata_exec_internal_sg - execute libata internal command
1147 * @dev: Device to which the command is sent
1148 * @tf: Taskfile registers for the command and the result
1149 * @cdb: CDB for packet command
1150 * @dma_dir: Data tranfer direction of the command
1151 * @sg: sg list for the data buffer of the command
1152 * @n_elem: Number of sg entries
1154 * Executes libata internal command with timeout. @tf contains
1155 * command on entry and result on return. Timeout and error
1156 * conditions are reported via return value. No recovery action
1157 * is taken after a command times out. It's caller's duty to
1158 * clean up after timeout.
1161 * None. Should be called with kernel context, might sleep.
1164 * Zero on success, AC_ERR_* mask on failure
1166 unsigned ata_exec_internal_sg(struct ata_device *dev,
1167 struct ata_taskfile *tf, const u8 *cdb,
1168 int dma_dir, struct scatterlist *sg,
1169 unsigned int n_elem)
1171 struct ata_port *ap = dev->ap;
1172 u8 command = tf->command;
1173 struct ata_queued_cmd *qc;
1174 unsigned int tag, preempted_tag;
1175 u32 preempted_sactive, preempted_qc_active;
1176 DECLARE_COMPLETION_ONSTACK(wait);
1177 unsigned long flags;
1178 unsigned int err_mask;
1181 spin_lock_irqsave(ap->lock, flags);
1183 /* no internal command while frozen */
1184 if (ap->pflags & ATA_PFLAG_FROZEN) {
1185 spin_unlock_irqrestore(ap->lock, flags);
1186 return AC_ERR_SYSTEM;
1189 /* initialize internal qc */
1191 /* XXX: Tag 0 is used for drivers with legacy EH as some
1192 * drivers choke if any other tag is given. This breaks
1193 * ata_tag_internal() test for those drivers. Don't use new
1194 * EH stuff without converting to it.
1196 if (ap->ops->error_handler)
1197 tag = ATA_TAG_INTERNAL;
1201 if (test_and_set_bit(tag, &ap->qc_allocated))
1203 qc = __ata_qc_from_tag(ap, tag);
1211 preempted_tag = ap->active_tag;
1212 preempted_sactive = ap->sactive;
1213 preempted_qc_active = ap->qc_active;
1214 ap->active_tag = ATA_TAG_POISON;
1218 /* prepare & issue qc */
1221 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1222 qc->flags |= ATA_QCFLAG_RESULT_TF;
1223 qc->dma_dir = dma_dir;
1224 if (dma_dir != DMA_NONE) {
1225 unsigned int i, buflen = 0;
1227 for (i = 0; i < n_elem; i++)
1228 buflen += sg[i].length;
1230 ata_sg_init(qc, sg, n_elem);
1231 qc->nbytes = buflen;
1234 qc->private_data = &wait;
1235 qc->complete_fn = ata_qc_complete_internal;
1239 spin_unlock_irqrestore(ap->lock, flags);
1241 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1243 ata_port_flush_task(ap);
1246 spin_lock_irqsave(ap->lock, flags);
1248 /* We're racing with irq here. If we lose, the
1249 * following test prevents us from completing the qc
1250 * twice. If we win, the port is frozen and will be
1251 * cleaned up by ->post_internal_cmd().
1253 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1254 qc->err_mask |= AC_ERR_TIMEOUT;
1256 if (ap->ops->error_handler)
1257 ata_port_freeze(ap);
1259 ata_qc_complete(qc);
1261 if (ata_msg_warn(ap))
1262 ata_dev_printk(dev, KERN_WARNING,
1263 "qc timeout (cmd 0x%x)\n", command);
1266 spin_unlock_irqrestore(ap->lock, flags);
1269 /* do post_internal_cmd */
1270 if (ap->ops->post_internal_cmd)
1271 ap->ops->post_internal_cmd(qc);
1273 if ((qc->flags & ATA_QCFLAG_FAILED) && !qc->err_mask) {
1274 if (ata_msg_warn(ap))
1275 ata_dev_printk(dev, KERN_WARNING,
1276 "zero err_mask for failed "
1277 "internal command, assuming AC_ERR_OTHER\n");
1278 qc->err_mask |= AC_ERR_OTHER;
1282 spin_lock_irqsave(ap->lock, flags);
1284 *tf = qc->result_tf;
1285 err_mask = qc->err_mask;
1288 ap->active_tag = preempted_tag;
1289 ap->sactive = preempted_sactive;
1290 ap->qc_active = preempted_qc_active;
1292 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1293 * Until those drivers are fixed, we detect the condition
1294 * here, fail the command with AC_ERR_SYSTEM and reenable the
1297 * Note that this doesn't change any behavior as internal
1298 * command failure results in disabling the device in the
1299 * higher layer for LLDDs without new reset/EH callbacks.
1301 * Kill the following code as soon as those drivers are fixed.
1303 if (ap->flags & ATA_FLAG_DISABLED) {
1304 err_mask |= AC_ERR_SYSTEM;
1308 spin_unlock_irqrestore(ap->lock, flags);
1314 * ata_exec_internal - execute libata internal command
1315 * @dev: Device to which the command is sent
1316 * @tf: Taskfile registers for the command and the result
1317 * @cdb: CDB for packet command
1318 * @dma_dir: Data tranfer direction of the command
1319 * @buf: Data buffer of the command
1320 * @buflen: Length of data buffer
1322 * Wrapper around ata_exec_internal_sg() which takes simple
1323 * buffer instead of sg list.
1326 * None. Should be called with kernel context, might sleep.
1329 * Zero on success, AC_ERR_* mask on failure
1331 unsigned ata_exec_internal(struct ata_device *dev,
1332 struct ata_taskfile *tf, const u8 *cdb,
1333 int dma_dir, void *buf, unsigned int buflen)
1335 struct scatterlist *psg = NULL, sg;
1336 unsigned int n_elem = 0;
1338 if (dma_dir != DMA_NONE) {
1340 sg_init_one(&sg, buf, buflen);
1345 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
1349 * ata_do_simple_cmd - execute simple internal command
1350 * @dev: Device to which the command is sent
1351 * @cmd: Opcode to execute
1353 * Execute a 'simple' command, that only consists of the opcode
1354 * 'cmd' itself, without filling any other registers
1357 * Kernel thread context (may sleep).
1360 * Zero on success, AC_ERR_* mask on failure
1362 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1364 struct ata_taskfile tf;
1366 ata_tf_init(dev, &tf);
1369 tf.flags |= ATA_TFLAG_DEVICE;
1370 tf.protocol = ATA_PROT_NODATA;
1372 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1376 * ata_pio_need_iordy - check if iordy needed
1379 * Check if the current speed of the device requires IORDY. Used
1380 * by various controllers for chip configuration.
1383 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1385 /* Controller doesn't support IORDY. Probably a pointless check
1386 as the caller should know this */
1387 if (adev->ap->flags & ATA_FLAG_NO_IORDY)
1389 /* PIO3 and higher it is mandatory */
1390 if (adev->pio_mode > XFER_PIO_2)
1392 /* We turn it on when possible */
1393 if (ata_id_has_iordy(adev->id))
1399 * ata_pio_mask_no_iordy - Return the non IORDY mask
1402 * Compute the highest mode possible if we are not using iordy. Return
1403 * -1 if no iordy mode is available.
1406 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1408 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1409 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1410 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1411 /* Is the speed faster than the drive allows non IORDY ? */
1413 /* This is cycle times not frequency - watch the logic! */
1414 if (pio > 240) /* PIO2 is 240nS per cycle */
1415 return 3 << ATA_SHIFT_PIO;
1416 return 7 << ATA_SHIFT_PIO;
1419 return 3 << ATA_SHIFT_PIO;
1423 * ata_dev_read_id - Read ID data from the specified device
1424 * @dev: target device
1425 * @p_class: pointer to class of the target device (may be changed)
1426 * @flags: ATA_READID_* flags
1427 * @id: buffer to read IDENTIFY data into
1429 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1430 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1431 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1432 * for pre-ATA4 drives.
1435 * Kernel thread context (may sleep)
1438 * 0 on success, -errno otherwise.
1440 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1441 unsigned int flags, u16 *id)
1443 struct ata_port *ap = dev->ap;
1444 unsigned int class = *p_class;
1445 struct ata_taskfile tf;
1446 unsigned int err_mask = 0;
1450 if (ata_msg_ctl(ap))
1451 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1453 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1456 ata_tf_init(dev, &tf);
1460 tf.command = ATA_CMD_ID_ATA;
1463 tf.command = ATA_CMD_ID_ATAPI;
1467 reason = "unsupported class";
1471 tf.protocol = ATA_PROT_PIO;
1473 /* Some devices choke if TF registers contain garbage. Make
1474 * sure those are properly initialized.
1476 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1478 /* Device presence detection is unreliable on some
1479 * controllers. Always poll IDENTIFY if available.
1481 tf.flags |= ATA_TFLAG_POLLING;
1483 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1484 id, sizeof(id[0]) * ATA_ID_WORDS);
1486 if (err_mask & AC_ERR_NODEV_HINT) {
1487 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1488 ap->print_id, dev->devno);
1493 reason = "I/O error";
1497 swap_buf_le16(id, ATA_ID_WORDS);
1501 reason = "device reports illegal type";
1503 if (class == ATA_DEV_ATA) {
1504 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1507 if (ata_id_is_ata(id))
1511 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1513 * The exact sequence expected by certain pre-ATA4 drives is:
1516 * INITIALIZE DEVICE PARAMETERS
1518 * Some drives were very specific about that exact sequence.
1520 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1521 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1524 reason = "INIT_DEV_PARAMS failed";
1528 /* current CHS translation info (id[53-58]) might be
1529 * changed. reread the identify device info.
1531 flags &= ~ATA_READID_POSTRESET;
1541 if (ata_msg_warn(ap))
1542 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1543 "(%s, err_mask=0x%x)\n", reason, err_mask);
1547 static inline u8 ata_dev_knobble(struct ata_device *dev)
1549 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1552 static void ata_dev_config_ncq(struct ata_device *dev,
1553 char *desc, size_t desc_sz)
1555 struct ata_port *ap = dev->ap;
1556 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1558 if (!ata_id_has_ncq(dev->id)) {
1562 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1563 snprintf(desc, desc_sz, "NCQ (not used)");
1566 if (ap->flags & ATA_FLAG_NCQ) {
1567 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1568 dev->flags |= ATA_DFLAG_NCQ;
1571 if (hdepth >= ddepth)
1572 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1574 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1578 * ata_dev_configure - Configure the specified ATA/ATAPI device
1579 * @dev: Target device to configure
1581 * Configure @dev according to @dev->id. Generic and low-level
1582 * driver specific fixups are also applied.
1585 * Kernel thread context (may sleep)
1588 * 0 on success, -errno otherwise
1590 int ata_dev_configure(struct ata_device *dev)
1592 struct ata_port *ap = dev->ap;
1593 int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO;
1594 const u16 *id = dev->id;
1595 unsigned int xfer_mask;
1596 char revbuf[7]; /* XYZ-99\0 */
1597 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1598 char modelbuf[ATA_ID_PROD_LEN+1];
1601 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1602 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1607 if (ata_msg_probe(ap))
1608 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1611 rc = ata_acpi_push_id(ap, dev->devno);
1613 ata_dev_printk(dev, KERN_WARNING, "failed to set _SDD(%d)\n",
1617 /* retrieve and execute the ATA task file of _GTF */
1618 ata_acpi_exec_tfs(ap);
1620 /* print device capabilities */
1621 if (ata_msg_probe(ap))
1622 ata_dev_printk(dev, KERN_DEBUG,
1623 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1624 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1626 id[49], id[82], id[83], id[84],
1627 id[85], id[86], id[87], id[88]);
1629 /* initialize to-be-configured parameters */
1630 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1631 dev->max_sectors = 0;
1639 * common ATA, ATAPI feature tests
1642 /* find max transfer mode; for printk only */
1643 xfer_mask = ata_id_xfermask(id);
1645 if (ata_msg_probe(ap))
1648 /* ATA-specific feature tests */
1649 if (dev->class == ATA_DEV_ATA) {
1650 if (ata_id_is_cfa(id)) {
1651 if (id[162] & 1) /* CPRM may make this media unusable */
1652 ata_dev_printk(dev, KERN_WARNING,
1653 "supports DRM functions and may "
1654 "not be fully accessable.\n");
1655 snprintf(revbuf, 7, "CFA");
1658 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1660 dev->n_sectors = ata_id_n_sectors(id);
1662 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1663 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1666 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1669 if (dev->id[59] & 0x100)
1670 dev->multi_count = dev->id[59] & 0xff;
1672 if (ata_id_has_lba(id)) {
1673 const char *lba_desc;
1677 dev->flags |= ATA_DFLAG_LBA;
1678 if (ata_id_has_lba48(id)) {
1679 dev->flags |= ATA_DFLAG_LBA48;
1682 if (dev->n_sectors >= (1UL << 28) &&
1683 ata_id_has_flush_ext(id))
1684 dev->flags |= ATA_DFLAG_FLUSH_EXT;
1688 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1690 /* print device info to dmesg */
1691 if (ata_msg_drv(ap) && print_info) {
1692 ata_dev_printk(dev, KERN_INFO,
1693 "%s: %s, %s, max %s\n",
1694 revbuf, modelbuf, fwrevbuf,
1695 ata_mode_string(xfer_mask));
1696 ata_dev_printk(dev, KERN_INFO,
1697 "%Lu sectors, multi %u: %s %s\n",
1698 (unsigned long long)dev->n_sectors,
1699 dev->multi_count, lba_desc, ncq_desc);
1704 /* Default translation */
1705 dev->cylinders = id[1];
1707 dev->sectors = id[6];
1709 if (ata_id_current_chs_valid(id)) {
1710 /* Current CHS translation is valid. */
1711 dev->cylinders = id[54];
1712 dev->heads = id[55];
1713 dev->sectors = id[56];
1716 /* print device info to dmesg */
1717 if (ata_msg_drv(ap) && print_info) {
1718 ata_dev_printk(dev, KERN_INFO,
1719 "%s: %s, %s, max %s\n",
1720 revbuf, modelbuf, fwrevbuf,
1721 ata_mode_string(xfer_mask));
1722 ata_dev_printk(dev, KERN_INFO,
1723 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1724 (unsigned long long)dev->n_sectors,
1725 dev->multi_count, dev->cylinders,
1726 dev->heads, dev->sectors);
1733 /* ATAPI-specific feature tests */
1734 else if (dev->class == ATA_DEV_ATAPI) {
1735 char *cdb_intr_string = "";
1737 rc = atapi_cdb_len(id);
1738 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1739 if (ata_msg_warn(ap))
1740 ata_dev_printk(dev, KERN_WARNING,
1741 "unsupported CDB len\n");
1745 dev->cdb_len = (unsigned int) rc;
1747 if (ata_id_cdb_intr(dev->id)) {
1748 dev->flags |= ATA_DFLAG_CDB_INTR;
1749 cdb_intr_string = ", CDB intr";
1752 /* print device info to dmesg */
1753 if (ata_msg_drv(ap) && print_info)
1754 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1755 ata_mode_string(xfer_mask),
1759 /* determine max_sectors */
1760 dev->max_sectors = ATA_MAX_SECTORS;
1761 if (dev->flags & ATA_DFLAG_LBA48)
1762 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
1764 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1765 /* Let the user know. We don't want to disallow opens for
1766 rescue purposes, or in case the vendor is just a blithering
1769 ata_dev_printk(dev, KERN_WARNING,
1770 "Drive reports diagnostics failure. This may indicate a drive\n");
1771 ata_dev_printk(dev, KERN_WARNING,
1772 "fault or invalid emulation. Contact drive vendor for information.\n");
1776 /* limit bridge transfers to udma5, 200 sectors */
1777 if (ata_dev_knobble(dev)) {
1778 if (ata_msg_drv(ap) && print_info)
1779 ata_dev_printk(dev, KERN_INFO,
1780 "applying bridge limits\n");
1781 dev->udma_mask &= ATA_UDMA5;
1782 dev->max_sectors = ATA_MAX_SECTORS;
1785 if (ata_device_blacklisted(dev) & ATA_HORKAGE_MAX_SEC_128)
1786 dev->max_sectors = min(ATA_MAX_SECTORS_128, dev->max_sectors);
1788 /* limit ATAPI DMA to R/W commands only */
1789 if (ata_device_blacklisted(dev) & ATA_HORKAGE_DMA_RW_ONLY)
1790 dev->horkage |= ATA_HORKAGE_DMA_RW_ONLY;
1792 if (ap->ops->dev_config)
1793 ap->ops->dev_config(dev);
1795 if (ata_msg_probe(ap))
1796 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
1797 __FUNCTION__, ata_chk_status(ap));
1801 if (ata_msg_probe(ap))
1802 ata_dev_printk(dev, KERN_DEBUG,
1803 "%s: EXIT, err\n", __FUNCTION__);
1808 * ata_cable_40wire - return 40 wire cable type
1811 * Helper method for drivers which want to hardwire 40 wire cable
1815 int ata_cable_40wire(struct ata_port *ap)
1817 return ATA_CBL_PATA40;
1821 * ata_cable_80wire - return 80 wire cable type
1824 * Helper method for drivers which want to hardwire 80 wire cable
1828 int ata_cable_80wire(struct ata_port *ap)
1830 return ATA_CBL_PATA80;
1834 * ata_cable_unknown - return unknown PATA cable.
1837 * Helper method for drivers which have no PATA cable detection.
1840 int ata_cable_unknown(struct ata_port *ap)
1842 return ATA_CBL_PATA_UNK;
1846 * ata_cable_sata - return SATA cable type
1849 * Helper method for drivers which have SATA cables
1852 int ata_cable_sata(struct ata_port *ap)
1854 return ATA_CBL_SATA;
1858 * ata_bus_probe - Reset and probe ATA bus
1861 * Master ATA bus probing function. Initiates a hardware-dependent
1862 * bus reset, then attempts to identify any devices found on
1866 * PCI/etc. bus probe sem.
1869 * Zero on success, negative errno otherwise.
1872 int ata_bus_probe(struct ata_port *ap)
1874 unsigned int classes[ATA_MAX_DEVICES];
1875 int tries[ATA_MAX_DEVICES];
1877 struct ata_device *dev;
1881 for (i = 0; i < ATA_MAX_DEVICES; i++)
1882 tries[i] = ATA_PROBE_MAX_TRIES;
1885 /* reset and determine device classes */
1886 ap->ops->phy_reset(ap);
1888 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1889 dev = &ap->device[i];
1891 if (!(ap->flags & ATA_FLAG_DISABLED) &&
1892 dev->class != ATA_DEV_UNKNOWN)
1893 classes[dev->devno] = dev->class;
1895 classes[dev->devno] = ATA_DEV_NONE;
1897 dev->class = ATA_DEV_UNKNOWN;
1902 /* after the reset the device state is PIO 0 and the controller
1903 state is undefined. Record the mode */
1905 for (i = 0; i < ATA_MAX_DEVICES; i++)
1906 ap->device[i].pio_mode = XFER_PIO_0;
1908 /* read IDENTIFY page and configure devices. We have to do the identify
1909 specific sequence bass-ackwards so that PDIAG- is released by
1912 for (i = ATA_MAX_DEVICES - 1; i >= 0; i--) {
1913 dev = &ap->device[i];
1916 dev->class = classes[i];
1918 if (!ata_dev_enabled(dev))
1921 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
1927 /* Now ask for the cable type as PDIAG- should have been released */
1928 if (ap->ops->cable_detect)
1929 ap->cbl = ap->ops->cable_detect(ap);
1931 /* After the identify sequence we can now set up the devices. We do
1932 this in the normal order so that the user doesn't get confused */
1934 for(i = 0; i < ATA_MAX_DEVICES; i++) {
1935 dev = &ap->device[i];
1936 if (!ata_dev_enabled(dev))
1939 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
1940 rc = ata_dev_configure(dev);
1941 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
1946 /* configure transfer mode */
1947 rc = ata_set_mode(ap, &dev);
1951 for (i = 0; i < ATA_MAX_DEVICES; i++)
1952 if (ata_dev_enabled(&ap->device[i]))
1955 /* no device present, disable port */
1956 ata_port_disable(ap);
1957 ap->ops->port_disable(ap);
1961 tries[dev->devno]--;
1965 /* eeek, something went very wrong, give up */
1966 tries[dev->devno] = 0;
1970 /* give it just one more chance */
1971 tries[dev->devno] = min(tries[dev->devno], 1);
1973 if (tries[dev->devno] == 1) {
1974 /* This is the last chance, better to slow
1975 * down than lose it.
1977 sata_down_spd_limit(ap);
1978 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
1982 if (!tries[dev->devno])
1983 ata_dev_disable(dev);
1989 * ata_port_probe - Mark port as enabled
1990 * @ap: Port for which we indicate enablement
1992 * Modify @ap data structure such that the system
1993 * thinks that the entire port is enabled.
1995 * LOCKING: host lock, or some other form of
1999 void ata_port_probe(struct ata_port *ap)
2001 ap->flags &= ~ATA_FLAG_DISABLED;
2005 * sata_print_link_status - Print SATA link status
2006 * @ap: SATA port to printk link status about
2008 * This function prints link speed and status of a SATA link.
2013 void sata_print_link_status(struct ata_port *ap)
2015 u32 sstatus, scontrol, tmp;
2017 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
2019 sata_scr_read(ap, SCR_CONTROL, &scontrol);
2021 if (ata_port_online(ap)) {
2022 tmp = (sstatus >> 4) & 0xf;
2023 ata_port_printk(ap, KERN_INFO,
2024 "SATA link up %s (SStatus %X SControl %X)\n",
2025 sata_spd_string(tmp), sstatus, scontrol);
2027 ata_port_printk(ap, KERN_INFO,
2028 "SATA link down (SStatus %X SControl %X)\n",
2034 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2035 * @ap: SATA port associated with target SATA PHY.
2037 * This function issues commands to standard SATA Sxxx
2038 * PHY registers, to wake up the phy (and device), and
2039 * clear any reset condition.
2042 * PCI/etc. bus probe sem.
2045 void __sata_phy_reset(struct ata_port *ap)
2048 unsigned long timeout = jiffies + (HZ * 5);
2050 if (ap->flags & ATA_FLAG_SATA_RESET) {
2051 /* issue phy wake/reset */
2052 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
2053 /* Couldn't find anything in SATA I/II specs, but
2054 * AHCI-1.1 10.4.2 says at least 1 ms. */
2057 /* phy wake/clear reset */
2058 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
2060 /* wait for phy to become ready, if necessary */
2063 sata_scr_read(ap, SCR_STATUS, &sstatus);
2064 if ((sstatus & 0xf) != 1)
2066 } while (time_before(jiffies, timeout));
2068 /* print link status */
2069 sata_print_link_status(ap);
2071 /* TODO: phy layer with polling, timeouts, etc. */
2072 if (!ata_port_offline(ap))
2075 ata_port_disable(ap);
2077 if (ap->flags & ATA_FLAG_DISABLED)
2080 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2081 ata_port_disable(ap);
2085 ap->cbl = ATA_CBL_SATA;
2089 * sata_phy_reset - Reset SATA bus.
2090 * @ap: SATA port associated with target SATA PHY.
2092 * This function resets the SATA bus, and then probes
2093 * the bus for devices.
2096 * PCI/etc. bus probe sem.
2099 void sata_phy_reset(struct ata_port *ap)
2101 __sata_phy_reset(ap);
2102 if (ap->flags & ATA_FLAG_DISABLED)
2108 * ata_dev_pair - return other device on cable
2111 * Obtain the other device on the same cable, or if none is
2112 * present NULL is returned
2115 struct ata_device *ata_dev_pair(struct ata_device *adev)
2117 struct ata_port *ap = adev->ap;
2118 struct ata_device *pair = &ap->device[1 - adev->devno];
2119 if (!ata_dev_enabled(pair))
2125 * ata_port_disable - Disable port.
2126 * @ap: Port to be disabled.
2128 * Modify @ap data structure such that the system
2129 * thinks that the entire port is disabled, and should
2130 * never attempt to probe or communicate with devices
2133 * LOCKING: host lock, or some other form of
2137 void ata_port_disable(struct ata_port *ap)
2139 ap->device[0].class = ATA_DEV_NONE;
2140 ap->device[1].class = ATA_DEV_NONE;
2141 ap->flags |= ATA_FLAG_DISABLED;
2145 * sata_down_spd_limit - adjust SATA spd limit downward
2146 * @ap: Port to adjust SATA spd limit for
2148 * Adjust SATA spd limit of @ap downward. Note that this
2149 * function only adjusts the limit. The change must be applied
2150 * using sata_set_spd().
2153 * Inherited from caller.
2156 * 0 on success, negative errno on failure
2158 int sata_down_spd_limit(struct ata_port *ap)
2160 u32 sstatus, spd, mask;
2163 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2167 mask = ap->sata_spd_limit;
2170 highbit = fls(mask) - 1;
2171 mask &= ~(1 << highbit);
2173 spd = (sstatus >> 4) & 0xf;
2177 mask &= (1 << spd) - 1;
2181 ap->sata_spd_limit = mask;
2183 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2184 sata_spd_string(fls(mask)));
2189 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
2193 if (ap->sata_spd_limit == UINT_MAX)
2196 limit = fls(ap->sata_spd_limit);
2198 spd = (*scontrol >> 4) & 0xf;
2199 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2201 return spd != limit;
2205 * sata_set_spd_needed - is SATA spd configuration needed
2206 * @ap: Port in question
2208 * Test whether the spd limit in SControl matches
2209 * @ap->sata_spd_limit. This function is used to determine
2210 * whether hardreset is necessary to apply SATA spd
2214 * Inherited from caller.
2217 * 1 if SATA spd configuration is needed, 0 otherwise.
2219 int sata_set_spd_needed(struct ata_port *ap)
2223 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
2226 return __sata_set_spd_needed(ap, &scontrol);
2230 * sata_set_spd - set SATA spd according to spd limit
2231 * @ap: Port to set SATA spd for
2233 * Set SATA spd of @ap according to sata_spd_limit.
2236 * Inherited from caller.
2239 * 0 if spd doesn't need to be changed, 1 if spd has been
2240 * changed. Negative errno if SCR registers are inaccessible.
2242 int sata_set_spd(struct ata_port *ap)
2247 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2250 if (!__sata_set_spd_needed(ap, &scontrol))
2253 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2260 * This mode timing computation functionality is ported over from
2261 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2264 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2265 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2266 * for UDMA6, which is currently supported only by Maxtor drives.
2268 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2271 static const struct ata_timing ata_timing[] = {
2273 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2274 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2275 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2276 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2278 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2279 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2280 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2281 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2282 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2284 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2286 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2287 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2288 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2290 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2291 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2292 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2294 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2295 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2296 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2297 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2299 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2300 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2301 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2303 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2308 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2309 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2311 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2313 q->setup = EZ(t->setup * 1000, T);
2314 q->act8b = EZ(t->act8b * 1000, T);
2315 q->rec8b = EZ(t->rec8b * 1000, T);
2316 q->cyc8b = EZ(t->cyc8b * 1000, T);
2317 q->active = EZ(t->active * 1000, T);
2318 q->recover = EZ(t->recover * 1000, T);
2319 q->cycle = EZ(t->cycle * 1000, T);
2320 q->udma = EZ(t->udma * 1000, UT);
2323 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2324 struct ata_timing *m, unsigned int what)
2326 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2327 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2328 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2329 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2330 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2331 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2332 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2333 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2336 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2338 const struct ata_timing *t;
2340 for (t = ata_timing; t->mode != speed; t++)
2341 if (t->mode == 0xFF)
2346 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2347 struct ata_timing *t, int T, int UT)
2349 const struct ata_timing *s;
2350 struct ata_timing p;
2356 if (!(s = ata_timing_find_mode(speed)))
2359 memcpy(t, s, sizeof(*s));
2362 * If the drive is an EIDE drive, it can tell us it needs extended
2363 * PIO/MW_DMA cycle timing.
2366 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2367 memset(&p, 0, sizeof(p));
2368 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2369 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2370 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2371 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2372 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2374 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2378 * Convert the timing to bus clock counts.
2381 ata_timing_quantize(t, t, T, UT);
2384 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2385 * S.M.A.R.T * and some other commands. We have to ensure that the
2386 * DMA cycle timing is slower/equal than the fastest PIO timing.
2389 if (speed > XFER_PIO_6) {
2390 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2391 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2395 * Lengthen active & recovery time so that cycle time is correct.
2398 if (t->act8b + t->rec8b < t->cyc8b) {
2399 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2400 t->rec8b = t->cyc8b - t->act8b;
2403 if (t->active + t->recover < t->cycle) {
2404 t->active += (t->cycle - (t->active + t->recover)) / 2;
2405 t->recover = t->cycle - t->active;
2412 * ata_down_xfermask_limit - adjust dev xfer masks downward
2413 * @dev: Device to adjust xfer masks
2414 * @sel: ATA_DNXFER_* selector
2416 * Adjust xfer masks of @dev downward. Note that this function
2417 * does not apply the change. Invoking ata_set_mode() afterwards
2418 * will apply the limit.
2421 * Inherited from caller.
2424 * 0 on success, negative errno on failure
2426 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
2429 unsigned int orig_mask, xfer_mask;
2430 unsigned int pio_mask, mwdma_mask, udma_mask;
2433 quiet = !!(sel & ATA_DNXFER_QUIET);
2434 sel &= ~ATA_DNXFER_QUIET;
2436 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2439 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
2442 case ATA_DNXFER_PIO:
2443 highbit = fls(pio_mask) - 1;
2444 pio_mask &= ~(1 << highbit);
2447 case ATA_DNXFER_DMA:
2449 highbit = fls(udma_mask) - 1;
2450 udma_mask &= ~(1 << highbit);
2453 } else if (mwdma_mask) {
2454 highbit = fls(mwdma_mask) - 1;
2455 mwdma_mask &= ~(1 << highbit);
2461 case ATA_DNXFER_40C:
2462 udma_mask &= ATA_UDMA_MASK_40C;
2465 case ATA_DNXFER_FORCE_PIO0:
2467 case ATA_DNXFER_FORCE_PIO:
2476 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2478 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2482 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2483 snprintf(buf, sizeof(buf), "%s:%s",
2484 ata_mode_string(xfer_mask),
2485 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2487 snprintf(buf, sizeof(buf), "%s",
2488 ata_mode_string(xfer_mask));
2490 ata_dev_printk(dev, KERN_WARNING,
2491 "limiting speed to %s\n", buf);
2494 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2500 static int ata_dev_set_mode(struct ata_device *dev)
2502 struct ata_eh_context *ehc = &dev->ap->eh_context;
2503 unsigned int err_mask;
2506 dev->flags &= ~ATA_DFLAG_PIO;
2507 if (dev->xfer_shift == ATA_SHIFT_PIO)
2508 dev->flags |= ATA_DFLAG_PIO;
2510 err_mask = ata_dev_set_xfermode(dev);
2511 /* Old CFA may refuse this command, which is just fine */
2512 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2513 err_mask &= ~AC_ERR_DEV;
2516 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2517 "(err_mask=0x%x)\n", err_mask);
2521 ehc->i.flags |= ATA_EHI_POST_SETMODE;
2522 rc = ata_dev_revalidate(dev, 0);
2523 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
2527 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2528 dev->xfer_shift, (int)dev->xfer_mode);
2530 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2531 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2536 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
2537 * @ap: port on which timings will be programmed
2538 * @r_failed_dev: out paramter for failed device
2540 * Standard implementation of the function used to tune and set
2541 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2542 * ata_dev_set_mode() fails, pointer to the failing device is
2543 * returned in @r_failed_dev.
2546 * PCI/etc. bus probe sem.
2549 * 0 on success, negative errno otherwise
2552 int ata_do_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2554 struct ata_device *dev;
2555 int i, rc = 0, used_dma = 0, found = 0;
2558 /* step 1: calculate xfer_mask */
2559 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2560 unsigned int pio_mask, dma_mask;
2562 dev = &ap->device[i];
2564 if (!ata_dev_enabled(dev))
2567 ata_dev_xfermask(dev);
2569 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2570 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2571 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2572 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2581 /* step 2: always set host PIO timings */
2582 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2583 dev = &ap->device[i];
2584 if (!ata_dev_enabled(dev))
2587 if (!dev->pio_mode) {
2588 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2593 dev->xfer_mode = dev->pio_mode;
2594 dev->xfer_shift = ATA_SHIFT_PIO;
2595 if (ap->ops->set_piomode)
2596 ap->ops->set_piomode(ap, dev);
2599 /* step 3: set host DMA timings */
2600 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2601 dev = &ap->device[i];
2603 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2606 dev->xfer_mode = dev->dma_mode;
2607 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2608 if (ap->ops->set_dmamode)
2609 ap->ops->set_dmamode(ap, dev);
2612 /* step 4: update devices' xfer mode */
2613 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2614 dev = &ap->device[i];
2616 /* don't update suspended devices' xfer mode */
2617 if (!ata_dev_ready(dev))
2620 rc = ata_dev_set_mode(dev);
2625 /* Record simplex status. If we selected DMA then the other
2626 * host channels are not permitted to do so.
2628 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2629 ap->host->simplex_claimed = ap;
2631 /* step5: chip specific finalisation */
2632 if (ap->ops->post_set_mode)
2633 ap->ops->post_set_mode(ap);
2636 *r_failed_dev = dev;
2641 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2642 * @ap: port on which timings will be programmed
2643 * @r_failed_dev: out paramter for failed device
2645 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2646 * ata_set_mode() fails, pointer to the failing device is
2647 * returned in @r_failed_dev.
2650 * PCI/etc. bus probe sem.
2653 * 0 on success, negative errno otherwise
2655 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2657 /* has private set_mode? */
2658 if (ap->ops->set_mode)
2659 return ap->ops->set_mode(ap, r_failed_dev);
2660 return ata_do_set_mode(ap, r_failed_dev);
2664 * ata_tf_to_host - issue ATA taskfile to host controller
2665 * @ap: port to which command is being issued
2666 * @tf: ATA taskfile register set
2668 * Issues ATA taskfile register set to ATA host controller,
2669 * with proper synchronization with interrupt handler and
2673 * spin_lock_irqsave(host lock)
2676 static inline void ata_tf_to_host(struct ata_port *ap,
2677 const struct ata_taskfile *tf)
2679 ap->ops->tf_load(ap, tf);
2680 ap->ops->exec_command(ap, tf);
2684 * ata_busy_sleep - sleep until BSY clears, or timeout
2685 * @ap: port containing status register to be polled
2686 * @tmout_pat: impatience timeout
2687 * @tmout: overall timeout
2689 * Sleep until ATA Status register bit BSY clears,
2690 * or a timeout occurs.
2693 * Kernel thread context (may sleep).
2696 * 0 on success, -errno otherwise.
2698 int ata_busy_sleep(struct ata_port *ap,
2699 unsigned long tmout_pat, unsigned long tmout)
2701 unsigned long timer_start, timeout;
2704 status = ata_busy_wait(ap, ATA_BUSY, 300);
2705 timer_start = jiffies;
2706 timeout = timer_start + tmout_pat;
2707 while (status != 0xff && (status & ATA_BUSY) &&
2708 time_before(jiffies, timeout)) {
2710 status = ata_busy_wait(ap, ATA_BUSY, 3);
2713 if (status != 0xff && (status & ATA_BUSY))
2714 ata_port_printk(ap, KERN_WARNING,
2715 "port is slow to respond, please be patient "
2716 "(Status 0x%x)\n", status);
2718 timeout = timer_start + tmout;
2719 while (status != 0xff && (status & ATA_BUSY) &&
2720 time_before(jiffies, timeout)) {
2722 status = ata_chk_status(ap);
2728 if (status & ATA_BUSY) {
2729 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2730 "(%lu secs, Status 0x%x)\n",
2731 tmout / HZ, status);
2738 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2740 struct ata_ioports *ioaddr = &ap->ioaddr;
2741 unsigned int dev0 = devmask & (1 << 0);
2742 unsigned int dev1 = devmask & (1 << 1);
2743 unsigned long timeout;
2745 /* if device 0 was found in ata_devchk, wait for its
2749 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2751 /* if device 1 was found in ata_devchk, wait for
2752 * register access, then wait for BSY to clear
2754 timeout = jiffies + ATA_TMOUT_BOOT;
2758 ap->ops->dev_select(ap, 1);
2759 nsect = ioread8(ioaddr->nsect_addr);
2760 lbal = ioread8(ioaddr->lbal_addr);
2761 if ((nsect == 1) && (lbal == 1))
2763 if (time_after(jiffies, timeout)) {
2767 msleep(50); /* give drive a breather */
2770 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2772 /* is all this really necessary? */
2773 ap->ops->dev_select(ap, 0);
2775 ap->ops->dev_select(ap, 1);
2777 ap->ops->dev_select(ap, 0);
2780 static unsigned int ata_bus_softreset(struct ata_port *ap,
2781 unsigned int devmask)
2783 struct ata_ioports *ioaddr = &ap->ioaddr;
2785 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
2787 /* software reset. causes dev0 to be selected */
2788 iowrite8(ap->ctl, ioaddr->ctl_addr);
2789 udelay(20); /* FIXME: flush */
2790 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2791 udelay(20); /* FIXME: flush */
2792 iowrite8(ap->ctl, ioaddr->ctl_addr);
2794 /* spec mandates ">= 2ms" before checking status.
2795 * We wait 150ms, because that was the magic delay used for
2796 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2797 * between when the ATA command register is written, and then
2798 * status is checked. Because waiting for "a while" before
2799 * checking status is fine, post SRST, we perform this magic
2800 * delay here as well.
2802 * Old drivers/ide uses the 2mS rule and then waits for ready
2806 /* Before we perform post reset processing we want to see if
2807 * the bus shows 0xFF because the odd clown forgets the D7
2808 * pulldown resistor.
2810 if (ata_check_status(ap) == 0xFF)
2813 ata_bus_post_reset(ap, devmask);
2819 * ata_bus_reset - reset host port and associated ATA channel
2820 * @ap: port to reset
2822 * This is typically the first time we actually start issuing
2823 * commands to the ATA channel. We wait for BSY to clear, then
2824 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2825 * result. Determine what devices, if any, are on the channel
2826 * by looking at the device 0/1 error register. Look at the signature
2827 * stored in each device's taskfile registers, to determine if
2828 * the device is ATA or ATAPI.
2831 * PCI/etc. bus probe sem.
2832 * Obtains host lock.
2835 * Sets ATA_FLAG_DISABLED if bus reset fails.
2838 void ata_bus_reset(struct ata_port *ap)
2840 struct ata_ioports *ioaddr = &ap->ioaddr;
2841 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2843 unsigned int dev0, dev1 = 0, devmask = 0;
2845 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
2847 /* determine if device 0/1 are present */
2848 if (ap->flags & ATA_FLAG_SATA_RESET)
2851 dev0 = ata_devchk(ap, 0);
2853 dev1 = ata_devchk(ap, 1);
2857 devmask |= (1 << 0);
2859 devmask |= (1 << 1);
2861 /* select device 0 again */
2862 ap->ops->dev_select(ap, 0);
2864 /* issue bus reset */
2865 if (ap->flags & ATA_FLAG_SRST)
2866 if (ata_bus_softreset(ap, devmask))
2870 * determine by signature whether we have ATA or ATAPI devices
2872 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2873 if ((slave_possible) && (err != 0x81))
2874 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2876 /* re-enable interrupts */
2877 ap->ops->irq_on(ap);
2879 /* is double-select really necessary? */
2880 if (ap->device[1].class != ATA_DEV_NONE)
2881 ap->ops->dev_select(ap, 1);
2882 if (ap->device[0].class != ATA_DEV_NONE)
2883 ap->ops->dev_select(ap, 0);
2885 /* if no devices were detected, disable this port */
2886 if ((ap->device[0].class == ATA_DEV_NONE) &&
2887 (ap->device[1].class == ATA_DEV_NONE))
2890 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2891 /* set up device control for ATA_FLAG_SATA_RESET */
2892 iowrite8(ap->ctl, ioaddr->ctl_addr);
2899 ata_port_printk(ap, KERN_ERR, "disabling port\n");
2900 ap->ops->port_disable(ap);
2906 * sata_phy_debounce - debounce SATA phy status
2907 * @ap: ATA port to debounce SATA phy status for
2908 * @params: timing parameters { interval, duratinon, timeout } in msec
2910 * Make sure SStatus of @ap reaches stable state, determined by
2911 * holding the same value where DET is not 1 for @duration polled
2912 * every @interval, before @timeout. Timeout constraints the
2913 * beginning of the stable state. Because, after hot unplugging,
2914 * DET gets stuck at 1 on some controllers, this functions waits
2915 * until timeout then returns 0 if DET is stable at 1.
2918 * Kernel thread context (may sleep)
2921 * 0 on success, -errno on failure.
2923 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
2925 unsigned long interval_msec = params[0];
2926 unsigned long duration = params[1] * HZ / 1000;
2927 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2928 unsigned long last_jiffies;
2932 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2937 last_jiffies = jiffies;
2940 msleep(interval_msec);
2941 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2947 if (cur == 1 && time_before(jiffies, timeout))
2949 if (time_after(jiffies, last_jiffies + duration))
2954 /* unstable, start over */
2956 last_jiffies = jiffies;
2959 if (time_after(jiffies, timeout))
2965 * sata_phy_resume - resume SATA phy
2966 * @ap: ATA port to resume SATA phy for
2967 * @params: timing parameters { interval, duratinon, timeout } in msec
2969 * Resume SATA phy of @ap and debounce it.
2972 * Kernel thread context (may sleep)
2975 * 0 on success, -errno on failure.
2977 int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2982 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2985 scontrol = (scontrol & 0x0f0) | 0x300;
2987 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2990 /* Some PHYs react badly if SStatus is pounded immediately
2991 * after resuming. Delay 200ms before debouncing.
2995 return sata_phy_debounce(ap, params);
2998 static void ata_wait_spinup(struct ata_port *ap)
3000 struct ata_eh_context *ehc = &ap->eh_context;
3001 unsigned long end, secs;
3004 /* first, debounce phy if SATA */
3005 if (ap->cbl == ATA_CBL_SATA) {
3006 rc = sata_phy_debounce(ap, sata_deb_timing_hotplug);
3008 /* if debounced successfully and offline, no need to wait */
3009 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
3013 /* okay, let's give the drive time to spin up */
3014 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
3015 secs = ((end - jiffies) + HZ - 1) / HZ;
3017 if (time_after(jiffies, end))
3021 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
3022 "(%lu secs)\n", secs);
3024 schedule_timeout_uninterruptible(end - jiffies);
3028 * ata_std_prereset - prepare for reset
3029 * @ap: ATA port to be reset
3031 * @ap is about to be reset. Initialize it.
3034 * Kernel thread context (may sleep)
3037 * 0 on success, -errno otherwise.
3039 int ata_std_prereset(struct ata_port *ap)
3041 struct ata_eh_context *ehc = &ap->eh_context;
3042 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3045 /* handle link resume & hotplug spinup */
3046 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3047 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
3048 ehc->i.action |= ATA_EH_HARDRESET;
3050 if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) &&
3051 (ap->flags & ATA_FLAG_SKIP_D2H_BSY))
3052 ata_wait_spinup(ap);
3054 /* if we're about to do hardreset, nothing more to do */
3055 if (ehc->i.action & ATA_EH_HARDRESET)
3058 /* if SATA, resume phy */
3059 if (ap->cbl == ATA_CBL_SATA) {
3060 rc = sata_phy_resume(ap, timing);
3061 if (rc && rc != -EOPNOTSUPP) {
3062 /* phy resume failed */
3063 ata_port_printk(ap, KERN_WARNING, "failed to resume "
3064 "link for reset (errno=%d)\n", rc);
3069 /* Wait for !BSY if the controller can wait for the first D2H
3070 * Reg FIS and we don't know that no device is attached.
3072 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
3073 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
3079 * ata_std_softreset - reset host port via ATA SRST
3080 * @ap: port to reset
3081 * @classes: resulting classes of attached devices
3083 * Reset host port using ATA SRST.
3086 * Kernel thread context (may sleep)
3089 * 0 on success, -errno otherwise.
3091 int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
3093 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3094 unsigned int devmask = 0, err_mask;
3099 if (ata_port_offline(ap)) {
3100 classes[0] = ATA_DEV_NONE;
3104 /* determine if device 0/1 are present */
3105 if (ata_devchk(ap, 0))
3106 devmask |= (1 << 0);
3107 if (slave_possible && ata_devchk(ap, 1))
3108 devmask |= (1 << 1);
3110 /* select device 0 again */
3111 ap->ops->dev_select(ap, 0);
3113 /* issue bus reset */
3114 DPRINTK("about to softreset, devmask=%x\n", devmask);
3115 err_mask = ata_bus_softreset(ap, devmask);
3117 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
3122 /* determine by signature whether we have ATA or ATAPI devices */
3123 classes[0] = ata_dev_try_classify(ap, 0, &err);
3124 if (slave_possible && err != 0x81)
3125 classes[1] = ata_dev_try_classify(ap, 1, &err);
3128 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3133 * sata_port_hardreset - reset port via SATA phy reset
3134 * @ap: port to reset
3135 * @timing: timing parameters { interval, duratinon, timeout } in msec
3137 * SATA phy-reset host port using DET bits of SControl register.
3140 * Kernel thread context (may sleep)
3143 * 0 on success, -errno otherwise.
3145 int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing)
3152 if (sata_set_spd_needed(ap)) {
3153 /* SATA spec says nothing about how to reconfigure
3154 * spd. To be on the safe side, turn off phy during
3155 * reconfiguration. This works for at least ICH7 AHCI
3158 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3161 scontrol = (scontrol & 0x0f0) | 0x304;
3163 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3169 /* issue phy wake/reset */
3170 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3173 scontrol = (scontrol & 0x0f0) | 0x301;
3175 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
3178 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3179 * 10.4.2 says at least 1 ms.
3183 /* bring phy back */
3184 rc = sata_phy_resume(ap, timing);
3186 DPRINTK("EXIT, rc=%d\n", rc);
3191 * sata_std_hardreset - reset host port via SATA phy reset
3192 * @ap: port to reset
3193 * @class: resulting class of attached device
3195 * SATA phy-reset host port using DET bits of SControl register,
3196 * wait for !BSY and classify the attached device.
3199 * Kernel thread context (may sleep)
3202 * 0 on success, -errno otherwise.
3204 int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
3206 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3212 rc = sata_port_hardreset(ap, timing);
3214 ata_port_printk(ap, KERN_ERR,
3215 "COMRESET failed (errno=%d)\n", rc);
3219 /* TODO: phy layer with polling, timeouts, etc. */
3220 if (ata_port_offline(ap)) {
3221 *class = ATA_DEV_NONE;
3222 DPRINTK("EXIT, link offline\n");
3226 /* wait a while before checking status, see SRST for more info */
3229 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
3230 ata_port_printk(ap, KERN_ERR,
3231 "COMRESET failed (device not ready)\n");
3235 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3237 *class = ata_dev_try_classify(ap, 0, NULL);
3239 DPRINTK("EXIT, class=%u\n", *class);
3244 * ata_std_postreset - standard postreset callback
3245 * @ap: the target ata_port
3246 * @classes: classes of attached devices
3248 * This function is invoked after a successful reset. Note that
3249 * the device might have been reset more than once using
3250 * different reset methods before postreset is invoked.
3253 * Kernel thread context (may sleep)
3255 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3261 /* print link status */
3262 sata_print_link_status(ap);
3265 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3266 sata_scr_write(ap, SCR_ERROR, serror);
3268 /* re-enable interrupts */
3269 if (!ap->ops->error_handler)
3270 ap->ops->irq_on(ap);
3272 /* is double-select really necessary? */
3273 if (classes[0] != ATA_DEV_NONE)
3274 ap->ops->dev_select(ap, 1);
3275 if (classes[1] != ATA_DEV_NONE)
3276 ap->ops->dev_select(ap, 0);
3278 /* bail out if no device is present */
3279 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3280 DPRINTK("EXIT, no device\n");
3284 /* set up device control */
3285 if (ap->ioaddr.ctl_addr)
3286 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
3292 * ata_dev_same_device - Determine whether new ID matches configured device
3293 * @dev: device to compare against
3294 * @new_class: class of the new device
3295 * @new_id: IDENTIFY page of the new device
3297 * Compare @new_class and @new_id against @dev and determine
3298 * whether @dev is the device indicated by @new_class and
3305 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3307 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3310 const u16 *old_id = dev->id;
3311 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3312 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3315 if (dev->class != new_class) {
3316 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3317 dev->class, new_class);
3321 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3322 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3323 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3324 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3325 new_n_sectors = ata_id_n_sectors(new_id);
3327 if (strcmp(model[0], model[1])) {
3328 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3329 "'%s' != '%s'\n", model[0], model[1]);
3333 if (strcmp(serial[0], serial[1])) {
3334 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3335 "'%s' != '%s'\n", serial[0], serial[1]);
3339 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
3340 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3342 (unsigned long long)dev->n_sectors,
3343 (unsigned long long)new_n_sectors);
3351 * ata_dev_revalidate - Revalidate ATA device
3352 * @dev: device to revalidate
3353 * @readid_flags: read ID flags
3355 * Re-read IDENTIFY page and make sure @dev is still attached to
3359 * Kernel thread context (may sleep)
3362 * 0 on success, negative errno otherwise
3364 int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3366 unsigned int class = dev->class;
3367 u16 *id = (void *)dev->ap->sector_buf;
3370 if (!ata_dev_enabled(dev)) {
3376 rc = ata_dev_read_id(dev, &class, readid_flags, id);